## Contents

**Chapter 1. Introduction** ......................................................... 1

**Chapter 2. Getting Started** .................................................. 2

What is Oxygen XML Editor .................................................. 2
Getting Familiar with the Interface ........................................ 3
Supported Document Types .................................................. 4
Resources to Help You Get Started Using Oxygen XML Editor .... 5
Your First Document or Project ............................................. 7

  - Your First XML Document .............................................. 8
  - Getting Started with DITA ............................................ 13
  - Creating a New Project ............................................... 20

Getting Help ............................................................................... 22

  - Help Menu ................................................................. 23
  - Frequently Used Shortcut Keys ..................................... 27
  - Accessibility Support in Oxygen ................................... 30

**Chapter 3. Installation** ......................................................... 33

Installing Oxygen XML Editor on Windows .................................... 34
Installing Oxygen XML Editor on Mac OS X .................................. 38
Installing Oxygen XML Editor on Linux ...................................... 40
Installing Oxygen XML Editor on Windows Server .................... 45
Installing Oxygen XML Editor on a Linux / UNIX Server .................. 47
Site-Wide Deployment .................................................................. 49
Licensing .................................................................................. 50

  - Choosing a License Type ............................................. 51
  - Obtaining a License Key ............................................... 51
  - Register a Named-User or Subscription License ................ 51
  - Floating Licenses ......................................................... 53
  - Transferring a License Key .......................................... 56

License Servers .......................................................................... 56

  - Setting up an HTTP License Server (Floating or Named-User Licenses) 57
Setting up TCP Floating License Server (Deprecated) in 32-bit Windows ........................................... 67
Setting up TCP Floating License Server (Deprecated) All-Platforms ...................................................... 69
Common Problems: License Server Errors ................................................................................................. 71
Upgrading .................................................................................................................................................. 73
Upgrading Oxygen XML Editor on Windows/Linux ............................................................................... 73
Upgrading Oxygen XML Editor on OS X .................................................................................................. 75
Installing and Updating Add-ons .............................................................................................................. 75
Uninstalling .............................................................................................................................................. 77

Chapter 4. Configuration ......................................................................................................................... 79
Preferences ........................................................................................................................................... 79
Global Preferences ................................................................................................................................. 81
Appearance Preferences .......................................................................................................................... 84
Application Layout Preferences ............................................................................................................... 90
Add-ons Preferences ............................................................................................................................... 92
Document Type Association Preferences ................................................................................................. 92
Document Templates Preferences ............................................................................................................ 123
Encoding Preferences ............................................................................................................................. 123
Editor Preferences ................................................................................................................................... 125
CSS Validator Preferences ...................................................................................................................... 188
XML Preferences .................................................................................................................................... 189
DITA Preferences .................................................................................................................................... 224
Data Sources Preferences ......................................................................................................................... 229
SVN Preferences ..................................................................................................................................... 234
Diff Preferences ...................................................................................................................................... 239
Archive Preferences ................................................................................................................................. 244
Plugins Preferences ................................................................................................................................... 245
External Tools Preferences ....................................................................................................................... 246
Menu Shortcut Keys Preferences .............................................................................................................. 248
File Types Preferences ............................................................................................................................. 250
Open/Find Resource Preferences Page ..................................................................................................... 251
Custom Editor Variables Preferences ....................................................................................................... 254
Network Connection Settings Preferences ........................................ 254
XML Structure Outline Preferences ............................................... 259
Views Preferences ..................................................................... 259
Messages Preferences .................................................................. 260
Configuring Options ..................................................................... 261
Customizing Default Options ...................................................... 262
Storing Global and Project Level Options .................................... 265
Sharing Application Settings ....................................................... 266
Importing/Exporting/Resetting Global Options ......................... 268
Configuring the Layout of the Views and Editors ......................... 268
Configuring Toolbars .................................................................. 273
Import/Export Transformation or Validation Scenarios ............... 276
Editor Variables ......................................................................... 276
  Custom Editor Variables ............................................................ 284
Custom System Properties ......................................................... 284
Localizing the User Interface ...................................................... 289
Setting a Java Virtual Machine Parameter when Launching Oxygen XML Editor ........................................ 290
  Setting Parameters for the Application Launchers .................. 291
  Setting Parameters in the Command-Line Scripts ................... 292
  Creating Custom Startup Parameters File ............................... 293
How to Increase the Amount of Available Memory ................... 294

Chapter 5. Perspectives ............................................................... 295
  Editor Perspective ..................................................................... 295
  XSLT Debugger Perspective ..................................................... 297
  XQuery Debugger Perspective .................................................. 299
  Database Perspective .............................................................. 300

Chapter 6. Editing Modes ............................................................ 303
  Text Editing Mode ................................................................... 303
    Navigating the Document Content in Text Mode .................... 304
    Smart Editing in Text Mode ................................................... 307
    Shortcut Actions in Text Mode ............................................... 308
Contents | v

Editing XML Markup in Text Mode................................................................. 310
Folding XML Elements in Text Mode............................................................ 315
Drag and Drop in Text Mode........................................................................... 316
Selecting Content in Text Mode...................................................................... 317
Content Completion Assistant in Text Mode.................................................... 319
Text Mode Views............................................................................................ 333
Syntax Highlighting in XML Documents.......................................................... 362
Syntax Highlight Depending on Namespace Prefix......................................... 363
Presenting Validation Errors in Text Mode...................................................... 364
Special Character Support in Text Mode........................................................ 366
Inserting or Opening a File at Cursor Location................................................ 367
Adjusting the Transparency of XML Markup.................................................. 368
Locking and Unlocking XML Markup............................................................. 369
Formatting and Indenting XML Documents...................................................... 369
Managing Highlighted Content....................................................................... 377
Quick Assist Support for IDs and IDREFS....................................................... 378
Highlight ID Occurrences in Text Mode........................................................... 379
Contextual Menu Actions in Text Mode........................................................... 379

Grid Editing Mode......................................................................................... 392
Layouts: Grid and Tree.................................................................................. 392
Grid Mode Navigation.................................................................................... 393
Special Character Support in Grid Mode......................................................... 394
Editing Actions in Grid Mode.......................................................................... 395
Drag and Drop in the Grid Editing Mode......................................................... 398
Copy and Paste in the Grid Editing Mode........................................................ 399
Content Completion Assistant in Grid Mode................................................... 400
Exporting XML Content to Excel................................................................. 400

Author Editing Mode...................................................................................... 402
Author Mode User Roles.............................................................................. 403
Styling XML Documents in Author Mode...................................................... 403
Navigating the Document Content in Author Mode........................................ 405
<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author Mode Views</td>
<td>408</td>
</tr>
<tr>
<td>Displaying the Markup</td>
<td>441</td>
</tr>
<tr>
<td>Displaying Referenced Content</td>
<td>442</td>
</tr>
<tr>
<td>Visual Hints for the Cursor Position</td>
<td>443</td>
</tr>
<tr>
<td>Presenting Validation Errors in Author Mode</td>
<td>445</td>
</tr>
<tr>
<td>Whitespace Handling in Author Mode</td>
<td>447</td>
</tr>
<tr>
<td>Editing Content in Author Mode</td>
<td>449</td>
</tr>
<tr>
<td>Editing XML Markup in Author Mode</td>
<td>451</td>
</tr>
<tr>
<td>Editing Attributes in Author Mode</td>
<td>460</td>
</tr>
<tr>
<td>Folding XML Elements in Author Mode</td>
<td>461</td>
</tr>
<tr>
<td>Drag and Drop in Author Mode</td>
<td>463</td>
</tr>
<tr>
<td>Smart Paste Mechanism</td>
<td>463</td>
</tr>
<tr>
<td>Selecting Content in Author Mode</td>
<td>465</td>
</tr>
<tr>
<td>Content Completion Assistant in Author Mode</td>
<td>466</td>
</tr>
<tr>
<td>Finding and Replacing Text</td>
<td>482</td>
</tr>
<tr>
<td>Reviewing Documents</td>
<td>483</td>
</tr>
<tr>
<td>Profiling and Conditional Text</td>
<td>510</td>
</tr>
<tr>
<td>Adding Tables in Author Mode</td>
<td>525</td>
</tr>
<tr>
<td>Sorting Content in Tables and List Items</td>
<td>558</td>
</tr>
<tr>
<td>Inserting Images</td>
<td>562</td>
</tr>
<tr>
<td>Image Map Editor</td>
<td>570</td>
</tr>
<tr>
<td>Adding Video, Audio, and Embedded HTML Resources</td>
<td>596</td>
</tr>
<tr>
<td>Embedding HTML Content in DITA Topics</td>
<td>597</td>
</tr>
<tr>
<td>Editing MathML Notations</td>
<td>598</td>
</tr>
<tr>
<td>Refreshing the Content</td>
<td>601</td>
</tr>
<tr>
<td>Generating IDs for Elements in Author Mode</td>
<td>601</td>
</tr>
<tr>
<td>Using Form Controls in Author Mode</td>
<td>604</td>
</tr>
<tr>
<td>Contextual Menu Actions in Author Mode</td>
<td>606</td>
</tr>
<tr>
<td>Special Character Support in Author Mode</td>
<td>620</td>
</tr>
<tr>
<td>Design Editing Mode (XML Schema Diagram Editor)</td>
<td>623</td>
</tr>
<tr>
<td>Navigation in the XML Schema Design Mode</td>
<td>624</td>
</tr>
</tbody>
</table>
### Contents

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>XML Schema Outline View</td>
<td>625</td>
</tr>
<tr>
<td>XML Schema Attributes View</td>
<td>628</td>
</tr>
<tr>
<td>XML Schema Facets View</td>
<td>630</td>
</tr>
<tr>
<td>XML Schema Palette View</td>
<td>631</td>
</tr>
<tr>
<td>Schema Editing Actions</td>
<td>633</td>
</tr>
<tr>
<td>Contextual Menu Actions in the Design Mode</td>
<td>634</td>
</tr>
<tr>
<td>XML Schema Components</td>
<td>642</td>
</tr>
<tr>
<td>Schema Validation</td>
<td>665</td>
</tr>
<tr>
<td>Edit Schema Namespaces</td>
<td>666</td>
</tr>
</tbody>
</table>

**Chapter 7. Working with Documents** ................................................. 667

- Getting Familiar with the Interface ............................................... 667
  - Configuring the Layout of the Views and Editors ............................. 669
  - Configuring Toolbars ...................................................................... 673
- Creating and Working with Documents .............................................. 676
  - Creating New Documents and Templates .......................................... 676
  - Opening Documents ......................................................................... 689
  - Saving Documents ........................................................................... 692
  - Auto Recover Documents ................................................................ 692
- Working with Remote Documents ......................................................... 693
- Switching and Moving Editor Tabs ....................................................... 701
- Closing Documents ............................................................................ 704
- Contextual Menu of the Current Editor Tab ....................................... 704
- Viewing File Properties ..................................................................... 705

- Simple Text Editor ............................................................................ 706
- Using Projects to Group Documents ................................................... 707
  - Creating a New Project .................................................................... 708
  - Project View .................................................................................. 709
  - Batch Validation and Transformation ............................................. 722
  - Sharing a Project - Team Collaboration ......................................... 723
  - Master Files Support ....................................................................... 726
- Searching Documents ........................................................................... 730
<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Open/Find Resource View</td>
<td>730</td>
</tr>
<tr>
<td>Open/Find Resource Dialog Box</td>
<td>733</td>
</tr>
<tr>
<td>Searching in Content</td>
<td>736</td>
</tr>
<tr>
<td>Searching in File Paths</td>
<td>739</td>
</tr>
<tr>
<td>Searching in Reviews</td>
<td>739</td>
</tr>
<tr>
<td>Technical Aspects</td>
<td>740</td>
</tr>
<tr>
<td>Finding and Replacing Text</td>
<td>740</td>
</tr>
<tr>
<td>Find/Replace Dialog Box</td>
<td>740</td>
</tr>
<tr>
<td>Find/Replace in Multiple Files</td>
<td>745</td>
</tr>
<tr>
<td>Find All Elements Dialog Box</td>
<td>751</td>
</tr>
<tr>
<td>Quick Find Toolbar</td>
<td>752</td>
</tr>
<tr>
<td>Keyboard Shortcuts for Finding the Next and Previous Match</td>
<td>753</td>
</tr>
<tr>
<td>Regular Expressions Syntax</td>
<td>753</td>
</tr>
<tr>
<td>Spell Checking</td>
<td>754</td>
</tr>
<tr>
<td>Spell Check Dictionaries and Term Lists</td>
<td>756</td>
</tr>
<tr>
<td>Learned Words</td>
<td>763</td>
</tr>
<tr>
<td>Ignored Words (Elements)</td>
<td>763</td>
</tr>
<tr>
<td>Automatic Spell Check</td>
<td>764</td>
</tr>
<tr>
<td>Spell Check Multiple Files</td>
<td>765</td>
</tr>
<tr>
<td>AutoCorrect Misspelled Words</td>
<td>767</td>
</tr>
<tr>
<td>Add Dictionaries for the AutoCorrect Feature</td>
<td>769</td>
</tr>
<tr>
<td>Working with Special Characters and Encoding</td>
<td>769</td>
</tr>
<tr>
<td>Unicode Support</td>
<td>770</td>
</tr>
<tr>
<td>Opening and Saving Documents with Unsupported Characters</td>
<td>771</td>
</tr>
<tr>
<td>Unicode Fallback Font Support</td>
<td>772</td>
</tr>
<tr>
<td>Special Character Support in Author Mode</td>
<td>773</td>
</tr>
<tr>
<td>Special Character Support in Text Mode</td>
<td>776</td>
</tr>
<tr>
<td>Special Character Support in Grid Mode</td>
<td>777</td>
</tr>
<tr>
<td>Inserting Special Characters with the Character Map</td>
<td>778</td>
</tr>
<tr>
<td>Loading Large Documents</td>
<td>781</td>
</tr>
<tr>
<td>Optimize Loading for Large Files</td>
<td>782</td>
</tr>
</tbody>
</table>
Chapter 8. Editing Documents ................................................................. 827

Editing XML Documents ........................................................................... 827
  Editing XML Documents in Text Mode.................................................... 828
  Editing XML Documents in Grid Mode................................................... 886
  Editing XML Documents in Author Mode.............................................. 893
Validating XML Documents .................................................................... 1079
XML Quick Fixes ....................................................................................... 1109
Associating a Schema to XML Documents .............................................. 1112
Working with XML Catalogs ................................................................. 1123
Working with Modular XML Files in the Master Files Context ............... 1126
Search and Refactoring Actions for IDs and IDREFS ................................. 1127
XML Resource Hierarchy/Dependencies View ......................................... 1130
Combining XML Content Using DTD Entities and XInclude .................... 1133
Refactoring XML Documents ................................................................. 1139
XML Digital Signatures ........................................................................... 1174
Editing XSLT Stylesheets ........................................................................ 1183
  Editing XSLT Stylesheets in the Master Files Context ............................ 1184
Validating XSLT Stylesheets ................................................................. 1184
XSLT Quick Fix Support ......................................................................... 1187
Content Completion in XSLT Stylesheets .............................................. 1190
<table>
<thead>
<tr>
<th>Syntax Highlighting in XSLT</th>
<th>1197</th>
</tr>
</thead>
<tbody>
<tr>
<td>XSLT Outline View</td>
<td>1197</td>
</tr>
<tr>
<td>XSLT Input View</td>
<td>1202</td>
</tr>
<tr>
<td>XSLT Resource Hierarchy/Dependencies View</td>
<td>1204</td>
</tr>
<tr>
<td>XSLT Component Dependencies View</td>
<td>1207</td>
</tr>
<tr>
<td>Highlight Component Occurrences</td>
<td>1209</td>
</tr>
<tr>
<td>Finding XSLT References and Declarations</td>
<td>1209</td>
</tr>
<tr>
<td>XSLT Stylesheet Component Documentation Support</td>
<td>1210</td>
</tr>
<tr>
<td>XSLT 3.0 Text Value Templates</td>
<td>1212</td>
</tr>
<tr>
<td>XSLT Refactoring Actions</td>
<td>1213</td>
</tr>
<tr>
<td>XSLT Quick Assist Support</td>
<td>1218</td>
</tr>
<tr>
<td>XSLT Unit Test (XSpec)</td>
<td>1220</td>
</tr>
<tr>
<td>Generating Documentation for an XSLT Stylesheet</td>
<td>1223</td>
</tr>
<tr>
<td>Compiling an XSL Stylesheet for Saxon</td>
<td>1233</td>
</tr>
<tr>
<td>Editing Ant Build Files</td>
<td>1235</td>
</tr>
<tr>
<td>Editing Ant Build Files in the Context of Master Files</td>
<td>1235</td>
</tr>
<tr>
<td>Validating Ant Build Files</td>
<td>1236</td>
</tr>
<tr>
<td>Transforming Ant Build Files</td>
<td>1237</td>
</tr>
<tr>
<td>Ant Quick Fix Support</td>
<td>1237</td>
</tr>
<tr>
<td>Content Completion in Ant Build Files</td>
<td>1238</td>
</tr>
<tr>
<td>Syntax Highlighting in Ant Files</td>
<td>1239</td>
</tr>
<tr>
<td>Ant Outline View</td>
<td>1239</td>
</tr>
<tr>
<td>Ant Resource Hierarchy/Dependencies View</td>
<td>1243</td>
</tr>
<tr>
<td>Ant Component Dependencies View</td>
<td>1244</td>
</tr>
<tr>
<td>Highlight Component Occurrences</td>
<td>1246</td>
</tr>
<tr>
<td>Find References and Declarations of Ant Components</td>
<td>1246</td>
</tr>
<tr>
<td>Ant Refactoring Actions</td>
<td>1246</td>
</tr>
<tr>
<td>Ant Quick Assist Support</td>
<td>1247</td>
</tr>
<tr>
<td>Editing XML Schemas</td>
<td>1249</td>
</tr>
<tr>
<td>Design Editing Mode (XML Schema Diagram Editor)</td>
<td>1250</td>
</tr>
<tr>
<td>Editing XML Schema in Text Editing Mode</td>
<td>1286</td>
</tr>
<tr>
<td>Topic</td>
<td>Page</td>
</tr>
<tr>
<td>----------------------------------------------------------------------</td>
<td>------</td>
</tr>
<tr>
<td>Editing XML Schema in the Master Files Context</td>
<td>1286</td>
</tr>
<tr>
<td>Validating XML Schema Documents</td>
<td>1287</td>
</tr>
<tr>
<td>Quick Fixes for DTD, XSD, and Relax NG Errors</td>
<td>1288</td>
</tr>
<tr>
<td>Content Completion in XML Schema</td>
<td>1288</td>
</tr>
<tr>
<td>Syntax Highlighting in XML Schema</td>
<td>1289</td>
</tr>
<tr>
<td>XML Schema Outline View</td>
<td>1290</td>
</tr>
<tr>
<td>XML Schema Attributes View</td>
<td>1292</td>
</tr>
<tr>
<td>XML Schema Palette View</td>
<td>1294</td>
</tr>
<tr>
<td>XML Schema Facets View</td>
<td>1295</td>
</tr>
<tr>
<td>XML Schema Resource Hierarchies Dependencies View</td>
<td>1297</td>
</tr>
<tr>
<td>XML Schema Component Dependencies View</td>
<td>1300</td>
</tr>
<tr>
<td>Highlight Component Occurrences</td>
<td>1302</td>
</tr>
<tr>
<td>Searching and Refactoring Actions in XML Schemas</td>
<td>1302</td>
</tr>
<tr>
<td>XML Schema Quick Assist Support</td>
<td>1304</td>
</tr>
<tr>
<td>Generating Sample XML Files</td>
<td>1306</td>
</tr>
<tr>
<td>Generating Documentation for an XML Schema</td>
<td>1313</td>
</tr>
<tr>
<td>Converting Schema to Another Scheme Language</td>
<td>1325</td>
</tr>
<tr>
<td>Converting Database to XML Schema</td>
<td>1328</td>
</tr>
<tr>
<td>Flatten an XML Schema</td>
<td>1329</td>
</tr>
<tr>
<td>XML Schema Regular Expressions Builder</td>
<td>1332</td>
</tr>
<tr>
<td>XML Schema 1.1</td>
<td>1334</td>
</tr>
<tr>
<td>Setting the XML Schema Version</td>
<td>1335</td>
</tr>
<tr>
<td>Editing XQuery Documents</td>
<td>1337</td>
</tr>
<tr>
<td>XQuery Validation</td>
<td>1337</td>
</tr>
<tr>
<td>Content Completion in XQuery</td>
<td>1338</td>
</tr>
<tr>
<td>Syntax Highlighting in XQuery</td>
<td>1339</td>
</tr>
<tr>
<td>Formatting and Indenting XQuery Documents</td>
<td>1340</td>
</tr>
<tr>
<td>Folding in XQuery Documents</td>
<td>1340</td>
</tr>
<tr>
<td>XQuery Outline View</td>
<td>1341</td>
</tr>
<tr>
<td>XQuery Builder View</td>
<td>1343</td>
</tr>
<tr>
<td>XQuery Input View</td>
<td>1346</td>
</tr>
</tbody>
</table>
Contents | xii

Generating HTML Documentation for an XQuery Document...........................................1349
Transforming XML Documents Using XQuery.................................................................1350
Editing WSDL Documents...............................................................................................1354
  Editing WSDL Documents in the Master Files Context..................................................1355
  Validating WSDL Documents..........................................................................................1356
  Content Completion Assistance in WSDL Documents...................................................1356
  WSDL Syntax Highlighting..............................................................................................1358
  WSDL Outline View......................................................................................................1358
  WSDL Resource Hierarchy/Dependencies View in WSDL Documents..........................1363
  WSDL Component Dependencies View..........................................................................1365
  Highlight Component Occurrences in WSDL Documents.............................................1367
  Searching and Refactoring Operations in WSDL Documents.......................................1367
  Quick Assist Support in WSDL Documents..................................................................1370
  Generating Documentation for WSDL Documents......................................................1371
  WSDL SOAP Analyzer.................................................................................................1376
Editing CSS Stylesheets.................................................................................................1380
  Validating CSS Stylesheets............................................................................................1381
  Content Completion in CSS Stylesheets.........................................................................1382
  Syntax Highlighting in CSS Files..................................................................................1383
  CSS Outline View.........................................................................................................1383
  Folding in CSS Stylesheets...........................................................................................1384
  Formatting and Indenting CSS Stylesheets (Pretty Print).............................................1385
  Minifying CSS Stylesheets.............................................................................................1385
Editing LESS Stylesheets...............................................................................................1385
  Validating LESS Stylesheets.........................................................................................1386
  Content Completion in LESS Stylesheets.......................................................................1386
  Syntax Highlighting in LESS Files................................................................................1387
  Compiling LESS Stylesheets to CSS.............................................................................1388
Editing Relax NG Schemas............................................................................................1388
  Editing Relax NG Schema in the Master Files Context...............................................1389
  Relax NG Schema Diagram Editor................................................................................1390


## Contents

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Validating Relax NG Schema Documents</td>
<td>1394</td>
</tr>
<tr>
<td>Content Completion in Relax NG Schemas</td>
<td>1395</td>
</tr>
<tr>
<td>Syntax Highlighting in Relax NG Schemas</td>
<td>1396</td>
</tr>
<tr>
<td>Quick Fixes for DTD, XSD, and Relax NG Errors</td>
<td>1397</td>
</tr>
<tr>
<td>Relax NG Outline View</td>
<td>1397</td>
</tr>
<tr>
<td>RNG Resource Hierarchy/Dependencies View</td>
<td>1400</td>
</tr>
<tr>
<td>Relax NG Schema Component Dependencies View</td>
<td>1403</td>
</tr>
<tr>
<td>Searching and Refactoring Actions in RNG Schemas</td>
<td>1405</td>
</tr>
<tr>
<td>RNG Quick Assist Support</td>
<td>1407</td>
</tr>
<tr>
<td>Configuring a Custom Datatype Library for a RELAX NG Schema</td>
<td>1408</td>
</tr>
<tr>
<td>Editing NVDL Schemas</td>
<td>1408</td>
</tr>
<tr>
<td>NVDL Schema Diagram</td>
<td>1409</td>
</tr>
<tr>
<td>Validating NVDL Schema Documents</td>
<td>1412</td>
</tr>
<tr>
<td>Content Completion in NVDL Schemas</td>
<td>1412</td>
</tr>
<tr>
<td>Syntax Highlighting in NVDL Schemas</td>
<td>1413</td>
</tr>
<tr>
<td>NVDL Outline View</td>
<td>1414</td>
</tr>
<tr>
<td>NVDL Schema Component Dependencies View</td>
<td>1414</td>
</tr>
<tr>
<td>Searching and Refactoring Actions in NVDL Schemas</td>
<td>1415</td>
</tr>
<tr>
<td>Editing JSON Documents</td>
<td>1417</td>
</tr>
<tr>
<td>Editing JSON Documents in Text Mode</td>
<td>1417</td>
</tr>
<tr>
<td>Editing JSON Documents in Grid Mode</td>
<td>1418</td>
</tr>
<tr>
<td>Validating JSON Documents</td>
<td>1420</td>
</tr>
<tr>
<td>Content Completion Assistant in JSON</td>
<td>1432</td>
</tr>
<tr>
<td>Syntax Highlighting in JSON Documents</td>
<td>1434</td>
</tr>
<tr>
<td>Folding in JSON</td>
<td>1434</td>
</tr>
<tr>
<td>JSON Outline View</td>
<td>1434</td>
</tr>
<tr>
<td>JSON to XML Converter</td>
<td>1437</td>
</tr>
<tr>
<td>XML to JSON Converter</td>
<td>1440</td>
</tr>
<tr>
<td>Contextual Menu Actions in JSON Documents</td>
<td>1443</td>
</tr>
<tr>
<td>Transforming and Querying JSON Documents</td>
<td>1448</td>
</tr>
<tr>
<td>Editing JSON Schema Documents</td>
<td>1451</td>
</tr>
</tbody>
</table>
Validating JSON Schema Documents................................................................. 1452
Editing StratML Documents.............................................................................. 1452
Editing XLIFF Documents.................................................................................. 1453
Editing JavaScript Documents........................................................................... 1454
  JavaScript Editing Actions.............................................................................. 1454
  Validating JavaScript Files............................................................................ 1456
  Content Completion in JavaScript Documents................................................ 1457
  Syntax Highlighting in JavaScript Documents................................................ 1458
  JavaScript Outline View.................................................................................. 1458
Editing XProc Scripts.......................................................................................... 1459
Editing Schematron Schemas............................................................................ 1461
  Editing Schematron Schema in the Master Files Context............................... 1463
  Presenting Schematron Validation Issues...................................................... 1464
  Integrating Schematron Rules in a Framework and Sharing Them................ 1465
  Validating Schematron Documents................................................................ 1466
  Content Completion in Schematron Documents............................................. 1467
  Syntax Highlighting in Schematron............................................................... 1468
  Embedding Schematron Rules in XML Schema or RELAX NG....................... 1469
  Schematron Outline View............................................................................... 1470
  Schematron Resource Hierarchy/Dependencies View...................................... 1472
  Highlight Component Occurrences in Schematron Documents........................ 1475
  Searching and Refactoring Operations in Schematron Documents.................. 1475
  Quick Assist Support in Schematron Documents............................................ 1478
  Schematron Unit Test (XSpec)......................................................................... 1479
Editing Schematron Quick Fixes........................................................................... 1481
  Schematron Quick Fixes (SQF)....................................................................... 1481
  Defining Schematron Quick Fixes................................................................... 1482
  Integrating SQF in a Framework and Sharing Them....................................... 1492
  Validating Schematron Quick Fixes............................................................... 1495
  Content Completion in SQF........................................................................... 1495
  Highlight Quick Fix Occurrences in SQF....................................................... 1496
Searching and Refactoring Operations in SQF .......................................................... 1496
Embedding Schematron Quick Fixes in Relax NG or XML Schema .......................... 1498
Editing SVG Files ........................................................................................................ 1499
Standalone SVG Viewer .............................................................................................. 1500
Integrated SVG Viewer in the Results Panel ............................................................ 1502
Editing HTML Documents .......................................................................................... 1503
  HTML Editor ............................................................................................................. 1504
  HTML Validation ...................................................................................................... 1504
  HTML Content Completion Assistant ...................................................................... 1505
  Syntax Highlighting in HTML Documents .............................................................. 1505
  Folding in HTML ...................................................................................................... 1506
  HTML Outline View .................................................................................................. 1506
Editing Markdown Documents ................................................................................... 1507
  Markdown Editor ..................................................................................................... 1507
  Creating New Markdown Documents .................................................................... 1510
  Actions Available in the Markdown Editor ............................................................ 1510
  Syntax Highlighting in the Markdown Editor .......................................................... 1519
  Automatic Validation in Markdown Documents ..................................................... 1519
  Working with Markdown Documents in DITA ......................................................... 1520
  Markdown Editor Syntax Rules and Specifications ................................................ 1522

**Chapter 9. Built-in XML Frameworks (Document Types)** ......................................... 1537
  DocBook 4 Document Type (Framework) ................................................................. 1537
  DocBook 4 Author Mode Actions .......................................................................... 1539
  Inserting an Olink in DocBook Documents .............................................................. 1549
  DocBook 5 Document Type (Framework) ................................................................. 1553
  DocBook 5 Author Mode Actions .......................................................................... 1555
  Inserting an Olink in DocBook Documents .............................................................. 1566
  DocBook 5.1 Assembly ............................................................................................. 1569
  DocBook 5.1 Topic .................................................................................................... 1571
  DocBook Targetset Document Type (Framework) .................................................. 1572
  DITA Topics Document Type (Framework) ............................................................. 1573
DITA Topic Author Mode Actions ................................................................. 1575
DITA Map Document Type (Framework)......................................................... 1596
DITA Map Author Mode Actions ................................................................. 1598
XHTML Document Type (Framework) ......................................................... 1604
XHTML Author Mode Actions ................................................................. 1605
TEI P5 Document Type (Framework) ......................................................... 1612
TEI P5 Author Mode Actions ................................................................. 1613
Customization of TEI Frameworks Using the Latest Sources ......................... 1620
Customization of TEI Frameworks Using the Compiled Sources ....................... 1621
TEI ODD Document Type (Framework) ......................................................... 1621
TEI ODD Author Mode Actions ................................................................. 1623
jTEI Document Type (Framework) ............................................................. 1629
JATS Document Type (Framework) ............................................................ 1631
JATS Author Mode Actions ................................................................. 1632
EPUB Document Type (Framework) ............................................................ 1636
Other Supported Document Types ............................................................ 1638

Chapter 10. Publishing ...................................................................................... 1640
Transformation Scenarios .............................................................................. 1640
Built-in Transformation Scenarios ................................................................. 1641
Creating New Transformation Scenarios ....................................................... 1674
Editing a Transformation Scenario ............................................................... 1758
Duplicating a Transformation Scenario ......................................................... 1760
Applying Associated Transformation Scenarios ............................................. 1761
Configure Transformation Scenario(s) Dialog Box ......................................... 1762
Batch Transformations ................................................................................. 1767
Sharing Transformation Scenarios ............................................................... 1768
Transformation Scenarios View ................................................................. 1768
WebHelp Output Customization ................................................................. 1772
WebHelp Classic Output ................................................................................. 1773
WebHelp Responsive Output ......................................................................... 1857
DITA to PDF Output Customization .............................................................. 2013
Chapter 11. Working with XPath Expressions................................................................. 2182
XPath Toolbar.............................................................................................................. 2182
XPath Builder View.................................................................................................... 2185
XPath Expression Results View.................................................................................. 2188
XPath and XML Catalogs.......................................................................................... 2189
XPath Prefix Mapping............................................................................................... 2190

Chapter 12. Working with Archives.............................................................................. 2191
Browsing Archives...................................................................................................... 2191
Working with Archive Files........................................................................................ 2194
  Creating an Archive.................................................................................................. 2196
  Editing and Saving Files Inside an Archive.............................................................. 2196
  Migrating Archives to DITA or TEI.......................................................................... 2196

Chapter 13. Databases and SharePoint........................................................................ 2198
Working with Databases.............................................................................................. 2198
  Data Source Explorer View.................................................................................... 2198
  Table Explorer View.............................................................................................. 2200
  Database Connection Support................................................................................ 2203
  WebDAV Connections............................................................................................ 2254
  SQL Execution Support.......................................................................................... 2257
  XQuery and Databases.......................................................................................... 2260
Integration with Microsoft SharePoint........................................................................ 2268
  How to Configure a SharePoint Connection......................................................... 2269
  SharePoint Browser View...................................................................................... 2270
  SharePoint Contextual Menu Actions..................................................................... 2272

Chapter 14. Importing Data......................................................................................... 2276
Import from Text Files................................................................................................. 2276
Import from MS Excel Files......................................................................................... 2278
Import Data from MS Excel 2007 or Newer............................................................. 2281
Import Database Data as an XML Document..............................................................................2282
Import from HTML Files.............................................................................................................2285
Import Content Dynamically..........................................................................................................2285

Chapter 15. XSLT/XQuery Debugging.........................................................................................2290
Debugger Layout..........................................................................................................................2291
  Control Toolbar.........................................................................................................................2293
  Debugging Information Views..................................................................................................2296
  Multiple Output Documents in XSLT 2.0 and XSLT 3.0......................................................2309
Steps in a Typical Debugging Process.........................................................................................2309
Identify the XSLT / XQuery Expression that Generated Particular Output.............................2310
Using Breakpoints.......................................................................................................................2313
Performance Profiling of XSLT Stylesheets and XQuery Documents........................................2314
  Invocation Tree View .............................................................................................................2316
  Hotspots View ........................................................................................................................2318
Debugging XSLT that Call Java Extensions................................................................................2319
  Debugging Java Extensions......................................................................................................2320
Supported Processors for XSLT / XQuery Debugging...............................................................2320

Chapter 16. Framework and Author Mode Customization.........................................................2322
Creating and Configuring Custom Frameworks........................................................................2322
  Advanced Framework Customization....................................................................................2322
  Framework Customization Tutorial.......................................................................................2373
Customizing Frameworks and Author Mode Using Extensions, Plugins, SDK......................2391
  Configuring Frameworks and Author Mode through Extensions.......................................2391
  Java API - Extending Author Functionality through Java..................................................2440
  Author Mode Operations........................................................................................................2451
Customizing Author Mode Through CSS..................................................................................2477
  Associating a CSS with an XML Document..........................................................................2477
  Handling CSS Imports............................................................................................................2478
  Displaying Processing Instructions from Other XML Editors.............................................2480
  Specifying Media Types in the CSS......................................................................................2480
  CSS At-Rules..........................................................................................................................2481
Chapter 17. Using the Oxygen XML SDK................................................................. 2580

Extending Oxygen XML Editor with Plugins.......................................................... 2580
General Configuration of an Oxygen XML Editor Plugin........................................ 2580
Installing an Oxygen XML Editor Plugin............................................................... 2582
Types of Plugin Extensions Available with the SDK.................................................. 2583
How to Write a CMS Integration Plugin.................................................................. 2605
How to Write A Custom Protocol Plugin................................................................. 2610
How to Share a Class Loader Between a Framework and Plugin............................. 2611
Packing and Deploying Plugins as Add-ons............................................................. 2612
Testing Plugins and Java Extensions...................................................................... 2613
Disabling a Plugin...................................................................................................... 2618

Oxygen XML Author Component............................................................................... 2618
Licensing.................................................................................................................... 2619
Installation Requirements.......................................................................................... 2620
Customization............................................................................................................. 2620
Adding MathML support in the Oxygen XML Author Component.......................... 2624
Adding Support to Insert References from a WebDAV Connection.......................... 2625
Using Plugins with the Oxygen XML Author Component....................................... 2626
Frequently Asked Questions....................................................................................... 2626

Oxygen XML Web Author Component...................................................................... 2630
Web Author vs. Web Author Component.................................................................. 2630

SDK Common Use Cases.......................................................................................... 2633
Add Custom Actions to the Contextual Menu?......................................................... 2633
Add Custom Callouts.................................................................................................. 2635
Add Custom Highlights to Content.......................................................................... 2641
Auto-Generate an ID When a Document is Opened or Created.................................. 2642
Change the Default Track Changes (Review) Author Name...................................... 2644
Change the DOCTYPE of an Opened XML Document............................................... 2644
Control XML Serialization in the Oxygen XML Author Component ........................................ 2645
Customize the Default Icons for Toolbars/Menus .............................................................. 2647
Customize the Outline View in Text Mode? ................................................................. 2647
Difference Between a Framework (Document Type) and a Plugin Extension .................... 2654
Disable Context-Sensitive Menu Items for Custom Author Actions .................................. 2655
Dynamically Add Form Controls Using a Styles Filter ....................................................... 2656
Dynamically Modify the Content Inserted by the Author .................................................. 2658
Extend the Java Functionality of an Existing Framework (Document Type) ....................... 2660
Impose Custom Options for Authors .................................................................................. 2661
Insert an Element with all the Required Content ............................................................ 2662
Modify the XML Content on Open ................................................................................... 2663
Modify the XML Content on Save .................................................................................... 2665
Multiple Rendering Modes for the Same Document in Author Mode ................................. 2667
Obtain a DOM Element from AuthorNode or AuthorElement ........................................... 2667
Obtain the Currently Selected Element Using the Author API ......................................... 2668
Open a Document in Oxygen from Another Application ................................................... 2668
Run XSLT or XQuery Transformations .............................................................................. 2669
Save a New Document with a Predefined File Name Pattern ............................................ 2669
Split Paragraph on Enter (Instead of Showing Content Completion List) ......................... 2671
Use Custom Rendering Styles for Entity References, Comments, or Pls .............................. 2672

Chapter 18. Add-ons ............................................................................................................. 2677
Batch Converter Add-on ...................................................................................................... 2677
CGM Image Support Add-on ............................................................................................... 2678
Content Fusion Connector Add-on ....................................................................................... 2679
DITA Prolog Updater Add-on ............................................................................................... 2680
DITA OT 3.x Publishing Engine Add-on ............................................................................. 2681
DITA Translation Package Builder Add-on ........................................................................... 2681
DocBook Checker Add-on ................................................................................................. 2682
Embed Images Add-on ........................................................................................................ 2682
Excel XLSX Libraries Add-on ............................................................................................. 2683
Git Support Add-on ............................................................................................................. 2683
ICU4J Library Add-on........................................................................................................... 2684
PDF Image Rendering Add-on................................................................................................. 2684
Saxon XSLT and XQuery Transformer Add-on................................................................. 2685
XSpec Helper View Add-on................................................................................................. 2685

Chapter 19. Tools............................................................................................................. 2687

XML Refactoring................................................................................................................ 2687
  Built-in Refactoring Operations......................................................................................... 2690
  Custom Refactoring Operations...................................................................................... 2701
  Storing and Sharing Refactoring Operations.................................................................. 2715
  Localizing XML Refactoring Operations.......................................................................... 2716
Generate Sample XML Files............................................................................................... 2717
  Schema Tab (Generate Sample XML Files Tool).............................................................. 2718
  Options Tab (Generate Sample XML Files Tool).............................................................. 2719
  Advanced Tab (Generate Sample XML Files Tool).......................................................... 2722
  Running the Generate Sample XML Files Tool from the Command Line...................... 2723
Generate Sample JSON Files.............................................................................................. 2725
Generate/Convert Schema.................................................................................................... 2727
Convert DB Structure to XML Schema.............................................................................. 2729
Flatten Schema.................................................................................................................. 2730
JSON to XML..................................................................................................................... 2733
XML to JSON..................................................................................................................... 2736
Compile XSL Stylesheet for Saxon......................................................................................... 2739
Format and Indent Files........................................................................................................ 2741
Generate Documentation...................................................................................................... 2742
  XML Schema Documentation.......................................................................................... 2742
  XSLT Stylesheet Documentation...................................................................................... 2746
  XQuery Documentation.................................................................................................... 2750
  WSDL Documentation..................................................................................................... 2751
Canonicalize........................................................................................................................ 2754
Sign..................................................................................................................................... 2756
Verify Signature.................................................................................................................... 2758
## Misc Problems and Solutions

<table>
<thead>
<tr>
<th>Problem</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Out of Memory on External Processes</td>
<td>2944</td>
</tr>
<tr>
<td>Too many nested apply-templates calls Error When Running a Transformation</td>
<td>2945</td>
</tr>
<tr>
<td>Performance Issues with Large Documents</td>
<td>2946</td>
</tr>
<tr>
<td>Performance Issues when Using Oxygen XML Editor with Remote Desktop</td>
<td>2947</td>
</tr>
<tr>
<td>Handshake Failure Error When Accessing an HTTPS (SSL) Resource</td>
<td>2953</td>
</tr>
<tr>
<td>DITA PDF Processing Common Errors</td>
<td>2954</td>
</tr>
<tr>
<td>DITA PDF Transformation Fails</td>
<td>2955</td>
</tr>
<tr>
<td>Crash at Startup on Windows with an Error About the nvglv32.dll File</td>
<td>2956</td>
</tr>
<tr>
<td>Crash in Java Runtime Thread</td>
<td>2957</td>
</tr>
<tr>
<td>Damaged File Associations on OS X</td>
<td>2958</td>
</tr>
<tr>
<td>Details to Submit in a Request for Technical Support Using the Online Form</td>
<td>2959</td>
</tr>
<tr>
<td>DITA Map Transformation Fails (Cannot Connect to External Location)</td>
<td>2960</td>
</tr>
<tr>
<td>DITA Map WebHelp Transformation Fails (Duplicate Topic References Found)</td>
<td>2961</td>
</tr>
<tr>
<td>DITA OT Transformation Takes a Long Time to Process</td>
<td>2962</td>
</tr>
<tr>
<td>DITA PDF Transformation Fails</td>
<td>2963</td>
</tr>
<tr>
<td>DITA PDF Processing Common Errors</td>
<td>2964</td>
</tr>
<tr>
<td>DITA to CHM Transformation Fails - Cannot Open File</td>
<td>2965</td>
</tr>
<tr>
<td>DITA to CHM Transformation Fails - Compilation Failed</td>
<td>2966</td>
</tr>
<tr>
<td>Drag and Drop Without Initial Selection Does Not Work</td>
<td>2967</td>
</tr>
<tr>
<td>Gray Window on Linux With the Compiz / Beryl Window Manager</td>
<td>2968</td>
</tr>
<tr>
<td>Handshake Failure Error When Accessing an HTTPS (SSL) Resource</td>
<td>2969</td>
</tr>
<tr>
<td>Hunspell Spell Checker is Unusable on Your Platform Error</td>
<td>2970</td>
</tr>
<tr>
<td>High Resolution Scaling Issues</td>
<td>2971</td>
</tr>
<tr>
<td>Images Appear Stretched Out in the PDF Output</td>
<td>2972</td>
</tr>
<tr>
<td>Increasing the Memory for the Ant Process</td>
<td>2973</td>
</tr>
</tbody>
</table>
Java Virtual Machine (JVM) Crash on Mac OS X.................................................................2968
JPEG CMYK Color Space Issues.........................................................................................2968
Keyboard Language Resets to Default on Windows.........................................................2969
Keyboard Shortcuts Do Not Work At All.............................................................................2969
Keyboard Shortcuts Result in Unexpected Behavior..........................................................2970
Mac Touch Bar Function Keys Do Not Work......................................................................2970
Machine Signature Mismatch Error...................................................................................2970
MSXML 4.0 Transformation Issues......................................................................................2972
Navigation to a Web Page is Canceled when Viewing CHM on a Network Drive..............2972
Out Of Memory Error When Opening Large Documents................................................2973
Rectangular Selection Feature Does Not Work On Windows.............................................2973
References Outside the Main DITA Map Folder...............................................................2974
Saxon 9.7 Transformer Issues.............................................................................................2975
Scroll Function of my Notebook Trackpad is Not Working...............................................2975
Segmentation Fault Error on Mac OS X..............................................................................2976
Special Characters are Replaced with a Square.................................................................2976
TocJS Transformation Does not Generate All Files for a Tree-Like TOC............................2977
Windows Service Reports Incorrect Function Error When Starting (TCP Server)............2977
Windows Service Reports Process Terminated Unexpectedly Error (TCP Server)..............2977
Wrong Words are Highlighted when Searching in a User Manual........................................2978
XML Document Takes a Long Time to Open....................................................................2979
XSLT Debugger Is Very Slow.............................................................................................2979

Chapter 21. DITA Authoring..................................................................................2981

Getting Started with DITA...............................................................................................2982

Working with DITA Maps.................................................................................................2988

DITA Maps Manager.........................................................................................................2990
Creating a Map................................................................................................................3007
Managing DITA Maps.......................................................................................................3010
Chunking DITA Topics......................................................................................................3035
DITA Map Validation and Completeness Check...............................................................3036
DITA Map Author Mode Actions.......................................................................................3042
Contents

Working with DITA Topics........................................................................................................... 3048
  Creating a New DITA Topic...................................................................................................... 3050
  Fast Create Multiple DITA Topics......................................................................................... 3053
  Editing DITA Topics............................................................................................................. 3055
  Converting DITA Topics to Another Type............................................................................ 3059
  Working with Images in DITA Topics.................................................................................... 3062
  Adding Video, Audio, and Embedded HTML Resources in DITA Topics.......................... 3066
  Image Maps in DITA................................................................................................................ 3069
  Adding Tables in DITA Topics............................................................................................... 3076
  Adding MathML Equations in DITA Topics.......................................................................... 3091
  Adding LaTeX Equations in DITA Topics............................................................................. 3092
  DITA Topic Author Mode Actions......................................................................................... 3092
  Working with Markdown Documents in DITA....................................................................... 3114
  Working with Keys in DITA.................................................................................................... 3116
  Working with a Glossary of Terms in DITA........................................................................ 3119
  Reusing DITA Content........................................................................................................... 3121
    Reusing DITA Topics in Multiple Maps.............................................................................. 3125
    Working with Content References..................................................................................... 3126
    Working with Code References......................................................................................... 3143
    Working with the Conref Push Mechanism....................................................................... 3144
    Working with Reusable Components................................................................................. 3146
    Working with Variable Text in DITA.................................................................................. 3148
  Working with DITA 1.3 Key Scopes.................................................................................... 3151
  Working with DITA 1.3 Branch Filtering............................................................................. 3152
  DITA Reusable Components View....................................................................................... 3154
  Linking in DITA...................................................................................................................... 3161
    Hierarchical Linking in DITA Maps.................................................................................... 3163
    Linking in DITA Topics........................................................................................................ 3163
    Linking with Relationship Tables in DITA........................................................................ 3169
  Publishing DITA Output.......................................................................................................... 3171
  Built-in DITA Map Transformation Scenarios...................................................................... 3172
Running a DITA Transformation Scenario.......................................................... 3195
Creating or Editing a DITA OT Transformation.................................................. 3195
Customizing DITA Transformations..................................................................... 3212
Troubleshooting DITA Transformation Problems............................................... 3217
DITA Profiling / Conditional Text......................................................................... 3225
Creating and Editing Profiling Attributes in DITA.............................................. 3226
Applying Profiling Attributes in DITA................................................................. 3229
Creating and Editing Profiling Condition Sets in DITA......................................... 3232
Applying Profiling Condition Sets in DITA.......................................................... 3234
Showing and Filtering Profiled Content in DITA.................................................. 3237
Customizing Colors and Styles for Rendering Profiling in Author Mode............ 3240
Conditional Profiling Attribute Groups............................................................... 3242
Customizing Profiling Values with a Subject Scheme Map................................. 3243
Filtering Profiling Values with a DITAVAL File................................................... 3248
Styling the Rendering of Profiled Content Using a DITAVAL File....................... 3250
Publishing Profiled DITA Content...................................................................... 3251
DITA Open Toolkit Support.................................................................................. 3252
DITA-OT Plugins................................................................................................. 3252
Using an External DITA Open Toolkit in Oxygen XML Editor............................ 3259
DITA Specialization Support................................................................................ 3260
Integrating a DITA Specialization....................................................................... 3261
Editing DITA Map Specializations....................................................................... 3262
Editing DITA Topic Specializations..................................................................... 3263
Translating DITA Projects Overview.................................................................... 3264
Master Files Support in DITA............................................................................... 3266
DITA Resource Hierarchy/Dependencies View...................................................... 3268
Metadata............................................................................................................ 3271
Migrating MS Office Documents to DITA............................................................ 3271
Migrating Various Document Formats to DITA.................................................... 3274
DITA 1.3 Support................................................................................................ 3276

Chapter 22. Glossary......................................................................................... 3279
Active Cell........................................................................................................ 3279
Alternate CSS Style.......................................................................................... 3279
Anchor................................................................................................................. 3279
Apache Ant.......................................................................................................... 3279
Block Element..................................................................................................... 3280
Bookmap............................................................................................................. 3280
Callout.................................................................................................................. 3280
Canonicalize......................................................................................................... 3280
Content Completion Assistant.......................................................................... 3280
Dockable.............................................................................................................. 3281
Document Fragment........................................................................................... 3281
Document Type Association............................................................................... 3281
DITA Map............................................................................................................. 3281
DITA Open Toolkit............................................................................................... 3282
DITA-OT-DIR......................................................................................................... 3282
Foldable Element............................................................................................... 3282
Framework......................................................................................................... 3282
Global Options.................................................................................................... 3283
IDML.................................................................................................................... 3283
Inline Element..................................................................................................... 3283
Java Archive........................................................................................................ 3283
Key Space............................................................................................................ 3283
Keystore............................................................................................................... 3283
Main CSS Style................................................................................................. 3284
Master File.......................................................................................................... 3284
Named User........................................................................................................ 3284
Perspective.......................................................................................................... 3285
Plugin................................................................................................................... 3285
Pretty-Print......................................................................................................... 3286
Project Options.................................................................................................. 3286
QName............................................................................................................... 3286
Quick Assist.................................................................3286
Quick Fix.................................................................3287
Root Map.................................................................3287
Space-Preserved Element.............................................3287
Subject Scheme Map..................................................3288
Track Changes..........................................................3288
WebHelp Output Directory..........................................3288
Working Set..............................................................3288
XML Catalog.............................................................3289
Index.............................................................................a
Copyright.....................................................................64
1. Introduction


Oxygen XML Editor is a cross-platform application designed to accommodate all of your XML editing, authoring, developing, and publishing needs. It is the best XML editor available for document development using structured mark-up languages such as XML, XSD, Relax NG, XSL, DTD. It is a comprehensive solution for authors who want to edit XML documents visually, with or without extensive knowledge about XML and XML-related technologies. The WYSIWYG-like editor is driven by CSS stylesheets associated with the XML documents and offers many innovative, user-friendly authoring features that make XML authoring easy and powerful.

It offers developers and authors a powerful Integrated Development Environment and the intuitive Graphical User Interface of Oxygen XML Editor is easy to use and provides robust functionality for content editing, project management, and validation of structured mark-up sources. Coupled with XSLT and FOP transformation technologies, Oxygen XML Editor offers support for generating output to multiple target formats, including: PDF, PS, TXT, HTML, JavaHelp, WebHelp, and XML.

This user guide is focused on describing features, functionality, the application interface, and to help you quickly get started. It also includes a vast amount of advanced technical information and instructional topics that are designed to teach you how to use Oxygen XML Editor to accomplish your tasks. It is assumed that you are familiar with the use of your operating system and the concepts related to XML technologies and structured mark-up.
2.

Getting Started

This section provides a variety of resources to help you get the most out of the application. Typically, the first step of getting started with Oxygen XML Editor would be to install the software. For detailed information about that process, see the Installation chapter (on page 33).

After installation, when you launch Oxygen XML Editor for the first time, you are greeted with a Welcome dialog box. It presents upcoming events, useful video demonstrations, helpful resources, the tip of the day, and also gives you easy access to recently used files and projects and to create new ones.

Figure 1. Welcome Dialog Box

If you do not want it to be displayed every time you launch Oxygen XML Editor, deselect the Show at startup option in the bottom-left corner of the dialog box. To display it any time, go to Help > Welcome.

What is Oxygen XML Editor

Oxygen XML Editor is the best XML editor available and is a complete XML development and authoring solution. It is designed to accommodate a large number of users, ranging from beginners to XML experts. It is the only XML tool that supports all of the XML schema languages and provides a large variety of powerful tools for editing and publishing XML documents.
You can use Oxygen XML Editor to work with most XML-based standards and technologies. It is a cross-platform application available on all the major operating systems (Windows, Mac OS X, Linux, Solaris) and can be used either as a standalone application or as an Eclipse plugin.

For a list of many of the features and technologies that are included in Oxygen XML Editor, see the Oxygen Website.

**Getting Familiar with the Interface**

Oxygen XML Editor includes several perspectives (on page 3285) and editing modes (on page 303) to help you accomplish a wide range of tasks. Each perspective and editing mode also includes a large variety of helper view, menu actions, toolbars, and contextual menu functions.

There are various ways that you can configure the layout of the views or editors (on page 268), and you can customize the toolbars (on page 273).

Regardless of the perspective (on page 3285) or editing mode (on page 303) that you are working with, the default layout consists of the following areas:

**Menus**

Menu driven access to all the features and functions available in Oxygen XML Editor. Most of the menus are common for all types of documents, but Oxygen XML Editor also includes some context-sensitive and framework-specific menus and actions that are only available for a specific context or type of document.

**Toolbars**

Easy access to common and frequently used functions. Each icon is a button that acts as a shortcut to a related function. Some of the toolbars are common for all perspectives, editing modes, and types of documents, while others are specific to the particular perspective or mode. Some toolbars are also framework-specific, depending on the type of document that is being edited. All the toolbars can be configured (on page 273) to suit your specific needs.

**Helper Views**

Oxygen XML Editor includes a large variety of dockable (on page 3281) views to assist you with editing, viewing, searching, validating, transforming, and organizing your documents. Many of the views also contain useful contextual menu actions, toolbar buttons, or menus. The most commonly used views for each perspective and editing mode are displayed by default and you can choose to display others to suit your specific needs. The layout of the views can also be configured (on page 268) according to your preferences.

**Editor Pane**
The main editing area in the center of the application. Each editing mode (on page 303) provides a main editor pane where you spend most of your time reading, editing, applying markup, and validating your documents. The editor pane in each editing mode (on page 303) also includes a variety of contextual menu actions and other features to help streamline your editing tasks. Each file that has been opened has a tab at the top of the editing pane and there are several ways to switch between tabs or move them (on page 701).

Perspectives

Oxygen XML Editor includes several different perspectives (on page 295) that you can use to work with your documents. The Editor perspective is the most commonly used perspective used for displaying and editing the content of your XML documents, and it is the default perspective when you start Oxygen XML Editor for the first time. Oxygen XML Editor also includes a Database perspective that allows you to manage databases and their connections and a few debugging perspectives that allow you to detect problems in XSLT or XQuery transformations.

Status Bar

The status bar at the bottom of the application contains some useful information when you are working with documents. It includes the following information, in the order it is displayed from left to right:

- The path of the current document.
- The Unicode value (on page 770) for the character directly to the right of the current cursor position.
- The status of the current document. The status of Modified is displayed for documents that have not yet been saved. Otherwise, this section is left blank.
- In Text editing mode (on page 303), the current line and character position is displayed.
- If the Check for notifications option (on page 81) is selected, this section will show you when new messages have been received. The types of messages include the addition of new videos on the Oxygen XML Editor website, the announcement of upcoming webinars and conferences where the Oxygen XML Editor team will participate, and more.
- The memory consumption, including the memory used by the application and the maximum amount that is allocated to the application.
- If the Show memory status option (on page 83) is selected, a Free unused memory icon is displayed in the bottom-right corner and you can use this icon to free up unused memory.
Supported Document Types

You can use the main editing pane in Oxygen XML Editor to edit a large variety of document types.

The supported document types include the following:

- XML documents
- XSLT stylesheets
- XML Schema
- DTD (Document Type Definition) schemas
- RELAX NG full syntax schemas
- RELAX NG compact syntax schemas
- NVDL (Namespace-based Validation Dispatching Language) schemas
- XSL:FO documents
- XQuery documents
- WSDL documents
- Schematron documents
- JavaScript documents
- Python documents
- CSS documents
- LESS documents
- XProc scripts
- SQL documents
- JSON documents
- Ant build scripts
- Markdown documents

Resources to Help You Get Started Using Oxygen XML Editor

Configuring Oxygen XML Editor

There are numerous ways that you can configure Oxygen XML Editor to accommodate your specific needs.

See the Configuring Oxygen section (on page 79) for details on the various ways that you can configure the application and its features.
Video Tutorials

The Oxygen XML Editor website includes numerous video demonstrations and webinars that present many of the features that are available in Oxygen XML Editor and show you how to complete specific tasks or how to use the various features.

Go to the Oxygen XML Editor Videos Page to see the list of video tutorials and webinars.

Oxygen XML Editor Documentation

The Oxygen XML Editor documentation includes a plethora of sections and topics to provide you with a variety of information, ranging from basic authoring tasks to advanced developer techniques. You can, of course, search through the documentation using standard search mechanisms, but you can also place the cursor in any particular position in the interface and use the F1 key to open a dialog box that presents a section in the documentation that is appropriate for the context of the current cursor position. Aside from the other topics in this Getting Started section, the following are links to other sections of the documentation that might be helpful for your specific needs:

• Text Editing Mode Section (on page 303) - Provides information about the Text editor.
• Author Editing Mode Section (on page 402) - Provides information about the visual WYSIWYG-like Author editing mode.
• XML Schema Diagram Editor (on page 623) - Provides information about the schema design mode.
• Editing Specific Document Types Chapter (on page 827) - Includes information about editing numerous different types of documents.
• DITA Authoring Chapter (on page 2981) - Provides information about using DITA to edit and structure your content.
• Publishing Chapter (on page 1640) - Provides information about the various ways that you can publish content.
• Importing Data Chapter (on page 2276) - Provides information about importing data from text files, MS Excel files, database data, and HTML files.
• Tools Chapter (on page 2687) - Details about the various built-in tools that are available in Oxygen XML Editor.
• Add-ons Chapter (on page 2677) - Information about how to extend the functionality of Oxygen XML Editor through add-ons.

Sample Documents

Your installation of Oxygen XML Editor includes a large variety of sample documents and projects that you can use as templates to get started and to experiment with the various features and technologies.
They are located in the **samples** folder that is located in the installation directory of Oxygen XML Editor. You will find files and folders for various types of documents, including the following:

- **Sample project file** (*sample.xpr*) - A sample project file that will allow you to experiment with how projects can be structured and used. When you open this project file, you will be able to see all the sample files and folders in the **Project view** *(on page 333).*
- **Sample files** (*personal.xml, etc.*) - A collection of interrelated sample files that will allow you to experiment with the structure and relationship between XML files, stylesheets, and schemas.
- **Various document type folders** - The various folders contain sample files for numerous document types, such as CSS, DITA, DocBook, ePub, TEI, XHTML, and many others.

**Other Resources**

The following list includes links to various other resources that will help you get started using the features of Oxygen XML Editor:

- See the [Oxygen XML Editor Blog Site](#) for a large variety of current and archived blogs regarding numerous features, requests, and instructional topics.
- Take advantage of the [Oxygen XML Editor Forum](#) to see various announcements and learn more about specific issues that other users have experienced.
- If you are using DITA, see the incredibly helpful [DITA Style Guide Best Practices for Authors](#).
- To learn about the WebHelp features in Oxygen XML Editor, see the [Publishing DITA and DocBook to WebHelp](#) section of the website.
- For more information about various additional tools that are integrated into Oxygen XML Editor, see the [Tools section](#).
- See the [External Resource Page](#) for links to various other helpful resources, such as discussion lists, external tutorials, and more.
- See the [Oxygen SDK](#) section for details about the SDK that allows you to extend and develop Oxygen XML Editor **frameworks** *(on page 3282)* and **plugins** *(on page 3285)*, and to integrate Eclipse plugins.
- For a list of new features that were implemented in the latest version of Oxygen XML Editor, see the [What's New Section of the Website](#)
- You can select the **Tip of the Day** *(on page 25)* action in the **Help menu** *(on page 23)* to display a dialog box that includes a variety of tips for using Oxygen XML Editor.
- You can select **Show Dynamic Help view** *(on page 23)* from the **Help menu** *(on page 23)* to dynamically opens a topic that is relevant to the focused editor, view, or dialog box.

**Your First Document or Project**

This section includes several topics that will help you get started with your first document or project.
Your First XML Document

To create your first XML document, select File > New or click the New button on the toolbar. The New document wizard (on page 676) is displayed:

Figure 2. New Document Wizard

You can either create a new XML document from scratch by choosing one of the available types in the wizard. You can also create one from a template by choosing a template from the Global templates or Framework templates folders. If you are looking for a common document type, such as DITA or DocBook, you can find templates for these document types in the Framework templates folder. If your company has created its own templates, you can also find them there. After you use this dialog box to create a few documents, those document types will appear in the Recently used folder, which allows you to easily create other new documents of those types.

For some document types, you may find a lot of different templates. For example, there are numerous templates for DocBook documents, and DITA topic types and maps. Choose the template that best meets your needs.

Writing Your First Document

Depending on the type of document you choose, the Oxygen XML Editor interface changes to support editing that document type. This may include new menus, toolbar buttons, and items in the contextual menus.
Also, depending on the type of document you choose, Oxygen XML Editor may open your document in **Text** (on page 303) or **Author** (on page 402) mode. **Text** mode shows the raw XML source file, while **Author** mode shows a graphical view of the document.

The availability of **Author** mode for your document type depends on the type you choose and if there is a CSS stylesheet available to create the **Author** mode. Oxygen XML Editor includes default **Author** mode views for most of the document types it supports. If your company has created its own document types, **Author** mode stylesheets may have also been created for that type. However, if you create a plain XML file, or one based on a schema that is not included in the Oxygen XML Editor built-in support, you need to edit it in **Text** mode or create your own **Author** mode CSS (on page 2477) for it.

You can switch back and forth between **Author** mode and **Text** mode at any time by clicking the buttons at the bottom left of the editor window. You do not lose any formatting when switching from **Author** to **Text** mode. **Text** and **Author** modes are just different views for the same XML document.

There is also a **Grid** mode (on page 392) available that displays all content in an XML document as a structured grid of nested tables. This is useful for certain kinds of documents, particularly those that are structured like databases. You can also use it when you want to display XML content in a table-like manner (for example, if you need to extract XML content to a spreadsheet (on page 892)).

If you use **Author** mode, you might find that it is similar to word processors that you are used to. Likewise, the **Text** mode is similar to many typical text editors. If you are new to XML, the biggest difference is that XML documents have a particular structure that you have to follow. Oxygen XML Editor assists you with a continuous validation of the XML markup.

### Structuring Your First Document

Each XML document type has a particular structure that you have to follow as you write and edit the document. Some document types give you a lot of choices, while others give you very few. In either case, you need to make sure that your document follows the particular structure for the document type you are creating. This means:

- At any given location in the document, there are only certain XML elements allowed. Oxygen XML Editor helps you determine which elements are allowed. In **Author** mode, when you press **Enter**, Oxygen XML Editor assumes that you want to enter a new element and shows you a list of elements that can be created in this location. Keep typing until the element you want is highlighted and press **Enter** to insert the element. If you want to view the overall structure of a document and see what is allowed (and where), you can use the **Model** view (on page 353) (Window > Show View > Model).
- When you create certain elements, you may find that your text gets a jagged red underline and you get a warning that your content is invalid. This is usually because the element you have
just created requires certain other elements inside of it. Your document will be invalid until you create those elements. Oxygen XML Editor does its best to help you with this. If there is only one possible element that can go inside the element you just created, Oxygen XML Editor creates it for you. However, if there is more than one possibility, you have to create the appropriate elements yourself. In many cases, Oxygen XML Editor presents XML Quick Fixes (on page 1109) that help you resolve errors by offering proposals to quickly fix problems such as missing required attributes or invalid elements.

**Editing Your First Document**

Once you have completed the first draft of your document, you may need to edit it. As with any editor, Oxygen XML Editor provides the normal cut, copy, and paste options as well as drag and drop editing. However, when you are editing an XML document, you have to make sure that your edits respect the structure of the XML document type. In fact, you are often editing the structure as well as the content of your document.

Oxygen XML Editor provides many tools to help you edit your structure and to keep your structure valid while editing text.

**The Document Breadcrumbs**

Across the top of the editor window, there is a set of breadcrumbs that shows you exactly were the insertion point is in the structure of the document. You can click any element in the breadcrumbs to select that entire element in the document.

![book chapter sect1 sect2 sect3 para figure title]

**Showing Tags**

To see exactly where you are in the structure of the document, you can show the tags graphically in the Author view. There are several levels of tag visibility that you can choose using the Tags Display Mode drop-down menu (on page 441) on the toolbar (the button may look a little different than this, as it changes to reflect the level of tags currently displayed).

**Outline View**

The Outline view (on page 347) shows you the structure of your document in outline format. You can use it to select elements, or to move elements around in the document.

Figure 3. Outline View
You can configure the **Outline** view to determine what is shown, such as element names, attributes, and comments. Certain choices may work better for particular document types. You can also filter the **Outline** view to show only elements with a certain name.

**Figure 4. Outline View Filtered to only Show Element Names**

**Cut and Paste, Drag and Drop**

You can cut and paste or drag and drop text, just as you would in any other editor. However, when you do this in **Author** view, it is important to remember that you are actually moving blocks of XML. When you cut and paste or drag and drop a block of XML, the result has to be valid both where the content is inserted, and where it is removed from.

A big part of doing this correctly is to make sure that you pick up the right block of text in the first place. Using the breadcrumbs or **Outline** view, or showing tags and using them to select content, can help ensure that you are selecting the right chunk of XML.

If you do try to paste or drop a chunk of XML somewhere that is not valid, Oxygen XML Editor warns you and tries to suggest actions that make it valid (such as by removing
surrounding elements from the chunk you are moving, by creating a new element at the destination, or by inserting it in a nearby location).

If you are using Author mode, you can also switch to Text mode to see exactly which bits of XML you are selecting and moving.

**Refactoring actions**

You can perform many common structure edits, such as renaming an element or wrapping text in an element, using the actions in the Refactoring menu of the contextual menu (or the Document > Markup menu). More advanced refactoring operations are also available using the XML Refactoring tool (on page 1139) that is available in the Tools menu.

**Validating Your First Document**

Validation is the process of making sure that an XML document abides by the rules of its schema. If Oxygen XML Editor knows how to find the schema, it validates the document for you as you type. Oxygen XML Editor finds the schema automatically for most of the document types created from templates. However, in some cases you may have to tell it how to find the schema (on page 1081).

When Oxygen XML Editor validates as you type, there is a small bar at the right edge of the editor that shows you if the document is invalid and where errors are found. If the indicator at the top of that bar is green, your document is valid. If the document is invalid, the indicator turns red and a red flag shows you where the errors are found. Click that flag to jump to the error. Remember that sometimes your document is invalid simply because the structure you are creating is not yet complete.

In addition to problems with the validity of the XML document itself, Oxygen XML Editor also reports warnings for a number of conditions, such as if your document contains a cross reference that cannot be resolved, or if Oxygen XML Editor cannot find the schema specified by the document. The location of these warnings is marked in yellow on the validation bar. If the document contains warnings, but no errors, the validity indicator turns yellow.

You can also validate your document at any time by selecting the Validate action from the Validation toolbar drop-down menu or the Document > Validate menu. When you validate in this manner, if errors are found, the validation result opens in a new pane at the bottom of the editor that shows each validation error on a separate line. Clicking the error takes you to the location in your document where the error was detected.

**Note:** Be aware that the problem is sometimes in a different location from where the validator detects the error. To get more information about a validation error, right-click a validation error message, and select Show Message.
Proofing Your First Document

Oxygen XML Editor includes an automatic (as-you-type) spell checking feature (on page 764), as well as a manual spell checking action. To check the spelling of your document manually, use the Check Spelling action on the toolbar or from the Edit menu.

Transforming Your First Document

An XML document must be transformed to be published. Transformations are specific to the particular type of document you have created. For example, a DITA transformation cannot be used on a DocBook file, or vice versa. A single document type may have many multiple transformations that produce different kinds of outputs. For some document types, such a DITA, many different content files may be combined together by a transformation. You need to locate and launch a transformation that is appropriate for your document type and the kind of output you want to generate.

Oxygen XML Editor uses transformation scenarios (on page 1640) to control the transformation process. Depending on the document type you have created, there may be several transformation scenarios already configured for your use. This may include the default transformation scenarios supplied by Oxygen XML Editor or ones created by your organization.

To see the list of transformations available for your document, select the Apply Transformation Scenario(s) action from the toolbar or the Document > Transformation menu. A list of available transformation scenarios are displayed. Choose one or more scenarios to apply, and click Apply associated. Exactly how your transformed content appears depends on how the transformation scenario is configured.

Getting Started with DITA

The information in this topic is meant to be a very basic starting point for those who are just getting started using DITA in Oxygen XML Editor. Oxygen XML Editor makes it easy to create, edit, manage, and publish DITA content, but it requires at least some basic DITA knowledge. To truly get the most out of Oxygen XML Editor and all of its DITA-related features, you should explore resources in the online DITA community to acquire knowledge of its concepts and uses.

Understanding DITA Topics

It is important to understand the role that a DITA topic plays in a DITA project. A DITA topic is not associated with a single published document. It is a separate entity that can potentially be included in many different books, help systems, or websites. Therefore, when you write a DITA topic you are not writing a book, a help system, or a website. You are writing an individual piece of content. This affects how you approach the writing task and how Oxygen XML Editor works to support you as you write.
Most of your topics are actually related to other topics, and those relationships can affect how you write and handle things such as links and content reuse. Oxygen XML Editor helps you manage those relationships. Depending on how your topics are related, you can use the tools provided in Oxygen XML Editor, along with the features of DITA, in a variety of ways.

**Creating a DITA Topic in Oxygen XML Editor**

To create a DITA topic *(on page 3050)*:

1. Select **File > New** or click the **New** button on the toolbar.
   
   **Step Result:** The **New Document Wizard** *(on page 676)* is displayed:

   ![](image)

2. Go to **Framework templates > DITA > topic** and select the type of topic that you want to create.

   **Note:** If your organization has created DITA customizations, the appropriate template files may be in another location, and various types of topics may be provided for your use. Check with the person who manages your DITA system to see if you should be using templates from another directory.

3. Select a file path where it will be saved. You can also optionally specify a title.

4. Click **Create**.
Result: Your document is opened in the editor. Eventually you will need to add a reference to it in your DITA map (on page 16).

Your DITA topic is an XML document, thus all the editing features that Oxygen XML Editor provides for editing XML documents (on page 8) also apply to DITA topics. Oxygen XML Editor also provides additional specific DITA-related support for working with DITA topics (on page 3048), their associated DITA maps (on page 2988), and for creating DITA output (on page 3171).

Role of Maps

The basic method that DITA uses to express the relationship between topics is through a DITA map (on page 3281). Other relationships between topics, such as cross references, generally need to be made between topics in the same root map. DITA uses maps to determine which topics are part of any output that you create. While customized DITA solutions can use other mechanisms, generally DITA is not used as a way to publish individual topics. Output is created from a map and includes all the topics referenced by the map.

A publication is not always represented by a single map. For instance, if you are writing a book, you might use a submap to create each chapter and then organize the chapters in a main root map to create the book. This helps you to manage your content, offers the possibility of reusing submaps, and segregates content to support multiple people working on the same project.

Creating a Map in Oxygen XML Editor

To create a map (on page 3007):

1. Select File > New or click the New button on the toolbar.
2. Go to Framework templates > DITA Map > map and select the type of map you want to create.
3. Choose whether you want to open the map in the Editor or in the DITA Maps Manager (on page 2990). Usually, opening it in the DITA Maps Manager is the best choice. The DITA Maps Manager presents a view of the DITA map that is similar to a table of contents.

Figure 6. DITA Maps Manager View
Adding Existing Topics to a Map in Oxygen XML Editor

There are several ways to add a topic reference to a map (on page 3010). Perhaps the easiest method is to add a reference to a topic that is already open in the editor:

1. Open the DITA topic in the main editing window.
2. Right-click the DITA map in the DITA Maps Manager view (on page 2990) and choose Reference to the currently edited file from the Append Child, Insert Before, or Insert After submenu.

**Step Result:** This opens the Insert Reference dialog box (on page 3017) with all of the required fields already filled in for you.

Figure 7. Insert Reference Dialog Box
3. You can fill in additional information in the various tabs in this dialog box or add it to the map later.

4. Select **Insert and close** to add a reference to your topic in the map.

5. Save the **DITA map**.

### Adding New Topics to a Map in Oxygen XML Editor

As you add topics to your map, you may want to create a new topic as a child or sibling of another topic. This is usually done at the map level.

To **add a new topic to a map** *(on page 3010)*, follow these steps:

1. In the **DITA Maps Manager** *(on page 2990)*, right-click the node in the current map where you want to add the new topic.

2. Select one of the following actions:

   - **Append Child > New** - Select this action to insert the new topic as a child of the selected node. This action opens a **New file dialog box** *(on page 3051)* that allows you to select the type of document and assists you with naming it. After you have configured your new topic, click **Create**.

   - **Insert Before > New** - Select this action to insert the new topic as a sibling to the current node, before it. This action opens a **New file dialog box** *(on page 3051)* that allows you to select the type of document and assists you with naming it. After you have configured your new topic, click **Create**.
• **Insert After > New** - Select this action to insert the new topic as a sibling to the current node, after it. This action opens a **New file dialog box (on page 3051)** that allows you to select the type of document and assists you with naming it. After you have configured your new topic, click **Create**.

• **Duplicate** - Select this action to create a copy of the selected topic and insert it as a sibling. This action opens a dialog box that allows you to choose the file name and location for the newly created copy of the topic. After you have selected the name and path for your new topic, click **OK**.

  **Step Result:** The new topic is now referenced (as a **topicref**) in the **DITA map** at the location where you inserted it and the new topic is opened in the editor.

3. Save the **DITA map**.

You can also change the order and nesting of topics in the **DITA Maps Manager** view by doing either of the following:

• Select the topic to move while holding down the **Alt** key and use the arrow keys to move it around.

• Use the mouse to drag and drop the topic to the desired location.

The way your parent and child topics are organized in any particular output depends on both the configuration of those topics in the map and the rules of the output transformation that is applied to them. Do not assume that your topics must have the same organization for all output types. The map defines the organization of the topics, not the topics themselves. It is possible to create a variety of maps, each with different organization and configuration options to produce a variety of outputs.

**Adding Submaps in Oxygen XML Editor**

If you have a large set of information, such as a long book or extensive help system, a single map can become long and difficult to manage. To make it easier to manage, you can **break up the content into smaller submaps (on page 3008)**. A submap might represent a chapter of a book, a section of a user manual, or a page on a website. To build a publication out of these smaller maps, you must add them to a map that represents the overall publication.

To add a child map to the current map (on page 3008):

1. Right-click the parent **DITA map** in the **DITA Maps Manager view (on page 2990)** and choose **Append child > Map reference**.

  **Step Result:** This opens the **Insert Reference dialog box (on page 3017)** with all of the required fields already filled in for you.

2. You can fill in additional information in the various tabs in this dialog box or add it to the map later.
3. Select **Insert and close** to add a reference to your submap in the main map.
4. Save the main **DITA map**.

**Validating a Map in Oxygen XML Editor**

Just as it is with your individual topics, it is important to validate your maps ([on page 3036](#)). Oxygen XML Editor provides a validation function for **DITA maps** that does more than simply validating that the XML is well formed. It also does the following:

- Validates all of the relationships defined in the maps.
- Validates all of the files that are included in the map.
- Validates all of the links that are expressed in the files.

Validating the map that describes your entire publication validates all the files that make up the publication and all of the relationships between them.

To validate a map:

1. Click the **Validate and Check for Completeness** button in the **DITA Maps Manager** view ([on page 2990](#)).

   **Step Result:** This opens the **DITA Map Completeness Check** dialog box ([on page 3037](#)).
2. Select any of the various options you want to check.
3. Click **Check** to run the validation process.

**Publishing Your Topics in Oxygen XML Editor**

As noted previously, in DITA standards you usually do not publish output from an individual topic. Instead, you create published output ([on page 3171](#)) by running a DITA transformation on a map. This collects all the topics that are referenced in the map, organizes them, and produces output in a particular format. By default, Oxygen XML Editor uses the transformations provided by the **DITA Open Toolkit** for publishing to various output formats (such as PDF, WebHelp or EPUB). Your organization may have created various custom transformations or modified the built-in **DITA Open Toolkit** transformations. In either case, Oxygen XML Editor manages them by using transformation scenarios.

To publish output for a map:

1. Click the **Configure Transformation Scenario(s)** button in the **DITA Maps Manager** view ([on page 2990](#)).

   **Step Result:** This opens the **Configure Transformation Scenario(s)** dialog box ([on page 1762](#)).
2. Select the appropriate transformation depending on the type of output you desire.

3. To change or view the configuration or storage options for a transformation scenario, select the transformation and click **Edit**.

4. Click **Apply associated**.

   **Result:** Depending on the configuration of the transformation scenario, when the transformation is finished, your output may automatically be opened in the appropriate application.

**Related Information:**

- **DITA Authoring** (on page 2981)
- **Editing XML Documents in Author Mode** (on page 893)

**Creating a New Project**

Oxygen XML Editor allows you to organize your XML-related files into projects. This helps you manage and organize your files and also allows you to perform batch operations (such as validation and transformation) over multiple files. You can also **share your project settings and transformation/**
validation scenarios (on page 723) with other users. Use the Project view (on page 333) to manage projects, and the files and folders contained within.

**Creating a New Project**

To create a new project, select New Project from the Project menu, the New menu in the contextual menu, or the drop-down menu at the top-left of the Project view. This opens a dialog box that allows you to assign a name to the new project and adds it to the structure of the project in the Project view (on page 333).

**Adding Items to the Project**

To add items to the project, select any of the following actions that are available when invoking the contextual menu in the Project view:

- **New > File**
  
  Opens a New file dialog box that helps you create a new file and adds it to the project structure.

- **New > Folder**
  
  Opens a New Folder dialog box that allows you to specify a name for a new folder and adds it to the structure of the project.

The project itself is considered a logical folder. You can add a logical folder, or content to a logical folder, by using one of the following actions that are available in the contextual menu, when invoked from the project root:

- **New > Logical Folder**
  
  Creates a logical folder in the tree structure (the icon is a magenta folder on Mac OS X - 🗂).

- **New > Logical Folders from Web**
  
  Replicates the structure of a remote folder accessible over FTP/SFTP/WebDAV, as a structure of logical folders. The newly created logical folders contain the file structure of the folder it points to.

- **>Add Folder**
  
  Adds a link to a physical folder, whose name and content mirror a real folder that exists in the local file system (the icon of this action is different on Mac OS X - 🗂).

- **>Add Files**
  
  Adds links to files on the local file system.
Add Edited File

Adds a link to the currently edited file in the project.

Using Linked Folders (Shortcuts)

Another easy way to organize your XML working files is to place them in a directory and then to create a corresponding linked folder in your project. If you add new files to that folder, you can simply use the **Refresh** action from the toolbar or contextual menu and the Project view will display the existing files and subdirectories. If your files are scattered among several folders, but represent the same class of files, you might find it useful to combine them in a logical folder.

You can create linked folders (shortcuts) by dragging and dropping folders from the Windows Explorer (Mac OS X Finder) to the project tree, or by selecting **Add Folder** in the contextual menu from the project root. Linked folders are displayed in the Project view with bold text. To create a file inside a linked folder, select the **New > File** action from the contextual menu. The linked files presented in the Project view are marked with a special icon.

**Note:** Files may have multiple instances within the folder system, but cannot appear twice within the same folder.

For more information on managing projects and their content, see Project View.

For more details about how you can share projects with other users, see Sharing a Project - Team Collaboration.

Related Information:

- Using Projects to Group Documents

Getting Help

If you run into specific problems while using Oxygen XML Editor you can take advantage of a variety of support related resources. Those resources include the following:

- The Oxygen XML Editor Support Section of the Website
- The Oxygen XML Editor Forum
- The Oxygen XML Editor Video Tutorials
- The Common Problems and Solutions Section of the User Manual
- The Online Technical Support Form
The application also includes various specific help-related resources in the Help menu.

Help Menu

The Oxygen XML Editor Help menu provides various resources to assist you with your tasks.

This menu includes the following actions or options:

Welcome

This option opens the Welcome screen that includes some resources to assist you with using Oxygen XML Editor.

Help (F1)

Use this action (or the F1 key) to open a dialog box that presents a section in the User Manual that is appropriate for the context of the current cursor position. If the Use online help option is selected, this action will open the User Manual in an online mode.

Use online help

If this option is selected, the Help (F1) action will open the Oxygen XML Editor User Manual in an online mode.

Show Dynamic Help view

Use this action to open a view that loads the latest online WebHelp version of the Oxygen XML Editor User Manual, and dynamically opens a topic that is relevant to the focused editor, view, or dialog box. It requires Java 1.8 and an online connection. In Windows, if a Java 1.8 version is not detected, you will be advised to upgrade, while in Linux and Mac OS X with Java 1.7 and lower, Oxygen XML Editor will attempt to load an offline version of the documentation. In all three operating systems, with Java 1.8, if an online connection is not detected, you will receive an error message advising you to check your proxy settings.

You can also open the Dynamic Help view by selecting it from the Window > Show View menu.

Install new add-ons

Opens a dialog box that allows you to install new add-ons (on page 3285) to extend the functionality of Oxygen XML Editor.

Check for add-ons updates

Opens a dialog box that allows you to check for updates on installed add-ons (on page 3285).

Manage add-ons

Opens a dialog box that allows you to manage installed add-ons (on page 3285).
Check for a New Version

Use this action to view information about the latest version of Oxygen XML Editor.

Browse Oxygen Website

Opens the Oxygen XML Editor website in your default internet browser.

Register

If you encounter problems with your Oxygen XML Editor license, you can use this option to open a dialog box that provides options for obtaining or using a license key.

Lock/Unlock floating license

If you are using a Floating License, you can lock it so that it does not get released to the pool (on page 55) unless you or the system administrator unlocks it.

Report problem

You can use this option to open a dialog box that allows you to write the description of a problem that was encountered while using the application. You can also select additional information to be sent to the technical support team in the five tabs:

• **General info** - You can edit your contact details in case you want to be contacted for further details or to be notified of a resolution.

• **Class Loader URLs** - You can choose whether or not to include the listed Class Loader URLs with your report.

• **System properties** - You can choose whether or not to include the listed system property details with your report.

**Tip:** You are able to change the URL where the reported problem is sent by using the `com.oxygenxml.report.problems.url` system property. The report is sent in XML format through the `report` parameter of the POST HTTP method.

• **Plugins** - You can choose whether or not to include details about your installed plugins (on page 3285) with your report.

• **Frameworks** - You can choose whether or not to include details about your installed frameworks (on page 3282) with your report.

Support Center

Use this option to open the Oxygen XML Editor Support Section of the Website.

Support Tools > Clipboard Inspector

Opens a dialog box that displays extensive details of all the transferable objects from the clipboard. This is helpful if you experience problems while copying content from other applications and pasting it into Oxygen XML Editor. You can use the Copy button to copy all of this data and then paste it into an email to be sent to the Oxygen support team.
Support Tools > Randomize XML text content

Use this action when you need to send samples to the Oxygen support team and you want to keep the text content confidential. It opens a dialog box that allows you to select the resources for which the text content will be randomized. You can then save the resources and send them to the Oxygen support team without fear of compromising sensitive or private data. For more information, see Randomize XML Text Content (on page 25).

⚠️ Warning: Before using this action, it is highly recommended that you copy the XML resources to be processed, save them in a separate folder, and then process this operation on the copies instead of the original files. Otherwise, you may lose your original content.

Tip of the Day

Opens a dialog box that offers tips for using Oxygen XML Editor.

About

Use this option to open a dialog box that contains information about Oxygen XML Editor and the installed version. This dialog box includes the following tabs:

- **Copyright** - This tab contains general information about the product and the version of the product you are using, along with contact details and the SGN number. Details regarding the memory usage are also presented at the bottom of the dialog box.
- **Libraries** - This tab presents the list of third party libraries that Oxygen XML Editor uses. To view the End User Licence Agreement of each library, double-click it.
- **Frameworks** - This tab contains a list with the framework (on page 3282) that are bundled with Oxygen XML Editor.
- **System Properties** - This tab contains a list with system properties and their values. The contextual menu allows you to select and copy the properties.

Related Information:

- Details to Submit in a Request for Technical Support Using the Online Form (on page 2956)

Randomize XML Text Content

Oxygen XML Editor includes an action that randomizes the text content of an XML document. This action is available in the Help > Support Tools menu. It is helpful if you need to send XML samples to the Oxygen support team and you want to keep the text content confidential. It opens a dialog
box that allows you to select the resources for which the text content will be randomized. You can then save the resources and send them to the Oxygen support team without fear of compromising sensitive or private data.

**Warning:** Before using this action, it is highly recommended that you copy the XML resources to be processed, save them in a separate folder, and then perform this operation on the copies instead of the original files. Otherwise, you may lose your original content.

**Figure 9. Randomize XML Text Content Dialog Box**

The **Randomize XML Text Content** dialog box includes the following options:

**Scope**

Allows you to select the set of files whose text content will be randomized by the operation. You can select from predefined resource sets (such as the current file, your whole project, the current DITA map (on page 3281) hierarchy for DITA projects, etc.) or you can define your own set of resources by creating a working set (on page 3288).

**Filters**

This section includes the following options:

- **Include files** - Allows you to filter the selected resources by using a file pattern. For example, to restrict the operation to only analyze build files you could use `build*.xml` for the file pattern.
- **Restrict only to known XML file types** - When selected, only resources with a known XML file type will be affected by the operation.
• **Look inside archives** - When selected, the resources inside archives will also be affected.

## Frequently Used Shortcut Keys

Oxygen XML Editor includes numerous shortcut keys that are assigned to actions to help you edit content. All the shortcuts that are assigned to actions are displayed in the table in the [Menu Shortcut Keys preference page](on page 248).

For information about how to assign or configure shortcut keys, see [How to Assign a Shortcut Key or Edit an Existing Shortcut](on page 249).

### Table 1. Frequently Used Shortcut Keys in Oxygen XML Editor

<table>
<thead>
<tr>
<th>Action</th>
<th>Windows/Linux Shortcut Keys</th>
<th>Mac/OS X Shortcut Keys</th>
<th>Description of Default Assigned Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Attribute Editor</td>
<td><strong>Alt + Enter</strong></td>
<td><strong>Alt + Enter</strong></td>
<td>Opens the in-place attribute editor</td>
</tr>
<tr>
<td>Beginning</td>
<td><strong>Ctrl + Home</strong></td>
<td><strong>Command + Home</strong></td>
<td>Navigates to the beginning of the document</td>
</tr>
<tr>
<td>Check Spelling</td>
<td><strong>F7</strong></td>
<td><strong>F7</strong></td>
<td>Opens the spell checking dialog box</td>
</tr>
<tr>
<td>Check Well-Formedness</td>
<td><strong>Ctrl + Shift + W</strong></td>
<td><strong>Command + Shift + W</strong></td>
<td>Check well-formedness of current document</td>
</tr>
<tr>
<td>Configure Transformation</td>
<td><strong>Ctrl + Shift + C</strong></td>
<td><strong>Command + Shift + C</strong></td>
<td>Opens the Configure Transformation Scenario dialog box</td>
</tr>
</tbody>
</table>
| Content Completion / New Line | **Enter**                   | **Enter**              | • **Author** mode - Opens the content completion window  
<p>|                               |                             |                        | • <strong>Text</strong> mode - Moves cursor to the next line                                                           |
| Content Completion (Text Mode)| <strong>Ctrl + Space</strong>            | <strong>Command + Space</strong>    | Opens the content completion window in <strong>Text</strong> mode                                                    |
| Create Bookmark #             | <strong>Ctrl + Shift + 1-9</strong>      | <strong>Command + Shift + 1-9</strong>| Create bookmarks numbered 1 through 9                                                                     |
| Create Next Bookmark          | <strong>F9</strong>                      | <strong>F9</strong>                 | Create bookmark numbered whatever is next in sequence                                                    |</p>
<table>
<thead>
<tr>
<th>Action</th>
<th>Windows/Linux Shortcut Keys</th>
<th>Mac/OS X Shortcut Keys</th>
<th>Description of Default Assigned Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Delete Next Word</td>
<td>Ctrl + Delete</td>
<td>Command + Delete</td>
<td>Deletes the next word or whitespace</td>
</tr>
<tr>
<td>Delete Previous Word</td>
<td>Ctrl + Backspace</td>
<td>Command + Backspace</td>
<td>Deletes the previous word or whitespace</td>
</tr>
<tr>
<td>Delete Tags</td>
<td>Alt + Shift + X</td>
<td>Command + Alt + X</td>
<td>Deletes the start and end tag of the current element</td>
</tr>
<tr>
<td>Duplicate Lines Up</td>
<td>Ctrl + Shift + UpArrow</td>
<td>Alt + Shift + UpArrow</td>
<td>Duplicates the selected lines (or current line) and inserts it above the current selection/line</td>
</tr>
<tr>
<td>(Text Mode)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Duplicate Lines Down</td>
<td>Ctrl + Shift + DownArrow</td>
<td>Alt + Shift + DownArrow</td>
<td>Duplicates the selected lines (or current line) and inserts it below the current selection or line</td>
</tr>
<tr>
<td>(Text Mode)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>End</td>
<td>Ctrl + End</td>
<td>Command + End</td>
<td>Navigates to the end of the document</td>
</tr>
<tr>
<td>Exit</td>
<td>Ctrl + Q</td>
<td>Command + Q</td>
<td>Exit the application</td>
</tr>
<tr>
<td>Find</td>
<td>Ctrl + F</td>
<td>Command + F</td>
<td>Opens Find/Replace dialog box</td>
</tr>
<tr>
<td>Find Next</td>
<td>F3</td>
<td>Command + G</td>
<td>Finds next occurrence of the last searched term</td>
</tr>
<tr>
<td>Find Previous</td>
<td>Shift + F3</td>
<td>Command + Shift + G</td>
<td>Finds previous occurrence of the last searched term</td>
</tr>
<tr>
<td>Go To Bookmark</td>
<td>Ctrl + 1-9</td>
<td>Command + 1-9</td>
<td>Go to specific bookmark</td>
</tr>
<tr>
<td>Help</td>
<td>F1</td>
<td>F1</td>
<td>Opens help documentation</td>
</tr>
<tr>
<td>Insert Para / Format</td>
<td>Ctrl + Shift + P</td>
<td>Command + Shift + P</td>
<td>• Author mode - Inserts a paragraph at cursor position</td>
</tr>
<tr>
<td>Indent</td>
<td></td>
<td></td>
<td>• Text mode - Formats and indents current document</td>
</tr>
<tr>
<td>Move Tab Left</td>
<td>Ctrl + Alt + Comma</td>
<td>Ctrl + Alt + Comma</td>
<td>Moves the current file tab one position to the left</td>
</tr>
<tr>
<td>Move Tab Right</td>
<td>Ctrl + Alt + Period</td>
<td>Ctrl + Alt + Period</td>
<td>Moves the current file tab one position to the right</td>
</tr>
<tr>
<td>Move Node Down</td>
<td>Alt + DownArrow</td>
<td>Alt + DownArrow</td>
<td>Moves the selected XML node down in Author mode</td>
</tr>
<tr>
<td>Action</td>
<td>Windows/Linux Shortcut Keys</td>
<td>Mac/OS X Shortcut Keys</td>
<td>Description of Default Assigned Action</td>
</tr>
<tr>
<td>------------------------</td>
<td>-----------------------------</td>
<td>------------------------</td>
<td>----------------------------------------</td>
</tr>
<tr>
<td>Move Node Down (Text)</td>
<td>Ctrl + Alt + DownArrow</td>
<td>Command + Alt + DownArrow</td>
<td>Moves the selected XML node down in Text mode</td>
</tr>
<tr>
<td>Move Node Up (Author)</td>
<td>Alt + UpArrow</td>
<td>Alt + UpArrow</td>
<td>Moves the selected XML node up in Author mode</td>
</tr>
<tr>
<td>Move Node Up (Text)</td>
<td>Ctrl + Alt + UpArrow</td>
<td>Command + Alt + UpArrow</td>
<td>Moves the selected XML node up in Text mode</td>
</tr>
<tr>
<td>New File</td>
<td>Ctrl + N</td>
<td>Command + N</td>
<td>Opens wizard for creating new documents</td>
</tr>
<tr>
<td>Next Word</td>
<td>Ctrl + RightArrow</td>
<td>Command + RightArrow</td>
<td>Navigates to next word</td>
</tr>
<tr>
<td>Open/Find Resource</td>
<td>Ctrl + Shift + R</td>
<td>Command + Shift + R</td>
<td>Opens the Open/Find Resource dialog box</td>
</tr>
<tr>
<td>Previous Word</td>
<td>Ctrl + LeftArrow</td>
<td>Command + LeftArrow</td>
<td>Navigates to previous word</td>
</tr>
<tr>
<td>Print Preview</td>
<td>Ctrl + P</td>
<td>Command + P</td>
<td>Opens the print preview (page setup) dialog box</td>
</tr>
<tr>
<td>Quick Assist</td>
<td>Alt + 1</td>
<td>Command + Alt + 1</td>
<td>Opens Quick Assist menu if actions are available in the current context (usually indicated with a bulb icon in the left stripe)</td>
</tr>
<tr>
<td>Quick Find</td>
<td>Alt + Shift + F</td>
<td>Alt + Shift + F</td>
<td>Opens the Quick Find mechanism at the bottom of the editor</td>
</tr>
<tr>
<td>Redo</td>
<td>Ctrl + Y (Windows) - Ctrl + Shift + Z (Linux)</td>
<td>Command + Shift + Z</td>
<td>Redo last editing action</td>
</tr>
<tr>
<td>Refresh</td>
<td>F5</td>
<td>F5</td>
<td>Refresh</td>
</tr>
<tr>
<td>Remove Bookmarks</td>
<td>Ctrl + F7</td>
<td>Command + F7</td>
<td>Removes all bookmarks</td>
</tr>
<tr>
<td>Reopen Last Closed Editor</td>
<td>Ctrl + Alt + T</td>
<td>Command + Alt + T</td>
<td>Reopens the editor tab that was closed most recently</td>
</tr>
<tr>
<td>Reset Zoom</td>
<td>Ctrl + NumPad0</td>
<td>Command + NumPad0</td>
<td>Resets zoom (default font size)</td>
</tr>
<tr>
<td>Save</td>
<td>Ctrl + S</td>
<td>Command + S</td>
<td>Saves current document</td>
</tr>
<tr>
<td>Save All</td>
<td>Ctrl + Shift + S</td>
<td>Command + Shift + S</td>
<td>Saves all opened files</td>
</tr>
<tr>
<td>Scroll Down</td>
<td>Ctrl + DownArrow</td>
<td>Command + DownArrow</td>
<td>Scrolls the editor down</td>
</tr>
</tbody>
</table>
## Shortcut Keys

<table>
<thead>
<tr>
<th>Action</th>
<th>Windows/Linux Shortcut Keys</th>
<th>Mac/OS X Shortcut Keys</th>
<th>Description of Default Assigned Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scroll Up</td>
<td>Ctrl + UpArrow</td>
<td>Command + Up Arrow</td>
<td>Scrolls the editor up</td>
</tr>
</tbody>
</table>
| Shift Left                    | Shift + Tab                 | Shift + Tab            | • **Author** mode - Moves cursor to the previous XML node
|                               |                             |                        | • **Text** mode - Shifts content to the left |
| Shift Right                   | Tab                         | Tab                    | • **Author** mode - Moves cursor to the next XML node
|                               |                             |                        | • **Text** mode - Shifts content to the right |
| Split Element                 | Alt + Shift + D             | Ctrl + Alt + D         | Splits the element the cursor position |
| Surround With                 | Ctrl + E                    | Command + E            | Surrounds selected content with specified tag |
| Switch Tabs                   | Ctrl + Tab / Ctrl + Shift + Tab | Command + Tab / Command + Shift + Tab | Switches between opened tabs |
| Transform                     | Ctrl + Shift + T            | Command + Shift + T    | Opens a dialog box for selecting a transformation scenario |
| Underline / Open URL          | Ctrl + U                    | Command + U            | • Underlines select content (in main editor)
|                               |                             |                        | • Opens URL (when focus is outside the main editor) |
| Undo                          | Ctrl + Z                    | Command + Z            | Undo last editing action                |
| Validate                      | Ctrl + Shift + V            | Command + Shift + V    | Validates editing action                |
| Zoom In                       | Ctrl + NumPad+              | Command + NumPad+      | Zooms in (increase font size)          |
| Zoom Out                      | Ctrl + NumPad-              | Command + NumPad-      | Zooms out (decrease font size)         |

**Troubleshooting:** If you encounter problems with keyboard shortcuts not working as expected, see Keyboard Shortcuts Result in Unexpected Behavior *(on page 2970)* or Keyboard Shortcuts Do Not Work At All *(on page 2969)*.

## Accessibility Support in Oxygen

The **Oxygen** team is dedicated to developing software products that are usable for everyone, including those with physical challenges and disabilities. Oxygen XML Editor was designed to adhere to the U.S. Government Section 508 accessibility standards: [https://www.oxygenxml.com/xml_editor/section508.html](https://www.oxygenxml.com/xml_editor/section508.html)
Adjusting Fonts and Colors

If you have low vision, go to Options > Preferences > Appearance > Fonts where you can adjust the font styles and sizes used in the entire application, both for the editing areas and UI labels. If you have color blindness, you can also adjust most of the colors used in Oxygen XML Editor by going to Options > Preferences > Appearance and changing the current color theme. You can also search for other color-related setting in the Preferences dialog box.

Text to Speech Narrators (JAWS)

If you are using a text to speech narrator, Oxygen XML Editor support this since it is a Java application and it is periodically tested on Windows using the JAWS screen reader: http://www.freedomscientific.com/Products/Blindness/JAWS.

For JAWS to work, you need to enable the Java access bridge in Oxygen XML Editor: http://docs.oracle.com/javase/7/docs/technotes/guides/access/enable_and_test.html

Since Oxygen XML Editor comes bundled with its own Java VM, you need to open a console in the jre folder bundled with Oxygen XML Editor and run the following command:

D:\PATH\TO\OXYGEN_INSTALLATION_FOLDER\jre>bin\jabswitch -enable

You will receive a notification in the console that the access bridge has been enabled.

Once the Java access bridge is enabled and if the JAWS narrator is active, when Oxygen XML Editor starts, the narrator will start reading content from Oxygen XML Editor and you can interact with the application, read menus, content from opened XML documents, and UI components from dialog boxes and side views.

Hints for the Visually Impaired

Here are a few hints for using Oxygen XML Editor if you are visually impaired:

- The top main menu should contain most of the actions that you need to open, save, and close documents, switch between opened documents, or switch between the various editing modes for XML documents that are already opened.
  - The File menu contains actions to open, save, or close the currently edited XML document.
  - The Edit menu contains actions to undo/redo or cut/copy/paste content. They also have the usual shortcuts that can be used instead of directly invoking the actions from the menu.
  - The Find menu contains an action to show the Find/Replace dialog box. Sometimes the JAWS narrator overloads the CTRL-F shortcut and presents its own find/replace window but
the Oxygen XML Editor **Find/Replace** dialog box provides the ability to perform complex find/replace operations in the opened file.

- In the **Options** menu, you have access to the **Preferences** dialog box that contains global application settings and access to the **Menu Shortcut Keys** table where you can configure shortcuts for the most commonly used actions.
- The **Window** menu includes actions to switch between opened XML documents. Also, you can use the **Show view** submenu open a particular side view and move the focus to that view.

- An opened XML document can be edited with accessibility support either in the **Text** editing mode (where the XML tags are accessible in the edited content) or in the visual **Author** editing mode (where the XML tags are hidden and only the text content is shown). You can switch between these editing modes by using the **Document > Edit Mode** menu.

  - **Text** mode provides access to the entire source document with all of its **XML** content, just like you have in any text editing application. In addition, using the **Window > Show view** submenu, you can change focus to the **Attributes**, **Elements**, or **Outline** view. The **Attributes** view presents the existing and possible attributes that can be inserted in an XML tag. The **Elements** view shows you the list of XML elements that can be inserted at cursor position (also, pressing F2 on a selected element presents its annotation). The **Outline** view shows the current path in the XML structure.

  - **Author** mode is useful for reviewing written XML content because it has support for change tracking and for adding comments. Editing in the **Author** visual editing mode, you have access only to the text content in the XML document. Pressing **Shift-F2** will read to you the location in the XML structure. Again, you can also use the **Outline** view for this. In the **Author** editing mode, you can also use the **Attributes** and **Elements** views similar to using them in the **Text** editing mode. Pressing **ENTER** in the **Author** visual editing mode can also be used to present a list of allowed elements at the current position.
3. Installation

Oxygen XML Editor is available on Windows, Linux, and Mac OS X and there are a variety of methods and options for installing and running Oxygen XML Editor on your system or server. This section also includes information about registering, transferring, or releasing licenses, upgrading, installing add-ons, and uninstalling.

**Choosing How Oxygen XML Editor Runs**

You can install Oxygen XML Editor to run in several ways:

- As a desktop application (running standalone or as an Eclipse plugin) on Windows, Linux, or Mac OS X.
- As a desktop application (running standalone or as an Eclipse plugin) on a Unix or Linux server or on Windows Terminal Server.

**Choosing an Installer**

You also have a choice of several different installers:

- The native installer for your platform (Windows, Linux, or Mac OS X).
- On Windows and Linux, the native installer can also run in unattended mode.

**Choosing a License Option**

You must obtain and register a license key (on page 50) to run Oxygen XML Editor.

You can choose from two types of licenses:

- A named-user license, which can be used by a single person on multiple computers.
- A floating license, which can be used by different people at different times. Only one person can use a floating license at a time.

**Upgrading, transferring, and uninstalling.**

You can also upgrade (on page 73) Oxygen XML Editor, transfer a license (on page 56), or uninstall (on page 77) Oxygen XML Editor.
Getting help with installation

If you need help, email support at: support@oxygenxml.com.

Installing Oxygen XML Editor on Windows

Choosing an Installation Method

You can install Oxygen XML Editor on Windows using one of the following methods:

- Windows installer (on page 35)
- Windows installer in unattended mode (on page 36)

System Requirements

Operating systems


CPU

- Minimum - Intel Pentium III™/AMD Athlon™ class processor, 1 GHz
- Recommended - Dual Core class processor

Memory

- Minimum - 2 GB of RAM
- Recommended - 4 GB of RAM

Storage

- Minimum - 400 MB free disk space
- Recommended - 1 GB free disk space

Java

Java 1.8 (or newer) from Oracle

Oxygen XML Editor only supports official and stable Java Virtual Machines with version 1.8 from Oracle. If you use the native Windows installer, Oxygen XML Editor will be
installed with its own copy of Java with the specific update version that has been thoroughly tested.

**All Platforms Package**

If you use the all platforms package, your system must have a compatible Java 1.8 virtual machine installed. To see the exact Java update version that is supported, go to [www.oxygenxml.com](http://www.oxygenxml.com), navigate to the Download page for the particular product you are installing, and click on the tab for your particular platform.

**Note:** Oxygen XML Editor may work with other update versions of Java, but since Oxygen XML Editor has only been thoroughly tested with specific versions, there is no guarantee that it will be stable with any other Java version.

Oxygen XML Editor uses the following rules to determine which installed version of Java to use:

1. If you install using the native Windows installer, which installs a version of Java as part of the Oxygen XML Editor installation, the version in the `jre` subdirectory of the installation directory is used.
2. Otherwise, if the Windows environment variable `JAVA_HOME` is set, Oxygen XML Editor uses the Java version pointed to by this variable.
3. Otherwise, the version of Java pointed to by your `PATH` environment variable is used.

If you run Oxygen XML Editor using the batch file, `oxygen.bat`, you can edit the batch file to specify a particular version to use.

**Windows Installer**

To install Oxygen XML Editor using the Windows installer, follow these steps:

1. Make sure that your system meets the system requirements *(on page 34).*
2. Download the Windows installer.
3. [Optional] Validate the integrity of the downloaded file by checking it against the MD5 sum published on the download page.
4. Run the installer and follow the instructions in the installation program.
5. Start Oxygen XML Editor using one of the following methods:
   - Use one of the shortcuts created by the installer.
   - Run `oxygen.bat`, which is located in the installation directory.
6. To license your copy of Oxygen XML Editor go to Help > Register and enter your license information (on page 50).

Windows Unattended Installation

You can run the installation in unattended mode by running the installer from the command line with the -q parameter. By default, running the installer in unattended mode installs Oxygen XML Editor with the default options and does not overwrite existing files. You can change various options for the unattended installer using the installer command-line parameters.

Windows Installer Command-Line Reference

The Oxygen XML Editor installer for Windows supports a variety of command-line parameters.

Commonly Used Command-Line Parameters

The Oxygen XML Editor installer supports the following commonly used command-line parameters:

- **-q**
  
  Instructs the installer to run in unattended mode. The installer will not prompt the user for input during the install. Default settings will be used for all options unless a response.varfile (on page 38) is specified using the -varfile option.

- **-overwrite**
  
  In unattended mode, the installer does not overwrite files with the same name if a previous version of the Oxygen XML Editor is installed in the same folder. The -overwrite parameter added after the -q parameter forces the overwriting of these files.

- **-console**
  
  Displays a console during the installation.

  **Note:** If you want the installer to run in the foreground, you need to use the start /wait command (for example, start /wait oxygen.exe -q -console). Otherwise, it will run in the background.

- **-varfile**
  
  Specifies the location of a response.varfile (on page 38), normally to be used during an unattended installation.

- **-V**
Used to define a variable parameter (on page 38) to be used by an installation.

**EXAMPLE:**

```shell
oxygen.exe -q -overwrite -console -VautoVersionChecking=false
```

### Command-Line Parameters for Preconfiguring License Server Details

The Oxygen XML Editor installer also supports the following command-line parameters used for preconfiguring license server details:

- **license.servlet.url**
  
  Specifies the URL of the HTTP license server.

- **license.servlet.user.name**
  
  Specifies the user name for the HTTP license server.

- **license.servlet.password**
  
  Specifies the password for the HTTP license server, in clear form (will be stored encrypted).

- **license.servlet.password.encrypted**
  
  Specifies the password for the HTTP license server, in encrypted form. Can be obtained from an entry with same name in an existing license.xml file (found in: `{user_home_directory}`\AppData\Roaming\com.oxygenxml).

- **backup.license.servlet.url**
  
  Specifies the URL of the backup HTTP license server.

- **backup.license.servlet.user.name**
  
  Specifies the user name for the backup HTTP license server.

- **backup.license.servlet.password**
  
  Specifies the password for the backup HTTP license server, in clear form (will be stored encrypted).

- **backup.license.servlet.password.encrypted**
  
  Specifies the password for the HTTP license server, in encrypted form. Can be obtained from an entry with same name in an existing license.xml file (found in: `{user_home_directory}`\AppData\Roaming\com.oxygenxml).

**EXAMPLE:**
Windows Installer response.varfile

The Oxygen XML Editor installer for Windows also creates a file called response.varfile, which records the choices that the user made when running the installer interactively. The generated response file is found in the [OXYGEN_INSTALL_DIR]/.install4j folder. You can use the response.varfile to set the options for an unintended install (on page 36). For more information about the response.varfile format, see install4j site.

Variable Parameters (can be used in the response.varfile or from the command line)

The following variable parameters are supported in the response.varfile (or from the command line):

autoVersionChecking

Used for automatic version checking. Possible values are true (default) or false.

reportProblem

Used to report a problem encountered while using Oxygen XML Editor. Possible values are true (default) or false.

downloadResources

Used to download resources (links to video demonstrations, webinars, and upcoming events) from https://www.oxygenxml.com to populate the application welcome screen. Possible values are true (default) or false.

Installing Oxygen XML Editor on Mac OS X

You can install Oxygen XML Editor on Mac OS X using one of the following methods:

1. Mac OS X installation package (on page 39).
2. Mac OS X installation package in unattended mode (on page 40).
System Requirements

Operating system

OS X version 10.8 64-bit or later

CPU

- Minimum - Intel-based Mac, 1 GHz
- Recommended - Dual Core class processor

Memory

- Minimum - 2 GB of RAM
- Recommended - 4 GB of RAM

Storage

- Minimum - 400 MB free disk space
- Recommended - 1 GB free disk space

OS X Installation

To install Oxygen XML Editor on OS X, follow these steps:

1. Download the OS X installation package (oxygen.dmg).
2. [Optional] Validate the integrity of the downloaded file by checking it against the MD5 sum published on the download page.
3. Double-click the oxygen.dmg disk image file to mount it.
4. Drag/Copy the Oxygen XML Editor folder to your /Applications folder (or another location if you wish).

⚠️ Warning: If you receive a warning that an Oxygen XML Editor installation folder already exists in the Applications folder, do not attempt to merge the two installations. Instead, select Replace or move the old installation folder to the trash bin before installing the application.

⚠️ Important: Do not copy the files/folders from within the Oxygen XML Editor folder (always copy the folder itself), otherwise you will omit invisible files/folders and the application may no longer start.

5. Start Oxygen XML Editor, using one of the following methods:
   - Double-click Oxygen XML Editor.app.
   - Run sh oxygen.sh in the command-line interface.
6. To license your copy of Oxygen XML Editor, go to Help > Register to enter your license key (on page 50).

**OS X Unattended Installation**

To install Oxygen XML Editor on OS X in unattended mode, follow these steps:

1. Download the OS X installation package (oxygen.dmg).
2. Mount the oxygen.dmg file in the command line.
   ```bash
   hdiutil attach oxygen.dmg|oxygenAuthor.dmg|oxygenDeveloper.dmg
   ```
3. Copy the oxygen folder for the particular version from the mounted volume to the Applications folder (or another folder where you want to install it), as in the following example:
   ```bash
   cp -aR "/Volumes/Oxygen XML Editor 21.0/Oxygen XML Editor" /Applications/
   ```
4. Eject the mounted disc image:
   ```bash
   hdiutil detach "/Volumes/Oxygen XML Editor 21.0"
   ```

**Installing Oxygen XML Editor on Linux**

**Choosing an Installation Method**

You can install Oxygen XML Editor on Linux using one of the following methods:

- Linux installer (on page 42)
- Linux installer in unattended mode (on page 43)

**System Requirements**

**Operating System**

Any 64-bit Unix/Linux distribution with an available Java SE Runtime Environment version 1.8 from Oracle

**CPU**

- Minimum - Intel Pentium III™/AMD Athlon™ class processor, 1 GHz
- Recommended - Dual Core class processor
Memory

- Minimum - 2 GB of RAM
- Recommended - 4 GB of RAM

Storage

- Minimum - 400 MB free disk space
- Recommended - 1 GB free disk space

Java

Java 1.8 (or newer) from Oracle

Oxygen XML Editor only supports official and stable Java Virtual Machines with version 1.8 from Oracle. If you use the Linux installer, Oxygen XML Editor will be installed with its own copy of Java with the specific update version that has been thoroughly tested.

**All Platforms Package**

If you use the all platforms package, your system must have a compatible Java 1.8 virtual machine installed. To see the exact Java update version that is supported, go to [www.oxygenxml.com](http://www.oxygenxml.com), navigate to the Download page for the particular product you are installing, and click on the tab for your particular platform.

**Note:** Oxygen XML Editor may work with other update versions of Java, but since Oxygen XML Editor has only been thoroughly tested with specific versions, there is no guarantee that it will be stable with any other Java version.

**Attention:** Oxygen XML Editor does not work with the GNU libgcj Java Virtual Machine.

Oxygen XML Editor uses the following rules to determine which installed version of Java to use:

1. If you used the Linux installer, which installs a version of Java as part of the Oxygen XML Editor installation, the version in the jre subdirectory of the installation directory is used.
2. Otherwise, if the Linux environment variable `JAVA_HOME` is set, Oxygen XML Editor uses the Java version pointed to by this variable.
3. Otherwise the version of Java pointed to by your PATH environment variable is used.
You can also change the version of the Java Virtual Machine that runs Oxygen XML Editor by editing the script file, `oxygen.sh`. Go to the Java command at the end of the script file and specify the full path to the Java executable of the desired JVM version. For example:

```
/usr/bin/jre1.8.0_121/bin/java -Xmx1024m ...
```

**X.org**

The version of Java bundled with Oxygen XML Editor requires **X.org** (Wayland is not supported).

**Linux Installer**

To install Oxygen XML Editor using the Linux installer, follow these steps:

1. Make sure that your system meets the system requirements *(on page 40)*.
2. Download the Linux installer.
3. [Optional] Validate the integrity of the downloaded file by checking it against the MD5 sum published on the download page.
4. Run the installer and follow the instructions in the installation program.

   **Note:** For example, open a shell, `cd` to the installation directory, and at the prompt type `sh ./oxygen-32bit.sh` or `sh ./oxygen-64bit.sh`, depending on which installer you downloaded.

   **Warning:** If you are running the installer as root and your Linux distribution uses Wayland (such as **Ubuntu 17.10** or **Fedora 25**), before running the installer, the local user must first allow the root user to access the X server by running the following command (as the local user):

   ```
xhost +SI:localuser:root
```

5. Start Oxygen XML Editor using one of the following methods:
   - Use the `oxygen` shortcut created by the installer.
   
   **Note:** For **Ubuntu 17.10** (or later), a security dialog box will appear the first time you start the application where you need to select Trust and Launch to continue. This dialog box will not appear on subsequent launches.
   - From a command line, type `sh oxygen.sh`. This file is located in the installation folder.

6. To license your copy of Oxygen XML Editor go to **Help > Register** and enter your **license information** *(on page 50).*
Linux Unattended Installation

You can run the installation in unattended mode by running the installer from the command line with the `-q` parameter. By default, running the installer in unattended mode installs Oxygen XML Editor with the default options and does not overwrite existing files. You can change various options for the unattended installer using the installer command-line parameters.

Linux Installer Command-Line Reference

The Oxygen XML Editor installer for Linux supports a variety of command-line parameters.

Commonly Used Command-Line Parameters

The Oxygen XML Editor installer supports the following commonly used command-line parameters:

- **-q**
  Instructs the installer to run in unattended mode. The installer will not prompt the user for input during the install. Default settings will be used for all options unless a `response.varfile (on page 45)` is specified using the `-varfile` option.

- **-overwrite**
  In unattended mode, the installer does not overwrite files with the same name if a previous version of the Oxygen XML Editor is installed in the same folder. The `-overwrite` parameter added after the `-q` parameter forces the overwriting of these files.

- **-console**
  Displays a console during the installation.

- **-varfile**
  Specifies the location of a `response.varfile (on page 45)`, normally to be used during an unattended installation.

- **-V**
  Used to define a `variable parameter (on page 45)` to be used by an installation.

**EXAMPLE:**

```bash
oxygen.sh -q -overwrite -console -VautoVersionChecking=false
```

Command-Line Parameters for Preconfiguring License Server Details
The Oxygen XML Editor installer also supports the following command-line parameters used for preconfiguring license server details:

- **license.servlet.url**
  Specifies the URL of the HTTP license server.

- **license.servlet.user.name**
  Specifies the user name for the HTTP license server.

- **license.servlet.password**
  Specifies the password for the HTTP license server, in clear form (will be stored encrypted).

- **license.servlet.password.encrypted**
  Specifies the password for the HTTP license server, in encrypted form. Can be obtained from an entry with same name in an existing `license.xml` file (found in: `[user_home_directory]/.com.oxygenxml`).

- **backup.license.servlet.url**
  Specifies the URL of the backup HTTP license server.

- **backup.license.servlet.user.name**
  Specifies the user name for the backup HTTP license server.

- **backup.license.servlet.password**
  Specifies the password for the backup HTTP license server, in clear form (will be stored encrypted).

- **backup.license.servlet.password.encrypted**
  Specifies the password for the HTTP license server, in encrypted form. Can be obtained from an entry with same name in an existing `license.xml` file (found in: `[user_home_directory]/.com.oxygenxml`).

**EXAMPLE:**

```bash
oxxygen.sh "-Vlicense.servlet.url=http://main.licenseserver:8080/oXygenLicenseServlet/license-servlet"
-"Vlicense.servlet.user.name=user" "-Vlicense.servlet.password=mypass"
-"Vbackup.license.servlet.url=http://backup.licenseserver:8080/oXygenLicenseServlet/license-servlet"
-"Vbackup.license.servlet.user.name=user" "-Vbackup.license.servlet.password=mypass"
```
Linux Installer response.varfile

The Oxygen XML Editor installer for Linux also creates a file called response.varfile, which records the choices that the user made when running the installer interactively. The generated response file is found in the \[OXYGEN_INSTALL_DIR]/.install4j folder. You can use the response.varfile to set the options for an unintended install (on page 43). For more information about the response.varfile format, see install4j site.

Variable Parameters (can be used in the response.varfile or from the command line)

The following variable parameters are supported in the response.varfile (or from the command line):

autoVersionChecking

- Used for automatic version checking. Possible values are true (default) or false.

reportProblem

- Used to report a problem encountered while using Oxygen XML Editor. Possible values are true (default) or false.

downloadResources

- Used to download resources (links to video demonstrations, webinars, and upcoming events) from https://www.oxygenxml.com to populate the application welcome screen. Possible values are true (default) or false.

Installing Oxygen XML Editor on Windows Server

System Requirements

Operating systems


CPU

- Minimum - Intel Pentium III™/AMD Athlon™ class processor, 1 GHz
- Recommended - Dual Core class processor

Memory
• Minimum values per user - 512 MB of RAM
• Recommended values per concurrent user - 2 GB of RAM

Storage

• Minimum - 400 MB free disk space
• Recommended - 1 GB free disk space

Java

Java 1.8 (or newer) from Oracle

Oxygen XML Editor only supports official and stable Java Virtual Machines with version 1.8 from Oracle. If you use the native Windows installer, Oxygen XML Editor will be installed with its own copy of Java with the specific update version that has been thoroughly tested.

All Platforms Package

If you use the all platforms package, your system must have a compatible Java 1.8 virtual machine installed. To see the exact Java update version that is supported, go to www.oxygenxml.com, navigate to the Download page for the particular product you are installing, and click on the tab for your particular platform.

Note: Oxygen XML Editor may work with other update versions of Java, but since Oxygen XML Editor has only been thoroughly tested with specific versions, there is no guarantee that it will be stable with any other Java version.

Oxygen XML Editor uses the following rules to determine which installed version of Java to use:

1. If you install using the native Windows installer, which installs a version of Java as part of the Oxygen XML Editor installation, the version in the jre subdirectory of the installation directory is used.
2. Otherwise, if the Windows environment variable JAVA_HOME is set, Oxygen XML Editor uses the Java version pointed to by this variable.
3. Otherwise, the version of Java pointed to by your PATH environment variable is used.

If you run Oxygen XML Editor using the batch file, oxygen.bat, you can edit the batch file to specify a particular version to use.
Windows Installer

To install Oxygen XML Editor using the Windows installer, follow these steps:

1. Make sure that your system meets the system requirements (on page 45).
2. Download the Windows installer.
3. [Optional] Validate the integrity of the downloaded file by checking it against the MD5 sum published on the download page.
4. Run the installer and follow the instructions in the installation program.
5. Start Oxygen XML Editor using one of the following methods:
   • Use one of the shortcuts created by the installer.
   • Run oxygen.bat, which is located in the installation directory.
6. To license your copy of Oxygen XML Editor go to Help > Register and enter your license information (on page 50).

Configuring Windows Terminal Server

1. Install Oxygen XML Editor on the server and make its shortcuts available to all users.
2. Make sure you allocate sufficient memory to Oxygen XML Editor by adding the -Xmx parameter either in the .bat startup script (on page 291), or in the .vmoptions configuration file (on page 292) (if you start it from an executable launcher).

Installing Oxygen XML Editor on a Linux / UNIX Server

System Requirements

Operating system

   Any 64-bit Unix/Linux distribution with an available Java SE Runtime Environment version 1.8 from Oracle

CPU

   • Minimum - Intel Pentium III™/AMD Athlon™ class processor, 1 GHz
   • Recommended - Dual Core class processor

Memory

   • Minimum - 2 GB of RAM
   • Recommended - 4 GB of RAM
Storage

- Minimum - 400 MB free disk space
- Recommended - 1 GB free disk space

Java

Java 1.8 (or newer) from Oracle

Oxygen XML Editor only supports official and stable Java Virtual Machines with version 1.8 from Oracle. If you use the Linux installer, Oxygen XML Editor will be installed with its own copy of Java with the specific update version that has been thoroughly tested.

All Platforms Package

If you use the all platforms package, your system must have a compatible Java 1.8 virtual machine installed. To see the exact Java update version that is supported, go to www.oxygenxml.com, navigate to the Download page for the particular product you are installing, and click on the tab for your particular platform.

Note: Oxygen XML Editor may work with other update versions of Java, but since Oxygen XML Editor has only been thoroughly tested with specific versions, there is no guarantee that it will be stable with any other Java version.

Attention: Oxygen XML Editor does not work with the GNU libgcj Java Virtual Machine.

Oxygen XML Editor uses the following rules to determine which installed version of Java to use:

1. If you used the Linux installer, which installs a version of Java as part of the Oxygen XML Editor installation, the version in the jre subdirectory of the installation directory is used.
2. Otherwise, if the Linux environment variable JAVA_HOME is set, Oxygen XML Editor uses the Java version pointed to by this variable.
3. Otherwise the version of Java pointed to by your PATH environment variable is used.

You can also change the version of the Java Virtual Machine that runs Oxygen XML Editor by editing the script file, oxygen.sh. Go to the Java command at the end of the script file and specify the full path to the Java executable of the desired JVM version. For example:
Linux Installer

To install Oxygen XML Editor using the Linux installer, follow these steps:

1. Make sure that your system meets the system requirements (on page 47).
2. Download the Linux installer.
3. [Optional] Validate the integrity of the downloaded file by checking it against the MD5 sum published on the download page.
4. Run the installer and follow the instructions in the installation program.

Note: For example, open a shell, cd to the installation directory, and at the prompt type sh ./oxygen-32bit.sh or sh ./oxygen-64bit.sh, depending on which installer you downloaded.

5. Start Oxygen XML Editor using one of the following methods:
   - Use the oxygen shortcut created by the installer.
   - From a command line, type sh oxygen.sh. This file is located in the installation folder.
6. To license your copy of Oxygen XML Editor go to Help > Register and enter your license information (on page 50).

Unix/Linux Server Configuration

1. Install Oxygen XML Editor on the server and make sure the oxygen.sh script is executable and the installation directory is in the PATH of the users that need to use the application.
2. Make sure you allocate sufficient memory to Oxygen XML Editor by setting an appropriate value for the -Xmx parameter in the .sh startup script.

Note: The default value of the -Xmx parameter is 1 GB. To avoid performance issues with large documents (on page 2946), you may need to adjust it.

3. Make sure the X server processes located on the workstations allow connections from the server host. For this, use the xhost command.
4. Start telnet (or ssh) on the server host.
5. Start an xterm process with the display parameter set on the current workstation. For example: xterm -display workstationip:0.0.
6. Start Oxygen XML Editor by typing sh oxygen.sh from the command line. This file is located in the installation folder.
Site-Wide Deployment

If you are deploying Oxygen XML Editor for a group, there are various things you can do to customize Oxygen XML Editor for your users and to make the deployment more efficient.

Creating custom default options

You can create a custom set of default options (on page 262) for Oxygen XML Editor. These will become the default options for each of your users, replacing the normal default settings. Users can still set options to suit themselves in their own copies of Oxygen XML Editor, but if they choose to reset their options to defaults, the custom defaults that you set will be used.

Creating default project files

Oxygen XML Editor project files (on page 707) are used to configure a project. You can create and deploy default project files (on page 20) for your projects so that your users will have a preconfigured project file to begin work with.

Shared project files

Rather than each user having their own project file, you can create and deploy shared project files (on page 723) so that all users share the same project configuration and settings and automatically inherit all project changes.

Using the unattended installer

You can speed up the installation process by using the unattended installer for Windows (on page 36) or Linux (on page 43) installs.

Using floating licenses

If you have a number of people using Oxygen XML Editor on a part-time basis or in different time zones, you can use a floating license (on page 53) so that multiple people can share a license.

Licensing

Oxygen XML Editor is not free software. To activate and use Oxygen XML Editor, you need a license.

For demonstration and evaluation purposes, a time limited license is available upon request at https://www.oxygenxml.com/register.html. This license is supplied at no cost for a period of 30 days from the date of issue. During this period, the software is fully functional, enabling you to test all its functionality. To continue using the software after the trial period, you must purchase a permanent license.
Choosing a License Type

You can use one of the following license types with Oxygen XML Editor:

1. A **Named-User License (on page 51)** may be used by a single Named User (on page 3284) on one or more computers. Named-user licenses are not transferable to a new Named User. If you order multiple named-user licenses, you will receive a single license key good for a specified number of named users. It is your responsibility to keep track of the named users that each license is assigned to.

2. A **Floating License (on page 53)** may be used by any user on any machine. However, the total number of copies of Oxygen XML Editor in use at one time must not be more than the number of floating licenses available. A user who runs two different distributions of Oxygen XML Editor (for example, Standalone and Eclipse Plugin) at the same time on the same computer, consumes a single floating license.

3. A **Subscription license (on page 51)** that allows you to use the application for a specific period of time (either 6 months or 1 year). This type of license is user-based and is covered by a Support and Maintenance Pack, which means that during the subscription period you will get free upgrades to all major and minor releases and priority technical support.

4. A special **Academic Group License** (Classroom, Department, or Site license) may be used by students and teachers in academic institutions. These licenses provide a cost effective way of getting access to Oxygen XML Editor for learning purposes.

For definitions and legal details of the license types, consult the End User License Agreement available at [https://www.oxygenxml.com/eula.html](https://www.oxygenxml.com/eula.html).

Obtaining a License Key

You can obtain a license key for Oxygen XML Editor in one of the following ways:

- You can purchase one or more licenses from the Oxygen XML Editor website at [https://www.oxygenxml.com/buy.html](https://www.oxygenxml.com/buy.html) or through one of the authorized resellers. A license key will be sent to you by email.
- If your company or organization has already purchased licenses, contact your license administrator to obtain a license key or configuration details to connect to a license server.
- If you purchased a subscription and you received a registration code, you can use it to obtain a license key from [https://www.oxygenxml.com/registerCode.html](https://www.oxygenxml.com/registerCode.html). A license key will be sent to you by email.
- If you want to evaluate the product, you can obtain a trial license key for 30 days from the Oxygen XML Editor website at [https://www.oxygenxml.com/register.html](https://www.oxygenxml.com/register.html).
Register a Named-User or Subscription License

To register a Named-User License or Subscription License on a machine owned by the Named User (on page 3284), follow these steps:

1. Purchase a license from the Oxygen XML Editor website. You will receive an email that contains your license key.
2. Save a backup copy of your email message that contains the new license key.
3. Start Oxygen XML Editor.
   If this is a new install of Oxygen XML Editor, the registration dialog box is displayed. If the registration dialog box is not displayed, go to Help > Register.

Figure 10. License Registration Dialog Box

4. Select Use a license key as the licensing method.

   Note: If your license key has 20 or more licenses, you must use a license server (on page 56) instead.

5. Paste your license key into the registration dialog box. The license key is composed of nine lines of text between two text markers.
6. Press OK.
Floating Licenses

The floating license type is commonly used by organizations that have a large number of infrequent users who do not need to use Oxygen XML Editor all at the same time. Instead of each user having their own individual license key to use at their discretion, there are a pool of licenses that are used one at a time by various users upon request.

To use floating licenses, a license server is required and the license key needs to be activated. Your system administrator will most likely be responsible for setting up the license server (on page 56). Then you will need to request a floating license from the server (on page 53). This process is designed to help you comply with the Oxygen End User License Agreement (EULA). This means that the license key will be locked to a particular license server deployment, and the same license key cannot be used with any other license server.

For information about releasing and returning a floating license to the pool for other users, see Releasing a Floating License (on page 55).

For information about reserving (or locking) a floating license so that it does not get returned to the pool, see Reserving a Floating License (on page 56).

Requesting a Floating License from an HTTP License Server

How to Request a Floating License

To request a floating license from an HTTP license server, follow this procedure:

1. Contact your server administrator to make sure the license server has already been set up and get network address and login details for the license server.
2. Start Oxygen XML Editor.
3. Go to Help > Register.
   
   **Step Result:** The license registration dialog box is displayed.
4. Choose Use a license server as licensing method.
5. Select HTTP/HTTPS Server as server type.
6. In the URL field, enter the address of the license server. The URL address has the following format: http://hostName:port/oXygenLicenseServlet/license-servlet.
7. Complete the User and Password fields.
8. Click the OK button.
Result: If a floating license is available, it is registered in Oxygen XML Editor. To display the license details, open the About dialog box from the Help menu. If a floating license is not available, you will get a message listing the users currently using floating licenses.

How to Register Floating Licenses for Additional Users

If you are an administrator and you want to register floating licenses for multiple users without having to open Oxygen XML Editor on each machine to manually configure the registration details one by one, you can use the following procedure:

1. Reset the registration details in Oxygen XML Editor:
   a. Select Register from the Help menu.
   b. Click OK without entering any information in this dialog box.
   c. Click Reset and restart the application.
2. Register the license using one of the floating license registration procedures (on page 53).
3. Copy the license.xml file from the preferences directory (on page 80) and place it in the installation folder on each machine to be registered.

Related Information:

• Setting up an HTTP License Server (Floating or Named-User Licenses) (on page 57)

Requesting a Floating License from a TCP License Server (Deprecated)

Use this procedure if your company uses an Oxygen XML Editor TCP license server and the license server has already been set up by your server administrator:

1. Contact your server administrator to get network address and login details for the license server.
2. Start Oxygen XML Editor.
3. Go to Help > Register .
   The license registration dialog box is displayed.
4. Choose Use a license server as licensing method.
5. Select TCP server as server type.
6. In the Host field, enter the host name or IP address of the license server.
7. In the Port field, enter the port number used to communicate with the license server.
8. Click the **OK** button.

If a floating license is available, it is registered in Oxygen XML Editor. To display the license details, open the **About** dialog box from the **Help** menu. If a floating license is not available, you will get a message listing the users currently using floating licenses.

**Related Information:**

- Setting up TCP Floating License Server (Deprecated) in 32-bit Windows *(on page 67)*
- Setting up TCP Floating License Server (Deprecated) All-Platforms *(on page 69)*

### Releasing a Floating License

The floating license you are using will be released and returned to the pool if any of the following occur:

- The connection with the license server is lost.
- You exit the application running on your machine, and no other copies of Oxygen XML Editor running on your machine are using your floating license.
- You register a **Named User** *(on page 3284)* license with your copy of Oxygen XML Editor, and no other copies of Oxygen XML Editor running on your machine are using your floating license.
- Your computer idles for more than 2 hours.
- Your system administrator manually revokes the license *(on page 62)*.

**Tip:** To prevent your floating license from being released, you can use the **Lock floating license** action available in the **Help** menu. You can use the same action to unlock the license. Note that your system administrator also has the ability to **unlock your license** *(on page 62)*.

To release a floating license on demand, follow these steps:

1. Go to **Help > Register**.
   
The license registration dialog box is displayed.

2. The license key field should be empty (this is normal). If it is not empty, delete any text in the field.

3. Make sure the **Use a license key** option is selected.

4. Click **OK**.
   
   A dialog box is displayed asking if you want to reset your license key.

5. Select between:
• **Use the last one** - Falls back to your previous license key. Use this option if you want to release a floating license and revert to a Named User (on page 3284) license.

• **Reset** - Removes your license key from your user account on the current computer.

The Reset button erases all the licensing information. To complete the reset operation, close and restart Oxygen XML Editor.

Reserving a Floating License

There are instances where you might want to reserve or lock a floating license. For example, you could lock a floating license if you want to use your floating license offline while traveling.

To reserve/lock a floating license, follow these steps:

1. Select **Lock floating license** from the Help menu.

2. Click **OK**.

   Your floating license is now locked. You can use the same action to unlock the license or you can contact your system administrator to unlock it.

Transferring a License Key

If you want to transfer your Oxygen XML Editor license key to another computer (for example, if you are disposing of your old computer or transferring it to another person), you must first unregister your license. You can then register your license (on page 50) on the new computer in the normal way.

To unregister a license, prior to transferring it, follow this procedure:

1. Go to Help > Register.

   The license registration dialog box is displayed.

2. The license key field should be empty (this is normal). If it is not empty, delete any text in the field.

3. Make sure the **Use a license key** option is selected.

4. Click **OK**.

   A dialog box is displayed asking if you want to reset your license key.

5. Select between:

   • **Use the last one** - Falls back to your previous license key, if applicable.

   • **Reset** - Removes your license key from your user account on the current computer.

   The Reset button erases all the licensing information. To complete the reset operation, close and restart Oxygen XML Editor.
License Servers

Installing a License Server to Manage Licenses

If you are using floating licenses or a large number of user-based licenses (20 or more) for Oxygen XML Editor, you must set up an Oxygen XML Editor license server. A license server can be installed as one of the following:

- An HTTP server (*on page 57*). This is the recommended method.
- A TCP server (*on page 67*) (deprecated).

**Note:** Oxygen XML Editor version 17 or higher requires a license server version 17 or higher. License servers version 20.1 or higher can be used with any version of a floating or named-user license key.

Activating License Keys

To help you comply with the Oxygen XML Editor EULA (terms of licensing), all floating or named-user licenses require activation. This means that the license key will be locked to a particular license server deployment and no multiple uses of the same license key are possible.

During the activation process, a code that uniquely identifies your license server deployment is sent to the Oxygen XML Editor servers, which in turn will sign the license key.

Split or Combine License Keys to Work with Your License Servers

A license server can only manage one license key. If you have multiple license keys for the same Oxygen XML Editor version and you want to have all of them managed by the same server, or if you have a multiple-user floating license and you want to split it between two or more license servers, contact the Oxygen support team and ask for a new license key.

Setting up an HTTP License Server (Floating or Named-User Licenses)

The HTTP License Server is available in several distributions, tailored for covering a variety of deployment configurations:

- **Windows installer (on page 58)** - Easy-to-use Windows installation wizard. Requires elevated permissions to run it.
- **All-platform distribution (on page 58)** - Script-based deployment that does not require elevated permissions to run it. Provides scripts for Windows, Mac, and Linux.
• **Web Archive (WAR) distribution (on page 59)** - Provides more flexibility in your deployment configuration, but it requires an existing HTTP server (such as Apache Tomcat).

**Installation Steps for the HTTP License Server Installer Distribution for Windows**

1. Download the HTTP license server installer from the [HTTP License Server website](http://www.httplicenser.com).
2. Run the installer and follow the on-screen instructions.
3. You need to configure two sets of credentials:
   a. **Administrator credentials** - Used for accessing the Oxygen XML Editor license server administrative interface.
   b. **Standard user credentials** - Used by an Oxygen XML Editor application to connect to the license server.
4. You can choose to change the default 8080 port the server will run on. If you need to change the port after the installation, you can do it by editing the following `vmoptions` file: `oXygen HTTP License Server\Windows Service\oXygenHTTPLicenseServer.vmoptions`.
5. Optionally, you can choose to install the server as a Windows service. In this case, you can choose the name of the Windows service.

**Tip:** In case you run into issues, the license server log file is located in: `[Installation_Directory]\temp\logs\oXygenLicenseServlet.log`.

**Installation Steps for the HTTP License Server All-Platform Distribution**

1. Download the HTTP license server all-platform archive from the [HTTP License Server website](http://www.httplicenser.com).
2. Unpack the archive.
3. Run the license server scripts suitable for your operating system (`licenseServer.bat` for Windows or `licenseServer.sh` for Linux and Mac).

**Note:** To specify a different port (other than the default 8080), you can pass the new port number as an argument to the scripts (for example, `licenseServer.bat 8082`). You can also change the port by editing the following `vmoptions` file: `oXygen HTTP License Server\Windows Service\oXygenHTTPLicenseServer.vmoptions`.

4. On the first run, you will be prompted to set two sets of credentials:
   a. **Administrator credentials** - Used for accessing the Oxygen XML Editor license server administrative interface.
   b. **Standard user credentials** - Used by an Oxygen XML Editor application to connect to the license server.

**Tip:** If you want to manually install, start, stop, or uninstall the server as a Windows service, run the following scripts from a command line as an Administrator:
• `installWindowsService.bat [serviceName]` - Installs the server as a Windows service with the name `serviceName`. The parameters for the license key folder and the server port can be set in the `oxygenLicenseServer.vmoptions` file.
• `startWindowsService.bat [serviceName]` - Starts the Windows service.
• `stopWindowsService.bat [serviceName]` - Stops the Windows service.
• `uninstallWindowsService.bat [serviceName]` - Uninstalls the Windows service.

If you do not provide the `serviceName` argument, the default name `oxygenLicenseServer` is used.

If the license server is installed as a Windows service, the output and error messages are automatically redirected to the following log files that are created in the install folder:
• `outLicenseServer.log` - Standard output stream of the server.
• `errLicenseServer.log` - Standard error stream of the server.

### Installation Steps for the HTTP License Server WAR Distribution

1. Make sure that you have Java Servlet Container installed on the machine you have selected to be the license server. Apache Tomcat 5.5 or higher is recommended (available at [http://tomcat.apache.org](http://tomcat.apache.org)).

   **Important:** By default, the license server stores the statistics database and other data in the Java Servlet Container’s temporary directory. If you are not using Apache Tomcat, this directory may be deleted when the server is stopped or restarted. However, you can set the `oxygen.license.server.work.dir` system property to specify a different path for the directory where the database is stored.

2. Download the HTTP license server **Web Archive (.war)** from the HTTP License Server website.

3. Configure three user roles in your installation of the Java Servlet Container (such as Apache Tomcat):
   a. One user with the role `user`, used by an Oxygen XML Editor application to connect to the license server. In the subsequent example, this user name is `John`.
   b. Another user with the role `admin`, used for accessing the HTTP License Server administrative interface and the management interface. In the subsequent example, this user name is `Mary`.
   c. Another user with the role `manager`, used for accessing the HTTP License Server main page and the statistics pages. In the subsequent example, this user name is `Henry`.

For example, in Apache Tomcat, a typical way to achieve this is to edit the `tomcat-users.xml` file from your Tomcat installation (if using a Tomcat `zip/tar.gz` distribution, by default this configuration file is found in the `/TomcatInstallFolder/conf/` directory). After adding the three users, the configuration file might look like this:

```xml
<tomcat-users xmlns="http://tomcat.apache.org/xml"
```
4. Deploy the WAR file.

For example, in Apache Tomcat, go to the Web Application Manager page and log in with the user you configured with the admin role (Mary in the example above). In the **WAR file to deploy** section, choose the WAR file and click the **Deploy** button. The `oXygenLicenseServlet` application is now up and running, but the license key is not yet registered.

5. Go to the HTTP License Server administration page. By default, the address of this page is `http://<server-address>/oXygenLicenseServlet`. In Apache Tomcat, you can also open this page by clicking the `oXygenLicenseServlet` link in the manager page.

You will need to authenticate with the user configured with the admin role (Mary in the example above).

6. **Activate the license key.** This process involves binding your license key to your license server deployment. The browser used in the activation process needs to have Internet access.

   ✋ **Note:** If you cannot access the internet during the deployment, you can [manually activate the license key](on page 61).

Once the process is completed you cannot activate the license on another license server. Follow these steps to activate the license:

   a. Paste your license key into the form and press **Register/Activate**.

      **Result:** You will be redirected to an online form hosted on the Oxygen XML Editor website. This form is pre-filled with an activation code that uniquely identifies your license server deployment, and your license key.

   b. Press **Register/Activate**.

      If the activation process is successfully completed, your license server is running. Follow the on-screen instructions to configure the Oxygen XML Editor client applications.

7. The application's log file location is specified by the `log4j.appender.R2.File` property from the WEB-INF/lib/log4j.properties configuration file.
For example, in Apache Tomcat, the configuration file is located at `TomcatInstallDir/webapps/oXygenLicenseServlet/WEB-INF/lib/log4j.properties` and the default log file location is `TomcatInstallDir/logs/oxygenLicenseServlet.log`.

**Manual License Activation Procedure (For Users Whose License Server is Offline)**

If your license server is not connected to the internet, and hence the license cannot be activated automatically during the installation, you can manually activate the license by following these steps:

1. Access the HTTP license server management page in a web browser.
2. Copy the license server machine signature code.
4. Enter or paste the license server machine signature code and the license key, then click **Activate**.
   
   **Step Result:** The activated license key is displayed on-screen.
5. Copy the activated license key and paste it in the license registration page of the HTTP server.

**Preconfiguring License Server Details When Installing Oxygen XML Editor**

It is possible to install Oxygen XML Editor with the license server details preconfigured. For more information see:

- **Windows:** [Windows Installation: Command-Line Parameters for Preconfiguring License Server Details](on page 37)
- **Linux:** [Linux Installation: Command-Line Parameters for Preconfiguring License Server Details](on page 43)

**Backup License Server Information**

If you want to use a backup license server, the setup instructions are the same as the procedures for a main license server, but it will require its own separate license key. You do not need to purchase the separate license if it is to be used for a backup server, but you will need to request a separate license key by contacting the Oxygen support team.

**Related Information:**

- [Troubleshooting: Machine Signature Mismatch Errors](on page 71)
License Server Management and Statistics Pages

A system administrator can manage and access information about the license server at: http://hostName:port/oXygenLicenseServlet.

This page provides access to several statistics reports and management tasks. It also shows the current status of the server and provides additional instructions for using the license server with Oxygen XML Editor.

This page includes the following links for accessing statistics or managing tasks:

- **Current Allocated Licenses** - Opens the Allocated License Report page (on page 62).
- **Usage Statistics** - Available only for floating licenses. Opens the License Usage Statistics page (on page 63).
- **View License Key** - Use this link to view details about the license key.
- **Replace/Remove License Key** - Use this link if you need to replace or remove the current license key (on page 65).
- **Configuration** - Opens a page where you can configure notification settings and specify whether or not users are allowed to lock licenses. This page can be used for setting up the mail server used for sending emails whenever license requests from users are rejected.
- **Users management** - Available only for named-user licenses. Opens a page where you can manage the list of users who are entitled to use the license key.

Allocated License Report Page

This report page provides a system administrator the ability to revoke or unlock current running instances of licenses and includes the following information:

- **License load** - A graphical indicator that shows how many licenses are available.
- **License server status** - General information about the license server status, such as start time, license counts, rejected and acknowledged requests, average usage time, license refresh and timeout intervals, location of the license key, and the server version.
- **Current running instances** - Lists all currently acknowledged users, including user name, date and time when the license was granted, IP and MAC address of the computer where Oxygen XML Editor runs, and lock status.
  - **Revoke** - A system administrator can click on the  
    Revoke icon next to a user name to release that particular license and return it to the pool.
  - **Unlock** - If a user has locked their license, the system administrator can also unlock it from this page.

Note: This report is also available in XML format at: http://hostName:port/oXygenLicenseServlet/license-servlet/report-xml.
License Usage Statistics Page (Floating License Only)

This report page provides some usage statistics for the floating licenses. It is helpful for determining the number of licenses that are needed and monitoring times when licenses are consumed. It includes the following information:

- **Maximum number of concurrent licenses** - Shows the maximum number of floating licenses that can be consumed at any given time.

- **Concurrent license consumption per day** - A chart that shows the peak number of licenses that were consumed and the total number of users that were rejected, on a daily basis. This chart can be used to detect the amount of concurrent licenses that are needed to avoid having rejected users.

  **Tip:** You can click on any bar to see the license consumption per hour for that particular day.

  Figure 11. Concurrent License Consumption per Day Chart

- **Concurrent license consumption per hour** - A chart that shows the peak number of licenses that were consumed per hour throughout that particular month. This is useful for identifying the time of day when the most licenses were consumed.

  Figure 12. Concurrent License Consumption per Hour Chart
Users Management Page (Named-User License Only)

When using a named-user license key, the license server allocates available licenses on a *first come first served* basis until the maximum number is reached. Further users attempting to get a license key will be rejected.

This page provides access to the list of registered users and allows the server admin to:

- Revoke a user's right to use a license.
- Reactivate a previously deactivated user.

Figure 13. Users List Management Page
Replacing or Removing a License Key in an HTTP License Server

The following procedure assumes that your Oxygen XML Editor HTTP license server contains a previously activated license key (on page 60) and provides instructions for replacing it with another one or removing it completely.

This is useful if, for instance, you want to upgrade your existing license to the latest version or if you receive a new license key that accommodates a different number of users (on page 57).

Replacing a License Key

To replace a license key that is activated on your HTTP license server with a new one, follow these steps:

1. Access the license server by following the link provided by the Tomcat Web Application Manager page using your admin credentials.
2. Click the Replace/Remove license key link. This will open a page that contains details about the license currently in use.
3. Click the Replace button to begin the replacement procedure.
4. Paste the new license key in the displayed form, then click Register/Activate. The browser used in the process needs to have Internet access.
You will be redirected to an online form hosted on the Oxygen XML Editor website. This form is pre-filled with an activation code that uniquely identifies your license server deployment and your license key.

**Note:** If you cannot access the online activation form, you can manually activate the license key (on page 61).

5. Press **Register/Activate**.

If the activation process is completed successfully, your license server is now running using the new license key. You can click **View license key** to inspect the key currently used by the license server.

### Removing a License Key

To remove a license key that is activated on your HTTP license server, follow these steps:

1. Access the license server by following the link provided by the Tomcat Web Application Manager page using your admin credentials.
2. Click the **Replace/Remove license key** link. This will open a page that contains details about the license currently in use.
3. Click the **Remove** button to begin the license deletion procedure.
4. Click the **Remove** button in the confirmation page.

**Important:** The removal process is irreversible. Once the process is complete, you cannot restore the license key.

### Upgrading Your HTTP License Server

The goal of the following procedure is to help you minimize the downtime when you upgrade the HTTP License Server to its latest version.

Follow this procedure:

1. Access the license server by following the link provided by the Tomcat Web Application Manager page. If prompted for authentication, use the admin credentials.
2. Click the **View license key** link and copy the displayed license key to a file for later use.
3. Go to the Tomcat Web Application Manager page, log in with the user you configured with the admin role, and Undeploy the license server.
4. Download the Web Archive (WAR) distribution of HTTP license server.
5. Deploy the downloaded license server.
6. Access the license server by following the link provided by the Tomcat Web Application Manager page. If prompted for authentication, use the credentials configured for the admin user.
7. Paste the license key into the form and register it.

Setting up TCP Floating License Server (Deprecated) in 32-bit Windows

This section contains information about setting up the TCP floating license server as a Windows process.

Figure 14. TCP Floating License Server (Process in Windows)

Installation Steps

1. Download the license server installation kit for Windows from the Oxygen XML Editor website.

2. Run the downloaded installer and follow the on-screen instructions.

   By default, the installer installs the license server as a Windows service. Optionally, you have the ability to start the Windows service automatically at Windows startup or create shortcuts on the Start menu for starting and stopping the Windows service manually.

   Tip: If you want to manually install, start, stop, or uninstall the server as a Windows service, run the following scripts from a command line as an Administrator:

   • `installWindowsService.bat [serviceName]` - Installs the server as a Windows service with the name `serviceName`. The parameters for the license key folder and the server port can be set in the `oXygenLicenseServer.vmoptions` file.
   • `startWindowsService.bat [serviceName]` - Starts the Windows service.
   • `stopWindowsService.bat [serviceName]` - Stops the Windows service.
   • `uninstallWindowsService.bat [serviceName]` - Uninstalls the Windows service.

   If you do not provide the `serviceName` argument, the default name `oXygenLicenseServer` is used.

   If the license server is installed as a Windows service, the output and error messages are automatically redirected to the following log files that are created in the install folder:
3. Manually add the oXygenLicenseServer.exe file in the Windows Firewall list of exceptions. Go to Control Panel > System and Security > Windows Firewall > Allow a program or feature through Windows Firewall > Allow another program and browse for oXygenLicenseServer.exe from the Oxygen XML Editor License Server installation folder.

4. Floating licenses require activation prior to use. More details are available either on-screen (if the license server is started in a command-line interface) or in the outLicenseServer.log log file.

Note: A license server can only manage one license key. If you have multiple license keys for the same Oxygen XML Editor version and you want to have all of them managed by the same server, or if you have a multiple-user floating license and you want to split it between two or more license servers, contact the Oxygen support team and ask for a new license key.

Replacing Floating License Key in TCP Floating License Server (Deprecated)

The following procedure assumes that your Oxygen XML Editor TCP floating license server contains a previously activated license key (on page 60) and provides instructions for replacing the activated license key with another one. The goal of the procedure is to minimize the license server downtime during the activation step of the new license key.

This is useful if, for instance, you want to upgrade your existing license to the latest version or if you receive a new license key that accommodates a different number of users (on page 57).

To replace a floating license key that is activated on your floating license server with a new one, follow these steps:

1. Stop the service that runs the floating license server.
2. Locate the folder that holds the previous activated license key (by default, it is named license and it is located in the installation directory of the license server).
3. Remove the license.txt file and try to restart the server. Since the file that stores the license key is missing, the server will fail to start (on page 72).
4. Find the license activation procedure in the on-screen instructions (if the license server is started in a command-line interface) or in the outLicenseServer.log log file.
5. After you copy the activated license key in the license.txt file, restart the license server.

Upgrading Your TCP Floating License Server (Deprecated)

The goal of the following procedure is to help you minimize the downtime generated when you upgrade the Oxygen XML Editor floating license server to its newest version.
Follow this procedure:

1. Go to the Oxygen XML Editor website and download the latest floating license server.
2. Run the installation kit.
3. Leave the default **Update the existing installation** option selected. This will ensure that some options set in the previous version (namely the installation folder, port number, and the floating license key in use) of the license server will be preserved.
4. Follow the on-screen instructions to complete the installation process.

**Setting up TCP Floating License Server (Deprecated) All-Platforms**

This installation method can be used for running the TCP license server on any platform where a Java virtual machine can run (OS X, Linux/Unix, Windows).

Figure 15. TCP Floating License Server (All-Platforms Distribution)

**Installation Steps**

1. Ensure that a Java runtime version 6 or later is installed on the server machine.
2. Download the license server installation kit for your platform from the Oxygen XML Editor website.
3. Unzip the installation kit into a new folder.
4. Start the server using the startup script from a command-line console. The startup script is called `licenseServer.sh` for OS X and Unix/Linux or `licenseServer.bat` for Windows. The following parameters are accepted:
   - `licenseDir` - The path of the directory where the license files will be placed. The default value is `license`.
   - `port` - The TCP port number used to communicate with Oxygen XML Editor instances. The default value is **12346**.
**Example:** The following is an example of the command line for starting the license server on Unix/Linux and OS X:

```bash
sh licenseServer.sh myLicenseDir 54321
```

5. Floating licenses require activation prior to use. Follow the on-screen instruction to complete the license activation process.

Replacing Floating License Key in TCP Floating License Server (Deprecated)

The following procedure assumes that your Oxygen XML Editor TCP floating license server contains a previously activated license key (on page 60) and provides instructions for replacing the activated license key with another one. The goal of the procedure is to minimize the HTTP license server downtime during the activation step of the new license key.

This is useful if, for instance, you want to upgrade your existing license to the latest version or if you receive a new license key that accommodates a different number of users (on page 57).

To replace a floating license key that is activated on your floating license server with a new one, follow these steps:

1. Stop the process that runs the floating license server.
2. Locate the folder that holds the previous activated license key (by default, it is named `license` and it is located in the installation directory of the license server).
3. Remove the `license.txt` file and try to restart the server. Since the file that stores the license key is missing, the server will fail to start.
4. Find the license activation procedure in the on-screen instructions.
5. After you copy the activated license key in the `license.txt` file, restart the license server.

Upgrading Your TCP Floating License Server (Deprecated)

The goal of the following procedure is to help you minimize the downtime generated when you upgrade the Oxygen XML Editor TCP floating license server to its newest version.

Follow this procedure:

1. Stop the current license server process.
2. Locate and open the floating server startup script. It should look like this:

```bash
sh licenseServer.sh pathToLicenseDir 54321
```
3. Make a note of the path to the license directory (in the example above, it is `pathToLicenseDir`) and the port number (in the example above, it is 54321).
4. Go to the license directory and copy the license key file (license.txt) for later use.
5. Go to the Oxygen XML Editor website and download the all-platforms floating license server installation kit.
6. Unzip the archive and overwrite the content of your current floating license server installation.
7. Copy the license key file (license.txt) saved in step 4 to license directory of the floating license server installation.
8. Edit the floating server startup script and configure with the info you made note of in step 3.
9. Start the floating license server process.

Common Problems: License Server Errors

This section includes some common problems that may appear when setting up a floating license server.

Machine Signature Mismatch Error

Problem

I receive an error indicating that the current license was already activated on a License Server or that the License Server's Machine Signature does not match.

During the license activation process, the license key becomes bound to a particular license server deployment. This means that a code that uniquely identifies your license server deployment (called Machine Signature) is sent to the Oxygen XML Editor servers, which in turn will sign the license key. The Machine Signature is computed from the list of network interfaces of the machine where you deployed the license.

When starting the license server, if you receive an error stating that your server's Machine Signature does not match, there are several possible causes:

Possible Cause 1

The license key was moved to a new machine that hosts your license server.

Solution

Revert to your previous configuration.
Possible Cause 2

A new network interface was changed, added, or activated in the machine that hosts your license server.

**Note:** A specific example of when this could happen is if the Bluetooth or the WiFi module is activated/deactivated.

**Solution**

If reverting is not possible, contact the Oxygen support team.

Possible Cause 3

The license server was restarted from a different location as the previous restart. For example, some server configurations will have the Apache Tomcat server installed in a versioned folder (/usr/local/apache-tomcat-V.V.V) with a symbolic link to the typical folder (/usr/local/tomcat). The server can be restarted from either location, but it is recommended to always restart from the typical folder (/usr/local/tomcat) and always restart from the same location.

**Solution**

The server simply needs to always be restarted from the same location.

Windows Service Reports Incorrect Function Error When Starting (TCP Server)

**Problem**

My TCP floating license server reports an "Incorrect Function" error message when starting the Windows service.

**Cause**

This usually appears because the Windows service launcher cannot locate a Java virtual machine on your system.

**Solution**

Make sure that you have installed a 32-bit Java SE from Oracle (or Sun) on the system: http://www.oracle.com/technetwork/java/javase/downloads/index.html.
Windows Service Reports Process Terminated Unexpectedly Error (TCP Server)

**Problem**

My TCP floating license server reports a "Process Terminated Unexpectedly" error message for the Windows service.

**Cause**

This error message appears if the Windows service launcher quits immediately after being started. This problem usually happens because the license key has not been correctly deployed (license.txt file in the license folder).

**Solution**

Re-deploy your license key. For more information, see the Setting up a Floating License Server section (on page 67).

**Upgrading**

From time to time, upgrades and patch versions of Oxygen XML Editor are released to provide enhancements that fix problems and add new features.

By default, Oxygen XML Editor automatically checks for new versions at start up. If a newer version is detected, a dialog box will automatically be displayed that provides information about the type of upgrade or update that is available. If the newer version includes a critical bug fix, this dialog box will continue to be displayed every time Oxygen XML Editor is launched. To disable this check, open the Preferences dialog box (Options > Preferences) (on page 79), go to Global, and deselect Automatic Version Checking.

To check for new versions manually, go to Help > Check for New Versions. This opens a dialog box that displays information about whether or not a newer version is available.

**Upgrading Oxygen XML Editor on Windows/Linux**

**What is Preserved During an Upgrade?**

When you install a new version of Oxygen XML Editor, some data is preserved and some is overwritten. If there is a previous version of Oxygen XML Editor already installed on your computer, it can coexist with the new one, which means you do not have to uninstall it.
If you install over a previously installed version:

- All the files from its install directory will be removed, including any modification in framework (on page 3282) files, XSLT stylesheets, XML Catalogs (on page 3289), and templates.
- All global user preferences are preserved in the new version.
- All project preferences will be preserved in their project files.
- Any custom frameworks (on page 3282) that were stored outside the installation directory (as configured in Document type associations > Locations (on page 94)) will be preserved and will be found by the new installation.

If you install in a new directory:

- All the files from the old install directory will be preserved, including any modification in framework (on page 3282) files, XSLT stylesheets, XML Catalogs (on page 3289), and templates. However, these modifications will not be automatically imported into the new installation.
- All global user preferences are preserved in the new version.
- All project preferences will be preserved in their project files.
- Any custom frameworks (on page 3282) that were stored outside the installation directory (as configured in Document type associations > Locations (on page 94)) will be preserved and will be found by the new installation.

How to Upgrade Oxygen XML Editor on Windows or Linux

1. Upgrading to a new version might require a new license key. To check if your license key is compatible with the new version, select Help > Check for New Version. Note that the application needs an Internet connection to check the license compatibility.
2. Download and install the new version according to the instructions for your platform and the type of installer you selected.
3. If you installed from an archive (as opposed to an executable installer) you may have to update any shortcuts you have created or modify the system PATH to point to the new installation folder.
4. Restart Oxygen XML Editor.
5. If you require a new license for your upgrade, install it now according to the procedure for your platform and the type of installer you selected.
Upgrading Oxygen XML Editor on OS X

What is Preserved During an Upgrade?

When you install a new version of Oxygen XML Editor, first you need to remove or rename the old installation directory. By renaming the directory, it can coexist with the new installation and the following data will be preserved:

- All the files from the old install directory will be preserved, including any modification in framework (on page 3282) files, XSLT stylesheets, XML Catalogs (on page 3289), and templates. However, these modifications will not be automatically imported into the new installation.
- All global user preferences are preserved in the new version.
- All project preferences will be preserved in their project files.
- Any custom frameworks (on page 3282) that were stored outside the installation directory (as configured in Document type associations > Locations (on page 94)) will be preserved and will be found by the new installation.

How to Upgrade Oxygen XML Editor on OS X

1. Uninstall the current version of Oxygen XML Editor (on page 77) or rename the installation directory (for example, Oxygen XML Editor.old).
2. Upgrading to a new version might require a new license key. To check if your license key is compatible with the new version, select Help > Check for New Version. Note that the application needs an Internet connection to check the license compatibility.
3. Download and install the new version in an empty folder according to the instructions for your platform and the type of installer you selected.
4. If you installed from an archive (as opposed to an executable installer) you may have to update any shortcuts you have created or modify the system PATH to point to the new installation folder.
5. Restart Oxygen XML Editor.
6. If you require a new license for your upgrade, install it now according to the procedure for your platform and the type of installer you selected.

Installing and Updating Add-ons

Oxygen XML Editor provides an add-on (on page 3285) mechanism that can automatically discover and install frameworks (on page 2372) and plugins (on page 2612) from a remote location.

Note: Frameworks that you install through the add-ons system are read-only.
Installing Add-ons

To install an add-on that is hosted on a remote update site, follow these steps:

1. Go to Help > Install new add-ons.
2. In the displayed dialog box, enter or paste the update site that hosts the add-on in the Show add-ons from field (or select it from the drop-down menu, if applicable). The default add-ons are hosted on https://www.oxygenxml.com/InstData/Addons/default/updateSite.xml. If you want to see a list of all the default and sample add-ons that are available on the Oxygen remote update sites, choose ALL AVAILABLE SITES from the drop-down menu. The add-ons list contains the name, status, update version, Oxygen XML Editor version, and the type of the add-on (either framework, or plugin). A short description of each add-on is presented under the add-ons list.

   **Note:** To see all the versions of the add-ons, deselect Show only compatible add-ons and Show only the latest version of the add-ons. Incompatible add-ons are shown only to acknowledge their presence on the remote update site, but you cannot install an incompatible add-on.
3. Choose the add-ons you want to install, press the Next button, then follow the on-screen instructions.

   **Note:** Accepting the license agreement of the add-on is a mandatory step in the installation process.

   **Note:** All add-ons are installed in the extensions directory inside the Oxygen XML Editor preferences directory (on page 80).

Managing installed add-ons

To manage the installed add-ons, follow these steps:

1. Go to Help > Manage add-ons
2. The displayed dialog box presents a list of your installed add-ons along with various information (such as the installed version, the compatible Oxygen version, and more). The Status column will indicate if an update is available for a particular add-on. Also, you can click on the row for any particular add-on that has an update available to see details for the update (displayed in the preview pane below the list of add-ons).
3. To update an add-on, select the checkbox for the specific add-on, then press Update to update it (or Uninstall to remove it). If there is a newer version of the add-on available, Oxygen XML Editor will download the package and install it. Follow the on-screen instructions to complete the installation process.
Note: Accepting the license agreement of the add-on is a mandatory step in the installation process.

Checking for add-on updates

To check if there are available updates for the installed add-ons, go to Help > Check for add-ons updates. This action displays updates that are compatible with the current Oxygen XML Editor version.

Related Information:

- Packing and Deploying Plugins as Add-ons (on page 2612)

Uninstalling

How to Uninstall Oxygen XML Editor

⚠️ CAUTION: The following procedure will remove Oxygen XML Editor from your system. All data stored in the installation directory will be removed, including any customizations or any other data you have stored within that directory. Make a backup of any data you want to keep before proceeding.

1. Back up any data you want to keep from the Oxygen XML Editor installation folder.
2. Remove the application according to your operating system:
   - Windows or Linux - Use the appropriate uninstaller shortcut provided with your OS.
   - OS X - Manually delete the installation folder and all its contents.
3. If you want to remove the user preferences:
   - Windows - Remove the directory: %APPDATA%\Roaming\com.oxygenxml (usually %APPDATA% has the value: [user-home-dir]\Application Data). Note that this directory is hidden.
   - OS X - Remove the directory: Library/Preferences/com.oxygenxml of the user home folder.
   - On Linux, remove the directory: .com.oxygenxml from the user home directory.

Unattended Uninstall

The unattended uninstall procedure is available only on Windows and Linux.
Run the uninstaller executable from command line with the -q parameter.

- **Windows** - The uninstaller executable is called `uninstall.exe` and is located in the *Oxygen* installation directory.
- **Linux** - The uninstaller executable is called `uninstall` and is located in the *Oxygen* installation directory.
4.

Configuring Oxygen XML Editor

This chapter presents all the user preferences and options that allow you to configure various features and aspects of the application itself. It also includes information about storing and sharing options, importing and exporting options or scenarios, customizing system properties, setting startup parameters, and the editor variables (on page 276) that are available for customizing user-defined commands.

Preferences

You can configure Oxygen XML Editor options using the Preferences dialog box.

To open the preferences dialog box, go to Options > Preferences.

You can select the preference page you are interested in from the tree on the left of the Preferences dialog box. You can filter the tree by using the filter text box and the following buttons are available to the right of the text box:

- **Expand All** - Expands the structure of the tree to show all preference pages.
- **Collapse All** - Collapses the structure of the tree to show only the 1st level preference pages.
- **Project-Level Options Only** - If toggled on, it filters the tree to only show the preference pages that are saved at project level (on page 266).

Figure 16. Preferences Dialog Box
Press `?` or `F1` for help on any preferences page.

Some preference pages include an option to control how the options are stored, either as Global Options (on page 265) or Project Options (on page 266).

Figure 17. Controlling the Storage of the Preferences

You can restore options to their default values by pressing the Restore Defaults button, available in each preferences page.

Preferences Directory Location

A variety of resources (such as global options, license information, and history files) are stored in a preferences directory (`com.oxygenxml`) that is in the following locations:
Global Preferences

The global options cover a number of aspects of the overall operation of Oxygen XML Editor. To configure the Global options, open the Preferences dialog box (Options > Preferences) (on page 79) and go to Global.

The following options are available in the Global preferences page:

**Automatic Version Checking**

If this option is selected, Oxygen XML Editor will check for a new version on startup.

**Check for notifications**

If selected (default value), the application will check for various types of messages from the Oxygen XML Editor website and they will be displayed in the status bar. The types of messages include the addition of new videos on the website, the announcement of upcoming webinars and conferences where the Oxygen XML Editor team will participate, and more.

**Language**

This option specifies the language used in the user interface. You can choose between English, French, German, Dutch, or Japanese. You must restart Oxygen XML Editor for the change to take effect.

**Other language**

This option sets the language used in the user interface using an interface localization file. For details about creating this file, see Localizing the User Interface (on page 289). You can use this option to set the language of the user interface to a language that is not shipped with Oxygen XML Editor.

**Note:** If some interface labels are not rendered correctly after restarting the application, (for example, Chinese or Korean characters are not displayed correctly), make sure that your operating system has the appropriate language pack installed (for example, the East-Asian language pack).

**Line separator**
This option specifies the type of line separator to be used when saving files. Use **System Default** to select the normal line separator for your OS. The other two possible selections are **Unix-like** and **Windows-like**.

**Notes:**

- This option is ignored if the Detect the line separator on file open option (on page 82) is selected AND a line separator is automatically detected.
- When changing the selection in this option, the change does not affect an opened file until you make a modification to the file and save it. At that point, all line separators in the file will change to the type of line separator you chose in this option.

**Detect the line separator on file open**

When this option is selected, the editor detects the line separator when a file is loaded and it uses it when the file is saved. If this option is not selected, you can use the Line separator option (on page 81) to choose the type of line separator to be used when saving files.

**Tip:** To see the line separator type for the current file, you can use the Properties view (Window > Show View > Properties).

**Default Internet browser**

This option sets the Web browser that Oxygen XML Editor will use to do the following:

- Open (X)HTML or PDF transformation results.
- Open a web page.

If you leave this setting blank, the system default browser will be used.

**Open last edited files from project**

When this option is selected, Oxygen XML Editor opens the files you had open the last time you used a project whenever you open the application or switch to that project.

**Check opened files for file system changes**

When this option is selected, Oxygen XML Editor checks the content of the all opened editors to see if they have been updated by another application. If the file has changed, Oxygen XML Editor will ask you if you want to reload the file.

**Auto update unmodified editors on file system changes**

If this option is selected, Oxygen XML Editor automatically updates unmodified editors if the edited file changes externally.
Beep on operation finished

When this option is selected, Oxygen XML Editor beeps when a validation or transform action ends. Different tones are used for success and failure. The tones used may depend on the sound settings in your operating system.

Show memory status

When this option is selected, the memory Oxygen XML Editor uses is displayed in the status bar. To free memory, click the Free unused memory button located at the right side of the status bar. The memory status bar turns yellow or red when Oxygen XML Editor uses too much memory. You can change the amount of memory available to Oxygen XML Editor by changing the parameters of the application launcher (on page 291).

Order of switching between editor tabs

This option specifies the order for switching between opened file tabs when using Ctrl + Tab (Command + Tab on OS X) or Ctrl + Shift + Tab (Command + Shift + Tab on OS X) (on page 701). You can choose between:

- Recently used order - Switches to the most recently used tab.
- Visual order - Switches to the next tab in visual order.

File Chooser Dialog section

Use platform file chooser (Windows and Mac OS X)

This option is selected by default and it specifies that the native file chooser is used. You can deselect this option if you want the Java Swing file chooser to be used instead. If Oxygen XML Editor encounters a problem while using the native file manager, it will avoid using it again in the current session, even if this option is selected.

Consider application bundles to be directories when browsing (Mac OS X only)

This option is available only on the Mac OS X platform. When selected, the file browser dialog box allows you to browse inside an application bundle, as in a regular folder. Otherwise, it is not allowed (the same as the Finder application on Mac OS X).

Note: The same effect can be obtained by setting the apple.awt.use-file-dialog-packages property to true or false in the Info.plist descriptor file of the Oxygen XML Editor application:
Show hidden files and directories

If this option is selected, Oxygen XML Editor shows system hidden files and folders in the file browser dialog box and the folder browser dialog box.

⚠️ Tip: On Mac OS X, you need to press `Command + Shift + Period` in the file browser to show hidden files.

File chooser opens

This options specifies the starting directory that the file browser dialog box (on page 689) will open. You can choose between:

- **Directory of the selected file** - The file browser opens the folder where the selected file is stored, depending on the current selection (for example, a file could be selected from the Project view, DITA Maps Manager, main editing pane, or another location within the application).
- **Last visited directory** - The file browser opens the last visited folder.

Appearance Preferences

This preferences page contains various options that allow you to change the appearance of the user interface of Oxygen XML Editor. To configure the Appearance options, open the Preferences dialog box (Options > Preferences) (on page 79) and go to Appearance.

The following options are available in the Appearance preferences page:

**Look and Feel**

This option allows you to change the graphic style (look and feel) of the user interface. Depending on the operating system, you can choose between various predefined style options.

**Theme**

This option allows you to choose predefined color themes that will be applied over the entire user interface. You can select between the following:

- **Light** (default theme in Windows)
- **Classic** (default theme in MAC OS)
**Note:** In Windows, if a high contrast theme is detected and the **Theme** option is set to **Classic** and the **Look and Feel option** *(on page 84)* is set to **Default** or **Windows**, Oxygen XML Editor inherits the high contrast theme colors that are set in the operating system.

- Graphite
- Ultramarine

You can also change various appearance-related options in other preference pages for the selected theme by clicking on the various links in this section.

**Custom Themes**

You can also create custom themes to share with others or use in other installations of Oxygen XML Editor. To create a custom theme, follow these steps:

1. Select a **Theme** to use as a base.
2. Configure the desired options in any of the option pages listed in this preferences page.
3. Click **Export** and specify a name for your custom theme. If you save the theme to the default file path, your custom theme will immediately appear in the **Theme** drop-down list. Otherwise, if you save it to another location, you can use the **Import button** *(on page 86)* to make it appear in the drop-down list.

**Note:** In OS X (starting with Yosemite), if you choose **Graphite** for the **Theme**, it is recommended that you select the **Use dark menu and Dock** option that is found in **System Preferences > General**.

**Theme preview area**

Displays a preview of the current **Theme selection** *(on page 84)* *(available for predefined color themes)*.

**Theme management section**

**Reset**

Resets the theme to its default values (this option is available when the theme is modified).

**Rename**

Changes the name of the theme (not available for default or predefined themes).
Delete
Removes the selected theme (not available for default or predefined themes).

Import
Allows you to import a color theme from an XML theme file. You can use this option to load an exported custom theme (on page 85).

Export
Allows you to export the current color theme into an XML theme file that can then be shared with others or imported into another installation of Oxygen XML Editor.

Configure icon saturation and brightness link
This link is available if you are using a dark theme (on page 84) (such as Graphite or Ultramarine). It opens a dialog box that allows you to configure the saturation and brightness for all the icons in Oxygen XML Editor.

Figure 18. Configure Icon Saturation and Brightness Dialog Box

Colors Preferences
Oxygen XML Editor allows you configure the colors for frames, dialog boxes, controls, and commands. To configure the Colors, open the Preferences dialog box (Options > Preferences) (on page 79) and go to Appearance > Colors.

Clicking the color button for any of the options opens a Choose color dialog box. It includes several tabs that allow you to configure the color in numerous ways. This page allows you to select and configure the color for the following:

Background Colors
Background

Background color for various general user interface items.

Components background

Background color for various components (such as text fields, views, tables, and dialog boxes).

Components selection background

Background color for the current selections in certain components, such as some views and panes.

Components inactive selection background

Background color for a selection in a view that is not the current focus.

Menus, toolbars and frame background

Background color for specific components such as menus, toolbars, and the application frame.

Menus and toolbars selection background

(This option is not available for Mac OS) Background color for menu selections and toolbar buttons.

View titles background

Background color for the titles of view and tabs.

Status bar background

Background color of the status bar at the bottom of the editor.

Foreground Colors

Foreground

Foreground color for various general user interface items.

Component selection foreground

Foreground color for the current selection.

Disabled foreground

Foreground color for various components that are not the current focus (such as views other than the currently selected one).

Link foreground

Foreground color for links in views and dialog boxes.

View titles foreground

Foreground color for the title bar of views.
Status bar foreground

Foreground color for the text in the status bar at the bottom of the editor.

Other Colors

Borders and table grids

Color for certain borders and table grid lines.

Text component border

Color for the borders of text fields and drop-down lists.

View/Editor tabs border

Color for the borders of views and tabs.

Scroll bars, chevrons

Color for scroll bars (navigation bars) and chevrons (button to expand a non-visible area).

Separator

Color for the separators in toolbars, menus, and dialog boxes.

Note: You must restart the application for your changes to be applied.

Fonts Preferences

Oxygen XML Editor allows you to choose the fonts to be used in the Text, Design, and Grid editor modes, and fonts for the Author mode that are not specified in the associated CSS stylesheet. To configure the font options, open the Preferences dialog box (Options > Preferences) (on page 79) and go to Appearance > Fonts.

The following options are available:

Editor

Specifies the font family, size, and weight to be used in the Text mode editor. To change the current values, double-click the text field or click the Choose button. This opens a dialog box where you can choose the font family, font size, and whether or not to bold the text. You can enter or paste content in the Sample box to see a preview of how it will look in the application. If you select the Show only the fonts that can render the sample text option and paste content in the Sample box, the application detects fonts that can render the particular character set and filters the fonts that can be selected accordingly.

Note: On Mac OS X, the default font, Monaco, cannot be rendered in bold.

Author default font
Specifies the default font family, size, and weight to be used in Author mode. However, the default font will be overridden by the fonts specified in any CSS file associated with the opened document. To change the current values, double-click the text field or click the Choose button. This opens a dialog box where you can choose the font family, font size, and whether or not to bold the text. You can enter or paste content in the Sample box to see a preview of how it will look in the application. If you select the **Show only the fonts that can render the sample text** option and paste content in the Sample box, the application detects fonts that can render the particular character set and filters the fonts that can be selected accordingly.

**Schema default font**

This option allows you to choose the font to be used in:

- The **Design** mode of the XML Schema editor ([on page 1249](#)).
- Images with schema diagram fragments that are included in the HTML documentation generated from an XML Schema.

To change the current values, double-click the text field or click the Choose button. This opens a dialog box where you can choose the font family, font size, and whether or not to bold the text. You can enter or paste content in the Sample box to see a preview of how it will look in the application. If you select the **Show only the fonts that can render the sample text** option and paste content in the Sample box, the application detects fonts that can render the particular character set and filters the fonts that can be selected accordingly.

**Text anti-aliasing**

This option allows you to set the text anti-aliasing behavior:

- **Default** - Allows the application to use the setting of the operating system, if available.
- **On** - Sets the text anti-aliasing to pixel level.
- **Off** - Disables text anti-aliasing.
- Sub-pixel anti-aliasing modes, such as GASP, LCD_HRGB, LCD_HBGR, LCD_VRGB, and LCD_VBGR.

**Text components**

Specifies the font family, size, and weight to be used in text boxes within the interface. To change the current values, double-click the text field or click the Choose button. This opens a dialog box where you can choose the font family, font size, and whether or not to bold the text. You can enter or paste content in the Sample box to see a preview of how it will look in the application. If you select the **Show only the fonts that can render the sample text** option and paste content in the Sample box, the application
detects fonts that can render the particular character set and filters the fonts that can be selected accordingly.

GUI

Specifies the font family, size, and weight to be used for user interface labels. To change the current values, double-click the text field or click the Choose button. This opens a dialog box where you can choose the font family, font size, and whether or not to bold the text. You can enter or paste content in the Sample box to see a preview of how it will look in the application. If you select the Show only the fonts that can render the sample text option and paste content in the Sample box, the application detects fonts that can render the particular character set and filters the fonts that can be selected accordingly.

View titles font

Specifies the font family, size, and weight to be used in the titles of the various views within the interface. To change the current values, double-click the text field or click the Choose button. This opens a dialog box where you can choose the font family, font size, and whether or not to bold the text. You can enter or paste content in the Sample box to see a preview of how it will look in the application. If you select the Show only the fonts that can render the sample text option and paste content in the Sample box, the application detects fonts that can render the particular character set and filters the fonts that can be selected accordingly.

Note: You must restart the application for your changes to be applied.

Related Information:

- Changing the Font Size in the Editor (on page 832)

Application Layout Preferences

Oxygen XML Editor offers various perspectives (on page 3285) and views that you can arrange in a variety of layouts to suit your needs.

To configure the application layout options, open the Preferences dialog box (Options > Preferences) (on page 79) and go to Application Layout. The following options are available:

Select application layout

You can choose between the following three layouts:

Default
Uses the default layout for all perspectives (on page 3285). Any modification of this layout (such as closing views, displaying views, or a new view arrangement) is saved on exit and reloaded at start-up.

Predefined

Allows you to choose one of the predefined layouts:

- **Advanced** - All views are displayed.
- **Author** - An authoring-oriented layout that includes the following views: Project (on page 333), Archive Browser (on page 2191), DITA Maps Manager (on page 2990), Outline (on page 347), Attributes (on page 426), Model (on page 353), and Elements (on page 432).
- **Basic** - Only the Project view (on page 333) and Outline view (on page 347) are visible. Recommended when you edit XML content and you need maximum screen space.
- **Schema development** - The Project (on page 333), Component Dependencies (on page 1300), Resource Hierarchy/Dependencies (on page 1297), Outline (on page 625), Palette (on page 631), and Attributes (on page 628) views are displayed.
- **XQuery development** - The Project (on page 333), Outline (on page 1341), XSLT/XQuery Input (on page 1202), XPath/XQuery Builder (on page 1343), and Transformation Scenarios (on page 1768) views are displayed.
- **XSLT development** - The Project (on page 333), Component Dependencies (on page 1207), Resource Hierarchy/Dependencies (on page 1204), Outline (on page 1197), Attributes (on page 351), Model (on page 353), XSLT/XQuery Input (on page 1202), XPath/XQuery Builder (on page 1343), and Transformation Scenarios (on page 1768) views are displayed.

Custom

Allows you to specify a custom layout to be used. You can save your preferred layout using Window > Export Layout, then enter the location of the saved layout file in this setting.

Reset layout at startup

When this option is selected, Oxygen XML Editor forgets any changes made to the layout during a session and reloads the default layout the next time it is started. This is useful when you want to keep a fixed layout from one session to another.

Remember layout changes for each project
When this option is selected, Oxygen XML Editor saves layouts individually for each project. When you switch projects, the layout you last used for that project is loaded automatically.

**Allow detaching of editors from main window**

When this option is selected, you can drag and drop an editor window outside of the main screen. This is useful especially when you are using two monitors and you want to view files side by side.

**Note:** If the main screen is maximized, you cannot drag and drop an editor outside of it.

**View tab placement**

Specifies whether the View tabs are located at the top or bottom of the window.

**Editor tab placement**

Specifies whether the Editor tabs are located at the top or bottom of the window.

The changes you make to any layout are preserved between working sessions. The predefined layout files are saved in the preferences directory of Oxygen XML Editor.

For more information about configuring the user interface of Oxygen XML Editor, watch our video demonstration:

[https://www.youtube.com/embed/anwjepfAdEk](https://www.youtube.com/embed/anwjepfAdEk)

**Add-ons Preferences**

You can use add-ons (on page 3285) to enhance the functionality of Oxygen XML Editor. To configure the Add-ons options, open the Preferences dialog box (Options > Preferences) (on page 79) and go to Add-ons.

The following options are available in this preferences page:

**Enable automatic updates checking**

When this option is selected, Oxygen XML Editor will automatically search for available updates.

**Add-on Sites URLs**

This is a list of the URLs for the add-on sites. You can add, edit, and delete sites in this list by using the buttons below the list.
Document Type Association Preferences

Oxygen XML Editor uses document type associations (on page 3281) to associate a document type (on page 1537) with a set of functionality provided by a framework (on page 3282). To configure the Document Type Association options, open the Preferences dialog box (Options > Preferences) (on page 79) and go to Document Type Association.

The following actions are available in this preferences page:

Discover more frameworks by using add-ons update sites

Click on this link to specify URLs for framework add-on update sites.

Document Type Table

This table presents the currently defined frameworks (on page 3282) (document type associations (on page 3281)), sorted by priority and alphabetically. Each edited document type has a set of association rules (on page 97) (used by the application to detect the proper document type association to use for an opened XML document).

New

Opens a Document type configuration dialog box (on page 95) that allows you to add a new framework.

Edit

Opens a Document type configuration dialog box (on page 95) that allows you to edit an existing framework.

⚠️ Note: If you try to edit an existing framework when you do not have write permissions to its storage location, a dialog box will be shown asking if you want to extend it.

Duplicate

Opens a Document type configuration dialog box (on page 95) that allows you to duplicate the configuration of an existing framework. This will create a snapshot of the framework in its current form. It is merely a copy of the document type and will not evolve along with the base document type like the Extend action does.

Extend

Opens a Document type configuration dialog box (on page 95) that allows you to extend an existing framework. You can add or remove functionality starting from a base document type. All of these changes will be saved as a patch. When the base document type is modified and evolves (for example, from one application version to another) the extension will evolve along with the base document type, allowing it to use the new actions added in the base document type.
Delete

Deletes the selected framework (document type).

Enable DTD/XML Schema processing in document type detection

When this option is selected (default value), the matching process also examines the DTD/XML Schema associated with the document. For example, the fixed attributes declared in the DTD for the root element are also analyzed, if this is specified in the association rules. This is especially useful if you are writing DITA customizations. DITA topics and maps are also matched by looking for the DITAArchVersion attribute of the root element. This attribute is specified as default in the DTD and it is detected in the root element, helping Oxygen XML Editor to correctly match the DITA customization.

Only for local DTDs/XML Schemas

When this option is selected (default value), only the local DTDs / XML Schemas will be processed.

Enable DTD/XML Schema caching

When this option is selected (default value), the associated DTDs or XML Schema are cached when parsed for the first time, improving performance when opening new documents with similar schema associations.

Related Information:

• Sharing a Custom Framework (on page 2371)

Locations Preferences

Oxygen XML Editor allows you to change the location where frameworks (document types) are stored, and to specify additional framework directories. The Locations preferences page allows you to specify the main frameworks folder location. You can choose between the Default directory (\OXYGEN_INSTALL_DIR\frameworks) or a Custom specified directory. You can also change the current frameworks folder location value using the com.oxygenxml.editor.frameworks.url system property set in either the .vmoptions configuration files (on page 291) or in the startup scripts (on page 292).

A list of additional frameworks directories can also be specified. The application will look in each of those folders for additional document type configurations to load. Use the Add, Edit and Delete buttons to manage the list of folders.

A document type configuration (framework) can be loaded from the following locations:
The configuration dialog box includes the following fields and sections:

**Name**
The name of the framework. This will be displayed as its name in the **Document Type** column in the **Document Type Association** preferences page (on page 92).

### Priority

Depending on the priority level, Oxygen XML Editor establishes the order in which the existing frameworks are evaluated to determine the type of a document you are opening. It can be one of the following: Lowest, Low, Normal, High, or Highest. You can set a higher priority for frameworks you want to be evaluated first.

**Note:** The built-in document types are set to Low priority by default. Frameworks that have the same priority are sorted alphabetically.

### Description

The document type description displayed as a tool tip in the **Document Type Association** preferences page (on page 92).

### Storage

The location where the document type is saved. If you select the **External** storage option, the document type is saved in the specified file with a mandatory framework extension, located in a subdirectory of the current frameworks directory. If you select the **Internal** storage option, the document type data is saved in the Oxygen XML Editor internal options file if **Global Options** (on page 265) is selected or in the current Oxygen XML Editor project file (.xpr) if **Project Options** (on page 266) is selected.

### Initial edit mode

Sets the default edit mode when you open a document for the first time: Editor specific, Text, Author, Grid and Design (available only for the W3C XML Schema editor). If the Editor specific option is selected, the initial editing mode is determined based upon the editor type. You can find the mapping between editors and edit modes in the **Edit modes preferences page**. (on page 126) You can impose an initial mode for opening files that match the association rules of the document type. For example, if the files are usually edited in the Author mode you can set it in the Initial edit mode combo box.

**Note:** You can also customize the initial mode for a document type in the Edit modes preferences page. Open the Preferences dialog box (Options > Preferences) (on page 79) and go to Editor > Edit modes.

### Configuration Tabs

The bottom section of the dialog box includes various tabs where you can configure numerous options for the framework.

---

**Related Information:**
Association Rules Tab

To open the Association Rules tab of the Document type configuration dialog box, open the Preferences dialog box (Options > Preferences) (on page 79), go to Document Type Association, use the New, Edit, Duplicate, or Extend button (on page 92), and click on the Association Rules tab.

In the Association rules tab, you can perform the following actions:

- **New**
  - Opens the Document type rule dialog box allowing you to create association rules.

- **Edit**
  - Opens the Document type rule dialog box allowing you to edit the properties of the currently selected association rule.

- **Delete**
  - Deletes the currently selected association rules from the list.

- **Move Up**
  - Moves the selected association rule up one spot in the list.

- **Move Down**
  - Moves the selected association rule down one spot in the list.

By combining multiple association rules you can instruct Oxygen XML Editor to identify the type of a document. Oxygen XML Editor identifies the type of a document when the document matches at least one of the association rules. This tab give you access to a Document type rule dialog box that you can use to create association rules that activate on any document matching all the criteria defined in the dialog box.

To create a new association rule, click the ✦ New button at the bottom of the Association Rules tab, or to edit an existing rule, click the ✏ Edit button.

Figure 20. Document Type Rule Dialog Box
The **Document type rule** dialog box includes the following fields and options:

**Namespace**

Specifies the namespace of the root element from the association rules set (* (any) by default). If you want to apply the rule only when the root element has no namespace, leave this field empty (remove the **ANY_VALUE** string).

**Root local name**

Specifies the local name of the root element (* (any) by default).

**File name**

Specifies the name of the file (* (any) by default).

**Public ID**

Represents the Public ID of the matched document.

**Attribute Local name**

Specifies the local name of the attributes for the root element (* (any) by default).

**Attribute Namespace**

Specifies the namespace of the attributes for the root element (* (any) by default).

**Attribute Value**

Specifies the value of the attributes for the root element (* (any) by default).

**Java class**

Presents the name of the Java class that is used to determine if a document matches the rule. This Java class should implement the

`ro.sync.ecss.extensions.api.DocumentTypeCustomRuleMatcher` interface.
Tip: You can use wildcards (? and *) or editor variables (on page 276) in the Document Type Rule dialog box, and you can enter multiple values by separating them with a comma.

Schema Tab

In the Schema tab, you can specify a default schema for Oxygen XML Editor to use if an XML document does not contain a schema declaration and no default validation scenario is associated with it.

To open the Schema tab of the Document type configuration dialog box, open the Preferences dialog box (Options > Preferences) (on page 79), go to Document Type Association, use the New, Edit, Duplicate, or Extend button (on page 92), and click on the Schema tab.

This tab includes the following options for defining a schema to be used if no schema is detected in the XML file:

- **Schema type**
  Use this drop-down list to select the type of schema.

- **Schema URI**
  You can specify the URI of the schema file. You can specify the path by using the text field, its history drop-down, the Insert Editor Variables (on page 276) button, or the browsing actions in the Insert Editor Variables (on page 276) button, or the browsing actions in the Browse drop-down list.

  Tip: It is a good practice to store all resources in the framework directory and use the ${framework} editor variable (on page 282) to reference them. This is a recommended approach to designing a self-contained document type that can be easily maintained and shared between multiple users.

Classpath Tab

The Classpath tab displays a list of folders and JAR (on page 3283) libraries that hold implementations for API extensions, implementations for custom Author mode operations, various resources (such as stylesheets), and framework (on page 3282) translation files. Oxygen XML Editor loads the resources looking in the folders in the order they appear in the list.

To open the Classpath tab of the Document type configuration dialog box, open the Preferences dialog box (Options > Preferences) (on page 79), go to Document Type Association, use the New, Edit, Duplicate, or Extend button (on page 92), and click on the Classpath tab.

The Classpath tab includes the following actions:

- New
Opens a dialog box that allows you to add a resource to the table in the **Classpath** tab. You can specify the path by using the text field, its history drop-down, the **Insert Editor Variables** button, or the browsing actions in the **Browse** drop-down list.

**Tip:** The path can also contain wildcards (for example, ${framework}/lib/*.jar).

**Edit**

Opens a dialog box that allows you to edit a resource in the **Classpath** tab. You can specify the path by using the text field, its history drop-down, the **Insert Editor Variables** button, or the browsing actions in the **Browse** drop-down list.

**Tip:** The path can also contain wildcards (for example, ${framework}/lib/*.jar).

**Delete**

Deletes the currently selected resource from the list.

**Move Up**

Moves the selected resource up one spot in the list.

**Move Down**

Moves the selected resource down one spot in the list.

**Use parent classloader from plugin with ID** *(on page 2611)*

Use this option to specify the ID of a **plugin** *(on page 3285)*. The current **framework** has access to the classes loaded for the **plugin**.

### Related Information:

- Extensions Tab *(on page 122)*
- Author Tab *(on page 100)*
- Localizing Frameworks *(on page 2333)*

**Author Tab**

The **Author** tab is a container that holds information regarding the CSS file used to render a document in the **Author** mode, and regarding **framework** *(on page 3282)-**specific actions, menus, contextual menus, toolbars, and content completion list of proposals.
To open the Author tab of the Document type configuration dialog box, open the Preferences dialog box (Options > Preferences) (on page 79), go to Document Type Association, use the New, Edit, Duplicate, or Extend button (on page 92), and click on the Author tab.

The options that you configure in the Author tab are grouped in subtabs.

CSS Subtab

The CSS subtab contains the CSS files that Oxygen XML Editor uses to render a document in the Author mode. In this subtab, you can set main and alternate CSS files. When you are editing a document in the Author mode, you can switch between these CSS files from the Styles drop-down menu on the Author Styles toolbar.

To open the CSS subtab, open the Preferences dialog box (Options > Preferences) (on page 79), go to Document Type Association, use the New, Edit, Duplicate, or Extend button (on page 92), click on the Author tab, and then the CSS subtab.

The following actions are available in the CSS subtab:

- **New**
  Opens a dialog box that allows you to add a CSS file. You can specify the path by using the text field, its history drop-down, the Insert Editor Variables (on page 276) button, or the browsing actions in the Browse drop-down list.

- **Edit**
  Opens a dialog box that allows you to edit the current selection.

- **Delete**
  Deletes the currently selected CSS file.

- **Move Up**
  Moves the selected CSS file up in the list.

- **Move Down**
  Moves the selected CSS file down in the list.

Enable multiple selection of alternate CSSs

Allows users to apply multiple alternate styles, as layers, over the main CSS style. This option is selected by default for DITA document types.

If there are CSSs specified in the document then

You can choose between the following options for controlling how the CSS files that are set in this subtab will be handled if a CSS is specified in the document itself:
• **Ignore CSSs from the associated document type** - The CSS files set in this CSS subtab are overwritten by the CSS files specified in the document itself.

• **Merge them with CSSs from the associated document type** - The CSS files set in this CSS subtab are merged with the CSS files specified in the document itself.

**Related Information:**

• [Associating a CSS with an XML Document](on page 2477)

• [Configuring and Managing Multiple CSS Styles for a Framework](on page 2348)

**Actions Subtab**

The **Actions** subtab contains a sortable table that includes all the framework (on page 3282)-specific actions. Each action has a unique ID, a name, a description, and a shortcut key.

To open the **Actions** subtab, open the Preferences dialog box (Options > Preferences) (on page 79), go to Document Type Association, use the New, Edit, Duplicate, or Extend button (on page 92), click on the Author tab, and then the **Actions** subtab.

The following actions are available in this subtab:

- **New**
  
  Opens the Action dialog box (on page 102) that allows you to add an action.

- **Duplicate**
  
  Duplicates the currently selected action.

- **Edit**
  
  Opens the Action dialog box (on page 102) that allows you to edit the existing action.

- **Delete**
  
  Deletes the currently selected action.

**Author Action Dialog Box**

To edit an existing document type action or create a new one, open the Preferences dialog box (Options > Preferences) (on page 79), go to Document Type Association, use the New, Edit, Duplicate, or Extend button (on page 92), click on the Author tab, and then the **Actions** subtab. At the bottom of this subtab, click **New** to create a new action, or **Edit** to modify an existing one.

Figure 21. Action Dialog Box
The following options are available in the Action dialog box:

**ID**

Specifies a unique action identifier.

**Name**

Specifies the name of the action. This name is displayed as a tooltip or as a menu item.

Tip: You can use the ${i18n('key')} editor variable (on page 282) to allow for multiple translations of the name.

**Menu access key**

In Windows, you can access menus by holding down Alt and pressing the keyboard key that corresponds to the Letter that is underlined in the name of the menu. Then, while still holding down Alt, you can select submenus and menu action the same way by pressing subsequent corresponding keys. You can use this option to specify the Letter in the name of the action that can be used to access the action.

**Description**

A description of the action. This description is displayed as a tooltip when hovering over the action.

Tip: You can use the ${i18n('key')} editor variable (on page 282) to allow for multiple translations of the description.

**How to translate frameworks link**
Use this link to see more information about Localizing Frameworks (on page 2333).

**Large icon**

Allows you to select an image for the icon that Oxygen XML Editor uses for the toolbar action.

**Tip:** A good practice is to store the image files inside the framework directory and use the `${frameworks}` editor variable (on page 282) to make the image relative to the framework location. If the images are bundled in a jar archive (for instance, along with some Java operations implementation), it is convenient to reference the images by their relative path location in the class-path.

**Small icon**

Allows you to select an image for the icon that Oxygen XML Editor uses for the contextual menu action.

**Note:** If you are using a Retina or HiDPI display, Oxygen XML Editor automatically searches for higher resolution icons in the path specified in both the Large icon and Small icon options. For more information, see Adding Retina/HiDPI Icons in a Framework (on page 2332).

**Shortcut key**

This field allows you to configure a shortcut key for the action that you are editing. The + character separates the keys.

**Enable platform-independent shortcut keys**

If this checkbox is selected, the shortcut that you specify in this field is platform-independent and the following modifiers are used:

- \(M_1\) represents the **Command** key on MacOS X, and the **Ctrl** key on other platforms.
- \(M_2\) represents the **Shift** key.
- \(M_3\) represents the **Option** key on MacOS X, and the **Alt** key on other platforms.
- \(M_4\) represents the **Ctrl** key on MacOS X, and is undefined on other platforms.

**Operations section**

In this section of the **Action** dialog box, you configure the functionality of the action that you are editing. An action has one or more operation modes. The evaluation of an XPath expression activates an operation mode. The first selected operation mode is activated when you trigger the action. The scope of the XPath expression must consist
only of element nodes and attribute nodes of the edited document. Otherwise, the XPath expression does not return a match and does not fire the action. For more details see: 

*Activate Multiple Functions for Actions using XPath Expressions (on page 105).*

The following options are available in this section:

**Activation XPath**

An XPath 2.0 expression that applies to elements and attributes. For more details see: *Activate Multiple Functions for Actions using XPath Expressions (on page 105).*

**Operation**

Specifies the invoked operation.

**Arguments**

Specifies the arguments of the invoked operation. The *Edit* at the bottom of the table allows you to edit the arguments of the operation.

**Operation priority**

Increases or decreases the priority of an operation. The operations are invoked in the order of their priority. If multiple XPath expressions are true, the operation with the highest priority is invoked.

- ✕ Add - Adds an operation.
- ✕ Remove - Removes an operation.
- ✕ Duplicate - Duplicates an operation.

**Evaluate activation XPath expressions even in read-only contexts**

If this checkbox is selected, the action can be invoked even when the cursor is placed in a read-only location.

*Activate Multiple Functions for Actions using XPath Expressions*

An *Author* mode action can have multiple functions, each function invoking an *Author* mode operation with certain configured parameters. Each function of an action has an XPath 2.0 expression for activating it.

For each function of an action, the application will check if the XPath expression is fulfilled (when it returns a not empty nodes set or a *true* result). If it is fulfilled, the operation defined in the function will be executed.

The following special XPath extension functions are provided:
• **oxy:allows-child-element()** (on page 106) - Use this function to check whether or not an element is valid child element in the current context, according to the associated schema.

• **oxy:allows-global-element()** (on page 108) - Use this function to check whether or not an element is a valid global element for the current framework (on page 3282), according to the associated schema.

• **oxy:current-selected-element()** (on page 109) - Use this function to get the currently selected element.

• **oxy:selected-elements()** (on page 110) - Use this function to get the selected elements.

• **oxy:is-required-element()** (on page 110) - Use this function to check if the element returned by the given XPath expression is required (based on the rules declared in the schema).

• **oxy:platform()** (on page 110) - Use this function to get the current platform in cases where you want to enable or disable an action depending on the platform.

**oxy:allows-child-element() Function**

The **oxy:allows-child-element()** function allows you to check whether or not an element that matches the arguments of the function is valid as a child of the element at the current cursor position, according to the associated schema. It is evaluated at the cursor position and has the following signature:

oxy:allows-child-element($childName, ($attributeName, $defaultAttributeValue, $contains?)?)

The following parameters are supported:

**childName**

The name of the element that you want to check if it is valid in the current context. Its value is a string that supports the following forms:

- The child element with the specified local name that belongs to the default namespace.

  
  oxy:allows-child-element("para")

  The above example verifies if the **para** element (of the default namespace) is allowed in the current context.

- The child element with the local name specified by any namespace.

  oxy:allows-child-element("*:para")

  The above example verifies if the **para** element (of any namespace) is allowed in the current context.

- A prefix-qualified name of an element.
oxy:allows-child-element("prefix:para")

The prefix is resolved in the context of the element where the cursor is located. The function matches on the element with the `para` local name from the previous resolved namespace. If the prefix is not resolved to a namespace, the function returns a value of `false`.

- A specified namespace-URI-qualified name of an element.

oxy:allows-child-element("{namespaceURI}para")

The `namespaceURI` is the namespace of the element. The above example verifies if the `para` element (of the specified namespace) is allowed in the current context.

- Any element.

oxy:allows-child-element("*")

The above function verifies if any element is allowed in the current context.

**Note:** A common use case of `oxy:allows-child-element("*")` is in combination with the `attributeName` parameter.

attributeName

The attribute of an element that you want to check if it is valid in the current context. Its value is a string that supports the following forms:

- The attribute with the specified name from no namespace.

oxy:allows-child-element("", "class", " topic/topic ")

The above example verifies if an element with the `class` attribute and the default value of this attribute (that contains the `topic/topic` string) is allowed in the current context.

- The attribute with the local name specified by any namespace.

oxy:allows-child-element("", "*:localname", " topic/topic ")

- A qualified name of an attribute.

oxy:allows-child-element("", "prefix:localname", " topic/topic ")

The prefix is resolved in the context of the element where the cursor is located. If the prefix is not resolved to a namespace, the function returns a value of `false`.

defaultAttributeValue
A string that represents the default value of the attribute. Depending on the value of the next parameter, the default value of the attribute must either contain this value or be equal with it.

contains

An optional boolean. The default value is true. For the true value, the default value of the attribute must contain the defaultAttributeValue parameter. If the value is false, the two values must be the same.

oxy:allows-global-element() Function

The oxy:allows-global-element() function allows you to check whether or not an element that matches the arguments of the function is valid for the current framework (on page 3282), according to the associated schema. It has the following signature:

oxy:allows-global-element($elementName, ($attributeName, $defaultAttributeValue, $contains?)?)

The following parameters are supported:

elementName

The name of the element that you want to check if it is valid in the current framework. Its value is a string that supports the following forms:

- The element with the specified local name that belongs to the default namespace.
  
  oxy:allows-global-element("para")

  The above example verifies if the para element (of the default namespace) is allowed in the current framework.

- The element with the local name specified by any namespace.
  
  oxy:allows-global-element("*:para")

  The above example verifies if the para element (of any namespace) is allowed in the current framework.

- A prefix-qualified name of an element.
  
  oxy:allows-global-element("prefix:para")

  The prefix is resolved in the context of the framework. The function matches on the element with the para local name from the previous resolved namespace. If the prefix is not resolved to a namespace, the function returns a value of false.

- A specified namespace-URI-qualified name of an element.
  
  oxy:allows-global-element("{namespaceURI}para")
The `namespaceURI` is the namespace of the element. The above example verifies if the `para` element (of the specified namespace) is allowed in the current framework.

- Any element.

```
oxy:allows-global-element("*")
```

The above function verifies if any element is allowed in the current framework.

**attributeName**

The attribute of an element that you want to check if it is valid in the current framework. Its value is a string that supports the following forms:

- The attribute with the specified name from no namespace.

```
oxy:allows-global-element("*", "class", " topic/topic ")
```

The above example verifies if an element with the `class` attribute and the default value of this attribute (that contains the `topic/topic` string) is allowed in the current framework.

- The attribute with the local name specified by any namespace.

```
oxy:allows-global-element("*", "*:localname", " topic/topic ")
```

- A qualified name of an attribute.

```
oxy:allows-global-element("*", "prefix:localname", " topic/topic ")
```

The prefix is resolved in the context of the framework. If the prefix is not resolved to a namespace, the function returns a value of `false`.

**defaultAttributeValue**

A string that represents the default value of the attribute. Depending on the value of the next parameter, the default value of the attribute must either contain this value or be equal with it.

**contains**

An optional boolean. The default value is `true`. For the `true` value, the default value of the attribute must contain the `defaultAttributeValue` parameter. If the value is `false`, the two values must be the same.

**oxy:current-selected-element() Function**

This function returns the fully selected element. If no element is selected, the function returns an empty sequence.
Example: **oxy:current-selected-element Function**

```
oxy:current-selected-element()[self::p]/b
```

This example returns the `b` elements that are children of the currently selected `p` element.

**oxy:selected-elements() Function**

This function returns the selected elements from Author mode.

Example: **oxy:selected-elements Function**

```
oxy:selected-elements()[self::para][@audience="novice"]
```

This example would activate an action when at least one of the selected elements is a `<para>` element with the `@novice` attribute defined.

**oxy:is-required-element() Function**

This function checks if the element returned by the given XPath expression is required (based on the rules declared in the schema). It has only one argument, an XPath expression, and the XPath expression must be written in such a way that it returns a single element.

Example: **oxy:is-required-element Function**

```
oxy:is-required-element(.)
```

This example would check to see if the current element is required by the schema.

**oxy:is-editable-element() Function**

This function checks if the element returned by the given XPath expression is editable (content can be inserted in it), meaning both that the entire XML file is editable and that the current context where the element is placed is editable. For example, if the element is inside an `xi:included` section, it is not editable.

It only has one argument, an XPath expression, and the XPath expression must be written in such a way that it returns a single element.

Example: **oxy:is-editable-element Function**

```
oxy:is-editable-element(ancestor-or-self::table)
```

This example would return *true* if the cursor is placed inside a table and it is editable or *false* if it is not editable.
oxy:platform() Function

This function returns the current platform. You can use this if you want to enable or disable an action depending on the platform. The possible values are: standalone, eclipse, or webapp.

Example: oxy:platform Function

```xml
oxy:platform() = "standalone"
```

This example would keep the action activated for the standalone distribution of Oxygen XML Editor, but disable it for the Eclipse and Web Author distributions.

Localizing Frameworks

Oxygen XML Editor supports framework (on page 3282) localization (translating framework actions, buttons, and menu entries to various languages). This lets you develop and distribute a framework to users that speak other languages without changing the distributed framework. Changing the language used in Oxygen XML Editor in the Global preferences page is enough to set the right language for each framework.

To localize the content of a framework, create a translation.xml file that contains all the translation (key, value) mappings. The translation.xml has the following format:

```xml
<translation>
  <languageList>
    <language description="English" lang="en_US"/>
    <language description="German" lang="de_DE"/>
    <language description="French" lang="fr_FR"/>
  </languageList>
  <key value="list">
    <comment>List menu item name.</comment>
    <val lang="en_US">List</val>
    <val lang="de_DE">Liste</val>
    <val lang="fr_FR">Liste</val>
  </key>
</translation>
```

Oxygen XML Editor matches the GUI language with the language set in the translation.xml file. If this language is not found, the first available language declared in the languagelist tag for the corresponding framework is used.
Add the directory where this file is located to the **Classpath** list corresponding to the edited document type.

After you create this file, you can use the keys defined in it to customize the name and description of the following:

- Actions
- Menu entries
- Contextual menus
- Toolbars
- Static CSS content

For example, if you want to localize the bold action, open the **Preferences** dialog box (*Options > Preferences*) and go to **Document Type Association**. Use the **New** or **Edit** button to open the **Document type configuration dialog box** (*on page 95*), go to **Author > Actions**, and rename the bold action to **${i18n(translation_key)}**. Actions with a name format other than **${i18n(translation_key)}** are not localized. **Translation_key** corresponds to the key from the translation.xml file.

Now open the **translation.xml** file and edit the translation entry if it exists or create one if it does not exist. This example presents an entry in the translation.xml file:

```
<key value="translation_key">
  <comment>Bold action name.</comment>
  <val lang="en_US">Bold</val>
  <val lang="de_DE">Bold</val>
  <val lang="fr_FR">Bold</val>
</key>
```

To use a description from the **translation.xml** file in the Java code used by your custom framework, use the new **ro.sync.ecss.extensions.api.AuthorAccess.getAuthorResourceBundle()** API method to request the associated value for a certain key. This allows all the dialog boxes that you present from your custom operations to have labels translated in multiple languages.

You can also reference a key directly in the CSS content:

```
title:before{
  content:"${i18n(title.key)} : ";
}
```

**Note:** You can enter any language you want in the **languagelist** tag and any number of keys.
The translation.xml file for the DocBook framework is located here: \[OXYGEN_INSTALL_DIR]/frameworks/docbook/i18n/translation.xml. In the Classpath list corresponding to the DocBook document type the following entry was added: \${framework}/i18n/.

To see how the DocBook actions are defined to use these keys for their name and description, open the Preferences dialog box (Options > Preferences) (on page 79) and go to Document Type Association > Author > Actions. If you look in the Java class ro.sync.ecss.extensions.docbook.table.SADocbookTableCustomizerDialog available in the oxygen-sample-framework module of the Oxygen SDK Maven archetype, you can see how the new ro.sync.ecss.extensions.api.AuthorResourceBundle API is used to retrieve localized descriptions for various keys.

Menu Subtab

In the Menu subtab, you can configure which actions will appear in the framework (on page 3282)-specific menu. The subtab is divided in two sections: Available actions and Current actions.

To open the Menu subtab, open the Preferences dialog box (Options > Preferences) (on page 79), go to Document Type Association, use the New, Edit, Duplicate, or Extend button (on page 92), click on the Author tab, and then the Menu subtab.

The Available actions section presents a table that displays the actions defined in the Actions subtab, along with their icon, ID, and name. The Current actions section holds the actions that are displayed in the Oxygen XML Editor menu. To add an action in this section as a sibling of the currently selected action, use the Add as sibling button. To add an image in this section as a child of the currently selected action use the Add as child button.

The following actions are available in the Current actions section:

- **Edit**
  - Edits an item.
- **Remove**
  - Removes an item.
- **Move Up**
  - Moves an item up.
- **Move Down**
  - Moves an item down.
Contextual Menu Subtab

In the Contextual menu subtab you configure what framework (on page 3282)-specific action the Content Completion Assistant (on page 3280) proposes. The subtab is divided in two sections: Available actions and Current actions.

To open the Contextual Menu subtab, open the Preferences dialog box (Options > Preferences) (on page 79), go to Document Type Association, use the New, Edit, Duplicate, or Extend button (on page 92), click on the Author tab, and then the Contextual Menu subtab.

Figure 22. Contextual Menu Subtab

The Available actions section presents a table that displays the actions defined in the Actions subtab, along with their icon, ID, and name. The Current actions section contains the actions that are displayed in the contextual menu for documents that belong to the edited framework.

The following actions are available in this subtab:

- **Add as sibling**
  
  Adds the selected action or submenu from the Available actions section to the Current actions section as a sibling of the selected action.

- **Add as child**
  
  Adds the selected action or submenu from the Available actions section to the Current actions section as a child of the selected action.

- **Edit**
This option is available for container (submenu) items that are listed in the **Current actions** section. It opens a configuration dialog box that allows you to edit the selected container (submenu).

**Figure 23. Menu Action Configuration Dialog Box**

The following options are available in this dialog box:

**Name**

Specifies the name of the action. This name is displayed as a tooltip or as a menu item.

*Tip:* You can use the `$\{i18n('key')\}$` editor variable (on page 282) to allow for multiple translations of the name.

**Menu access key**

In Windows, you can access menus by holding down **Alt** and pressing the keyboard key that corresponds to the **Letter** that is underlined in the name of the menu. Then, while still holding down **Alt**, you can select submenus and menu action the same way by pressing subsequent corresponding keys. You can use this option to specify the **Letter** in the name of the action that can be used to access the action.

**Menu icon**

Allows you to select an image for the icon that Oxygen XML Editor uses for the container (submenu).

**Promote items when in a table context**

If this option is selected, when invoking the contextual menu from within a table, all the actions in this container (submenu) will be promoted to the main level in the contextual menu. Actions and submenus that are not promoted are still available in the **Other actions** submenu when invoking the contextual menu within a table.

**Remove**

Removes the selected action or submenu from the **Current actions** section.
Move Up

Moves the selected item up in the list.

Move Down

Moves the selected item down in the list.

Toolbar Subtab

In the Toolbar subtab you configure what framework (on page 3282)-specific action the Oxygen XML Editor toolbar holds. The subtab is divided in two sections: Available actions and Current actions.

To open the Toolbar subtab, open the Preferences dialog box (Options > Preferences) (on page 79), go to Document Type Association, use the New, Edit, Duplicate, or Extend button (on page 92), click on the Author tab, and then the Toolbar subtab.

The Available actions section presents a table that displays the actions defined in the Actions subtab, along with their icon, ID, and name. The Current actions section holds the actions that are displayed in the Oxygen XML Editor toolbar when you work with a document belonging to the edited framework.

To add an action in this section as a sibling of the currently selected action, use the Add as sibling button. To add an action in this section as a child of the currently selected action use the Add as child button.

The following actions are available in the Current actions section:

- Edit
  Edits an item.

- Remove
  Removes an item.

- Move Up
  Moves an item up.

- Move Down
  Moves an item down.

Content Completion Subtab

In the Content Completion subtab you configure what framework (on page 3282)-specific the Content Completion Assistant (on page 3280) proposes. The subtab is divided in two sections: Available actions and Current actions.
To open the **Content Completion** subtab, open the Preferences dialog box (Options > Preferences) (on page 79), go to Document Type Association, use the New, Edit, Duplicate, or Extend button (on page 92), click on the Author tab, and then the **Content Completion** subtab.

### Available and Current Actions

The **Available actions** section presents a table that displays the actions defined in the Actions subtab, along with their icon, ID, and name. The **Current actions** section holds the actions that the Content Completion Assistant proposes when you work with a document belonging to the edited framework.

To add an action in this section as a sibling of the currently selected action, use the $\text{Add as sibling}$ button. To add an action in this section as a child of the currently selected action use the $\text{Add as child}$ button.

The following actions are available in the **Current actions** section:

- **Edit**
  Edits an item.

- **Remove**
  Removes an item.

- **Move Up**
  Moves an item up.

- **Move Down**
  Moves an item down.

### Filter Table

The **Filter** section presents a table that allows you to add elements to be filtered from the Content Completion Assistant or from some specific helper views or menus. Use the $\text{Add}$ button to add more filters to the table, the $\text{Edit}$ button to modify an existing item in the table, or the $\text{Remove}$ button to remove a filtered item. The $\text{Add}$ and $\text{Edit}$ buttons open a Remove item dialog box.

Figure 24. Remove Item Dialog Box
Use this dialog box to add or configure the elements that will be filtered:

**Item name**

Use this text field to enter the name of the element to be filtered. The drop-down list also includes a few special content completion actions that can be filtered (\texttt{<SPLIT>} and \texttt{<ENTER>}).

**Remove item from**

You can choose to filter the element from any of the following:

- **Content Completion Window** - The element will not appear in the Content Completion Assistant (on page 3280).
- **Elements View** - The element will not appear in the Elements view (on page 355).
- **Element Insert Menus** - The element will not appear in the Append Child, Insert Before, or Insert After menus that are available in certain contextual menus (for example, the contextual menu of the Outline view (on page 347)).
- **Entities View** - The element will not appear in the Entities view (on page 356).

**Related Information:**

- Customizing the Content Completion Assistant (on page 2352)

**Templates Tab**

The Templates tab specifies a list of directories where new document templates are located for this particular framework. These directories, along with the document templates that are saved inside them, will appear in the New Document wizard (on page 676) inside the Framework templates category according to your framework and the directory path you specify in this tab.
To open the **Templates** tab of the **Document type** configuration dialog box, open the **Preferences** dialog box ([Options > Preferences] (on page 79)), go to **Document Type Association**, use the **New, Edit, Duplicate, or Extend** button (on page 92), and click on the **Templates** tab.

The **Templates** tab includes the following actions:

**New**

Opens a dialog box that allows you to specify the path to a directory that contains document templates for this framework. You can specify the path by using the text field, its history drop-down, the **发挥了 Editor Variables** (on page 276) button, or the browsing actions in the **发挥了 Browse** drop-down list.

**Tip:** The path can also contain wildcards. For example, using `${frameworkDir}/templates/*` would add all the template folders found inside the `templates` directory.

**Edit**

Opens a dialog box that allows you to edit the path of a directory that contains document templates for this framework. You can specify the path by using the text field, its history drop-down, the **发挥了 Editor Variables** (on page 276) button, or the browsing actions in the **发挥了 Browse** drop-down list.

**Tip:** The path can also contain wildcards. For example, using `${frameworkDir}/templates/*` would add all the template folders found inside the `templates` directory.

**Delete**

Deletes the currently selected template directory from the list.

**Move Up**

Moves the selected template directory up one spot in the list.

**Move Down**

Moves the selected template directory down one spot in the list.

**Related Information:**

- **Creating New Document Templates** (on page 683)
- **Customizing Document Templates** (on page 685)
- **Sharing Custom Document Templates** (on page 688)
Catalogs Tab

The Catalogs tab specifies a list of XML Catalogs (on page 1123), specifically for the edited framework (on page 3282), that are added to list of catalogs that Oxygen XML Editor uses to resolve resources.

To open the Catalogs tab of the Document type configuration dialog box, open the Preferences dialog box (Options > Preferences) (on page 79), go to Document Type Association, use the New, Edit, Duplicate, or Extend button (on page 92), and click on the Catalogs tab.

You can perform the following actions:

**Add**

Opens a dialog box that allows you to add a catalog to the list. You can specify the path by using the text field, its history drop-down, the Insert Editor Variables (on page 276) button, or the browsing actions in the Browse drop-down list.

**Edit**

Opens a dialog box that allows you to edit the path of an existing catalog.

**Delete**

Deletes the currently selected catalog from the list.

**Move Up**

Moves the selected catalog up one spot in the list.

**Move Down**

Moves the selected catalog down one spot in the list.

Transformation Tab

In the Transformation tab, you can configure the transformation scenarios associated with the particular framework (on page 3282) you are editing. These transformation scenarios are presented in the Configure Transformation Scenarios dialog box (on page 1762) when transforming a document and you can specify which scenarios will be used by default for a particular document type.

To open the Transformation tab of the Document type configuration dialog box, open the Preferences dialog box (Options > Preferences) (on page 79), go to Document Type Association, use the New, Edit, Duplicate, or Extend button (on page 92), and click on the Transformation tab.

The Transformation tab offers the following options:

**Default checkbox**
You can set one or more of the scenarios listed in this tab to be used as the default transformation scenario when another specific scenario is not specified. The scenarios that are set as default are rendered bold in the Configure Transformation Scenarios dialog box (on page 1762).

**New**

Opens the **New scenario** dialog box allowing you to create a new transformation scenario for the particular document type (on page 1674).

**Duplicate**

Allows you to duplicate the configuration of an existing transformation scenario. It opens the **Edit scenario** dialog box where you can configure the properties of the duplicated scenario (on page 1760).

**Edit**

Opens the **Edit scenario** dialog box allowing you to edit the properties of the currently selected transformation scenario (on page 1758).

**Delete**

Deletes the currently selected transformation scenario.

**Import scenarios**

Imports transformation scenarios.

**Export selected scenarios**

Export transformation scenarios.

**Move Up**

Moves the selection to the previous scenario.

**Move Down**

Moves the selection to the next scenario.

**Validation Tab**

In the **Validation** tab, you can configure the validation scenarios associated with the particular framework (on page 3282) you are editing. These validation scenarios are presented in the Configure Validation Scenarios dialog box when validating a document and you can specify which scenarios will be used by default for a particular document type.

**Note:** If a **master file** is associated with the current file, the validation scenarios defined in the master file, along with any Schematron schema defined in the default scenarios for that particular framework, are used for the validation. These take precedence over other types of validation units.
defined in the default scenarios for the particular framework. For more information on master files, see Master Files Support (on page 726) or Working with Modular XML Files in the Master Files Context (on page 1126).

To open the Validation tab of the Document type configuration dialog box, open the Preferences dialog box (Options > Preferences) (on page 79), go to Document Type Association, use the New, Edit, Duplicate, or Extend button (on page 92), and click on the Validation tab.

The Validation tab offers the following options:

**Default checkbox**
You can set one or more of the scenarios listed in this tab to be used as the default validation scenario when another specific scenario is not specified in the validation process. The scenarios that are set as default are rendered bold in the Configure Validation Scenarios dialog box.

**New**
Opens the New scenario dialog box allowing you to create a new validation scenario (on page 1094).

**Duplicate**
Allows you to duplicate the configuration of an existing validation scenario. It opens the Edit scenario dialog box where you can configure the properties of the duplicated scenario (on page 1100).

**Edit**
Opens the Edit scenario dialog box allowing you to edit the properties of the currently selected validation scenario (on page 1100).

**Delete**
Deletes the currently selected validation scenario.

**Import scenarios**
Imports validation scenarios.

**Export selected scenarios**
Exports validation scenarios.

**Move Up**
Moves the selected scenario up one spot in the list.

**Move Down**
Moves the selected scenario down one spot in the list.
Extensions Tab

The Extensions tab specifies implementations of Java interfaces used to provide advanced functionality to the document type.

To open the Extensions tab of the Document type configuration dialog box, open the Preferences dialog box (Options > Preferences) (on page 79), go to Document Type Association, use the New, Edit, Duplicate, or Extend button (on page 92), and click on the Extensions tab.

Libraries containing the implementations must be present in the classpath (on page 99) of your document type. The Javadoc available at https://www.oxygenxml.com/InstData/Editor/SDK/javadoc/ contains details about how each API implementation functions.

Document Templates Preferences

Oxygen XML Editor provides a variety of built-in document templates that make it easier to create new documents in various formats. The list of available templates is presented in the New Document wizard (on page 676) when you create a new document (New toolbar button or File > New).

You can also create your own templates (on page 683) and share them with others. You can store your custom document templates in the existing templates folder in the Oxygen XML Editor installation directory or store them in a custom directory. If you store them in a custom directory, you need to use this Document Templates preferences page to add that directory to the list of template directories that Oxygen XML Editor makes available in the New Document wizard.

To add a template directory, follow these steps:

1. open the Preferences dialog box (Options > Preferences) (on page 79) and go to Editor > Templates > Document Templates.
2. Use the New button to select a location of the new document template folder.
3. You can also use the Edit or Delete buttons to manage folders in the list, and you can alter the order in which Oxygen XML Editor looks in these directories by using the Up and Down buttons.

Result: This will add the folder to the list in this preferences page and it will now appear in the New Document wizard (on page 676) in a category based upon the folder path you specified.

Note: For DITA templates, they will also appear in the dialog box for creating new DITA topics from the DITA Maps Manager, but if you customize the template (on page 685), you need to set the type property to dita in the corresponding properties file.
Encoding Preferences

Oxygen XML Editor lets you configure how character encodings are recognized when opening files and which encodings are used when saving files. To configure encoding options, open the Preferences dialog box (Options > Preferences) (on page 79) and go to Encoding.

The following encoding options are available:

**Fallback character encoding**

Specifies the default character encoding of non-XML documents if their character encoding cannot be determined from other sources (for example, it is not specified in the document or determined by the file type).

*Note:* For certain document types, the following encoding detection rules are used:

- For XML, DTD, and CSS documents, Oxygen XML Editor tries to collect the character encoding from the document. If no such encoding is found, then **UTF-8** is used.
- For JavaScript, JSON, SQL, XQuery, and RNC, the **UTF-8** encoding is used.

**UTF-8 BOM handling**

This setting specifies how to handle the *Byte Order Mark* (BOM) when Oxygen XML Editor saves a UTF-8 XML document:

- **Keep** (default) - Do not alter the BOM declaration of the currently open file.
- **Write** - Save the BOM bytes.
- **Don't Write** - Do not save the BOM bytes. Loaded BOM bytes are ignored.

*Note:* The UTF-16 BOM is always preserved. UTF-32 documents have a *big-endian* byte order.

**Encoding errors handling**

This setting specifies how to handle characters that cannot be represented in the character encoding that is used when the document is opened. The available options are:

- **REPORT** (default) - Displays an error identifying the character that cannot be represented in the specified encoding. Unrecognized characters are rendered as an empty box.
- **REPLACE** - The character is replaced with a standard replacement character. For example, if the encoding is UTF-8, the replacement character has the Unicode code `FFFD`, and if the encoding is ASCII, the replacement character code is 63.
- **IGNORE** - The error is ignored and the character is not included in the document displayed in the editor.
Attention: If you edit and save the document, the characters that cannot be represented in the specified encoding are dropped.

Encoding for Base64, Base32, Hex conversions

Specifies the encoding to be used when invoking the Encode Selection or Decode Selection actions for Base64 (on page 876), Base32 (on page 877), or Hex conversions (on page 878). The default setting is UTF8.

Editor Preferences

Oxygen XML Editor lets you configure the appearance of various components and features of the main editor. To access these options, open the Preferences dialog box (Options > Preferences) (on page 79) and go to Editor.

The following options are available:

Selection background color

Allows you to set the background color of selected text.

Selection foreground color

Allows you to set the color of selected text.

Completion proposal background

Allows you to set the background color of the Content Completion Assistant (on page 3280).

Completion proposal foreground

Allows you to set the color of the text in the Content Completion Assistant (on page 3280).

Documentation window background

Allows you to set the background color of the documentation of elements suggested by the Content Completion Assistant (on page 3280).

Documentation window foreground

Allows you to set the color of the text for the documentation of elements suggested by the Content Completion Assistant (on page 3280).

Find highlight color

Allows you to set the color of the highlights generated by the Find and Find all actions.

XPath highlight color
Allows you to set the color of the highlights generated when you run an XPath expression.

**Declaration highlight color**

Allows you to set the color of the highlights generated by the **Find declaration** action.

**Reference highlight color**

Allows you to set the color of the highlights generated by the **Find reference** action.

**Maximum number of highlights**

Allows you to set the maximum number of highlights that Oxygen XML Editor displays.

**Show TAB/NBSP/EOL/EOF marks**

Makes the TAB/NBSP/EOL/EOF characters visible in the editor. You can use the color picker to choose the color of the marks.

**Show SPACE marks**

Makes the space character visible in the editor.

**Can edit read-only files**

If this option is selected, Oxygen XML Editor will let you edit read-only files. When you try to save them, a **Save As** dialog box will be displayed to avoid overwriting the initial resource. If the option is not selected, a warning message is displayed when you try to edit a read-only file.

**Display quick-assist and quick-fix side hints**

Displays the **Quick Assist** (on page 3286) icon (🪤) and **Quick Fix** (on page 3287) icon (🪤) in the line number stripe on the left side of the editor.

**Undo history size**

Allows you to set the maximum amount of undo operations you can perform in any of the editor modes (Text, Author, Design, Grid).

**Enable mouse-wheel zooming**

If selected, you can use **Ctrl + MouseWheelForward** (**Command + MouseWheelForward on OS X**) to increase the editor font (zoom in) or **Ctrl + MouseWheelBackwards** (**Command + MouseWheelBackwards on OS X**) to decrease the editor font (zoom out). It is enabled by default on Windows and Linux, while it is disabled by default on Mac OS X, due to the way inertia affects the mouse wheel on this operating system.

**Edit Modes Preferences**

Oxygen XML Editor lets you configure which **edit mode** (on page 303) a file is opened in the first time it is opened. This setting only applies the first time a file is opened. The current editing mode
of each file is saved when the file is closed and restored the next time it is opened. To configure the options for editing modes, open the Preferences dialog box (Options > Preferences) (on page 79) and go to Editor > Edit Modes.

**Allow Document Type specific edit mode setting to override the general mode setting**

If selected, the initial edit mode setting set in the Document Type configuration dialog box (on page 95) overrides the general edit mode setting from the table below.

**Select the initial edit mode (page) for each editor**

This table specifies the default editing mode that will be opened for each type of document when the Allow Document Type specific edit mode setting to override the general mode setting option is not selected. Use the Edit button to change the initial edit mode for each type of document (editor). The initial edit mode can be one of the following:

- Text (on page 303)
- Author (on page 402)
- Grid (on page 392)
- Design (available only for the XSD editor).

Figure 25. Edit Modes Preferences Page

Text Preferences

Oxygen XML Editor lets you configure how the Text mode editor (on page 303) appears. To configure these options, open the Preferences dialog box (Options > Preferences) (on page 79) and go to Editor > Edit modes > Text.
The following options are available:

**Editor background color**

Sets the background color for the **Text** editing mode, **Outline view (on page 347)**, and some external tool editors (**Large File Viewer (on page 2764)**, **Compare Files (on page 2770)**, **Compare Directories (on page 808)**).

**Editor cursor color**

Sets the color for the cursor in **Text** mode.

**Highlight current line**

If selected, the current line is highlighted with the foreground color specified with the color chooser.

**Show line numbers**

If selected (default value), line numbers are shown in the editor panels and in the **Output view (on page 2291)** of the debugger **perspectives (on page 3285)**. You can also specify the color for the line numbers using the color chooser. Printed output will also include the line numbers.

**Show print margin**

If selected, it allows you to set a safe print limit in the form of a vertical line displayed in the right side of the editor pane. You can also customize the print margin line color.

- **Print margin column**
  
  Allows you to specify a limit for the print width, measured in the number of characters.

**Line wrap**

If selected, long lines are automatically wrapped in edited documents. The line wrap does not alter the document content since the application does not use **new-line** characters to break long lines.

**Cut / Copy whole line when nothing is selected**

If selected, **Cut** and **Copy** actions operate on the entire current line when nothing is selected in the editor.

**Enable folding**

If selected (default value), the vertical stripe that holds the **folding markers (on page 840)** is displayed in **Text** mode.

**Highlight matching tag**
If selected, when you place the cursor on a start or end tag, Oxygen XML Editor highlights the corresponding member of the pair. You can also customize the highlight color.

**Lock the XML tags**

If selected, XML are locked and cannot be edited in Text mode.

**Diagram Preferences**

For certain XML languages, Oxygen XML Editor provides a diagram view as part of the text mode editor. To configure the Diagram preferences, open the Preferences dialog box (Options > Preferences) (on page 79) and go to Editor > Edit modes > Text > Diagram.

The following options are available in this preference page:

**Show Full Model XML Schema diagram**

When this option is selected, the Text mode editor for XML Schemas includes a split screen view that shows a diagram of the schema structure. This is useful for seeing the effects of schema changes you make. For editing a schema using a diagram instead of text, use the schema Design view (on page 623).

**Note:** When handling very large schemas, displaying the schema diagram might affect the performance of your system. In such cases, disabling the schema diagram view improves the speed of navigation through the edited schema.

**Enable Relax NG diagram and related views**

Enables the Relax NG schema diagram and synchronization with the related views (Attributes (on page 351), Model (on page 353), Elements (on page 355), Outline (on page 1397)).

**Show Relax NG diagram**

Displays the Relax NG schema diagram in the split screen views (Full Model View (on page 1390) and Logical Model View (on page 1391)).

**Enable NVDL diagram and related views**

Enables the NVDL schema diagram and synchronization with the related views (Attributes (on page 351), Model (on page 353), Elements (on page 355), Outline (on page 1414)).

**Show NVDL diagram**

Displays the NVDL schema diagram in the split screen views (Full Model View (on page 1409) and Logical Model View (on page 1410)).
Allows you to specify the location of the schema diagram panel relative to the diagram Text editor.

Show/Hide Annotations link

Use this link to navigate to the Schema Design preferences page (on page 153) where you can choose to show or hide annotations in schema diagrams.

Zoom link

Use this link to navigate to the Schema Design preferences page (on page 153) where you can adjust the default zoom level of schema diagrams.

Grid Preferences

Oxygen XML Editor provides a Grid view (on page 392) of an XML document. To configure the Grid options, open the Preferences dialog box (Options > Preferences) (on page 79) and go to Editor > Edit modes > Grid.

The following options are available:

Compact representation

If selected, the compact representation of the grid is used: a child element is displayed beside the parent element. In the non-compact representation, a child element is nested below the parent.

Format and indent when passing from grid to text or on save

If selected, the content of the document is formatted and indented (on page 863) each time you switch from the Grid view to the Text view.

Default column width (characters)

Sets the default width (in characters) of a table column of the grid. A column may contain the following:

- Element names
- Element text content
- Attribute names
- Attribute values

If the total width of the grid structure is too large you can resize any column by dragging the column margins with the mouse pointer, but the change is not persistent. To make it persistent, set the new column width with this option.

Active cell color

Allows you to set the background color for the active cell (on page 3279) of the grid. The keyboard input always goes to the active cell and the selection always contains it.
Selection color

Allows you to set the background color for the selected cells of the grid except the active cell (on page 3279).

Border color

Allows you to set the color used for the lines that separate the grid cells.

Background color

Allows you to set the background color of grid cells that are not selected.

Foreground color

Allows you to set the text color of the information displayed in the grid cells.

Row header colors

Background color

Allows you to set the background color of row headers that are not selected.

Active cell color

Allows you to set the background color of the row header cell that is currently active.

Selection color

Allows you to set the background color of the header cells corresponding to the currently selected rows.

Column header colors

The column headers are painted with two color gradients, one for the upper 1/3 part of the header and the other for the lower 2/3 part. The start and end colors of the first gradient are set with the first two color buttons. The start and end colors of the second gradient are set with the last two color buttons.

Background color

Allows you to set the background color of column headers that are not selected.

Active cell color

Allows you to set the background color of the column header cell that is currently active.

Selection color

Allows you to set the background color of the header cells corresponding to the currently selected columns.
Author Preferences

Oxygen XML Editor provides an **Author editing mode (on page 402)** that provides a configurable graphical interface for editing XML documents. To configure the options for the **Author** mode, open the **Preferences** dialog box (**Options > Preferences**) (on page 79) and go to **Editor > Edit modes > Author**.

The following options are available:

- **Author default background color**
  - Sets the default background color of the **Author** editing mode. The `background-color` property set in the CSS file associated with the currently edited document overwrites this option.

- **Author default foreground color**
  - Sets the default foreground color of the **Author** editing mode. The `color` property set in the CSS file associated with the current edited document overwrites this option.

- **Show XML comments**
  - When this option is selected, XML comments are displayed in **Author** mode. Otherwise, they are hidden.

- **Show placeholders for empty elements**
  - When this option is selected, placeholders are displayed for elements with no content to make them clearly visible. The placeholder is rendered as a light gray box and displays the element name.

- **Show processing instructions**
  - When this option is selected, XML processing instructions are displayed in **Author** mode. Otherwise they are hidden.

- **Show Author layout messages**
  - When this option is selected, all errors reported while rendering the document in **Author** mode are presented in the **Results panel (on page 357)** at the bottom of the editor.

- **Show doctype**
  - When this option is selected, the **doctype** declaration is displayed in **Author** mode. Otherwise it is hidden.

- **Show block range**
  - When this option is selected, a **block range indicator** is displayed in a stripe located in the left side of the editor. It is displayed as a heavy line that spans from the first line to the last line of the block.

- **Display referenced content (entities, XInclude, DITA conref, etc.)**
When selected, the references (such as entities, XInclude, DITA conrefs) also display the content of the resources they reference. If you toggle this option while editing, you need to reload the file for the modification to take effect.

Fast text layout

In certain cases (combinations of fonts and characters), the widths computed in the **Author** visual editing mode for lines of text may be larger than expected, leading to an incorrect visual layout. Deactivating this option will improve the computation quality for character widths in the visual editing mode, but it may hinder overall performance for very large documents.

Images Section

The following options regarding images in **Author** mode are available in this section:

**Auto-scale images wider than (pixels)**

Sets the maximum width that an image will be displayed. Wider images will be scaled to fit.

**Show very large images**

When this option is selected, images larger than 6 megapixels are displayed in **Author** mode. Otherwise, they are not displayed.

⚠️ **Important:** If you select this option and your document contains many such images, Oxygen XML Editor may consume all available memory, throwing an OutOfMemory error. To resolve this, increase the available memory limit. *(on page 290)* and restart the application.

Tags Section

In this section you can configure the following options regarding tags that are displayed in **Author** mode:

**Tags display mode**

Sets the default display mode for element tags presented in **Author** mode. You can choose between the following:

- **Full Tags with Attributes** - All XML tags are displayed, with attribute names and values, making it easier to transition from a Text-based editing to **Author** mode editing.
- **Full Tags** - All XML tags are displayed, but without attributes.
- **Block Tags** - The XML tags that enclose block elements *(on page 3280)* are displayed in full. Compact tags (no element names) are displayed for *inline elements.*
• **Inline Tags** - The XML tags that enclose *inline elements* (on page 3283) are displayed in full. *Block* (on page 3280) tags are not displayed.

• **Partial Tags** - Partial tags (no names) are displayed for all elements.

• **No Tags** - No tags are displayed. This representation is as close as possible to a word-processor view.

**Sort attributes alphabetically for "Full Tags with Attributes"**

When selected, if you choose Full Tags with Attributes for the Tags Display Mode (on page 441), the attributes will be displayed in alphabetical order. Otherwise, they are displayed in the order that they appear in the XML source code.

**Tags background color**

Sets the Author mode tags background color.

**Tags foreground color**

Sets the Author mode tags foreground color.

**Tags font**

Allows you to change the font used to display tags text in the Author visual editing mode. The *default* font is computed based on the setting of the Author default font option in the Fonts preferences page (on page 88).

**Compact tag layout**

If this option is not selected, the Author mode displays the tags in a more decompressed layout, where block tags are displayed on separate lines.

**Serialization Section**

In this section you can configure options regarding the formatting and indenting that is applied when a document is saved in Author mode, or when switching the editing mode from Author to Text. The following options are available:

**Format and indent**

Use this option to specify what should be formatted and indented when you save a document (or switch from Author to Text mode). You can choose between the following two options:

**Only the modified content**

The Save operation only formats the nodes that were modified in the Author mode. The rest of the document preserves its original formatting.
**Note:** This option also applies to the DITA maps opened in the DITA Maps Manager (on page 2990).

### The entire document

The **Save** operation applies the formatting to the entire document regardless of the nodes that were modified in **Author** mode.

**Also apply the format and indent options that are set for Text mode**

If this option is selected, the result of the **Format and indent** operation will be the same as when it is applied in Text editing mode. Thus, the content of the document is formatted by applying the **Format and Indent** rules from the Editor/Format (on page 157) and Editor/Format/XML (on page 160) preference pages. You can use the **Format and indent options** link to navigate to those options.

### Compatibility with other tools

Use this option to control how line breaks are handled when a document is serialized. This will help to obtain better compatibility with other tools. You can choose one of the following:

- **None** - Choose this option if compatibility with other tools can be ignored.
- **Do not break lines, do not indent** - Choose this option to avoid breaking lines after element start or end tags and indenting will not be used.

**Note:** New lines that are added by the user in elements where the `xml:space` attribute is set to `preserve` (such as `pre` elements in HTML, or `codeblock` elements in DITA) are still inserted. Also, selecting this option automatically disables the **Also apply the format and indent options that are set for Text mode** option (on page 135), since the formatting from Text mode does not take the CSS styles into account.

- **Break lines only after elements displayed as blocks, do not indent** - Choose this option to instruct Oxygen XML Editor to insert new lines only after elements that have a CSS display property set to anything other than `inline` or `none` (for example, `block`, `list-item`, `table`,...
etc.) and indenting will not be used. When selecting this option, the formatting is dictated by the CSS.

Note: New lines that are added by the user in elements where the xml:space attribute is set to preserve (such as pre elements in HTML, or codeblock elements in DITA) are still inserted. Also, selecting this option automatically disables the Also apply the format and indent options that are set for Text mode option (on page 135), since the formatting from Text mode does not take the CSS styles into account.

For advanced Author configuration see the Document Type Association settings

Click this link to open the Document Type Association preferences page (on page 92).

Cursor Navigation Preferences

Oxygen XML Editor allows you to configure the appearance and behavior of the cursor in the Author mode editor (on page 402). To set cursor navigation preferences, open the Preferences dialog box (Options > Preferences) (on page 79) and go to Author > Cursor Navigation.

The following options are available:

Highlight elements near cursor

When this option is selected, the element containing the cursor is highlighted. You can use the color picker to choose the color of the highlight.

Show cursor position tooltip

Oxygen XML Editor uses tool tips in Author mode to indicate the position of the cursor in the element structure (on page 901) of the underlying document. Depending on context, the tool tips may show the current element name or the names of the elements before and after the current cursor position.

Show location tooltip on mouse move

When this option is selected, Oxygen XML Editor displays Location Tooltips (on page 902) when you are editing the document in certain tags display modes (Inline Tags, Partial Tags, No Tags) or when the mouse pointer is moved between block elements (on page 3280).

Quick up/down navigation

This option is deselected by default and this means that when you navigate using the up and down arrow keys in Author mode, the cursor is placed within each of the underlying XML elements between two blocks of text (the cursor changes to a horizontal line when
it is between blocks of text). This allows you to easily insert elements and manage the structure of your XML content. However, if this option is selected, the cursor ignores the XML structure and jumps from one line of text to another, similar to how the cursor behaves in a word processor.

**Quick navigation in tables**

This option is selected by default and this means that when navigating between table cells with the arrow keys, the cursor jumps from one cell to another. If this option is not selected, the cursor navigates between XML nodes when navigating between table cells with the arrow keys.

**Arrow keys move the cursor in the writing direction**

This setting determines how the left and right arrow keys behave in Author mode for bidirectional (BIDI) text. When this option is selected (default value), the right arrow key advances the cursor in the reading direction and the left arrow moves it in the opposite direction. When this option is not selected, pressing the right arrow will simply move the cursor to the right (and the left arrow moves it to the left), regardless of the text direction.

**Schema Aware Preferences**

Oxygen XML Editor can use the schema of your XML language to improve the way the Author (on page 402) mode editor handles your content. To configure the Schema Aware options, open the Preferences dialog box (Options > Preferences) (on page 79) and go to Editor > Edit modes > Author > Schema Aware.

The following options are available:

**Schema aware normalization, format, and indent**

When you open or save a document in Author mode, white space is normalized using the display property of the current CSS stylesheet and the values of the settings (on page 160) for Preserve space elements, Default space elements, and Mixed content elements. When this option is selected, the schema will also be used to normalize white space, based on the content model (element-only, simple-content, or mixed). Note that the schema information takes precedence.

**Indent blocks-only content**

To avoid accidentally introducing inappropriate white space around inline elements (on page 3283), Oxygen XML Editor does not normally apply indenting to the source of an element with mixed content. If this option is selected, Oxygen XML Editor will apply indenting to the source of mixed content elements that only contain block elements (on page 3280).
Schema Aware Editing

The options in this section determine how Oxygen XML Editor will use the schema of a document to control the behavior of the Author mode.

- **On** - Enables all schema-aware editing options.
- **Off** - Disables all schema-aware editing options.
- **Custom** - Allows you to select custom schema-aware editing options from the following:

Schema Aware Actions section

Delete element tags with backspace and delete

Controls what happens when you attempt to delete an element tag. The two options are:

- **Smart delete** - If deleting the tag would make the document invalid, Oxygen XML Editor will attempt to make the document valid by unwrapping the current element or by appending it to an adjacent element where the result would be valid. For instance, if you delete a bold tag, the content can be unwrapped and become part of the surrounding paragraph, but if you delete a list item tag, the list item content cannot become part of the list container. However, the content could be appended to a preceding list items.
- **Reject action when its result is invalid** - A deletion that would leave the document in an invalid state is rejected.

Paste and Drag and Drop

Controls the behavior for paste and drag and drop actions. Available options are:

- **Smart paste and drag and drop** - If the content inserted by a paste or drop action is not valid at the cursor position, according to the schema, Oxygen XML Editor tries to find an appropriate insert position. The possibilities include:
  ◦ Creating a sibling element that can accept the content (for example, if you tried to paste a paragraph into an existing paragraph).
  ◦ Inserting the content into a parent or child element (for example, if you tried to paste a list item into an existing list item, or into the space above or below and existing list).
Inserting the content into an ancestor element where it would be valid.

- **Reject action when its result is invalid** - If selected, Oxygen XML Editor will not let you paste content into a position where it would be invalid.

**Typing**

Controls the behavior that takes place when typing. Available options are:

- **Smart typing** - If typed characters are not allowed in the element at the cursor position, but the previous element does allow text, then a similar element will be inserted, along with your content.
- **Reject action when its result is invalid** - If selected, and the result of the typing action is invalid, the action will not be performed.

**Content Completion**

Controls the behavior that takes place when inserting elements using the `Content Completion Assistant in Author mode (on page 921)`. Available options are:

- **Press ENTER to show available content completion proposals** - If selected, pressing Enter will open the `Content Completion Assistant`. If deselected, there are three possibilities:
  - The current element will be split (if possible).
  - A new element with the same name will be inserted (if possible).
  - Otherwise, a new paragraph will be inserted.
- **Show all possible elements in the content completion list** - If selected, the content completion list will show all the elements in the schema, even those that cannot be entered validly at the current position. If you select an element that is not valid at the current position, Oxygen XML Editor will attempt to find a valid location to insert it and may present you with several options.
- **Allow only insertion of valid elements and attributes** - If selected, you can only select elements in the content completion list that are valid (according to the schema) at the current position.
- **Allow only insertion of valid attribute values** - If selected, you cannot enter an attribute value that is not valid (according to the schema) in the `Attributes view (on page 426)` or `In-place Attributes Editor (on page 915)`. If the attribute has a choice of values, you can select a possible value from a drop-down list in the combo box, but you cannot enter a value manually.
Warn on invalid content when performing action

A warning message will be displayed when performing an action that will result in invalid content. Available options are:

• **Delete Element Tags** - If selected, a warning message will be displayed if the Delete Element Tags (on page 1065) action will result in an invalid document. You will be asked to confirm the deletion.

• **Join Elements** - If selected, a warning message will be displayed if the Join Elements (on page 1065) action will result in an invalid document. You will be asked to confirm the join.

Automatically apply the best schema-aware insertion operation

If selected, Oxygen XML Editor automatically uses what it considers to be the best insertion solution, when there is an attempt to insert content that is not valid in a specific context. If not selected, Oxygen XML Editor will ask the user to choose from a list of proposed solutions.

Convert external content on paste

If selected, the Smart Paste feature (on page 918) is enabled when external content is pasted in Author mode.

Convert even when pasting inside space-preserve elements

If selected, the Smart Paste feature (on page 918) will be used even when external content is pasted inside a space-preserve element (such as a codeblock).

Convert pasted URLs to links

If selected, when a URL is pasted into Author mode, a link will be inserted (the type of link depends on the type of document). For example, in DITA documents, an \texttt{xref} is inserted.

Related Information:

• [Smart Paste Mechanism (on page 918)]

• [Customizing Smart Paste Support (on page 2343)]
Review Preferences

Oxygen XML Editor allows you to add review comments and track changes (on page 941) in your documents. The Review preferences page allows you to control how the Oxygen XML Editor review features work. To configure these options, open the Preferences dialog box (Options > Preferences) (on page 79) and go to Editor > Edit modes > Author > Review.

The available options are as follows:

**Author**

Specifies the name to be attached to all comments and to changes made while Track Changes is active. By default, Oxygen XML Editor uses the system user name.

**Track Changes section (applies for all authors)**

**Initial State**

Specifies whether or not the Track Changes feature (on page 3288) is enabled when you open a document. You may have the Track Changes feature enabled in some documents and disabled in others, or you can choose to always enable or disable the feature for all documents. You can choose between the following options:

- **Stored in document** - The current state of the Track Changes feature is stored in the document itself, meaning that it is on or off depending on the state the last time the document was saved. This is the recommended setting when multiple authors work on the same set of documents as it will make it obvious to other authors that changes have been made in the document.

- **Always On** - The Track Changes feature is always on when you open a document. You can turn it off for an opened document, but it will be turned on for the next document you open.

- **Always Off** - The Track Changes feature is always off when you open a document. You can turn it on for an opened document, but it will be turned off for the next document you open.

**Display changed lines marker**

A changed line maker is a vertical line on the left side of the editor window indicating where changes have been made in the document. To hide the changed lines marker, deselect this option.

**Inserted content color**

When the Track Changes feature (on page 3288) is on, the newly inserted content is highlighted with an insertion marker that uses a color to adjust
the following display properties of the inserted content: **foreground**, **background**, and **underline**. This section allows you to customize the following color options:

- **Automatic** - If this option is selected, Oxygen XML Editor automatically assigns a color to each user who inserted content in the current document. The colors are picked from the Colors for automatic assignment list (on page 143), the priority being established by the type of change (deletion, insertion, or comment) and in the order that you see in the list.
- **Fixed** - If this option is selected, Oxygen XML Editor uses the specified color for all insertion markers, regardless of who the author is.
- **Use same color for text foreground** - If selected, Oxygen XML Editor uses the color defined above (Automatic or Fixed) to render the foreground of the inserted content.
- **Use same color for background** - If selected, Oxygen XML Editor uses the color defined above (Automatic or Fixed) to render the background of the inserted content. A slider control allows you to set the transparency level of the background.

**Deleted content color**

When the Track Changes feature (on page 3288) is on, the deleted content is highlighted with a deletion marker that uses a color to adjust the following display properties of the deleted content: **foreground**, **background**, and **strikethrough**. This section allows you to customize the following color options:

- **Automatic** - If this option is selected, Oxygen XML Editor automatically assigns a color to each user who deleted content in the current document. The colors are picked from the Colors for automatic assignment list (on page 143), the priority being established by the type of change (deletion, insertion, or comment) and in the order that you see in the list.
- **Fixed** - If this option is selected, Oxygen XML Editor uses the specified color for all deletion markers, regardless of who the author is.
- **Use same color for text foreground** - If selected, Oxygen XML Editor uses the color defined above (Automatic or Fixed) to render the foreground of the deleted content.
- **Use same color for background** - If selected, Oxygen XML Editor uses the color defined above (Automatic or Fixed) to render the
background of the deleted content. A slider control allows you to set
the transparency level of the background.

Comments color section (applies for all authors)

Sets the background color of the text that is commented on. The options are:

- **Automatic** - If this option is selected, Oxygen XML Editor automatically assigns a
color to each user who adds a comment in the current document. The colors are
picked from the Colors for automatic assignment list (on page 143), the priority
being established by the type of change (deletion, insertion, or comment) and in the
order that you see in the list.
- **Fixed** - If this option is selected, Oxygen XML Editor uses the specified color for
all changes, regardless of who the author is. A slider control allows you to set the
transparency level of the background.

Colors for automatic assignment list

These are the colors that will be automatically assigned for tracked insertion changes,
tracked deletion changes, and comments if the Automatic option is selected in any of
the sections in this preferences page. The colors are assigned in the order that you see
in this list. You can use the Add, Edit, or Remove buttons to modify the list of colors.

Related Information:

- Reviewing Documents (on page 941)

Callouts Preferences

Oxygen XML Editor can display callouts (on page 3280) for review items such as comments and
tracked changes (on page 941). To customize options for review callouts, open the Preferences
dialog box (Options > Preferences) (on page 79) and go to Editor > Edit modes > Author > Review
> Callouts.

The available options are as follows:

Show Review Callouts section

Comments

If selected, callouts are displayed for comments, including comments that
are added to tracked changes (on page 3288). This option is selected by
default.
Track Changes deletions

If selected, callouts are displayed for *tracked change* (on page 3288) deletions and the following additional option becomes available:

**Show deleted content in callout**

If selected, the deleted content is also displayed in the callout.

Track Changes insertions

If selected, callouts are displayed for *tracked change* (on page 3288) insertions and the following additional option becomes available:

**Show inserted content in callout**

If selected, the inserted content is also displayed in the callout.

Rendering section

**Show review time**

When selected, timestamp information is displayed in callouts.

**Show all connecting lines**

When selected, lines are shown that connect the callout to the location of the change.

**Initial width (px)**

Specifies the initial width of the callouts each time the document is opened. The default is 250 pixels.

**Text lines count limit**

Specifies the maximum number of lines to be shown in the callouts. The default is 5 lines. Note that this does not limit the number of lines in the actual comment. It only limits the number of lines shown without opening or editing it. To see the full comment, right-click on the callout and select **Edit Comment** or **Show Comment**.

Profiling/Conditional Text Preferences

Oxygen XML Editor lets you configure how *profiling and conditional text* (on page 969) is displayed in **Author** mode. It has built-in support for the standard conditional text features of DITA and DocBook that you can customize for your own projects. You can also add conditional support for other XML vocabularies, including your custom vocabularies.
To configure **Profiling/Conditional Text** options, open the **Preferences** dialog box (**Options > Preferences**) (on page 79) and go to **Editor > Edit modes > Author > Profiling/Conditional Text**.

**Note:** Note the following when configuring these settings:

- This preferences page is used to define how profiled elements are treated in **Author** mode. It does not create profiling or conditional text attributes or values in the underlying XML vocabulary. It just changes how the editor displays them.
- This preferences page should be used for profiling / conditional text elements only. To change how other types of attributes are displayed in the text, use a CSS file.
- If you are using the DITA XML vocabulary and a DITA **subject scheme map** (on page 3288) is defined in the **root map** (on page 3287) of your document, it will be used in place of anything defined using this dialog box.

This preferences page contains the following options and sections:

**Import from DITAVAL**

This button allows you to import profiling attributes from **DITAVAL files** (on page 3248). You can merge these new profiling attributes with the existing ones, or replace them completely. If the imported attributes conflict with the existing ones, Oxygen XML Editor displays a dialog box that contains two tables. The first one previews the imported attributes and the second one previews the already defined attributes. You can choose to either keep the existing attributes or replace them with the imported ones.

**Note:** When importing profiling attributes from DITAVAL files, Oxygen XML Editor automatically creates condition sets based on these files.

**Profiling Attributes section**

Allows you to specify a set of allowable values for each profiling or conditional attribute. You can use the **New** button at the bottom of the table to add profiling attributes (on page 970), the **Edit** button to edit existing ones, or the **Delete** button to delete entries from the table. Use the **Up** and **Down** buttons to change the priority of the entries. If you have multiple entries with identical names that match the same document type, Oxygen XML Editor uses the one that is positioned highest in the table.

**Report invalid profiling attribute values (DITA only)**

If selected, it means the following:

- In DITA, the automatic validation will display a warning when a value that is not defined is found in the document.
- In the DITA **_validate and Check for Completeness** dialog box, the **Report attributes and values that conflict with profiling preferences**
option (on page 3040) is not displayed. This means that the validation will behave the same as if that option was selected and it will always report such values.

Allow contributing extra profiling attribute values

This option is selected by default, which means that users are allowed to add values that are not defined in preferences to profiling attributes. If a user inserts such a value, when invoking the Edit Profiling Attributes action from the contextual menu in Author mode (or for DITA topics, the Edit Properties action in the DITA Maps Manager (on page 2990)), the Profiling Values Conflict dialog box (on page 972) will appear and it includes an Add these values to the configuration action that will automatically add the new value to the particular profiling attribute. If deselected, Oxygen XML Editor behaves as if the Preserve the configuration option has been chose in the Profiling Values Conflict dialog box (on page 972) and that dialog box will never appear.

Configure profiling colors and styles link

Use this link to open the profiling Colors and Styles preference page (on page 146).

Profiling Condition Sets section

Allows you to specify a specific set of profiling attributes to be used to specify a particular build configuration for your content. You can use the New button at the bottom of the table to add condition sets (on page 975), the Edit button to edit existing ones, or the Delete button to delete entries from the table. Use the Up and Down buttons to change the priority of the entries. If you have multiple entries with identical names that match the same document type, Oxygen XML Editor uses the one that is positioned highest in the table.

Show excluded content

Toggles whether or not the Show Excluded Content option (on page 981) in the Profiling / Conditional Text drop-down menu is enabled by default.

Colors and Styles Preferences

Oxygen XML Editor lets you set the colors and styles used to display profiling / conditional text (on page 144) in the Author mode editor (on page 402). To set Colors and Styles preferences, open
the Preferences dialog box (Options > Preferences) (on page 79) and go to Editor > Edit modes > Author > Profiling/Conditional Text > Colors and Styles.

The preference page includes the following options and sections:

- **Show profiling colors and styles**
  
  Toggles whether or not the Show Profiling Colors and Styles option (on page 980) in the Preferences > Profiling / Conditional Text drop-down menu is enabled by default.

- **Import from DITAVAL**
  
  Allows you to import profiling styles from .ditaval files. You can merge these new profiling styles with the existing ones, or replace them completely. If the imported styles conflict with the existing ones, Oxygen XML Editor displays a dialog box containing two tables: the first one previews the imported styles and the second one previews the already defined styles. You can choose to either keep the existing styles or replace them with the imported ones.

- **Profiling Colors and Styles Table**
  
  You can use buttons below this table to set specific colors and styles for the listed profiling attribute values. The table includes two categories:

  - **Defined attributes values** - Contains the styles for profiling attribute values defined in the Profiling / Conditional Text (on page 144) preferences page. Each profiling attribute value has an associated style. To ease the process of customizing styles, the Defined attributes values category contains by default the list of empty styles. All you have to do is to adjust the colors and decorations, thus skipping the process of manually defining the association rules (document type, attribute name and value). This is the reason why a style from this category can only be reset (on page 148), not deleted.

  - **Other** - This category contains styles for attribute values that are not marked as profiling values, in the Profiling / Conditional Text (on page 144) preferences page. In this category are listed:
    ◦ All the styles that were defined in other projects (with other profiling attribute value sets).
    ◦ All the styles set for the profiling attributes defined in a subject scheme map (on page 3243).

- **Automatic styling button**
  
  If you click this button, Oxygen XML Editor will apply automatic styling to the profiling attribute values that do not have a style defined.

- **New button**
Opens the Add Profiling Style dialog box that allows you to associate a set of coloring and styling properties to a profiling value.

**Note:** You can define a default style for a specific attribute by setting the Attribute value field to `<ANY>`. This style is applied for attribute values that do not have a specific style associated with it.

**Edit button**

Open the Edit Profiling Style dialog box that allows you to edit the colors or style for an existing profiling value. You can also double-click the value to open this dialog box.

**Clear style button**

 Resets the style for the selected value to its default setting (no color or decoration).

**Delete button**

Delete the selected style from the Other category.

Related Information:

- Filtering Profiling Values with a DITAVAL File *(on page 3248)*
- Styling the Rendering of Profiled Content Using a DITAVAL File *(on page 3250)*

Attributes Rendering Preferences

Oxygen XML Editor lets you display the profiling attributes applied to your content *(on page 980)* in the Author mode editor. To configure how the profiling attributes appear, open the Preferences dialog box *(Options > Preferences)* *(on page 79)* and go to Editor > Edit modes > Author > Profiling/Conditional Text > Attributes Rendering. When the Show Profiling Attributes option *(on page 981)* is selected, the Author mode displays conditional text markers at the end of conditional text blocks. Use the options in this page to customize the rendering of these text markers.

The following options are available:

**Show profiling attributes**

Toggles whether or not the Show Profiling Attributes option *(on page 981)* in the Profiling / Conditional Text drop-down menu is enabled by default.

**Show profiling attribute name**

If selected, the names of the profiling attributes are displayed with their values. If unchecked, only the values are displayed.
Background color

Sets the background color used to display the profiling attributes.

Attribute name foreground color

Sets the foreground color used to display the names of the profiling attributes.

Attribute values foreground color

Sets the foreground color used to display values of the profiling attributes.

Border color

Sets the color of the border of the block that displays the profiling attributes.

MathML Preferences

Oxygen XML Editor allows you to edit MathML (on page 1057) equations and displays the results in a preview window. For a more specialized MathML editor, you can install Design Science MathFlow (on page 1058), which is a commercial product that requires a separate license.

To configure the MathML editor or to enter your MathFlow license information, open the Preferences dialog box (Options > Preferences) (on page 79) and go to Editor > Edit modes > Author > MathML.

You can configure the following options:

Equation minimum font size

The minimum size of the font used for rendering mathematical symbols when editing in the Author mode.

MathFlow installation directory

The installation folder for the MathFlow components product (MathFlow SDK).

MathFlow license file

The license file for the MathFlow components product (MathFlow SDK).

MathFlow preferred editor

A MathML formula can be edited in one of three editors of MathFlow components product (MathFlow SDK).

- Structure Editor (default selection) - Targets professional XML workflow users.
- Style Editor - Tailored to the needs of content authors.
- Simple Editor - Designed for applications where end-users can enter mathematical equations without prior training and only the meaning of the math matters.

Save special characters
Specifies how special characters are saved in the XML file.

- **As entity names** - Saves the characters in \&name; format. It refers to a character by the name of the entity that has the desired character as its replacement text. For example, the Greek Omega character is saved as \&Omega;.

- **As character entities** (default selection) - Saves the characters in a hexadecimal value, using the \&#xNNN format. For example, the Greek Omega character is saved as \&#x3a9;.

- **As character values** - Saves the characters as the actual symbol. For example, the Greek Omega character is saved as Ω.

More documentation is available on the Design Science MathFlow website.

AutoCorrect Preferences

Oxygen XML Editor includes an option to automatically correct misspelled words as you type in Author mode. To enable and configure this AutoCorrect feature (on page 767), open the Preferences dialog box (Options > Preferences) (on page 79) and go to Editor > Edit Modes > Author > AutoCorrect.

The following options are available:

**Enable AutoCorrect**

When selected (default state), while editing in Author mode, if you type anything that is listed in the Replace column of the Replacements table displayed in this preferences page, Oxygen XML Editor will automatically replace it with the value listed in the With column.

**Use additional suggestions from the spell checker**

If selected, in addition to anything listed in the Replacements table displayed in this preferences page, Oxygen XML Editor will also use suggestions from the Spell Checker to automatically correct misspelled words. Suggestions from the Spell Checker will only be used if the misspelled word is not found in the Replacements table.

**Note:** The AutoCorrect feature shares the same options configured in the Language options (on page 184) and Ignore elements (on page 186) sections in the Spell Check preferences page.

Spell Check options link

Use this link to navigate to the Spell Check Preferences page (on page 183).

Replacements Table section
The AutoCorrect feature uses the Replacements table to automatically replace anything that is listed in the Replace column with the value listed in the With column for each language.

**Replacements for language drop-down menu**

You can specify the language for the Replacements table, and for each language, you can configure the items listed in the table. The language selected in this page is not the language that will be used by the AutoCorrect feature. It is simply the language for the Replacements table.

**Replacements Table**

You can double-click on cells in either column to edit the listed items. Use the Add button to insert new items and the Remove button to delete rows from the table.

![Note: Any changes, additions, or deletions you make to this table are saved to a path that is specified in the AutoCorrect Dictionaries preferences page (on page 153).]

**Smart quotes section**

You can also choose to automatically convert double and single quotes to a quotation characters of your choice by using the following options in the Smart quotes section:

- **Replace "Single quotes"** - Replaces single quotes with the quotation symbols you select with the Start quote and End quote buttons.
- **Replace "Double quotes"** - Replaces double quotes with the quotation symbols you select with the Start quote and End quote buttons.

![Note: These Smart quotes options are ignored for content inside any element listed in the Ignore elements section of the Spell Check preferences page (on page 186).]

**Global Options (on page 3283)**

If this option is selected, the options are stored on your local computer, in a folder that is not accessible to other users.

**Project Options (on page 3286)**

If this option is selected, the options are stored in the project file and can be shared with other users. Selecting Project Options (on page 3286) will only save your selections in Enable AutoCorrect (on page 150), Use additional suggestions from the spell checker (on page 150), and the options in the Smart quotes section (on page 151). Changes to the Replacements table are not saved in this page. To save changes to the Replacements table at project level you need to specify a custom location in the User-
defined replacements section of the AutoCorrect Dictionaries preferences page (on page 153) and select Project Options from that preferences page instead.

Restores the options in this preferences page to their default values and also deletes any changes you have made to the Replacements table (on page 150).

AutoCorrect Dictionaries Preferences

To set the Dictionaries preferences for the AutoCorrect feature (on page 767), open the Preferences dialog box (Options > Preferences) (on page 79) and go to Editor > Edit Modes > Author > AutoCorrect > Dictionaries. This page allows you to specify the location of the dictionaries that Oxygen XML Editor uses for the AutoCorrect feature and the location for saving user-defined replacements.

The following options are available in this preferences page:

Dictionaries default folder

Displays the default location where the dictionaries that Oxygen XML Editor uses for the AutoCorrect feature are stored.

Include dictionaries from

Selecting this option allows you to specify a location where you have stored AutoCorrect dictionaries that you want to include, along with the default ones.

⚠️ Important: Consider the following notes regarding this option:

• The AutoCorrect mechanism takes into account AutoCorrect dictionaries collected both from the default and custom locations and multiple dictionaries from the same language are merged (for example, en_UK.dat from the default location is merged with en_US.dat from a custom location).

• If you have a generic AutoCorrect dictionary file (one that just has a two letter language code for its file name, such as en.dat) saved in either the default or custom location, the other more specific dictionaries (for example, en_UK.dat and en_US.dat) will not be merged and the existing generic dictionary will simply be used instead.

• If the additional location contains a file with the same name as one from the default location, the file in the additional location takes precedence over the file from the default location.

How to add more dictionaries link

Use this link to open a topic in the Oxygen XML Editor User Guide that explains how to add dictionaries for the AutoCorrect feature (on page 769).
Save user-defined replacements in the following location

Specifies the target where added, edited, or deleted replacements are saved. By default, the target is the application preferences folder, but you can also choose a custom location.

Tip: To save changes to the Replacement table (in the AutoCorrect preferences page (on page 150) at project level (on page 3286), select a custom location for the User-defined replacements and select Project Options (on page 3286) at the bottom of the page.

Related Information:

• Add Dictionaries for the AutoCorrect Feature (on page 769)

Schema Design Preferences

Oxygen XML Editor provides a graphical schema design editor (on page 623) to make editing XML Schema easier. To configure the Schema Design options, open the Preferences dialog box (Options > Preferences) (on page 79) and go to Editor > Edit modes > Schema Design.

The following options are available in the Schema Design preferences page:

Show annotation in the diagram

When selected, Oxygen XML Editor displays the content of xs:documentation elements in schema diagrams.

When trying to edit components from another schema

The schema diagram editor will combine schemas imported by the current schema file into a single schema diagram. You can choose what happens if you try to edit a component from an imported schema. The options are:

• Always go to its definition - Oxygen XML Editor opens the imported schema file so that you can edit it.
• Never go to its definition - The imported schema file is not opened and the component cannot be edited in place.
• Always ask - Oxygen XML Editor asks if you want to open the imported schema file.

Zoom

Allows you to set the default zoom level of the schema diagram.
Properties Preferences

Oxygen XML Editor lets you control which properties to display for XML Schema components in the XML Schema Design view (on page 623). To configure the schema design properties displayed, open the Preferences dialog box (Options > Preferences) (on page 79) and go to Editor > Edit modes > Schema Design > Properties.

This preferences page contains the following:

Show additional properties in the diagram

If this option is selected, the properties selected in the property table are shown in the XML Schema Design mode. This option is selected by default.

Properties Table

Show

Use this column in the table to select the properties that you want to be displayed in the XML Schema Design mode.

Only if specified

Use this column to select if you want the property to be displayed only if it is defined in the schema.

Open Preferences

Oxygen XML Editor lets you control how files are opened. To configure the options for opening documents, open the Preferences dialog box (Options > Preferences) (on page 79) and go to Editor > Open.

The following options are available:

Open each document in a tab next to the current one

When selected (default), each new document is opened in a tab next to the currently opened tab. If not selected, each new document is opened in a tab at the end of the current tab stack.

Restore cursor position

Selected by default, it ensures that the last position of the cursor will be remembered when a document is re-opened. If this option is not selected, the cursor will always be positioned at the beginning of the document.

Lock local resources

When this option is selected and you open a file from the local file system or a shared network drive, Oxygen XML Editor locks the file for the current user and the file becomes
read-only for other users while the lock exists. Locked and read-only files have a lock icon (🔒) displayed on their editor tabs. Newly created files are locked when you first save them. If you select this option with files already opened in Oxygen XML Editor, it will lock all the currently opened files. If you deselect this option with files already opened, it will unlock them by deleting the corresponding .lock files. When you try to save locked (read-only) files, a Save As dialog box will be displayed to avoid overwriting the initial resource.

**Support for Special Characters section**

**Note:** The options in this section only affect the Text editing mode.

**When bidirectional text, Asian languages, or other special characters are detected**

You can choose how you want Oxygen XML Editor to handle bidirectional text, Asian languages, or other special characters when they are detected in Text mode. You can choose one of the following:

- **Enable support for special characters** - The support for special characters will always be enabled. For details about what this means, see [Bidirectional Text Support in Text Mode - Enabled](on page 366).

- **Disable support for special characters** - The support for special characters will always be disabled. For details about what this means, see [Bidirectional Text Support in Text Mode - Disabled](on page 367).

- **Prompt for each document** (default setting) - You will be prompted to choose whether or not to enable the support for special characters whenever they are detected in a newly opened document. For details about which setting to choose, see [Special Character Support in Text Mode](on page 366).

**Disable special characters support for documents larger than (characters)**

Enabling bidirectional text editing support can affect performance on large files. When this option is selected, bidirectional editing is disabled for files exceeding the specified size (even if the **Enable support for special characters** option (on page 155) is selected). The default limit is 300 MB. You can change it to 500 MB or 800 MB, but it is recommended that you always leave this option selected regardless of the limit that is set.

**Performance section**

**Optimize loading in the Text edit mode for files over (MB)**
File loading is optimized for reduced memory usage for any file whose size is larger than the value specified in this drop-down list. This is useful for editing large files, but there are several restrictions (on page 781) for memory-intensive operations.

**Show warning when loading large documents**

Oxygen XML Editor will warn you if you open a file that is bigger than the specified size.

**Optimize loading for documents with lines longer than (Characters)**

*Line wrap* is automatically performed for documents that contain lines that exceed the length specified in this text field. For a list of the restrictions applied to a document with long lines, see Editing Documents with Long Lines (on page 784).

**Show warning when loading documents with long lines**

When selected, Oxygen XML Editor will warn you when you open a file with lines longer than the specified length. To reduce the length of lines in a file, format and indent the document (on page 863) after it is opened in the editor panel. For a list of the restrictions applied to a document with long lines, see Documents with Long Lines (on page 784).

**Save Preferences**

Oxygen XML Editor lets you control how files are saved. To configure the options for saving documents, open the Preferences dialog box (Options > Preferences) (on page 79) and go to Editor > Save.

The following options are available:

**Show "Save as" option to save newly created documents in the "New" document wizard**

It is selected by default, but if you deselect this option, the Save as option (on page 678) will not be available in the New Document wizard (on page 678), so you will not have the ability to change the default name and path of the new file.

**Safe save (only for local files)**

In the unlikely event of a failure when attempting a Save action, this option provides increased protection from corruption of the original file. When this option is selected, it saves the content to a temporary file and if the save is unsuccessful, the editor preserves its unsaved state status.

**Automatically save the document every**
If selected, your documents are automatically saved after a preset time interval that is specified in the drop-down list.

**On Save, make backup copy with extension (only for local files)**

If selected, a backup copy is made when saving the edited document. This option is available only for local files (files that are stored on the local file system). The default backup file extension is .bak, but that can be changed in the text field.

**Save auto-recover information every**

If selected, your documents are automatically saved to a backup file after the time interval specified in the drop-down list.

**Auto-recover file location**

Specifies the location of the backup file for auto-recovery.

**Validate document before saving**

If selected, Oxygen XML Editor runs a validation that checks your document for errors before saving it.

**Save all files before transformation or validation**

Saves all opened files before validating or transforming an XML document. This ensures that any dependencies are resolved when modifying the XML document and its XML Schema.

**Save all files before calling external tools**

If selected, all files are saved before executing an external tool (on page 2942).

**Automatically compile LESS to CSS when saving**

If selected, when you save a LESS file it will automatically be compiled to CSS (deselected by default).

⚠️ **Important**: If this option is selected, when you save a LESS file, the CSS file that has the same name as the LESS file is overwritten without warning. Make sure all your changes are made in the LESS file. Do not edit the CSS file directly, as your changes might be lost.

**Performance section**

**Clear undo buffer on save**

If selected, Oxygen XML Editor clears its undo buffer when you save a document. Thus, modifications made prior to saving the document cannot be undone. Select this option if you frequently encounter out of memory errors when editing large documents.
Format Preferences

This preferences page contains various formatting options that influence editing and formatting in both the Text (on page 303) and Author (on page 402) editing modes. To control additional options specifically for the Author mode editor, see Whitespace Handling in Author Mode (on page 902).

Note: These settings apply to the formatting of source documents. The formatting of output documents is determined by the transformation scenarios that create them (on page 1640).

To configure the Format options, open the Preferences dialog box (Options > Preferences) (on page 79) and go to Editor > Format.

The following options are available:

Detect indent on open

If selected, Oxygen XML Editor detects how a document is indented when it is opened. Oxygen XML Editor uses a heuristic method of detection by computing a weighted average indent value from the initial document content. You can deselect this setting if the detected value does not work for your particular case and you want to use a fixed-size indent for all the edited documents. If this option is selected, Oxygen XML Editor detects the following:

- When TAB characters are used to indent content, the size of the TAB characters is used for the indent size.
- Otherwise, the detected size of SPACE characters is used for the indent size.

Tip: If you want to minimize the formatting differences created by the Format and Indent operation in a document edited in the Text edited mode, make sure that both the Detect indent on open and Detect line width on open (on page 159) options are selected.

Use zero-indent, if detected

By default, if no indent was detected in the document, the fixed-size indent is used. Select this option if all of your documents have no indentation and you want to keep them that way.

Indent with tabs

If selected, indents are created using TAB characters. If unchecked, lines are indented using space characters. Selecting this option automatically disables the Detect indent on open (on page 158) option.

Indent size
The meaning of this setting depends on the following:

- If the **Detect indent on open** option (on page 158) is selected and TAB characters are detected at the beginning of the line, the *indent size* is the width of a TAB character. Otherwise, the *indent size* value is ignored and Oxygen XML Editor uses the number of detected SPACE characters.
- If the **Indent with tabs** option (on page 158) is selected, the *indent size* is the width of a TAB character.
- If neither of these options are selected, the *indent size* is the number of SPACE characters used for indenting the text lines.

For additional information about changing the *indent size*, see **Setting an Indent Size to Zero** (on page 869).

For information about when this setting is used, see **Where Indent Size and Line Width Settings are Used in Oxygen XML Editor** (on page 160).

**Indent on enter**

If selected, when you press **Enter** to insert a line break in the **Text** editing mode, an indentation will be added to the new line.

**Enable smart enter**

If selected, when you press the **Enter** key between a start and an end XML tag in the **Text** editing mode, the cursor is placed in an indented position on the empty line formed between the start and end tag.

**Format and indent the document on open**

If selected, an XML document is formatted and indented before opening it in Oxygen XML Editor.

**Note:** Some specialized types of XML documents do not benefit from this feature, including Relax NG, XSD, XSL, and Ant. However, the feature is available for some non-XML types of documents, such as CSS and JSON.

**Detect line width on open**

If selected, Oxygen XML Editor automatically detects the line width when the document is opened.

**Hard line wrap (Limit to "Line width - Format and Indent")**

If selected, when typing content in the **Text** editing mode and the maximum line width is reached, a line break is automatically inserted.

**Line width - Format and Indent**
Defines the number of characters after which the **Format and Indent** (pretty-print) action performs hard line-wrapping. For example, if set to 100, after a **Format and Indent** action, the longest line will have a maximum of 100 characters. This setting is also used when saving XML content edited in the **Author** editing mode.

**Note:** To avoid having an indent that is longer than the line width setting and without having sufficient space available for the text content, the indent limit is actually set at half the value of the **Line width - Format and Indent** setting. The remaining space is reserved for text.

For information about when this setting is used, see Where Indent Size and Line Width Settings are Used in Oxygen XML Editor *(on page 160).*

**Clear undo buffer before Format and Indent**

The **Format and Indent** operation can be *undone*, but if used intensively, a considerable amount of the memory allocated for Oxygen XML Editor will be used for storing the undo states. If this option is selected, Oxygen XML Editor empties the undo buffer before doing a **Format and Indent** operation. This means you will not be able to undo any changes you made before the format and indent operation. Select this option if you encounter out of memory problems (*OutOfMemoryError*) when performing the **Format and Indent** operation.

**Where Indent Size and Line Width Settings are Used in Oxygen XML Editor**

The values set in the **Indent Size** and **Line Width - Format and Indent** options are used in various places in the application, including the following:

- When the **Format and Indent** action is used in the **Text** editing mode.
- When you press **Enter** to break a line in the **Text** editing mode.
- When the **Hard line wrap (Limit to "Line width - Format and Indent")** option is selected and the maximum line width is reached while editing in the **Text** mode.
- When the XML is serialized by saving content in the **Author** editing mode.

For more information about the formatting options offered by Oxygen XML Editor, watch our video demonstration:

https://www.youtube.com/embed/1plmdN0Cfso

**XML Preferences**

To configure the **XML** Formatting options, open the **Preferences** dialog box (**Options > Preferences**) *(on page 79)* and go to **Editor > Format > XML**.
The following options are available:

**Format Section**

This section includes the following drop-down boxes:

- **Preserve empty lines**
  
  The **Format and Indent** operation preserves all empty lines found in the document.

- **Preserve text as it is**
  
  The **Format and Indent** operation preserves text content as it is, without removing or adding any white space.

- **Preserve line breaks in attributes**
  
  Line breaks found in attribute values are preserved.

  **Note:** When this option is selected, the **Break long attributes** option *(on page 161)* is automatically disabled.

- **Break long attributes**
  
  The **Format and Indent** operation breaks long attribute values.

- **Indent inline elements**
  
  The **inline elements** are indented on separate lines if they are preceded by white spaces and they follow another element start or end tag. For example:

  **Original XML:**

  ```xml
  <root>
  text <parent> <child/></child> </parent>
  </root>
  ```

  **Indent inline elements** selected:

  ```xml
  <root>
  text <parent>
  <child/>
  </parent>
  </root>
  ```

  **Indent inline elements** not selected:

  ```xml
  <root>
  text <parent> <child/> </parent> </root>
  ```

- **Expand empty elements**
If not selected (default), the **Format and Indent** operation results in an empty XML element being serialized in a compact form ( `<a atr1="v1"/>
`). If selected, the same operation results in empty XML elements being serialized in expanded form (for example, `<a atr1="v1"></a>`).

**Notes:**

- When using the **Format and Indent** operation in **Text** mode, if the **Schema aware format and indent** option (on page 163) is enabled, Oxygen XML Editor will use information from the associated schema and avoid expanding tags for elements that are defined as *empty* in the schema.
- When saving a document in **Author** mode, if the **Schema aware normalization, format, and indent** option in the **Schema-Aware** preferences page (on page 137) is enabled, Oxygen XML Editor will use information from the associated schema and avoid expanding tags for elements that are defined as *empty* in the schema (therefore, text or other elements are not allowed inside them).

**Sort attributes**

The **Format and Indent** operation sorts the attributes of an element lexicographically.

**Add space before slash in empty elements**

Inserts a space character before the trailing `/` and `>` of empty elements.

**Break line before an attribute name**

The **Format and Indent** operation breaks the line before the attribute name.

**Element Spacing Section**

This section controls how the application handles whitespaces found in XML content. You can **Add** or **Remove** element names or simplified XPath expressions in the various tabs.

The XPath expressions can accept multiple attribute conditions and inside each condition you can use **AND/OR** boolean operators and parentheses to override the priority.

You can use one or more of the following attribute conditions (default attribute values are not taken into account):

- `element[@attr]` - Matches all instances of the specified element that include the specified attribute.
- `element[not(@attr)]` - Matches all instances of the specified element that do not include the specified attribute.
- `element[@attr = "value"]` - Matches all instances of the specified element that include the specified attribute with the given value.
- `element[@attr != "value"]` - Matches all instances of the specified element that include the specified attribute and its value is different than the one given.

**Example:** The following is an example of how you could use multiple boolean operators and parentheses inside an attribute condition:

```
*[@a and @b or @c and @d]
*[@a and (@b or @c) and @d]
```

The following are just examples of how simplified XPath expressions might look like:

- `elementName`
- `//elementName`
- `/elementName1/elementName2/elementName3`
- `//xs:localName`  
  Note: The namespace prefixes (such as `xs`) are treated as part of the element name without taking its binding to a namespace into account.
- `//xs:documentation[@lang="en"]`

The tabs are as follows:

**Preserve space**

List of elements for which the Format and Indent operation preserves the whitespaces (such as blanks, tabs, and newlines).

**Default space**

List of elements for which the content is normalized (multiple contiguous whitespaces are replaced by a single space), before applying the Format and Indent operation.

**Mixed content**

The elements from this list are treated as mixed content when applying the Format and Indent operation. The lines are split only when whitespaces are encountered.

**Line break**

List of elements for which line breaks will be inserted, regardless of their content. You can choose to break the line before the element, after, or both.

**Schema aware format and indent**
The **Format and Indent** operation takes the schema information into account with regard to the *space preserve, mixed, or element only* properties of an element.

**Indent Section**

Includes the following options:

**Indent (when typing) in preserve space elements**

Normally, the *Preserve space* elements (identified by the `xml:space` attribute set to `preserve` or by their presence in the *Preserve space* tab of the *Element Spacing* list ([on page 162](#))) are ignored by the *Format and Indent* operation. When this option is selected and you edit one of these elements, its content is formatted.

**Indent on paste - sections with number of lines less than 300**

When you paste a chunk of text that has fewer than 300 lines, the inserted content is indented. To keep the original indent style of the document you copy content from, deselect this option.

**Whitespaces Preferences**

When Oxygen XML Editor formats and indents XML documents, a whitespace normalization process is applied, thus replacing whitespace sequences with single space characters. Oxygen XML Editor allows you to configure which Unicode characters are treated as spaces during the normalization process.

To configure the *Whitespace* preferences, open the Preferences dialog box ([Options > Preferences](#)) ([on page 79](#)) and go to Editor > Format > XML > Whitespace.

This table lists the Unicode whitespace characters. Select any that you want to have treated as whitespace when formatting and indenting an XML document.

The whitespaces are normalized when:

- The **Format and Indent** action is applied on an XML document.
- You switch from Text mode to Author mode.
- You switch from Author mode to Text mode.

**Note:** The whitespace normalization process replaces any sequence of characters declared as whitespaces in the *Whitespaces* table with a single space character (U+0020). If you want to be sure that a certain whitespace character will not be removed in the normalization process, deselect it in the *Whitespaces* table.

**Important:** The characters with the codes U+0009 (TAB), U+000A (LF), U+000D (CR) and U+0020 (SPACE) are always considered to be whitespace characters and cannot be deselected.
**XQuery Preferences**

To configure the XQuery Formatting options, open the Preferences dialog box (Options > Preferences) (on page 79) and go to Editor > Format > XQuery.

The following options are available:

- **Preserve line breaks** - All initial line breaks are preserved.
- **Break line before an attribute name** - Each attribute of an XML element is written on a new line and properly indented.

**XPath Preferences**

To configure the XPath Formatting options, open the Preferences dialog box (Options > Preferences) (on page 79) and go to Editor > Format > XPath.

The following option is available:

**Format XPath code embedded in XSLT, XSD and Schematron files**

If selected, the Format and Indent action applied on an XSD, XSLT, or Schematron document will perform an XPath-specific formatting on the values of the attributes that accept XPath expressions.

**Note:** For XSLT documents, the formatting is not applied to attribute value templates.

**CSS Preferences**

Oxygen XML Editor can format and indent your CSS files. To configure the CSS formatting options, open the Preferences dialog box (Options > Preferences) (on page 79) and go to Editor > Format > CSS.

The following options control how your CSS files are formatted and indented:

- **Class body on new line**
  
  If selected, the class body (including the curly brackets) is placed on a new line. This option is not selected by default.

- **Indent class content**
  
  When selected (default state), the class content is indented.

- **Add space before the value of a CSS property**
When selected (default state), whitespaces are added between the `:` (colon) and the value of a style property.

**Add new line between classes**

If selected, an empty line is added between two classes. This option is not selected by default.

**Preserve empty lines**

When selected (default state), the empty lines from the CSS content are preserved.

**Allow formatting embedded CSS**

When selected (default state), CSS content that is embedded in XML is also formatted when the XML content is formatted.

---

**JavaScript Preferences**

To configure the JavaScript format options, open the Preferences dialog box (Options > Preferences) (on page 79) and go to Editor > Format > JavaScript.

The following options control the behavior of the Format and Indent action:

- **Start curly brace on new line** - Opening curly braces start on a new line.
- **Preserve empty lines** - Empty lines in the JavaScript code are preserved. This option is selected by default.
- **Allow formatting embedded JavaScript** - Applied only to XHTML documents, this option allows Oxygen XML Editor to format embedded JavaScript code, taking precedence over the Schema aware format and indent (on page 163) option. This option is selected by default.

---

**Content Completion Preferences**

Oxygen XML Editor provides a Content Completion Assistant (on page 3280) that provides a list of available options at any point in a document and can auto-complete structures, elements, and attributes. To configure the Content Completion preferences, open the Preferences dialog box (Options > Preferences) (on page 79) and go to Editor > Content Completion. These options control how the Content Completion Assistant works.

The following options are available:

- **Auto close the last opened tag**
  When selected, Oxygen XML Editor automatically closes the last open tag when you type `</`.

- **Automatically rename/delete/comment matching tags**
If you rename, delete, or comment out a start tag, Oxygen XML Editor automatically renames, deletes, or comments out the matching end tag.

**Note:** If you select **Toggle comment** for multiple starting tags and the matching end tags are on the same line as other start tags, the end tags are not commented.

**Enable content completion**

Toggles the content completion feature on or off.

**Close the inserted element**

When you choose an entry from the **Content Completion Assistant** list of proposals, Oxygen XML Editor inserts both start and end tags. The following additional options are available with regard to closing the element:

- **If it has no matching tag** - The end tag of the inserted element is automatically added only if it is not already present in the document.
- **Add element content** - Oxygen XML Editor inserts the required elements specified in the DTD, XML Schema, or RELAX NG schema that is associated with the edited XML document (on page 1112).
  - **Add optional content** - If selected, Oxygen XML Editor inserts the optional elements specified in the DTD, XML Schema, or RELAX NG schema.
  - **Add first Choice particle** - If selected, Oxygen XML Editor inserts the first choice particle specified in the DTD, XML Schema, or RELAX NG schema.

**Case sensitive search**

When selected, the search in the **Content Completion Assistant** is case-sensitive when you type a character ('a' and 'A' are different characters).

**Note:** This option is ignored when the current language itself is not case-sensitive. For example, the case is ignored in the CSS language.

**Position cursor between tags**

When selected, Oxygen XML Editor automatically moves the cursor between the start and end tag after inserting the element. This only applies to:

- Elements with only optional attributes or no attributes at all.
- Elements with required attributes, but only when the **Insert the required attributes option** (on page 168) is not selected.

**Show all entities**
Oxygen XML Editor displays a list with all the internal and external entities declared in the current document when you type the start character of an entity reference (for example, `&`).

**Insert the required attributes**

Oxygen XML Editor inserts automatically the required attributes taken from the DTD or XML Schema.

**Insert the fixed attributes**

If selected, Oxygen XML Editor automatically inserts any \texttt{FIXED} attributes from the DTD or XML Schema for an element inserted with the help of the Content Completion Assistant.

**Show recently used items**

When selected, Oxygen XML Editor remembers the last inserted items from the Content Completion Assistant window. The number of items to be remembered is limited by the Maximum number of recent items shown list box. These most frequently used items are displayed on the top of the content completion window and are separated from the rest of the suggestions by a thin gray line.

- **Maximum number of recent items shown**
  Specifies the limit for the number of recently used items presented at the top of the Content Completion Assistant window.

**Learn attributes values**

When selected, Oxygen XML Editor learns the attribute values used in a document.

**Learn on open document**

Oxygen XML Editor automatically learns the document structure when the document is opened.

**Learn words (Dynamic Abbreviations, available on Ctrl+Space (Command+Space on OS X))**

When selected, Oxygen XML Editor learns the typed words and makes them available in a content completion fashion by pressing Ctrl + Space (Command + Space on OS X) on your keyboard;

\textbf{Note:} For the words to be learned, they need to be separated by space characters.

**Activation delay of the proposals window (ms)**

Delay in milliseconds from last key press until the Content Completion Assistant is displayed.

**Related Information:**
XSLT Preferences

XSLT stylesheets are often used to create output in XHTML or XSL-FO. In addition to suggesting content completion options for XSLT stylesheet elements, Oxygen XML Editor can suggest elements from these vocabularies. To configure the XSLT content completion options, open the Preferences dialog box (Options > Preferences) (on page 79) and go to Editor > Content Completion > XSLT.

The following options are available:

Include elements declared in the schema section

This section includes options with regard to detecting elements from the declared schema.

Automatically detect HTML or Formatting Objects

Detects if the output being generated is HTML or FO and provides content completion for those vocabularies. Oxygen XML Editor analyzes the namespaces declared in the root element to find an appropriate schema.

If the detection fails, Oxygen XML Editor uses one of the following options:

- **None** - The Content Completion Assistant (on page 3280) suggests only XSLT elements.
- **HTML** - The Content Completion Assistant (on page 3280) includes HTML elements, including HTML5 elements (such as video, canvas, etc.).
- **Formatting objects** - The Content Completion Assistant (on page 3280) includes Formatting Objects (XSL-FO) elements as substitutes for xsi:element.
- **Custom schema** - If you want content completion hints for another output vocabulary, you can use this option to specify the path to the schema for that vocabulary. The supported schema types are DTD, XML Schema, RNG schema, or NVDL schema for inserting elements from the target language of the stylesheet.

Documentation schema section

This section specifies an additional schema that will be used for documenting XSL stylesheets. You can choose between the following:

- **Built-in schema** - Uses the built-in schema for documentation.
- **Custom schema** - Allows you to specify a custom schema for documentation. The supported schema types are XSD, RNG, RNC, DTD, and NVDL.
XPath Preferences

Oxygen XML Editor provides content-completion support for XPath expressions. To configure the options for the content completion in XPath expressions, open the Preferences dialog box (Options > Preferences) (on page 79) and go to Editor > Content Completion > XPath.

The following options are available:

- **Enable content completion for XPath expressions** - Enables the Content Completion Assistant in XPath expressions (on page 1192) that you enter in the match, select, and test XSL attributes and also in the XPath toolbar (on page 2182).
  - Include XPath functions - When this option is selected, XPath functions are included in the content completion suggestions.
  - Include XSLT functions - When this option is selected, XSLT functions are included in the content completion suggestions.
  - Include axes - When this option is selected, XSLT axes are included in the content completion suggestions.
- **Show signatures of XSLT / XPath functions** - Makes the editor indicate the signature of the XPath function located at the cursor position in a tooltip. See the XPath Tooltip Helper (on page 1195) section for more information.
- **Function signature window background** - Specifies the background color of the tooltip window.
- **Function signature window foreground** - Specifies the foreground color of the tooltip window.

XSD Preferences

Oxygen XML Editor provides content completion assistance when you are writing XML Schema (XSD). To configure XSD preferences, open the Preferences dialog box (Options > Preferences) (on page 79) and go to Editor > Content Completion > XSD. The option in this preferences page allows you to define additional elements to be suggested by the Content Completion Assistant (on page 3280) in xs:appinfo elements (in addition to the elements defined in the XML Schema).

The following option is available:

**When in "xs:appinfo" context, also include elements declared in the schema**

You can choose between the following:

- **None** - The Content Completion Assistant offers only the XML Schema schema information.
- **ISO Schematron** - The Content Completion Assistant also includes ISO Schematron elements in xs:appinfo.
- **Schematron 1.5** - The Content Completion Assistant also includes Schematron 1.5 elements in xs:appinfo.
• **Other** - The Content Completion Assistant also includes elements from an XML Schema identified by a URL in `xs:appinfo` elements.

**JavaScript Preferences**

Oxygen XML Editor can provide content completion suggestions when you are writing JavaScript files. To configure content completion support for JavaScript, open the Preferences dialog box (Options > Preferences) (on page 79) and go to Editor > Content Completion > JavaScript. You can configure the following options:

**Enable content completion**

Enables the content completion support for JavaScript files.

**Use built-in libraries**

Allows Oxygen XML Editor to include components (object names, properties, functions, and variables) collected from the built-in JavaScript library files when making suggestions.

**Use defined libraries**

Oxygen XML Editor can also use JavaScript libraries to when making suggestions. List the paths (URIs) of any JavaScript files you want Oxygen XML Editor to use when making suggestions.

**Note:** The paths can contain editor variables (on page 276) such as `${pdu}`, or `${oxygenHome}`. You can make these paths relative to the project directory or installation directory.

**Annotations Preferences**

Certain types of schemas (XML Schema, DTDs, Relax NG) can include annotations that document the various elements and attributes that they define. Oxygen XML Editor can display these annotations when offering content completion suggestions. To configure the Annotations preferences, open the Preferences dialog box (Options > Preferences) (on page 79) and go to Editor > Content Completion > Annotations.

The following options are available:

**Show annotations in Content Completion Assistant**

If selected, Oxygen XML Editor displays the schema annotations of an element, attribute, or attribute value currently selected in the Content Completion Assistant (on page 3280) proposals list.

**Show annotations in tooltip**
If selected, Oxygen XML Editor displays the annotation of elements and attributes as a tooltip when you hover over them with the cursor in the editing area or in the Elements view (on page 355). If not selected, tooltips are disabled in all modes.

Show annotation in HTML format, if possible

This option allows you to view the annotations associated with an element or attribute in HTML format. It is available when editing XML documents that have associated an XML Schema or Relax NG schema. If this option is not selected, the annotations are converted and displayed as plain text.

Prefer DTD comments that start with "doc:" as annotations

To address the lack of dedicated annotation support in DTD documents, Oxygen XML Editor recommends prefixing with the doc: particle all comments intended to be shown to the developer who writes an XML validated against a DTD schema.

If this option is selected, Oxygen XML Editor uses the following mechanism to collect annotations:

- If at least one doc: comment is found in the entire DTD, only comments of this type are displayed as annotations.
- If no doc: comment is found in the entire DTD, all comments are considered annotations and displayed as such.

If not selected, all comments, regardless of their type, are considered annotations and displayed as such.

Use all Relax NG annotations as documentation

If selected, any element outside the Relax NG namespace, that is http://relaxng.org/ns/structure/1.0, is considered annotation and is displayed in the annotation window next to the Content Completion Assistant (on page 3280) window and in the Model view (on page 353). When this option is not selected, only elements from the Relax NG annotations namespace, that is http://relaxng.org/ns/compatibility/annotations/1.0 are considered annotations.

Related Information:

- Schema Annotations in Text Mode (on page 847)

Code Templates Preferences

Code templates (on page 855) are code fragments that can be inserted at the current editing position. Oxygen XML Editor includes a set of built-in templates for CSS, LESS, Schematron, XSL,
XQuery, and XML Schema document types. You can also define your own code templates (on page 855) for any type of file and share them with your colleagues (on page 857) using the template export and import functions.

To configure Code Templates, open the Preferences dialog box (Options > Preferences) (on page 79) and go to Editor > Templates > Code Templates.

This preferences page contains a list of all the available code templates (both built-in and custom created ones) and a code preview area. You can disable any code template by deselecting it.

The following actions are available:

**New**

Opens the Code template dialog box that allows you to define a new code template. You can define the following fields:

- **Name** - The name of the code template.
- **Description** - [Optional] The description of the code template that will appear in the Code Templates preferences page and in the tooltip message when selecting it from the Content Completion Assistant (on page 3280). HTML markup can be used for better rendering.
- **Associate with** - You can choose to set the code template to be associated with a specific type of editor or for all editor types.
- **Shortcut key** - [Optional] If you want to assign a shortcut key that can be used to insert the code template, place the cursor in the Shortcut key field and press the desired key combination on your keyboard. Use the Clear button if you make a mistake. If the Enable platform-independent shortcut keys checkbox is selected, the shortcut is platform-independent and the following modifiers are used:
  - M1 represents the Command key on MacOS X, and the Ctrl key on other platforms.
  - M2 represents the Shift key.
  - M3 represents the Option key on MacOS X, and the Alt key on other platforms.
  - M4 represents the Ctrl key on MacOS X, and is undefined on other platforms.
- **Content** - Text box where you define the content that is used when the code template is inserted. An editor variable (on page 276) can be inserted in the text box using the Insert Editor Variables button.

**Edit**

Opens the Code template dialog box and allows you to edit an existing code template. You can edit the following fields:
• **Description** - [Optional] The description of the code template that will appear in the Code Templates preferences page and in the tooltip message when selecting it from the [Content Completion Assistant](on page 3280). HTML markup can be used for better rendering.

• **Shortcut key** - [Optional] If you want to assign a shortcut key that can be used to insert the code template, place the cursor in the Shortcut key field and press the desired key combination on your keyboard. Use the Clear button if you make a mistake. If the Enable platform-independent shortcut keys checkbox is selected, the shortcut is platform-independent and the following modifiers are used:
  ◦ $M1$ represents the **Command** key on MacOS X, and the **Ctrl** key on other platforms.
  ◦ $M2$ represents the **Shift** key.
  ◦ $M3$ represents the **Option** key on MacOS X, and the **Alt** key on other platforms.
  ◦ $M4$ represents the **Ctrl** key on MacOS X, and is undefined on other platforms.

• **Content** - Text box where you define the content that is used when the code template is inserted. An editor variable (on page 276) can be inserted in the text box using the **Insert Editor Variables** button.

Duplicate

Creates a duplicate of the currently selected code template.

Delete

Deletes the currently selected code template. This action is not available for the built-in code templates.

Export

Exports a file with code templates.

Import

Imports a file with code templates that was created by the Export action.

You can use the following editor variables (on page 276) when you define a code template in the Content text box:

• **$\{caret\}** - The position where the cursor is located. This variable can be used in a code template, in Author mode operations, or in a selection plugin.

  ![Note](on page 276)  

  **Note:** The $\{caret\}$ editor variable is available only for parameters that take XML content as values. It is replaced with the $\{UNIQUE_CARET_MARKER_FOR_AUTHOR\}$ macro. The default Author operations process this macro and position the cursor at the designated offset.

• **$\{selection\}** - The current selected text content in the current edited document. This variable can be used in a code template, in Author mode operations, or in a selection plugin.
To prompt for values at runtime, use the `ask('message', type, ('real_value1': 'rendered_value1'; 'real_value2': 'rendered_value2'; ...), 'default_value', @id)` editor variable. You can set the following parameters:

- **message** - The displayed message. Note the quotes that enclose the message.
- **default-value** - Optional parameter. Provides a default value.
- **@id** - Optional parameter. Used for identifying the variable to reuse the answer using the `${answer(@id)}` editor variable.
- **type** - Optional parameter, with one of the following values:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Format:</th>
<th>Description</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>url</td>
<td><code>${ask('message', url, 'default_value')}</code></td>
<td>Input is considered a URL. Oxygen XML Editor checks that the provided URL is valid.</td>
<td></td>
</tr>
<tr>
<td>password</td>
<td><code>${ask('message', password, 'default')}</code></td>
<td>The input is hidden with bullet characters.</td>
<td></td>
</tr>
<tr>
<td>generic</td>
<td><code>${ask('message', generic, 'default')}</code></td>
<td>The input is considered to be generic text that requires no special handling.</td>
<td></td>
</tr>
<tr>
<td>Parameter</td>
<td>Description</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----------</td>
<td>-------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>${ask('Hello world!')</strong>}</td>
<td>The dialog box has a <em>Hello world!</em> message displayed.</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>${ask('Hello world!', generic, 'Hello again!')</strong>}</td>
<td>The dialog box has a <em>Hello world!</em> message displayed and the value displayed in the input box is <em>Hello again!</em>.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**relative_url**

**Format**: `${ask('message', relative_url, 'default')}

**Description**: Input is considered a URL. Oxygen XML Editor tries to make the URL relative to that of the document you are editing.

- **Note**: If the $ask editor variable is expanded in content that is not yet saved (such as an *untitled* file, whose path cannot be determined), then Oxygen XML Editor will transform it into an absolute URL.

**Example**:

`$\{ask('File location', relative_url, 'C:\example.txt')\}' - The dialog box has the name *File location*. The URL inserted in the input box is made relative to the current edited document location.

**combobox**

**Format**: `${ask('message', combobox, ('real_value1':'rendered_value1';...;'real_valueN':'rendered_valueN'), 'default')}

**Description**: Displays a dialog box that offers a drop-down menu. The drop-down menu is populated with the given rendered_value values. Choosing such a value will return its associated value (real_value).

- **Note**: The *default* parameter specifies the default selected value and can match either a key or a value.

**Example**:

- `\{ask('Operating System', combobox, ('win':'Microsoft Windows';'osx':'Mac OS X';'lnx':'Linux/UNIX'), 'osx')\}' - The dialog box has the name *Operating System*. The drop-down menu displays the three given operating systems. The associated value will be returned based upon your selection.

- **Note**: In this example, the default value is indicated by the *osx* key. However, the same result could be obtained if the default value is indicated by *Mac OS X*, as in the following example: `\{ask('Operating System', combobox, ('win':'Microsoft Windows';'osx':'Mac OS X';'lnx':'Linux/UNIX'), 'Mac OS X')\}

- `\{ask('Mobile OS', combobox, ('win':Mobile';'ios':iOS';'and':Android'), 'Android')\}`
**editable_combobox**

Format: 

```xml
${ask('message', editable_combobox,
   ('real_value1':'rendered_value1';...;'real_valueN':'rendered_valueN'),
   'default'))
```

**Description:** Displays a dialog box that offers a drop-down menu with editable elements. The drop-down menu is populated with the given rendered_value values. Choosing such a value will return its associated real value (real_value) or the value inserted when you edit a list entry.

**Note:** The 'default' parameter specifies the default selected value and can match either a key or a value.

**Example:**

```xml
${ask('Operating System', editable_combobox, ('win':'Microsoft Windows';'osx':'Mac OS X';'lnx':'Linux/UNIX'), 'osx')}
```

- The dialog box has the name 'Operating System'. The drop-down menu displays the three given operating systems and also allows you to edit the entry. The associated value will be returned based upon your selection or the text you input.

---

**radio**

Format: 

```xml
${ask('message', radio,
   ('real_value1':'rendered_value1';...;'real_valueN':'rendered_valueN'),
   'default'))
```

**Description:** Displays a dialog box that offers a series of radio buttons. Each radio button displays a rendered_value and will return an associated real_value.

**Note:** The 'default' parameter specifies the default selected value and can match either a key or a value.

**Example:**

```xml
${ask('Operating System', radio, ('win':'Microsoft Windows';'osx':'Mac OS X';'lnx':'Linux/UNIX'), 'osx')}
```

- The dialog box has the name 'Operating System'. The radio button group allows you to choose between the three operating systems.

**Note:** In this example, Mac OS X is the default selected value and if selected, it would return osx for the output.

---

- **${timeStamp}** - Time stamp, that is the current time in Unix format. For example, it can be used to save transformation results in multiple output files on each transformation.

- **${uuid}** - Universally unique identifier, a unique sequence of 32 hexadecimal digits generated by the Java UUID class.
• ${id} - Application-level unique identifier. It is a short sequence of 10-12 letters and digits that is not guaranteed to be universally unique.

• ${cfn} - Current file name without extension and without parent folder. The current file is the one currently opened and selected.

• ${cfne} - Current file name with extension. The current file is the one currently opened and selected.

• ${cf} - Current file as file path, that is the absolute file path of the current edited document.

• ${cfd} - Current file folder as file path, that is the path of the current edited document up to the name of the parent folder.

• ${frameworksDir} - The path (as file path) of the frameworks directory.

• ${pd} - The file path to the folder that contains the current project file (.xpr).

• ${oxygenInstallDir} - Oxygen XML Editor installation folder as file path.

• ${homeDir} - The path (as file path) of the user home folder.

• ${pn} - Current project name.

• ${env(VAR_NAME)} - Value of the VAR_NAME environment variable. The environment variables are managed by the operating system. If you are looking for Java System Properties, use the ${system(var.name)} editor variable.

• ${system(var.name)} - Value of the var.name Java System Property. The Java system properties can be specified in the command-line arguments of the Java runtime as -Dvar.name=var.value. If you are looking for operating system environment variables, use the ${env(VAR_NAME)} editor variable instead.

• ${date(pattern)} - Current date. The allowed patterns are equivalent to the ones in the Java SimpleDateFormat class. Example: yyyy-MM-dd,

  Note: This editor variable supports both the xs:date and xs:datetime parameters. For details about xs:date, go to: http://www.w3.org/TR/xmlschema-2/#date. For details about xs:datetime, go to: http://www.w3.org/TR/xmlschema-2/#dateTime.

Related Information:

• Code Templates (on page 855)

Syntax Highlight Preferences

Oxygen XML Editor supports syntax highlighting in the Text mode editors for numerous types of documents, including XML, XHTML, JavaScript, XQuery, XPath, PHP, CSS, LESS, Markdown, Text, DTD, RNC, Java, JSON, Ant, and more.

To configure syntax highlighting, open the Preferences dialog box (Options > Preferences) (on page 79) and go to Editor > Syntax Highlight.
To set syntax colors for a language, expand the listing for that language in the top panel to show the list of syntax items for that type of document. Use the color and style selectors to change how each syntax item is displayed. The results of your changes are displayed in the Preview panel. If you do not know the name of the syntax token that you want to configure, click that token in the Preview area to select it.

**Note:** All default color sets come with a high-contrast variant that is automatically used when you switch to a black-background or white-background high-contrast theme in your Windows operating system settings. The high-contrast theme will not overwrite any default color you set in **Editor > Syntax Highlight** preferences page.

The settings for XML documents are also used in XSD, XSL, RNG documents and the Preview area has a separate tab for each of them when XML is selected in the top pane.

The **Enable nested syntax highlight** option controls whether or not content types that are nested in the same file (such as PHP, JS, or CSS scripts inside an HTML file) are highlighted according to the color schemes defined for each content type.

**Elements/Attributes by Prefix Preferences**

Oxygen XML Editor allows you to specify syntax highlighting colors for XML elements and attributes with specific namespace prefixes. To configure the **Elements/Attributes by Prefix** preferences, open the Preferences dialog box (Options > Preferences) (on page 79) and go to **Editor > Syntax Highlight > Elements/Attributes by Prefix**.

To change the syntax coloring for a specific namespace prefix, choose the prefix from the list, or add a new one using the **New** button, and use the color and style selectors to set the syntax highlighting style for that namespace prefix.

**Note:** Syntax highlighting is based on the literal namespace prefix, not the namespace that the prefix is bound to in the document.

If you only want the prefix (and not the whole element or attribute name) to be styled with a particular color, select the **Draw only the prefix with a separate color** option.

**Mark Occurrences Preferences**

This preferences page specifies which types of files will have the **Highlight IDs Occurrences** (on page 873) feature activated. To configure these options, open the Preferences dialog box (Options > Preferences) (on page 79) and go to **Editor > Mark Occurrences**:

The following options are available in this preferences page:

- **Highlight component occurrences in the current file for:**
• **XML files** - Activates the Highlight IDs Occurrences *(on page 873)* feature in XML files.

• **XSLT files** - Activates the Highlight Component Occurrences *(on page 1209)* feature in XSLT files.

• **XML Schema files** - Activates the Highlight Component Occurrences *(on page 1302)* feature in XSD files.

• **WSDL files** - Activates the Highlight Component Occurrences *(on page 1302)* feature in WSDL files.

• **RNG files** - Activates the highlight component occurrences feature in RNG files.

• **Schematron files** - Activates the Highlight Component Occurrences *(on page 1475)* feature in Schematron files.

• **Ant files** - Activates the Highlight Component Occurrences *(on page 1246)* feature in Ant files.

**Declaration highlight color**

Allows you to choose the color to be used for highlighting component declarations.

**Reference highlight color**

Allows you to choose the color to be used for highlighting component references.

**Document Validation Preferences**

To configure document validation options, open the Preferences dialog box *(Options > Preferences)* *(on page 79)* and go to Editor > Document Validation. This page contains preferences for configuring how a document is checked for both well-formedness and validation errors.

The following options are available:

**Maximum number of validation highlights**

If a validation generates more errors than the number specified in this option, only the errors up to this number are highlighted in the editor panel and on the stripe that is displayed at the right side of the editor panel. This option applies to both automatic validation *(on page 1082)* and manual validation *(on page 1082)*.

**Validation error highlight color**

The color used to highlight validation errors in the document.

**Validation warning highlight color**

The color used to highlight validation warnings in the document.

**Validation info highlight color**

The color used to highlight validation info messages in the document.
Validation success color

The color used to highlight the success indicator of the validation operation in the vertical ruler bar.

Always show validation status

If this option is selected, the current validation error or warning is always visible in the message line at the bottom of the editor panel. This is useful when the Enable automatic validation option is selected and the vertical scroll bar changes position due to an error message being displayed.

Enable automatic validation

This causes the validation to be automatically executed in the background as the document is modified in Oxygen XML Editor.

Delay after the last key event (s)

The period of keyboard inactivity before starting a new validation (in seconds).

At the bottom of the preferences page you can choose whether or not the saved options will be shared with other users by selecting Global or Project storage options (on page 265).

Custom Validation Engines Preferences

As the name implies, the Custom Validation Engines preferences page displays the list of custom validation engines that can be associated to a particular editor and used for validating documents. To access this page, open the Preferences dialog box (Options > Preferences) (on page 79) and go to Editor > Document Validation > Custom Validation Engines.

If you want to add a new custom validation tool or edit the properties of an existing one, you can use the Custom Validator dialog box displayed by pressing the New or Edit button.

Figure 26. Custom Validator Dialog Box
The Custom Validator dialog box allows you to configure the following parameters:

**Name**

Name of the custom validation engine that will be displayed in the Validation toolbar drop-down menu.

**Executable path**

Path to the executable file of the custom validation tool. You can specify the path by using the text field, the Insert Editor Variables (on page 276) button, or the Browse button.

**Working directory**

The working directory of the custom validation tool. You can specify the path by using the text field, the Insert Editor Variables (on page 276) button, or the Browse button.

**Associated editors**

The editors that can perform validation with the external tool (XML editor, XSL editor, XSD editor, etc.)

**Command-line arguments for detected schemas**

Command-line arguments used in the commands that validate the currently edited file against various types of schema (XML Schema, Relax NG full syntax, Relax NG compact
syntax, NVDL, Schematron, DTD, etc.) The arguments can include any custom switch (such as -rng) and the following editor variables (on page 276):

- \${cf} - Current file as file path, that is the absolute file path of the current edited document.
- \${currentFileURL} - Current file as URL, that is the absolute file path of the current edited document represented as URL.
- \${ds} - The path of the detected schema as a local file path for the current validated XML document.
- \${dsu} - The path of the detected schema as a URL for the current validated XML document.

Related Information:
- Editor Variables (on page 276)

Increasing the Stack Size for Validation Engines

To prevent the appearance of a StackOverflowException error, use one of the following methods:

- Use the com.oxygenxml.stack.size.validation.threads property to increase the size of the stack for validation engines. The value of this property is specified in bytes. For example, to set a value of one megabyte specify 1x1024x1024=1048576.
- Increase the value of the -Xss parameter.

Note: Increasing the value of the -Xss parameter affects all the threads of the application.

Related Information:
- Setting a Java Virtual Machine Parameter when Launching Oxygen XML Editor (on page 290)

Spell Check Preferences

Oxygen XML Editor provides support for spell checking in the Text (on page 303) and Author (on page 402) editing modes. To configure the Spell Check options, open the Preferences dialog box (Options > Preferences) (on page 79) and go to Editor > Spell Check.

The following options are available:
Automatic spell check

This option is not selected by default. When selected, Oxygen XML Editor automatically checks the spelling as you type and highlights misspelled words in the document.

Select editors

You can select which editors (and therefore which file types) will automatically be spell checked. File types (such as CSS and DTD), in which automatic spell checking is not usually helpful, are excluded by default.

Spell check highlight color

Use this option to set the color used by the spell check engine to highlight spelling errors.

Language options section

This section includes the following language options:

Default language

The default language list allows you to choose the language used by the spell check engine when the language is not specified in the source file.

You can add additional dictionaries to the spell check engines (on page 754).

Use "lang" and "xml:lang" attributes

When this option is selected, the contents of an element with one of the lang or xml:lang attributes is checked in that language. Choose between the following two options for instances when these attributes are missing:

- **Use the default language** - If the lang and xml:lang attributes are missing, the selection in the Default language list (on page 184) is used.
- **Do not check** - If the lang and xml:lang attributes are missing, the element is not checked.

XML spell checking in section

You can choose to check the spelling inside the following XML items:

- Comments
- Attribute values
- Text
- CDATA
Options section

This section includes the following other options:

Check capitalization

When selected, the spell checker reports detected capitalization errors.

Note: This option will not have any effect on words stored in dictionaries, term lists, and the list of learned words because they are not handled as case-sensitive.

Check punctuation

When selected, the spell checker checks punctuation. Misplaced white space and unusual sequences, such as a period following a comma, are highlighted as errors.

Ignore mixed case words

When selected, the spell checker does not check words containing mixed case characters (for example, SpellChecker).

Ignore acronyms

Available only for the Hunspell Spell Checker. When selected, acronyms are not reported as errors.

Ignore words with digits

When selected, the spell checker does not check words containing digits (for example, b2b).

Ignore duplicates

When selected, the spell checker does not signal two successive identical words as an error.

Ignore URL

When selected, the spell checker ignores words recognized as URLs or file names (for example, www.oxygenxml.com or c:\boot.ini).

Allow compounds words

When selected, all words formed by concatenating two legal words with a hyphen (hyphenated compounds) are accepted. If recognized by the language, two words concatenated without hyphen (closed compounds) are also accepted.

Allow file extensions
When selected, the spell checker accepts any word ending with recognized file extensions (for example, `myfile.txt` or `index.html`).

**Ignore elements section**

You can use the Add and Remove buttons to configure a list of element names or XPath expressions to be ignored by the spell checker. The following restricted set of XPath expressions are supported:

- `/` and `//` separators
- `*` wildcard

An example of an allowed XPath expression is: `/a/*/b`.

**AutoCorrect options link**

Use this link to navigate to the AutoCorrect preferences page (on page 150).

**Spell Check Dictionaries Preferences**

To set the Dictionaries preferences, open the Preferences dialog box (Options > Preferences) (on page 79) and go to Editor > Spell Check > Dictionaries. This page allows you to configure the dictionaries (.dic files) and term lists (.tdi files) that Oxygen XML Editor uses and to choose where to save new learned words.

The following options are valid when Oxygen XML Editor uses the Hunspell spell checking engine:

**Dictionaries and term lists default folder**

Displays the default location where the dictionaries and term lists that Oxygen XML Editor uses are stored.

**Include dictionaries and term list from**

Selecting this option allows you to specify a location where you have stored dictionaries and term lists that you want to include, along with the default ones.

⚠️ **Important:** Consider the following notes regarding this option:

- The spell checker takes into account dictionaries and term lists collected both from the default and custom locations and multiple dictionaries and term lists from the same language are merged (for example, `en_UK.dic` from the default location is merged with `en_US.dic` from a custom location).
- If you have a generic dictionary file (one that just has a two letter language code for its file name, such as `en.dic`) saved in either the default or custom location, the other more specific dictionaries (for example, `en_UK.dic` and `en_US.dic`) will not be merged and the existing generic dictionary will simply be used instead.
• If the additional location contains a file with the same name as one from the default location, the file in the additional location takes precedence over the file from the default location.

**How to add more dictionaries and term lists link**

Use this link to open a topic in the Oxygen XML Editor User Guide that explains how to add more dictionaries and term lists *(on page 758).*

**Save learned words in the following location**

Specifies the target where the newly learned words are saved. By default, the target is the application preferences folder, but you can also choose a custom location.

**Delete learned words**

Opens the list of learned words, allowing you to select the items you want to remove, without deleting the dictionaries and term lists.

**Note:** Words stored in dictionaries, term lists, and the list of learned words are not handled as case-sensitive. Therefore, you do not need to include both uppercase and lowercase versions of the words.

**Related Information:**

- Adding Custom Spell Check Dictionaries *(on page 758)*
- Adding Custom Spell Check Term Lists *(on page 760)*

**Print Preferences**

Oxygen XML Editor lets you configure how files are printed out of the editor. Note that these settings cover how files are printed directly from Oxygen XML Editor itself, not how they are printed after the XML source has been transformed by a publishing stylesheet. To configure the Print options, open the Preferences dialog box *(Options > Preferences)* *(on page 79)* and go to Editor > Print.

This page allows you to customize the headers and footers added to a printed page when you print from the Text mode *(on page 303)* or Author mode *(on page 402)* editors. These settings do not apply to the Grid *(on page 392)* and schema Design *(on page 623)* mode.

You can specify what is printed on the Left, Middle, and Right of the header and footer using plain text of any of the following variables:
• \${currentFileURL} - Current file as URL, that is the absolute file path of the current edited document represented as URL.
• \${cfne} - Current file name with extension. The current file is the one currently opened and selected.
• \${cp} - Current page number. Used to display the current page number on each printed page in the Editor / Print Preferences page.
• \${tp} - Total number of pages in the document. Used to display the total number of pages on each printed page in the Editor / Print Preferences page.
• \${env(VAR_NAME)} - Value of the VAR_NAME environment variable. The environment variables are managed by the operating system. If you are looking for Java System Properties, use the \${system(var.name)} editor variable.
• \${system(var.name)} - Value of the var.name Java System Property. The Java system properties can be specified in the command-line arguments of the Java runtime as -Dvar.name=var.value. If you are looking for operating system environment variables, use the \${env(VAR_NAME)} editor variable instead.
• \${date(pattern)} - Current date. The allowed patterns are equivalent to the ones in the Java SimpleDateFormat class. Example: yyyy-MM-dd,

| Note: This editor variable supports both the xs:date and xs:datetime parameters. For details about xs:date, go to: http://www.w3.org/TR/xmlschema-2/#date. For details about xs:datetime, go to: http://www.w3.org/TR/xmlschema-2/#dateTime. |

For example, to show the current page number and the total number of pages in the top right corner of the page, write the following pattern in the Right text area of the Header section: \${cp} of \${tp}.

You can also set the Color and Font used in the header and footer. Default font is SansSerif.

You can place a line below the header or above the footer by selecting Underline/Overline.

CSS Validator Preferences

To configure the CSS Validator preferences, open the Preferences dialog box (Options > Preferences) (on page 79) and go to CSS Validator.

You can configure the following options for the built-in CSS Validator of Oxygen XML Editor:

• Profile - Selects one of the available validation profiles: CSS 1, CSS 2, CSS 2.1, CSS 3, CSS 3 with Oxygen extensions, SVG, SVG Basic, SVG Tiny, Mobile, TV Profile, ATSC TV Profile. The CSS 3 with Oxygen extensions profile includes all the CSS 3 standard properties plus the CSS extensions specific for Oxygen (on page 2501) that can be used in Author mode (on page 402). That means all Oxygen-specific extensions are accepted in a CSS stylesheet by the built-in CSS validator (on page 1381) when this profile is selected.
• Media type - Selects one of the available mediums: all, aural, braille, embossed, handheld, print, projection, screen, tty, tv, presentation, oxygen.

• Warning level - Sets the minimum severity level for reported validation warnings. Can be one of: All, Normal, Most Important, No Warnings.

• Ignore properties - You can type comma separated patterns that match the names of CSS properties that will be ignored at validation. The following vendor extensions are specified as ignored by default: -ro-* (PDFreactor), -ah-* (Antenna House), prince-* (Prince). As wildcards you can use:
  ◦ * to match any string.
  ◦ ? to match any character.

• Recognize browser CSS extensions (also applies to content completion) - If selected, Oxygen XML Editor recognizes browser-specific CSS properties (no validation is performed). The Content Completion Assistant (on page 3280) lists these properties at the end of its list, prefixed with the following particles:
  ◦ -moz- for Mozilla.
  ◦ -ms- for Internet Explorer or Edge.
  ◦ -o- for Opera.
  ◦ -webkit- for Safari/Webkit.

XML Preferences

This section describes the panels that contain the user preferences related with XML.

XML Catalog Preferences

To configure options that pertain to XML Catalogs (on page 3289), open the Preferences dialog box (Options > Preferences) (on page 79) and go to XML > XML Catalog.

The following options are available:

  Prefer

Determines whether public identifiers specified in the catalog are used in favor of system identifiers supplied in the document. Suppose you have an entity in your document for which both a public identifier and a system identifier has been specified, and the catalog only contains a mapping for the public identifier (for example, a matching public catalog entry). You can choose between the following:

  • system - If selected, the system identifier in the document is used.
  • public - If selected, the URI supplied in the matching public catalog entry is used.

Generally, the purpose of catalogs is to override the system identifiers in XML documents, so public should usually be used for your catalogs.
Note: If the catalog contains a matching system catalog entry giving a mapping for the system identifier, that mapping would have been used, the public identifier would never have been considered, and this setting would be irrelevant.

Verbosity

When using catalogs, it is sometimes useful to see what catalog files are parsed, if they are valid, and what identifiers are resolved by the catalogs. This option selects the detail level of such logging messages of the XML catalog resolver that will be displayed in the Catalogs table at the bottom of the window. You can choose between the following:

- **None** - No message is displayed by the catalog resolver when it tries to resolve a URI reference, a SYSTEM one or a PUBLIC one with the XML catalogs specified in this panel.
- **Unresolved entities** - Only the logging messages that track the failed attempts to resolve references are displayed.
- **All messages** - The messages of both failed attempts and successful ones are displayed.

Resolve schema locations also through system mappings

If selected, Oxygen XML Editor analyzes both uri and system mappings to resolve the location of schema.

Note: This option is not applicable for DTD schemas since the public and system catalog mappings are always considered.

Process "schemaLocation" namespaces through URI mappings for XML Schema

If selected, the target namespace of the imported XML Schema is resolved through the uri mappings. The namespace is taken into account only when the schema specified in the schemaLocation attribute was not resolved successfully. If not selected, the system IDs are used to resolve the schema location.

Use default catalog

If this option is selected and Oxygen XML Editor cannot resolve the catalog mapping with any other means, the default global catalog (listed below this checkbox) is used.

For more information, see How Oxygen XML Editor Determines which Catalog to Use (on page 1125).

Catalogs table

You can use this table to add or manage global user-defined catalogs. The following actions are available at the bottom of the table:

Add
Opens a dialog box that allows you to add a catalog to the list. You can specify the path by using the text field, its history drop-down, the Insert Editor Variables (on page 276) button, or the browsing actions in the Browse drop-down list.

**Edit**

Opens a dialog box that allows you to edit an existing catalog. You can specify the path by using the text field, its history drop-down, the Insert Editor Variables (on page 276) button, or the browsing actions in the Browse drop-down list.

**Delete**

Deletes the currently selected catalog from the list.

**Up**

Moves the selection to the previous resource.

**Down**

Moves the selection to the following resource.

**Note:** When you add, delete, or edit a catalog in this table, you need to reopen the currently edited files that use the modified catalog or run a manual Validate action (on page 1082) so that the changes take full effect.

You can also add or configure catalogs at framework level from the Catalogs tab (on page 119) in the Document Type configuration dialog box (on page 95).

### Related Information:

- Controlling the Catalog Resolver
- Working with XML Catalogs (on page 1123)

### XML Parser Preferences

To configure the XML Parser options, open the Preferences dialog box (Options > Preferences) (on page 79) and go to XML > XML Parser.

The configurable options of the built-in XML parser are as follows:

**Enable parser caching (validation and content completion)**
Enables re-use of internal models when validating and provides content completion in opened XML files that reference the same schemas (grammars) such as DTD, XML Schema, or RelaxNG.

**Ignore the DTD for validation if a schema is specified**

Forces validation against a referenced schema (XML Schema, Relax NG schema) even if the document includes also a DTD DOCTYPE declaration. This option is useful when the DTD declaration is used only to declare DTD entities and the schema reference is used for validation against an XML Schema or a Relax NG schema.

- **Note:** Schematron schemas are treated as additional schemas. The validation of a document associated with a DTD and referencing a Schematron schema is executed against both the DTD and the Schematron schema, regardless of the value of the **Ignore the DTD for validation if a schema is specified** option.

**Enable XInclude processing**

Enables XInclude processing. If selected, the XInclude support in Oxygen XML Editor is turned on for validation, rendering in **Author** mode and transformation of XML documents.

**Base URI fix-up**

According to the specification for XInclude, processors must add an `xml:base` attribute to elements included from locations with a different base URI. Without these attributes, the resulting infoset information would be incorrect.

Unfortunately, these attributes make XInclude processing to not be transparent to Schema validation. One solution to this is to modify your schema to allow `xml:base` attributes to appear on elements that might be included from different base URIs.

If the addition of `xml:base` and/or `xml:lang` is not desired by your application, you can deselect this option.

**Language fix-up**

The processor will preserve language information on a top-level included element by adding an `xml:lang` attribute if its included parent has a different [language] property. If the addition of `xml:lang` is not allowed by your application, you can deselect this option.

**DTD post-validation**

Select this option to validate an XML file against the associated DTD, after all the content merged to the current XML file using XInclude was resolved. If you deselect this option, the current XML file is validated against the associated DTD before all the content merged to the current XML file using XInclude is resolved.
XML Schema Preferences

To configure options regarding XML Schema, open the Preferences dialog box (Options > Preferences) (on page 79) and go to XML > XML Parser > XML Schema.

This preferences page allows you to configure the following options:

**Default XML Schema version**

Allows you to select the version of XML Schema to be used as the default. You can choose XML Schema 1.0 or XML Schema 1.1.

⚠️ Note: You are also able to set the XML Schema version using the Customize option in the New document wizard (on page 676).

**Default XML Schema validation engine**

Allows you to select the default validation engine to be used for XML Schema. You can choose Xerces or Saxon EE.

**Xerces validation features section**

- **Enable full schema constraint checking**
  
  Sets the schema-full-checking feature to true. This enables a validation of the parsed XML document against a schema (XML Schema or DTD) while the document is parsed.

- **Enable honour all schema location feature**

  Sets the honour-all-schema-location feature to true. All the files that declare XML Schema components from the same namespace are used to compose the validation model. If this option is not selected, only the first XML Schema file that is encountered in the XML Schema import tree is taken into account.

- **Enable full XPath 2.0 for alternative types**

  When selected (default value), you can use the full XPath support in assertions and alternative types. Otherwise, only the XPath support offered by the Xerces engine is available.

- **Assertions can see comments and processing instructions**

  Controls whether or not comments and processing instructions are visible to the XPath expression used for defining an assertion in XSD 1.1.

**Saxon EE validation features section**

- **Multiple schema imports**
Forces `xs:import` to fetch the referenced schema document. By default, the `xs:import` fetches the document only if no schema document for the given namespace has already been loaded. With this option in effect, the referenced schema document is loaded unless the absolute URI is the same as a schema document already loaded.

**Assertions can see comments and processing instructions**

Controls whether or not comments and processing instructions are visible to the XPath expression used to define an assertion. By default, they are not made visible (unlike Saxon 9.3).

**Relax NG Preferences**

To configure options regarding Relax NG, open the Preferences dialog box (Options > Preferences) (on page 79) and go to XML > XML Parser > Relax NG.

The following options are available in this page:

**Check feasibly valid**

Checks if Relax NG documents can be transformed into valid documents by inserting any number of attributes and child elements anywhere in the tree.

**Note:** Selecting this option disables the Check ID/IDREF option.

**Check ID/IDREF**

Checks the ID/IDREF matches when a Relax NG document is validated.

**Add default attribute values**

Default values are given to the attributes of documents validated using Relax NG. These values are defined in the Relax NG schema.

**Ignore "data-" attributes in XHTML**

This option is selected by default, which means that when XHTML documents are validated with an RNG schema, any `data-` attributes detected in the document will not be taken into account by the validation engine.

**Schematron Preferences**

To configure options regarding Schematron, open the Preferences dialog box (Options > Preferences) (on page 79) and go to XML > XML Parser > Schematron.

The following options are available in this preferences page:

**ISO Schematron Section**
Optimize (visit-no-attributes)

If your ISO Schematron assertion tests do not contain the attributes axis, you should select this option for faster ISO Schematron validation.

Allow foreign elements (allow-foreign)

Enables support for allow-foreign on ISO Schematron. This option is used to pass non-Schematron elements to the generated stylesheet.

Use associated XML Schema to expand default attribute values

When selected (default value), if the validated XML document has an XML Schema associated that contains default values for attributes defined in the XML content, the Schematron will be able to match on those default attributes.

Use Saxon EE (schema aware) for xslt2/xslt3 query language binding

When selected, Saxon EE is used for xslt2 / xslt3 query binding. If this option is not selected, Saxon PE is used.

Enable Schematron Quick Fixes (SQF) support

Allows you to enable or disable the support for Quick Fixes (on page 3287) in Schematron files. This option is selected by default.

Embedded rules query language binding

You can control the query language binding used by the ISO Schematron embedded rules. You can choose between: xslt1, xslt2, or xslt3.

Note: To control the query language binding for standalone ISO Schematron, you need to set the query language to be used with a queryBinding attribute on the schema root element.

Message language

This option allows you to specify the language to be used in Schematron validation messages. You can choose between the following:

- Use the language defined in the application - The language that is specified in the Global Preferences page (on page 81) will be used and only the validation messages that match that language will be presented. You can use the Change application language link to navigate to the preferences page where you can specify the language to be used in the application.

- Use the "xml:lang" attribute set on the Schematron root - The language specified in the xml:lang attribute from the Schematron
root will be used and only the validation message that match that language will be presented.

- **Ignore the language and show all message** - All messages are displayed in whatever language is defined within the Schematron schema.

- **Custom** - Use this option to specify a custom language to be used and only the messages that match the specified language will be presented.

**Note:** In all cases, if the selected language is not available for a validation error or warning, all messages will be displayed in whatever language is defined within the Schematron schema.

**Schematron 1.5 Section**

**XPath Version**

Allows you to select the version of XPath for the expressions that are allowed in Schematron assertion tests. You can choose between: 1.0, 2.0, or 3.0. This option is applied in both standalone Schematron 1.5 schemas and embedded Schematron 1.5 rules.

**Sample XML Files Generator Preferences**

The [Generate Sample XML Files tool](on page 1306) (available on the **Tools** menu) allows you to generate XML instance documents based on an XML Schema. There are various options that can be configured within the tool and these options are also available in the Sample XML Files Generator preferences page. This allows you to set default values for these options. To configure the options for generating the XML files, open the Preferences dialog box (Options > Preferences) (on page 79) and go to **XML > Sample XML Files Generator**.

The following options are available:

**Generate optional elements**

When selected, all elements are generated, including the optional ones (having the `minOccurs` attribute set to 0 in the schema).

**Generate optional attributes**

When selected, all attributes are generated, including the optional ones (having the `use` attribute set to `optional` in the schema).

**Values of elements and attributes**

Controls the content of generated attribute and element values. The following choices are available:
• None - No content is inserted.
• Default - Inserts a default value depending on the data type descriptor of the particular element or attribute. The default value can be either the data type name or an incremental name of the attribute or element (according to the global option from the Sample XML Files Generator preferences page). Note that type restrictions are ignored when this option is selected. For example, if an element is of a type that restricts an `xs:string` with the `xs:maxLength` facet to allow strings with a maximum length of 3, the XML instance generator tool may generate string element values longer than 3 characters.
• Random - Inserts a random value depending on the data type descriptor of the particular element or attribute.

⚠️ Important: If all of the following are true, the Generate Sample XML Files tool outputs invalid values:
- At least one of the restrictions is a `regexp`.
- The value generated after applying the `regexp` does not match the restrictions imposed by one of the facets.

Preferred number of repetitions

Allows you to set the preferred number of repeating elements related to `minOccurs` and `maxOccurs` facets defined in the XML Schema.

• If the value set here is between `minOccurs` and `maxOccurs`, then that value is used.
• If the value set here is less than `minOccurs`, then the `minOccurs` value is used.
• If the value set here is greater than `maxOccurs`, then `maxOccurs` is used.

Maximum recursion level

If a recursion is found, this option controls the maximum allowed depth of the same element.

Type alternative strategy

Used for the `xs:alternative` element from XML Schema 1.1. The possible strategies are:

• First - The first valid alternative type is always used.
• Random - A random alternative type is used.

Choice strategy

Used for `xs:choice` or `substitutionGroup` elements. The possible strategies are:

• First - The first branch of `xs:choice` or the head element of `substitutionGroup` is always used.
• Random - A random branch of `xs:choice` or a substitute element or the head element of a `substitutionGroup` is used.

**Generate the other options as comments**

If selected, generates the other possible choices or substitutions (for `xs:choice` and `substitutionGroup`). These alternatives are generated inside comments groups so you can uncomment and use them later. Use this option with care (for example, on a restricted namespace and element) as it may generate large result files.

**Use incremental attribute / element names as default**

If selected, the value of an element or attribute starts with the name of that element or attribute. For example, for an `a` element the generated values are: `a1`, `a2`, `a3`, and so on. If not selected, the value is the name of the type of that element / attribute (for example: `string`, `decimal`, etc.)

**Maximum length**

The maximum length of string values generated for elements and attributes.

**Discard optional elements after nested level**

The optional elements that exceed the specified nested level are discarded. This option is useful for limiting deeply nested element definitions that can quickly result in very large XML documents.

**Related Information:**

- [Generating Sample XML Files](on page 1306)

**XProc Preferences**

Oxygen XML Editor includes a bundled version of the Calabash XProc engine that can be used for XProc transformations and validation, but you also have several ways to integrate other external XProc engines.

If the external engine is Java-based, or it has validation support, or it has the ability to receive parameters or ports passed from the transformation, you need to integrate the external XProc engine using a plugin extension procedure (on page 1747).

If you do not need the engine to be used for automatic validation or pass parameters/ports and it is not Java-based, you can add an external XProc engine by using the XProc preferences page. Open the Preferences dialog box (Options > Preferences) (on page 79) and go to XML > XProc.
To add an external engine, click the **New** button. To configure an existing engine, click the **Edit** button. This opens the **Custom Engine** dialog box that allows you to configure an external engine.

**Figure 27. Creating an XProc external engine**

![Custom Engine Dialog Box](image)

The following options can be configured in this custom engine configuration dialog box:

- **Name** - The value of this field will be displayed in the XProc transformation scenario and in the command line that will start it.
- **Description** - A textual description that will appear as a tooltip where the XProc engine will be used.
- **Working directory** - The working directory for resolving relative paths. You can specify the path by using the text field, the **Insert Editor Variables** (on page 276) button, or the **Browse** button.
- **Command line** - The command line that will run the XProc engine as an external process. You can specify the path by using the text field, the **Insert Editor Variables** (on page 276) button, or the **Browse** button.
- **Output encoding** - The encoding for the output stream of the XProc engine, used for reading and displaying the output messages.
- **Error encoding** - The encoding for the error stream of the XProc engine, used for reading and displaying the messages from the error stream.

**Note:** You can configure the built-in Calabash processor by using the `calabash.config` file. This file is located in `{OXYGEN_INSTALL_DIR}/lib/xproc/calabash/lib`. If that file does not exist, you have to create it.
The **Show XProc messages** option at the bottom of the **XProc** preferences page can be selected if you want all messages emitted by the XProc processor during a transformation to be presented in dedicated XProc **Results** view (on page 357).

**XSLT-XQuery Preferences**

To configure options regarding XSLT and XQuery processors, open the **Preferences** dialog box (Options > Preferences) (on page 79) and go to XML > XSLT-XQuery. This panel contains only the most generic options for working with XSLT or XQuery processors. The more specific options are grouped in other panels linked as child nodes of this panel in the tree of this **Preferences** page.

There is only one generic option available:

**Create transformation temporary files in system temporary directory**

It should be selected only when the temporary files necessary for performing transformations are created in the same folder as the source of the transformation (the default behavior when this option is not selected) and this breaks the transformation. An example of breaking the transformation is when the transformation processes all the files located in the same folder as the source of the transformation (including the temporary files) and the result is incorrect or the transformation fails because of this.

**XSLT Preferences**

To configure the **XSLT** options, open the Preferences dialog box (Options > Preferences) (on page 79) and go to XML > XSLT-XQuery > XSLT.

Oxygen XML Editor offers the possibility of using an XSLT transformer implemented in Java (other than the XSLT transformers that come bundled with Oxygen XML Editor). To use another XSLT transformer, specify the name of the transformer factory class. Oxygen XML Editor sets this transformer factory class as the value of the Java property: javax.xml.transform.TransformerFactory.

The XSLT preferences page allows you to customize the following options:

**JAXP XSLT Transformer - Value**

Allows you to set the value of the TransformerFactory Java class.

**Validation engine - XSLT 1.0**

Allows you to select the XSLT engine to be used for validation of XSLT 1.0 documents.

**Validation engine - XSLT 2.0**

Allows you to select the XSLT engine to be used for validation of XSLT 2.0 documents.

**Validation engine - XSLT 3.0**

Allows you to select the XSLT engine to be used for validation of XSLT 3.0 documents.
**Note:** Saxon-HE does not implement any XSLT 3.0 features. Saxon-PE implements a selection of XSLT 3.0 (and XPath 3.1) features, with the exception of schema-awareness and streaming. Saxon-EE implements additional features relating to streaming (processing of a source document without constructing a tree in memory. For further details about XSLT 3.0 conformance, go to http://www.saxonica.com/documentation/index.html#!conformance/xslt30.

**XSLT Editor Content Completion Options link**

Use this link to switch to the XSLT Content Completion preferences page (on page 169), where you can configure the XSLT content completion options.

**Saxon6 Preferences**

To configure the Saxon 6 options, open the Preferences dialog box (Options > Preferences) (on page 79) and go to XML > XSLT-XQuery > XSLT > Saxon > Saxon6.

The built-in Saxon 6 XSLT processor can be configured with the following options:

- **Line numbering** - Specifies whether or not line numbers are maintained and reported in error messages for the XML source document.
- **Disable calls on extension functions** - If selected, external function calls are not allowed. Selecting this option is recommended in an environment where untrusted stylesheets may be executed. It also disables user-defined extension elements and the writing of multiple output files, since they carry similar security risks.
- **Handling of recoverable stylesheet errors** - Allows you to choose how dynamic errors are handled. One of the following options can be selected:
  - **recover silently** - Continue processing without reporting the error.
  - **recover with warnings** - Issue a warning but continue processing.
  - **signal the error and do not attempt recovery** - Issue an error and stop processing.

**Saxon-HE/PE/EE Preferences**

To configure global options for XSLT transformation and validation scenarios that use the Saxon HE/PE/EE engine, open the Preferences dialog box (Options > Preferences) (on page 79) and go to XML > XSLT-XQuery > XSLT > Saxon > Saxon-HE/PE/EE.

**Saxon-HE/PE/EE Options**

Oxygen XML Editor allows you to configure the following XSLT options for the Saxon 9.8.0.12 Home Edition (HE), Professional Edition (PE), and Enterprise Edition (EE):

- **Use a configuration file ("-config")**
Select this option if you want to use a Saxon 9.8.0.12 configuration file that will be executed for the XSLT transformation and validation processes. You can specify the path to the configuration file by entering it in the URL field, or by using the \( \text{Insert Editor Variables} \) button, or using the browsing actions in the \( \text{Browse} \) drop-down list.

**Debugger trace into XPath expressions (applies to debugging sessions)**

Instructs the XSLT Debugger [on page 2309] to step into XPath expressions.

**Enable Optimizations ("-opt")**

This option is selected by default, which means that optimization is enabled. If not selected, the optimization is suppressed, which is helpful when reducing the compiling time is important, optimization conflicts with debugging, or optimization causes extension functions with side-effects to behave unpredictably.

**Line numbering ("-l")**

Line numbers where errors occur are included in the output messages.

**Expand attributes defaults ("-expand")**

Specifies whether or not the attributes defined in the associated DTD or XML Schema are expanded in the output of the transformation you are executing.

**DTD validation of the source ("-dtd")**

Specifies whether or not the source document will be validated against their associated DTD. You can choose from the following:

- **On** - Requests DTD validation of the source file and of any files read using the `document()` function.
- **Off** - (default setting) Suppresses DTD validation.
- **Recover** - Performs DTD validation but treats the errors as non-fatal.

[Note: Any external DTD is likely to be read even if not used for validation, since DTDs can contain definitions of entities.]

**Recoverable errors ("-warnings")**

Specifies how dynamic errors are handled. The following options can be selected:

- **Recover silently ("silent")** - Continues processing without reporting the error.
- **Recover with warnings ("recover")** - Issues a warning but continues processing.
- **Signal the error and do not attempt recovery ("fatal")** - Issues an error and stops processing.

**Strip whitespaces ("-strip")**
Specifies how the *strip whitespaces* operation is handled. You can choose one of the following values:

- **All** ("all") - Strips all whitespace text nodes from source documents before any further processing, regardless of any `xml:space` attributes in the source document.
- **Ignore** ("ignorable") - Strips all ignorable whitespace text nodes from source documents before any further processing, regardless of any `xml:space` attributes in the source document. Whitespace text nodes are ignorable if they appear in elements defined in the DTD or schema as having element-only content.
- **None** ("none") - Strips no whitespace before further processing.

**Saxon-PE/EE Options**

The following options are available for Saxon 9.8.0.12 Professional Edition (PE) and Enterprise Edition (EE) only:

**Register Saxon-JS extension functions and instructions**

Registers the Saxon-CE extension functions and instructions when compiling a stylesheet using the Saxon 9.8.0.12 processors.

**Note:** Saxon-CE, being JavaScript-based, was designed to run inside a web browser. This means that you will use Oxygen XML Editor only for developing the Saxon-CE stylesheet, leaving the execution part to a web browser. See more details about executing such a stylesheet on Saxonica's website.

**Allow calls on extension functions ("-ext")**

If selected, the stylesheet is allowed to call external Java functions. This does not affect calls on integrated extension functions, including Saxon and EXSLT extension functions. This option is useful when loading an untrusted stylesheet (such as from a remote site using `http://[URL]`). It ensures that the stylesheet cannot call arbitrary Java methods and thus gain privileged access to resources on your machine.

**Enable assertions ("-ea")**

In XSLT 3.0, you can use the `xsl:assert` element to make assertions in the form of XPath expressions, causing a dynamic error if the assertion turns out to be false. If this option is selected, XSLT 3.0 `xsl:assert` instructions are enabled. If it is not selected (default), the assertions are ignored.

**Saxon-EE Options**

The options available specifically for Saxon 9.8.0.12 Enterprise Edition (EE) are as follows:

**Validation of the source file ("-val")**
Requests schema-based validation of the source file and of any files read using `document()` or similar functions. It can have the following values:

- **Schema validation ("strict")** - This mode requires an XML Schema and allows for parsing the source documents with strict schema-validation enabled.
- **Lax schema validation ("lax")** - If an XML Schema is provided, this mode allows for parsing the source documents with schema-validation enabled but the validation will not fail if, for example, element declarations are not found.
- **Disable schema validation** - This specifies that the source documents should be parsed with schema-validation disabled.

**Validation errors in the result tree treated as warnings ("-outval")**

Normally, if validation of result documents is requested, a validation error is fatal. Selecting this option causes such validation failures to be treated as warnings.

**Write comments for non-fatal validation errors of the result document**

The validation messages for non-fatal errors are written (wherever possible) as a comment in the result document itself.

**Saxon-HE/PE/EE Advanced Preferences**

To configure the Saxon HE/PE/EE Advanced preferences, open the Preferences dialog box (Options > Preferences) (on page 79) and go to XML > XSLT-XQuery > XSLT > Saxon > Saxon-HE/PE/EE > Advanced.


- **URI Resolver class name ("-r")** - Specifies a custom implementation for the URI resolver used by the XSLT Saxon 9.8.0.12 transformer (the -r option when run from the command line). The class name must be fully specified and the corresponding jar or class extension must be configured from the dialog box for configuring the XSLT extension (on page 1678) for the particular transformation scenario.
- **Collection URI Resolver class name ("-cr")** - Specifies a custom implementation for the Collection URI resolver used by the XSLT Saxon 9.8.0.12 transformer (the -cr option when run from the command line). The class name must be fully specified and the corresponding jar or class extension must be configured from the dialog box for configuring the XSLT extension (on page 1678) for the particular transformation scenario.
XSLTProc Preferences

To configure XSLTProc options, open the Preferences dialog box (Options > Preferences) (on page 79) and go to XML > XSLT-XQuery > XSLT > XSLTProc.

The following options are available in this preferences page:

- **Enable XInclude processing** - If selected, XInclude references will be resolved when XSLTProc is used as transformer in XSLT transformation scenarios (on page 1640).
- **Skip loading the document's DTD** - If selected, the DTD specified in the DOCTYPE declaration will not be loaded.
- **Do not apply default attributes from document's DTD** - If selected, the default attributes declared in the DTD and not specified in the document are not included in the transformed document.
- **Do not use Internet to fetch DTD's, entities or docs** - If selected, the remote references to DTD's and entities are not followed.
- **Maximum depth in templates stack** - If this limit of maximum templates depth is reached the transformation ends with an error.
- **Verbosity** - If selected, the transformation will output detailed status messages about the transformation process in the Warnings view.
- **Show version of libxml and libxslt used** - If selected, Oxygen XML Editor will display in the Warnings view the version of the libxml and libxslt libraries invoked by XSLTProc.
- **Show time information** - If selected, the Warnings view will display the time necessary for running the transformation.
- **Show debug information** - If selected, the Warnings view will display debug information about what templates are matched, parameter values, and so on.
- **Show all documents loaded during processing** - If selected, Oxygen XML Editor will display in the Warnings view the URL of all the files loaded during transformation.
- **Show profile information** - If selected, Oxygen XML Editor will display in the Warnings view a table with all the matched templates, and for each template will display: the match XPath expression, the template name, the number of template modes, the number of calls, the execution time.
- **Show the list of registered extensions** - If selected, Oxygen XML Editor will display in the Warnings view a list with all the registered extension functions, extension elements and extension modules.
- **Refuses to write to any file or resource** - If selected, the XSLTProc processor will not write any part of the transformation result to an external file on disk. If such an operation is requested by the processed XSLT stylesheet the transformation ends with a runtime error.
- **Refuses to create directories** - If selected, the XSLTProc processor will not create any directory during the transformation process. If such an operation is requested by the processed XSLT stylesheet the transformation ends with a runtime error.
MSXML Preferences

To configure the MSXML options, open the Preferences dialog box (Options > Preferences) (on page 79) and go to XML > XSLT-XQuery > XSLT > MSXML.

The options in this preferences page for the MSXML 3.0 and 4.0 processors are as follows:

**Validate documents during parse phase**
If selected, and either the source or stylesheet document has a DTD or schema that its content can be checked against, validation is performed.

**Do not resolve external definitions during parse phase**
By default, MSXML instructs the parser to resolve external definitions such as document type definition (DTD), external subsets or external entity references when parsing the source and style sheet documents. If this option is selected, the resolution is disabled.

**Strip non-significant whitespaces**
If selected, strips non-significant white space from the input XML document during the load phase. Selecting this option can lower memory usage and improve transformation performance while, in most cases, creating equivalent output.

**Show time information**
If selected, the relative speed of various transformation steps can be measured, including:

- The time to load, parse, and build the input document.
- The time to load, parse, and build the stylesheet document.
- The time to compile the stylesheet in preparation for the transformation.
- The time to execute the stylesheet.

**Start transformation in this mode**
Although stylesheet execution usually begins in the empty mode, this default behavior may be changed by specifying another mode. Changing the start mode allows execution to jump directly to an alternate group of templates.

MSXML.NET Preferences

To configure the MSXML.NET options, open the Preferences dialog box (Options > Preferences) (on page 79) and go to XML > XSLT-XQuery > XSLT > MSXML.NET.

The options in this preferences page for the MSXML.NET processor are as follows:

**Enable XInclude processing**
If selected, XInclude references will be resolved when MSXML.NET is used as the transformer in the XSLT transformation scenario (on page 1640).

Validate documents during parse phase
If selected, and either the source or stylesheet document has a DTD or schema that its content can be checked against, validation is performed.

Do not resolve external definitions during parse phase
By default, MSXML instructs the parser to resolve external definitions such as document type definition (DTD), external subsets or external entity references when parsing the source and style sheet documents. If this option is selected, the resolution is disabled.

Strip non-significant whitespaces
If selected, strips non-significant white space from the input XML document during the load phase. Selecting this option can lower memory usage and improve transformation performance while, in most cases, creating equivalent output.

Show time information
If selected, the relative speed of various transformation steps can be measured, including:

- The time to load, parse, and build the input document.
- The time to load, parse, and build the stylesheet document.
- The time to compile the stylesheet in preparation for the transformation.
- The time to execute the stylesheet.

Forces ASCII output encoding
There is a known problem with the .NET 1.X XSLT processor (System.Xml.Xsl.XslTransform class). It does not support escaping of characters as XML character references when they cannot be represented in the output encoding. This means that it will be outputted as `?`. Usually this happens when output encoding is set to ASCII. If this option is selected, the output is forced to be ASCII encoded and all non-ASCII characters get escaped as XML character references (`&#nnnn;` form).

Allow multiple output documents
This option allows you to create multiple result documents using the exsl:document extension element.

Use named URI resolver class
This option allows you to specify a custom URI resolver class to resolve URI references in xsl:import and xsl:include instructions (during XSLT stylesheet loading phase) and in document() functions (during XSL transformation phase).

Assembly file name for URI resolver class
This option specifies a file name of the assembly where the specified resolver class can be found. The **Use named URI resolver class** option (on page 207) specifies a partially or fully qualified URI resolver class name (for example, `Acme.Resolvers.CacheResolver`). Such a name requires additional assembly specification using this option or the **Assembly GAC name for URI resolver class** option (on page 208), but fully qualified class name (which always includes an assembly specifier) is all-sufficient. See MSDN for more info about fully qualified class names.

**Assembly GAC name for URI resolver class**

This option specifies partially or fully qualified name of the assembly in the **global assembly cache** (GAC) where the specified resolver class can be found. See MSDN for more info about partial assembly names.

**List of extension object class names**

This option allows to specify extension object classes, whose public methods then can be used as extension functions in an XSLT stylesheet. It is a comma-separated list of namespace-qualified extension object class names. Each class name must be bound to a namespace URI using prefixes, similar to providing XSLT parameters.

**Use specified EXSLT assembly**

MSXML.NET supports a rich library of the [EXSLT](https://www.exslt.org) and EXSLT.NET extension functions embedded or in a plugin EXSLT.NET library. EXSLT support is enabled by default and cannot be disabled in this version. Use this option if you want to use an external EXSLT.NET implementation instead of a built-in one.

**Credential loading source xml**

This option allows you to specify user credentials to be used when loading XML source documents. The credentials should be provided in the `username:password@domain` format (all parts are optional).

**Credential loading stylesheet**

This option allows you to specify user credentials to be used when loading XSLT stylesheet documents. The credentials should be provided in the `username:password@domain` format (all parts are optional).

**XQuery Preferences**

To configure the **XQuery** options, open the **Preferences** dialog box (Options > Preferences) (on page 79) and go to XML > XSLT-XQuery > XQuery.

The following generic XQuery preferences are available:

**Validation engine**
Allows you to select the processor that will be used to validate XQuery documents. If you are validating an XQuery file that has an associated validation scenario, Oxygen XML Editor uses the processor specified in the scenario. If no validation scenario is associated, but the file has an associated transformation scenario, the processor specified in the scenario is used. If the processor does not support validation or if no scenario is associated, then the value from this combo box will be used as validation processor.

**Size limit of Sequence view (MB)**

When the result of an XQuery transformation is set as a sequence ([Present as a sequence option (on page 1697)](on page 1697)) in the transformation scenario, the size of one chunk of the result that is fetched from the database in lazy mode in one step is set in this option. If this limit is exceeded, go to the Sequence view (on page 1350) and click More results available to extract more data from the database.

**Format transformer output**

Specifies whether or not the output of the transformer is formatted and indented ([pretty-print (on page 3286)](on page 3286)).

*Note:* This option is ignored if you choose [Present as a sequence (on page 1697)](on page 1697) (lazy extract data from a database) from the associated transformation scenario.

**Create structure indicating the type nodes**

If selected, Oxygen XML Editor takes the results of a query and creates an XML document containing copies of all items in the sequence, suitably wrapped.

*Note:* This option is ignored if you choose [Present as a sequence (on page 1697)](on page 1697) (lazy extract data from a database) from the associated transformation scenario.

**Saxon-HE/PE/EE Preferences**

To configure global options for XQuery transformation and validation scenarios that use the Saxon HE/PE/EE engine, open the Preferences dialog box (Options > Preferences) (on page 79) and go to XML > XSLT-XQuery > XQuery > Saxon-HE/PE/EE.

Oxygen XML Editor allows you to configure the following XQuery options for the Saxon 9.8.0.12 Home Edition (HE), Professional Edition (PE), and Enterprise Edition (EE):

**Use a configuration file ("-config")**

Sets a Saxon 9.8.0.12 configuration file that is used for XQuery transformation and validation scenarios.

**Enable Optimizations ("-opt")**
This option is selected by default, which means that optimization is enabled. If not selected, the optimization is suppressed, which is helpful when reducing the compiling time is important, optimization conflicts with debugging, or optimization causes extension functions with side-effects to behave unpredictably.

**Use linked tree model ("-tree:linked")**

This option activates the linked tree model.

**Recoverable errors ("-warnings")**

Specifies how dynamic errors are handled. The following options can be selected:

- Recover silently ("silent") - Continues processing without reporting the error.
- Recover with warnings ("recover") - Issues a warning but continues processing.
- Signal the error and do not attempt recovery ("fatal") - Issues an error and stops processing.

**Strip whitespaces ("-strip")**

Specifies how the `strip whitespaces` operation is handled. You can choose one of the following values:

- All ("all") - Strips all whitespace text nodes from source documents before any further processing, regardless of any `xml:space` attributes in the source document.
- Ignore ("ignorable") - Strips all ignorable whitespace text nodes from source documents before any further processing, regardless of any `xml:space` attributes in the source document. Whitespace text nodes are ignorable if they appear in elements defined in the DTD or schema as having element-only content.
- None ("none") - Strips no whitespace before further processing.

The following option is available for Saxon 9.8.0.12 Professional Edition (PE) and Enterprise Edition (EE) only:

**Allow calls on extension functions ("-ext")**

If selected, calls on external functions are allowed. Selecting this option is recommended in an environment where untrusted stylesheets may be executed. It also disables user-defined extension elements and the writing of multiple output files, both of which carry similar security risks.

The options available specifically for Saxon 9.8.0.12 Enterprise Edition (EE) are as follows:

**Validation of the source file ("-val")**

Requests schema-based validation of the source file and of any files read using `document()` or similar functions. It can have the following values:
• **Schema validation** ("strict") - This mode requires an XML Schema and allows for parsing the source documents with strict schema-validation enabled.

• **Lax schema validation** ("lax") - If an XML Schema is provided, this mode allows for parsing the source documents with schema-validation enabled but the validation will not fail if, for example, element declarations are not found.

• **Disable schema validation** - This specifies that the source documents should be parsed with schema-validation disabled.

**Validation errors in the result tree treated as warnings** ("-outval")

Normally, if validation of result documents is requested, a validation error is fatal. Selecting this option causes such validation failures to be treated as warnings.

**Write comments for non-fatal validation errors of the result document**

The validation messages for non-fatal errors are written (wherever possible) as a comment in the result document itself.

**Enable XQuery update** ("-update:(on|off)")

This option controls whether or not XQuery update syntax is accepted. The default value is off.

**Backup files updated by XQuery** ("-backup:(on|off)")

If selected, backup versions for any XML files updated with an XQuery Update are generated. This option is available when the Enable XQuery update option is selected.

**Saxon HE/PE/EE Advanced Preferences**

To configure Saxon HE/PE/EE Advanced preferences, open the Preferences dialog box (Options > Preferences) (on page 79) and go to XML > XSLT-XQuery > XQuery > Saxon-HE/PE/EE > Advanced.

The advanced XQuery options that can be configured for the Saxon 9.8.0.12 XQuery transformer (all editions: Home Edition, Professional Edition, Enterprise Edition) are as follows:

• **URI Resolver class name** - Allows you to specify a custom implementation for the URI resolver used by the XQuery Saxon 9.8.0.12 transformer (the -r option when run from the command line). The class name must be fully specified and the corresponding JAR or class extension must be configured from the dialog box for configuring the XQuery extension (on page 1678) for the particular transformation scenario.
Note: If your URIResolver implementation does not recognize the given resource, the resolve(String href, String base) method should return a null value. Otherwise, the given resource will not be resolved through the XML Catalog (on page 1123).

**Collection URI Resolver class name** - Allows you to specify a custom implementation for the Collection URI resolver used by the XQuery Saxon 9.8.0.12 transformer (the -cr option when run from the command line). The class name must be fully specified and the corresponding JAR or class extension must be configured from the dialog box for configuring the XQuery extension (on page 1678) for the particular transformation scenario.

Debugger Preferences

To configure the Debugger preferences, open the Preferences dialog box (Options > Preferences) (on page 79) and go to XML > XSLT-XQuery > Debugger.

The following options are available:

**Show xsl:result-document output**

If selected, the debugger presents the output of xsl:result-document instructions into the debugger output view.

**Infinite loop detection**

Select this option to receive notifications when an infinite loop occurs during transformation.

**Enable Saxon optimizations**

This option is not selected by default and this means that the optimization for the debugging process is suppressed. This is helpful when reducing the compiling time is important, optimization conflicts with debugging, or optimization causes extension functions with side-effects to behave unpredictably.

**Maximum depth in templates stack**

Allows you to set how many xsl:template instructions can appear on the current stack. This setting is used by the infinite loop detection.

**Debugger layout**

If you select the Horizontal layout, the stack of XML editors is presented on the left half of the editing area while the stack of XSL editors is on the right half. If you select the Vertical layout, the stack of XML editors is presented on the upper half of the editing area while the stack of XSL editors is on the lower half.

**Debugger current instruction pointer**

Allows you to set the background color of the current execution node, both in the document (XML) and XSLT/XQuery views.
XWatch evaluation timeout (seconds)

Allows you to specify the maximum time that Oxygen XML Editor allocates to the evaluation of XPath expressions while debugging.

Messages

Allows you to specify how to handle the debugging process when the source document involved in a debugging session is edited. You can choose one of the following:

- Ask me what to do
- Always stop the debugging session
- Never stop the debugging session

Profiler Preferences

This section explains the settings available for the XSLT/XQuery Profiler. To access and modify these settings, open the Preferences dialog box (Options > Preferences) (on page 79) and go to XML > XSLT-XQuery > Profiler (see Debugger Preferences (on page 212)).

The following profiler settings are available:

Show time

Shows the total time that was spent in the call.

Show inherent time

Shows the inherent time that was spent in the call. The inherent time is defined as the total time of a call minus the time of its child calls.

Show invocation count

Shows how many times the call was called in this particular call sequence.

Time scale

Determines the unit of time measurement. You can choose between milliseconds or microseconds.

Hotspot threshold

Hotspots are ignored below this specified amount (in milliseconds). For more information, see Hotspots View (on page 2318).

Ignore invocation less than

Invocations are ignored below this specified amount (in microseconds). For more information, see Invocation Tree View (on page 2316).

Percentage calculation
The percentage base that determines what time span percentages are calculated against. You can choose between the following:

- **Absolute** - Percentage values show the contribution to the total time.
- **Relative** - Percentage values show the contribution to the calling call.

### XPath Preferences

To configure XPath options, open the **Preferences** dialog box (Options > Preferences) (on page 79) and go to XML > XSLT-XQuery > XPath.

Oxygen XML Editor allows you to customize the following options:

#### Unescape XPath expression

If selected, the entities of an XPath expression that you type in the **XPath/XQuery Builder** (on page 2185) and the **XPath toolbar** (on page 2182) are unescaped during their execution. For example, the expression:

```
//varlistentry[starts-with(@os,'##x73;')]
```

is equivalent to:

```
//varlistentry[starts-with(@os,'s')]"
```

#### Multiple XPath results

Select this option to display the results of an XPath expression in separate tabs in the **Results view** (on page 357).

#### XPath Default Namespace (only for XPath version 2.0)

Specifies the default namespace to be used for unprefixed element names. You can choose between the following four options:

- **No namespace** - If selected, Oxygen XML Editor considers unprefixed element names of the evaluated XPath expressions as belonging to no namespace.
- **Use the default namespace from the root element** (default selection) - Oxygen XML Editor considers unprefixed element names of the evaluated XPath expressions as belonging to the default namespace declared on the root element of the XML document you are querying.
- **Use the namespace of the root** - If selected, Oxygen XML Editor considers unprefixed element names of the evaluated XPath expressions as belonging to the same namespace as the root element of the XML document you are querying.
- **This namespace** - If selected, you can use the corresponding text field to enter the namespace of the unprefixed elements.
Default prefix-namespace mappings

You can use this table to associate prefixes with namespaces. Use these mappings when you want to define them globally (not for each document). Use the New button to add mappings to the list and the Delete button to remove mappings.

Custom Engines Preferences

Oxygen XML Editor allows you to configure custom processors to be used for running XSLT and XQuery transformations.

**Note:** You can not use these custom engines in the Debugger perspective (on page 2290).

To configure the Custom Engines preferences, open the Preferences dialog box (Options > Preferences) (on page 79) and go to XML > XSLT-XQuery > Custom Engines.

The table in this preferences page displays the custom engines that have been defined. Use the New or Edit button at the bottom of the table to open a dialog box that allows you to add or configure a custom engine.

Figure 28. Parameters of a Custom Engine

The following parameters can be configured for a custom engine:

**Engine type**

Specifies the transformer type. You can choose between XSLT and XQuery engines.

**Name**

The name of the transformer displayed in the dialog box for editing transformation scenarios.
Description

A textual description of the transformer.

Working directory

The start directory of the executable program for the transformer. The following editor variables (on page 276) are available for making the path to the working directory independent of the location of the input files:

- $(homeDir) - The user home directory in the operating system.
- $(cfd) - The path to the directory of the current file.
- $(pd) - The path to the directory of the current project.
- $(oxygenInstallDir) - The Oxygen XML Editor install directory.

Command line

The command line that must be executed by Oxygen XML Editor to perform a transformation with the engine. The following editor variables (on page 276) are available for making the parameters in the command line (the transformer executable, the input files) independent of the location of the input files:

- $(xml) - The XML input document as a file path.
- $(xmlu) - The XML input document as a URL.
- $(xsl) - The XSL / XQuery input document as a file path.
- $(xslu) - The XSL / XQuery input document as a URL.
- $(out) - The output document as a file path.
- $(outu) - The output document as a URL.
- $(ps) - The platform separator that is used between library file names specified in the class path.

Output Encoding

The encoding of the transformer output stream.

Error Encoding

The encoding of the transformer error stream.

PDF Output Preferences

The PDF Output preferences page simply includes links to sub-pages for configuring PDF output options.
FO Processors Preferences

Oxygen XML Editor includes a built-in formatting objects processor (Apache FOP), but you can also configure other external processors and use them in the transformation scenarios for processing XSL-FO documents.

Oxygen XML Editor provides an easy way to add two of the most commonly used commercial FO processors: RenderX XEP and Antenna House Formatter. You can easily add RenderX XEP as an external FO processor if you have the XEP installed. Also, if you have the Antenna House Formatter, Oxygen XML Editor uses the environment variables set by the XSL formatter installation to detect and use it for XSL-FO transformations. If the environment variables are not set for the XSL formatter installation, you can browse and choose the executable file just as you would for XEP. You can use these two external FO processors for DITA OT transformations scenarios (on page 1702) and XML with XSLT transformation scenarios (on page 1674).

To configure the options for the FO Processors, open the Preferences dialog box (Options > Preferences) (on page 79) and go to XML > PDF Output > FO Processors. This preferences page includes the following options:

Apache FOP Section

In this section you can configure options for the built-in Apache processor. The following options are available:

Use built-in Apache FOP

Instructs Oxygen XML Editor to use the built-in Apache FO processor. To see the version of the built-in XSL-FO processor for your installation, go to Help > About > Libraries and search for Apache FOP.

Use other Apache FOP

Instructs Oxygen XML Editor to use another Apache FO processor that is installed on your computer. You can specify the path by using the text field, the Insert Editor Variables (on page 276) button, or the Browse button.

Enable the output of the built-in FOP

All Apache FOP output is displayed in a results pane at the bottom of the Oxygen XML Editor window, including warning messages about FO instructions not supported by Apache FOP.

Memory available to the built-in FOP

If your Apache FOP transformations fail with an Out of Memory error (OutOfMemoryError), use this combo box to select a bigger value for the amount of memory reserved for FOP transformations.
Configuration file for the built-in FOP

Use this option to specify the path to an Apache FOP configuration file (for example, to render to PDF a document containing Unicode content using a special true type font).
You can specify the path by using the text field, the Insert Editor Variables (on page 276) button, or the Browse button.

Generates PDF/A-1b output

When selected, PDF/A-1b output is generated.

Note: All fonts have to be embedded, even the implicit ones. More information about configuring metrics files for the embedded fonts can be found in Add a font to the built-in FOP (on page 1740).

Note: You cannot use the <filterList> key in the configuration file since the FOP would generate the following error: The Filter key is prohibited when PDF/A-1 is active.

External FO Processors Section

In this section you can manage the external FO processors you want to use in transformation scenarios. You can use the two options at the bottom of the section to use the RenderX XEP or Antenna House Formatter commercial FO processors.

Add 'XEP' FO processor (executable file is needed)

If RenderX XEP is already installed on your computer, you can use this button to choose the XEP executable script (xep.bat for Windows, xep for Linux).

Add 'Antenna House' FO processor (executable file is needed)

If Antenna House Formatter is already installed on your computer, you can use this button to choose the Antenna House executable script (AHFCmd.exe or XSLCmd.exe for Windows, and run.sh for Linux/Mac OS).

Note: The built-in Antenna House Formatter GUI transformation scenario requires that you configure an external FO processor that runs AHFormatter.exe (Windows only). In the external FO Processor configuration dialog box (on page 219), you could use "$env(AHF63_64_HOME)\AHFormatter.exe" -d $@ -s for the value in the Command line field, although the environment variable name changes for each version of the AH Formatter and for each system architecture (you can install multiple versions side-by-side). For more information, see https://github.com/AntennaHouse/focheck/wiki/focheck.

You can also add external processors or configure existing ones. Press the New button to open a configuration dialog box that allows you to add a new external FO processor. Use the other buttons (Edit, Duplicate, Delete, Up, Down) to configure existing external processors.
Figure 29. External FO Processor Configuration Dialog Box

The external FO Processor configuration dialog box includes the following options:

**Name**

The name that will be displayed in the list of available FO processors on the FOP tab of the transformation scenario dialog box.

**Description**

A textual description of the FO processor that will be displayed in the FO processors table and in tooltips of UI components where the processor is selected.

**Working directory**

The directory where the intermediate and final results of the processing is stored. You can specify the path by using the text field, the Insert Editor Variables (on page 276) button, or the Browse button. You can use one of the following editor variables (on page 276):

- \$\{homeDir\} - The path to the user home directory.
- \$\{cfd\} - The path of the current file directory. If the current file is not a local file, the target is the user desktop directory.
- \$\{pd\} - The project directory.
- \$\{oxygenInstallDir\} - The Oxygen XML Editor installation directory.

**Command line**

The command line that starts the FO processor, specific to each processor. You can specify the path by using the text field, the Insert Editor Variables (on page 276) button, or the Browse button. You can use one of the following editor variables (on page 276):
• \$\{method\} - The FOP transformation method: pdf, ps, or txt.
• \$\{fo\} - The input FO file.
• \$\{out\} - The output file.
• \$\{pd\} - The project directory.
• \$\{frameworksDir\} - The path of the frameworks subdirectory of the Oxygen XML Editor installation directory.
• \$\{oxygenInstallDir\} - The Oxygen XML Editor installation directory.
• \$\{ps\} - The platform-specific path separator. It is used between the library files specified in the class path of the command line.

**Output Encoding**

The encoding of the FO processor output stream that is displayed in a Results panel (on page 357) at the bottom of the Oxygen XML Editor window.

**Error Encoding**

The encoding of the FO processor error stream that is displayed in a Results panel (on page 357) at the bottom of the Oxygen XML Editor window.

**CSS-based Processors Preferences**

Oxygen XML Editor includes a built-in XML to PDF transformation with CSS scenario type for generating PDF output using a CSS-based processor.

To configure the options for the CSS-based processors, open the Preferences dialog box (Options > Preferences) (on page 79) and go to XML > PDF Output > CSS-based Processors. This preferences page includes the following options:

**Oxygen PDF Chemistry Section**

**Auto-detect**

If selected, the directory of the Chemistry processor will be automatically detected. This is based on the system's PATH environmental variable. If none is detected, it will use the path of the built-in distribution.

**Custom installation directory**

Use this option to select an external directory of a custom installation of the Chemistry processor.

**Memory available to the processor (MB)**
Specifies the maximum amount of memory that is available for the transformation. If your transformations fail with an Out of Memory error (OutOfMemoryError), you can use this option to select a bigger value for the amount of memory reserved for the process.

**Generates PDF/UA-1 output**

Use this option to produce output that conforms with the PDF/UA-1 accessibility standards.

**Note:** This mode has some special requirements. For example, all fonts have to be embedded and the title of documents must be marked using the metadata. For more information, see Oxygen PDF Chemistry User Guide: Fully Accessible PDF (PDF/UA1).

**Show console output**

Allows you to specify when to display the console output log in the message panel at the bottom of the editor. The following options are available:

- **When build fails** - Displays the console output log only if the build fails.
- **Always** - Displays the console output log, regardless of whether or not the build fails.

**Ant Preferences**

To set Ant preferences, open the Preferences dialog box (Options > Preferences) (on page 79) and go to XML > Ant. This panel allows you to choose the directory containing the Apache Ant (on page 3279) libraries (the so-called Ant Home) that Oxygen XML Editor uses to handle Ant build files.

There are two options available:

- **Built-in** - the path to the Ant distribution that comes bundled with Oxygen XML Editor installation kit.
- **Custom** - the path to an Ant distribution of your choice.

**Import Preferences**

To configure importing options, open the Preferences dialog box (Options > Preferences) (on page 79) and go to XML > Import. This page allows you to configure how empty values and null values are handled when they are encountered in imported database tables or Excel sheets. Also you can configure the format of date / time values recognized in the imported database tables or Excel sheets.

The following options are available:

- **Create empty elements for empty values**
If selected, an empty value from a database column or from a text file is imported as an empty element.

**Create empty elements for null values**

If selected, null values from a database column are imported as empty elements.

**Escape XML content**

Selected by default, this option instructs Oxygen XML Editor to escape the imported content to an XML-safe form.

**Add annotations for generated XML Schema**

If selected, the generated XML Schema contains an annotation for each of the imported table columns. The documentation inside the annotation tag contains the remarks of the database columns (if available) and also information about the conversion between the column type and the generated XML Schema type.

**Date / Time Format section**

Specifies the format used for importing date and time values from Excel spreadsheets or database tables, and in the generated XML schemas. You can choose from the following format types:

- **Unformatted** - The date and time formats specific to the database are used for import. When importing data from Excel a string representation of date or time values are used. The type used in the generated XML Schema is `xs:string`.

- **XML Schema date format** - The XML Schema-specific format ISO8601 is used for imported date / time data (`yyyy-MM-dd'T'HH:mm:ss` for `datetime`, `yyyy-MM-dd` for `date` and `HH:mm:ss` for `time`). The types used in the generated XML Schema are `xs:datetime`, `xs:date` and `xs:time`.

- **Custom format** - If selected, you can define a custom format for timestamp, date, and time values or choose one of the predefined formats. A preview of the values is presented when a format is used. The type used in the generated XML Schema is `xs:string`.

### Table 2. Pattern Letters

<table>
<thead>
<tr>
<th>Letter</th>
<th>Date or Time Component</th>
<th>Presentation</th>
<th>Examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>G</td>
<td>Era designator</td>
<td>Text</td>
<td>AD</td>
</tr>
<tr>
<td>y</td>
<td>Year</td>
<td>Year</td>
<td>1996; 96</td>
</tr>
<tr>
<td>M</td>
<td>Month in year</td>
<td>Month</td>
<td>July; Jul; 07</td>
</tr>
<tr>
<td>w</td>
<td>Week in year</td>
<td>Number</td>
<td>27</td>
</tr>
<tr>
<td>W</td>
<td>Week in month</td>
<td>Number</td>
<td>2</td>
</tr>
<tr>
<td>D</td>
<td>Day in year</td>
<td>Number</td>
<td>189</td>
</tr>
<tr>
<td>d</td>
<td>Day in month</td>
<td>Number</td>
<td>10</td>
</tr>
<tr>
<td>Letter</td>
<td>Date or Time Component</td>
<td>Presentation</td>
<td>Examples</td>
</tr>
<tr>
<td>--------</td>
<td>-----------------------------</td>
<td>--------------</td>
<td>-------------------</td>
</tr>
<tr>
<td>F</td>
<td>Day of week in month</td>
<td>Number</td>
<td>2</td>
</tr>
<tr>
<td>E</td>
<td>Day in week</td>
<td>Text</td>
<td>Tuesday; Tue</td>
</tr>
<tr>
<td>a</td>
<td>Am / pm marker</td>
<td>Text</td>
<td>PM</td>
</tr>
<tr>
<td>H</td>
<td>Hour in day (0-23)</td>
<td>Number</td>
<td>0</td>
</tr>
<tr>
<td>k</td>
<td>Hour in day (1-24)</td>
<td>Number</td>
<td>24</td>
</tr>
<tr>
<td>K</td>
<td>Hour in am / pm (0-11)</td>
<td>Number</td>
<td>0</td>
</tr>
<tr>
<td>h</td>
<td>Hour in am / pm (1-12)</td>
<td>Number</td>
<td>12</td>
</tr>
<tr>
<td>m</td>
<td>Minute in hour</td>
<td>Number</td>
<td>30</td>
</tr>
<tr>
<td>s</td>
<td>Second in minute</td>
<td>Number</td>
<td>55</td>
</tr>
<tr>
<td>S</td>
<td>Millisecond</td>
<td>Number</td>
<td>978</td>
</tr>
<tr>
<td>z</td>
<td>Time zone</td>
<td>General time zone</td>
<td>PST; GMT-08:00</td>
</tr>
<tr>
<td>Z</td>
<td>Time zone</td>
<td>RFC 822 time zone</td>
<td>-0800</td>
</tr>
</tbody>
</table>

Pattern letters are usually repeated, as their number determines the exact presentation:

- **Text** - If the number of pattern letters is 4 or more, the full form is used. Otherwise, a short or abbreviated form is used if available.
- **Number** - The number of pattern letters is the minimum number of digits, and shorter numbers are zero-padded to this amount.
- **Year** - If the number of pattern letters is 2, the year is truncated to 2 digits. Otherwise, it is interpreted as a number.
- **Month** - If the number of pattern letters is 3 or more, the month is interpreted as text. Otherwise, it is interpreted as a number.
- **General time zone** - Time zones are interpreted as text if they have names. For time zones representing a GMT offset value, the following syntax is used:
  - **GMTOffsetTimeZone** - GMT Sign Hours: Minutes
    - **Sign** - one of + or -
    - **Hours** - one or two digits
    - **Minutes** - two digits
    - **Digit** - one of 0 1 2 3 4 5 6 7 8 9
  - **RFC822TimeZone**
  - **TwoDigitHours** (must be between 00 and 23)

Hours must be between 0 and 23, and Minutes must be between 00 and 59. The format is locale independent and digits must be taken from the Basic Latin block of the Unicode standard.

- **RFC 822 time zone**: The RFC 822 4-digit time zone format is used:
  - **RFC822TimeZone**
  - **TwoDigitHours** (must be between 00 and 23)
XML Signing Certificates Preferences

Oxygen XML Editor provides two types of keystores (on page 3283) for certificates that are used for digital signatures of XML documents: Java Keystore (JKS) and Public-Key Cryptography Standards version 12 (PKCS-12). A keystore file is protected by a password. To configure a certificate keystore, open the Preferences dialog box (Options > Preferences) (on page 79) and go to XML > XML Signing Certificates. You can customize the following parameters of a keystore:

- **Keystore type** - The type of keystore (on page 3283) that Oxygen XML Editor uses (JKS or PKCS-12).
- **Keystore file** - The location of the imported file.
- **Keystore password** - The password that is used for protecting the privacy of the stored keys.
- **Certificate alias** - The alias used for storing the key entry (the certificate or the private key) inside the keystore (on page 3283).
- **Private key password** - The private key password of the certificate (required only for JKS keystores (on page 3283)).
- **Validate** - Press this button to verify the configured keystore (on page 3283) and the validity of the certificate.

XML Refactoring Preferences

To specify a folder for loading the custom XML refactoring operations, open the Preferences dialog box (Options > Preferences) (on page 79) and go to XML > XML Refactoring. The following option is available in this preferences page:

**Load additional refactoring operations from**

Use this text box to specify a folder for loading custom XML refactoring operations. You can specify the path by using the text field, the ![Insert Editor Variables](on page 276) button, or the ![Browse](button. Oxygen XML Editor looks for XML refactoring operations recursively in the specified folder, so they can be stored in descendant folders.
DITA Preferences

To access the DITA Preferences page, open the Preferences dialog box (Options > Preferences) (on page 79) and go to DITA. This preferences page includes the following sections and options:

**DITA Open Toolkit section**

This section allows you to specify the default directory of the DITA Open Toolkit distribution (bundled with the Oxygen XML Editor installation) to be used for validating and publishing DITA content. You can select from the following:

- **Built-in DITA-OT 3.x**
  
  Oxygen XML Editor comes bundled with DITA-OT 3.3.1. By default, all defined DITA transformation/validation scenarios will run with this version. This also provides access to DITA 1.3 features (including document templates). The default DITA OT 3.3.1 directory is: 
  
  `[OXYGEN_INSTALL_DIR]/frameworks/dita/DITA-OT3.x`. 

- **Custom**
  
  Allows you to specify a custom directory for your DITA-OT distribution.

  **Location**
  
  You can either provide a new file path for the specific DITA OT that you want to use or select a previously used one from the drop-down list. You can specify the path by using the text field, the Insert Editor Variables (on page 276) button, or the Browse button.

**DITA Maps file patterns**

Allows you to specify the extension types that will be handled as DITA maps when opened in Oxygen XML Editor.

**When opening a map**

Oxygen XML Editor can open a DITA map in the regular editor view or in the DITA Maps Manager (on page 2990). This option allows you to specify how a map will be opened. You can choose one of the following options:

- **Always open in the DITA Maps Manager** - A DITA map file is always opened in the DITA Maps Manager view.
- **Always open as XML** - A DITA map file is always opened in the XML editor.
- **Always ask** - When opening a DITA map, you are prompted to choose between opening it in the XML editor panel or in the DITA Maps Manager view.
When the last/first item is reached while navigating reviews

This option allows you to specify what should happen when you are navigating review items in the Review view (on page 964) and you reach the last or first review item. You can choose one of the following options:

- **Open the next/previous document (in the current DITA map hierarchy) that contains review items** - If you reach the last/first review item in the document, clicking the ↓ Next or ↑ Previous navigation buttons will open the next/previous document (from the current DITA map hierarchy) that contains review items.
- **Do nothing** - If you reach the last/first review item in the document, clicking the ↓ Next or ↑ Previous navigation buttons will do nothing.
- **Always ask** - If you reach the last/first review item in the document, clicking the ↓ Next or ↑ Previous navigation buttons will open a dialog box asking if you want to open the next/previous document (from the current DITA map hierarchy) that contains review items.

Prefer navigation title for topicref rendering

If selected and there is a navtitle attribute set on a topicref, then the navtitle is used to render the title of the topic in the DITA Maps Manager (on page 2990).

Insert topic reference section

Allows you to specify that when inserting a topic reference (using the Insert Reference dialog box (on page 3017) and Edit Properties dialog box (on page 3027)), the values for certain attributes will always be automatically populated with a detected value (based on the specifications), even if it is the same as the default value. You can choose to always populate the values for the following attributes:

- **Format** - If selected, the format attribute will always be automatically populated with a detected value.
- **Scope** - If selected, the scope attribute will always be automatically populated with a detected value.
- **Type** - If selected, the type attribute will always be automatically populated with a detected value.
- **Navigation title** - If selected, the navtitle attribute will always be automatically populated with a detected value.

Insert link section

Allows you to specify that when a link reference is inserted (using actions in the Link drop-down menu), the values for certain attributes will always be automatically populated with a detected value (based on the specifications), even if it is the same
as the default value. You can choose to always populate the values for the following attributes:

- **Format** - If selected, the `format` attribute will always be automatically populated with a detected value.
- **Scope** - If selected, the `scope` attribute will always be automatically populated with a detected value.
- **Type** - If selected, the `type` attribute will always be automatically populated with a detected value.

### Use `.` instead of the ID of the parent topic (DITA 1.3)

When addressing a non-topic element within the topic that contains the URI reference, the URI reference can use an abbreviated fragment-identifier syntax that replaces the topic ID with `.` (`.//elementId`). For more information, see [https://www.oxygenxml.com/dita/1.3/specs/index.html#archSpec/base/uri-based-addressing.html](https://www.oxygenxml.com/dita/1.3/specs/index.html#archSpec/base/uri-based-addressing.html).

### Profiling Attributes link

Opens the Profiling/Conditional Text preferences page (on page 144) where you can configure profiling attributes and condition sets.

### DITA New Topics Preferences

To access the DITA New Topics preferences page, open the Preferences dialog box (Options > Preferences) (on page 79) and go to DITA > New topics. This preferences page includes the following options:

#### Use the title to generate the file name

This option (and its sub-options) pertain to the rules that will be used to generate file names in the New DITA File dialog box (on page 3050). Select this option to use the text entered in the **Title** field to automatically generate a file name (the generated name can be seen in the **Save as** field). By default, the generated name will replace spaces with underscores (`_`), all illegal characters will be removed, and all upper case characters changed to lower case, but you can use the sub-options to change this.

**Replace spaces with**

If selected, the file name generation mechanism will replace spaces in the title with the character entered in this option.

**Lower case only**
If selected, the file name generation mechanism will only use lower case letters.

**Use camel case**

If selected, the file name generation mechanism will convert the title to a file name using the *camel case* convention where the first word starts with a lower case letter and all subsequent words begin with upper case (for example, `myFileName`).

**Upper case first letter**

Select this option if you want the file name generation mechanism to convert the title to a file name using the *camel case* convention but with an upper case letter for the first word (for example, `MyFileName`).

**Use the file name as the value of the root ID attribute**

Select this option to use the file name (as seen in the *Save as* field but without the file extension) as the value of the root `id` attribute for the new topic.

DITA Publishing Preferences

To access the DITA Publishing preferences page, open the *Preferences* dialog box ([Options > Preferences](on page 79)) and go to DITA > Publishing. You can also open this page by clicking the *Configure Publishing Templates Gallery* link in the Templates tab of the transformation scenario dialog box for WebHelp Responsive transformations.

You can use this preferences page to specify additional directories where custom publishing templates are stored. The templates stored in these directories will appear in the preview pane in the Templates tab of the transformation scenario dialog box, along with all the built-in templates.

DITA Logging Preferences

To access the DITA Logging preferences page, open the *Preferences* dialog box ([Options > Preferences](on page 79)) and go to DITA > Logging. This preferences page includes the following sections and options:

**Show console output**

Allows you to specify when to display the console output log in the message panel at the bottom of the editor. The following options are available:

- **When build fails** - Displays the console output log only if the build fails.
• **Always** - Displays the console output log, regardless of whether or not the build fails.

**Show the following types of messages in a new tab**

This section allows you to specify which types of messages will be displayed in separate tabs in the message panel at the bottom of the editor if a DITA transformation results in errors or warnings. You can choose whether or not to display the following types of messages:

- DITA-OT errors
- DITA-OT warnings
- DITA-OT info
- FOP errors
- FOP warnings
- FOP info
- XSLT problems

**Data Sources Preferences**

To configure the **Data Sources** preferences, open the **Preferences** dialog box (**Options > Preferences**) and go to **Data Sources**. This preferences page allows you to configure data sources and connections to relational and native XML databases. For a list of drivers that are available for the major database servers, see **Download Links for Database Drivers** (on page 234).

**Connection Wizards Section**

**Create eXist-db XML connection**

Click this link to open the dedicated **Create eXist-db XML connection** dialog box (**on page 2230**) that provides a quick way to create an eXist connection.

**Data Sources Section**

This section allows you to add and configure data sources.

Figure 31. Data Sources Preferences Panel
The following buttons are available at the bottom of the **Data Sources** panel:

**New**

Opens the **Data Sources Drivers** dialog box that allows you to configure a new database driver.

Figure 32. Data Sources Drivers Dialog Box

The following options are available in the **Data Source Drivers** dialog box:

- **Name** - The name of the new data source driver that will be used for creating connections to the database.
- **Type** - Selects the data source type from the supported driver types.
• ✉ Help button - Opens the User Manual at the list of the sections (on page 234) where the configuration of supported data sources is explained and the URLs for downloading the database drivers are specified.

• Driver files (JAR, ZIP) - Lists download links for database drivers (on page 234) that are necessary for accessing databases in Oxygen XML Editor.

• Add Files - Adds the driver class library.

• Add Recursively - Adds driver files recursively.

• Remove - Removes the selected driver class library from the list.

• Detect - Detects driver file candidates.

• Stop - Stops the detection of the driver candidates.

• Driver class - Specifies the driver class for the data source driver.

Edit

Opens the Data Sources Drivers dialog box for editing the selected driver. See above the specifications for the Data Sources Drivers dialog box. To edit a data source, there must be no connections using that data source driver.

Duplicate

Creates a copy of the selected data source.

Delete

Deletes the selected driver. To delete a data source, there must be no connections using that data source driver.

Connections Section

This section allows you to add and configure data source connections.

Figure 33. Connections Preferences Panel

The following buttons and options are available at the bottom of the Connections panel:

• New
Opens the **Connection** dialog box that allows you to configure a new database connection.

**Figure 34. Connection Dialog Box**

The following options are available in the **Connection** dialog box:

- **Name** - The name of the new connection that will be used in transformation scenarios and validation scenarios.
- **Data Source** - Allows selecting a data source defined in the **Data Source Drivers** dialog box.

Depending upon the selected data source, you can set some of the following parameters in the **Connection details** area:

- **URL** - The URL for connecting to the database server.
- **User** - The user name for connecting to the database server.
- **Password** - The password of the specified user name.
- **Host** - The host address of the server.
- **Port** - The port where the server accepts the connection.
- **XML DB URI** - The database URI.
- **Database** - The initial database name.
- **Collection** - One of the available collections for the specified data source.
- **Environment home directory** - Specifies the home directory (only for a Berkeley database).
- **Verbosity** - Sets the verbosity level for output messages (only for a Berkeley database).
- **Use a secure HTTPS connection (SSL)** - Allows you to establish a secure connection to an eXist database through the SSL protocol.

**Edit**

Opens the **Connection** dialog box, allowing you to edit the selected connection. See above the specifications for the **Connection** dialog box.

**Duplicate**

Creates a copy of the selected connection.

**Delete**

Deletes the selected connection.

**Move Up**

Moves the selected connection up one row in the list.

**Move Down**

Moves the selected connection down one row in the list.

**Limit the number of cells**

For performance issues, you can set the maximum number of cells that will be displayed in the **Table Explorer view** (on page 2200) for a database table. Leave this field empty if you want the entire content of the table to be displayed. By default, this field is set to 2000. If a table that has more cells than the value set here is displayed in the **Table Explorer view** (on page 2200), a warning dialog box will inform you that the table is only partially shown.

**Maximum number of children for container nodes**

In Oracle XML, a container can hold millions of resources. If the node corresponding to such a container in the **Data Source Explorer view** (on page 2198) would display all the contained resources at the same time, the performance of the view would be very slow. To prevent this, only a limited number of the contained resources is displayed as child nodes of the container node. You can navigate to other contained resources from the same container by using the **Up** and **Down** buttons in the **Data Source Explorer view** (on page 2198). This limited number is set in the field. The default value is 200 nodes.

**Table Filters Preferences**

The **Table Filters** preferences page allows you to choose the types of tables to be shown in the **Data Source Explorer view** (on page 2198). To open this preferences page, open the **Preferences** dialog box (Options > Preferences) (on page 79) and go to **Data Sources > Table Filters**.
You can choose to display the following types of tables:

- Alias
- Global Temporary
- Local Temporary
- Synonym
- System Table
- Table
- View

Download Links for Database Drivers

For a list of major relational databases and the drivers that are available for them, see https://www.oxygenxml.com/database_drivers.html.

In addition, the following is a list of other popular databases along with instructions for getting the drivers that are necessary to access the databases in Oxygen XML Editor:

- **Berkeley DB XML database** - Copy the `jar` files from the Berkeley database install directory into the Oxygen XML Editor install directory as described in the procedure for configuring a Berkeley DB data source (on page 2223).

- **IBM DB2 Pure XML database** - Go to the IBM website and in the DB2 Clients and Development Tools category select the DB2 Driver for JDBC and SQLJ download link. Fill out the download form and download the zip file. Unzip the zip file and use the `db2jcc.jar` and `db2jcc_license_cu.jar` files in Oxygen XML Editor for configuring a DB2 data source (on page 2205).

- **eXist database** - Copy the `jar` files from the eXist database install directory to the Oxygen XML Editor install directory as described in the procedure for configuring an eXist data source (on page 2230).

- **MarkLogic database** - Download the MarkLogic driver from MarkLogic Community site.

- **Microsoft SQL Server 2005 / 2008 database** - Download the appropriate MS SQL JDBC driver from the Microsoft website.

- **Oracle 11g database** - Go to http://www.oracle.com/technetwork/database/enterprise-edition/jdbc-112010-090769.html and download the Oracle 11g JDBC driver called `ojdbc6.jar`.

- **PostgreSQL 8.3 database** - Go to http://jdbc.postgresql.org/download.html and download the PostgreSQL 8.3 JDBC3 driver.

SVN Preferences

To configure the options for the SVN client tool, open the Preferences dialog box (Options > Preferences) (on page 79) and go to SVN. Some other preferences for the embedded SVN client
tool can be set in the global files called **config** and **servers**. These files contain parameters that act as defaults applied to all the SVN client tools that are used by the same user on their computer login account. To open these files for editing, launch the embedded SVN client tool (Tools > SVN Client) and select Global Runtime Configuration > Edit ‘config’ file or Global Runtime Configuration > Edit ‘servers’ file from the SVN client Options menu.

Figure 35. SVN Preferences Panel

The following SVN options can be configured in this preferences page:

**Enable symbolic link support (available only on Mac OS X and Linux)**

Apache Subversion™ has the ability to put a symbolic link under version control, via the usual SVN add command. The Subversion repository has no internal concept of a symbolic link. It stores a versioned symbolic link as an ordinary file with a svn:special property attached. On Unix/Linux, the SVN client sees the property and translates the file into a symbolic link in the working copy. If the symbolic link support is disabled, the versioned symbolic links appear as a text file instead of symbolic link.

**Note:** Windows file systems have no symbolic links, so a Windows client will not do any such translation and the object appears as a normal file.

**Important:** It is recommended to disable symbolic links support if you do not have versioned symbolic links in your repository, since the SVN operations will work faster. However, you should not disable this option when you do have versioned symbolic links in repository. In that case a workaround would be to reference the working copy by its real path, instead of a path that includes a symbolic link.

**Allow unversioned obstructions**

Controls how to handle a situation where working copy resources are ignored/unversioned when performing an update operation and incoming files (from the repository) with the same name and location intersect with those being ignored/unversioned. If the option is selected, the incoming items will become BASE revisions of
the ones already present in the working copy, and those present will be made versioned resources and will be marked as modified (exactly as if the user first made the update operation and then modified the files). If the option is not selected, the update operation will fail when encountering files in this situation, possibly leaving other files not updated. By default, this option is selected.

**Use unsafe copy operations**

Sometimes when the working copy is accessed through Samba and the SVN client cannot make a safe copy of the committed file due to a delay in getting a write permission, the result is that the committed file will be saved with zero length (the content is removed) and an error will be reported. In this case, this option should be selected so that the SVN client does not try to make the safe copy.

**Results Console**

Specifies the maximum number of lines displayed in the **Console** view. The default value is 1000.

**Annotations View**

Sets the color used in the editor panel for highlighting all the changes contributed to a resource by the revision selected in the **Annotations view** (on page 2924).

**Revision Graph**

Enables caching for the action of computing a revision graph. When a new revision graph is requested, one of the caches from the previous actions may be used that will avoid running the whole query again on the SVN server. If a cache is used, it will finish the action much faster.

**Working Copy Preferences**

To configure the **Working Copy** preferences, open the **Preferences** dialog box (Options > Preferences) (on page 79) and go to SVN > **Working Copy**. The options in this preferences page are specific to SVN working copies and they include the following:

**Working copies location**

Allows you to define a location where you keep your working copies. This location is automatically suggested when you checkout a new working copy.

**Working copy administrative directory**

Allows you to customize the directory name where the SVN entries are kept for each directory in the working copy.

**When loading an old format working copy**

You can instruct the SVN client to do one of the following:
- **Always ask** - You are notified when such a working copy is used and you are allowed to choose what action to be taken (whether or not to upgrade the format of the current working copy).
- **Never upgrade** - Older format working copies are left untouched. No attempt to upgrade the format is made.

Note: SVN 1.6 and older working copies still need to be upgraded before loading them.

**Enable working copy caching**

If selected, the content of the working copies is cached for refresh operations.

**Automatically refresh the working copy**

If selected, the working copy is refreshed from cache. Only the new changes (modifications with a date/time that follows the last refresh operation) are refreshed from disk. This option is not selected by default.

**Allow moving/renaming mixed revision directories**

If selected, Oxygen XML Editor will allow you to move or rename a directory even if its child items have a different revision. Otherwise, an error message is displayed when there are multiple revisions to avoid unnecessary conflicts. It is recommended to leave this option deselected and to Update the subtree to a single revision before moving or renaming it.

**When synchronizing with repository**

The action that will be executed automatically after the Synchronize action. The possible actions are:

- **Always switch to 'Modified' mode** - The Synchronize action is followed automatically by a switch to Modified mode of Working Copy view, if All Files mode is currently selected.
- **Never switch to 'Modified' mode** - Keeps the currently selected view mode unchanged.
- **Always ask** - The user is always asked if they want to switch to Modified mode.

**Application global ignores**

Allows you to set file patterns that may include the * and ? wildcards for unversioned files and folders that must be ignored when displaying the working copy resources in the Working Copy view (on page 2902). These patterns are case-sensitive. For example, *.txt matches file.txt, but does not match file.TXT.
Diff Preferences

To configure the SVN Diff options, open the Preferences dialog box (Options > Preferences) (on page 79) and go to Diff.

The following option is available:

**Compare With External Application**

Specifies an external application to be launched for compare operations in the following cases:

- When two history revisions are compared.
- When the working copy file is compared with a history revision.
- When a conflict is edited.

The parameters \$\text{firstFile} and \$\text{secondFile} specify the positions of the two compared files in the command line for the external diff application. The parameter \$\text{ancestorFile} specifies the common ancestor (that is, the BASE revision of a file) in a three-way comparison. The working copy version of a file is compared with the repository version, with the BASE revision (the latest revision read from the repository by an Update or Synchronize operation) being the common ancestor of these two compared versions.

⚠️ **Important:** If the path to the external compare application includes spaces (or any of the subsequent options or arguments), then each of these paths or tokens must be double-quoted for the Oxygen XML Editor to correctly parse and identify them. For example, `C:\Program Files\compareDir\app name.exe` must be written as "C:\Program Files\compareDir\app name.exe".

Messages Preferences

The Messages preferences page allows you to disable certain warning messages that may appear in the application. To configure these options, open the Preferences dialog box (Options > Preferences) (on page 79) and go to SVN > Messages.

This preferences page allows you to disable the following warning messages:

- **Show confirmation dialog when using the "Update All" action**
  
  Allows you to avoid performing accidental update operations by requesting you to confirm them before execution.

- **Show confirmation dialog for drag and drop actions in Working Copy**
  
  This option avoids doing a drag and drop when you just want to select multiple files in the Working Copy view.
Show warning dialog when editing conflicts

When the Edit Conflicts action is executed, a warning dialog box notifies you that the action overwrites the conflicted version of the file created by an update operation. The conflicted file is overwritten with the version of the same file that existed in the working copy before the update operation and then proceeds with the visual editing of the conflicting file (on page 2845).

Show warning dialog when "svn:externals" definitions are ignored

A warning dialog box is displayed when "svn:externals" definitions are ignored before performing any operation that updates resources of the working copy (such as Update and Override and Update).

Diff Preferences

The Diff Preferences Page has sub-pages for configuring File Comparisons and Directory Comparisons.

Files Comparison Preferences

To configure the Files Comparison options, open the Preferences dialog box (Options > Preferences) (on page 79) and go to Diff > Files Comparison.

This preferences page allows you to configure the following options:

Enable file comparison in Author mode

When selected, a visual Author mode is available in the file comparison tool. It displays the files in a visual mode similar to the Author editing mode in Oxygen XML Editor/Author. This visual mode is available when both compared files are detected as being XML and from a recognized document type.

Ignore Whitespaces (Not applicable for the visual Author comparison mode)

If selected, before performing the comparison, the application normalizes the content (collapses any sequence of whitespace characters into a single space) and trims its leading and trailing whitespaces.

Note: If the Ignore Whitespaces checkbox is selected, comparing the a b sequence with a b , Oxygen XML Editor finds no differences, because after normalization, all whitespaces from the first sequence are collapsed into a single space character. However, when comparing a b with ab (no whitespace between a and b ), Oxygen XML Editor signals a difference.

Two-Way Diff section
Default algorithm

The default algorithm used for comparing two files. The following options are available:

- **Auto** - Selects the most appropriate algorithm, based on the compared content and its size (selected by default).
- **Characters** - Computes the differences at character level, meaning that it compares two files or fragments looking for identical characters. This algorithm is not available when the file comparison is in Author mode.
- **Words** - Computes the differences at word level, meaning that it compares two files or fragments looking for identical words. This algorithm is not available when the file comparison is in Author mode.
- **Lines** - Computes the differences at line level, meaning that it compares two files or fragments looking for identical lines of text. This algorithm is not available when the file comparison is in Author mode.
- **Syntax Aware** - Computes differences for the file types or fragments known by Oxygen XML Editor, taking the syntax (the specific types of tokens) into consideration. This algorithm is not available when the file comparison is in Author mode.
- **XML Fast** - Comparison that works well on large files or fragments, but it is less precise than XML Accurate.
- **XML Accurate** - Comparison that is more precise than XML Fast, at the expense of speed. It compares two XML files or fragments looking for identical XML nodes.

Algorithm strength

Controls the amount of resources allocated to the application to perform the comparison. The algorithm stops searching more differences when reaches the maximum allowed resources. A dialog box is displayed when this limit is reached and partial results are displayed. Four settings are available: **Low**, **Medium** (default), **High** and **Very High**.

Three-Way Diff section

Default algorithm

The default algorithm used for performing a three-way comparison. The following options are available:
• **Auto** - Selects the most appropriate algorithm, based on the compared content and its size (selected by default).
• **Lines** - Computes the differences at line level, meaning that it compares two files or fragments looking for identical lines of text. This algorithm is not available when the file comparison is in **Author** mode.
• **XML Fast** - Comparison that works well on large files or fragments, but it is less precise than **XML Accurate**.
• **XML Accurate** - Comparison that is more precise than **XML Fast**, at the expense of speed. It compares two XML files or fragments looking for identical XML nodes.

**Algorithm strength**

Controls the amount of resources allocated to the application to perform the comparison. The algorithm stops searching more differences when reaches the maximum allowed resources. A dialog box is displayed when this limit is reached and partial results are displayed. Four settings are available: **Low**, **Medium** (default), **High** and **Very High**.

**Show pseudo conflicts**

Specifies whether or not the file comparison displays pseudo-conflicts. A pseudo-conflict occurs when two users make the same change (for example, when they both add or remove the same line of code).

**XML Diff section**

**Ignore (Some of these options are not applicable for the visual Author comparison mode)**

Allows you to specify the types of XML nodes that will be ignored in the file comparison for the **XML Fast** and **XML Accurate** algorithms.

**Ignore nodes by XPath (Not applicable for the visual Author comparison mode)**

If selected, you can enter an XPath expression (on page 2182) to ignore certain nodes from the comparison. It will be processed as XPath version 2.0. The XPath expression specified in this option is used as the default ignore instructions only when the application is started. If you enter an XPath expression in the similar option on the **Diff Files** toolbar, that expression will be used instead.

**Merge adjacent differences (Not applicable for the visual Author comparison mode)**
If selected, the application considers two adjacent differences as one when the differences are painted in the side-by-side editors. If not selected, every difference is represented separately.

**Mark end tags as different for modified elements (Not applicable for the visual Author comparison mode)**

If selected, end tags of modified elements are also presented as differences. Otherwise, only the start tags are presented as differences.

**Ignore expansion state for empty elements (Not applicable for the visual Author comparison mode)**

If selected, empty elements in both expansion states are considered matched (that is `<element/>` and `<element></element>` are considered equal).

### Appearance Preferences

To configure the appearance options for the Files Comparison tool, open the Preferences dialog box (Options > Preferences) (on page 79) and go to Diff > Files Comparison > Appearance. This preferences page offers the following options:

#### Figure 36. Files Comparison Appearance Preferences Panel

![Appearance Preferences Panel](image)

**Line wrap**

Wraps the lines presented in the two diff panels at the right margin of each panel, so no horizontal scrollbar is necessary.

**Incoming color**

Specifies the color used on the vertical bar for incoming changes.

**Outgoing color**

Specifies the color used on the vertical bar for outgoing changes.

**Conflict color**

Specifies the color used on the vertical bar for conflicts between the compared files.
Directories Comparison Preferences

To configure the *Directories Comparison* preferences, open the Preferences dialog box *(Options > Preferences)* *(on page 79)* and go to Diff > Directories Comparison.

Figure 37. Diff Preferences Page

You can specify the following options for the directories comparison tool:

**Compare files by**

Controls the method used for comparing two files:

- **Content** - The file content is compared using the current diff algorithm *(on page 240)*. This option is applied for a pair of files only if that file type is associated with a built-in editor type (either associated by default or associated by the user when prompted to do so on opening a file of that type for the first time).

You can use the **Configure content comparison** link to open the Files Comparison preferences page *(on page 239)* where you can configure options for comparing files. However, the Ignore nodes by XPath option is ignored when using the Compare Directories tool.

- **Binary Compare** - The files are compared at byte level.
- **Timestamp (last modified date / time)** - The files are compared only by their last modified timestamp.

**Look in archives**

If selected, known archive types *(on page 245)* are considered directories and their content is compared just like regular files.

**Navigation**
This options control the behavior of the differences traversal actions (Go to previous modification, Go to next modification) when the first or last difference in a file is reached:

- **Ask what to do next** - A dialog box is displayed asking you to confirm that you want the application to display modifications from the previous or next file.
- **Go to the next/previous file** - The application opens the next or previous file without waiting for your confirmation.
- **Do nothing** - No further action is taken.

### Appearance Preferences

To configure the appearance options for the Directories Comparison tool, open the Preferences dialog box (Options > Preferences) (on page 79) and go to Diff > Directories Comparison > Appearance.

![Diff Appearance Preferences Panel](image)

- **Added/Deleted** - Color used for marking added or deleted files and folders.
- **Modified** - Color used for marking modified files.

### Archive Preferences

To configure Archive options, open the Preferences dialog box (Options > Preferences) (on page 79) and go to Archive.

The following options are available in the Archive preferences page:

**Archive backup options**

Controls if the application makes backup copies of the modified archives. The following options are available:

- **Always create backup copies of modified archives** - When you modify an archive, its content is backed up.
- **Never create backup copies of modified archives** - No backup copy is created.
- **Ask for each archive once per session** - Once per application session for each modified archive, user confirmation is required to create the backup. This is the default setting.
Note: Backup files have the name `originalArchiveFileName.bak` and are located in the same folder as the original archive.

### Archive types

This table contains all known archive extensions mapped to known archive formats. Each row maps a list of extensions to an archive type supported in Oxygen XML Editor. You can use the **Edit** button at the bottom of the table to edit an existing mapping or the **New** button to create a new one and associate your own list of extensions to an archive format.

![Edit Archive Extension Mappings](image)

**Important:** You have to restart Oxygen XML Editor after removing an extension from the table for that extension to not be recognized as an archive extension.

### Store Unicode file names in Zip archives

Use this option when you archive files that contain international (non-English) characters in file names or file comments. If this option is selected and an archive is modified in any way, UTF-8 characters are used in the names of all files in the archive.

### Plugins Preferences

You can add plugins (on page 3285) that extend the functionality of Oxygen XML Editor. The plugins are shipped as separate packages. To check for new plugins, go to [http://www.oxygenxml.com/oxygen_sdk.html](http://www.oxygenxml.com/oxygen_sdk.html).

A **plugin** consists of a separate sub-folder in the Plugins folder of the Oxygen XML Editor installation folder (for example, `[OXYGEN_INSTALL_DIR]/plugins/myPlugin`). This sub-folder must contain a valid `plugin.xml` file in accordance with the `plugin.dtd` file located in the Plugins folder.

Oxygen XML Editor automatically detects and loads plugins installed correctly in the Plugins folder and displays them in the Plugins preferences page. To configure plugins, open the Preferences dialog box (Options > Preferences) (on page 79) and go to Plugins.
You can use the checkboxes in front of each plugin to enable or disable them. To display the properties of a plugin in the second section of the Plugins preferences page, click the name of the plugin.

Also, you can install a plugin as an add-on. For further details about this, go to Deploying Add-ons (on page 2612)

External Tools Preferences

A command-line tool can be started in the Oxygen XML Editor user interface as if from the command line of the operating system shell. The External Tools preferences page allows you to add and configure these external tools that could be used while working with Oxygen XML Editor. To access this preferences page, open the Preferences dialog box (Options > Preferences) (on page 79) and go to External Tools (or select Configure from the Tools > External Tools menu).

This preferences page presents a list of the external tools that have been configured. You can use the buttons at the bottom of the page to configure the items in the list. Once a tool has been configured, you can open it by selecting it from the Tools > External Tools menu or from the External Tools drop-down menu on the toolbar (the Tools toolbar needs to be selected in the Configure Toolbars dialog box (on page 273)).

How to Configure an External Tool

To configure an external tool in the External Tools preferences page, use any of the following buttons at the bottom of the page:

- **New** - Adds a new external tool to the list.
- **Edit** - Allows you to configure an existing external tool, selected from the list.
- **Duplicate** - Duplicates an existing external tool, selected from the list, to use as a template for configuring a similar tool.

Any of those three buttons opens the External Tools configuration dialog box.

Figure 40. External Tools Configuration Dialog Box
This configuration dialog box includes the following options:

**Name**

The name of tool that will be displayed in the Tools > External Tools menu and in the External Tools drop-down menu on toolbar.

**Description**

A description of the tool displayed as a tooltip where the tool name is used.

**Working directory**

The directory that the external tool will use to store intermediate and final results. You can specify the path by using the text field, the Insert Editor Variables button, or the Browse button. You can use one of the following editor variables: 
- `$(cfd)` (on page 281), `$(pd)` (on page 282), `$(oxygenInstallDir)` (on page 282), `$(homeDir)` (on page 282), `$(system(var.name))` (on page 283), `$(date(pattern))` (on page 281), `$(xpath_eval(expression))` (on page 283).

**Command line**

The command line that will start the external tool. You can specify the path by using the text field, the Insert Editor Variables button, or the Browse button. You can use one of the following editor variables: 
- `$(homeDir)` (on page 282), `$(home)` (on page 282), `$(cf)` (on page 281), `$(cfne)` (on page 281), `$(cfn)` (on page 281), `$(currentFileURL)` (on page 281), `$(cfd)` (on page 281), `$(cfdu)` (on page 281), `$(tsf)` (on page 283), `$(pd)` (on page 282), `$(pdu)` (on page 282), `$(oxygenInstallDir)` (on page 282), `$(oxygenHome)` (on page 282), `$(frameworksDir)`
Show output messages

When this option is selected, all the messages emitted by the external tool are displayed in the Results view (on page 357). When this option is not selected, only the error messages are displayed. You can also choose the output encoding and content type:

- **Output encoding** - The encoding of the output stream of the external tool that will be used by Oxygen XML Editor to read the output of the tool.
- **Output content type** - A list of predefined content type formats that instruct Oxygen XML Editor how to display the generated output. For example, setting the Output content type to text/xml enables the syntax coloring of XML output.

Error Encoding

The encoding of the error stream of the external tool that will be used by Oxygen XML Editor to read the error stream.

Shortcut key

You can choose a keyboard shortcut that can be used to launch the external tool.

Menu Shortcut Keys Preferences

You can use the Menu Shortcut Keys preferences page to configure shortcut keys for the actions available in Oxygen XML Editor. The shortcuts assigned to actions are displayed in a table in this preference page. To access the full list of shortcut keys, open the Preferences dialog box (Options > Preferences) (on page 79) and go to Menu Shortcut Keys (or simply go to Options > Menu Shortcut Keys).

For a list of the most commonly used shortcuts, see Frequently Used Shortcut Keys (on page 27).

Figure 41. Menu Shortcut Keys Preferences Page
The **Menu Shortcut Keys** preferences page also contains the shortcuts that you define at document type level (on page 104).

**Note:** A shortcut defined at document type level overwrites a default shortcut.

To find a specific action, you can use the filter text field to search through any of the columns in the table. You can also press shortcut key combinations on your keyboard to filter the list and click on a column header to sort that column.

The table includes the following columns or options:

- **Description** - A short description of the action.
- **Category** - A classification of the actions in categories for easier management and more flexibility in assigning multiple keys for the same action.
- **Shortcut key** - The combination of keyboard keys that can be used to launch the action. To add or change a shortcut key, you can either double-click a row or select the row and press the **Edit** button.
- **'Home' and 'End' keys are applied at line level** (available on Mac OS X only) - Controls the way the HOME and END keys are interpreted. If selected, the default behavior of these keys is overridden and the cursor only moves on the current line.

### How to Assign a Shortcut Key or Edit an Existing Shortcut

To assign a shortcut key to an action or edit an existing shortcut configuration, follow these steps:
1. Select the action in the table.
2. Click the **Edit** button.

**Step Result:** The **Shortcut key** configuration dialog box is displayed.

![Shortcut Key Configuration Dialog Box](image)

3. Press the desired shortcut keys on your keyboard.
4. If you need the shortcut to work on multiple platforms, select the **Enable platform-independent shortcut keys** option. In this case, the following modifiers are used:
   - M1 represents the **Command** key on MacOS X, and the **Ctrl** key on other platforms.
   - M2 represents the **Shift** key.
   - M3 represents the **Option** key on MacOS X, and the **Alt** key on other platforms.
   - M4 represents the **Ctrl** key on MacOS X, and is undefined on other platforms.
5. Click **OK** to save your configuration.

**Troubleshooting:** If you encounter problems with keyboard shortcuts not working as expected, see *Keyboard Shortcuts Result in Unexpected Behavior (on page 2970)* or *Keyboard Shortcuts Do Not Work At All (on page 2969).*

**Related Information:**

- **Frequently Used Shortcut Keys (on page 27)**

### File Types Preferences

Oxygen XML Editor offers built-in editing support for a wide variety of file types, but you can also add new file extensions and associate them with whatever editor type fits your needs. The associations set here between a file extension and the type of editor will determine which editor will be opened for editing purposes when that type of file is created or opened.

To configure the **File Types** options, open the **Preferences** dialog box (**Options > Preferences**) (on page 79) and go to **File Types**.

![File Types Preferences Page](image)
The table contains the following columns:

- **Extension** - The extensions of the files that will be associated with an editor type.
- **Editor** - The type of editor which the extensions will be associated with. Some editors provide easy access to frequent operations via toolbars (XML editor, XSL editor, DTD editor) while others provide just a syntax highlight scheme (Java editor, SQL editor, Shell editor, etc.).

If the editor set here is not one of the XML editors (XML editor, XSL editor, XSD editor, RNG editor, WSDL editor) then the encoding set in the Encoding for non XML files option (on page 123) is used for opening and saving a file of this type.

The files that match the **Ant build patterns** will be associated with the Ant editor.

The files that match the **Binary file patterns** patterns are handled as binary and opened in the associated system application. Also, they are excluded from the following actions available in the Project view (on page 333): File/Replace in Files, Check Spelling in Files, Validate.

### Open/Find Resource Preferences Page

You can configure various options that pertain to the Open/Find Resource dialog box (on page 733) and Open/Find Resource view (on page 344). To access these options, open the Preferences dialog box (Options > Preferences) (on page 79) and go to Open/Find Resource.

The following options are available in this Open/Find Resource preferences page:

- **Refresh index when opening a map in DITA Maps Manager**
If selected, DITA maps that are opened in the DITA Maps Manager will automatically be re-indexed.

**Limit search results to**

Specifies the maximum number of results that are displayed in the Open/Find Resource dialog box/view (on page 733).

**Enable searching in content**

This option is selected by default and it allows you to use the Open/Find Resource dialog box/view (on page 733) to search in content or reviews, as well as in file paths. If this option is not selected, you can only use the Open/Find Resource feature to search in file paths.

**Content search scope section**

**Ignore content of these files**

Allows you to select specific directories, files, or file types that are ignored when you perform a search. For example, *.txt ignores all the .txt files, */topics/* ignores all the files from the topics directory, regardless of their depth, and file:/C:/tmp/* ignores everything from the tmp directory.

**Index the content of remote resources**

Controls the indexing of resources that are not local. For example, the resources referenced in a DITA map (on page 3281) opened from a remote server (from a CMS or from a WebDAV location) are not indexed by default. To index the content of these resources, select this option.

> **Note:** Selecting this option may lead to delays when the indexing is computed.

**Content search options section**

**Content language**

Use this option to specify a language for the search engine to use for the current document. This is helpful if you have multiple languages within the content of a document. The search engine will use a set of stop words and analyzers tuned specifically for that specific language. By default, it is mapped to the UI language specified in the Global preferences page (on page 81). Therefore, you need to change this option only if the language of the text you want to perform the search in differs from the UI language.

> **Tip:** If you select <Generic language (no stemming)> from the drop-down list, no word stemming is performed when creating the index. This
might be useful if your content has many technical terms that should be indexed as they are.

**Stop words**

A list of *stop words* that will be filtered out of the search processing. The list is automatically populated based upon the specified Content language, but you can add or remove words from the list.

**When searching in content, return**

This option specifies how matches are returned when doing searches in content. You can choose between two options:

- **Exact matches** - The search results match the exact whole words that you enter in the search field of the Open/Find Resource dialog box/view.
- **Prefix matches** (default) - The search results match documents that contain words starting with the search terms. For instance, searching for “pref page” will also find documents containing “preference page”.

**Automatically join search terms using:**

Allows you to select the default boolean operator that Oxygen XML Editor applies when you perform a search. For example, if the AND operator is selected and you search for "car assembly", the matches must contain both of the words. If you choose OR, the matches must contain one of the selected search terms and results that contain both words are promoted to the top of the list.

**Enable XML-aware searching**

When selected, you can perform XML-specific searches (on page 736) for XML elements and attributes.

**Note:** Selecting this option may slow down the indexing of your documents and increase the index size on the disk.

**Index files with size less than (KB)**

Since indexing can be slowed down when the Enable XML-aware searching option (on page 253) is active, you can use this option to set a maximum file size to be indexed.

**Stop Words**

A list of comma separated *stop words*, meaning that the words added in this list are filtered out prior to processing a search query.
Related Information:

- Open/Find Resource View (on page 344)
- Open/Find Resource Dialog Box (on page 733)

Custom Editor Variables Preferences

An editor variable (on page 276) is useful for making a transformation scenario, validation scenario, or other tool independent of its file path. An editor variable is specified as a parameter in a transformation scenario, validation scenario, or command line of an external tool. Such a variable is defined by a name, a string value, and a text description. A custom editor variable is defined by the user and can be used in the same expressions as the built-in editor variables (on page 276).

Custom editor variables are created and configured in the Custom Editor Variables preferences page. To access this page, open the Preferences dialog box (Options > Preferences) (on page 79) and go to Custom Editor Variables.

This preferences page displays a table of all the custom editor variables that have been defined. The table includes three columns for the editor variable Name, its Value, and its Description. The create a new variable, click the New button at the bottom of the table and define your custom editor variable in the subsequent dialog box. To edit an existing custom editor variable, click the Edit button and configure the variable in the subsequent dialog box. You can also use the Delete button to remove custom editor variables that are no longer needed.

Figure 44. Custom Editor Variables Table
Network Connection Settings Preferences

This section presents the options available in the Network Connection Settings preferences pages.

Proxy Preferences

Some networks use proxy servers to provide internet services to LAN clients. Therefore, clients behind the proxy may only connect to the Internet via the proxy service. If you are not sure if your computer is required to use a proxy server to connect to the Internet or you do not know the proxy parameters, consult your network administrator.

To configure the Proxy options, open the Preferences dialog box (Options > Preferences) (on page 79) and go to Network Connection Settings > Proxy. The following options are available:

- **Proxy section**
  Specifies how HTTP(S) connections go through the proxy server. You can choose between the following three options:

  - **Direct connection** - HTTP(S) connections will go directly to the target host without going through a proxy server.
  - **Use system settings** (default setting) - HTTP(S) connections will go through the proxy server set in the operating system.
  - **Manual proxy configuration** - HTTP(S) connections will go through the proxy server specified in the Web Proxy (HTTP/HTTPS) section.

  **Attention:** The system settings for the proxy cannot be read correctly from the operating system on some Linux systems. The system settings option should work properly on Gnome-based Linux systems, but it does not work on KDE-based ones as the Java virtual machine does not offer the necessary support yet.

- **Web Proxy (HTTP/HTTPS) section**
  - **Address**
    The address of the proxy server used for manual configurations.
  - **Port**
    The port of the proxy server used for manual configurations.
  - **No proxy for**
    Specifies the hosts that the connections must not go through a proxy server. A host needs to be written as a fully qualified domain name (for example, myhost.example.com) or as a domain name (for example, example.com). Use a comma to separate multiple hosts.
User
The user name for authentication with the proxy server.

Password
The password for authentication with the proxy server.

SOCKS Proxy section

Address
The address of a SOCKS proxy that all connections will pass through. If this field is empty, the connections do not use a SOCKS proxy.

Port
The port of a SOCKS proxy that all connections will pass through.

Using a Proxy Auto-Configuration Script (PAC)

If you have set up the path to a Proxy auto-configuration script in your system, Oxygen XML Editor cannot detect this setting out of the box.

You can create a new folder (`{OXYGEN_INSTALL_DIR}/lib/endorsed`) in which you should copy two additional Java libraries: `deploy.jar` and `plugin.jar`. These libraries can be found in the `{OXYGEN_INSTALL_DIR}/jre/lib` folder if the application came with a bundled Java VM (otherwise, in the Java VM installation used to run the application).

HTTP(S)/WebDAV Preferences

To set the HTTP(S)/WebDAV preferences, open the Preferences dialog box (Options > Preferences) (on page 79) and go to Network Connection Settings > HTTP(S)/WebDAV. The following options are available:

Maximum number of simultaneous connections per host

Defines the maximum number of simultaneous connections established by the application with a distinct host. Servers might consider multiple connections opened from the same source to be a Denial of Service attack. You can avoid that by lowering the value of this option.

Note: The minimum value that can be set in this option is 5.

Read Timeout (seconds)

The period (in seconds) after which the application considers that an HTTP server is unreachable if it does not receive any response from that server.

Enable HTTP 'Expect: 100-continue ' handshake (for HTTP/1.1 protocol)
Activates *Expect: 100-Continue* handshake. The purpose of the *Expect: 100-Continue* handshake is to allow a client that is sending a request message with a request body to determine if the origin server is willing to accept the request (based on the request headers) before the client sends the request body. The use of the *Expect: 100-continue* handshake can result in noticeable performance improvement when working with databases. The *Expect: 100-continue* handshake should be used with caution, as it may cause problems with HTTP servers and proxies that do not support the HTTP/1.1 protocol.

**Use the 'Content-Type' header field to determine the content type**

When selected, Oxygen XML Editor tries to determine a resource type using the **Content-Type** header field. This header indicates the *Internet media type* of the message content, consisting of a type and subtype. For example:

```
Content-Type: text/xml
```

When unchecked, the resource type is determined by analyzing its extension. For example, a file ending in `.xml` is considered to be an XML file.

**Automatic retry on recoverable error**

When selected, if an HTTP error occurs when Oxygen XML Editor communicates with a server via HTTP (for example, sending or receiving a SOAP request to or from a Web services server) and the error is recoverable, Oxygen XML Editor tries to re-send the request to the server.

**Automatically accept a security certificate, even if invalid**

When selected, the HTTPS connections that Oxygen XML Editor attempts to establish with will accept all security certificates, even if they are invalid.

⚠️ **Important**: By accepting an invalid certificate, you accept (at your own risk) a potential security threat, since you cannot verify the integrity of the certificate’s issuer.

**Lock WebDAV files on open**

If selected, the files opened through WebDAV are locked on the server so that they cannot be edited by other users while the lock placed by the current user still exists on the server.

**(S)FTP Preferences**

To configure the **(S)FTP** options, open the **Preferences** dialog box (Options > Preferences) (on page 79) and go to **Network Connection Settings > (S)FTP**. You can customize the following options:

Figure 45. **(S)FTP Configuration Preferences Panel**
• **Encoding for FTP control connection** - The encoding used to communicate with FTP servers: either ISO-8859-1 or UTF-8. If the server supports the UTF-8 encoding Oxygen XML Editor will use it for communication. Otherwise, it will use ISO-8859-1.

• **Public known hosts file** - File containing the list of all SSH server host keys that you have determined are accurate. The default value is `{homeDir}/.ssh/known_hosts`.

• **Private key file** - The path to the file containing the private key used for the private key method of authentication of the secure FTP (SFTP) protocol. The user / password method of authentication has precedence if it is used in the Open URL dialog box (on page 693).

• **Passphrase** - The passphrase used for the private key method of authentication of the secure FTP (SFTP) protocol. The user / password method of authentication has precedence if it is used in the Open URL dialog box (on page 693).

Trusted Hosts Preferences

This preferences page contains a list of domains that have been identified as trusted. You can add or remove domains from the list and Oxygen XML Editor will allow connections to the listed hosts without requesting user confirmation.

To configure the **Trusted Hosts** options, open the Preferences dialog box (Options > Preferences) (on page 79) and go to **Network Connection Settings > Trusted Hosts**. The following options are available:

• **New** - Allows you to manually add a new entry to the list of trusted hosts.

  Tip: You can specify a specific port at the end of the URL (for instance, www.example.com:8080). Otherwise, if no port is specified, connections will be allowed on all ports for the particular host.

• **Delete** - Allows you to remove an entry from the list of trusted hosts.
SSH Preferences

To configure the SSH options, open the Preferences dialog box (Options > Preferences) (on page 79) and go to Connection settings > SSH. The following options are available:

SSH

Specifies the command line for an external SSH client that will be used when connecting to a SVN+SSH repository. Absolute paths are recommended for the SSH client executable and the file paths given as arguments (if any). Depending on the SSH client used and your SSH server configuration, you may need to specify the user name and/or private key/passphrase in the command line. You can also choose whether to use the Default SVN user (the same user name as the SSH client user) or Prompt for a SVN user for SVN repository operations whenever SVN authentication is required. For example, on Windows the following command line uses the plink.exe tool as the external SSH client for connecting to the SVN repository with SVN+SSH:

```
C:\plink-install-fold\plink.exe -l username -pw password -ssh -batch host_name_or_IP_address_of_SVN_server
```

XML Structure Outline Preferences

To configure options regarding the Outline view (on page 347), open the Preferences dialog box (Options > Preferences) (on page 79) and go to XML Structure Outline. It contains the following options:

- **Preferred attribute names for display**

  The preferred attribute names when displaying the attributes of an element in the Outline view. If there is no preferred attribute name specified, the first attribute of an element is displayed.

- **Enable outline drag and drop**

  Drag and drop is disabled for the tree displayed in the Outline view only if there is a possibility to accidentally change the structure of the document by such operations.

Views Preferences

The Views preferences page allows you to configure some options regarding certain views. To edit these options, open the Preferences dialog box (Options > Preferences) (on page 79) and go to Views.

The following options are available:

- **Project view section**
Enable drag-and-drop in Project view

Enables drag and drop support in the Project view (on page 333). It should be disabled only if there is a possibility of accidentally changing the structure of the project by drag and drop actions.

Information view section

Maximum number of lines

Specifies the maximum number of lines that can be written in the Information view (on page 822).

Elements view section

Show only items allowed at cursor position

If selected, when editing in Author mode, only the elements that are allowed at the current cursor position will be listed in the Elements view (on page 432). If not selected, two additional tabs (Before and After) will be displayed at the bottom of the view (in Author mode only). These tabs list the elements that are allowed before or after the element at the current cursor position.

Messages Preferences

The Messages preference page allows you to specify whether or not certain messages are displayed. To configure these options, open the Preferences dialog box (Options > Preferences) (on page 79) and go to Messages.

The following warning messages can be enabled or disabled:

Show Java vendor warning at startup

If this option is selected, Oxygen XML Editor displays a warning on startup if a non-recommended version of the Java virtual machine is being used.

Show confirmation dialog when moving resources

Specifies whether or not to display a confirmation dialog box when you move a resource in the Project view (on page 333), Data Source Explorer view (on page 2198), and Archive Browser (on page 2191). In the confirmation dialog box, there is an option to choose to not show this dialog box in the future. To reset that behavior, simply select Restore Defaults at the bottom of this preferences page.

Show warning when adding resources already included in the project

Specifies whether or not to display a dialog box that warns you if you try to add files that already exist in your project.
Show warning for document size limit for bidirectional text, Asian languages, and other special characters

Specifies whether or not to display a warning message when an opened file that contains bidirectional characters is too large and bidirectional support is disabled.

Show warning message when changing the text orientation in the editor

Specifies whether or not to display a warning message when you change the text orientation in the editor.

Show warning when editing long expressions in the XPath toolbar

Specifies whether or not to display an information dialog box that allows you to specify if you want to use the XPath/XQuery Builder (on page 2185) view when editing long XPath expressions.

Show MathFlow recommendation

Specifies whether or not to display an information dialog box that recommends using the MathFlow Editor (on page 1058) to edit MathML equations.

Show SFTP certificate warning dialog

Specifies whether or not to display a warning dialog box each time the authenticity of the SFTP server host cannot be established.

Show Enterprise license related message when trying to connect to a Microsoft SharePoint server

Specifies whether or not to display an error message if you try to connect to a Microsoft SharePoint server without having the proper license.

Convert DB Structure to XML Schema

When tables from a database schema are selected in the Select database table section of the Convert DB Structure to XML Schema dialog box (on page 1328) and another database schema is expanded, a confirmation is needed since the previous selection will be discarded. This option specifies whether or not you are always asked if you want the other database schema to always be expanded without asking you, or it is never expanded.

Show the dialog box for choosing the encoding for Base64, Base 32, Hex conversions

Specifies whether or not to display a dialog box that allows you to choose a specific encoding whenever you use the Encode Selection or Decode Selection actions for Base64 (on page 876), Base32 (on page 877), or Hex conversions (on page 878). In the dialog box, there is an option to choose to not show this dialog box in the future. To reset that behavior, simply select Restore Defaults at the bottom of this preferences page.
Configuring Options

A set of options controls the behavior of Oxygen XML Editor, allowing you to configure most of the features. To offer you the highest degree of flexibility in customizing the application to fit the needs of your organization, Oxygen XML Editor includes several distinct layers of option values.

Figure 46. Option Lookup Priority

The option layers are as follows (sorted from high priority to low):

- **Project Options** *(on page 266)*
  
  Allows project managers to establish a set of rules for a specific project. These rules standardize the information exchanged by the team members (for example, if the project is stored in a repository, a common set of formatting rules avoid conflicts that may appear when documents modified by various team members are committed to the repository).

- **Global Options** *(on page 265)*
  
  Allows individual users to personalize Oxygen XML Editor according to their specific needs.

- **Customized Default Options** *(on page 262)*
  
  Designed to customize the initial option values for a group of users, this layer allows an administrator to deploy the application preconfigured with a standardized set of option values.

  **Note:** Once this layer is set, it represents the initial state of Oxygen XML Editor when an end-user selects the **Restore defaults** *(on page 80)* or **Reset Global Options** *(on page 268)* actions.

- **Default Options**
  
  The predefined default values, tuned so that Oxygen XML Editor behaves optimally in most working environments.

  **Important:** If you set a specific option in one of the layers, but it is not applied in the application, make sure that one of the higher priority layers does not overwrite it.
Customizing Default Options

Oxygen XML Editor has an extensive set of options that you can configure. When Oxygen XML Editor in installed, these options are set to default values. You can provide a different set of default values for an installation using an XML options file.

Creating an XML Options File

To create an options file, follow these steps:

1. It is recommended that you use a fresh install for this procedure, to make sure that you do not copy personal or local preferences.
2. Open Oxygen XML Editor and open the Preferences dialog box (Options > Preferences) (on page 79).
3. Go through the options and set them to the desired defaults. Make sure that Global Options (on page 3283) is selected in each page.
4. Click OK and close the Preferences dialog box.
5. Go to Options > Export Global Options to create an XML options file.

Controlling Which Options are Stored in the Default Options File

If you want to control exactly which option pages will be stored in the default options file, you can choose to attach them to a project file (.xpr file extension) by following this procedure:

1. You may want to use a fresh install for this procedure, to make sure that you do not copy personal or local preferences.
2. In the Project view (on page 333), create a project or open an existing one.
3. Open the Preferences dialog box (Options > Preferences) (on page 79).
4. Configure the options in each preferences page that you want to be included in the project file and switch the storage preference to Project Options (on page 3286) in each page.

Note: Some pages do not have the Project Options button, since the options they host might contain sensitive data (such as passwords, for example) that is unsuitable for sharing with other users.
5. Click OK and close the Preferences dialog box.

All explicitly set values are now saved in the project file. You can then share the project file so that your team will have the same option configuration that you stored in the project file.

Note: The project file extension (.xpr) must be preserved when the file is distributed to others.
**Note:** When a project is opened for the first time, a confirmation dialog box will be displayed that asks you to confirm that the project came from a trusted source. This is meant to help prevent potential security issues.

**Configuring an Installation to Use Customized Default Options**

There are several methods that you can use to configure an Oxygen XML Editor installation to use the customized default options from the created XML options file.

**Warning:** The disadvantage of customizing the default options is that if the end user manually changes an option, the default value will no longer be used. An alternative would be to use a plugin to impose a set of options *(on page 264)*.

The possible methods for using customized default options during an installation include:

- **Copy the XML Options File to the Installation Directory**

  In the `{OXYGEN_INSTALL_DIR}`, create a folder called `preferences` and copy the created XML options file into it (for example, `{OXYGEN_INSTALL_DIR}/preferences/default.xml`).

- **Specify a Path to the XML Options File in a Startup Parameter**

  Set the path to the XML options file as the value of the `com.oxygenxml.default.options` system property in the startup parameters *(on page 290)*. The path can be specified with any of the following:

  - A URL or file path relative to the application installation folder. For example:
    ```
    -Dcom.oxygenxml.default.options=options/default.xml
    ```
  - A system variable that specifies the file path. For example:
    ```
    com.oxygenxml.default.options=${system(CONFIG)}/default.xml
    ```
  - An environmental variable that specifies the file path. For example:
    ```
    com.oxygenxml.default.options=${env(CONFIG)}/default.xml
    ```

**Impose a Set of Options Using a Plugin**

The Oxygen XML SDK includes a sample Java-based `oxygen-sample-plugin-impose-options` plugin that shows how to impose a set of options for the end users every time the API is called. It is possible to use this plugin to impose options but still allow the end user to change options by calling the API only once, the first time the plugin starts alongside Oxygen XML Editor.
A similar JavaScript-based sample `impose-options` plugin is also available here: https://github.com/oxygenxml/wsaccess-javascript-sample-plugins. This plugin imports a fixed set of options (saved in XML format) when Oxygen XML Editor starts.

### Related Information:
- Sharing Application Settings *(on page 266)*

### Storing Global and Project Level Options

When you configure the Oxygen XML Editor options, you can store them globally or bind them to a specific project by choosing the appropriate setting in the preferences pages. They can then be shared with others by exporting the global options *(on page 267)* or by sharing the stored project-level files *(on page 266)*. The same is true with transformation and validation scenarios.

For each preferences page, you can choose between **Global Options** *(on page 265)* and **Project Options** *(on page 266)* depending upon how you want to store the options in that particular preferences page.

*Note:* Some pages do not have the **Project Options** button, since the options they host might contain sensitive data (passwords, for example), unsuitable for sharing with other users.

If changes have been made to the options in a preferences page and you switch between **Project Options** and **Global Options**, a dialog box will be displayed that allows you to select one of the following:

- **Overwrite** - The existing options from the current preferences page will be overwritten.
- **Preserve** - The existing options from the current preferences page will be preserved.

![Figure 47. Controlling the Storage Options for the Preferences](image)

### Global Options

By default, **Global Options** is selected in the preferences pages, meaning that the options are stored locally on your computer and are not accessible to other users (unless you export them into an XML options file that can then be shared *(on page 266)*).

Global options are stored locally in option files (for example, `oxyOptionsSa19.1.xml` for a standalone distribution of Oxygen XML Editor version 19.1) located in the following directories:
• Windows (Vista, 7, 8, 10) - [user_home_directory]\AppData\Roaming\com.oxygenxml
• Windows XP - [user_home_directory]\Application Data\com.oxygenxml
• Mac OS X - [user_home_directory]/Library/Preferences/com.oxygenxml
• Linux/Unix - [user_home_directory]/.com.oxygenxml

**Project Options**

If you select **Project Options**, the preferences are stored in the project file (.xpr), which can easily be shared with other users (on page 266).

**Note:** Some pages do not have the Project Options button, since the options they host might contain sensitive data (passwords, for example), unsuitable for sharing with other users.

Related Information:

- Sharing Application Settings (on page 266)
- Customizing Default Options (on page 262)
- Importing/Exporting/Resetting Global Options (on page 268)

**Sharing Application Settings**

There are a variety of ways that you can share the settings in Oxygen XML Editor with other members of your team so that you all use a common set of options. This topic describes various possibilities.

**Share Settings Through a Project File**

Most of the preference pages in Oxygen XML Editor include a **Project Options** (on page 3286) button that allows you to pass changes to the settings to the current project file that is opened in the Project view (on page 333). That project file can then be shared with other users. For instance, if your project file is saved on a version control system (such as SVN, CVS, or Source Safe) or in a shared folder, your team will have access to the same option configuration that you stored in the project file.

For more information about sharing projects, see Sharing a Project - Team Collaboration (on page 723).
Share Settings by Exporting/Importing Global Options

Oxygen XML Editor includes actions in the Options menu that allow you to export and import the global settings (on page 3283). The Export Global Options action will save the global settings as an XML properties file. You can then share those settings with others by using the Import Global Options action to import that properties file on their computer.

For more information about global options, see Importing/Exporting/Resetting Global Options (on page 268).

Share Settings with a Custom Options File During Installation

When Oxygen XML Editor in installed, all the settings are set to default values. You can customize the set of default values by creating an XML options file that you will use when installing Oxygen XML Editor on each computer. You can then copy the XML options file to the installation directory or specify its path in a startup parameter.

For more information about creating and referencing a custom options file, see Customizing Default Options (on page 262).

Share Settings by Imposing Fixed Options with an API

The Maven-based Oxygen XML SDK includes a sample plugin called ImposeOptions that imposes a fixed set of options when the application starts. This can be achieved by using the PluginWorkspaceProvider.getPluginWorkspace().setGlobalObjectProperty(key, value) API method.

For more information about this API, see PluginWorkspaceProvider Class.

Related Information:

- Sharing a Project - Team Collaboration (on page 723)
- Sharing Transformation Scenarios (on page 1768)
- Sharing Validation Scenarios (on page 1105)
- Customizing Default Options (on page 262)
- Importing/Exporting/Resetting Global Options (on page 268)
Importing/Exporting/Resetting Global Options

Actions for importing, exporting, and resetting global options are available in the **Options** menu. The export operation allows you to save global preferences as an XML properties file and the import operation allows you to load the property file. You can use this file to reload saved options on your computer or to share with others.

The following actions are available in the **Options** menu:

**Reset Global Options**

Restores the preference to the factory defaults or to customized defaults. This action also resets the transformation and validation scenarios to the default scenarios and clears recently used document templates.

**Import Global Options**

Allows you to import a set of **Global Options** from an exported XML properties file. You can also select a project-level options file (.xpr) to import all the **Global Options** that are set in that project file. After you select a file, the **Import Global Options** dialog box is displayed, and it informs you that the operation will only override the options that are included in the imported file. You can select the **Reset all other options to their default values** option to reset all options to the default values before the file is imported.

**Export Global Options**

Allows you to export **Global Options** to an XML properties file. Some user-specific options that are private are not included. For example, passwords and the name of the **Review Author** is not included in the export operation.

Oxygen XML Editor automatically stores your global options in an XML properties file. Depending on the platform you are using, this file is located in the following directories:

- `{user-home-folder}\AppData\Roaming\com.oxygenxml` for Windows
- `{user-home-folder}/Library/Preferences/com.oxygenxml` for OS X
- `{user-home-folder}/.com.oxygenxml` for Linux

The name of the options file of Oxygen XML Editor 21.1 is oxyOptionsSa21.1.xml.
Configuring the Layout of the Views and Editors

All the Oxygen XML Editor views available in the Editor (on page 295), XSLT Debugger, and XQuery Debugger (on page 299) perspectives (on page 3285) are dockable (on page 3281) and there are various ways to configure and arrange the layout of the views and editing panes. You can also configure the layout of the toolbars (on page 273).

To open a view, select it from the Window > Show View menu. You can hide a view by closing it with the x button at the top-right corner of the view, or with the Window > Hide current view action.

Arranging the Layout

You can drag any view to any margin of another view or editor inside the Oxygen XML Editor window. Once you create a layout that suites your needs, you can save it from Window > Export Layout. Oxygen XML Editor creates a layout file containing the preferences of the saved layout. To load a layout, go to Window > Load Layout. To reset it, select Window > Reset Layout.

Note: The Load Layout menu lets you select between the default layout, a predefined layout, or a custom layout. The changes you make using the Load Layout menu are also reflected in the Application Layout preferences page.

The changes you make to any layout are preserved between working sessions. The predefined layout files are saved in the preferences directory (on page 80) of Oxygen XML Editor.

To gain more editing space in the Oxygen XML Editor window, click Toggle auto-hide in any view. This button sets the view in the auto-hide state, making it visible only as a vertical tab, at the margins of the Oxygen XML Editor window. To display a view in the auto-hide state, hover its side-tab with your cursor, or click it to keep the view visible until you click elsewhere. A view can also be set to a floating state by using the Toggle floating action, making it independent from the rest of the Oxygen XML Editor window.

You can drag the editors and arrange them in any order, both horizontally and vertically.

The following image presents two editors arranged as horizontal tiles. To arrange them vertically, drag one of them on top of the other. In this example, the personal.xml file was dragged over the personal-schema.xml file. When doing this, a dark gray rectangle marks the rearranged layout.

Figure 48. Drag and Drop Editors
Tile/Stack Editor Actions

You can also tile or stack all open editors, both in the Editor perspective (on page 295) or in the Database perspective (on page 300), using the following actions from the Editor toolbar or Window menu:

- **Tile Editors Horizontally**
  Splits the editing area into horizontal tiles, one for each open file.

- **Tile Editors Vertically**
  Splits the editing area into vertical tiles, one for each open file.

- **Stack Editors**
  The reverse of the Tile Editors Horizontally/Vertically actions. Stacks all open editors.

- **Synchronous Scrolling**
  Select this action to scroll through the tiled editors at the same time.

**Note:** When tiled, you can still drag and drop the editors, but note that they are docked in the same way as a window/view (instead of just tabs). You are actually rearranging the editor windows, so drag the editor tab and drop it to one of the sides of an editor (left/right/top/bottom). While dragging,
you will see the dark gray rectangle aligned to one of the sides of the editor, or around the entire editor window. If you drop it to one of the sides it will dock to that side of the editor. If you drop it when the rectangle is around the entire window of the editor it will get stacked on top of that editor. You can also grab one of the stacked editors and tile it to one of the sides.

**Split Editor Actions**

You can divide the editing area vertically and horizontally using the following actions available in the Editor toolbar and Window menu:

- **Split Editor Horizontally** - Splits the editor horizontally. This is useful for comparing and merging content between two documents.
- **Split Editor Vertically** - Splits the editor vertically. This is useful for comparing and merging content between two documents.
- **Unsplit Editor** - Removes a split action on the editing area.

To maximize or restore the editors, go to Window > Maximize/Restore Editor Area.

**Switch or Move Editor Tabs**

Each file that has been opened has a tab at the top of the editing pane and there are several ways to switch between tabs or move them.

**Switching Editor Tabs**

You can switch between editor tabs by using any of the following methods:

**Mouse and Scroll Wheel**

Of course, you can switch to a different editor tab by left-clicking the tab with your mouse, but when there are too many tabs opened to fit on the screen, you can hover over the tab stripe and use the scroll wheel on your mouse to scroll to the left or right (same as using the two arrows on the far-right of the tab stripe).

**Buttons on the Far-Right of the Tab Stripe**

You can use the arrow buttons (↑↓) on the right side of the tab stripe to scroll to the left or right and the Show List button opens a pop-up window that displays all the opened file tabs and allows you to select and switch to a specific opened file.

**Ctrl + Tab (Command + Tab on OS X) [NOTE: Ctrl + Page Down (Ctrl + Alt + Right Arrow on OS X) does the same]**

Switches to the next opened tab in the order specified in the Order of switching between editor tabs option (on page 83).
**Ctrl + Shift + Tab (Command + Shift + Tab on OS X)** [NOTE: Ctrl + Page Up (Ctrl + Alt + Left Arrow on OS X) does the same]

Switches to the previous opened tab in the order specified in the *Order of switching between editor tabs* option *(on page 83)*.

**Window > Switch editor tab (Ctrl + F9 (Command + F9 on OS X))**

This action opens a dialog box that allows you to switch to a particular editor tab by selecting it from a filterable list. This is especially helpful when you have a large amount of file tabs opened and you want to switch to a certain tab this is not shown on the screen. It includes a search filter field and several options to help you find specific opened file tabs.

![Switch Editor Tab Dialog Box](image)

The **Switch Editor Tab** dialog box contains the following options and features:

**Search Filter**

You can enter text in the filter field at the top of the dialog box to filter the list and search for specific opened files. You can enter any number of terms, separated by space, and wildcards are allowed (for example, * to match any sequence of characters or ? to match a single character). This field also has a history drop-down that allows you to select previously used search terms.

**Match all terms**

If this option is selected, only the files that match all of your search terms will be displayed. If you use a wildcard in the search filter, this option is automatically disabled.

**Include file paths**
If this option is selected, the search is expanded to include file paths, and also the paths are displayed in this dialog box.

**Case sensitive**

If this option is selected, the search operation will be case-sensitive.

**List of Opened File Tabs**

All files that are currently opened are displayed in the main pane of the dialog box. Files that have been modified but not yet saved are prefixed by an asterisk. To switch to a particular file tab, double-click the file or select it and click **OK**.

**Moving Editor Tabs**

You can move editor tabs by using any of the following methods:

**Mouse Drag**

You can use your mouse to drag editor tabs to a new location on the tab stripe.

**Ctrl + Alt + Comma**

Moves the current file tab one position to the left.

**Ctrl + Alt + Period**

Moves the current file tab one position to the right.

For more information about configuring the interface of Oxygen XML Editor, watch our video demonstration:

https://www.youtube.com/embed/anwjepfAdEk

**Related Information:**

- Configuring Toolbars (*on page 273*)

### Configuring Toolbars

You can configure the toolbars in Oxygen XML Editor to personalize the interface for your specific needs. You can choose which toolbars to show or hide in the current editor mode (Text, Author, Design, or Grid) and in the current perspective (*on page 3285*) (Editor, XSLT Debugger, XQuery Debugger, or Database). You can also choose which actions to display in each toolbar, add actions to toolbars, and customize the layout of the toolbars.

To configure the toolbars, open the **Configure Toolbars** dialog box by doing one of the following:
• Right-click any toolbar and select **Configure Toolbars**.
• Select **Configure Toolbars** from the **Window** menu.

Figure 50. Configure Toolbars Dialog Box

The **Configure Toolbars** dialog box provides the following features:

**Filter Text Box**

You can use the filter text box at the top of the dialog box to search for a specific toolbar or action.

**Show or Hide Toolbars**

You can choose whether to show or hide a toolbar by using the checkbox next to the toolbar name. This checkbox is only available for toolbars that are available for the current perspective (on page 3285) and editing mode.

**Show or Hide Actions in a Toolbar**

To show or hide actions in a toolbar, expand it by clicking the arrow next to the toolbar name, then use the checkbox to select or deselect the appropriate actions. The toolbar configuration changes in the **Preview** column according to your changes.

**Add Actions to a Toolbar**

Use the **Add Actions** button to open the **Add Actions** dialog box that displays all the actions that can be added to any of the toolbars, with the exception of those that are contributed from frameworks (on page 3282) or 3rd party plugins (on page 3285).

**Remove Actions from a Toolbar**
You can remove actions that you have previously added to toolbars by using the **Remove Action** button.

**Move Actions in a Toolbar**

Use the **Move Up** and **Move Down** actions to change the order of the actions in a toolbar.

The **Configure Toolbars** dialog box also provides a variety of other ways to customize the layout in Oxygen XML Editor.

**Customize My Toolbar**

You can customize the **My Toolbar** to include your most commonly used actions. By default, this toolbar is listed first. Also, it is hidden until you add actions to it and you can easily hide it with the **Hide "My Toolbar" Toolbar** action that is available when you right-click anywhere in the toolbar area.

**Drop-down Menu Actions**

Composite actions that are usually displayed as a drop-down menu can only be selected in one toolbar at a time. These actions are displayed in the **Configure Toolbars** dialog box with the name in brackets.

![Check Mark](Check Mark) ![Check Mark](Check Mark) [Valdast]

**Configure External Tools Action**

There is a **Configure external tools** composite action that appears in the toolbar called **Tools**. It is a drop-down menu that contains any external tools that are configured in the **External Tools** preferences page.

**Note:** If no external tools are configured, this drop-down menu is not shown in the toolbar.

Additional actions are available from the **Window** menu or contextual menu when invoked from a toolbar that allows you to further customize your layout. These actions include:

**Reset Toolbars**

To reset the layout of toolbars to the default setting, select the **Reset Toolbars** action from the contextual menu or **Window** menu.

**Reset Layout**

To reset the entire layout (including toolbars, editing modes, views, etc.) to the default setting, select **Reset Layout** from the contextual menu or **Window** menu.

**Export Layout**

You can use the **Export Layout** action that is available in the **Window** menu to export the entire layout of the application to share it with other users.
Hide Toolbars

You can use the Hide Toolbar action from the contextual menu to easily hide a displayed toolbar. When you right-click a toolbar it will be highlighted to show you which actions are included in that toolbar.

Related Information:

- Configuring the Layout of the Views and Editors (on page 268)

Import/Export Transformation or Validation Scenarios

You can export global transformation and validation scenarios into specialized scenarios files. You can import transformation and validation scenarios from various sources (such as project files, framework [on page 3282] option files, or exported scenario files). The import and export scenario actions are available in the Options menu. The following actions are available:

Import Transformation Scenarios

Loads a set of transformation scenarios from a project file, framework options file, or exported scenarios file.

Export Global Transformation Scenarios

Stores a set of global transformation scenarios in a specialized scenarios file.

Import Validation Scenarios

Loads a set of validation scenarios from a project file, framework options file, or exported scenarios file.

Export Global Validation Scenarios

Stores a set of global validation scenarios in a specialized scenarios file.

The Export Global Transformation Scenarios and Export Global Validation Scenarios options are used to store all the scenarios in a separate file. Associations between document URLs and scenarios are also saved in this file. You can load the saved scenarios using the Import Transformation Scenarios and Import Validation Scenarios actions. To distinguish the existing scenarios and the imported ones, the names of the imported scenarios contain the word import.

Editor Variables

An editor variable is a shorthand notation for context-dependent information, such as a file or folder path, a time-stamp, or a date. It is used in the definition of a command (for example, the input URL of
a transformation, the output file path of a transformation, or the command line of an external tool) to make a command or a parameter generic and re-usable with other input files. When the same command is applied to multiple files, the notation is expanded at the execution of the command so that the same command has different effects depending on the actual file.

Oxygen XML Editor includes a variety of built-in editor variables. You can also create your own custom editor variables (on page 284) by using the Custom Editor Variables preferences page (on page 254).

You can use the following editor variables in Oxygen XML Editor commands of external engines or other external tools, and in various places in the application, such as in transformation scenarios, Author mode operations, and validation scenarios:

- **${activeConditionSet}** - Current active profiling condition set (on page 975) name. If there is no active condition set, the variable will be replaced with an empty string.
- **${af}** - The local file path of the ZIP archive that includes the current edited document.
- **${afd}** - The local directory path of the ZIP archive that includes the current edited document.
- **${afdu}** - The URL path of the directory of the ZIP archive that includes the current edited document.
- **${afn}** - The file name (without parent directory and without file extension) of the zip archive that includes the current edited file.
- **${afne}** - The file name (with file extension, for example .zip or .epub, but without parent directory) of the zip archive that includes the current edited file.
- **${afu}** - The URL path of the ZIP archive that includes the current edited document.
- **${ask(@id)}** - Used in conjunction with the **${ask}** editor variable. The @id parameter is required and identifies the answer from the **${ask}** editor variable with the same ID.

**Example:**

```
<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE topic PUBLIC "-//OASIS//DTD DITA Topic//EN" "topic.dtd">
<topic id="topic_lcf_lc4_tdb">
    <title></title>
    <body>
        <data name="${ask('Set a data name', String, 'name', @name)}"></data>
        <p>The name is: ${answer(@name)}</p>
    </body>
</topic>
```

- **${ask('message', type, ('real_value1':'rendered_value1'; 'real_value2':'rendered_value2'; ...), 'default_value', @id)}** - To prompt for values at runtime, use the ask('message', type, ('real_value1':'rendered_value1'; 'real_value2':'rendered_value2'; ...), 'default-value') editor variable. You can set the following parameters:
- **message** - The displayed message. Note the quotes that enclose the message.
- **default-value** - Optional parameter. Provides a default value.
- **@id** - Optional parameter. Used for identifying the variable to reuse the answer using the
  $\text{answer(@id)}$ editor variable.
- **type** - Optional parameter, with one of the following values:

  ![Note:](image) The title of the dialog box will be determined by the type of parameter and as follows:
  - For `url` and `relative_url` parameters, the title will be the name of the parameter and the
    value of the 'message'.
  - For the other parameters listed below, the title will be the name of that respective
    parameter.
  - If no parameter is used, the title will be "Input".

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Format: $\text{ask('message', parameter, 'default_value')}$</th>
</tr>
</thead>
</table>
| url       | **Description:** Input is considered a URL. Oxygen XML Editor checks that
the provided URL is valid. |
|           | **Example:**
|           |  ■ $\text{ask('Input URL', url)}$ - The displayed dialog box has the name
|           | Input URL. The expected input type is URL.
|           |  ■ $\text{ask('Input URL', url, 'http://www.example.com')}$ - The displayed
|           | dialog box has the name Input URL. The expected input type is URL.
|           | The input field displays the default value http://www.example.com. |
| password  | **Format:** $\text{ask('message', password, 'default')}$ |
|           | **Description:** The input is hidden with bullet characters. |
|           | **Example:**
|           |  ■ $\text{ask('Input password', password)}$ - The displayed dialog box
|           | has the name 'Input password' and the input is hidden with bullet
|           | symbols.
|           |  ■ $\text{ask('Input password', password, 'abcd')}$ - The displayed dialog
|           | box has the name 'Input password' and the input hidden with bullet
|           | symbols. The input field already contains the default abcd value. |
| generic   | **Format:** $\text{ask('message', generic, 'default')}$ |
|           | **Description:** The input is considered to be generic text that requires no
special handling. |
|           | **Example:**
|           |  ■ $\text{ask('Hello world!')}$ - The dialog box has a Hello world! message
|           | displayed.
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
</table>
| relative_url     | **Format:** `{$ask('message', relative_url, 'default')}`  
|                  | **Description:** Input is considered a URL. Oxygen XML Editor tries to make the URL relative to that of the document you are editing.                  |
|                  | **Note:** If the `$ask` editor variable is expanded in content that is not yet saved (such as an `untitled` file, whose path cannot be determined), then Oxygen XML Editor will transform it into an absolute URL. |
|                  | **Example:**  
|                 | `{$ask('File location', relative_url, 'C:/example.txt')}` - The dialog box has the name `File location`. The URL inserted in the input box is made relative to the current edited document location. |
| combobox         | **Format:** `{$ask('message', combobox, ('real_value1':'rendered_value1';...;'real_valueN':'rendered_valueN'), 'default')}`  
|                  | **Description:** Displays a dialog box that offers a drop-down menu. The drop-down menu is populated with the given `rendered_value` values. Choosing such a value will return its associated value (`real_value`). |
|                  | **Note:** The `default` parameter specifies the default selected value and can match either a key or a value.                                                                                           |
|                  | **Example:**  
|                 | - `{$ask('Operating System', combobox, ('win':'Microsoft Windows';'osx':'Mac OS X';'lnx':'Linux/UNIX'), 'osx')}` - The dialog box has the name `Operating System`. The drop-down menu displays the three given operating systems. The associated value will be returned based upon your selection. |
|                  | **Note:** In this example, the default value is indicated by the `osx` key. However, the same result could be obtained if the default value is indicated by `Mac OS X`, as in the following example: `{$ask('Operating System', combobox, ('win':'Microsoft Windows';'osx':'Mac OS X';'lnx':'Linux/UNIX'), 'Mac OS X')}` |
|                  | - `{$ask('Mobile OS', combobox, ('win':'Windows Mobile';'ios':'iOS';'and':'Android'), 'Android')}` }
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Format: <code>${ask('message', editable_combobox, ('real_value1':'rendered_value1';...;'real_valueN':'rendered_valueN'), 'default')}</code></th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>editable_combobox</strong></td>
<td>Description: Displays a dialog box that offers a drop-down menu with editable elements. The drop-down menu is populated with the given rendered_value values. Choosing such a value will return its associated real value (real_value) or the value inserted when you edit a list entry.</td>
</tr>
<tr>
<td><strong>Note:</strong></td>
<td>The 'default' parameter specifies the default selected value and can match either a key or a value.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td><code>${ask('Operating System', editable_combobox, ('win':'Microsoft Windows';'osx':'Mac OS X';'lnx':'Linux/UNIX'), 'osx')}</code> - The dialog box has the name 'Operating System'. The drop-down menu displays the three given operating systems and also allows you to edit the entry. The associated value will be returned based upon your selection or the text you input.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Format: <code>${ask('message', radio, ('real_value1':'rendered_value1';...;'real_valueN':'rendered_valueN'), 'default')}</code></th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>radio</strong></td>
<td><strong>Description:</strong> Displays a dialog box that offers a series of radio buttons. Each radio button displays a rendered_value and will return an associated real_value.</td>
</tr>
<tr>
<td><strong>Note:</strong></td>
<td>The 'default' parameter specifies the default selected value and can match either a key or a value.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td><code>${ask('Operating System', radio, ('win':'Microsoft Windows';'osx':'Mac OS X';'lnx':'Linux/UNIX'), 'osx')}</code> - The dialog box has the name 'Operating System'. The radio button group allows you to choose between the three operating systems.</td>
</tr>
<tr>
<td><strong>Note:</strong></td>
<td>In this example, Mac OS X is the default selected value and if selected, it would return osx for the output.</td>
</tr>
</tbody>
</table>

- `$(author.name)` - Expands to the current author name that is set in the Review preferences page (on page 140).
- `$(caret)` - The position where the cursor is located. This variable can be used in a code template, in Author mode operations, or in a selection plugin.
Note: The $({caret}) editor variable is available only for parameters that take XML content as values. It is replaced with the $({UNIQUE_CARET_MARKER_FOR_AUTHOR}) macro. The default Author operations process this macro and position the cursor at the designated offset.

- **${cf}** - Current file as file path, that is the absolute file path of the current edited document.
- **${cfd}** - Current file folder as file path, that is the path of the current edited document up to the name of the parent folder.
- **${cfdu}** - Current file folder as URL, that is the path of the current edited document up to the name of the parent folder, represented as a URL.
- **${cfn}** - Current file name without extension and without parent folder. The current file is the one currently opened and selected.
- **${cfne}** - Current file name with extension. The current file is the one currently opened and selected.
- **${comma}** - Used to display a comma when the actual comma symbol would be considered part of some sort of instruction or delimiter.
- **${configured.ditaot.dir}** - The default directory of the DITA Open Toolkit distribution, as configured in the DITA preferences page (on page 225).
- **${cp}** - Current page number. Used to display the current page number on each printed page in the Editor / Print Preferences page.
- **${currentFileURL}** - Current file as URL, that is the absolute file path of the current edited document represented as URL.
- **${date(pattern)}** - Current date. The allowed patterns are equivalent to the ones in the Java SimpleDateFormat class. Example: yyyy-MM-dd.

Note: This editor variable supports both the xs:date and xs:datetime parameters. For details about xs:date, go to: http://www.w3.org/TR/xmlschema-2/#date. For details about xs:datetime, go to: http://www.w3.org/TR/xmlschema-2/#dateTime.

- **${dbgXML}** - The local file path to the XML document that is current selected in the Debugger source combo box (for tools started from the XSLT/XQuery Debugger).
- **${dbgXSL}** - The local file path to the XSL/XQuery document that is current selected in the Debugger stylesheet combo box (for tools started from the XSLT/XQuery Debugger).
- **${dita.dir.url}** - A special local contextual editor variable that gets expanded only in the Libraries dialog box that is accessible from the Advanced tab of DITA transformation scenarios. The Libraries dialog box allows you to specify additional libraries (JAR (on page 3283) files or additional class paths) to be used by the transformer. This $({dita.dir.url}) editor variable gets expanded to the value of the dita.dir parameter from the Parameters tab of the DITA transformation scenario.
- **${ds}** - The path of the detected schema as a local file path for the current validated XML document.
- **${dsu}** - The path of the detected schema as a URL for the current validated XML document.
• \$\{env(VAR_NAME)\} - Value of the \textit{VAR\_NAME} environment variable. The environment variables are managed by the operating system. If you are looking for Java System Properties, use the \$\{system(var.name)\} editor variable.

• \$\{framework(fr\_name)\} - The path (as URL) of the \textit{fr\_name framework}.

• \$\{framework\} - The path (as URL) of the current \textit{framework} directory.

• \$\{frameworkDir(fr\_name)\} - The path (as file path) of the \textit{fr\_name framework}.

\textbf{Note:} Since multiple frameworks might have the same name (although it is not recommended), for both \$\{framework(fr\_name)\} and \$\{frameworkDir(fr\_name)\} editor variables Oxygen XML Editor employs the following algorithm when searching for a given framework name:

\begin{itemize}
  \item All frameworks are sorted, from high to low, according to their \textit{Priority (on page 96)} setting from the Document Type configuration dialog box (on page 95). Only frameworks that have the \textit{Enabled} checkbox selected are taken into account.
  \item Next, if the two or more frameworks have the same name and priority, a further sorting based on the \textit{Storage} setting is made, in the exact following order:
    \begin{itemize}
      \item Frameworks stored in the internal Oxygen XML Editor options.
      \item Additional frameworks added in the Locations preferences page (on page 94).
      \item Frameworks installed using the add-ons support.
      \item Frameworks found in the main framework location (on page 94) (Default or Custom).
    \end{itemize}
\end{itemize}

• \$\{frameworkDir\} - The path (as file path) of the current \textit{framework} directory.

• \$\{frameworks\} - The path (as URL) of the frameworks directory.

• \$\{frameworksDir\} - The path (as file path) of the frameworks directory.

• \$\{home\} - The path (as URL) of the user home folder.

• \$\{homeDir\} - The path (as file path) of the user home folder.

• \$\{i18n(key)\} - Editor variable used only at framework-level to allow translating names and descriptions of \textit{Author} mode actions in multiple actions. For more details, see \textbf{Localizing Frameworks (on page 2333)}.

• \$\{id\} - Application-level unique identifier. It is a short sequence of 10-12 letters and digits that is not guaranteed to be universally unique.

• \$\{makeRelative(base,location)\} - Takes two URL-like paths as parameters and tries to return a relative path. A use-case would be to insert content references to a certain reusable component when defining code templates.

\textbf{Example:}

\begin{verbatim}
\$\{makeRelative($\{currentFileURL\}, $\{dictionaryURL\}#gogu)\}
\end{verbatim}

• \$\{oxygenHome\} - Oxygen XML Editor installation folder as URL.

• \$\{oxygenInstallDir\} - Oxygen XML Editor installation folder as file path.

• \$\{pd\} - The file path to the folder that contains the current project file (.xpr).

• \$\{pdu\} - The URL path to the folder that contains the current project file (.xpr).
• \${pluginDir(pluginID)} - Each plugin has an ID specified in its plugin.xml file. This editor variable expands to the file path of the folder that contains the plugin.xml file where that specific plugin ID is located.

• \${pluginDirURL(pluginID)} - Each plugin has an ID specified in its plugin.xml file. This editor variable expands to the URL path of the folder that contains the plugin.xml file where that specific plugin ID is located.

• \${pn} - Current project name.

• \${ps} - Path separator, which is the separator that can be used on the current platform (Windows, OS X, Linux) between library files specified in the class path.

• \${rootMapDir} - Will be expanded to the current root map parent directory file path.

• \${rootMapDirURL} - Will be expanded to the current root map parent directory URL.

• \${rootMapFile} - Will be expanded to the current root map file path.

• \${rootMapURL} - Will be expanded to the current root map URL.

• \${selection} - The current selected text content in the current edited document. This variable can be used in a code template, in Author mode operations, or in a selection plugin.

• \${system(var.name)} - Value of the var.name Java System Property. The Java system properties can be specified in the command-line arguments of the Java runtime as -Dvar.name=var.value. If you are looking for operating system environment variables, use the \${env(VAR_NAME)} editor variable instead.

• \${timeStamp} - Time stamp, that is the current time in Unix format. For example, it can be used to save transformation results in multiple output files on each transformation.

• \${tp} - Total number of pages in the document. Used to display the total number of pages on each printed page in the Editor / Print Preferences page.

• \${tsf} - The transformation result file path. If the current opened file has an associated scenario that specifies a transformation output file, this variable expands to it.

• \${uuid} - Universally unique identifier, a unique sequence of 32 hexadecimal digits generated by the Java UUID class.

• \${xmlCatalogFilesList} - A list of file paths that point to all known XML catalog files, separated by semi-colons (;).

• \${xpath_eval(expression)} - Evaluates an XPath expression. Depending on the context, the expression can be:

  ◦ static - When executed in a non-XML context. For example, you can use such static expressions to perform string operations on other editor variables for composing the name of the output file in a transformation scenario's Output tab.

    Example:

    ```
    \${xpath_eval(upper-case(substring('\${cfn}', 1, 4)))}
    ```

  ◦ dynamic - When executed in an XML context. For example, you can use such dynamic expression in a code template or as a value of a parameter of an Author mode operation.
Custom Editor Variables

An editor variable (on page 276) can be created and included in any user-defined expression where a built-in editor variable is also allowed. For example, a custom editor variable may be necessary for configuring the command line of an external tool, the working directory of a custom validator, the command line of a custom XSLT engine, or a custom FO processor.

You can create or configure custom editor variables in the Custom Editor Variables preferences page (on page 254). To create a custom editor variable, follow these steps:

1. Open the Preferences dialog box (Options > Preferences) (on page 79) and go to Custom Editor Variables.
2. Click the New button at the bottom of the table.
3. Use the subsequent dialog box to specify the Name, Value, and Description for the new editor variable.
4. Click OK to save your configuration.

Related Information:

• Editor Variables (on page 276)
Custom System Properties

A variety of Java system properties can be set in the application to influence its behavior. For information about how to do this, see Setting a system property (on page 292).

**com.oxygenxml.disable.http.protocol.handlers**

- **Allowed Values:** true or false
- **Default Value:** false
- **Purpose:** By default, Oxygen XML Editor uses the open source Apache HTTP Client software for HTTP(S) connections. If set to true, the default Java Sun HTTP(S) will be used instead. You will also lose WebDAV support and possibly other related features.

**com.oxygenxml.present.license.reminders**

- **Allowed Values:** true or false
- **Default Value:** true
- **Purpose:** When set to false, Oxygen XML Editor will not display the messages that remind you to renew your Support and Maintenance Pack that covers your current license.

**com.oxygenxml.enable.content.reference.caching**

- **Allowed Values:** true or false
- **Default Value:** true
- **Purpose:** Enables content reference caching.

**com.oxygenxml.eclipse.remove.grid.editing.mode**

- **Allowed Values:** true or false
- **Default Value:** false
- **Purpose:** When set to false, Oxygen XML Editor does not show the Grid editing mode when opening an XML document.

**com.oxygenxml.default.java.accessibility**

- **Allowed Values:** true or false
- **Default Value:** false
- **Purpose:** System property that can be set to true to force the default detection of java accessibility. If com.sun.java.accessibility.AccessBridge cannot be loaded, Oxygen XML Editor forces the Java accessibility to be disabled.
**com.oxygenxml.floating.license.timeout**

- **Allowed Values:** An integer (minutes)
- **Default Value:** 120
- **Purpose:** Stores the time interval (in minutes) before floating licenses are released in case of application’s inactivity.

**com.oxygenxml.language**

- **Allowed Values:** Language code (for example, en-us)
- **Default Value:** N/A
- **Purpose:** Property that holds the language code set during installation.

**com.oxygenxml.default.options**

- **Allowed Values:** A URL-type relative or absolute path.
- **Default Value:** N/A
- **Purpose:** Provides the path to an XML file containing default application options.
  
  For more details, see [Customizing Default Options](#) on page 262.

**com.oxygenxml.customOptionsDir**

- **Allowed Values:** A file system absolute path pointing to a folder.
- **Default Value:** N/A
- **Purpose:** Sets a folder to be used by the application to load and save preference files. The default location where the options are saved varies according to the operating system. For more details, see [Importing/Exporting/Resetting Global Options](#) on page 268.

**com.oxygenxml.ApplicationDataFolder (Windows only)**

- **Allowed Values:** A file system absolute path pointing to a folder.
- **Default Value:** %APPDATA%
- **Purpose:** When the application runs on Windows, you can set this property to change the location where the application considers that the APPDATA folder is located.

**com.oxygenxml.editor.frameworks.url**

- **Allowed Values:** A URL-type absolute path.
- **Default Value:** OXYGEN_DIR\frameworks
• **Purpose:** Changes the folder where the application considers that the main frameworks are installed. It has the same effect as changing the custom frameworks directory value in the Location preferences page (on page 94).

**com.oxygenxml.MultipleInstances**

- **Allowed Values:** true or false
- **Default Value:** false
- **Purpose:** If set to true, multiple instances of the application are allowed to be started.

**com.oxygenxml.xep.location**

- **Allowed Values:** A file system absolute path pointing to a folder.
- **Default Value:** N/A
- **Purpose:** Points to a folder where RenderX XEP is installed. Has the same effect as configuring XEP in the FO Processors preferences page (on page 216).

**com.oxygenxml.additional.classpath**

- **Allowed Values:** A list of JAR (on page 3283)-type resources separated by a classpath separator.
- **Default Value:** N/A
- **Purpose:** An additional list of libraries to be used in the application's internal class loader in addition to the libraries specified in the lib folder.

**com.oxygenxml.user.home** (Windows only)

- **Allowed Values:** A file system absolute path pointing to a folder.
- **Default Value:** USERPROFILE folder
- **Purpose:** Overwrites the user home directory that was implicitly detected for the application.

**com.oxygenxml.use.late.delegation.for.author.extensions**

- **Allowed Values:** true or false
- **Default Value:** true
- **Purpose:** All Java extensions in a framework configuration are instantiated in a separate class loader. When true, the JAR libraries used in a certain document type will have priority to resolve classes before delegating to the parent class loader. When false, the parent class loader will take precedence.

**com.oxygenxml.stack.size.validation.threads**
• **Allowed Values:** The number of bytes used for validation threads.
• **Default Value:** 5*1024*1024
• **Purpose:** Some parts of the application (validation, content completion) that use the Relax NG parser sometimes require a larger *Thread* stack size to parse complex schemas. The default value should be more than enough.

```
com.oxygenxml.jing.skip.validation.xhtml.data.attrs
```
• **Allowed Values:** true or false
• **Default Value:** true
• **Purpose:** By default, the Relax NG validation was configured to skip validation for XHTML attributes that start with "data-", which should be skipped from validation according to the XHTML 5 specification.

```
com.oxygenxml.report.problems.url
```
• **Allowed Values:** User-defined URL
• **Default Value:** N/A
• **Purpose:** The URL where a problem reported through the Report Problem dialog box is sent. The report is sent in XML format using the report parameter with the POST HTTP method.

```
com.oxygenxml.parallel.title.computing.threads
```
• **Allowed Values:** Integers
• **Default Value:** 4
• **Purpose:** The number of parallel threads that will be used to compute referenced topic titles. Increasing this value reduces the amount of time it takes to compute topic titles in the *DITA Maps Manager* view.

```
com.oxygenxml.hidpi.scaling
```
• **Allowed Values:** Numerical values between 1 and 2 (1, 1.5, and 2 have been tested, and for example, 1.5 is for 150% scaling)
• **Default Value:** N/A
• **Purpose:** Used to override the HiDPI scaling detection to force a specific scaling setting. This is helpful if you encounter scaling detection issues in Windows or Linux.

```
com.oxygenxml.prefer.plugin.classloader.context.loader
```
• **Allowed Values:** true or false
• **Default Value:** true

• **Purpose:** Used to instruct the application to use the plugin class loader when there is code that loads content (usually Xerces code) using the thread's class loader. For instance, if you have a plugin that specifies a certain Xerces version and you want to load that version instead of the one from Oxygen's lib directory.

**Related Information:**

• Setting a system property (on page 292)

---

**Localizing the User Interface**

Oxygen XML Editor comes with the following built-in languages: English, French, German, Japanese, and Dutch. To change the interface language, go to **Options > Preferences > Global** preferences page, then choose the appropriate language from the **Language** drop-down menu.

You can also localize the interface in another language by creating an interface localization file.

**How to Create an Interface Localization File**

You can change the language of the Oxygen XML Editor user interface by creating an interface localization file:

1. Identify the code for the new language you want to translate the interface. It is composed from a language code (two or three lowercase letters that conform to the ISO 639 standard), followed by an underscore character, and a region code (two or three uppercase letters that conform to the ISO 3166 standard).
2. Write an email to the Oxygen XML Editor support team and ask them to send you the **translation.xml** sample file.
3. Open the **translation.xml** file in Oxygen XML Editor. The file contains all the interface messages that can be translated and is updated at every new release with the latest additions. Here is a small sample of its content:

```xml
<translation>
    <languageList>
        <language description="English" lang="en_US"/>
    </languageList>
    <key value="New">
        <comment>The File/New action. Creates a new document.</comment>
        <val lang="en_US">New</val>
    </key>
</translation>
```
4. Update the `language` element to reflect the new language. For example, set the `description` attribute to `Spanish` and the `lang` attribute to `es_ES`.

5. For each `key` element, translate the `comment` (optional) and `val` elements. For example, set the `lang` attribute to `es_ES`.

   ![Note: After you are finished, the file should look like this:](https://example.com)

   ```xml
   <translation>
   <languageList>
     <language description="Español" lang="es_ES"/>
   </languageList>
   <key value="New">
     <comment>El Archivo / Nueva acción. Crea un nuevo documento.</comment>
     <val lang="es_ES">Nuevo</val>
   </key>
   <key value="New_folder">
     <comment>Crea una carpeta en la vista del proyecto.</comment>
     <val lang="es_ES">Nueva carpeta</val>
   </key>
   …..
   </translation>
   ```

6. Open the Preferences dialog box (Options > Preferences) (on page 79), go to Global, and select the Other language option (on page 81). Browse for the translation.xml file.

7. Restart the application.

### Adding New Languages to the Interface

Oxygen XML Editor provides a plugin extension is available in the Oxygen SDK that provides the ability to contribute a new translation language to the interface. By using this plugin extension, you can bundle the new language translation and that new language will be available in the Languages dropdown menu in the Options > Preferences > Global preferences page (on page 81).
Setting a Java Virtual Machine Parameter when Launching Oxygen XML Editor

You can set Java Virtual Machine parameters (for example, if you want to increase the maximum amount of memory available) for the Oxygen XML Editor application launchers (on page 291) or command-line scripts (on page 292). You can also create a custom startup parameters file (on page 293).

Setting Parameters for the Application Launchers

Increasing the amount of memory that Oxygen XML Editor uses on Windows and Linux

For Windows and Linux installations of Oxygen XML Editor, the startup launchers for the application and its executable internal tools (Tree Editor, XML Schema Regular Expressions Builder, Large File Viewer, SVN Client, Compare Directories, and Compare Files) include a default .vmoptions file in the installation directory that contain some startup parameters (such the -Xmx parameter, which is used for allocating memory for that particular application). If your installation contains these .vmoptions files, you can edit the parameters in them so that the applications will launch with your desired values. However, if you re-install the application, install an update for the application, or deploy it to other users or machines, those parameters will be reset to their default values.

To increase the memory available to the Oxygen XML Editor application on Windows:

1. Browse the installation directory of Oxygen XML Editor.
2. Locate the -Xmx parameter in the oxygen21.1.vmoptions file. If it is located in a directory where you do not have write access, copy the file to another folder (where you do have write access), modify it there, and then copy it back to the original location.

Note: The parameters from the .vmoptions file are used when you start Oxygen XML Editor with the oxygen launcher (or with the desktop shortcut). If you use the command-line script (oxygen.bat or oxygen.sh) to launch Oxygen XML Editor, modify the -Xmx parameter in that script file.

Tip: For 32-bit Windows, modify the parameter to -Xmx1024m or larger, but not over -Xmx1200m. Make sure you do not exceed your physical RAM. For 64-bit Windows modify the parameter to a larger value (for example, -Xmx2048m). It is recommended to not use more than half of your existing physical RAM.
3. Restart Oxygen XML Editor. Go to Help > About and verify the amount of memory that is actually available (see the JVM Memory Used in the last row in the Copyright tab). If Oxygen XML Editor does not start and you receive and error message saying that it could not start the JVM, decrease the -Xmx parameter and try again.
Increasing the amount of memory that Oxygen XML Editor uses on OS X

To increase the memory available to Oxygen XML Editor on OS X:

1. **Ctrl + Single-Click (Command + Single-Click on OS X)** (or right-click) the Oxygen XML Editor icon in Finder.
2. From the contextual menu, select **Show Package Contents**.
3. Go to the contents directory and edit the **Info.plist** file.

   **Note:** You can open this file either with the **Property List Editor**, or the **TextEdit**.

4. Look for the **VMOptionArray** key and add the **-Xmx** parameter in a new string **element** from the array element. For example, for 1500 MB use the following:

   ```xml
   <string>-Xmx1500m</string>
   ```

   **Tip:** Try not to use more than half of your existing physical RAM if possible.

Setting a system property

To set a system property, edit the application launcher and add a parameter after the `%%OXYGEN_JAVA%%` token, using the following form:

```
-Dproperty.name=value
```

You can also set a system property through a parameter prefixed with `-Doxy` in the command line used to start the application:

```
oxygen20.1.exe "-Doxyproperty.name=value"
```

All system properties are displayed in the **System properties** tab of the **About** dialog box.

To view the list of Oxygen XML Editor system properties, go to **Custom System Properties** (on page 284).

Disabling DPI Scaling

Some users may prefer the look of smaller icons in an HiDPI display. To achieve this, display scaling needs to be disabled for high DPI settings. To disable the DPI scaling, set the following property in .vmoptions (or in the .bat script):

```
sun.java2d.dpiaware=false
```
Setting Parameters in the Command-Line Scripts

If you start Oxygen XML Editor with a command-line script (oxygen.bat/oxygen.sh), you have to add or modify parameters in the java command at the end of the script.

For example, to set the maximum amount of Java memory to 600 MB in Windows, modify the -Xmx parameter like this:

```
java -Xmx600m -Dsun.java2d.nodraw=true ...
```

On Mac OS X, the java command should look like this:

```
java "-Xdock:name=Oxygen"
-Dcom.oxygenxml.editor.plugins.dir="$OXYGEN_HOME/plugins"
-Xmx600m
...
```

On Linux, the Java command should look like this:

```
java -Xmx600m
-"Dcom.oxygenxml.editor.plugins.dir="$OXYGEN_HOME/plugins"
```

Creating Custom Startup Parameters File

You can create your own custom .vmoptions file and the application and the executable tools will automatically include your custom parameters at startup. The following custom files are recognized by the application and the executable tools:

- `custom_commons.vmoptions` - The parameters and their values of this file will be included in all the startup launchers.
- `custom_<app name>.vmoptions` - The `<app name>` is the name of the executable application or tool (for example, `custom_diffFiles.vmoptions` for the Compare Files tool). The parameters and their values of this file will be included in the startup launcher for this particular executable.

For example: To specify a different language for all launchers you can use the custom vmoptions file called `custom_commons.vmoptions` and the content would look like this:

```
-Dcom.oxygenxml.language=French
```

For example: To increase the memory available for a specific tool, such as the Compare Files tool (diffFiles.exe), you can use a custom vmoptions file called `custom_diffFiles.vmoptions` and the content would look like this:
To be recognized and included, these custom startup parameter files must be saved in the installation directory of Oxygen XML Editor.

## How to Increase the Amount of Available Memory

Determining how to increase the amount of memory that is allocated to Oxygen XML Editor depends on how you launch the application.

- **Windows/Linux Application Launcher** - If you start Oxygen XML Editor using the default startup launcher that was created during a Windows or Linux installation, see [Increasing the amount of memory that Oxygen XML Editor uses on Windows and Linux](#page-291).

- **Mac OS X Application Launcher** - If you start Oxygen XML Editor using the default startup launcher that was created during a Mac OS X installation, see [Increasing the amount of memory that Oxygen XML Editor uses on OS X](#page-292).

- **Command-Line Script** - If you start Oxygen XML Editor using a command-line script, see [Setting Parameters in the Command-Line Scripts](#page-292).

- **Custom Startup Parameters File** - You can also create your own custom startup parameters file and increase the memory using this file. For more information, see [Creating Custom Startup Parameters File](#page-293).
An Oxygen XML Editor perspective (on page 3285) is an interface layout geared towards a specific use. The Oxygen XML Editor interface uses standard interface conventions and components to provide a familiar and intuitive editing environment across all operating systems. There are several perspectives that you can use to work with documents in Oxygen XML Editor. You can change the perspective by selecting the respective icon (🎨 📈 🕵️‍♂️) in the top-right corner of Oxygen XML Editor or by selecting the perspective from the Window > Open Perspective menu.

Editor Perspective

The Editor perspective (on page 3285) is the most commonly used perspective and it is the default perspective when you start Oxygen XML Editor for the first time. It is the perspective that you will use to edit the content of your XML documents.

To switch the focus to this perspective, select the Editor button in the top-right corner of Oxygen XML Editor (or select Editor from the Window > Open perspective menu).

The layout of this perspective is composed of the following components:

**Menus**

Provides menu driven access to all the features and functions available in Oxygen XML Editor. Most of the menus are common for all types of documents. However, Oxygen XML Editor also includes some context-sensitive and framework (on page 3282)-specific menus that are only available for a specific context or type of document.

**Toolbars**

Provides easy access to common and frequently used functions. Each icon is a button that acts as a shortcut to a related function. Most of the toolbars are common for all types of documents. However, Author mode also includes framework (on page 3282)-specific toolbars, depending on the type of document that is being edited (for example, if you are editing a DITA document, a DITA Author Custom Actions toolbar is available that includes operations that are specific to DITA documents). The toolbars can be configured (on page 273) to suit your specific needs.

**Editor Pane**
The main editing pane where you spend most of your time reading, editing, applying markup, and validating your documents.

Views

Oxygen XML Editor includes a large variety of dockable views to assist you with editing, viewing, searching, validating, transforming, and organizing your documents. The most commonly used views are displayed by default and you can choose to display others by selecting them from the Window > Show View menu. The layout of the views can also be configured according to your preferences.

When two or more views are displayed, the application provides divider bars. Divider bars can be dragged to a new position increasing the space occupied by one panel while decreasing it for the other.

As the majority of the work process centers around the Editor area, other views can be hidden using the toggle controls located on the top corner of the view ( on Mac OS X).

Some of the most helpful views in the Editor perspective include the following:

- **Project view** - Enables the definition of projects and logical management of the documents they contain.
- **DITA Maps Manager view** - For DITA document types, this view helps you organize, manage, and edit DITA topics and maps.
- **Open/Find Resource view** - Designed to offer advanced search capabilities in various scopes.
- **Outline view** - It provides an XML tag overview and offers a variety of functions, such as modifications follow-up, document structure change, document tag selection, and elements filtering.
- **Results view** - Displays the messages generated as a result of user actions such as validations, transformation scenarios, spell checking in multiple files, search operations, and others. Each message is a link to the location related to the event that triggered the message.
- **Attributes view** - Presents all possible attributes of the current element and allows you to edit attribute values. You can also use this view to insert attributes in Text mode. Author mode also includes an in-place attribute editor.
- **Model view** - Presents the current edited element structure model and additional documentation as defined in the schema.
• **Elements view** *(on page 355)* - Presents a list of all defined elements that you can insert at the current cursor position according to the document's schema. In **Author mode this view** *(on page 432)* includes tabs that present additional information relative to the cursor location.

• **Entities view** *(on page 356)* - Displays a list with all entities declared in the current document as well as built-in ones.

• **Transformation Scenarios view** *(on page 1768)* - Displays a list with all currently configured transformation scenarios.

• **XPath/XQuery Builder view** *(on page 2185)* - Displays the results from running an XPath expression.

• **WSDL SOAP Analyzer view** *(on page 1376)* - Provides a tool that helps you test if the messages defined in a Web Service Descriptor (WSDL) are accepted by a Web Services server.

**Related Information:**

• **Editing Documents** *(on page 827)*

• **Editing Modes** *(on page 303)*

• **Configuring the Layout of the Views and Editors** *(on page 268)*

---

**XSLT Debugger Perspective**

The **XSLT Debugger perspective** *(on page 3285)* allows you to detect problems in an XSLT transformation by executing the process step by step in a controlled environment. To switch the focus to this perspective, select the **XSLT Debugger** button in the top-right corner of the interface or **Window > Open perspective > XSLT Debugger**.

The workspace in this perspective is organized as an editing area assisted by special helper views. The editing area contains editor panels that you can split horizontally or vertically *(on page 212)* in a stack of XML editor panels and a stack of XSLT editor panels. The XML files and XSL files can be edited in **Text mode** *(on page 303)* only.

The layout of this perspective is composed of the following components:

**Menus**

Provides menu driven access to all the features and functions available in the **XSLT Debugger**.
Toolbars

Contains all actions needed to configure and control the debugging process. The toolbars can be configured (on page 273) to suit your specific needs.

XML Source Pane

The editing pane where you can display and edit data or document-oriented XML documents.

XSL Source Pane

The editing pane where you can display and edit XSL stylesheets.

Output View

Displays the transformed output that results from the input of a selected document (XML) and selected stylesheet (XSL) to the transformer. The result of transformation is dynamically written as the transformation is processed. There are three types of views for the output: a text view (with XML syntax highlight), an XHTML view, and one text view for each xsl:result-document element used in the stylesheet (if it is an XSLT 2.0 / 3.0 stylesheet).

Debugging Information Views (on page 2296)

Presented in two panes, they display various types of information that can be used to understand the transformation process. For each information type there is a corresponding tab. While running a transformation, relevant events are displayed in the various information views. This allows you to obtain a clear view of the transformation progress. See the Debugging Information Views (on page 2296) topic for a list of all the information views (and links to more details on each view).

Note: You can add XPath expression automatically in the XWatch view using the Watch expression action from the contextual menu. In case you select an expression or a fragment of it and then click Watch expression in the contextual menu, the entire selection is presented in the XWatch view. Using Watch expression without selecting an expression displays the value of the attribute from the cursor position in the XWatch view. Variables detected at the cursor position are also displayed. Expressions displayed in the XWatch view are normalized (unnecessary white spaces are removed from the expression).

For more information about the XSLT debugging capabilities in Oxygen XML Editor, watch our video demonstration:

https://www.youtube.com/embed/m9d8c4V-LJw

Related Information:
• XQuery Debugger Perspective (on page 299)

XQuery Debugger Perspective

The XQuery Debugger perspective (on page 3285) allows you to detect problems in an XQuery transformation process by executing the process step by step in a controlled environment and inspecting the information provided in the special views. To switch the focus to this perspective, select the XQuery Debugger button in the top-right corner of the interface or Window > Open perspective > XQuery Debugger.

The workspace in this perspective is organized as an editing area assisted by special helper views. The editing area contains editor panels that you can split horizontally or vertically (on page 212) in a stack of XML editor panels and a stack of XQuery editor panels. The XML files and XQuery files can be edited in Text mode (on page 303) only.

The layout of this perspective is composed of the following components:

**Menus**

Provides menu driven access to all the features and functions available in the XQuery Debugger.

**Toolbars**

Contains all actions needed to configure and control the debugging process. The toolbars can be configured (on page 273) to suit your specific needs.

**XML Source Pane**

The editing pane where you can display and edit data or document-oriented XML documents.

**XQuery Source Pane**

The editing pane where you can display and edit XQuery files.

**Output View**

Displays the transformed output that results from the input of a selected document (XML) and selected XQuery document to the XQuery transformer. The result of transformation is dynamically written as the transformation is processed. There are two types of views for the output: a text view (with XML syntax highlight) and an XHTML view.

**Debugging Information Views (on page 2296)**
Presented in two panes, they display various types of information that can be used to understand the transformation process. For each information type there is a corresponding tab. While running a transformation, relevant events are displayed in the various information views. This allows you to obtain a clear view of the transformation progress. See the Debugging Information Views (on page 2296) topic for a list of all the information views (and links to more details on each view).

Note: You can add XPath expression automatically in the XWatch view using the Watch expression action from the contextual menu. If you select an expression, or a fragment of it, and then click Watch expression in the contextual menu, the entire selection is presented in the XWatch view. Expressions displayed in the XWatch view are normalized (unnecessary white spaces are removed from the expression).

For more information about the XQuery debugging capabilities in Oxygen XML Editor, watch our video demonstration:

https://www.youtube.com/embed/o5_M2kbyipU

Related Information:

- Debugging XSLT Stylesheets and XQuery Documents (on page 2290)
- XSLT Debugger Perspective (on page 297)

Database Perspective

The Database perspective (on page 3285) allows you to manage databases. To switch the focus to this perspective, select the Database button in the top-right corner of Oxygen XML Editor or Window > Open perspective > Database from the Window > Open perspective menu.

The Database perspective offers various helpful features, including:

- Support for browsing multiple connections at the same time.
- Support for both Relational and Native XML databases.
- Browsing the structure of databases.
- Viewing tables from databases.
- Inspecting or modifying data.
- Specifying XML Schemas for XML fields.
- SQL execution.
- XQuery execution.
• Data export to XML.

Supported Databases

Oxygen XML Editor supports numerous types of databases, including:

• Oracle Berkeley DB XML Database
• eXist XML Database
• IBM DB2 (Enterprise edition only)
• JDBC-ODBC Bridge
• MarkLogic (Enterprise edition only)
• Microsoft SQL Server 2005 and Microsoft SQL Server 2008 (Enterprise edition only)
• MySQL
• Oracle 11g (Enterprise edition only)
• PostgreSQL 8.3 (Enterprise edition only)
• SharePoint (CMS)

Note: For the databases marked with “Enterprise edition only”, the XML capabilities are only available in the Enterprise edition of Oxygen XML Editor. For a detailed feature matrix that compares the Academic, Professional, and Enterprise editions of Oxygen XML Editor go to the Oxygen XML Editor website.

Supported Capabilities

The supported non-XML capabilities are as follows:

• Browsing the structure of the database instance.
• Opening a database table in the Table Explorer view (on page 2200).
• Handling the values from XML Type columns as String values.

Note: The non-XML capabilities are available in the Enterprise, Academic, and Professional editions of Oxygen XML Editor by registering the database driver as a Generic JDBC type driver when defining the data source for accessing the database. For more information, see Database Connection Support (on page 2203).

The supported XML capabilities are as follows:

• Displaying an XML Schema node in the tree of the database structure (for databases with an XML-specific structure) with actions for opening, editing, and validating the schemas in an Oxygen XML Editor editor panel.
• Handling the values from XML Type columns as XML instance documents that can be opened and edited in an Oxygen XML Editor editor panel.
• Validating an XML instance document added to an XML Type (column of a table, etc.)

Tip: Connections configured on relational data sources can be used to import data to XML or to generate XML schemas.

Layout of the Database Perspective

The layout of this perspective is composed of the following components:

Menus

Provides menu driven access to all the features and functions available in the XQuery Debugger.

Toolbars

Contains all actions needed to configure and control the debugging process. The toolbars can be configured (on page 273) to suit your specific needs.

Editor Pane

The main editing pane where you spend most of your time reading, editing, applying markup, and validating your documents.

Data Source Explorer View (on page 2198)

Provides browsing support for the configured connections.

Table Explorer View (on page 2200)

Provides table content editing support for inserting new rows, deleting table rows, editing cell values, exporting to an XML file, and more.

Related Information:

• Working with Databases (on page 2198)

• Data Source Explorer View (on page 2198)

• Table Explorer View (on page 2200)
6. Editing Modes

The main editing area in Oxygen XML Editor includes several editing modes to suit the type of editing that you want to perform. You can easily switch between modes by clicking on the desired mode at the bottom of the main editing pane. Oxygen XML Editor offers the following editing modes:

- **Text (on page 303)** - This mode presents the source of an XML document.
- **Grid (on page 392)** - This mode displays an XML document as a structured grid of nested tables.
- **Author (on page 402)** - This mode enables you to edit in a WYSIWYG-like editor.
- **Design (on page 623)** - This mode is found in the schema editor and represents the schema as a diagram.

The default editing mode that will be initially opened for each type of document can be set in two ways:

- If the **Allow Document Type specific edit mode setting to override the general mode setting option (on page 127)** is selected in the Edit Modes preferences page, then the edit mode specified in the Document Type configuration dialog box (on page 95) is used when that particular type of document is initially opened.
- If the **Allow Document Type specific edit mode setting to override the general mode setting option (on page 127)** is not selected, then the edit mode specified in the table in the Edit Modes preferences page (on page 127) is used when that particular type of document is initially opened.

Text Editing Mode

The **Text** mode editor in Oxygen XML Editor is designed to be a simple, yet powerful, XML source editor. It provides support to help you edit, transform, and debug XML-based documents. It is similar to other common text editors, but Oxygen XML Editor also includes specialized editing actions, a powerful **Content Completion Assistant (on page 844)**, a helpful **Outline view (on page 347)**, and many other unique features.

To switch to this mode, select **Text** at the bottom of the editing area.

**Related Information:**
Navigating the Document Content in Text Mode

Oxygen XML Editor includes some useful features to help you navigate XML documents in Text mode.

**Navigation Keyboard Shortcuts**

- **Ctrl + CloseBracket (Command + CloseBracket on OS X)**
  Navigate to the next XML node.

- **Ctrl + OpenBracket (Command + OpenBracket on OS X)**
  Navigate to the previous XML node.

- **Ctrl + RightArrow (Command + RightArrow on OS X)**
  Navigate one word forward.

- **Ctrl + LeftArrow (Command + LeftArrow on OS X)**
  Navigate one word backward.

- **Ctrl + Home (Command + Home on OS X)**
  Position the cursor at the beginning of the document.

- **Ctrl + End (Command + End on OS X)**
  Position the cursor at the end of the document.

**Navigating to a Modification**

Oxygen XML Editor includes some actions that help you to quickly navigate to a particular modification. These navigation buttons are available in the main toolbar (they can also be accessed from the Find menu):

- ** Gdk ⌘ ← Last Modification**
  Navigates to the last modification in any opened tab.

- ** Gdk ⌘ ← Back**
  Navigates to the last selected editor tab or to the last selected element/content in the current tab. You can also go back after clicking on links in Text or Author mode.

- ** Gdk ⌘ → Forward**
Available after you use the Back button at least once, and it navigates in the opposite
direction as the Back button.

Navigating with the Outline View

Oxygen XML Editor includes an Outline view (on page 347) that displays a hierarchical tag overview
of the currently edited XML Document.

You can use this view to quickly navigate through the current document by selecting nodes in the
outline tree. It is synchronized with the editor area, so when you make a selection in the Outline view,
the corresponding nodes are highlighted in the editor area.

Figure 51. Outline View Navigation in Text Mode

Using the Breadcrumb to Navigate

A breadcrumb on the top stripe indicates the path from the document root element to the current
element. It can also be used as a helpful tool to navigate to specific elements throughout the structure
of the document.

Figure 52. Breadcrumb in Text Mode

The last element listed in the breadcrumb is the element at the current cursor position. The current
element is also highlighted by a thin light blue bar for easy identification. Clicking an element from the
breadcrumb selects the entire element and navigates to it in the editor area.

Navigating with the Go To Dialog Box

In Text mode, you can navigate precisely to a location in the document you are editing by using the Go
to dialog box. To open this dialog box, press Ctrl+L (Command+L on OS X) or select Find > Go to.

Figure 53. Go to Dialog Box
The dialog box includes the following fields for specifying a specific navigation location:

- **Line** - Destination line in the current document.
- **Column** - Destination column in the current document.
- **Offset** - Destination offset relative to the beginning of document.

### Navigating with Bookmarks

By using bookmarks, you can mark positions in an edited document so that you can return to it later. This is especially helpful for navigating through large documents or while editing multiple documents. You can place up to nine distinct bookmarks in any document. Shortcut keys are available to navigate to any of the marked positions (\texttt{Ctrl+1} through \texttt{Ctrl+9}). There are also shortcuts for creating bookmarks (\texttt{Ctrl+Shift+1} through \texttt{Ctrl+Shift+9}). You can also configure these shortcut keys in the Options > Menu Shortcut Keys (on page \texttt{248}) menu.

![Editor Bookmarks](image)

Figure 54. Editor Bookmarks

To insert a bookmark in Text mode, do any of the following:

- Click in the vertical stripe on the left side of the editor (to the left of the line number).
- Press \texttt{(F9)} on your keyboard or use any of the specific bookmark creation shortcuts ((\texttt{Ctrl+Shift+1} through \texttt{Ctrl+Shift+9})).
- Select the \textcircled{○} Create Bookmark action from the Edit > Bookmarks menu.

To remove bookmark in Text mode, do either of the following:

- Left-click its icon in the vertical stripe.
- Right-click its icon on the vertical stripe and select Remove or Remove all (\texttt{Ctrl+F7} (Command +\texttt{F7} on OS X)).
To navigate to a specific bookmark, do either of the following:

- Use any of the specific bookmark navigation shortcuts (**Ctrl+1** through **Ctrl+9**).
- Use one of the actions available on the **Edit > Bookmarks > Go to** menu.

**Tip:** The navigation shortcuts work even if the document where the bookmark was inserted has been closed. In this case, using the shortcut will automatically re-open the document.

**Smart Editing in Text Mode**

Oxygen XML Editor includes *smart editing features* to help you edit XML documents in **Text** mode. The following smart editing features are included:

- **Closing tag auto-expansion** - This feature helps save some keystrokes by automatically inserting a closing tag when you insert a complete start tag and the cursor is automatically placed in between the start and end tags. For instance, after entering a start `<tag>` , the corresponding closing `</tag>` is automatically inserted and the cursor is placed between the two (`<tag> | </tag>`).

- **Auto-rename matching tag** - When you edit the name of a start tag, Oxygen XML Editor will mirror-edit the name of the matching end tag. This feature can be controlled from the **Content Completion option page** (on page 166).

- **Auto-breaking the edited line** - The **Hard line wrap option** (on page 159) automatically breaks the edited line when its length exceeds the maximum line length **defined for the format and indent operation** (on page 159).

- **Indent on Enter** - The **Indent on Enter option** (on page 159) indents the new line inserted when you press **Enter**.

- **Smart Enter** - The **Smart Enter option** (on page 159) inserts an empty line between the start and end tags. If you press **Enter** between a start and end tag, the action places the cursor in an indented position on the empty line between the lines that contain the start and end tag.

- **Double-click** - A double-click selects certain text, depending on the position of the click in the document:
  - If the click position is on a start tag or end tag, then the element name is selected.
  - If the click position is immediately after the opening quote or immediately before the closing quote of an attribute value, then the entire attribute value is selected.
  - Otherwise, a double-click selects contiguous text.

- **Triple-click** - A triple-click selects entire regions of text, depending on the click position:
  - If the click position is on a start or end tag, then the entire tag is selected, including the start and end tags, and the content in between.
  - If the click position is after a start tag or before an end tag, then the entire content of the element without the start and end tags is selected.
If the click position is before a start tag or after an end tag, then the entire tag is selected, including the start and end tags, and the content in between.

- If the click position is immediately before an attribute, then the entire attribute and its value is selected.
- If the click position is in between the opening and closing quotes of an attribute value, then the entire attribute value is selected.
- Otherwise, it selects the entire current line.

Shortcut Actions in Text Mode

Oxygen XML Editor includes numerous shortcut actions to help you edit content in the Text editing mode.

Changing the Font Size (Zoom)

The font size of the editor panel can be changed with the following actions that are available with shortcuts or in the Document > Font size menu:

Increase editor font (Ctrl + NumPad+ (Command + NumPad+ on OS X) or Ctrl + MouseWheelForward (Windows/Linux))

Increases the font size (zooms in) with one point for each execution of the action.

Note: For Mac OS X, if you activate the Enable mouse-wheel zooming option (on page 126) in the Editor preferences page, you can use Command + MouseWheelForward to increase the font size (zoom in). It is disabled by default due to the way inertia affects the mouse wheel on Mac OS X.

Decrease editor font (Ctrl + NumPad- (Command + NumPad- on OS X) or Ctrl + MouseWheelBackwards (Windows/Linux))

Decreases the font size (zooms out) with one point for each execution of the action.

Note: For Mac OS X, if you activate the Enable mouse-wheel zooming option (on page 126) in the Editor preferences page, you can use Command + MouseWheelBackwards to decrease the font size (zoom out). It is disabled by default due to the way inertia affects the mouse wheel on Mac OS X.

Normal editor font (Ctrl + 0 (Command + 0 on OS X))

Resets the font size to the value of the editor font set in the Fonts preferences page (on page 88).
Undo/Redo Actions

The typical undo and redo actions are available with shortcuts or in the Edit menu:

_undo (Ctrl + Z (Command + Z on OS X))

Reverses a maximum of 200 editing actions (configurable with the Undo history size option (on page 126) in the Editor preferences page) to return to the preceding state.

Note: Complex operations such as Replace All or Indent selection count as single undo events.

.redo (Ctrl + Y (Command + Shift + Z on OS X, Ctrl + Shift + Z on Linux/Unix))

Recreates a maximum of 100 editing actions that were undone by the Undo function.

Copy and Paste Actions

The typical copying and pasting actions are available with shortcuts or in the contextual menu (or the Edit menu):

.cut (Ctrl + X (Command + X on OS X))

Removes the current selected content from the document and places it in the clipboard.

.copy (Ctrl + C (Command + C on OS X))

Places a copy of the current selected content in the clipboard.

.paste (Ctrl + V (Command + V on OS X))

Inserts the current clipboard content into the document at the cursor position.

.select all (Ctrl + A (Command + A on OS X))

Selects the entire content of the current document.

Moving XML Nodes

You can use the following shortcuts to move XML elements or XSLT variables up or down in Text mode:

.ctrl + alt + uparrow (Command + Alt + UpArrow on OS X)

Moves the node up one line.

.ctrl + alt + downarrow (Command + Alt + DownArrow on OS X)

Moves the node down one line.

Note: The requirements for these node moving actions to work are as follows:
• The mechanism is designed to work without a selection. If you use these actions on a selection of content, it moves the entire selection. To make this mechanism work as intended, simply position the cursor somewhere on the line that you want to move.
• A start tag must be the first text occurrence on the line where the cursor is positioned.
• On the line where the element ends, only whitespaces are allowed after the end tag.

Miscellaneous Shortcut Actions in Text Mode

Oxygen XML Editor also includes the following other miscellaneous shortcut actions in Text mode:

**Ctrl + Delete (Command + Delete on OS X)**
Deletes the next word.

**Ctrl + Backspace (Command + Backspace on OS X)**
Deletes the previous word.

**Ctrl + W (Command + W on OS X)**
Cuts the previous word.

**Ctrl + K (Command + K on OS X)**
Cuts to end of line.

**Ctrl + Single-Click (Command + Single-Click on OS X)**
Use this shortcut to open any of the following:

• Any absolute URL (URLs that have a protocol), regardless of their location in the document.
• URI attributes such as: `schemaLocation`, `noNamespaceSchemaLocation`, `href` and others.
• Processing instructions used for associating resources, xml-models, xml-stylesheets.

**Ctrl + Shift + Y (Command + Shift + Y on OS X) (Document > Edit > Toggle Line Wrap)**
Enables or disables line wrapping. When enabled, if text exceeds the width of the displayed editor, content is wrapped so that you do not have to scroll horizontally.

Related Information:

• [Frequently Used Shortcut Keys](on page 27)
Editing XML Markup in Text Mode

Oxygen XML Editor includes some useful actions that allow you to easily edit XML markup in Text mode. These actions are available in the Refactoring submenu of the contextual menu and in the Document > Markup menu, and many of the actions can also be done with simple keyboard shortcuts.

Using the Breadcrumb

A breadcrumb on the top stripe indicates the path from the document root element to the current element. It can also be used as a helpful tool to insert and edit specific elements in the document structure.

The last element listed in the breadcrumb is the element at the current cursor position. The current element is also highlighted by a thin light blue bar for easy identification. Clicking an element in the breadcrumb selects the entire element in the editor area. Also, each element provides a contextual menu with access to the following actions:

Append Child

Allows you to select an element (from a drop-down list) that is allowed by the associated schema and inserts it as a child of the current element.

Insert Before

Allows you to select an element (from a drop-down list) that is allowed by the associated schema and inserts it immediately before the current element, as a sibling.

Insert After

Allows you to select an element (from a drop-down list) that is allowed by the associated schema and inserts it immediately after the current element, as a sibling.

Edit Attributes

Opens an editing window that allows you to edit the attributes of the currently selected element.

Toggle Comment

Encloses the currently selected element in an XML comment, if the element is not already commented. If it is already commented, this action will remove the comment.

Cut

Removes the selected element and copies it to the clipboard.

Copy
Copies the selected element to the clipboard.

❌ **Delete**

Deletes the currently selected element.

### Move Nodes

You can easily move XML nodes in the current document by using the following shortcut keys:

- **Alt + UpArrow**
  
  Moves the current node or selected nodes in front of the previous node.

- **Alt + DownArrow**
  
  Moves the current node or selected nodes after the subsequent node.

### Rename Elements

You can rename elements by using the following actions in the **Refactoring** submenu of the contextual menu (or from the **Document > Markup** menu):

- **_rename_element**: The element from the cursor position, and any elements with the same name, can be renamed according with the options from the **Rename** dialog box.

- **rename_prefix (Alt + Shift + P (Command + Shift + P on OS X))**
  
  The prefix of the element from the cursor position, and any elements with the same prefix, can be renamed according with the options from the **Rename** dialog box.

  - If you select the **rename current element prefix** option, the application will recursively traverse the current element and all its children. *For example*, to change the `xmlns:p1="ns1"` association in the current element to `xmlns:p5="ns1"`, if the `xmlns:p1="ns1"` association is applied on the parent element, then Oxygen XML Editor will introduce `xmlns:p5="ns1"` as a new declaration in the current element and will change the prefix from `p1` to `p5`. If `p5` is already associated with another namespace in the current element, then the conflict will be displayed in a dialog box. By pressing **OK**, the prefix is modified from `p1` to `p5` without inserting a new declaration.

  - If you select the **rename current prefix in all document** option, the application will apply the change on the entire document.

  - To also apply the action inside attribute values, select the **rename also attribute values that start with the same prefix** checkbox.
Surround Content with Tags (Wrap)

You can surround a selection of content with tags (wrap the content) by using the following action in the Refactoring submenu of the contextual menu (or from the Document > Markup menu):

- **Surround with submenu**
  Presents a drop-down menu that allows you to choose a tag to surround a selected portion of content.

- **Surround with Tags (Ctrl + E (Command + E on OS X))**
  Allows you to choose a tag that encloses a selected portion of content. If there is no selection, the start and end tags are inserted at the cursor position.
  
  - If the Position cursor between tags option (on page 167) is selected in the Content Completion preferences page, the cursor is placed between the start and end tag.
  - If the Position cursor between tags option (on page 167) is not selected in the Content Completion preferences page, the cursor is placed at the end of the start tag, in an insert-attribute position.

- **Surround with [tag] (Ctrl + ForwardSlash (Command + ForwardSlash on OS X))**
  Surround the selected content with the last tag used.

Unwrap the Content of Elements

You can unwrap the content of an element by using the following action in the Refactoring submenu of the contextual menu (or from the Document > Markup menu):

- **Delete element tags (Alt + Shift + X (Command + Alt + X on OS X))**
  Deletes the start and end tag of the current element.

Join or Split Elements

You can join or split elements in the current document by using the following actions in the Refactoring submenu of the contextual menu (or from the Document > Markup menu):

- **Join elements (Alt + Shift + J (Command + Alt + J on OS X))**
  Joins the left and right elements relative to the current cursor position. The elements must have the same name, attributes, and attributes values.

- **Split element (Alt + Shift + D (Ctrl + Alt + D on OS X))**
Split the element from the cursor position into two identical elements. The cursor must be inside the element.

**Other Refactoring Actions**

You can also manage the structure of the markup by using the other specific XML refactoring actions that are available in the **Refactoring** submenu of the contextual menu:

**Attributes Refactoring Actions**

Contains built-in XML refactoring operations that pertain to attributes with some of the information preconfigured based upon the current context.

- **Add/Change attribute**
  - Allows you to change the value of an attribute or insert a new one.

- **Convert attribute to element**
  - Allows you to change an attribute into an element.

- **Delete attribute**
  - Allows you to remove one or more attributes.

- **Rename attribute**
  - Allows you to rename an attribute.

- **Replace in attribute value**
  - Allows you to search for a text fragment inside an attribute value and change the fragment to a new value.

**Comments Refactoring Actions**

Contains built-in XML refactoring operations that pertain to comments with some of the information preconfigured based upon the current context.

- **Delete comments**
  - Allows you to delete comments found inside one or more elements.

**Elements Refactoring Actions**

Contains built-in XML refactoring operations that pertain to elements with some of the information preconfigured based upon the current context.

- **Delete element**
  - Allows you to delete elements.

- **Delete element content**
  - Allows you to delete the content of elements.
Insert element
   Allows you to insert new elements.

Rename element
   Allows you to rename elements.

Unwrap element
   Allows you to remove the surrounding tags of elements, while keeping the content unchanged.

Wrap element
   Allows you to surround elements with element tags.

Wrap element content
   Allows you to surround the content of elements with element tags.

Fragments Refactoring Actions
   Contains built-in XML refactoring operations that pertain to XML fragments with some of the information preconfigured based upon the current context.

Insert XML fragment
   Allows you to insert an XML fragment.

Replace element content with XML fragment
   Allows you to replace the content of elements with an XML fragment.

Replace element with XML fragment
   Allows you to replace elements with an XML fragment.

Related Information:

- Refactoring XML Documents (on page 1139)
- Contextual Menu Actions in Text Mode (on page 873)
- Frequently Used Shortcut Keys (on page 27)

Folding XML Elements in Text Mode

When working with a large document, the folding (on page 3282) support in Oxygen XML Editor can be used to collapse some element content leaving only those that you need to edit in focus.
Expanding and collapsing works on individual elements. Expanding an element leaves the child elements unchanged.

By default, the folding (on page 3282) feature is enabled in Oxygen XML Editor, but it can be disabled in the Text preferences page with the Enable folding option (on page 128).

Figure 56. Folding of XML Elements in Text Mode

The fact that the folds are persistent is a unique feature of Oxygen XML Editor. The next time you open the document the folds are restored to its last state.

Folding Actions in Text Mode

Element folds are marked with a small triangle (↑ / ↓) in the left stripe. To toggle the fold, simply click the icon. Also, if you right-click the icon, the following actions are available:

- **Collapse Other Folds** (Ctrl + NumPad/ (Command + NumPad/ on OS X))
  Folds all the elements except the current element.

- **Collapse Child Folds** (Ctrl + NumPad. (Command + NumPad. on OS X))
  Folds the child elements that are indented one level inside the current element.

- **Expand Child Folds**
  Unfolds all child elements of the currently selected element.

- **Expand All** (Ctrl + NumPad* (Command + NumPad* on OS X))
  Unfolds all elements in the current document.

For more information about the folding support in Oxygen XML Editor, watch our video demonstration:

https://www.youtube.com/embed/eR9HfN_peAE
Drag and Drop in Text Mode

To move a whole region of text to other location in the same edited document, just select the text, drag the selection by holding down the left mouse button and drop it to the target location.

You can also copy content from other applications and paste it into the document.

Selecting Content in Text Mode

Oxygen XML Editor includes a variety of keyboard shortcuts that allow you to select content in Text mode. These include numerous standard continuous selection possibilities that are common to many text editors, as well as a selection feature that allows you to select a rectangular area within a document in Text mode.

Standard Continuous Selection Shortcuts

**Ctrl + A (Meta + A on Mac OS X)**

Selects all content in the document.

**Shift + Left/Right Arrow Keys**

Begins a continuous selection at the cursor position and extends it one character at a time in the direction that you press the arrow keys.

**Shift + Up/Down Arrow Keys**

Begins a continuous selection at the cursor position and extends it one line at a time in the direction that you press the arrow keys.

**Ctrl + Shift + Left/Right Arrow Keys (Meta + Shift + Left/Right Arrow Keys on Mac OS X)**

Begins a continuous selection at the cursor position and extends it one word at a time in the direction that you press the arrow keys.

**Shift + Home**

Begins a continuous selection at the cursor position and extends it to the beginning of the current line (on Mac OS X, it extends to the beginning of the document).

**Shift + End**

Begins a continuous selection at the cursor position and extends it to the end of the current line (on Mac OS X, it extends to the end of the document).

**Ctrl + Shift + Home**

Begins a continuous selection at the cursor position and extends it to the beginning of the document.

**Ctrl + Shift + End**
Begins a continuous selection at the cursor position and extends it to the end of the document.

**Shift + PageUp**

Begins a continuous selection at the cursor position and extends it up one screen page.

**Shift + PageDown**

Begins a continuous selection at the cursor position and extends it down one screen page.

**Double-Click**

Selects certain text, depending on the position of the click in the document. See Smart Editing: Double-Click *(on page 832)* for the specifics.

**Triple-Click**

Selects entire regions of text, depending on the position of the click in the document. See the Smart Editing: Triple-Click *(on page 832)* for the specifics.

**Right-Click > Select > Element**

Selects the entire element at the current cursor position.

**Right-Click > Select > Content**

Selects the entire content of the element at the current cursor position, excluding the start and end tag. Performing this action repeatedly will result in the selection of the content of the ancestor of the currently selected element content.

**Right-Click > Select > Attributes**

Selects all the attributes of the element at the current cursor position.

**Right-Click > Select > Parent**

Selects the entire parent element at the current cursor position.

**Rectangular Selection Shortcuts**

Oxygen XML Editor also includes some keyboard shortcuts that allow you to select a rectangular block of content in **Text** mode and you can then copy, cut, paste, delete, or edit the selection.

⚠️ **Attention:** The rectangular selection shortcuts will not work if the **Line Wrap** option *(on page 128)* is selected in the **Text** preferences page.

The following shortcuts can be used to create a rectangular selection:

- **Alt + Mouse Click + Mouse Movement** *(Alt + Meta + Mouse Click + Mouse Movement on Mac OS X)*
Begins a rectangular selection at the mouse click position and extends it in the direction that you move the mouse. Release **Alt (Alt + Meta on Mac OS X)** to enter the *in-place editing mode* (on page 844).

**Shift + Alt + Left/Right Arrow Keys** (**Shift + Alt + Meta + Left/Right Arrow Keys on Mac OS X**)  
Begins a rectangular selection at the cursor position and extends it one character at a time in the direction that you press the arrow keys (you can also use the mouse to extend the selection).

**Shift + Alt + Up/Down Arrow Keys** (**Shift + Alt + Meta + Up/Down Arrow Keys on Mac OS X**)  
Begins a rectangular selection at the cursor position and extends it one line at a time in the direction that you press the arrow keys (you can also use the mouse to extend the selection).

**Ctrl + Shift + Alt + Left/Right Arrow Keys** (**Ctrl + Shift + Alt + Meta + Left/Right Arrow Keys on Mac OS X**)  
Begins a rectangular selection at the cursor position and extends it one word at a time in the direction that you press the arrow keys.

**Shift + Alt + Home** (**Shift + Alt + Meta + Home on Mac OS X**)  
Begins a rectangular selection at the cursor position and extends it to the beginning of the current line.

**Shift + Alt + End** (**Shift + Alt + Meta + End on Mac OS X**)  
Begins a rectangular selection at the cursor position and extends it to the end of the current line.

**Shift + Alt + PageUp** (**Shift + Alt + Meta + PageUp on Mac OS X**)  
Begins a rectangular selection at the cursor position and extends it up one screen page.

**Shift + Alt + PageDown** (**Shift + Alt + Meta + PageDown on Mac OS X**)  
Begins a rectangular selection at the cursor position and extends it down one screen page.

You can then use standard editing actions to copy, cut, paste, or delete the entire selection.

**In-Place Editing Mode**

To edit the content of the rectangular selection, you can enter an in-place editing mode by releasing the **Alt** key (on Mac OS X, release both **Alt & Meta**). Once you are in the editing mode, you can simply use your keyboard to edit the entire selection of content, or click anywhere inside the selection to edit the content at the cursor position for all lines within the selection at once (as if the rectangular selection is a selection of columns). To exit the editing mode, press either **Enter** or **Esc**.
Content Completion Assistant in Text Mode

Oxygen XML Editor includes an intelligent Content Completion Assistant (on page 3280) that offers proposals for inserting structured language elements, attributes, and attribute values that are valid in the current editing context.

The Content Completion Assistant is enabled by default. To disable it, open the Preferences dialog box (Options > Preferences) (on page 79), go to Editor > Content Completion, and deselect the Enable content completion option (on page 167).

![Figure 57. Content Completion Assistant](image)

Content Completion and the Associated Schema

The Content Completion Assistant feature is schema-driven and the list of proposals in the Content Completion Assistant (on page 3280) depend on the associated schemas (DTD, XML Schema, Relax NG, or NVDL schema). For information about the various ways to associate a schema and the order of their precedence, see the Associating a Schema to XML Documents (on page 1112) section.

Using the Content Completion Assistant in Text Mode

The feature is activated in Text mode in the following situations:

- After you press the `<` character when inserting an element, it is automatically activated after a short delay. You can adjust the activation delay with the Activation delay of the proposals window (ms) option (on page 168) from the Content Completion preferences page.
- After typing a partial element or attribute name, you can manually activate it by pressing Ctrl + Space (Command + Space on OS X) or Alt + ForwardSlash (Command + Alt + ForwardSlash on OS X). If there is only one valid proposal at the current location, it is inserted without displaying the list of proposals.

You can navigate through the list of proposals by using the Up and Down keys on your keyboard. In some cases, the Content Completion Assistant displays a documentation window with information about the particular proposal and some of them have links to additional information (for example,
DITA elements might have a link to the DITA Style Guide). You can also change the size of the documentation window by dragging its top, right, and bottom borders.

To insert the selected proposal in **Text** mode, do one of the following:

- Press **Enter** or **Tab** to insert both the start and end tags and position the cursor inside the start tag in a position suitable for inserting attributes.
- Press **Ctrl + Enter (Command + Enter on OS X)** to insert both the start and end tags and positions the cursor between the tags in a position where you can start typing content.

**Note:** When the DTD, XML Schema or RELAX NG schema specifies required child elements for the newly added element, they are inserted automatically only if the Add Element Content option (on page 167) (in the Content Completion preferences page) is selected. The Content Completion Assistant can also add optional content and first choice particle, as specified in the DTD, XML Schema, or RELAX NG schema. To activate these features, select the Add optional content (on page 167) and Add first Choice particle (on page 167) options in the Content Completion preferences page.

After inserting an element, the cursor is positioned:

- Before the > character of the start tag, if the element allows attributes, to allow rapid insertion of any of the attributes supported by the element. Pressing the space bar displays the Content Completion list once again. This time it contains the list of allowed attribute names. If the attribute supports a fixed set of parameters, the assistant list displays the list of valid parameters. If the parameter setting is user-defined and therefore variable, the assistant is closed to allow manual insertion. The values of the attributes can be learned from the same elements in the current document.
- After the > character of the start tag, if the element has no attributes.

**Where the Content Completion Assistant is Displayed**

The Content Completion Assistant is displayed:

- Anywhere within a tag name or at the beginning of a tag name in an XML document, XML Schema, DTD, or Relax NG (full or compact syntax) schema.
- Anywhere within an attribute name or at the beginning of an attribute name in any XML document with an associated schema.
- Within attribute values or at the beginning of attribute values in XML documents where lists of possible values have been defined for that element in the schema associated with the document.
Types of Proposals Listed in the Content Completion Assistant

The following things are considered for determining the proposals that are listed in the content completion window:

**Element Structure Specified in DTD or Schema**

The proposals that populate the Content Completion Assistant depend on the element structure specified in the DTD, XML Schema, Relax NG (full or compact syntax) schema, or NVDL schema associated with the edited document.

**Note:** The Content Completion Assistant is able to offer elements defined both by XML Schemas version 1.0 and 1.1.

**Current Cursor Position**

The number and type of elements displayed by the Content Completion Assistant is dependent on the cursor's current position in the structured document. The child elements displayed within a given element are defined by the structure of the specified DTD, XML Schema, Relax NG (full or compact syntax) schema, or NVDL schema.

**Unique ID Attribute Values**

A schema may declare certain attributes as ID or IDREF/IDREFS. When the document is validated, Oxygen XML Editor checks the uniqueness and correctness of the ID attributes. It also collects the attribute values declared in the document to prepare the list of proposals. This is available for documents that use DTD, XML Schema, and Relax NG schema.

**Values for xml:id Attributes**

Values of all the xml:id attributes are handled as ID attributes. They are collected and displayed by the Content Completion Assistant as possible values for anyURI attributes defined in the schema of the edited document. This works only for XML Schema and Relax NG schemas.

**Links/References in DITA**

When entering values for the various types of links and references in DITA (for example, values for href or conref elements), the Content Completion Assistant will propose potential targets when you use the forward slash key (/).

**ID Values for DITA Key References**

In DITA, when inserting key references (keyref) or content key references (conkeyref), the ID values that are defined in the key reference are presented as possible targets. The Content Completion Assistant will only propose targets that are valid in the current context.
Element and Attribute Values

For documents that use an XML Schema or Relax NG schema, the Content Completion Assistant offers proposals for attribute and element values as long as the allowed values are defined in the schema. Also, if a default value or fixed value is defined in the schema, then that value is offered in the Content Completion Assistant.

Related Information:

- Customizing the Content Completion Assistant (on page 2352)

Schema Annotations in Text Mode

A schema annotation is a documentation snippet associated with the definition of an element or attribute in a schema. If such a schema is associated with an XML document, the annotations are displayed in:

- The Content Completion Assistant (on page 3280).
- A small tooltip window shown when the mouse hovers over an element or attribute. The tooltip window can be invoked at any time by using the F2 shortcut.

The schema annotations support is available if the schema type is one of the following:

- XML Schema
- Relax NG
- NVDL schema
- DTD

This feature is enabled by default, but you can disable it by deselecting the Show annotations in Content Completion Assistant (on page 171) option in the Annotations preferences page.

Styling Annotations with HTML

You can use HTML format in the annotations you add in an XML Schema or Relax NG schema. This improves the visual appearance and readability of the documentation window displayed when editing XML documents validated against such a schema. An annotation is recognized and displayed as HTML if it contains at least one HTML element (such as div, body, p, br, table, ul, or ol).

The HTML rendering is controlled by the Show annotations using HTML format, if possible (on page 172) option in the Annotations preferences page. When this option is deselected, the annotations are converted and displayed as plain text and if the annotation contains one or more HTML tags (p, br,
ul, li), they are rendered as an HTML document loaded in a web browser. For example, \( p \) begins a new paragraph, \( br \) breaks the current line, \( ul \) encloses a list of items, and \( li \) encloses an item of the list.

### Collecting Annotations from XML Schemas

In an XML Schema, the annotations are specified in an \(<xs:annotation>\) element like this:

```
<xs:annotation>
  <xs:documentation>
    Description of the element.
  </xs:documentation>
</xs:annotation>
```

If an element or attribute does not have a specific annotation, then Oxygen XML Editor looks for an annotation in the type definition of that element or attribute.

### Collecting Annotations from Relax NG Schemas

For Relax NG schema, element and attribute annotations are made using the \(<documentation>\) element from the \(http://relaxng.org/ns/compatibility/annotations/1.0\) namespace like this:

```
<define name="person">
  <element name="person">
    <a:documentation xmlns:a="http://relaxng.org/ns/compatibility/annotations/1.0">
      Information about a person.
    </a:documentation>
    <ref name="name"/>
    <zeroOrMore>
      <ref name="email"/>
    </zeroOrMore>
  </element>
</define>
```

However, any element outside the Relax NG namespace (\(http://relaxng.org/ns/structure/1.0\)) is handled as annotation and the text content is displayed in the annotation window. To activate this behavior, select the \textbf{Use all Relax NG annotations as documentation} (on page 172) option in the Annotations preferences page.

### Collecting Annotations from Relax NG Compact Syntax Schemas

For Relax NG Compact Syntax schema, annotations are made using comments like this:

```
## Information about a person.
```
Collecting Annotation from DTDs

For DTD, Oxygen XML Editor defines a custom mechanism for annotations using comments enabled by the **Prefer DTD comments that start with "doc:" as annotations** (on page 171) option in the **Annotations** preferences page. The following is an example of a DTD annotation:

```xml
<!--doc:Description of the element. -->
```

Content Completion Helper Views

Information about the current element being edited is also available in various **dockable** views, such as the **Model view** (on page 353), **Attributes view** (on page 351), **Elements view** (on page 355), and **Entities view** (on page 356). By default, they are located on the right-hand side of the main editor window. These views, along with the powerful **Outline view** (on page 347), provide spatial and insight information about the edited document and the current element. If any particular view is not displayed, it can be opened by selecting it from the **Window > Show View** menu.

Model View

The **Model view** presents the structure of the currently selected tag, and its documentation, defined as annotation in the schema of the current document. By default, it is located on the right side of the editor. If the view is not displayed, it can be opened by selecting it from the **Window > Show View** menu.

Figure 58. Model View
The **Model** view is comprised of two sections, an element structure panel and an annotations panel.

**Element Structure Panel**

The element structure panel displays the structure of the currently edited or selected tag in a tree-like format. The information includes the name, model, and attributes of the current tag. The allowed attributes are shown along with imposed restrictions, if any.

Figure 59. Element Structure Panel
Annotation Panel

The **Annotation** panel displays the annotation information for the currently selected element. This information is collected from the XML schema.

![Annotation Panel](image)

Figure 60. Annotation panel

Attributes View in Text Mode

The **Attributes** view presents all the attributes of the current element determined by the schema of the document. By default, it is located on the right side of the editor. If the view is not displayed, it can be opened from the **Window > Show View** menu.

You can use the **Attributes** view to insert attributes, edit their values, or add values to existing attributes.

The attributes are rendered differently depending on their state:

- The names of the attributes are rendered with a bold font, and their values with a plain font.
- Default values are rendered with a plain font, painted gray.
- Empty values display the text "[empty]", painted gray.
- Invalid attributes and values are painted red.

To edit the value of the corresponding attribute, double-click a cell in the **Value** column. If the possible values of the attribute are specified as **list** in the schema of the edited document, the **Value** column acts as a combo box that allows you to either select the value from a list or manually enter it.

You can sort the attributes table by clicking the **Attribute** column header. The table contents can be sorted as follows:

- By attribute name in ascending order.
- By attribute name in descending order.
- Custom order, where the used attributes are displayed at the beginning of the table sorted in ascending order, followed by the rest of the allowed elements sorted in ascending order.

![Attributes View](image)

Figure 61. Attributes View
Expand/Collapse Button

There is an Expand/Collapse (↑/↓) button at the top-right of the view. When expanded, this presents the following additional combo boxes:

Name Combo Box

Use this combo box to select an attribute. The drop-down list displays the list of possible attributes allowed by the schema of the document, as in the Attributes view.

You can use the ✗ Remove button to delete an attribute and its value from the selected element.

Value Combo Box

Use this combo box to add, edit, or select the value of an attribute. If the selected attribute has predefined values in the schema, the drop-down list displays those possible values. You can use the ➤ Browse button to select a URL for the value of an attribute. You can also press Ctrl + Space to open a content completion window that offers a list of possible choices and allows you to select multiple values. After you have entered or selected a value, use the ➻ Update button (or press Enter) to add the value to the attribute.

Note: For built-in frameworks, if the selected attribute in the Name field is an @id attribute, the Browse button is replaced by a  ➢ Generate Unique ID Value button. Clicking this button will automatically generate a unique ID for the selected element.

Contextual Menu Actions in the Attributes View

The following actions are available in the contextual menu of the Attributes view when editing in Text mode:
Add

Allows you to insert a new attribute. Adding an attribute that is not in the list of all defined attributes is not possible when the Allow only insertion of valid elements and attributes (on page 137) schema-aware option is selected.

Set empty value

Specifies the current attribute value as empty.

Remove

Removes the attribute (action available only if the attribute is specified). You can invoke this action by pressing the (Delete) or (Backspace) keys.

Copy

Copies the attrName="attrValue" pair to the clipboard. The attrValue can be:

- The value of the attribute.
- The value of the default attribute, if the attribute does not appear in the edited document.
- Empty, if the attribute does not appear in the edited document and has no default value set.

Paste

Depending on the content of the clipboard, the following cases are possible:

- If the clipboard contains an attribute and its value, both of them are introduced in the Attributes view. The attribute is selected and its value is changed if they exist in the Attributes view.
- If the clipboard contains an attribute name with an empty value, the attribute is introduced in the Attributes view and you can start editing it. The attribute is selected and you can start editing it if it exists in the Attributes view.
- If the clipboard only contains text, the value of the selected attribute is modified.

Elements View in Text Mode

The Elements view presents a list of all defined elements that are valid at the current cursor position according to the schema associated to the document. By default, it is located on the right side of the editor. If the view is not displayed, it can be opened by selecting it from the Window > Show View menu.

Double-clicking any of the listed elements inserts that element into the edited document, at the current cursor position. Pressing F2 with an element selected will display information about that particular element.
Entities View

Entities provide abbreviated entries that can be used in XML files when there is a need of repeatedly inserting certain characters or large blocks of information. An entity is defined using the ENTITY statement either in the DOCTYPE declaration or in a DTD file associated with the current XML file.

There are three types of entities:

- **Predefined** - Entities that are part of the predefined XML markup (`, `&gt;`, `&amp;`, `&apos;`, `&quot;`).
- **Internal** - Defined in the DOCTYPE declaration header of the current XML.
- **External** - Defined in an external DTD module included in the DTD referenced in the XML DOCTYPE declaration.

**Note:** If you want to add internal entities, you would need to switch to the Text editing mode and manually modify the DOCTYPE declaration. If you want to add external entities, you need to open the DTD module file and modify it directly.

The Entities view displays a list with all entities declared in the current document, as well as built-in ones. By default, it is located on the right side of the editor. If the view is not displayed, it can be opened by selecting it from the Window > Show View menu.

Double-clicking one of the entities will insert it at the current cursor position in the XML document. You can also sort entities by name and value by clicking the column headers.

Figure 63. Entities View
The view features a filtering capability that allows you to search an entity by name, value, or both. Also, you can choose to display the internal or external entities.

**Note:** When entering filters, you can use the ? and * wildcards. Also, you can enter multiple filters by separating them with a comma.

### Code Templates

Code templates are code fragments that can be inserted quickly at the current editing position. Oxygen XML Editor includes a set of built-in code templates for CSS, LESS, Schematron, XSL, XQuery, JSON, and XML Schema document types. You can also define your own code templates for any type of file and share them with others.

Code templates are displayed with a .template symbol in the content completion list (Enter in Author mode or Ctrl + Space (Command + Space on OS X) in Text mode). Also, in Text mode you can press Ctrl + Shift + Space to see a complete list of the available code templates. To enter the code template at the cursor position, select it from the content completion list or type its code and press Enter. If a shortcut key has been assigned to the code template, you can also use the shortcut key to enter it.

### How to Create Code Templates

To create a code template, follow these steps:

1. Open the Preferences dialog box (Options > Preferences) (on page 79) and go to Editor > Templates > Code Templates.
2. Click New to open a code template configuration dialog box.
Tip: You can use one of the existing code templates as a starting point by selecting that template and clicking Duplicate.

Figure 64. Code Template Configuration Dialog Box

3. Configure your template using the fields in the code template configuration dialog box:
   - **Name** - The name of the code template.
   - **Description** - [Optional] The description of the code template that will appear in the Code Templates preferences page and in the tooltip message when selecting it from the Content Completion Assistant (on page 3280). HTML markup can be used for better rendering.
   - **Associate with** - You can choose to set the code template to be associated with a specific type of editor or for all editor types.
   - **Shortcut key** - [Optional] If you want to assign a shortcut key that can be used to insert the code template, place the cursor in the Shortcut key field and press the desired key combination on your keyboard. Use the Clear button if you make a mistake. If the Enable platform-independent shortcut keys checkbox is selected, the shortcut is platform-independent and the following modifiers are used:
     - $M_1$ represents the Command key on MacOS X, and the Ctrl key on other platforms.
     - $M_2$ represents the Shift key.
     - $M_3$ represents the Option key on MacOS X, and the Alt key on other platforms.
     - $M_4$ represents the Ctrl key on MacOS X, and is undefined on other platforms.
   - **Content** - Text box where you define the content that is used when the code template is inserted. An editor variable (on page 276) can be inserted in the text box using the Insert Editor Variables button.

4. Click OK to save your new code template.

Result: Your code template can now be selected using the Content Completion Assistant (on page 3280) (Enter in Author mode or Ctrl + Space (Command + Space on OS X) in Text mode). The code templates are displayed with a symbol.
How to Share Code Templates

There are two ways to easily share all of your code templates with other members of your team:

Method 1: Export/Import

1. Open the Preferences dialog box (Options > Preferences) (on page 79) and go to Editor > Templates > Code Templates.
2. Click the Export button to export all of your code templates into an XML file.
3. Save the XML file.
4. Share the XML file with other members of your team.
5. Instruct them to open the Preferences dialog box (Options > Preferences) (on page 79), go to Editor > Templates > Code Templates, click the Import button, and select the file you sent them.

Result: The code templates will be now available in their content completion list.

Method 2: Share Project

1. Open the Preferences dialog box (Options > Preferences) (on page 79) and go to Editor > Templates > Code Templates.
2. Select Project Options at the bottom of the dialog box. This stores the preferences in the project file (.xpr).
3. Share the project file with the other members of your team. For example, you can commit it to your version control system and have them update their working copy.

Result: When they open the updated project file in their Project view (on page 333), the code templates will be available in their content completion list.

Tip: It is also possible to configure certain actions that function similar to code templates and add them to the content completion list (on page 2352) for a particular framework. You could then share the whole framework (on page 2371) with other members of your team.

Text Mode Views

There is a variety of dockable (on page 3281) helper views that are displayed by default in Text mode. There are also a large selection of additional views available in the Window > Show View menu. This section presents some of the most helpful views for editing in Text mode.

Project View

The Project view is designed to assist you with organizing and managing related files grouped in the same XML project. The actions available in the contextual menu and on the toolbar associated to this
panel allows you to create XML projects and provide shortcuts to various operations for the project documents.

Figure 65. Project View

By default, the view is positioned on the left side of the Oxygen XML Editor window, above the Outline view (on page 347). If the view has been closed, it can be reopened at any time from the Window > Show View menu (or using the Show Project View action from the Project menu).

Project View Toolbar

The tree structure occupies most of the view area. In the upper left side of the view, there is a drop-down menu that contains all recently used projects. You can use this history drop-down menu to quickly switch to a recently opened project. If you enable the Remember layout changes for each project option in the Application Layout preferences page (on page 91), the application will remember the layout, files opened, and editing location for your session when you switch projects.

At the bottom of the drop-down menu there are the actions to open and create a project:

- **Open Project** (Ctrl + F2 (Command + F2 on OS X))
  
  Opens an existing project. Alternatively, you can open a project by dropping an Oxygen XML Editor XPR project file from the file explorer into the Project panel.

- **Note**: When a project is opened for the first time, a confirmation dialog box will be displayed that asks you to confirm that the project came from a trusted source. This is meant to help prevent potential security issues.

- **New Project**
  
  Creates a new, empty project.

The following actions are grouped in the upper right corner:

- **Collapse All**
Collapses all project tree folders. You can also collapse/expand a project tree folder if you select it and press the **Enter** key or **Left Arrow** to collapse and **Right Arrow** to expand.

**Link with Editor**

When selected, the project tree highlights the currently edited file, if it is found in the project files.

**Note:** This button is disabled automatically when you move to the **Debugger perspective** (on page 3285).

**Settings**

A submenu that contains the following actions:

**Filters**

Allows you to filter the information displayed in the **Project** view. Click the toolbar button to set filter patterns for the files you want to show or hide. Also, you can set filter patterns for the linked directories that are hidden.

**Show Full Path**

When selected, linked files and folders are presented with a full file path.

**Enable Master Files Support**

Select this option to enable the **Master Files support** (on page 726).

**Change Search and Refactor operations scope**

Allows you to change the collection of documents that define the context of the search and refactor operations (on page 1129).

- **Use only Master Files, if enabled** - Restricts Oxygen XML Editor to perform the search and refactor operations starting from the master files (on page 3284) that are defined for the current resource. This option is available when you select **Project** in the **Select the scope for Search and Refactor operations** dialog box and the **Master Files** support is enabled.
- **Working sets** - Allows you to specify the set of files that will be used for the scope of the search and refactor operations.
File Explorer Area

The rest of the view is basically a file explorer similar to most other commonly used file explorers. The XML project (.xpr file) is a logical container with a collection of resources (folders and files). The types of resources displayed include:

- **Logical folders with Linked folders/files** - Marked with a blue icon on Windows and Unix/Linux and a magenta icon on Mac OS X, they help you group files within the project. This folder type is used as containers for linked resources (shortcuts). The icons for file shortcuts include a shortcut symbol and names of folder shortcuts are displayed in bold text. The logical folders are created on the project root or inside other logical folders by using the contextual menu action **New > Logical Folder**, and the linked folders/files are added using **Add Files, Add Folder**, or by dragging and dropping files/folders from the view or the system file explorer. **Remove from Project** can be used to remove them from the project and the **Remove from Disk (Shift +Delete)** action can be used to remove them from both the project and the local file system.

- **Physical folders and files** - Marked with the operating system-specific icon for folders (usually a yellow icon on Windows and a blue icon on Mac OS X). These folders and files are mirrors of real folders or files that exist in the local file system. They are created or added to the project by using contextual menu actions (such as **New > File, New > Folder, Copy, and Paste**) or by dragging and dropping files/folders from the view or the system file explorer. Also, the contextual menu action **Remove from Disk (Shift+Delete)** can be used to remove them from the project and local file system.

Figure 66. Project View with Both Types of Resources
Creating New Projects

The following action is available from the New menu when right-clicking any item, the Project menu, or from the drop-down menu in the top-left of the Project view:

- New Project
  Creates a new, empty project.

Managing Project Contents

There are various contextual menu actions, shortcuts, and ways to organize the folders and files inside the project:

Creating New Folders and Files

- Right-click any item > New > File
  Opens a New file dialog box (on page 676) that helps you create a new file and adds it to the project structure.

- Right-click any item in a physical folder > New > Folder
  Opens a New Folder dialog box that allows you to specify a name for a new folder and adds it to the structure of the project.

- Right-click any item in a logical folder > New > Logical Folder
  Creates a logical folder in the tree structure (the icon is a magenta folder on Mac OS X).

- Right-click on a logical folder > New > Logical Folders from Web
  Replicates the structure of a remote folder accessible over FTP/SFTP/WebDAV, as a structure of logical folders. The newly created logical folders contain the file structure of the folder it points to.

Adding Resources

You can add resources by using drag and drop (or Copy and Paste) actions from within the Project view or dragging them from the system file explorer. Files may have multiple instances within the folder system, but cannot appear twice within the same folder.

Adding Resources to Logical Folders

You can add resources to logical folders by using the following actions available in the contextual menu when invoked on a logical folder (or the project's root container):
### Add Folder

Adds a link to a physical folder, whose name and content mirror a real folder that exists in the local file system (the icon for this action is different on Mac OS X).

### Add Files

Adds links to files on the local file system.

### Add Edited File

Adds a link to the currently edited file in the project.

### Removing Folders and Files

To remove logical folders or the linked resources inside them from the project, use

- **Remove from Project** from the contextual menu (or press **Delete** on your keyboard).

To remove folders or files from both the project and the local file system, use

- **Remove from Disk** from the contextual menu (or press **Shift+Delete** on your keyboard).

### Moving Folders and Files

You can move the resources by using drag and drop actions from within the **Project** view (the **Enable drag-and-drop in Project view** option must be selected in the **View preferences page**).

You can also use the usual **Cut**, **Copy**, and **Paste** actions to move resources in the project.

You can also move certain types of files (such as XML, XML Schema, Relax NG, WSDL, and XSLT) by using the **Refactoring > Move resource** action from the contextual menu. This action opens the **Move resource** dialog box that includes the following options:

- **Destination** - Presents the path to the current location of the resource you want to move and gives you the option to introduce a new location.
- **New name** - Presents the current name of the moved resource and gives you the option to change it.
- **Update references of the moved resource(s)** - Select this option to update the references to the resource you are moving, based upon the selected scope. You can select or configure the scope (on page 1129) by using the button.

### Renaming Folders and Files

There are several ways to rename a folder or file in the project (this works for both physical and linked resources):
• Select **Rename** from the contextual menu.
• Press **F2** on your keyboard.
• Select the item, then click the name, and type the new name.

You also can rename certain types of files (such as XML, XML Schema, Relax NG, WSDL, and XSLT) by using the **Refactoring > Rename resource** action from the contextual menu. This action opens the **Rename resource** dialog box that includes the following options:

• **New name** - Presents the current name of the edited resource and allows you to modify it.
• **Update references of the renamed resource** - Select this option to update the references to the resource you are renaming. You can select or configure the scope (on page 1129) by using the button.

**Opening Files**

There are several ways to open a file:

• Double-click the file.
• Select it and press **Enter** on your keyboard.
• Right-click the file and select **Open**.
• If there are no other files open in the editor area, you can drag the file from the project tree and drop it in the editor area.
• If you want to choose the application or location where to open it, you can right-click the file and select **Open with**.

**Saving the Project**

The project file is automatically saved every time the content of the **Project** view is saved or modified by actions such as adding or removing files and drag and drop.

**Other Contextual Menu Actions**

Numerous other actions are available in the contextual menu, depending on the type of file or folder where it is invoked from (some actions are available for multiple selected files):

**Show in submenu**

**Explorer (Finder on OS X)**

On Windows and Mac OS X, the parent directory of the selected file or folder is presented in a specific Explorer/Finder window, and the selected resource is highlighted. On Linux, the selected file or folder is not highlighted after opening its parent in the file explorer.
Terminal

Opens a console (terminal) at the location of the selected physical resource. If the resource is a file, it will start at the parent directory.

Copy Location

Copies an application-specific URL for the selected resource to the clipboard.

Refactoring submenu

Oxygen XML Editor includes some refactoring operations that help you manage the structure of your documents. The following actions are available from the contextual menu in the Refactoring submenu:

Rename resource (Available for certain types of XML documents)

Opens the Rename resource dialog box (on page 720) where you can change the name of a resource. It also includes an option to update the references to the renamed resource and you can choose between various scopes for the operation.

Move resource (Available for certain types of XML documents)

Opens the Move resource dialog box (on page 720) where you can choose a destination and change the name of a resource. It also includes an option to update the references to the moved resource and you can choose between various scopes for the operation.

XML Refactoring

Opens the XML Refactoring tool wizard (on page 1139) that presents refactoring operations to assist you with managing the structure of your XML documents.

Other XML Refactoring Actions

For your convenience, the last 5 XML Refactoring tool operations (on page 1139) that were finished or previewed will also appear in this submenu.

Resource Hierarchy

Opens the Resource Hierarchy/Dependencies view (on page 1130) that allows you to see the resource hierarchy for an XML document.

Resource Dependencies

Opens the Resource Hierarchy/Dependencies view (on page 1130) that allows you to see the resource dependencies for an XML document.

Refresh
Refreshes the content and the dependencies between the resources in the Master Files
directory (on page 726).

Find/Replace in Files

Opens the Find/Replace in Files dialog box (on page 745) that allows you to find and
replace text in multiple files.

XPath in Files

Opens the XPath/XQuery Builder view (on page 2185) that allows you to compose
XPath and XQuery expressions and execute them over the currently edited XML
document.

Open/Find Resource

Opens the Open/Find Resource dialog box (on page 733).

Check Spelling in Files

Allows you to check the spelling of multiple files. (on page 765)

Format and Indent Files

Opens the Format and Indent Files dialog box (on page 869) that allows you to
configure the format and indent (pretty-print (on page 3286)) action that will be applied
on the selected documents.

Open in SVN Client

Syncro SVN Client (on page 2806) tool is opened and it highlights the selected resource
in its corresponding working copy.

Compare

Allows you to compare multiple files or directories and the order of your selection
determines where they are opened in the Compare Files (on page 2770) or Compare
Directories (on page 808) tool. If you select two files or folders, your first selection will
be opened in the left panel and the other one in the right panel.

You can also select 3 files and the tool will automatically be opened in the three-way
comparison mode (on page 2774). If you select three files, your first selection will be
opened in the left panel, the second in the right panel, and the third selection will be the
base (ancestor) file.

Transform submenu

The currently selected files in the Project view can be transformed in one step with one
of the following actions available from contextual menu in the Transform submenu:

Apply Transformation Scenario(s)
Obtains the output with one of the built-in scenarios (on page 1641).

Configure Transformation Scenario(s)
Opens a dialog box (on page 1762) that allows you to configure predefined transformation scenarios.

Transform with
Allows you to select a transformation scenario to be applied to the currently selected files.

Validate submenu
The currently selected files in the Project view can be checked to be XML well-formed or validated against a schema (DTD, XML Schema, Relax NG, Schematron or NVDL) with one of the following contextual menu actions found in the Validate submenu:

Check Well-Formedness
Checks if the selected file or files are well-formed.

Validate
Validates the selected file or files against their associated schema.
For EPUB files, this action triggers an EPUB Validate and Check for Completeness (on page 2194) operation.

Validate with Schema
Validates the selected file of files against a specified schema.

Configure Validation Scenario(s)
Allows you to configure and run a validation scenario (on page 1093).

Generate Documentation submenu

Generate Documentation > XML Schema Documentation
Opens the XML Schema Documentation Dialog Box (on page 1313).

Generate Documentation > XSLT Stylesheet Documentation
Opens the XSLT Stylesheet Documentation Dialog Box (on page 1223).

Generate Documentation > XQuery Documentation
Opens the XQuery Documentation Dialog Box (on page 1349).

Generate Documentation > WSDL Documentation
Opens the WSDL Documentation Dialog Box (on page 1371).

Properties
Displays the properties of the current file in a Properties dialog box.
Enable Master Files Support (Available from the project container)

Allows you to enable the Master Files Support (on page 727) for each project you are working on.

Detect Master Files (Available from the project container when Master Files Support is enabled)

Opens the Detect Master Files wizard (on page 728) that enables the automatic detection of master files.

Add to Master Files (Available when Master Files Support is enabled)

Adds the selected files to the Master Files folder (on page 729).

Project Menu Actions

The following actions are available in the Project menu:

New Project

Creates a new, empty project.

Open Project (Ctrl + F2 (Command + F2 on OS X))

Opens an existing project. Alternatively, you can open a project by dropping an Oxygen XML Editor XPR project file from the file explorer into the Project panel.

Note: When a project is opened for the first time, a confirmation dialog box will be displayed that asks you to confirm that the project came from a trusted source. This is meant to help prevent potential security issues.

Save Project As

Allows you to save the current project under a different name.

Validate all project files

Checks if the project files are well-formed and their mark-up conforms with the specified DTD, XML Schema, or Relax NG schema rules. It returns an error list in the message panel.

Filters

Opens the Project filters dialog box that allows you to decide which files and directories will be shown or hidden.

Enable Master Files Support

Allows you to enable the Master Files Support (on page 727) for each project you are working on.
Change Search and Refactor operations scope

Opens a dialog box that allows you to define the context of search and refactor operations.

Show Project View

Displays the Project view.

Reopen Project

Contains a list of links of previously used projects. This list can be emptied by invoking the Clear history action.

Open/Find Resource View

The Open/Find Resource view is designed to offer advanced search capabilities either by using a simple text search or by using the Apache Lucene - Query Parser Syntax. By default, the view is presented in the left side of the Oxygen XML Editor layout, next to the Project view (on page 333) or DITA Maps Manager (on page 2990). If the view is not displayed, it can be opened by selecting it from the Window > Show View menu.

Figure 67. Open/Find Resource View

You can use this view to find a file in the current Oxygen XML Editor project or in one of the DITA maps (on page 3281) opened in the DITA Maps Manager view (on page 2990) by typing only a few letters of the file name of a document or a fragment of the content you are searching for. The
Open/Find Resource view also supports searching in document edits (comments, tracked change insertions/deletions, and highlighted content) by selecting the In reviews option (on page 345).

Note: Full support for searching in document edits (the In reviews option) is available only in the Enterprise edition of Oxygen XML Editor. The Professional edition offers limited support to search through a maximum of 10 edits.

Search Results

Search results are presented instantly, after you finish typing the content. The matching fragments of text are highlighted in the results list displayed in the dialog box. When you open one of the documents from the results list, the matching fragments of text are highlighted in the editing area. To remove the highlighting from your document, close the corresponding tab in the Results view (on page 357) at the bottom of the editor. To display the search history, position the cursor in the search field and press Ctrl + DownArrow (Command + DownArrow on OS X) or Ctrl + UpArrow (Command + UpArrow on OS X) on your keyboard. Pressing only the DownArrow key moves the selection to the list of results.

Note: Searches are not case-sensitive. For example, if you search for car you get the same results as when you search for Car.

Tip: Suffix searches are also supported, both for searching in the content of your resources and in their name. For this, you can use wildcards. If you search for *ing with the in content option selected, you will find documents that contain the word presenting. If you search for */samples/*.gif with the in file paths option selected, you will find all the gif images from the samples directory.

Options Available in the View

The Open/Find Resource view offers the following options:

- **Settings** - Drop-down menu that includes the following settings for the view:
  - Clear Index - Clears the index.
  - Show description - Presents the search results in a more compact form, displaying only the title and the location of the resources.
  - Options - Opens the Open/Find Resource preferences page (on page 251) where you can configure various search options. For example, you can specify a Content language that differs from the default UI language in case your document contains multiple languages.
- **In file paths** (on page 739) - Select this option to search for resources by their name or by its path (or a fragment of its path).
- **In content** (on page 736) - Select this option to search through the content of your resources.
- **In reviews** (on page 739) - Select this option to search through the comments, tracked change insertions/deletions, or highlights in your resources.
• **Reindex** - Use this option to reindex your resources.

**Contextual Menu Actions**

A contextual menu is available on each search result and provides actions applicable to that particular document. These actions include:

- **Open** - Opens the document in one of Oxygen XML Editor internal editors.
- **Open with** - Allows you to choose to open the document in the Internal editor or an external System application.
- **Show in Explorer** - Identifies the document in the system file explorer.
- **Copy Location** - Copies the file path and places it in the clipboard.

**Indexing Process**

The content of the resources used to search in is parsed from an index. The indexing is performed both automatically and on request. Automatic indexing is performed when you modify, add, or remove resources in the currently indexed project. If the index was never initialized, the index in not updated on project changes.

To improve performance, the indexing process skips the following set of common English words (the so-called stop words): a, an, and, are, as, at, be, but, by, for, if, in, into, is, it, no, not, of, on, or, such, that, the, their, then, there, these, they, this, to, was, will, with. This means that if you are searching for any of these words, the indexing process will not be able to match any of them. However, you can configure the list of stop words in the Open/Find Resource preferences page (on page 251).

**Caching Mechanism**

When you perform a search, a caching mechanism is used to gather the paths of all files linked in the current project. When the first search is performed, all project files are indexed and added to the cache. The next search operation uses the information extracted from the cache, thus improving the processing time. The cache is kept for the currently loaded project only, so when you perform a search in a new project, the cache is rewritten. Also, the cache is reset when you press the **Reindex** button.

⚠️ **Important:** Files larger than 2GB are not indexed.

If there is no file found that matches your file pattern or text search, a possible cause is that the file you are searching for was added to the Oxygen XML Editor project after the last caching operation. In this case, re-indexing the project files with the **Reindex** button enables the file to be found. The date and time of the last index operation are displayed below the file list.
Opening the Results

Once you find the files that you want to open, select them in the list and press the **Open** button (or double-click them). Each of the selected files is opened in the editor associated with the type of the file *(on page 250)*.

**Note:** You can drag a resource from the **Open/Find Resource** view and drop it in a DocBook, DITA, TEI or XHTML document to create a link to that resource.

For more information about the **Open/Find Resource** feature and its search capabilities, watch our video demonstration:

https://www.youtube.com/embed/PENO6NdaGao

**Related Information:**
- **Open/Find Resource Dialog Box (on page 733)**

Outline View for XML Documents

The **Outline** view displays a general tag overview of the currently edited XML Document. When you edit a document, the **Outline** view dynamically follows the changes that you make, displaying the node that you modify. This functionality gives you great insight on the location of your modifications in the current document. It also shows the correct hierarchical dependencies between elements. This makes it easy for you to be aware of the document structure and the way element tags are nested.

**Outline View Features**

The **Outline** view allows you to:

- Quickly navigate through the document by selecting nodes in the **Outline** tree.
- Insert or delete nodes using contextual menu actions.
- Move elements by dragging them to a new position in the tree structure.
- Highlight elements in the editor area. It is synchronized with the editor area, so when you make a selection in the editor area, the corresponding nodes are highlighted in the **Outline** view, and vice versa.
- View document errors, as they are highlighted in the **Outline** view. A tooltip also provides more information about the nature of the error when you hover over the faulted element.
Outline View Interface

By default, it is displayed on the left side of the editor. If the view is not displayed, it can be opened by selecting it from the Window > Show View menu.

The upper part of the Outline view contains a filter box that allows you to focus on the relevant components. Type a text fragment in the filter box and only the components that match it are presented. For advanced usage you can use wildcard characters (such as *, ?) and separate multiple patterns with commas.

It also includes a Settings menu in the top-right corner that presents a variety of options to help you filter the view even further.

Drop and Drop Actions in the Outline View

Entire XML elements can be moved or copied in the edited document using only the mouse in the Outline view with drag-and-drop operations. Several drag and drop actions are possible:

• If you drag an XML element in the Outline view and drop it on another node, then the dragged element will be moved after the drop target element.
• If you hold the mouse pointer over the drop target for a short time before the drop then the drop target element will be expanded first and the dragged element will be moved inside the drop target element after its opening tag.
• You can also drop an element before or after another element if you hold the mouse pointer towards the upper or lower part of the targeted element. A marker will indicate whether the drop will be performed before or after the target element.
• If you hold down the (Ctrl (Command on OS X)) key after dragging, a copy operation will be performed instead of a move.

Figure 68. Outline View
Outline View Filters

The upper part of the Outline view contains a filter box that allows you to focus on the relevant components. Type a text fragment in the filter box and only the components that match it are presented. For advanced usage you can use wildcard characters (such as *, ?) and separate multiple patterns with commas.

The following actions are available in the Settings menu of the Outline view:

Filter returns exact matches

The text filter of the Outline view returns only exact matches.

Selection update on cursor move (Available in Text mode)

Controls the synchronization between Outline view and source document. The selection in the Outline view can be synchronized with the cursor moves or the changes in the editor. Selecting one of the components from the Outline view also selects the corresponding item in the source document.

Flat presentation mode of the filtered results

When active, the application flattens the filtered result elements to a single level.

Show comments and processing instructions

Show/hide comments and processing instructions in the Outline view.

Show element name

Show/hide element name.

Show text
Show/hide additional text content for the displayed elements.

Show attributes

Show/hide attribute values for the displayed elements. The displayed attribute values can be changed from the Outline preferences panel (on page 259).

Configure displayed attributes

Displays the XML Structured Outline preferences page (on page 259).

Outline View Contextual Menu Actions

The contextual menu of the Outline view contains the following actions:

Edit Attributes

Displays an in-place attributes editor that allows you to edit the attributes of a selected node.

Edit Profiling Attributes (Available in Author mode)

Allows you to change the profiling attributes (on page 969) defined on all selected elements.

Append Child

Invokes a content completion list with the names of all the elements that are allowed by the associated schema and inserts your selection as a child of the current element.

Insert Before

Invokes a content completion list with the names of all the elements that are allowed by the associated schema and inserts your selection immediately before the current element, as a sibling.

Insert After

Invokes a content completion list with the names of all the elements that are allowed by the associated schema and inserts your selection immediately after the current element, as a sibling.

Cut, Copy, Paste, Delete common editing actions

Executes the typical editing actions on the currently selected elements. The Cut and Copy operations preserve the styles of the copied content.

Paste before (Available in Author mode)

Inserts a well-formed copied element before the currently selected element.

Paste after (Available in Author mode)

Inserts a well-formed copied element after the currently selected element.
**Paste as XML (Available in Author mode)**

Pastes copied content that is considered to be valid XML, preserving its XML structure.

**Toggle Comment**

Encloses the currently selected element in an XML comment, if the element is not already commented. If it is already commented, this action will remove the comment.

**Rename Element (Available in Author mode)**

Invokes a Rename dialog box that allows you to rename the currently selected element, siblings with the same name, or all elements with the same name.

**Expand More**

Expands the structure tree of the currently selected element.

**Collapse All**

Collapses all of the structure tree of the currently selected node.

**Tip:** You can copy, cut or delete multiple nodes in the Outline by using the contextual menu after selecting multiple nodes in the tree.

**Attributes View in Text Mode**

The Attributes view presents all the attributes of the current element determined by the schema of the document. By default, it is located on the right side of the editor. If the view is not displayed, it can be opened from the Window > Show View menu.

You can use the Attributes view to insert attributes, edit their values, or add values to existing attributes.

The attributes are rendered differently depending on their state:

- The names of the attributes are rendered with a bold font, and their values with a plain font.
- Default values are rendered with a plain font, painted gray.
- Empty values display the text "[empty]", painted gray.
- Invalid attributes and values are painted red.

To edit the value of the corresponding attribute, double-click a cell in the Value column. If the possible values of the attribute are specified as list in the schema of the edited document, the Value column acts as a combo box that allows you to either select the value from a list or manually enter it.

You can sort the attributes table by clicking the Attribute column header. The table contents can be sorted as follows:
• By attribute name in ascending order.
• By attribute name in descending order.
• Custom order, where the used attributes are displayed at the beginning of the table sorted in ascending order, followed by the rest of the allowed elements sorted in ascending order.

Figure 69. Attributes View

Expand/Collapse Button

There is an Expand/Collapse (↑ / ↓) button at the top-right of the view. When expanded, this presents the following additional combo boxes:

Name Combo Box

Use this combo box to select an attribute. The drop-down list displays the list of possible attributes allowed by the schema of the document, as in the Attributes view. You can use the Remove button to delete an attribute and its value from the selected element.

Value Combo Box

Use this combo box to add, edit, or select the value of an attribute. If the selected attribute has predefined values in the schema, the drop-down list displays those possible values. You can use the Browse button to select a URL for the value of an attribute. You can also press Ctrl + Space to open a content completion window that offers a list of possible choices and allows you to select multiple values. After you have entered or selected a value, use the Update button (or press Enter) to add the value to the attribute.
**Note:** For built-in frameworks, if the selected attribute in the Name field is an `@id` attribute, the Browse button is replaced by a Generate Unique ID Value button. Clicking this button will automatically generate a unique ID for the selected element.

### Contextual Menu Actions in the Attributes View

The following actions are available in the contextual menu of the Attributes view when editing in **Text** mode:

**Add**

Allows you to insert a new attribute. Adding an attribute that is not in the list of all defined attributes is not possible when the Allow only insertion of valid elements and attributes (on page 137) schema-aware option is selected.

**Set empty value**

Specifies the current attribute value as empty.

**Remove**

Removes the attribute (action available only if the attribute is specified). You can invoke this action by pressing the (Delete) or (Backspace) keys.

**Copy**

Copies the `attrName="attrValue"` pair to the clipboard. The `attrValue` can be:

- The value of the attribute.
- The value of the default attribute, if the attribute does not appear in the edited document.
- Empty, if the attribute does not appear in the edited document and has no default value set.

**Paste**

Depending on the content of the clipboard, the following cases are possible:

- If the clipboard contains an attribute and its value, both of them are introduced in the Attributes view. The attribute is selected and its value is changed if they exist in the Attributes view.
- If the clipboard contains an attribute name with an empty value, the attribute is introduced in the Attributes view and you can start editing it. The attribute is selected and you can start editing it if it exists in the Attributes view.
- If the clipboard only contains text, the value of the selected attribute is modified.
Model View

The Model view presents the structure of the currently selected tag, and its documentation, defined as annotation in the schema of the current document. By default, it is located on the right side of the editor. If the view is not displayed, it can be opened by selecting it from the Window > Show View menu.

Figure 70. Model View

![Model View](image)

The Model view is comprised of two sections, an element structure panel and an annotations panel.

Element Structure Panel

The element structure panel displays the structure of the currently edited or selected tag in a tree-like format. The information includes the name, model, and attributes of the current tag. The allowed attributes are shown along with imposed restrictions, if any.

Figure 71. Element Structure Panel
Annotation Panel

The **Annotation** panel displays the annotation information for the currently selected element. This information is collected from the XML schema.

Figure 72. Annotation panel

Elements View in Text Mode

The **Elements** view presents a list of all defined elements that are valid at the current cursor position according to the schema associated to the document. By default, it is located on the right side of the editor. If the view is not displayed, it can be opened by selecting it from the **Window > Show View** menu.

Double-clicking any of the listed elements inserts that element into the edited document, at the current cursor position. Pressing **F2** with an element selected will display information about that particular element.

Figure 73. Elements View in Text Mode
Entities View

Entities provide abbreviated entries that can be used in XML files when there is a need of repeatedly inserting certain characters or large blocks of information. An entity is defined using the ENTITY statement either in the DOCTYPE declaration or in a DTD file associated with the current XML file.

There are three types of entities:

- **Predefined** - Entities that are part of the predefined XML markup (\&lt;, \&gt;, \&amp;, \&apos;, \&quot;).
- **Internal** - Defined in the DOCTYPE declaration header of the current XML.
- **External** - Defined in an external DTD module included in the DTD referenced in the XML DOCTYPE declaration.

**Note:** If you want to add internal entities, you would need to switch to the Text editing mode and manually modify the DOCTYPE declaration. If you want to add external entities, you need to open the DTD module file and modify it directly.

The Entities view displays a list with all entities declared in the current document, as well as built-in ones. By default, it is located on the right side of the editor. If the view is not displayed, it can be opened by selecting it from the Window > Show View menu.

Double-clicking one of the entities will insert it at the current cursor position in the XML document. You can also sort entities by name and value by clicking the column headers.

Figure 74. Entities View
The view features a filtering capability that allows you to search an entity by name, value, or both. Also, you can choose to display the internal or external entities.

**Note:** When entering filters, you can use the `?` and `*` wildcards. Also, you can enter multiple filters by separating them with a comma.

### Results View

The **Results** view displays the messages generated as a result of user actions such as validations, transformations, search operations, and others. Each message is a link to the location related to the event that triggered the message. Double-clicking a message opens the file containing the location and positions the cursor at the location offset. The **Results** view is automatically opened when certain actions generate result messages.

**Tip:** To shift focus to the opened **Results** view without using the mouse, there is an action in the **Window > Results** menu called **Focus Results** that can be used for this purpose and you can assign a keyboard shortcut (on page 248) to this action.

The actions that contribute messages to this view include:

- **Validation** actions (on page 1082)
- **Transformation** actions (on page 1640)
- **Check Spelling in Files** action (on page 765)
- **Find All** action from the **Find/Replace** dialog box (on page 740)
- **Find/Replace in Files** dialog box (on page 745)
- **Search References** action (on page 1209)
Results View Toolbar Actions

The view includes a toolbar with the following actions:

Grouping options drop-down menu

A set of Group by toggle actions that allow you to group the messages according to a selected criteria so that they can be presented in a hierarchical layout. The criteria used for grouping can be the severity of the errors (error, warning, info message, etc.), the resource name, the description of the message, and so on.

This drop-down menu also includes the following additional grouping actions:

- Ungroup all
  Removes the grouping rules so that the messages are presented in a continuous list.

Show group columns

If any of the Group by options are selected, you can use this option to show or hide grouping columns.

Restore Defaults

Restores the column size for each column and the grouping rules that were saved in the user preferences the last time when this view was used. If it is the first time this view is used, the action sets an initial default column size for each column and a grouping rule that is appropriate for the type of messages. For example:
• Group the messages by the path of the validated file if there are error messages from a validation action or spelling errors reported by the Check Spelling in Files action (on page 765).
• No grouping rule for the results of applying an XPath expression (on page 2182).

Highlight all results in editor

Oxygen XML Editor highlights all matches obtained after executing an XPath expression, or performing one of the following operations: Find All, Find in Files, Search References, and Search Declarations. Click Highlight all results in editor again to turn off highlighting.

Note: To customize highlighting behavior, open the Preferences dialog box (Options > Preferences) (on page 79) and go to Editor > Highlights category. You can do the following customizations:

• Set a specific color of the highlights depending on the type of action you make.
• Set a maximum number of highlights that the application displays at any given time.

Remove selected

Removes the current selection from the view. This can be helpful if you want to reduce the number of messages, or remove those that have already been addressed or not relevant to your task.

Remove all

Removes all messages from the view.

Results View Contextual Menu Actions

The following actions are available when the contextual menu is invoked in this view:

Learn Word(s) (Available when spelling errors are reported in the Results view)

Adds the word(s) to a list of learned words to instruct the spell checker engine to not report the word(s) as spelling errors in the future.

Show message

Displays a dialog box with the full error message, which is useful for a long message that does not have enough room to be displayed completely in the view.

Previous message

Navigates to the message above the current selection.
Next message
Navigates to the message below the current selection.

Remove selected
Removes selected messages from the view.

Remove all
Removes all messages from the view.

Copy
Copies information associated with the selected messages. For example:

- The file path of the document that triggered the output message.
- The path of the master file (on page 3284) (in the case of a validation scenario (on page 1093), it is the path of the file from which the validation starts and can be different from the validated file).
- Error severity (error, warning, info message, etc.)
- Name of validating processor.
- Name of validation scenario (on page 1093).
- The line and column in the file that triggered the message.

Copy Description
Copies the description values for all selected items. It is possible to assign a shortcut key (on page 249) for this action.

Select All
Extends the selection to all the messages from the view.

Print Results
Sends the complete list of messages to a printer. For each message, the included details are the same as the ones for the Copy action (on page 360). This action is also available in the Window > Results menu.

Save Results
Saves the complete list of messages in a file in text format. For each message, the included details are the same as the ones for the Copy action (on page 360). This action is also available in the Window > Results menu.

Save Results as XML
Saves the complete list of messages in a file in XML format. For each message, the included details are the same as the ones for the Copy action (on page 360).

Save Results as HTML
Saves the complete list of messages in a file in HTML format. For each message, the included details are the same as the ones for the Copy action (on page 360).

**Group by**

A set of Group by toggle actions that allow you to group the messages according to a selected criteria so that they can be presented in a hierarchical layout. The criteria used for grouping can be the severity of the errors (error, warning, info message, etc.), the resource name, the description of the message, and so on.

- **Ungroup all**
  
  Removes the grouping rules so that the messages are presented in a continuous list.

**Show group columns**

If any of the Group by options are selected, you can use this option to show or hide grouping columns.

**Restore Defaults**

Restores the column size for each column and the grouping rules that were saved in the user preferences the last time when this view was used. If it is the first time this view is used, the action sets an initial default column size for each column and a grouping rule that is appropriate for the type of messages. For example:

- Group the messages by the path of the validated file if there are error messages from a validation action or spelling errors reported by the Check Spelling in Files action (on page 765).
- No grouping rule for the results of applying an XPath expression (on page 2182).

**Expand All**

Expands all the nodes of the tree, which is useful when the messages are presented in a hierarchical mode.

**Collapse All**

Collapses all the nodes of the tree, which is useful when the messages are presented in a hierarchical mode.

Making a Persistent Copy of Results

The Results view (on page 357) displays the results from the following operations:

- Document validation (on page 1081)
- Checking the form of documents (on page 1079)
- XSLT or FO transformations (on page 1640)
• Finding all occurrences of a string in a file (on page 740)
• Finding all occurrences of a string in multiple files (on page 745)
• Applying an XPath expression to the current document (on page 2185)

To make a persistent copy of the Results view (on page 357), use one of these actions:

File > Save Results

Displays the Save Results dialog box, used to save the result list of the current message tab. The action is also available on the right-click menu of the Results panel.

File > Print Results

Displays the Page Setup dialog box used to define the page size and orientation properties for printing the result list of the current Results panel. The action is also available on the right-click menu of the Results panel.

Save Results as XML from the contextual menu

Saves the content of the Results panel in an XML file with the format:

```xml
<Report>
  <Incident>
    <engine>The engine who provide the error.</engine>
    <severity>The severity level</severity>
    <Description>Description of output message.</Description>
    <SystemID>The location of the file linked to the message.</SystemID>
    <Location>
      <start>
        <line>Start line number in file.</line>
        <column>Start column number in file</column>
      </start>
      <end>
        <line>End line number in file.</line>
        <column>End column number in file</column>
      </end>
    </Location>
  </Incident>
</Report>
```

Related Information:

• Results View (on page 357)
Syntax Highlighting in XML Documents

Oxygen XML Editor supports syntax highlighting in Text mode to make it easier to read the semantics of the structured content by displaying each type of code in different colors and fonts.

To customize the colors or styles used for the syntax highlighting colors for XML files, follow these steps:

1. Open the Preferences dialog box (Options > Preferences) (on page 79).
2. Go to Editor > Syntax Highlight (on page 178).
3. Select and expand the XML section in the top pane.
4. Select the component you want to change and customize the colors or styles using the selectors to the right of the pane.
5. Select the XML tab in the Preview pane to see the effects of your changes.

Tip: Oxygen XML Editor also allows you to specify syntax highlighting colors for specific XML elements and attributes with specific namespace prefixes. This can be done in the Editor > Syntax Highlight > Elements/Attributes by Prefix preferences page (on page 179).

Related Information:

- Customize Syntax Highlight colors (on page 178)

Syntax Highlight Depending on Namespace Prefix

The syntax highlight scheme of an XML file type (on page 178) allows the configuration of a color per each type of token that can appear in an XML file. Distinguishing between the XML tag tokens based on the namespace prefix brings additional visual help in editing some XML file types. For example, in XSLT stylesheets, elements from various namespaces (such as XSLT, XHTML, XSL:FO, or XForms) are inserted in the same document and the editor panel can become cluttered. Marking tags with different colors based on the namespace prefix (on page 179) allows easier identification of the tags.

Figure 76. Example of Coloring XML Tags by Prefix

```xml
<template match="name">
  <li item-type="label">
    <xsl:apply-templates select="*"/>
  </li>
</template>
```
Related Information:

- Changing the colors displayed in the Text Mode Editor (on page 178)

**Presenting Validation Errors in Text Mode**

By default, Oxygen XML Editor automatically validates documents (on page 1082) while editing in the Text mode, and actions are also available to manually validate documents (on page 1082) on-request.

Figure 77. Presenting Validation Errors in Text Mode

**Validation Marker Locations**

In Text mode, validation issues are marked in the following locations:

- In the main editing pane, with the issue underlined in a color according to the type of issue.
- In the right-side vertical stripe, with a marker that is colored according to the type of issue.
- For attributes with detected issues, in the Attributes view (on page 351), with the attribute and its value colored according to the type of issue.

**Validation Marker Colors**

The colors for each type of issue are as follows:

- **Validation Errors** [Red] - By default, the underline in the editing pane, the marker in the right vertical stripe, and the foreground color of the attribute in the Attributes view are colored in red.
• **Validation Warnings** [Yellow] - By default, the underline in the editing pane, the marker in the right vertical stripe, and the foreground color of the attribute in the **Attributes** view are colored in yellow.

• **Validation Info** [Blue] - By default, the underline in the editing pane, the marker in the right vertical stripe, and the foreground color of the attribute in the **Attributes** view are colored in blue.

You can configure the color for each type in the **Document Checking preferences page (on page 180).**

**Validation Markers in the Right-Side Stripe**

Also, the stripe on the right side of the editor panel is designed to display the issues found during the validation process and to help you locate them in the document. The stripe contains the following:

**Upper Part of the Stripe**

A success indicator square will turn green if the validation is successful or only info messages are found, red if validation errors are found, or yellow if only validation warnings are found. More details about the issues are displayed in a tool tip when you hover over indicator square. If there are numerous problems, only the first three are presented in the tool tip.

**Middle Part of the Stripe**

Errors are presented with red markers, warnings with yellow markers, and info message with blue markers. If you want to limit the number of markers that are displayed, open the **Preferences** dialog box (**Options > Preferences**) *(on page 79)*, go to **Editor > Document checking**, and specify the desired limit in the **Maximum number of validation highlights** option *(on page 180)*.

Clicking a marker will highlight the corresponding text area in the editor. The validation message is also displayed both in a tool tip (when hovering over the marker) and in the message area on the bottom of the editor panel (clicking the **Document checking options** button opens the **Document Checking preferences page (on page 180).**

**Bottom Part of the Stripe**

Two navigation arrows (стрелка) allow you to jump to the next or previous issue. The same actions can be triggered from **Document > Automatic validation > Next error (Ctrl + Period (Command + Period on OS X))** and **Document > Automatic validation > Previous error (Ctrl + Comma (Command + Comma on OS X))**. Also, the **Remove All** button can be used to clear all the validation markers.
Hovering Over Validation Issues

Hovering over a validation issue presents a tooltip message with more details about the problem and possible quick fixes (on page 1109) (if available for that issue). Also, when hovering over an issue, pressing F2 will change the focus to the tooltip where you can use Tab and Shift + Tab to navigate between quick fixes and Space to trigger them.

Details About Validation Issues

- Information about the issue is also displayed in the message area on the bottom of the editor panel (clicking the Document checking options button opens the Document Checking preferences page (on page 180) where you can configure some validation options (such as the colors used to present the validation issues).
- Status messages from every validation action are also logged in the Information view (on page 822).
- If you want to see all the validation messages grouped in the Results panel (on page 357), you should use the Validate action from the toolbar or Document > Validate menu.

Related Information:

- Validating XML Documents Against a Schema (on page 1081)
- Presenting Schematron Validation Issues (on page 1464)

Special Character Support in Text Mode

If bidirectional text, such as Arabic or Hebrew languages, certain Asian languages (such as Devanagari, Bengali, Gurmukhi, Gujarati, Oriya, Tamil, Telugu, Kannada, Malayalam, Sinhala, Thai, Khmer), or other special characters (such as combining characters) are detected in a document, Oxygen XML Editor displays a Special Characters Detected dialog box that prompts you to Enable or Disable support for these special characters (you can also enable or disable the support for special characters in the Open preferences page (on page 155).

Enabled

If you choose to enable support for special characters and as long as you chose a font (on page 88) that supports the particular special characters, this means that the glyphs will be rendered properly in Text mode and the cursor navigation mechanism will recognize them as they are shown.
Example: The Ā glyph could be inserted using a consecutive combination of two characters (U+00C2 followed by U+0323). With the special characters support enabled and the SansSerif font chosen, that glyph will be rendered properly (a capital letter A with a circumflex above it and a dot below) and you can navigate through the glyph in one step (pressing the right/left arrow key once).

⚠️ Restriction: When support for special characters is enabled, the folding support (on page 840) is not available.

**Disabled**

If you choose to disable support for special characters, it may affect text rendering, cursor navigation, and text management operations. However, this is helpful if you need to open very large documents (on page 781) since disabling the bidirectional editing support can enhance performance.

Example: The Ā glyph could be inserted using a consecutive combination of two characters (U+00C2 followed by U+0323). With the special characters support disabled, that glyph may or may not be rendered properly and when navigating through the glyph, it would take two steps (pressing the right/left arrow key twice).

⚠️ Restriction: Bidirectional content in the Text mode cannot be rendered using Bold or Italic.

Related Information:

- Special Character Support in Author Mode (on page 620)
- Special Character Support in Grid Mode (on page 394)
- Inserting Special Characters with the Character Map (on page 778)

Inserting or Opening a File at Cursor Location

When editing content in Text mode, the following actions (with regard to inserting, opening, or comparing files) are available in the Document > File menu:

**Insert File**

Inserts the content of the file with the specified file path into the current document, at the current position of the cursor.

**Open File at Cursor**
Opens the file at the cursor position in a new panel. If the file path represents a directory path, it will be opened in system file browser. If the file at the specified location does not exist, an error dialog box is displayed and it includes a Create new file button that starts the New document wizard. This allows you to choose the type or the template for the file. If the action succeeds, the file is created with the referenced location and name and is opened in a new editor panel.

**Open File at Cursor in System Application**

Opens the file (identified by its link) or web page (identified by a web link) found at cursor position. The target is opened in the default system application associated with that file type.

**Compare**

Opens the current file in the Compare Files tool (on page 2770).

### Adjusting the Transparency of XML Markup

Most of the time you want the content of a document displayed on screen with zero transparency. However, if you want to focus your attention only on editing text content inside XML markup, Oxygen XML Editor offers the option of reducing the visibility of the markup by increasing their transparency when displayed in Text mode. To change the level of transparency, use the Tags Transparency Selector drop-down menu that is available from the Source toolbar. By default, this drop-down menu is not visible. You can add it to the toolbar by using the Configure Toolbars action (on page 273). There are several levels of transparency that can be adjusted to make the content more or less visible:

- **Normal Contrast** - Resets the transparency level back to normal.
- **Semi-transparent Text** - Slightly reduces the visibility of text to place greater emphasis on the visibility of the XML markup.
- **Transparent Text** - Greatly reduces the visibility of text to place even greater emphasis on the visibility of the XML markup.
- **Semi-transparent Markup** - Slightly reduces the visibility of the XML markup to place greater emphasis on the visibility of the text.
- **Transparent Markup** - Greatly reduces the visibility of the XML markup to place even greater emphasis on the visibility of the text.

Figure 78. Tags Transparency Selector
Locking and Unlocking XML Markup

For documents with fixed markup, such as forms in which the XML tags are not allowed to be modified (only their text content), the possibility to edit the XML tag names can be toggled on or off with the Lock / Unlock the XML tags action available in Text editing mode from the Source submenu from the contextual menu (or Document > Source menu).

You can set the default lock state for all opened editors using the Lock the XML tags option in the Text preferences page (on page 129).

Formatting and Indenting XML Documents

Oxygen XML Editor creates XML documents using several edit modes (on page 303). In Text mode (on page 303), you as the author decide how the XML file is formatted and indented. In the other modes, and when you switch between modes, Oxygen XML Editor must decide how to format and indent the XML. Oxygen XML Editor will also format and indent your XML for you in Text mode if you use one of the Format and Indent options:

- **Document > Source ➤ Format and Indent** - Formats and indents the whole document.
- **Document > Source ➤ Indent Selection** - Indents the current selection (but does not add line breaks). This action is also available in the Source submenu of the contextual menu.
- **Document > Source ➤ Format and Indent Element** - Formats and indents the current element (the inmost nested element that currently contains the cursor) and its child-elements. This action is also available in the Source submenu of the contextual menu.

A number of settings affect how Oxygen XML Editor formats and indents XML. Many of these settings have to do with how whitespace is handled.
Significant and insignificant whitespace in XML

XML documents are text files that describe complex documents. Some of the white space (spaces, tabs, line feeds, etc.) in the XML document belongs to the document it describes (such as the space between words in a paragraph) and some of it belongs to the XML document (such as a line break between two XML elements). Whitespace belonging to the XML file is called *insignificant whitespace*. The meaning of the XML would be the same if the insignificant whitespace were removed. Whitespace belonging to the document being described is called *significant whitespace*.

Knowing when whitespace is significant or insignificant is not always easy. For instance, a paragraph in an XML document might be laid out like this:

```xml
<p>NO Free man shall be taken or imprisoned, or be stripped of his Freedom, or Liberties, or free Customs, or be outlawed, or exiled, or any otherwise destroyed; nor will we not pass upon him, nor condemn him, but by lawful judgment of his Peers, or by the <xref href="http://en.wikipedia.org/wiki/Law_of_the_land" format="html" scope="external">Law of the land</xref>. We will sell to no man, we will not deny to any man either Justice or Right.</p>
```

By default, XML considers a single whitespace between words to be significant, and all other whitespace to be insignificant. The paragraph above could have been written on one line because the XML parser would see it as exactly the same paragraph since all multiple consecutive whitespaces will be replaced with a single whitespace. Removing the insignificant space in markup like this is called *normalizing space*.

In some cases, all the spaces inside an element should be treated as significant. For example, in a code sample:

```xml
<codeblock>
 class HelloWorld
 {
     public static void main(String args[]) {
         System.out.println("Hello World");
     }
 }
</codeblock>
```

Here every whitespace character between the `codeblock` tags should be treated as significant.
How Oxygen XML Editor determines when whitespace is significant

When Oxygen XML Editor formats and indents an XML document, it introduces or removes insignificant whitespace to produce a layout with reasonable line lengths and elements indented to show their place in the hierarchy of the document. To correctly format and indent the XML source, Oxygen XML Editor needs to know when to treat whitespace as significant and when to treat it as insignificant. However it is not always possible to tell this from the XML source file alone. To determine what whitespace is significant, Oxygen XML Editor assigns each element in the document to one of four categories:

**Ignore space**

In the ignore space category, all whitespace is considered insignificant. This generally applies to content that consists only of elements nested inside other elements, with no text content.

**Normalize space**

In the normalize space category, a single whitespace character between character strings is considered significant and all other spaces are considered insignificant. Therefore, all consecutive whitespaces will be replaced with a single space. This generally applies to elements that contain text content only.

**Mixed content**

In the mixed content category, a single whitespace between text characters is considered significant and all other spaces are considered insignificant. However,

- Whitespace between two child elements embedded in the text is normalized to a single space (rather than to zero spaces as would normally be the case for a text node with only whitespace characters, or the space between elements generally).
- The lack of whitespace between a child element embedded in the text and either adjacent text or another child element is considered significant. That is, no whitespace can be introduced here when formatting and indenting the file.

For example:

```xml
<p>The file is located in <i>HOME</i>/USER/hello.
This is a <strong>big</strong> deal.</p>
```
In this example, whitespace should not be introduced around the i tags as it would introduce extra significant whitespace into the document. The space between the end \texttt{/strong} tag and the beginning \texttt{<emphasis>} tag should be normalized to a single space, not zero spaces.

**Preserve space**

In the preserve space category, all whitespace in the element is regarded as significant. No changes are made to the spaces in elements in this category. However, child elements may be in another category, and may be treated differently.

Attribute values are always in the preserve space category. The spaces between attributes in an element tag are always in the default space category.

Oxygen XML Editor consults several pieces of information to assign an element to one of these categories. An element is always assigned to the most restrictive category (from Ignore to Preserve) that it is assigned to by any of the sources Oxygen XML Editor consults. For instance, if the element is named on the Default elements list (as described below) but it has an xml:space="preserve" attribute in the source file, it will be assigned to the preserve space category. If an element has the xml:space="default" attribute in the source, but is listed on the Mixed content elements list, it will be assigned to the mixed content category.

To assign elements to these categories, Oxygen XML Editor consults information from the following sources:

- **xml:space**
  - If the XML element contains the xml:space attribute, the element is promoted to the appropriate category based on the value of the attribute.

- **CSS whitespace property**
  - If the CSS stylesheet controlling the Author mode editor applies the \texttt{whitespace: pre} setting to an element, it is promoted to the preserve space category.

- **CSS display property**
  - If a text node contains only white-spaces:
    - If the node has a parent element with the CSS display property set to \texttt{inline} then the node is promoted to the mixed content category.
    - If the left or right sibling is an element with the CSS display property set to \texttt{inline} then the node is promoted to the mixed content category.
    - If one of its ancestors is an element with the CSS display property set to \texttt{table} then the node is assigned to the ignore space category.

**Schema aware formatting**
If a schema is available for the XML document, Oxygen XML Editor can use information from the schema to promote the element to the appropriate category. For example:

- If the schema declares an element to be of type *xs:string*, the element will be promoted to the preserve space category because the string built-in type has the whitespace facet with the value preserve.
- If the schema declares an element to be mixed content, it will be promoted to the mixed content category.

Schema aware formatting can be turned on and off.

- To turn it on or off for Author mode, open the Preferences dialog box (Options > Preferences) (on page 79), go to Editor > Edit modes > Author > Schema aware, and select/deselect the Schema aware normalization, format and indent option (on page 137).
- To turn it on or off for the Text editing mode, open the Preferences editing mode (Options > Preferences) (on page 79), go to Editor > Format > XML, and select/deselect the Schema aware format and indent option (on page 163).

**Preserve space elements list**

If an element is listed in the Preserve space tab of the Element Spacing list (on page 162) in the XML formatting preferences (on page 160), it is promoted to the preserve space category.

**Default space elements list**

If an element is listed in the Default space tab of the Element Spacing list (on page 162) in the XML formatting preferences (on page 160), it is promoted to the default space category.

**Mixed content elements list**

If an element is listed in the Mixed content tab of the Element Spacing list (on page 162) in the XML formatting preferences (on page 160), it is promoted to the mixed content category.

**Element content**

If an element contains mixed content, that is, a mix of text and other elements, it is promoted to the mixed content category. (Note that, in accordance with these rules, this happens even if the schema declares the element to have element only content.)

If an element contains text content, it is promoted to the default space category.
Text node content

If a text node contains any non-whitespace characters then the text node is promoted to the normalize space category.

Exception to the Rule

In general, a element can only be promoted to a more restrictive category (one that treats more whitespace as significant). However, there is one exception. In Author mode, if an element is marked as mixed content in the schema, but the actual element contains no text content, it can be demoted to the space ignore category if all of its child elements are displayed as blocks by the associated CSS (that is, they have a CSS property of display: block). For example, in some schemas, a section or a table entry can be defined as having mixed content but in many cases they contain only block elements (on page 3280). In these cases, any whitespace they contain cannot be significant and they can be treated as space ignore elements. This exception can be turned on or off using the Schema Aware Editing option (on page 138) in the Schema-Aware preferences page.

How Oxygen XML Editor formats and indents XML

You can control how Oxygen XML Editor formats and indents XML documents. This can be particularly important if you store your XML document in a version control system, as it allows you to limit the number of trivial changes in spacing between versions of an XML document. The following preference pages include options that control how XML documents are formatted:

- Format preferences page (on page 157)
- XML Formatting preferences page (on page 160)
- Whitespaces preferences page (on page 164)

When Oxygen XML Editor formats and indents XML

Oxygen XML Editor formats and indents a document, or part of it, on the following occasions:

- In Text mode when you select one of the format and indent actions (Document > Source > Format and Indent, Document > Source > Indent Selection, or Document > Source > Format and Indent Element).
- When saving documents in Author mode.
- When switching from Author mode to another mode.
- When saving documents in Design mode.
- When switching from Design mode to another mode.
- When saving or switching to Text mode from Grid mode, if the Format and indent when passing from grid to text or on save option (on page 130) is selected in the Grid preferences page.
Setting an Indent Size to Zero

Oxygen XML Editor will automatically format and indent (on page 863) documents at certain times. This includes indenting the content from the margin to reflect its structure. In some cases, you may not want your content indented. To avoid your content being indented, you can set an indent size of zero.

**Note:** Changing the indent size does not override the rules that Oxygen XML Editor uses for handling whitespace when formatting and indenting XML documents. Therefore, changing the indent size will have no effect on elements that require whitespaces to be maintained.

There are two cases to consider.

**Maintaining zero indent in documents with zero indent**

If you have existing documents with zero indent and you want Oxygen XML Editor to maintain a zero indent when editing or formatting those documents:

1. Open the Preferences dialog box (Options > Preferences) (on page 79) and go to Editor > Format (on page 157).
2. Select Detect indent on open.
3. Select Use zero-indent if detected.

Oxygen XML Editor will examine the indent of each document as it is opened and if the indent is zero for all lines, or for nearly all lines, a zero indent will be used when formatting and indenting the document. Otherwise, Oxygen XML Editor will use the indent closest to what it detects in the document.

**Enforcing zero indent for all documents**

If you want all documents to be formatted with zero indent, regardless of their current indenting:

1. Open the Preferences dialog box (Options > Preferences) (on page 79) and go to Editor > Format (on page 157).
2. Deselect Detect indent on open.
3. Set Indent size to 0.

All documents will be formatted and indented with an indent of zero.

**Warning:** Setting the indent size to zero can change the meaning of some file types, such as Python source files.
Format and Indent (Pretty-Print) Multiple Files

Oxygen XML Editor provides support for formatting and indenting (pretty-print (on page 3286)) multiple files at once. This action is available for any document in XML format, as well as for XQuery, CSS, JavaScript, and JSON documents.

To format and indent multiple files, use the Format and Indent Files action that is available in the contextual menu of the Project view (on page 333) or from the Tools menu. This opens the Format and Indent Files dialog box that allows you to configure options for the action.

Figure 79. Format and Indent Files Dialog Box

The Scope section allows you choose from the following scopes:

- **All opened files** - The pretty-print (on page 3286) is performed in all opened files.
- **Directory of the current file** - All the files in the folder of the current edited file.
- **Project files** - All files from the current project.
- **Selected project files** - The selected files from the current project.
- **Specified path** - the pretty-print (on page 3286) is performed in the files located at a specified path.

The Options section includes the following options:

- **File filter** - Allow you to filter the files from the selected scope.
- **Recurse subdirectories** - When selected, the pretty-print (on page 3286) is performed recursively for the specified scope. The one exception is that this option is ignored if the scope is set to All opened files.
- **Include hidden files** - When selected, the pretty-print (on page 3286) is also performed in the hidden files.
• Make backup files with extension - When selected, Oxygen XML Editor makes backup files of the modified files. The default extension is .bak, but you can change the extension as you prefer.

Managing Highlighted Content

While working with XML documents you often have frequent changes to the structure and content. You are often faced with a situation where you need to make a slight change in multiple places in the same document. Oxygen XML Editor includes a feature, Manage Highlighted Content, that is designed to help you achieve this.

When you are in Text mode and you perform a search operation or apply an XPath that highlights multiple results, you can access the Manage Highlighted Content submenu by right-clicking any of the highlights in the editing pane. If the results are displayed only in the Results panel at the bottom of the screen, you can use the Highlight all results in editor button (on the right side of the Results panel) to display all the highlights in the editor (then you can access the Manage Highlighted Content submenu from the contextual menu of any highlight).

The following options are available in the Manage Highlighted Content submenu:

Modify All

Use this option to modify (in-place) all the occurrences of the selected content. When you use this option, a thin rectangle replaces the highlights and allows you to start editing. If matches with different letter cases are found, a dialog box is displayed that allows you select whether you want to modify only matches with the same letter case or all matches.

Note: If you select a very large number of highlights that you want to modify using this feature, a dialog box informs you that you may experience performance issues. You have the option to either use the Find/Replace operation (on page 740), or continue the operation.

Surround All

Use this option to surround the highlighted content with a specific tag. This option opens the Tag dialog box. The Specify the tag drop-down menu presents all the available elements that you can choose from.

Remove All

Removes all the highlighted content.

If you right-click content in another part of the document, other than a highlight, you have the option to select the following option:
Modify All Matches

Use this option to modify (in-place) all the occurrences of the selected content (or the contiguous fragment in which the cursor is located). When you use this option, a thin rectangle replaces the highlights and allows you to start editing. If matches with different letter cases are found, a dialog box is displayed that allows you select whether you want to modify only matches with the same letter case or all matches.

Quick Assist Support for IDs and IDREFS

The Quick Assist support (on page 3286) is activated automatically when you place the cursor inside an ID or IDREF in Text mode. To access it, click the yellow bulb help marker placed on the current line, in the line number stripe of the editor. You can also invoke the Quick Assist menu from the contextual menu or by pressing Alt+1 (Command+Alt+1 on Mac OS X) on your keyboard.

The following actions are available:

- **Rename in**
  Renames the ID and all its occurrences. Selecting this action opens the Rename XML ID dialog box. This dialog box lets you insert the new ID value and choose the scope of the rename operation (on page 1129). For a preview of the changes you are about to make, click Preview. This opens the Preview dialog box, which presents a list with the files that contain changes and a preview zone of these changes.

- **Search Declarations**
  Searches for the declaration of the ID reference. By default, the scope of this action is the current project. If you configure a scope using the Select the scope for the Search and Refactor operations (on page 1129) dialog box, this scope will be used instead.

- **Search References**
  Searches for the references of the ID. By default, the scope of this action is the current project. If you configure a scope using the Select the scope for the Search and Refactor operations (on page 1129) dialog box, this scope will be used instead.

- **Change scope**
  Opens the Select the scope for the Search and Refactor operations (on page 1129) dialog box.

- **Rename in File**
  Renames the ID you are editing and all its occurrences from the current file.

- **Search Occurrences**
Searches for the declaration an references of the ID located at the cursor position in the current document.

Related Information:

- Working with Modular XML Files in the Master Files Context (on page 1126)

Highlight ID Occurrences in Text Mode

To see the occurrences of an ID in an XML document in the Text mode, place the cursor inside the ID declaration or reference. The occurrences are marked in the vertical side bar at the right of the editor. Click a marker on the side bar to jump to the occurrence that it corresponds to. The occurrences are also highlighted in the editing area.

**Note:** Highlighted ID declarations are rendered with a different color than highlighted ID references. To customize these colors or disable this feature, open the Preferences dialog box (Options > Preferences) (on page 79) and go to Editor > Mark Occurrences (on page 179).

Related Information:

- Working with Modular XML Files in the Master Files Context (on page 1126)

Contextual Menu Actions in Text Mode

When editing XML documents in Text mode, Oxygen XML Editor provides the following actions in the contextual menu (many of them also appear in the submenus of the Document menu):

**Add File to Review Task**

This action can be used to add the current document to a task in the Content Fusion Tasks Manager view. Oxygen Content Fusion is a flexible, intuitive collaboration platform designed to adapt to any type of documentation review workflow. This functionality is available through a pre-installed connector add-on (on page 2679). To fully take advantage of all of the benefits and features of Content Fusion, your organization will need an Oxygen Content Fusion Enterprise Server. For more information, see the Oxygen Content Fusion website.

**Cut, Copy, Paste**

Executes the typical editing actions on the currently selected content.
Copy XPath

Copies the XPath expression of the current element or attribute (or property for JSON documents) from the current editor to the clipboard.

Toggle Comment (Ctrl + Shift + Comma (Command + Shift + M on OS X))

Comments the current selection of the current editor. If the selection already contains a comment the action removes the comment from around the selection. If there is no selection in the current editor and the cursor is not positioned inside a comment the current line is commented. If the cursor is positioned inside a comment then the commented text is uncommented.

Go to submenu

This submenu includes the following actions:

Go to Matching Tag (Ctrl + Shift + G)

Moves the cursor to the end tag that matches the start tag, or vice versa.

Go after Next Tag (Ctrl + CloseBracket (Command + CloseBracket on OS X))

Moves the cursor to the end of the next tag.

Go after Previous Tag (Ctrl + OpenBracket (Command + OpenBracket on OS X))

Moves the cursor to the end of the previous tag.

Select submenu

This submenu allows you to select the following:

Element

Selects the entire element at the current cursor position.

Content

Selects the entire content of the element at the current cursor position, excluding the start and end tag. Performing this action repeatedly will result in the selection of the content of the ancestor of the currently selected element content.

Attributes

Selects all the attributes of the element at the current cursor position.

Parent

Selects the parent element at the current cursor position.

Source submenu

This submenu includes the following actions:
Shift Right (Tab)
Shifts the currently selected block to the right.

Shift Left (Shift + Tab)
Shifts the currently selected block to the left.

Indent selection (Ctrl + I (Command + I on OS X))
Corrects the indentation of the selected block of lines if it does not follow the current indenting preferences (on page 157).

Escape Selection
Escapes a range of characters by replacing them with the corresponding character entities.

Unescape Selection
Replaces the character entities with the corresponding characters.

Format and Indent Element (Ctrl + Shift + I (Command + Shift + I on OS X))
Pretty-prints (on page 3286) the element that surrounds the current cursor position.

To Upper Case
Converts the selected content to upper case characters. This works with contiguous and multiple selections.

To Lower Case
Converts the content selection to lower case characters. This works with contiguous and multiple selections.

Capitalize Lines
It capitalizes the first letter found on every new line that is selected. Only the first letter is affected, the rest of the line remains the same. If the first character on the new line is not a letter then no changes are made.

Convert Hexadecimal Sequence to Character (Ctrl + Shift + X (Command + Shift + X on OS X))
Converts a sequence of hexadecimal characters to the corresponding Unicode character (on page 770). The action can be invoked if there is a selection containing a valid hexadecimal sequence or if the cursor is placed at the right side of a valid hexadecimal sequence. A valid hexadecimal sequence can be composed of 2 to 4 hexadecimal characters.
and may or may not be preceded by the \texttt{0x} or \texttt{0X} prefix. Examples of valid sequences and the characters they will be converted to:

- \texttt{0x0045} will be converted to \texttt{E}
- \texttt{0X0125} to \texttt{#}
- \texttt{265} to \texttt{#}
- \texttt{2190} to \texttt{#}

\textbf{Note:} For more information about finding the hexadecimal value of a character, see \textit{Finding the Decimal, Hexadecimal, or Character Entity Equivalent (on page 779)}.

\textbf{Base64 Encode/Decode submenu}

This submenu include the following actions for encoding or decoding base 64 schemes:

\textbf{Import File to Encode and Insert}

Encodes a file and then inserts the encoded content into the current document at the cursor position.

\textbf{Decode Selection and Export to File}

Decodes a selection of text from the current document and then exports (saves) the result to another file.

\textbf{Encode Selection}

Replaces a selection of text with the result of encoding that selection. By default, a dialog box is displayed that allows you to select the encoding to use. There is an option to choose to not show this dialog box in the future. In this case, the encoding that is specified in the \hyperref[Encoding for Base64, Base32, Hex conversions option in the Encoding preferences page (on page 125)]{Encoding for Base64, Base32, Hex conversions option in the Encoding preferences page (on page 125)} will be used. Likewise, the same is true if the \textit{Show the dialog box for choosing the encoding for Base64, Base 32, Hex conversions} option is not selected in the \hyperref[Messages preference page (on page 261)]{Messages preference page (on page 261)}.

\textbf{Decode Selection}

Replaces a selection of text with the result of decoding that selection. By default, a dialog box is displayed that allows you to select the encoding to use. There is an option to choose to not show this dialog box in the future. In this case,
the encoding that is specified in the **Encoding for Base64, Base32, Hex conversions** option in the **Encoding** preferences page *(on page 125)* will be used. Likewise, the same is true if the **Show the dialog box for choosing the encoding for Base64, Base 32, Hex conversions** option is not selected in the **Messages** preference page *(on page 261)*.

**Modify All Matches**

Use this option to modify (in-place) all the occurrences of the selected content (or the contiguous fragment where the cursor is located). When you use this option, a thin rectangle replaces the highlights and allows you to start editing. If matches with different letter cases are found, a dialog box is displayed that allows you select whether you want to modify only matches with the same letter case or all matches.

**Base32 Encode/Decode submenu**

This submenu include the following actions for encoding or decoding base32 schemes:

**Import File to Encode and Insert**

Encodes a file and then inserts the encoded content into the current document at the cursor position.

**Decode Selection and Export to File**

Decodes a selection of text from the current document and then exports (saves) the result to another file.

**Encode Selection**

Replaces a selection of text with the result of encoding that selection. By default, a dialog box is displayed that allows you to select the encoding to use. There is an option to choose to not show this dialog box in the future. In this case, the encoding that is specified in the **Encoding for Base64, Base32, Hex conversions** option in the **Encoding** preferences page *(on page 125)* will be used. Likewise, the same is true if the **Show the dialog box for choosing the encoding for Base64, Base 32, Hex conversions** option is not selected in the **Messages** preference page *(on page 261)*.

**Decode Selection**
Replaces a selection of text with the result of decoding that selection. By default, a dialog box is displayed that allows you to select the encoding to use. There is an option to choose to not show this dialog box in the future. In this case, the encoding that is specified in the Encoding for Base64, Base32, Hex conversions option in the Encoding preferences page (on page 125) will be used. Likewise, the same is true if the Show the dialog box for choosing the encoding for Base64, Base 32, Hex conversions option is not selected in the Messages preference page (on page 261).

Modify All Matches

Use this option to modify (in-place) all the occurrences of the selected content (or the contiguous fragment where the cursor is located). When you use this option, a thin rectangle replaces the highlights and allows you to start editing. If matches with different letter cases are found, a dialog box is displayed that allows you select whether you want to modify only matches with the same letter case or all matches.

Hex Encode/Decode submenu

This submenu include the following actions for encoding or decoding hex schemes:

Import File to Encode and Insert

Encodes a file and then inserts the encoded content into the current document at the cursor position.

Decode Selection and Export to File

Decodes a selection of text from the current document and then exports (saves) the result to another file.

Encode Selection

Replaces a selection of text with the result of encoding that selection. By default, a dialog box is displayed that allows you to select the encoding to use. There is an option to choose to not show this dialog box in the future. In this case, the encoding that is specified in the Encoding for Base64, Base32, Hex conversions option in the Encoding preferences page (on page 125) will be used. Likewise, the same is true if the Show the dialog box for choosing the encoding for
Base64, Base 32, Hex conversions option is not selected in the Messages preference page (on page 261).

**Decode Selection**

Replace a selection of text with the result of decoding that selection. By default, a dialog box is displayed that allows you to select the encoding to use. There is an option to choose to not show this dialog box in the future. In this case, the encoding that is specified in the Encoding for Base64, Base32, Hex conversions option in the Encoding preferences page (on page 125) will be used. Likewise, the same is true if the Show the dialog box for choosing the encoding for Base64, Base 32, Hex conversions option is not selected in the Messages preference page (on page 261).

**Modify All Matches**

Use this option to modify (in-place) all the occurrences of the selected content (or the contiguous fragment where the cursor is located). When you use this option, a thin rectangle replaces the highlights and allows you to start editing. If matches with different letter cases are found, a dialog box is displayed that allows you select whether you want to modify only matches with the same letter case or all matches.

**Join and Normalize Lines (Ctrl + J (Command + J on OS X))**

For the current selection, this action joins the lines by replacing the line separator with a single space character. It also normalizes the whitespaces by replacing a sequence of such characters with a single space.

**Insert new line after (Ctrl + Alt + Enter (Command + Alt + Enter on OS X))**

This action has the same result as moving the cursor to the end of the current line and pressing the ENTER key.

**Insert XInclude**

Displays a dialog box that allows you to browse and select the content to be included and automatically generates the corresponding XInclude instruction.

**Note:** In the Author mode, this dialog box presents a preview of the inserted document as an author page in the Preview tab and as a text page in the Source tab. In the Text mode, the Source tab is presented.
Import entities list

Displays a dialog box that allows you to select a list of files as sources for external DTD entities. The internal subset of the DOCTYPE declaration of your document will be updated with the chosen entities. For instance, choosing the files chapter1.xml and chapter2.xml inserts the following section in the DOCTYPE:

```xml
<!ENTITY chapter1 SYSTEM "chapter1.xml">
<!ENTITY chapter2 SYSTEM "chapter2.xml">
```

Lock / Unlock the XML Tags

Disables or enables the ability to edit XML tags.

Canonicalize

Opens the Canonicalize dialog box that allows you to select a canonicalization (on page 3280) algorithm to standardize the format of the document.

Sign

Opens the Sign dialog box that allows you to configure a digital signature for the document.

Verify Signature

Allows you to specify the location of a file to verify its digital signature.

Manage Highlighted Content submenu

This submenu is available from the contextual menu when it is invoked from a highlight after you perform a search operation or apply an XPath expression that highlights more than one result. The following options are available in this submenu:

Modify All

Allows you to modify (in-place) all the occurrences of the selected content. A thin rectangle replaces the highlights and allows you to start editing. If matches with different letter cases are found, a dialog box is displayed that allows you select whether you want to modify only matches with the same letter case or all matches.

Surround All

Surround the highlighted content with a specific tag. This option opens the Tag dialog box. The Specify the tag drop-down menu presents all the available elements that you can choose from.

Remove All
Removes all the highlighted content.

Modify All Matches

Use this option to modify (in-place) all the occurrences of the selected content (or the contiguous fragment where the cursor is located). When you use this option, a thin rectangle replaces the highlights and allows you to start editing. If matches with different letter cases are found, a dialog box is displayed that allows you select whether you want to modify only matches with the same letter case or all matches.

Go to Definition (Ctrl + Shift + Enter)

Navigates to the definition of the current element or attribute in the schema (DTD, XML Schema, Relax NG schema) associated with the edited XML document. If the current attribute is a “type” belonging to the “http://www.w3.org/2001/XMLSchema-instance” namespace, the cursor is moved in the XML schema to the definition of the type referenced in the value of the attribute. For JSON documents, it navigates to the definition of the current JSON property in the associated JSON Schema.

Refactoring submenu

This submenu includes the following actions:

 Rename Element

The element from the cursor position, and any elements with the same name, can be renamed according with the options from the Rename dialog box.

 Rename Prefix (Alt + Shift + P (Command + Shift + P on OS X))

The prefix of the element from the cursor position, and any elements with the same prefix, can be renamed according with the options from the Rename dialog box.

- If you select the Rename current element prefix option, the application will recursively traverse the current element and all its children. For example, to change the xmlns:p1="ns1" association in the current element to xmlns:p5="ns1", if the xmlns:p1="ns1" association is applied on the parent element, then Oxygen XML Editor will introduce xmlns:p5="ns1" as a new declaration in the current element and will change the prefix from p1 to p5. If p5 is already associated with another namespace in the current element, then the conflict will be displayed in a dialog box. By pressing OK, the prefix is modified from p1 to p5 without inserting a new declaration.
- If you select the Rename current prefix in all document option, the application will apply the change on the entire document.
• To also apply the action inside attribute values, select the **Rename also attribute values that start with the same prefix** checkbox.

**Surround with submenu**

Presents a drop-down menu that allows you to choose a tag to surround a selected portion of content.

**Surround with Tags (Ctrl + E (Command + E on OS X))**

Allows you to choose a tag that encloses a selected portion of content. If there is no selection, the start and end tags are inserted at the cursor position.

• If the **Position cursor between tags** option (on page 167) is selected in the **Content Completion** preferences page, the cursor is placed between the start and end tag.
• If the **Position cursor between tags** option (on page 167) is not selected in the **Content Completion** preferences page, the cursor is placed at the end of the start tag, in an insert-attribute position.

**Surround with '[tag]' (Ctrl + ForwardSlash (Command + ForwardSlash on OS X))**

Surround the selected content with the last tag used.

**Delete element tags (Alt + Shift + X (Command + Alt + X on OS X))**

Deletes the start and end tag of the current element.

**Split element (Alt + Shift + D (Ctrl + Alt + D on OS X))**

Split the element from the cursor position into two identical elements. The cursor must be inside the element.

**Join elements (Alt + Shift + J (Command + Alt + J on OS X))**

Joins the left and right elements relative to the current cursor position. The elements must have the same name, attributes, and attributes values.

**Attributes Refactoring Actions**

Contains built-in XML refactoring operations that pertain to attributes with some of the information preconfigured based upon the current context.

**Add/Change attribute**

Allows you to change the value of an attribute or insert a new one.

**Convert attribute to element**
Allows you to change an attribute into an element.

**Delete attribute**

Allows you to remove one or more attributes.

**Rename attribute**

Allows you to rename an attribute.

**Replace in attribute value**

Allows you to search for a text fragment inside an attribute value and change the fragment to a new value.

**Comments Refactoring Actions**

Contains built-in XML refactoring operations that pertain to comments with some of the information preconfigured based upon the current context.

**Delete comments**

Allows you to delete comments found inside one or more elements.

**Elements Refactoring Actions**

Contains built-in XML refactoring operations that pertain to elements with some of the information preconfigured based upon the current context.

**Delete element**

Allows you to delete elements.

**Delete element content**

Allows you to delete the content of elements.

**Insert element**

Allows you to insert new elements.

**Rename element**

Allows you to rename elements.

**Unwrap element**

Allows you to remove the surrounding tags of elements, while keeping the content unchanged.

**Wrap element**

Allows you to surround elements with element tags.

**Wrap element content**
Allows you to surround the content of elements with element tags.

Fragments Refactoring Actions

Contains built-in XML refactoring operations that pertain to XML fragments with some of the information preconfigured based upon the current context.

**Insert XML fragment**

Allows you to insert an XML fragment.

**Replace element content with XML fragment**

Allows you to replace the content of elements with an XML fragment.

**Replace element with XML fragment**

Allows you to replace elements with an XML fragment.

Manage IDs submenu

This submenu is available for XML documents that have an associated DTD, XML Schema, or Relax NG schema (not available for DITA). It includes the following actions:

**Rename in**

Renames the ID and all its occurrences. Selecting this action opens the Rename XML ID dialog box. This dialog box lets you insert the new ID value and choose the scope of the rename operation (on page 1129). For a preview of the changes you are about to make, click Preview. This opens the Preview dialog box, which presents a list with the files that contain changes and a preview zone of these changes.

**Rename in File**

Renames the ID you are editing and all its occurrences from the current file.

**Search References**

Searches for the references of the ID. By default, the scope of this action is the current project. If you configure a scope using the Select the scope for the Search and Refactor operations (on page 1129) dialog box, this scope will be used instead.

**Search References in**

Searches for the references of the ID. Selecting this action opens the Select the scope for the Search and Refactor operations (on page 1129).
Search Declarations

Searches for the declaration of the ID reference. By default, the scope of this action is the current project. If you configure a scope using the Select the scope for the Search and Refactor operations (on page 1129) dialog box, this scope will be used instead.

Search Declarations in

Searches for the declaration of the ID reference. Selecting this action opens the Select the scope for the Search and Refactor operations (on page 1129).

Search Occurrences in file

Searches for the declaration and references of the ID in the current document.

Quick Assist (Alt + 1 (Command + Alt + 1 on OS X))

Available when the cursor is inside an ID or IDREF, this action opens the Quick Assist (on page 3286) window that allows you to select some search and refactoring actions for the selected ID or IDREF.

Open submenu

The following actions are available in this submenu:

Open File at Cursor

Opens the file at the cursor position in a new panel. If the file path represents a directory path, it will be opened in system file browser. If the file at the specified location does not exist, an error dialog box is displayed and it includes a Create new file button that starts the New document wizard. This allows you to choose the type or the template for the file. If the action succeeds, the file is created with the referenced location and name and is opened in a new editor panel.

Open File at Cursor in System Application

Opens the file (identified by its link) or web page (identified by a web link) found at cursor position. The target is opened in the default system application associated with that file type.

Compare

Opens the current file in the Compare Files tool (on page 2770).

Resource Hierarchy

Opens the Resource Hierarchy/Dependencies view (on page 1130) that allows you to see the resource hierarchy for an XML document.
**Resource Dependencies**

Opens the **Resource Hierarchy/Dependencies view** (on page 1130) that allows you to see the resource dependencies for an XML document.

**Grid Editing Mode**

The Oxygen XML Editor **Grid** editing mode displays the XML document as a structured grid of nested tables where the text content can be modified without directly interacting with the XML markup. This is helpful for non-technical users who want to edit text content without modifying the XML markup. You can easily expand or collapse elements within the table and the document structure can be changed with simple drag/drop or copy/paste operations.

To switch to this mode, select **Grid** at the bottom of the editing area.

![Figure 80. Grid Editing Mode](image)

For more information about some of the features available in the **Grid** editor, watch our video demonstration:

https://www.youtube.com/embed/PoYm2VqisWk

**Related Information:**

- Editing XML Documents in Grid Mode (on page 886)

**Layouts: Grid and Tree**

The **Grid** editor offers two layout modes. The default one is the grid layout. This smart layout detects the recurring elements in the XML document and creates tables having the children (including the
attributes) of these elements as columns. This way, it is possible to have tables nested in other tables, reflecting the structure of your document.

Figure 81. Grid Layout

![Grid Layout](image)

The other layout mode is tree-like. It does not create any tables and it only presents the structure of the document.

Figure 82. Tree Layout

![Tree Layout](image)

To switch between the two modes, select Document > Grid Layout > Grid mode/Tree mode.

Grid Mode Navigation

When you first open a document in Grid mode, the content is collapsed. Only the root element and its attributes are displayed. An arrow sign (↑) displayed at the left of the node name indicates that this node has child nodes. To display the children, click this arrow sign. To collapse a node, click the reverse arrow sign (↓). The expand/collapse actions can also be invoked with the NumPad+ and NumPad- keys, or from the Expand/Collapse submenu of the contextual menu or from Document > Grid Expand/Collapse.

Expand/Collapse Submenu

The following actions are available on the Expand/Collapse submenu:

- **Expand All**
  
  Expands the selection and all its children.

- **Collapse All**
  
  Collapses the selection and all its children.
Expand Children

Expands all the children of the selection but not the selection.

Collapse Children

Collapses all the children of the selection but not the selection.

Collapse Others

Collapses all the siblings of the current selection but not the selection.

Keyboard Shortcuts

A variety of other keyboard shortcuts are also available in Grid mode:

Table 3. Shortcuts in the Grid Mode

<table>
<thead>
<tr>
<th>Key</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tab</td>
<td>Moves the cursor to the next editable value in a table row.</td>
</tr>
<tr>
<td>Shift + Tab</td>
<td>Moves the cursor to the previous editable value in a table row.</td>
</tr>
<tr>
<td>Enter</td>
<td>Begins editing and lets you insert a new value. Also commits the changes after you finish editing.</td>
</tr>
<tr>
<td>UpArrow/PageUp</td>
<td>Navigates toward the beginning of the document.</td>
</tr>
<tr>
<td>DownArrow/PageDown</td>
<td>Navigates toward the end of the document.</td>
</tr>
<tr>
<td>Shift</td>
<td>Used in conjunction with the navigation keys to create a continuous selection area.</td>
</tr>
<tr>
<td>Ctrl (Command on OS X key)</td>
<td>Used in conjunction with the mouse cursor to create discontinuous selection areas.</td>
</tr>
</tbody>
</table>

The following key combinations can be used to scroll the grid:

- Ctrl + UpArrow (Command + UpArrow on OS X) - scrolls the grid upwards.
- Ctrl + DownArrow (Command + DownArrow on OS X) - scrolls the grid downwards.
- Ctrl + LeftArrow (Command + LeftArrow on OS X) scrolls the grid to the left.
- Ctrl + RightArrow (Command + RightArrow on OS X) scrolls the grid to the right.

Related Information:

- Editing Actions in Grid Mode (on page 886)
Special Character Support in Grid Mode

If you are editing documents with a bidirectional text orientation or other special characters (such as combining characters), you can change the way the text is rendered and edited in the grid cells by using the Change Text Orientation (Ctrl + Shift + O (Command + Shift + O on OS X)) action that is available from the Edit menu in the Grid editing mode. Use this action to switch from the default left to right text orientation to the right to left orientation, and vice versa.

**Note:** This change applies only to the text from the cells, and not to the layout of the grid editor.

Figure 83. Default left to right text orientation

```xml
<xml version="1.0" encoding="UTF-8">
sample (9 rows)
1
2 Guan el món vol conversar, parla Unicode
3 Unicode
4 Ha a vallòg beszélni akar, azt Unicode-ül mondja
5 Quando il mondo vuole comunicare, parla Unicode
6 世界的に話すなら、Unicode です。
7 せせを言いたい時に、ユニコードで発表します
8 Når verden vil snakke, snakker den Unicode
9 Når verda ønsker å snakke, taler ho Unicode
</xml>
```

Figure 84. Right to left text orientation

```xml
<xml version="1.0" encoding="UTF-8">
sample (9 rows)
1
2 Guan el món vol conversar, parla Unicode
3 Unicode
4 Ha a vallòg beszélni akar, azt Unicode-ül mondja
5 Quando il mondo vuole comunicare, parla Unicode
6 世界的に話すなら、Unicode です。
7 せせを言いたい時に、ユニコードで発表します
8 Når verden vil snakke, snakker den Unicode
9 Når verda ønsker å snakke, taler ho Unicode
</xml>
```

Related Information:

- Special Character Support in Text Mode (on page 366)
- Special Character Support in Author Mode (on page 620)
- Inserting Special Characters with the Character Map (on page 778)
Editing Actions in Grid Mode

Since Grid mode presents XML content in a structured grid of nested tables, editing content in this mode can be done with a combination of the Content Completion Assistant (on page 891) and actions that allow you to work with the structure or content of the nested tables much like you would with any table. Oxygen XML Editor provides ways to edit content in the cells of the nested tables or to edit the structure of the tables.

Tip: There are two different types of layouts available in Grid mode. Most people prefer to leave it on the default Grid mode layout, but there is also a Tree mode layout that presents the structure of the document in more of a vertical tree-like manner. You can switch between the two layouts to see which one works best for you particular situation from the Document > Grid Layout menu.

Expanding/Collapsing Nodes

An arrow sign (↑) displayed at the left of a node indicates that it has child nodes. To display the children, click this arrow sign. To collapse a node, click the reverse arrow sign (↓). The expand/collapse actions can also be invoked with the NumPad+ and NumPad- keys, or from the Expand/Collapse submenu of the contextual menu.

To expand all child nodes, right-click the cell that contains the parent node and select Expand All from the Expand/Collapse submenu. To collapse all node, right-click any cell and select Collapse All from the Expand/Collapse submenu.

Editing Elements or Attributes

To edit elements or attributes in Grid mode, simply double-click the cell that contains the element or attribute (or select the cell and press Enter) to invoke the Content Completion Assistant (on page 891). This opens a pop-up window that offers a list of proposals that are valid for that particular node.

Editing Text Content in Cells

To edit the text value of a cell, simply select the grid cell and press Enter (or double-click the cell), and start editing.

To stop editing a cell value, press Enter again.

To cancel the editing without saving the current changes in the document, press the Esc key.
Editing the Structure of the Nested Tables

To edit the structure of the nested tables in Grid mode, Oxygen XML Editor provides the following actions in the contextual menu (many of them also appear in the submenus of the Document menu, or the toolbar):

- **Cut**, **Copy**, **Paste**, **Delete common editing actions**
  - Executes the typical editing actions on the currently selected elements. The Cut and Copy operations preserve the styles of the copied content.

- **Paste as Child**
  - Pastes the copied content as the last child of the current selection.

- **Duplicate**
  - Creates a new node by duplicating the currently selected one.

- **Insert Before**
  - Offers a list of valid nodes, depending on the context, and inserts your selection before the currently selected node, as a sibling.

- **Insert After**
  - Offers a list of valid nodes, depending on the context, and inserts your selection after the currently selected node, as a sibling.

- **Append Child**
  - Offers a list of valid nodes, depending on the context, and appends your selection as a child of the currently selected node.

- **Sort Ascending**, **Sort Descending**
  - The sorting result depends on the data type of the column content. It could be a numerical sorting for numbers or an alphabetical sorting for text information. The editor automatically analyzes the content and decides what type of sorting to apply. When a mixed set of values is present in the sorted column, a dialog box is displayed that allows you to choose the desired type of sorting between numerical and alphabetical.

- **Insert Row**
  - Inserts a new row below the current selection. To insert a new row, you could also select the row header (the zone to the left of the row that holds the row number) and press Enter.

- **Insert Column**
  - Inserts a column after the current selection.

- **Clear Content**
Removes all content from the current cell.

**Expand/Collapse > Expand All**
Expands the selection and all its children.

**Expand/Collapse > Collapse All**
Collapses the selection and all its children.

**Expand/Collapse > Expand Children**
Expands all the children of the selection but not the selection.

**Expand/Collapse > Collapse Children**
Collapses all the children of the selection but not the selection.

**Expand/Collapse > Collapse Others**
Collapses all the siblings of the current selection but not the selection.

**Refresh Selected**
Forces the layout to be recomputed.

**Related Information:**
- Grid Mode Navigation *(on page 393)*
- Copy and Paste in the Grid Editing Mode *(on page 889)*
- Drag and Drop in the Grid Editing Mode *(on page 889)*
- Content Completion Assistant in Grid Mode *(on page 891)*

**Drag and Drop in the Grid Editing Mode**
You can easily arrange sections in your XML document in the **Grid** mode by using drag and drop actions.

You can do the following with drag and drop:

- Copy or move a set of nodes.
- Change the order of columns in the tables.
- Move the rows from the tables.
These operations are available for both single and multiple selections. To deselect one of the selected fragments, use **Ctrl + Single-Click (Command + Single-Click on OS X)**.

While dragging, the editor paints guide-lines showing the locations where you can drop the nodes. You can also drag nodes outside the Grid editor and text from other applications into the Grid.

**Tip:** When using drag and drop to reorganize the document, the resulting layout can be different from what you expected. For instance, the layout can contain a set of sibling tables that can be joined together. To force the layout to be recomputed, you can use the **Refresh Selected** action that is available in the contextual menu and in the Document > Grid Edit menu.

Copy and Paste in the Grid Editing Mode

Selecting content in the Grid mode is similar to working with any table with a little more complexity. Specifically, depending on the type of node, when you select a cell, the selection may automatically include additional cells that are implied by the currently selected node. For example, if you click a node that contains any child nodes, all cells that contain the parent and child nodes will be selected. In this case, the currently selected cell is painted with a color that is different from the rest of the selection.

You can also select discontinuous regions of nodes and place them in the clipboard with the copy action. To deselect one of the selected fragments, use **Ctrl + Single-Click (Command + Single-Click on OS X)**.

Pasting Content Within Grid Mode

You can paste copied nodes relative to the currently selected cell using one of the following actions (available in the contextual menu):

- **Paste (Ctrl + V (Command + V on OS X))** - Pastes copied content, as a sibling, just below (after) the current selection.
- **Paste as Child** - Pastes copied content as the last child of the current selection.

Pasting Content from Grid Mode to Other Editors

Nodes that are copied from the Grid editor can also be pasted into Text mode or other external applications. When pasting copied content from Grid mode, the inserted string represents the nodes serialization. The nodes from tables can be copied using HTML or RTF in table format. The resulting cells contain only the concatenated values of the text nodes.

Figure 85. Copying from Grid to Other Editors
Pasting Content from Other Editors into Grid Mode

You can also paste well-formed XML content or tab-separated values from other editors into the Grid editor. If you paste XML content, the result will be the insertion of the nodes obtained by parsing this content.

Figure 86. Pasting XML Data into Grid

If the pasted text contains multiple lines of tab-separated values, it can be considered as a matrix of values. By pasting this matrix of values into the Grid editor, the result will be a matrix of cells. If the operation is performed inside existing cells, the existing values will be overwritten and new cells will be created when needed.

Figure 87. Pasting Tab-Separated Values into Grid
If you need to add copied content to your existing content (rather than overwriting existing cells), you need to first insert new cells by using the **Insert row** or **Insert column** actions from the contextual menu. This is useful, for example, when trying to transfer data from spreadsheet-like editors to the **Grid** editor.

### Content Completion Assistant in Grid Mode

If the edited document is associated with a schema (DTD, XML Schema, Relax NG, etc.), the **Grid** editing mode offers a **Content Completion Assistant** (on page 3280) for the names and values of elements and attributes. If you choose to insert an element that has required content, the sub-tree of needed elements and attributes are also automatically included.

To display the content completion pop-up menu, simply double-click a cell that contains an element or attribute (or press **Enter** on your keyboard).

![Content Completion in Grid Editing Mode](image)

### Exporting XML Content to Excel

For use-cases where you have XML content that needs to be exported to Excel (or any other spreadsheet application) but the content is not already in some sort of table format, **Grid** mode offers you a way to display the content of an XML document as a structured grid of nested tables and you can work with the cells in those tables much like you would with any spreadsheet application. This makes it possible to export content to Excel by copying cells that contain the specific content and then pasting the copied cells in Excel the same as you would when working with any table or spreadsheet.

To export XML content from **Grid** mode to Excel or other spreadsheet applications, follow this procedure:
1. Open the XML document in Oxygen XML Editor and switch to Grid mode.
2. Expand the nodes *(on page 886)* to gain access to the particular nested table that contains the content you want to export.
3. Copy the cells that contain the content you want to export *(Ctrl+C)*.
4. Switch to your spreadsheet application and paste the copied cells.
5. You may need to make some manual adjustments depending on the complexity of the structure in the original XML document.

Note that Oxygen XML Editor also supports the reverse scenario (copying cells from a spreadsheet application and pasting them in Grid mode). For more information, see Import from MS Excel Files – Grid Mode Method *(on page 2278)*.

For more information about exchanging data between Oxygen XML Editor and spreadsheet applications, watch our video demonstration:

https://www.youtube.com/embed/8VwsF58zLkU

**Related Information:**

- Import from MS Excel Files - Grid Mode Method *(on page 2278)*
- Pasting Content from Other Editors into Grid Mode *(on page 890)*

**Author Editing Mode**

The Author editing mode in Oxygen XML Editor allows you to visually edit XML documents in a user-friendly interface that is similar to a WYSIWYG word processor. Oxygen XML Editor provides support for visually editing the most commonly used XML vocabularies in Author mode, including DITA, DocBook, TEI, and XHTML. Adding text content is as simple as doing so in a standard text editor but the content is rendered similar to how you will see it in the output. Tables, images, and media objects (such as videos) are also rendered comparable to the output.

To switch to this mode, click the Author button at the bottom of the editing area.

To see more about some of the features available in the visual Author editing mode, watch our video demonstration:

https://www.youtube.com/embed/bnQwJZD58wY
Author Mode User Roles

There are two main types of users for the Author mode: framework developers and content authors.

Framework Developers

A framework developer is a technical person with advanced XML knowledge who defines the framework for authoring XML documents in the visual editor. Once the framework is created or edited by the developer, it is distributed as a deliverable component ready to plug into the application for the content authors.

The framework (document type) configuration defines a type of XML document by specifying all the details needed for editing the content of XML documents in Author mode.

The framework details that are created and customized by the developer include:

- The CSS stylesheet that drives the visual rendering of the document.
- The rules for associating an XML schema with the document, which is needed for the content completion assistance and validation of the document.
- Transformation scenarios for the document.
- Configuration of XML Catalogs.
- Custom actions available as buttons on the toolbar or in menus.

Oxygen XML Editor includes some ready-to-use built-in document types for XML frameworks, such as DocBook, DITA, TEI, JATS, and XHTML.

Content Authors

A content author does not need to have advanced knowledge about XML markup, operations such as validation of XML documents, or applying XPath expressions to an XML document. The content author just uses the framework set up by the developer in the application and starts editing the content of XML documents without editing the XML tags directly.
Styling XML Documents in Author Mode

The Author mode renders the content of the XML documents visually, based on CSS stylesheets associated with the document.

Selecting and Combining Multiple CSS Styles

Oxygen XML Editor provides a Styles drop-down menu on the toolbar that allows you to select one main (non-alternate) CSS style and multiple alternate CSS styles. This makes it easy to change the look of the document as it appears in Author mode and the output without having to continually edit the CSS stylesheets.

Tip: For information about configuring the Styles drop-down menu, see Configuring and Managing Multiple CSS Styles for a Framework.

You can select a main CSS style that applies to the whole document and then alternate styles that are applied as layers to specific parts of the document. For example, in the subsequent figure, a DITA document has the Century style selected for the main CSS and the alternate styles Full width, Show table column specification, Hints, and Inline actions are combined for additive styling to specific parts of the document.

The selections from the Styles drop-down menu are persistent, meaning that Oxygen XML Editor will remember the selections when subsequent documents are opened.

Figure 89. Styles Drop-down Menu in a DITA Document
Navigating the Document Content in Author Mode

Oxygen XML Editor includes some useful features to help you navigate XML documents.

### Navigation Keyboard Shortcuts

**Tab**

Navigate to the next XML node.

**Tip:** If you encounter a *space-preserved element (on page 3287)* when you navigate through a document and you do not press another key, pressing the Tab key
will continue the navigation. However, if the cursor is positioned in a *space-preserved element* and you press another key or you position the cursor inside such an element using the mouse, the **Tab** key can be used to arrange the text.

**Shift + Tab**

Navigate to the previous XML node.

**Ctrl + RightArrow (Command + RightArrow on OS X)**

Navigate one word forward.

**Ctrl + LeftArrow (Command + LeftArrow on OS X)**

Navigate one word backward.

**Ctrl + Home (Command + Home on OS X)**

Position the cursor at the beginning of the document.

**Ctrl + End (Command + End on OS X)**

Position the cursor at the end of the document.

### Navigating to a Modification

Oxygen XML Editor includes some actions that help you to quickly navigate to a particular modification. These navigation buttons are available in the main toolbar (they can also be accessed from the **Find** menu):

- **Last Modification**
  
  Navigates to the last modification in any opened tab.

- **Back**
  
  Navigates to the last selected editor tab or to the last selected element/content in the current tab. You can also go back after clicking on links in **Text** or **Author** mode.

- **Forward**
  
  Available after you use the **Back** button at least once, and it navigates in the opposite direction as the **Back** button.

### Navigating with the Outline View

Oxygen XML Editor includes an **Outline view (on page 347)** that displays a hierarchical tag overview of the currently edited XML Document.
You can use this view to quickly navigate through the current document by selecting nodes in the outline tree. It is synchronized with the editor area, so when you make a selection in the Outline view, the corresponding nodes are highlighted in the editor area.

Figure 90. Outline View Navigation in Author Mode

Using the Breadcrumb to Navigate

A breadcrumb on the stripe at the top of the document indicates the path from document root to the current element. It can also be used as a helpful tool to navigate to specific elements throughout the structure of the document.

Figure 91. Breadcrumb in Author Mode

The last element listed in the breadcrumb is the element at the current cursor position. The last element is also highlighted by a thin light blue bar for easier identification. Clicking an element from the breadcrumb selects the entire element and navigates to it in the editor area.

Using the Linking Support

When working on multiple documents that reference each other (references, external entities, XInclude, DITA conref, etc.), the linking support is useful for navigating between the documents. In the built-in frameworks that are bundled with Oxygen XML Editor, links are marked with an icon representing a chain link (🔗). When hovering over the icon, the mouse pointer changes its shape to indicate that the link can be accessed and a tooltip presents the destination location. Click the link to open the referenced resource in the editor or system browser. The same effect can be obtained by using the Document > File > Open file at cursor (Ctrl + Enter (Command + Enter on OS X)) action when the cursor is inside a link element.

Note: Depending on the referenced file type, the target link will either be opened in the Oxygen XML Editor or in the default system application. If the target file does not exist, Oxygen XML Editor prompts you to create it.
Navigating with Bookmarks

A position in a document can be marked with a bookmark. You can then quickly go to the marked position with a keyboard shortcut or a menu action. This is useful when navigating large documents or working on multiple documents where the cursor needs to move between several marked positions. The bookmarks are displayed with a small icon on the vertical strip to the left of the editor. You can place up to nine distinct bookmarks in any document. Shortcut keys are available to navigate to any of the marked positions (Ctrl+1 through Ctrl+9). There are also shortcuts for creating bookmarks (Ctrl+Shift+1 through Ctrl+Shift+9). You can also configure these shortcut keys in the Options > Menu Shortcut Keys (on page 248) menu.

Figure 92. Editor Bookmarks

To insert a bookmark in Author mode, do any of the following:

- Click in the vertical stripe on the left side of the editor (to the left of the line number).
- Press (F9) on your keyboard or use any of the specific bookmark creation shortcuts ((Ctrl+Shift +1 through Ctrl+Shift+9).
- Select the Create Bookmark action from the Edit > Bookmarks menu.

To remove bookmark in Author mode, do either of the following:

- Left-click its icon in the vertical stripe.
- Right-click its icon on the vertical stripe and select Remove or Remove all (Ctrl+F7 (Command +F7 on OS X)).

To navigate to a specific bookmark, do either of the following:

- Use any of the specific bookmark navigation shortcuts (Ctrl+1 through Ctrl+9).
- Use one of the actions available on the Edit > Bookmarks > Go to menu.

Tip: The navigation shortcuts work even if the document where the bookmark was inserted has been closed. In this case, using the shortcut will automatically re-open the document.
Author Mode Views

The content author is supported by a variety of dockable (on page 3281) helper views that are displayed by default when editing in Author mode. These views are automatically synchronized with the current editing context of the editor panel. They present additional information about this context thus helping the author to see quickly the current location in the overall document structure and the available editing options.

There is also a large selection of additional useful views available in the Window > Show View menu. This section presents some of the most helpful views for editing in Author mode.

Project View

The Project view is designed to assist you with organizing and managing related files grouped in the same XML project. The actions available in the contextual menu and on the toolbar associated to this panel allows you to create XML projects and provide shortcuts to various operations for the project documents.

Figure 93. Project View

By default, the view is positioned on the left side of the Oxygen XML Editor window, above the Outline view (on page 347). If the view has been closed, it can be reopened at any time from the Window > Show View menu (or using the Show Project View action from the Project menu).

Project View Toolbar

The tree structure occupies most of the view area. In the upper left side of the view, there is a drop-down menu that contains all recently used projects. You can use this history drop-down menu to quickly switch to a recently opened project. If you enable the Remember layout changes for each project option in the Application Layout preferences page (on page 91), the application will remember the layout, files opened, and editing location for your session when you switch projects.
At the bottom of the drop-down menu there are the actions to open and create a project:

- **Open Project (Ctrl + F2 (Command + F2 on OS X))**
  Opens an existing project. Alternatively, you can open a project by dropping an Oxygen XML Editor XPR project file from the file explorer into the Project panel.

  **Note:** When a project is opened for the first time, a confirmation dialog box will be displayed that asks you to confirm that the project came from a trusted source. This is meant to help prevent potential security issues.

- **New Project**
  Creates a new, empty project.

The following actions are grouped in the upper right corner:

- **Collapse All**
  Collapses all project tree folders. You can also collapse/expand a project tree folder if you select it and press the **Enter** key or **Left Arrow** to collapse and **Right Arrow** to expand.

- **Link with Editor**
  When selected, the project tree highlights the currently edited file, if it is found in the project files.

  **Note:** This button is disabled automatically when you move to the **Debugger perspective (on page 3285)**.

- **Settings**
  A submenu that contains the following actions:

  - **Filters**
    Allows you to filter the information displayed in the Project view. Click the toolbar button to set filter patterns for the files you want to show or hide. Also, you can set filter patterns for the linked directories that are hidden.

  - **Show Full Path**
    When selected, linked files and folders are presented with a full file path.

  - **Enable Master Files Support**
    Select this option to enable the **Master Files support (on page 726)**.

  - **Change Search and Refactor operations scope**
    Allows you to change the collection of documents that define the context of the **search and refactor operations (on page 1129)**.
• **Use only Master Files, if enabled** - Restricts Oxygen XML Editor to perform the search and refactor operations starting from the *master files (on page 3284)* that are defined for the current resource. This option is available when you select **Project** in the **Select the scope for Search and Refactor operations** dialog box and the **Master Files** support is enabled.

• **Working sets** - Allows you to specify the set of files that will be used for the scope of the search and refactor operations.

**File Explorer Area**

The rest of the view is basically a file explorer similar to most other commonly used file explorers. The XML project (*.xpr file) is a logical container with a collection of resources (folders and files). The types of resources displayed include:

• **Logical folders with Linked folders/files** - Marked with a blue icon on Windows and Unix/Linux (blue) and a magenta icon on Mac OS X (magenta), they help you group files within the project. This folder type is used as containers for linked resources (shortcuts). The icons for file shortcuts include a shortcut symbol (🔗) and names of folder shortcuts are displayed in bold text. The logical folders are created on the project root or inside other logical folders by using the contextual menu action **New > Logical Folder**, and the linked folders/files are added using **Add Files, Add Folder**, or by dragging and dropping files/folders from the view or the system file explorer. **Remove from Project** can be used to remove them from the project and the **Remove from Disk (Shift+Delete)** action can be used to remove them from both the project and the local file system.

• **Physical folders and files** - Marked with the operating system-specific icon for folders (usually a yellow icon on Windows and a blue icon on Mac OS X). These folders and files are mirrors of real folders or files that exist in the local file system. They are created or added to the project by using contextual menu actions (such as **New > File, New > Folder, Copy**, and **Paste**) or by dragging and dropping files/folders from the view or the system file explorer. Also, the contextual menu action **Remove from Disk (Shift+Delete)** can be used to remove them from the project and local file system.

Figure 94. Project View with Both Types of Resources
Creating New Projects

The following action is available from the New menu when right-clicking any item, the Project menu, or from the drop-down menu in the top-left of the Project view:

- **New Project**
  
  Creates a new, empty project.

Managing Project Contents

There are various contextual menu actions, shortcuts, and ways to organize the folders and files inside the project:

Creating New Folders and Files

- **Right-click any item > New > File**
  
  Opens a New file dialog box *(on page 676)* that helps you create a new file and adds it to the project structure.

- **Right-click any item in a physical folder > New > Folder**
  
  Opens a New Folder dialog box that allows you to specify a name for a new folder and adds it to the structure of the project.

- **Right-click any item in a logical folder > New > Logical Folder**
  
  Creates a logical folder in the tree structure (the icon is a magenta folder on Mac OS X 📁).
Right-click on a logical folder > New > Logical Folders from Web

Replicates the structure of a remote folder accessible over FTP/SFTP/WebDAV, as a structure of logical folders. The newly created logical folders contain the file structure of the folder it points to.

Adding Resources

You can add resources by using drag and drop (or Copy and Paste) actions from within the Project view or dragging them from the system file explorer. Files may have multiple instances within the folder system, but cannot appear twice within the same folder.

Adding Resources to Logical Folders

You can add resources to logical folders by using the following actions available in the contextual menu when invoked on a logical folder (or the project's root container):

- Add Folder
  Adds a link to a physical folder, whose name and content mirror a real folder that exists in the local file system (the icon for this action is different on Mac OS X).

- Add Files
  Adds links to files on the local file system.

- Add Edited File
  Adds a link to the currently edited file in the project.

Removing Folders and Files

To remove logical folders or the linked resources inside them from the project, use

- Remove from Project from the contextual menu (or press Delete on your keyboard).

To remove folders or files from both the project and the local file system, use

- Remove from Disk from the contextual menu (or press Shift+Delete on your keyboard).

Moving Folders and Files

You can move the resources by using drag and drop actions from within the Project view (the Enable drag-and-drop in Project view option must be selected in the View preferences page (on page 259)).

You can also use the usual Cut, Copy, and Paste actions to move resources in the project.
You can also move certain types of files (such as XML, XML Schema, Relax NG, WSDL, and XSLT) by using the **Refactoring > Move resource** action from the contextual menu. This action opens the **Move resource** dialog box that includes the following options:

- **Destination** - Presents the path to the current location of the resource you want to move and gives you the option to introduce a new location.
- **New name** - Presents the current name of the moved resource and gives you the option to change it.
- **Update references of the moved resource(s)** - Select this option to update the references to the resource you are moving, based upon the selected scope. You can select or configure the scope (on page 1129) by using the button.

### Renaming Folders and Files

There are several ways to rename a folder or file in the project (this works for both physical and linked resources):

- Select **Rename** from the contextual menu.
- Press **F2** on your keyboard.
- Select the item, then click the name, and type the new name.

You also can rename certain types of files (such as XML, XML Schema, Relax NG, WSDL, and XSLT) by using the **Refactoring > Rename resource** action from the contextual menu. This action opens the **Rename resource** dialog box that includes the following options:

- **New name** - Presents the current name of the edited resource and allows you to modify it.
- **Update references of the renamed resource** - Select this option to update the references to the resource you are renaming. You can select or configure the scope (on page 1129) by using the button.

### Opening Files

There are several ways to open a file:

- Double-click the file.
- Select it and press **Enter** on your keyboard.
- Right-click the file and select **Open**.
- If there are no other files open in the editor area, you can drag the file from the project tree and drop it in the editor area.
- If you want to choose the application or location where to open it, you can right-click the file and select **Open with**.
Saving the Project

The project file is automatically saved every time the content of the Project view is saved or modified by actions such as adding or removing files and drag and drop.

Other Contextual Menu Actions

Numerous other actions are available in the contextual menu, depending on the type of file or folder where it is invoked from (some actions are available for multiple selected files):

**Show in submenu**

**Explorer (Finder on OS X)**

On Windows and Mac OS X, the parent directory of the selected file or folder is presented in a specific Explorer/Finder window, and the selected resource is highlighted. On Linux, the selected file or folder is not highlighted after opening its parent in the file explorer.

**Terminal**

Opens a console (terminal) at the location of the selected physical resource. If the resource is a file, it will start at the parent directory.

**Copy Location**

Copies an application-specific URL for the selected resource to the clipboard.

**Refactoring submenu**

Oxygen XML Editor includes some refactoring operations that help you manage the structure of your documents. The following actions are available from the contextual menu in the Refactoring submenu:

**Rename resource (Available for certain types of XML documents)**

Opens the Rename resource dialog box (on page 720) where you can change the name of a resource. It also includes an option to update the references to the renamed resource and you can choose between various scopes for the operation.

**Move resource (Available for certain types of XML documents)**

Opens the Move resource dialog box (on page 720) where you can choose a destination and change the name of a resource. It also includes an option to update the references to the moved resource and you can choose between various scopes for the operation.
Opens the **XML Refactoring tool wizard (on page 1139)** that presents refactoring operations to assist you with managing the structure of your XML documents.

### Other XML Refactoring Actions

For your convenience, the last 5 **XML Refactoring tool operations (on page 1139)** that were finished or previewed will also appear in this submenu.

#### Resource Hierarchy

Opens the **Resource Hierarchy/Dependencies view (on page 1130)** that allows you to see the resource hierarchy for an XML document.

#### Resource Dependencies

Opens the **Resource Hierarchy/Dependencies view (on page 1130)** that allows you to see the resource dependencies for an XML document.

#### Refresh

Refreshes the content and the dependencies between the resources in the **Master Files directory (on page 726)**.

#### Find/Replace in Files

Opens the **Find/Replace in Files dialog box (on page 745)** that allows you to find and replace text in multiple files.

#### XPath in Files

Opens the **XPath/XQuery Builder view (on page 2185)** that allows you to compose XPath and XQuery expressions and execute them over the currently edited XML document.

#### Open/Find Resource

Opens the **Open/Find Resource dialog box (on page 733)**.

#### Check Spelling in Files

Allows you to **check the spelling of multiple files. (on page 765)**

#### Format and Indent Files

Opens the **Format and Indent Files dialog box (on page 869)** that allows you to configure the format and indent (**pretty-print (on page 3286)**) action that will be applied on the selected documents.

#### Open in SVN Client

**Syncro SVN Client (on page 2806)** tool is opened and it highlights the selected resource in its corresponding working copy.
Compare

Allows you to compare multiple files or directories and the order of your selection determines where they are opened in the Compare Files (on page 2770) or Compare Directories (on page 808) tool. If you select two files or folders, your first selection will be opened in the left panel and the other one in the right panel.

You can also select 3 files and the tool will automatically be opened in the three-way comparison mode (on page 2774). If you select three files, your first selection will be opened in the left panel, the second in the right panel, and the third selection will be the base (ancestor) file.

Transform submenu

The currently selected files in the Project view can be transformed in one step with one of the following actions available from contextual menu in the Transform submenu:

- **Apply Transformation Scenario(s)**
  Obtains the output with one of the built-in scenarios (on page 1641).

- **Configure Transformation Scenario(s)**
  Opens a dialog box (on page 1762) that allows you to configure pre-defined transformation scenarios.

- **Transform with**
  Allows you to select a transformation scenario to be applied to the currently selected files.

Validate submenu

The currently selected files in the Project view can be checked to be XML well-formed or validated against a schema (DTD, XML Schema, Relax NG, Schematron or NVDL) with one of the following contextual menu actions found in the Validate submenu:

- **Check Well-Formedness**
  Checks if the selected file or files are well-formed.

- **Validate**
  Validates the selected file or files against their associated schema.
  For EPUB files, this action triggers an EPUB Validate and Check for Completeness (on page 2194) operation.

- **Validate with Schema**
  Validates the selected file of files against a specified schema.
Allows you to configure and run a validation scenario (on page 1093).

Generate Documentation submenu

Generate Documentation > XML Schema Documentation
Opens the XML Schema Documentation Dialog Box (on page 1313).

Generate Documentation > XSLT Stylesheet Documentation
Opens the XSLT Stylesheet Documentation Dialog Box (on page 1223).

Generate Documentation > XQuery Documentation
Opens the XQuery Documentation Dialog Box (on page 1349).

Generate Documentation > WSDL Documentation
Opens the WSDL Documentation Dialog Box (on page 1371).

Properties
Displays the properties of the current file in a Properties dialog box.

Enable Master Files Support (Available from the project container)
Allows you to enable the Master Files Support (on page 727) for each project you are working on.

Detect Master Files (Available from the project container when Master Files Support is enabled)
Opens the Detect Master Files wizard (on page 728) that enables the automatic detection of master files.

Add to Master Files (Available when Master Files Support is enabled)
Adds the selected files to the Master Files folder (on page 729).

Project Menu Actions

The following actions are available in the Project menu:

New Project
Creates a new, empty project.

Open Project (Ctrl + F2 (Command + F2 on OS X))
Opens an existing project. Alternatively, you can open a project by dropping an Oxygen XML Editor XPR project file from the file explorer into the Project panel.

Note: When a project is opened for the first time, a confirmation dialog box will be displayed that asks you to confirm that the project came from a trusted source. This is meant to help prevent potential security issues.
Save Project As

Allows you to save the current project under a different name.

Validate all project files

Checks if the project files are well-formed and their mark-up conforms with the specified DTD, XML Schema, or Relax NG schema rules. It returns an error list in the message panel.

Filters

Opens the Project filters dialog box that allows you to decide which files and directories will be shown or hidden.

Enable Master Files Support

Allows you to enable the Master Files Support (on page 727) for each project you are working on.

Change Search and Refactor operations scope

Opens a dialog box that allows you to define the context of search and refactor operations.

Show Project View

Displays the Project view.

Reopen Project

Contains a list of links of previously used projects. This list can be emptied by invoking the Clear history action.

Open/Find Resource View

The Open/Find Resource view is designed to offer advanced search capabilities either by using a simple text search or by using the Apache Lucene - Query Parser Syntax. By default, the view is presented in the left side of the Oxygen XML Editor layout, next to the Project view (on page 333) or DITA Maps Manager (on page 2990). If the view is not displayed, it can be opened by selecting it from the Window > Show View menu.

Figure 95. Open/Find Resource View
You can use this view to find a file in the current Oxygen XML Editor project or in one of the DITA maps (on page 3281) opened in the DITA Maps Manager view (on page 2990) by typing only a few letters of the file name of a document or a fragment of the content you are searching for. The Open/Find Resource view also supports searching in document edits (comments, tracked change insertions/deletions, and highlighted content) by selecting the In reviews option (on page 345).

**Note:** Full support for searching in document edits (the In reviews option) is available only in the Enterprise edition of Oxygen XML Editor. The Professional edition offers limited support to search through a maximum of 10 edits.

### Search Results

Search results are presented instantly, after you finish typing the content. The matching fragments of text are highlighted in the results list displayed in the dialog box. When you open one of the documents from the results list, the matching fragments of text are highlighted in the editing area.

To remove the highlighting from your document, close the corresponding tab in the Results view (on page 357) at the bottom of the editor. To display the search history, position the cursor in the search field and press **Ctrl + DownArrow (Command + DownArrow on OS X)** or **Ctrl + UpArrow (Command + UpArrow on OS X)** on your keyboard. Pressing only the DownArrow key moves the selection to the list of results.

**Note:** Searches are not case-sensitive. For example, if you search for car you get the same results as when you search for Car.
Tip: Suffix searches are also supported, both for searching in the content of your resources and in their name. For this, you can use wildcards. If you search for *ing with the in content option selected, you will find documents that contain the word presenting. If you search for */samples/*.*.gif with the in file paths option selected, you will find all the gif images from the samples directory.

Options Available in the View

The Open/Find Resource view offers the following options:

- **Settings** - Drop-down menu that includes the following settings for the view:
  - **Clear Index** - Clears the index.
  - **Show description** - Presents the search results in a more compact form, displaying only the title and the location of the resources.
  - **Options** - Opens the Open/Find Resource preferences page (on page 251) where you can configure various search options. For example, you can specify a Content language that differs from the default UI language in case your document contains multiple languages.
- **In file paths (on page 739)** - Select this option to search for resources by their name or by its path (or a fragment of its path).
- **In content (on page 736)** - Select this option to search through the content of your resources.
- **In reviews (on page 739)** - Select this option to search through the comments, tracked change insertions/deletions, or highlights in your resources.
- **Reindex** - Use this option to reindex your resources.

Contextual Menu Actions

A contextual menu is available on each search result and provides actions applicable to that particular document. These actions include:

- **Open** - Opens the document in one of Oxygen XML Editor internal editors.
- **Open with** - Allows you to choose to open the document in the Internal editor or an external System application.
- **Show in Explorer** - Identifies the document in the system file explorer.
- **Copy Location** - Copies the file path and places it in the clipboard.

Indexing Process

The content of the resources used to search in is parsed from an index. The indexing is performed both automatically and on request. Automatic indexing is performed when you modify, add, or remove resources in the currently indexed project. If the index was never initialized, the index in not updated on project changes.
To improve performance, the indexing process skips the following set of common English words (the so-called stop words): a, an, and, are, as, at, be, but, by, for, if, in, into, is, it, no, not, of, on, or, such, that, the, their, then, there, these, they, this, to, was, will, with. This means that if you are searching for any of these words, the indexing process will not be able to match any of them. However, you can configure the list of stop words in the Open/Find Resource preferences page (on page 251).

Caching Mechanism

When you perform a search, a caching mechanism is used to gather the paths of all files linked in the current project. When the first search is performed, all project files are indexed and added to the cache. The next search operation uses the information extracted from the cache, thus improving the processing time. The cache is kept for the currently loaded project only, so when you perform a search in a new project, the cache is rewritten. Also, the cache is reset when you press the Reindex button.

⚠️ Important: Files larger than 2GB are not indexed.

If there is no file found that matches your file pattern or text search, a possible cause is that the file you are searching for was added to the Oxygen XML Editor project after the last caching operation. In this case, re-indexing the project files with the Reindex button enables the file to be found. The date and time of the last index operation are displayed below the file list.

Opening the Results

Once you find the files that you want to open, select them in the list and press the Open button (or double-click them). Each of the selected files is opened in the editor associated with the type of the file (on page 250).

⚠️ Note: You can drag a resource from the Open/Find Resource view and drop it in a DocBook, DITA, TEI or XHTML document to create a link to that resource.

For more information about the Open/Find Resource feature and its search capabilities, watch our video demonstration:

https://www.youtube.com/embed/PENoDNdaGao

Related Information:

- Open/Find Resource Dialog Box (on page 733)
Outline View for XML Documents

The **Outline** view displays a general tag overview of the currently edited XML Document. When you edit a document, the **Outline** view dynamically follows the changes that you make, displaying the node that you modify. This functionality gives you great insight on the location of your modifications in the current document. It also shows the correct hierarchical dependencies between elements. This makes it easy for you to be aware of the document structure and the way element tags are nested.

**Outline View Features**

The **Outline** view allows you to:

- Quickly navigate through the document by selecting nodes in the **Outline** tree.
- Insert or delete nodes using contextual menu actions.
- Move elements by dragging them to a new position in the tree structure.
- Highlight elements in the editor area. It is synchronized with the editor area, so when you make a selection in the editor area, the corresponding nodes are highlighted in the **Outline** view, and vice versa.
- View document errors, as they are highlighted in the **Outline** view. A tooltip also provides more information about the nature of the error when you hover over the faulted element.

**Outline View Interface**

By default, it is displayed on the left side of the editor. If the view is not displayed, it can be opened by selecting it from the **Window > Show View** menu.

The upper part of the **Outline** view contains a filter box that allows you to focus on the relevant components. Type a text fragment in the filter box and only the components that match it are presented. For advanced usage you can use wildcard characters (such as * , ? ) and separate multiple patterns with commas.

It also includes a 🛠. **Settings** menu in the top-right corner that presents a variety of options to help you filter the view even further.

**Drop and Drop Actions in the Outline View**

Entire XML elements can be moved or copied in the edited document using only the mouse in the **Outline** view with drag-and-drop operations. Several drag and drop actions are possible:

- If you drag an XML element in the **Outline** view and drop it on another node, then the dragged element will be moved after the drop target element.
• If you hold the mouse pointer over the drop target for a short time before the drop then the drop target element will be expanded first and the dragged element will be moved inside the drop target element after its opening tag.

• You can also drop an element before or after another element if you hold the mouse pointer towards the upper or lower part of the targeted element. A marker will indicate whether the drop will be performed before or after the target element.

• If you hold down the (Ctrl (Command on OS X)) key after dragging, a copy operation will be performed instead of a move.

Figure 96. Outline View

Outline View Filters

The upper part of the Outline view contains a filter box that allows you to focus on the relevant components. Type a text fragment in the filter box and only the components that match it are presented. For advanced usage you can use wildcard characters (such as *, ?) and separate multiple patterns with commas.

The following actions are available in the Settings menu of the Outline view:

Filter returns exact matches

The text filter of the Outline view returns only exact matches.

Selection update on cursor move (Available in Text mode)

Controls the synchronization between Outline view and source document. The selection in the Outline view can be synchronized with the cursor moves or the changes in the editor. Selecting one of the components from the Outline view also selects the corresponding item in the source document.
- **Flat presentation mode of the filtered results**
  When active, the application flattens the filtered result elements to a single level.

- **Show comments and processing instructions**
  Show/hide comments and processing instructions in the Outline view.

- **Show element name**
  Show/hide element name.

- **Show text**
  Show/hide additional text content for the displayed elements.

- **Show attributes**
  Show/hide attribute values for the displayed elements. The displayed attribute values can be changed from the Outline preferences panel (on page 259).

- **Configure displayed attributes**
  Displays the XML Structured Outline preferences page (on page 259).

### Outline View Contextual Menu Actions

The contextual menu of the Outline view contains the following actions:

- **Edit Attributes**
  Displays an in-place attributes editor that allows you to edit the attributes of a selected node.

- **Edit Profiling Attributes (Available in Author mode)**
  Allows you to change the profiling attributes (on page 969) defined on all selected elements.

- **Append Child**
  Invokes a content completion list with the names of all the elements that are allowed by the associated schema and inserts your selection as a child of the current element.

- **Insert Before**
  Invokes a content completion list with the names of all the elements that are allowed by the associated schema and inserts your selection immediately before the current element, as a sibling.

- **Insert After**
Invokes a content completion list with the names of all the elements that are allowed by the associated schema and inserts your selection immediately after the current element, as a sibling.

Cut, Copy, Paste, Delete common editing actions

Executes the typical editing actions on the currently selected elements. The Cut and Copy operations preserve the styles of the copied content.

Paste before (Available in Author mode)

Inserts a well-formed copied element before the currently selected element.

Paste after (Available in Author mode)

Inserts a well-formed copied element after the currently selected element.

Paste as XML (Available in Author mode)

Pastes copied content that is considered to be valid XML, preserving its XML structure.

Toggle Comment

Encloses the currently selected element in an XML comment, if the element is not already commented. If it is already commented, this action will remove the comment.

Rename Element (Available in Author mode)

Invokes a Rename dialog box that allows you to rename the currently selected element, siblings with the same name, or all elements with the same name.

Expand More

Expands the structure tree of the currently selected element.

Collapse All

Collapses all of the structure tree of the currently selected node.

Tip: You can copy, cut or delete multiple nodes in the Outline by using the contextual menu after selecting multiple nodes in the tree.

Attributes View in Author Mode

The Attributes view presents all the attributes of the current element determined by the schema of the document. By default, it is located on the right side of the editor. If the view is not displayed, it can be opened from the Window > Show View menu.

You can use this view to edit or add attribute values. The attributes of an element are editable if any one of the following is true:
• The CSS stylesheet associated with the document does not specify a `false` value for the `-oxy-editable` property associated with the element.
• The element is entirely included in a deleted `Track Changes` marker.
• The element is part of a content fragment that is referenced in `Author` mode from another document.

The attributes are rendered differently depending on their state:

• The names of the attributes are rendered with a bold font, and their values with a plain font.
• Default values are rendered with a plain font, painted gray.
• Empty values display the text `[empty]`, painted gray.
• Invalid attributes and values are painted red.

To edit the value of the corresponding attribute, double-click a cell in the Value column. If the possible values of the attribute are specified as `list` in the schema of the edited document, the Value column acts as a combo box that allows you to either select the value from a list or manually enter it.

**Note:** If the cursor is located inside read-only content, the attribute names and values are faded and you cannot add, edit, or remove values.

You can sort the attributes table by clicking the Attribute column header. The table contents can be sorted as follows:

• By attribute name in ascending order.
• By attribute name in descending order.
• Custom order, where the used attributes are displayed at the beginning of the table sorted in ascending order, followed by the rest of the allowed elements sorted in ascending order.

Figure 97. Attributes View
A drop-down list located in the upper part of the view allows you to select the current element or its ancestors.

**Expand/Collapse Button**

There is an Expand/Collapse (↑/↓) button at the top-right of the view. When expanded, this presents the following additional combo boxes:

**Name Combo Box**

Use this combo box to select an attribute. The drop-down list displays the list of possible attributes allowed by the schema of the document, as in the Attributes view.

You can use the **Remove** button to delete an attribute and its value from the selected element.

**Value Combo Box**

Use this combo box to add, edit, or select the value of an attribute. If the selected attribute has predefined values in the schema, the drop-down list displays those possible values. You can use the **Browse** button to select a URL for the value of an attribute. You can also press **Ctrl + Space** to open a content completion window that offers a list of possible choices and allows you to select multiple values. After you have entered or selected a value, use the **Update** button (or press **Enter**) to add the value to the attribute.

**Note:** For built-in frameworks, if the selected attribute in the **Name** field is an `@id` attribute, the **Browse** button is replaced by a **Generate Unique ID Value** button. Clicking this button will automatically generate a unique ID for the selected element.

**Contextual Menu Actions in the Attributes View**

The following actions are available in the contextual menu of the Attributes view when editing in Author mode:

**Set empty value**

Specifies the current attribute value as empty.

**Remove**

Removes the attribute (action available only if the attribute is specified). You can invoke this action by pressing the **Delete** or **Backspace** keys.

**Copy**

Copies the `attrName="attrValue"` pair to the clipboard. The `attrValue` can be:
The value of the attribute.
• The value of the default attribute, if the attribute does not appear in the edited document.
• Empty, if the attribute does not appear in the edited document and has no default value set.

Paste

Depending on the content of the clipboard, the following cases are possible:

• If the clipboard contains an attribute and its value, both of them are introduced in the Attributes view. The attribute is selected and its value is changed if they exist in the Attributes view.
• If the clipboard contains an attribute name with an empty value, the attribute is introduced in the Attributes view and you can start editing it. The attribute is selected and you can start editing it if it exists in the Attributes view.
• If the clipboard only contains text, the value of the selected attribute is modified.

In-place Attributes Editor

Oxygen XML Editor includes an in-place attributes editor in Author mode. To edit the attributes of an XML element in-place, do one of the following:

• Select an element or place the cursor inside it and then press the Alt + Enter keyboard shortcut.
• Double-click any named start tag when the document is edited in one of the following display modes. (on page 441): Full Tags with Attributes, Full Tags, Block Tags, or Inline Tags.

This opens an in-place attributes editor that contains the same content as the Attributes view. By default, this editor presents the Name and Value fields, with the list of all the possible attributes collapsed.

Figure 98. In-place Attributes Editor

Name Combo Box
Use this combo box to select an attribute. The drop-down list displays the list of possible attributes allowed by the schema of the document, as in the Attributes view.

**Value Combo Box**

Use this combo box to add, edit, or select the value of an attribute. If the selected attribute has predefined values in the schema, the drop-down list displays those possible values. You can use the Browse button to select a URL for the value of an attribute. You can also press Ctrl + Space to open a content completion window that offers a list of possible choices and allows you to select multiple values.

**Note:** For built-in frameworks, if the selected attribute in the Name field is an @id attribute, the Browse button is replaced by a Generate Unique ID Value button. Clicking this button will automatically generate a unique ID for the selected element.

If you click More while in the collapsed version, it is expanded to the full version of the in-place attribute editor.

**Figure 99. In-place Attributes Editor (Full Version)**

![In-place Attributes Editor (Full Version)](image)

The full version includes a table grid, similar to the Attributes view, that presents all the attributes for the selected element.

**Model View**

The Model view presents the structure of the currently selected tag, and its documentation, defined as annotation in the schema of the current document. By default, it is located on the right side of the editor. If the view is not displayed, it can be opened by selecting it from the Window > Show View menu.

**Figure 100. Model View**
The **Model** view is comprised of two sections, an element structure panel and an annotations panel.

**Element Structure Panel**

The element structure panel displays the structure of the currently edited or selected tag in a tree-like format. The information includes the name, model, and attributes of the current tag. The allowed attributes are shown along with imposed restrictions, if any.

Figure 101. Element Structure Panel
Annotation Panel

The Annotation panel displays the annotation information for the currently selected element. This information is collected from the XML schema.

Figure 102. Annotation panel

Elements View in Author Mode

The Elements view presents a list of all defined elements that are valid at the current cursor position according to the schema associated to the document. By default, it is located on the right side of the editor. If the view is not displayed, it can be opened by selecting it from the Window > Show View menu.

The upper part of the view features a combo box that contains the ordered ancestors of the current element. Selecting a new element in this combo box updates the list of the allowed elements. By default, only the elements that are allowed at the current cursor position are listed. However, if the Show only items allowed at cursor position option (on page 260) is not selected in the Views preferences page (on page 259), two additional tabs (Before and After) will be displayed at the bottom of the view and they list elements that are allowed before or after the element at the current cursor position.

Double-clicking any of the listed elements inserts that element into the edited document and its position depends on the tab.

- **Cursor** tab - Double-clicking an element inserts it at the current cursor position.
- **Before** tab - Double-clicking an element inserts it before the element at the cursor position.
- **After** tab - Double-clicking an element inserts it after the element at the cursor position.

Pressing F2 with an element selected will display information about that particular element.

Figure 103. Elements View in Author Mode
Entities provide abbreviated entries that can be used in XML files when there is a need of repeatedly inserting certain characters or large blocks of information. An entity is defined using the ENTITY statement either in the DOCTYPE declaration or in a DTD file associated with the current XML file.

There are three types of entities:

- **Predefined** - Entities that are part of the predefined XML markup (`&lt;`, `&gt;`, `&amp;`, `&apos;`, `&quot;`).
- **Internal** - Defined in the DOCTYPE declaration header of the current XML.
- **External** - Defined in an external DTD module included in the DTD referenced in the XML DOCTYPE declaration.

**Note:** If you want to add internal entities, you would need to switch to the Text editing mode and manually modify the DOCTYPE declaration. If you want to add external entities, you need to open the DTD module file and modify it directly.

The Entities view displays a list with all entities declared in the current document, as well as built-in ones. By default, it is located on the right side of the editor. If the view is not displayed, it can be opened by selecting it from the Window > Show View menu.

Double-clicking one of the entities will insert it at the current cursor position in the XML document. You can also sort entities by name and value by clicking the column headers.

Figure 104. Entities View
The view features a filtering capability that allows you to search an entity by name, value, or both. Also, you can choose to display the internal or external entities.

**Note:** When entering filters, you can use the ? and * wildcards. Also, you can enter multiple filters by separating them with a comma.

**Results View**

The **Results** view displays the messages generated as a result of user actions such as validations, transformations, search operations, and others. Each message is a link to the location related to the event that triggered the message. Double-clicking a message opens the file containing the location and positions the cursor at the location offset. The **Results** view is automatically opened when certain actions generate result messages.

**Tip:** To shift focus to the opened **Results** view without using the mouse, there is an action in the Window > Results menu called **Focus Results** that can be used for this purpose and you can assign a keyboard shortcut (on page 248) to this action.

The actions that contribute messages to this view include:

- **Validation** actions (on page 1082)
- **Transformation** actions (on page 1640)
- **Check Spelling in Files** action (on page 765)
- **Find All** action from the **Find/Replace** dialog box (on page 740)
- **Find/Replace in Files** dialog box (on page 745)
- **Search References** action (on page 1209)
• XPath expression results (on page 2182)
• SQL results (on page 2259)

Figure 105. Results View

Results View Toolbar Actions

The view includes a toolbar with the following actions:

💡 Grouping options drop-down menu

A set of Group by toggle actions that allow you to group the messages according to a selected criteria so that they can be presented in a hierarchical layout. The criteria used for grouping can be the severity of the errors (error, warning, info message, etc.), the resource name, the description of the message, and so on.

This drop-down menu also includes the following additional grouping actions:

☑️ Ungroup all

Removes the grouping rules so that the messages are presented in a continuous list.

Show group columns

If any of the Group by options are selected, you can use this option to show or hide grouping columns.

Restore Defaults

Restores the column size for each column and the grouping rules that were saved in the user preferences the last time when this view was used. If it is the first time this view is used, the action sets an initial default column size for each column and a grouping rule that is appropriate for the type of messages. For example:
• Group the messages by the path of the validated file if there are error messages from a validation action or spelling errors reported by the Check Spelling in Files action (on page 765).
• No grouping rule for the results of applying an XPath expression (on page 2182).

![Highlight all results in editor]

Oxygen XML Editor highlights all matches obtained after executing an XPath expression, or performing one of the following operations: Find All, Find in Files, Search References, and Search Declarations. Click Highlight all results in editor again to turn off highlighting.

**Note:** To customize highlighting behavior, open the Preferences dialog box (Options > Preferences) (on page 79) and go to Editor > Highlights category. You can do the following customizations:

- Set a specific color of the highlights depending on the type of action you make.
- Set a maximum number of highlights that the application displays at any given time.

**Remove selected**

Removes the current selection from the view. This can be helpful if you want to reduce the number of messages, or remove those that have already been addressed or not relevant to your task.

**Remove all**

Removes all messages from the view.

**Results View Contextual Menu Actions**

The following actions are available when the contextual menu is invoked in this view:

**Learn Word(s) (Available when spelling errors are reported in the Results view)**

Adds the word(s) to a list of learned words to instruct the spell checker engine to not report the word(s) as spelling errors in the future.

**Show message**

Displays a dialog box with the full error message, which is useful for a long message that does not have enough room to be displayed completely in the view.

**Previous message**

Navigates to the message above the current selection.
Next message
Navigates to the message below the current selection.

Remove selected
Removes selected messages from the view.

Remove all
Removes all messages from the view.

Copy
Copies information associated with the selected messages. For example:

- The file path of the document that triggered the output message.
- The path of the master file (on page 3284) (in the case of a validation scenario (on page 1093), it is the path of the file from which the validation starts and can be different from the validated file).
- Error severity (error, warning, info message, etc.)
- Name of validating processor.
- Name of validation scenario (on page 1093).
- The line and column in the file that triggered the message.

Copy Description
Copies the description values for all selected items. It is possible to assign a shortcut key (on page 249) for this action.

Select All
Extends the selection to all the messages from the view.

Print Results
Sends the complete list of messages to a printer. For each message, the included details are the same as the ones for the Copy action (on page 360). This action is also available in the Window > Results menu.

Save Results
Saves the complete list of messages in a file in text format. For each message, the included details are the same as the ones for the Copy action (on page 360). This action is also available in the Window > Results menu.

Save Results as XML
Saves the complete list of messages in a file in XML format. For each message, the included details are the same as the ones for the Copy action (on page 360).

Save Results as HTML
Saves the complete list of messages in a file in HTML format. For each message, the included details are the same as the ones for the Copy action (on page 360).

**Group by**

A set of Group by toggle actions that allow you to group the messages according to a selected criteria so that they can be presented in a hierarchical layout. The criteria used for grouping can be the severity of the errors (error, warning, info message, etc.), the resource name, the description of the message, and so on.

- **Ungroup all**
  Removes the grouping rules so that the messages are presented in a continuous list.

**Show group columns**

If any of the Group by options are selected, you can use this option to show or hide grouping columns.

**Restore Defaults**

Restores the column size for each column and the grouping rules that were saved in the user preferences the last time when this view was used. If it is the first time this view is used, the action sets an initial default column size for each column and a grouping rule that is appropriate for the type of messages. For example:

- Group the messages by the path of the validated file if there are error messages from a validation action or spelling errors reported by the Check Spelling in Files action (on page 765).
- No grouping rule for the results of applying an XPath expression (on page 2182).

- **Expand All**
  Expands all the nodes of the tree, which is useful when the messages are presented in a hierarchical mode.

- **Collapse All**
  Collapses all the nodes of the tree, which is useful when the messages are presented in a hierarchical mode.

**Making a Persistent Copy of Results**

The Results view (on page 357) displays the results from the following operations:

- Document validation (on page 1081)
- Checking the form of documents (on page 1079)
- XSLT or FO transformations (on page 1640)
• Finding all occurrences of a string in a file (on page 740)
• Finding all occurrences of a string in multiple files (on page 745)
• Applying an XPath expression to the current document (on page 2185)

To make a persistent copy of the **Results view (on page 357)**, use one of these actions:

**File > Save Results**

Displays the **Save Results** dialog box, used to save the result list of the current message tab. The action is also available on the right-click menu of the **Results** panel.

**File > Print Results**

Displays the **Page Setup** dialog box used to define the page size and orientation properties for printing the result list of the current **Results** panel. The action is also available on the right-click menu of the **Results** panel.

**Save Results as XML from the contextual menu**

Saves the content of the **Results** panel in an XML file with the format:

```
<Report>
  <Incident>
    <engine>The engine who provide the error.<engine>
    <severity>The severity level<severity>
    <Description>Description of output message.</Description>
    <SystemID>The location of the file linked to the message.</SystemID>
  </Incident>
</Report>
```

**Related Information:**

• **Results View (on page 357)**
CSS Inspector View

The purpose of the **CSS Inspector** view is to display information about the styles applied to the currently selected element. You can use this view to examine the structure and layout of the CSS rules that match the element. The matching rules displayed in this view include a link to the line in the CSS file that defines the styles. With this tool you can see how the CSS rules were applied and the properties defined, and use the link to open the associated CSS for editing purposes.

**Figure 106. CSS Inspector View**

Displaying the CSS Inspector View

You can open this view by selecting the **Inspect Styles** action from the contextual menu in **Author** mode, or selecting the **CSS Inspector** view in the **Window > Show View** menu. This action makes the view visible and also initializes it for the currently selected element.

Displaying Rules

All rules that apply to the current element are displayed in sections, which are listed in order of importance (from most specific to least specific). Rules that are overridden by other rules are crossed out. If you click the link in the top-right corner of a rule Oxygen XML Editor opens the associated CSS file at the line number where the properties of the rule are defined.

**Figure 107. CSS Inspector View - Displaying Rules**
The **CSS Inspector** view contains five tabs:

- **Element** - Displays the CSS rules matching the currently selected element in the **Author** page (ordered from most-specific to least-specific).
- **:before** - Displays the rules matching the `:before` pseudo-element.
- **:after** - Displays the rules matching the `:after` pseudo-element.
- **Computed** - Displays all the styling properties that apply to the current element, as a result of all the CSS rules matching the element.
- **Path** - Displays the path for the current element, and its attributes, allowing you to quickly see the attributes on all parent elements, and allows you to copy fragments from this view and paste it into the associated CSS to easily create new rules.

The information displayed in each of the five tabs is updated when you click other elements in the **Author** editing view. The first three tabs include the link to the associated CSS source, while the other two tabs simply display the style properties that match the current element.

Each of the tabbed panes include a contextual menu with the following actions:

- **Copy** - copies the current selection
- **Select all** - selects all information listed in the pane
- **Show empty rules** - forces the view to show all the matching rules, even if they do not declare any CSS properties (by default, the empty rules are not displayed)

**Displaying the Markup**

You can control the amount of markup that is displayed in the **Author** mode with various levels of tag modes for both *block* and *in-line* elements.

The following dedicated tag modes are available from the Tags Display Mode drop-down menu (available on the toolbar):

- **Full Tags with Attributes**
  
  Displays full tag names with attributes for both block and inline elements.
Full Tags
Displays full tag names without attributes for both block and inline elements.

Block Tags
Displays full tag names for block elements and simple tags without names for inline elements.

Inline Tags
Displays full tag names for inline elements, while block elements are not displayed.

Partial Tags
Displays simple tags without names for inline elements, while block elements are not displayed.

No Tags
No tags are displayed. This is the most compact mode and is as close as possible to a word-processor view.

Configure Tags Display Mode
Opens the Author preferences page (on page 131) where you can configure options regarding tags, such as the default Tags Display Mode, Tags Background Color, Tags Foreground Color, Tags Font, and whether or not Oxygen XML Editor will use a Compact Tag Layout for displaying the tags (this option tries to group consecutive block tags on the same line).

Note: The associated CSS information is used to determine whether a tag should be considered inline or block. If the current document does not have an associated CSS stylesheet, then the Full Tags mode will be used.

Displaying Referenced Content
The references to entities, XInclude, DITA conrefs, and constructs in other vocabularies with displayable referenced content (on page 2402) are expanded by default in Author mode and the referenced content is displayed. You can control this behavior from the Author preferences page (on page 131). The referenced resources are loaded and displayed inside the element or entity that references them, but the displayed content cannot be modified directly in current document.

Figure 108. XInclude reference

```
<xi:include href="included.xml">
  <!-- Referenced content -->
  Included paragraph.
</xi:include>
```
When the referenced resource cannot be resolved, an error will be presented inside the element that refers them instead of the content.

If you want to make modifications to the referenced content, you must open the source where the referenced resource resides. The referenced resource can be opened quickly by clicking the link (marked with the icon) that is displayed before the referenced content or by using the **Edit Reference** action from the contextual menu (in this case, the cursor is placed at the precise location where the action was invoked). The referenced resource is resolved through the **XML Catalog** set in the **XML Catalog preferences page**.

The referenced content is refreshed as follows:

- Automatically, when it is modified and saved from Oxygen XML Editor.
- On demand, by using the **Refresh references** action. This is useful when the referenced content is modified outside the Oxygen XML Editor scope.

**Related Information:**

- Configuring a Reference Resolver (on page 2402)

**Visual Hints for the Cursor Position**

When the cursor is positioned inside a new context, a tooltip will be shown for a couple of seconds displaying the position of the cursor relative to the context of the current element.

Here are some of the common situations that can be encountered:

- **Before first block** - The cursor is positioned before the first *block* child of the current node.
• **Between two block elements** - The cursor is positioned between two block elements (on page 3280).

• **After last block** - The cursor is positioned after the last block element (on page 3280) child of the current node.

• **Inside a node** - The cursor is positioned inside a node.

• **Before an inline element** - The cursor is positioned inside an element, before a child inline element (on page 3283).

• **Between two inline elements** - The cursor is positioned between two inline elements (on page 3283).

• **After an inline element** - The cursor is positioned inside an element, after an child inline element (on page 3283).

The nodes in these cases are displayed in the tooltip window using the element names.

To deactivate this feature, open the Preferences dialog box (Options > Preferences) (on page 79), go to Author > Cursor Navigation, and deselect the Show cursor position tooltip option (on page 136). Even if this option is deselected, you can still display the position tooltip by pressing **Shift+F2**.
Note: The position information tooltip is not displayed if Full Tags with Attributes or Full Tags is selected in the Tags display mode drop-down menu (on page 441).

Location Tooltip

When editing XML documents in a visual environment, you might find it difficult to position the cursor between certain tags that do not have a visual representation. To counterbalance this, Oxygen XML Editor displays a transparent preview of the position information, called the Location Tooltip:

Oxygen XML Editor displays a Location Tooltip when the following conditions are met:

- You are editing the document in one of the following tags display modes (on page 441): Inline Tags, Partial Tags, No Tags.
- The mouse pointer is moved between block elements (on page 3280).

To activate or deactivate this feature, use the Show location tooltip on mouse move option (on page 136) in the Cursor Navigation preferences page (on page 136).

Presenting Validation Errors in Author Mode

By default, Oxygen XML Editor automatically validates documents (on page 1082) while editing in the Author mode, and actions are also available to manually validate documents (on page 1082) on-request.

Figure 111. Presenting Validation Errors in Author Mode
Validation Marker Locations

In **Author** mode, validation issues are marked in the following locations:

- In the main editing pane, with the issue underlined in a color according to the type of issue.
- In the right-side vertical stripe, with a marker that is colored according to the type of issue.
- For attributes with detected issues, in the **Attributes** view (on page 426), with the attribute and its value colored according to the type of issue.

Validation Marker Colors

The colors for each type of issue are as follows:

- **Validation Errors** [Red] - By default, the underline in the editing pane, the marker in the right vertical stripe, and the foreground color of the attribute in the **Attributes** view are colored in red.
- **Validation Warnings** [Yellow] - By default, the underline in the editing pane, the marker in the right vertical stripe, and the foreground color of the attribute in the **Attributes** view are colored in yellow.
- **Validation Info** [Blue] - By default, the underline in the editing pane, the marker in the right vertical stripe, and the foreground color of the attribute in the **Attributes** view are colored in blue.

Validation Markers in the Right-Side Stripe

Also, the stripe on the right side of the editor panel is designed to display the issues found during the validation process and to help you locate them in the document. The stripe contains the following:

**Upper Part of the Stripe**

A success indicator square will turn green if the validation is successful or only info messages are found, red if validation errors are found, or yellow if only validation warnings are found. More details about the issues are displayed in a tool tip when you hover over indicator square. If there are numerous problems, only the first three are presented in the tool tip.

**Middle Part of the Stripe**

Errors are presented with red markers, warnings with yellow markers, and info message with blue markers. If you want to limit the number of markers that are displayed, open the **Preferences** dialog box (Options > Preferences) (on page 79), go to Editor > Document checking, and specify the desired limit in the Maximum number of validation highlights option (on page 180).

Clicking a marker will highlight the corresponding text area in the editor. The validation message is also displayed both in a tool tip (when hovering over the marker) and in the
message area on the bottom of the editor panel (clicking the « Document checking options » button opens the Document Checking preferences page (on page 180).

**Bottom Part of the Stripe**

Two navigation arrows (↩️) allow you to jump to the next or previous issue. The same actions can be triggered from Document > Automatic validation > Next error (Ctrl + Period (Command + Period on OS X)) and Document > Automatic validation > Previous error (Ctrl + Comma (Command + Comma on OS X)). Also, the �ibox Remove All button can be used to clear all the validation markers.

You can configure the color for each type in the Document Checking preferences page (on page 180).

**Hovering Over Validation Issues**

Hovering over a validation issue presents a tooltip message with more details about the problem and possible quick fixes (on page 1109) (if available for that issue). Also, when hovering over an issue, pressing F2 will change the focus to the tooltip where you can use Tab and Shift + Tab to navigate between quick fixes and Space to trigger them.

**Details About Validation Issues**

- Information about the issue is also displayed in the message area on the bottom of the editor panel (clicking the « Document checking options » button opens the Document Checking preferences page (on page 180) where you can configure some validation options (such as the colors used to present the validation issues).
- Status messages from every validation action are also logged in the Information view (on page 822).
- If you want to see all the validation messages grouped in the Results panel (on page 357), you should use the Validate action from the toolbar or Document > Validate menu.

**Related Information:**

- Validating XML Documents Against a Schema (on page 1081)
- Presenting Schematron Validation Issues (on page 1464)
Whitespace Handling in Author Mode

When you edit a document in Author mode, Oxygen XML Editor must serialize the resulting document as XML. Oxygen XML Editor serializes the document when you save it or switch to another editing mode. When the document is serialized, Oxygen XML Editor formats and indents the XML document (on page 863) according to the current format and indent settings (on page 157).

Minimizing Whitespace Differences Between Versions

When serializing a document to XML, Author mode will only format and indent those elements of the document that have been edited. Any element that has not been edited will be serialized exactly as it was loaded from disk. This is useful when your content is managed in a version control systems, as it avoids introducing insignificant whitespace differences between version, which in turn makes diff output easier to read.

Entering Whitespace in Author Mode

Oxygen XML Editor controls the entry of whitespace characters in Author mode according the XML whitespace rules (on page 863), which means it will not let you insert insignificant whitespace. This means that it will not let you insert extra line-breaks or spaces inside a typical paragraph element, for instance. (Any such whitespace would be normalized away when the document was serialized to XML, so Oxygen XML Editor is saving you from any surprises when this happens.)

Of course, you will legitimately want to enter additional spaces and returns in some cases, such as code samples. Oxygen XML Editor will allow this in elements that are configured as preserve space elements according to the XML whitespace rules. For all of its built-in document types (on page 1537), Oxygen XML Editor is correctly configured to recognize preserve space elements (on page 160) and to allow you to enter additional spaces in them.

If you are using a built-in document type and you are unable to enter additional whitespace, make sure that you are using an element from that document type that is intended to be a preserve-space element.

If you are using a custom document type, make sure that it is configured correctly (on page 2322) so that Oxygen XML Editor recognizes that the current element is a preserve-space element.

Serialization Options for Author Mode

The Author preferences page (on page 131) (open the Preferences dialog box (Options > Preferences) (on page 79) and go to Editor > Edit modes > Author) includes a Serialization section (on page 134) that contains some options that control how the formatting and indenting is applied when a document is saved in Author mode or when switching from Author to Text mode. It also
includes a **Compatibility with other tools** option *(on page 135)* that controls how line breaks are handled when a document is serialized to help obtain better compatibility with other applications.

**Editing Content in Author Mode**

The **Author** mode includes a large variety of user-friendly authoring features to help you work with XML content, including numerous toolbar, menu, and shortcut actions and some specialized content editing features.

**Undo/Redo Actions**

The typical undo and redo actions are available with shortcuts or in the *Edit* menu:

- **Undo** *(Ctrl + Z (Command + Z on OS X))*
  
  Reverses a maximum of 200 editing actions (configurable with the **Undo history size** option *(on page 126)* in the Editor preferences page) to return to the preceding state.

  **Note:** Complex operations such as **Replace All** or **Indent selection** count as single undo events.

- **Redo** *(Ctrl + Y (Command + Shift + Z on OS X, Ctrl + Shift + Z on Linux/Unix))*
  
  Recreates a maximum of 100 editing actions that were undone by the **Undo** function.

**Copy and Paste Actions**

The typical copying and pasting actions are available with shortcuts or in the contextual menu (or the *Edit* menu):

- **Cut** *(Ctrl + X (Command + X on OS X))*
  
  Removes the current selected content from the document and places it in the clipboard.

- **Copy** *(Ctrl + C (Command + C on OS X))*
  
  Places a copy of the current selected content in the clipboard.

- **Paste** *(Ctrl + V (Command + V on OS X))*
  
  Inserts the current clipboard content into the document at the cursor position.

- **Select All** *(Ctrl + A (Command + A on OS X))*
  
  Selects the entire content of the current document.
Entering Text in Elements

By default, you can only enter text in elements that accept text content. If the element is declared as empty or element only in the associated schema, you are not allowed to insert text in it. Instead, a warning message is displayed.

Figure 112. Editing in empty element warning

To allow text to be inserted in these instances, go to the Schema-Aware preferences page and deselect the Reject action when its result is invalid option in the Typing actions section (on page 139).

Editing Text Content Without Modifying the XML Markup

You can use the options in the Tags Display Mode drop-down menu (on page 441) (available on the toolbar) to control how tags are displayed in Author mode. This can help you to clearly see where the current cursor position is within the tag structure so that you can avoid making unintended modifications to the XML markup. You can also switch to the Grid editing mode (on page 886) to modify text content without affecting the XML tags.

Changing the Font Size (Zoom)

The font size of the editor panel can be changed with the following actions that are available with shortcuts or in the Document > Font size menu:

Increase editor font (Ctrl + NumPad+ (Command + NumPad+ on OS X) or Ctrl + MouseWheelForward (Windows/Linux))

Increases the font size (zooms in) with one point for each execution of the action.

Note: For Mac OS X, if you activate the Enable mouse-wheel zooming option (on page 126) in the Editor preferences page, you can use Command + MouseWheelForward to increase the font size (zoom in). It is disabled by default due to the way inertia affects the mouse wheel on Mac OS X.

Decrease editor font (Ctrl + NumPad- (Command + NumPad- on OS X) or Ctrl + MouseWheelBackwards (Windows/Linux))

Decreases the font size (zooms out) with one point for each execution of the action.
Note: For Mac OS X, if you activate the **Enable mouse-wheel zooming** option (on page 126) in the Editor preferences page, you can use **Command + MouseWheelBackwards** to decrease the font size (zoom out). It is disabled by default due to the way inertia affects the mouse wheel on Mac OS X.

**Normal editor font (Ctrl + 0 (Command + 0 on OS X))**

Resets the font size to the value of the editor font set in the Fonts preferences page (on page 88).

Related Information:

- Editing XML Markup in Author Mode (on page 906)
- Drag and Drop in Author Mode (on page 918)
- Smart Paste Mechanism (on page 918)
- Content Completion Assistant in Author Mode (on page 921)
- Contextual Menu Actions in Author Mode (on page 1065)
- Frequently Used Shortcut Keys (on page 27)

**Editing XML Markup in Author Mode**

Oxygen XML Editor includes some useful actions that allow you to easily edit XML markup in **Author** mode. Most of these actions are available in the contextual menu and some of them have simple keyboard shortcuts.

**Selecting XML Markup in Author Mode**

Selecting XML tags in Oxygen XML Editor is very simple with several methods for selecting entire elements:

- **Breadcrumb** - Click the element (XML tag) on the breadcrumb (on page 907) displayed at the top of the editing window.
- **Outline View** - Click the element name in the **Outline** view (on page 347).
• **Full Tags Mode** - While editing in Full Tags mode (on page 441), click the start or end tag of the element in the editor.

• **Mouse Selection** - While editing in Full Tags mode (on page 441), click before the start tag of the element, drag the selection, and release the mouse button after the end tag.

• **Shift + Arrow Keys** - While editing in Full Tags mode (on page 441), place the cursor before the start tag of the element, press and hold **Shift**, and use the arrow keys to make the selection (including the end tag).

**Note**: If the selection does not include the entire element (for example you do not include the end tag of the element), Oxygen XML Editor will automatically close the appropriate tags when pasting the copied selection. This ensures that the pasted content will always result in well-formed XML (on page 1079).

### Using the Breadcrumb in Author Mode

A *breadcrumb* on the top stripe indicates the path from document root to the current element. It can also be used as a helpful tool to insert and edit specific elements in the document structure.

Figure 113. Breadcrumb in Author Mode

The last element listed in the breadcrumb is the element at the current cursor position. The last element is also highlighted by a thin light blue bar for easier identification. Clicking an element from the breadcrumb selects the entire element in the editor area and each element provides a contextual menu with access to the following actions:

- **Edit Attributes**
  
  Opens the in-place attributes editor (on page 429) that allows you to easily edit the attributes of an element.

- **Edit Profiling Attributes**

  Allows you to select the profiling attributes (on page 969) that apply to a certain element.

- **Append child**

  Opens a content completion list that allows you to select an element to be inserted as a child of the selected element.

- **Insert before**

  Opens a content completion list that allows you to select an element to be inserted (as a sibling) before the selected element.

- **Insert after**
Opens a content completion list that allows you to select an element to be inserted (as a sibling) after the selected element.

☐ Cut

Removes the selected element and copies it to the clipboard, while preserving the styles of the content.

COPY Copy

Copies the selected element to the clipboard, while preserving the styles of the copied content.

COPY Paste

Pastes a well-formed element from the clipboard at currently selected position in the breadcrumb.

Paste before

Insert a well-formed element (from the clipboard) before the currently selected element.

Paste after

Insert a well-formed element (from the clipboard) after the currently selected element.

Paste as XML

Inserts clipboard content that is considered to be well-formed XML content, preserving its XML structure.

☒ Delete

Deletes the currently selected element.

بك Toggle Comment

Encloses the currently selected element in an XML comment, if the element is not commented, or removes the comment if it is commented.

Rename Element

Opens the Rename dialog box that allows you to rename the currently selected element and other elements with the same name.

Tip: The tag names displayed in the breadcrumb can be customized with an Author mode extension class that implements the AuthorBreadCrumbCustomizer API. See the Oxygen SDK for more details.

Move Nodes

You can move XML nodes in the current document by using the following actions in the Refactoring submenu of the contextual menu (or from the Document > Markup menu):
Move Up (Alt + UpArrow)

Moves the current node or selected nodes in front of the previous node.

Move Down (Alt + DownArrow)

Moves the current node or selected nodes after the subsequent node.

Tip: The easiest way to move nodes is to use the Alt + UpArrow and Alt + DownArrow shortcut keys.

Promote/Demote List Item Nodes

You can easily promote or demote selected list item nodes within ordered lists or unordered lists by using the following keyboard shortcuts:

Promote (Shift + Tab)

Promotes an entirely selected list item node to be a sibling of its parent node (the list item is moved to the left). It also works for selections of multiple list item nodes as long as all the selected nodes are siblings (on the same hierarchical level).

Demote (Tab)

Demotes an entirely selected list item node (the list item is moved to the right). It also works for selections of multiple list item nodes as long as all the selected nodes are siblings (on the same hierarchical level).

Join or Split Elements

You can join or split elements in the current document by using the following actions in the Refactoring submenu of the contextual menu (or from the Document > Markup menu):

Join Elements

Joins two adjacent block elements (on page 3280) that have the same name. The action is available only when the cursor position is between the two adjacent block elements. Also, joining two block elements can be done by pressing the Delete or Backspace keys and the cursor is positioned between the boundaries of these two elements.

Tip: Specifically, the Delete or Backspace keys can be used to join block elements in the following situations:

- The cursor is located before the end position of the first element and (Delete) key is pressed.
- The cursor is located after the end position of the first element and (Backspace) key is pressed.
- The cursor is located before the start position of the second element and (Delete) key is pressed.
• The cursor is located after the start position of the second element and (Backspace) key is pressed.

If the element has no sibling or the sibling element has a different name, an Unwrap operation will be performed.

Split Element (Alt + Shift + D (Ctrl + Alt + D on OS X))

Splits the content of the closest element that contains the position of the cursor. Thus, if the cursor is positioned at the beginning or at the end of the element, the newly created sibling will be empty.

Rename Elements

You can rename elements by using the following action in the Refactoring submenu of the contextual menu (or from the Document > Markup menu):

Rename Element

The element from the cursor position, and any elements with the same name, can be renamed according with the options from the Rename dialog box.

Surround Content with Tags (Wrap)

You can surround a selection of content with tags (wrap the content) by using the following action in the Refactoring submenu of the contextual menu (or from the Document > Markup menu):

Surround with Tags (Ctrl + E (Command + E on OS X))

Allows you to choose a tag to enclose a selected portion of content. If there is no selection, the start and end tags are inserted at the cursor position.

• If the Position cursor between tags option (on page 167) is selected in the Content Completion preferences page, the cursor is placed between the start and end tag.
• If the Position cursor between tags option (on page 167) is not selected in the Content Completion preferences page, the cursor is placed at the end of the start tag, in an insert-attribute position.

Surround with [tag] (Ctrl + ForwardSlash (Command + ForwardSlash on OS X))

Surround the selected content with the last tag used.
Unwrap the Content of Elements

You can unwrap the content of an element by using the following action in the Refactoring submenu of the contextual menu (or from the Document > Markup menu):

- **Delete Element Tags**
  Deletes the tags of the closest element that contains the position of the cursor. This operation is also executed if the start or end tags of an element are deleted by pressing the Delete or Backspace keys.

**Tip:** Specifically, the Delete or Backspace keys can be used to unwrap the content of an element in the following situations:

- The cursor is located before the start position of the element and (Delete) key is pressed.
- The cursor is located after the start position of the element and (Backspace) key is pressed.
- The cursor is located before the end position of the element and (Delete) key is pressed.
- The cursor is located after the end position of the element and (Backspace) key is pressed.

If the element has no sibling or the sibling element has a different name, an Unwrap operation will be performed.

Remove Markup from Blocks of Content

You can remove the markup from the current element by highlighting the appropriate block of content and using the following action in the Refactoring submenu of the contextual menu (or from the Document > Markup menu):

- **Remove All Markup**
  Removes all the XML markup inside the selected block of content and keeps only the text content.

**Tip:** You can use the (Delete) or (Backspace) keys to remove markup, in which case the elements in the selected block will be unwrapped or joined with their sibling, or if the current element is empty, the element tags will be deleted.

Remove Text from Selected Markup

You can remove the text from elements by highlighting the appropriate block of content and using the following action in the Refactoring submenu of the contextual menu (or from the Document > Markup menu):

- **Remove Text**
Removes the text content of the selected block of content and keeps the markup intact with empty elements.

**Other Refactoring Actions**

You can also manage the structure of the markup by using the other specific XML refactoring actions that are available in the Refactoring submenu of the contextual menu:

**DITA Refactoring Actions**

A variety of built-in XML refactoring operations that pertain to DITA documents with some of the information preconfigured based upon the current context.

- **Change Topic ID to File Name**
  
  Use this operation to change the ID of a topic to be the same as its file name.

- **Convert CALS Tables to Simple Tables**
  
  Use this operation to convert DITA CALS tables to simple tables. If you invoke this operation from a nested table (a table inside a table), only the nested table will be affected. If it is invoked on a parent table that contains nested tables, all of the contained tables will be converted.

- **Convert conrefs to conkeyrefs**
  
  Use this operation to convert `conref` attributes to `conkeyref` attributes.

- **Convert Simple Tables to CALS Tables**
  
  Use this operation to convert DITA simple tables to CALS tables. If you invoke this operation from a nested table (a table inside a table), only the nested table will be affected. If it is invoked on a parent table that contains nested tables, all of the contained tables will be converted.

- **Convert to Concept**
  
  Use this operation to convert a DITA topic (of any type) to a DITA Concept topic type (for example, Topic to Concept).

- **Convert to General Task**
  
  Use this operation to convert a DITA topic (of any type) to a DITA General Task topic type (for example, Task to General Task). A DITA General Task is a less restrictive alternative to the Strict Task information type.

- **Convert to Reference**
  
  Use this operation to convert a DITA topic (of any type) to a DITA Reference topic type (for example, Topic to Reference).
Convert to Task

Use this operation to convert a DITA topic (of any type) to a DITA Task topic type (for example, Topic to Task).

Convert to Topic

Use this operation to convert a DITA topic (of any type) to a DITA Topic (for example, Task to Topic).

Convert to Troubleshooting

Use this operation to convert a DITA topic (of any type) to a DITA Troubleshooting topic type (for example, Topic to Troubleshooting).

Rename Key

Available when invoked on a key, and can be used to quickly rename a key. It also updates all references to it. Note that it does not work on DITA 1.3 key scopes.

Attributes Refactoring Actions

Contains built-in XML refactoring operations that pertain to attributes with some of the information preconfigured based upon the current context.

Add/Change attribute

Allows you to change the value of an attribute or insert a new one.

Convert attribute to element

Allows you to change an attribute into an element.

Delete attribute

Allows you to remove one or more attributes.

Rename attribute

Allows you to rename an attribute.

Replace in attribute value

Allows you to search for a text fragment inside an attribute value and change the fragment to a new value.

Comments Refactoring Actions

Contains built-in XML refactoring operations that pertain to comments with some of the information preconfigured based upon the current context.

Delete comments

Allows you to delete comments found inside one or more elements.

Elements Refactoring Actions
Contains built-in XML refactoring operations that pertain to elements with some of the information preconfigured based upon the current context.

**Delete element**
Allow you to delete elements.

**Delete element content**
Allow you to delete the content of elements.

**Insert element**
Allows you to insert new elements.

**Rename element**
Allows you to rename elements.

**Unwrap element**
Allow you to remove the surrounding tags of elements, while keeping the content unchanged.

**Wrap element**
Allow you to surround elements with element tags.

**Wrap element content**
Allow you to surround the content of elements with element tags.

**Fragments Refactoring Actions**
Contains built-in XML refactoring operations that pertain to XML fragments with some of the information preconfigured based upon the current context.

**Insert XML fragment**
Allow you to insert an XML fragment.

**Replace element content with XML fragment**
Allow you to replace the content of elements with an XML fragment.

**Replace element with XML fragment**
Allow you to replace elements with an XML fragment.

Related Information:

- Editing Content in Author Mode *(on page 903)*
- Displaying the Markup *(on page 441)*
Editing Attributes in Author Mode

You can easily edit attributes in **Author** mode by using the Attributes View (on page 426) and Oxygen XML Editor also allows you to edit attribute and element values in-place, directly in the **Author** mode, using an in-place attribute editor.

**In-place Attributes Editor**

Oxygen XML Editor includes an in-place attributes editor in **Author** mode. To edit the attributes of an XML element in-place, do one of the following:

- Select an element or place the cursor inside it and then press the **Alt + Enter** keyboard shortcut.
- Double-click any named start tag when the document is edited in one of the following display modes. (on page 441): Full Tags with Attributes, Full Tags, Block Tags, or Inline Tags.

This opens an in-place attributes editor that contains the same content as the Attributes view. By default, this editor presents the **Name** and **Value** fields, with the list of all the possible attributes collapsed.

Figure 114. In-place Attributes Editor

![Name Combo Box](image)
Use this combo box to select an attribute. The drop-down list displays the list of possible attributes allowed by the schema of the document, as in the Attributes view.

**Value Combo Box**

Use this combo box to add, edit, or select the value of an attribute. If the selected attribute has predefined values in the schema, the drop-down list displays those possible values. You can use the Browse button to select a URL for the value of an attribute. You can also press Ctrl + Space to open a content completion window that offers a list of possible choices and allows you to select multiple values.

**Note:** For built-in frameworks, if the selected attribute in the Name field is an @id attribute, the Browse button is replaced by a Generate Unique ID Value button. Clicking this button will automatically generate a unique ID for the selected element.

If you click More while in the collapsed version, it is expanded to the full version of the in-place attribute editor.

Figure 115. In-place Attributes Editor (Full Version)

The full version includes a table grid, similar to the Attributes view, that presents all the attributes for the selected element.

**Note:** If the cursor is located inside read-only content, the attribute names and values are faded and you cannot add, edit, or remove values.

**Related Information:**

- Attributes View in Author Mode (on page 426)
Folding XML Elements in Author Mode

When working with a large document, the folding (on page 3282) support in Oxygen XML Editor can be used to collapse some element content leaving only the parts that you need to edit in focus. Expanding and collapsing works on individual elements. Expanding an element leaves the child elements unchanged.

Figure 116. Folding of XML Elements in Author Mode

The fact that the folds are persistent is a unique feature of Oxygen XML Editor, meaning the next time you open the document the folds are restored to its last state.

Folding Actions in Author Mode

Foldable elements (on page 3282) are marked with a small triangle (折叠/ 展开) on the left side of the editor panel. If you hover over that arrow, the entire content of the element is highlighted by a dotted border for quick identification of the foldable area. To toggle the fold, simply click the icon. Also, the following actions are available in the Folding sub-menu of the contextual menu or from the Document > Folding menu:

- **Toggle Fold** (or you can simply click on the折叠/ 展开 arrow)
  
  Toggles the state of the current fold.

- **Collapse Other Folds** (Ctrl + NumPad/ (Command + NumPad/ on OS X))
  
  Folds all the elements except the current element.

- **Collapse Child Folds** (Ctrl + NumPad. (Command + NumPad. on OS X))
  
  Folds the child elements that are indented one level inside the current element.

- **Expand Child Folds**
  
  Unfolds all child elements of the currently selected element.

- **Expand All** (Ctrl + NumPad* (Command + NumPad* on OS X))
  
  Unfolds all elements in the current document.

For more information about the folding support in Oxygen XML Editor, watch our video demonstration:

https://www.youtube.com/embed/eR9HfN_peAE
Drag and Drop in Author Mode

The Oxygen XML Editor Author mode includes support for dragging and dropping content in XML documents.

When editing content in Author mode, entire sections or chunks of data can be moved or copied by using the drag and drop feature. The following situations can be encountered:

- When both of the drag and drop sources are from the Author mode editor, a well-formed XML fragment is transferred. The section is balanced before dropping it by adding matching tags when needed.
- When the drag source is from the Author mode editor but the drop target is a text-based editor, only the text inside the selection is transferred as it is.
- The text dropped from another text editor or another application into the Author mode editor is inserted without changes.

Smart Paste Mechanism

The Author editing mode includes a Smart Paste feature that preserves certain style and structure information when copying content and pasting it into document types that support the feature. You can copy content from various sources, including web pages, external applications (such as Office-type applications), or other document types within Oxygen XML Editor, and then paste it into DITA, TEI, DocBook, JATS, and XHTML documents. Oxygen XML Editor preserves the original text styling (such as bold, italics, underline) and formatting (such as lists, tables, paragraphs) and considers various pasting solutions to keep the resulting document valid.

The styles and general layout of the pasted content are converted to the equivalent XML markup for the target document type while preserving certain style and structure information. For example, if you copy content that includes multiple paragraphs and then paste it in Author mode, the multiple paragraph structure is preserved. If you paste the content in a location where the resulting XML would
not be valid, Oxygen XML Editor will attempt to place it in a valid location, and may prompt you with one or more choices for where to place it.

Tip: When pasting text fragments formatted with the *Courier New* font, the *Smart Paste* mechanism will wrap it in an inline code element (for example, in DITA it would be wrapped in a `codeph` element).

**Smart Paste Options**

By default, the *Smart Paste* feature is enabled in Oxygen XML Editor. There are several options in the *Schema Aware* preferences page (on page 137) that control the *Smart Paste* mechanism:

- **Smart paste and drag and drop** (on page 138) - This option determines whether or not Oxygen XML Editor will try to find an appropriate insert position when the current location is not valid for the pasted content. This option is selected by default.

- **Reject action when its result is invalid** (on page 139) - If you select this option, Oxygen XML Editor will not let you paste content into a position where it would be invalid. This option is deselected by default.

- **Convert external content on paste** (on page 140) - This option determines whether or not Oxygen XML Editor will convert the styling and formatting of copied content from external sources when pasting it into a document type that supports the feature. This option is selected by default.

- **Convert even when pasting inside space-preserve elements** (on page 140) - If you select this option, the *Smart Paste* feature will also work when pasting external content into a *space-preserve* element (such as a `codeblock`). This option is deselected by default.

**Smart Paste Supported Document Types**

The *Smart Paste* feature is supported for the following document types (*frameworks* (on page 3282)):

- DITA
- DocBook 4
- DocBook 5
- TEI
- XHTML
- JATS

For more information about the *Smart Paste* support, watch our video demonstration:

[https://www.youtube.com/embed/bpiXZQwzBfA](https://www.youtube.com/embed/bpiXZQwzBfA)
Selecting Content in Author Mode

Oxygen XML Editor includes a variety of keyboard shortcuts that allow you to easily select content in Author mode.

Selection Shortcuts in Author Mode

- **Ctrl + A (Meta + A on Mac OS X)**
  Selects all content in the document.

- **Shift + Left/Right Arrow Keys**
  Begins a continuous selection at the cursor position and extends it one character at a time in the direction that you press the arrow keys.

- **Shift + Up/Down Arrow Keys**
  Begins a continuous selection at the cursor position and extends it one line at a time in the direction that you press the arrow keys.

- **Ctrl + Shift + Left/Right Arrow Keys (Meta + Shift + Left/Right Arrow Keys on Mac OS X)**
  Begins a continuous selection at the cursor position and extends it one word at a time in the direction that you press the arrow keys.

- **Shift + Home**
  Begins a continuous selection at the cursor position and extends it to the beginning of the current line (on Mac OS X, it extends to the beginning of the document).

- **Shift + End**
  Begins a continuous selection at the cursor position and extends it to the end of the current line (on Mac OS X, it extends to the end of the document).

- **Ctrl + Shift + Home**
  Begins a continuous selection at the cursor position and extends it to the beginning of the document.

- **Ctrl + Shift + End**
Begins a continuous selection at the cursor position and extends it to the end of the document.

**Shift + PageUp**

Begins a continuous selection at the cursor position and extends it up one screen page.

**Shift + PageDown**

Begins a continuous selection at the cursor position and extends it down one screen page.

**Double-Click**

Selects the word at the cursor position.

**Triple-Click**

Selects the node at the cursor position.

**Right-Click > Select > Element**

Selects the entire element at the current cursor position.

**Right-Click > Select > Content**

Selects the entire content of the element at the current cursor position, excluding the start and end tag. Performing this action repeatedly will result in the selection of the content of the ancestor of the currently selected element content.

**Right-Click > Select > Parent**

Selects the entire parent element at the current cursor position.

Content Completion Assistant in Author Mode

One of the most useful features in **Author** mode is the *Content Completion Assistant (on page 3280)*. It offers a list of elements, attributes, attribute values, and other options that are valid in the current editing context.

Figure 117. Content Completion Assistant in Author Mode
The Content Completion Assistant is enabled by default. To disable it, open the Preferences dialog box (Options > Preferences) (on page 79), go to Editor > Content Completion, and deselect the Enable content completion option (on page 167).

Using the Content Completion Assistant in Author Mode

To activate the feature in Author mode, use any of the following shortcut keys:

- Enter
- Ctrl + Space (Command + Space on OS X)
- Alt + ForwardSlash (Command + Alt + ForwardSlash on OS X)

You can navigate through the list of proposals by using the Up and Down keys on your keyboard. In some cases, the Content Completion Assistant displays a documentation window with information about the particular proposal and some of them have links to additional information (for example, DITA elements might have a link to the DITA Style Guide). You can use Tab and Shift + Tab to navigate to those links and Space to trigger them. You can also change the size of the documentation window by dragging its top, right, and bottom borders.

To insert the selected proposal in Author mode, simply press Enter.

Types of Proposals Listed in the Content Completion Assistant

The Content Completion Assistant offers the following types of proposed actions depending on the current context:

- Insert allowed elements for the current context schema and the list of proposals contains elements depending on the elements inserted both before and after the cursor position.
- Insert element values if such values are specified in the schema for the current context.
- Insert new undeclared elements by entering their name in the text field.
- Insert CDATA sections, comments, processing instructions.
- Insert code templates (on page 855).
- If invoked on a selection that only contains an element start or end tag (remember that you can see all element tags while working in Full Tags mode (on page 441)), it will allow you to rename the element.
- If invoked on a selection of multiple elements or other content, it will allow you to surround the content with certain tags.
- If invoked on an empty list item that is the last element of the list, it will allow you to convert the list item to a paragraph.
- If the Show all possible elements in the content completion list option from the Schema-Aware preferences page (on page 139) is selected, the content completion pop-up window will
present all the elements defined by the schema. When choosing an element from this section, the insertion will be performed using the schema-aware smart editing features.

**Note:** By default, you are not allowed to insert element names that are not defined by the schema. This can be changed by deselecting the *Allow only insertion of valid elements and attributes* check box from the *Schema-Aware* preferences page (on page 139).

### Examples of How the Content Completion Assistant Works

To illustrate how the feature works, consider the following examples of invoking the *Content Completion Assistant* in certain contexts:

- If the cursor is positioned at the beginning or at the end of the element, the first item offered in the *Content Completion Assistant* is a *New <Element>* item. Selecting this item will insert an empty element.

  Figure 118. Example (New [Element Name])

- If the cursor is positioned somewhere inside the element, the first entry in the *Content Completion Assistant* is a *Split <Element>* item. In most cases, you can only split the closest *block element (on page 3280)* to the cursor position, but if it is inside a list item, the list item will also be proposed for split. Selecting *Split <Element>* splits the content of the specified element around the cursor position.

  Figure 119. Example (Split [Element Name])

- If the cursor is positioned inside a *space-preserved element (on page 3287)* (for example, a *codeblock*), the first choice in the *Content Completion Assistant* is *Enter*, which will insert a new line in the content of the element, followed by *New <Element>*.

  Figure 120. Example (‘ENTER’ New Line)
• If invoked on a selection that only contains an element start or end tag (remember that you can see all element tags while working in Full Tags mode (on page 441)), it will allow you to rename the element.

Figure 121. Example (Rename)

• If invoked on a selection of multiple elements or other content, it will allow you to surround the content with certain tags.

Figure 122. Example (Surround)

Related Information:

• Customizing the Content Completion Assistant (on page 2352)

Set the Schema to be Used for Content Completion

The proposals that are presented in the Content Completion Assistant (on page 3280) depend on the associated schemas. The DTD, XML Schema, Relax NG, or NVDL schema used to populate the Content Completion Assistant is specified in the following methods, in the order of their precedence:
• The schema specified explicitly in the document (on page 1120). In this case, Oxygen XML Editor reads the beginning of the document and resolves the location of the DTD, XML Schema, Relax NG schema, or NVDL schema.

• The default schema declared (on page 1121) in the Schema tab of the Document Type configuration dialog box (on page 99) for the particular document type.

Schema Annotations in Author Mode

A schema annotation is a documentation snippet associated with the definition of an element or attribute in a schema. If such a schema is associated with an XML document, the annotations are displayed in the Content Completion Assistant (on page 3280).

Figure 123. Schema Annotation in the Content Completion Assistant

The schema annotations support is available if the schema type is one of the following:

• XML Schema
• Relax NG
• NVDL schema
• DTD

This feature is enabled by default, but you can disable it by deselecting the Show annotations in Content Completion Assistant (on page 171) option in the Annotations preferences page.

Styling Annotations with HTML

You can use HTML format in the annotations you add in an XML Schema or Relax NG schema. This improves the visual appearance and readability of the documentation window displayed when editing XML documents validated against such a schema. An annotation is recognized and displayed as HTML if it contains at least one HTML element (such as div, body, p, br, table, ul, or ol).

The HTML rendering is controlled by the Show annotations using HTML format, if possible (on page 172) option in the Annotations preferences page. When this option is deselected, the annotations are converted and displayed as plain text and if the annotation contains one or more HTML tags (p, br, ul, li), they are rendered as an HTML document loaded in a web browser. For example, p begins
a new paragraph, \texttt{br} breaks the current line, \texttt{ul} encloses a list of items, and \texttt{li} encloses an item of the list.

### Collecting Annotations from XML Schemas

In an XML Schema, the annotations are specified in an \texttt{<xs:annotation>} element like this:

\begin{verbatim}
<xs:annotation>
    <xs:documentation>
        Description of the element.
    </xs:documentation>
</xs:annotation>
\end{verbatim}

If an element or attribute does not have a specific annotation, then Oxygen XML Editor looks for an annotation in the type definition of that element or attribute.

### Collecting Annotations from Relax NG Schemas

For Relax NG schema, element and attribute annotations are made using the \texttt{<documentation>} element from the \texttt{http://relaxng.org/ns/compatibility/annotations/1.0} namespace like this:

\begin{verbatim}
<define name="person">
    <element name="person">
        <a:documentation xmlns:a="http://relaxng.org/ns/compatibility/annotations/1.0">
            Information about a person.
        </a:documentation>
        <ref name="name"/>
        <zeroOrMore>
            <ref name="email"/>
        </zeroOrMore>
    </element>
</define>
\end{verbatim}

However, any element outside the Relax NG namespace (\texttt{http://relaxng.org/ns/structure/1.0}) is handled as annotation and the text content is displayed in the annotation window. To activate this behavior, select the \textbf{Use all Relax NG annotations as documentation} (on page 172) option in the \textbf{Annotations} preferences page.

### Collecting Annotations from Relax NG Compact Syntax Schemas

For Relax NG Compact Syntax schema, annotations are made using comments like this:

\begin{verbatim}
## Information about a person.

element person { name, email*}
\end{verbatim}
Collecting Annotation from DTDs

For DTD, Oxygen XML Editor defines a custom mechanism for annotations using comments enabled by the **Prefer DTD comments that start with "doc:" as annotations** (on page 171) option in the Annotations preferences page. The following is an example of a DTD annotation:

```xml
<!--doc:Description of the element. -->
```

**Related Information:**

- Customizing the Rendering of Elements (on page 2364)
- Customizing Annotations in the Content Completion Assistant (on page 2369)

Content Completion Helper Views

Information about the current element being edited is also available in various dockable (on page 3281) views, such as the Model view (on page 353), Attributes view (on page 351), Elements view (on page 355), and Entities view (on page 356). By default, they are located on the right-hand side of the main editor window. These views, along with the powerful Outline view (on page 347), provide spatial and insight information about the edited document and the current element. If any particular view is not displayed, it can be opened by selecting it from the Window > Show View menu.

**Model View**

The Model view presents the structure of the currently selected tag, and its documentation, defined as annotation in the schema of the current document. By default, it is located on the right side of the editor. If the view is not displayed, it can be opened by selecting it from the Window > Show View menu.

Figure 124. Model View
The **Model** view is comprised of two sections, an element structure panel and an annotations panel.

**Element Structure Panel**

The element structure panel displays the structure of the currently edited or selected tag in a tree-like format. The information includes the name, model, and attributes of the current tag. The allowed attributes are shown along with imposed restrictions, if any.

**Figure 125. Element Structure Panel**
Annotation Panel

The Annotation panel displays the annotation information for the currently selected element. This information is collected from the XML schema.

Figure 126. Annotation panel

Attributes View in Author Mode

The Attributes view presents all the attributes of the current element determined by the schema of the document. By default, it is located on the right side of the editor. If the view is not displayed, it can be opened from the Window > Show View menu.

You can use this view to edit or add attribute values. The attributes of an element are editable if any one of the following is true:

- The CSS stylesheet associated with the document does not specify a false value for the -oxy-editable (on page 2515) property associated with the element.
- The element is entirely included in a deleted Track Changes (on page 942) marker.
- The element is part of a content fragment that is referenced in Author mode from another document.

The attributes are rendered differently depending on their state:

- The names of the attributes are rendered with a bold font, and their values with a plain font.
- Default values are rendered with a plain font, painted gray.
- Empty values display the text "[empty]", painted gray.
- Invalid attributes and values are painted red.

To edit the value of the corresponding attribute, double-click a cell in the Value column. If the possible values of the attribute are specified as list in the schema of the edited document, the Value column acts as a combo box that allows you to either select the value from a list or manually enter it.

Note: If the cursor is located inside read-only content, the attribute names and values are faded and you cannot add, edit, or remove values.
You can sort the attributes table by clicking the **Attribute** column header. The table contents can be sorted as follows:

- By attribute name in ascending order.
- By attribute name in descending order.
- Custom order, where the used attributes are displayed at the beginning of the table sorted in ascending order, followed by the rest of the allowed elements sorted in ascending order.

**Figure 127. Attributes View**

A drop-down list located in the upper part of the view allows you to select the current element or its ancestors.

**Expand/Collapse Button**

There is an Expand/Collapse (↑/↓) button at the top-right of the view. When expanded, this presents the following additional combo boxes:

**Name Combo Box**

Use this combo box to select an attribute. The drop-down list displays the list of possible attributes allowed by the schema of the document, as in the **Attributes** view.

You can use the **Remove** button to delete an attribute and its value from the selected element.

**Value Combo Box**

Use this combo box to add, edit, or select the value of an attribute. If the selected attribute has predefined values in the schema, the drop-down list displays those possible values. You can use the **Browse** button to select a URL for the value of an attribute. You can also press **Ctrl + Space** to open a content completion window that offers a list of possible choices and allows you to select multiple values. After you have
entered or selected a value, use the Update button (or press Enter) to add the value to the attribute.

Note: For built-in frameworks, if the selected attribute in the Name field is an @id attribute, the Browse button is replaced by a Generate Unique ID Value button. Clicking this button will automatically generate a unique ID for the selected element.

Contextual Menu Actions in the Attributes View

The following actions are available in the contextual menu of the Attributes view when editing in Author mode:

Set empty value

Specifies the current attribute value as empty.

Remove

Removes the attribute (action available only if the attribute is specified). You can invoke this action by pressing the (Delete) or (Backspace) keys.

Copy

Copies the attrName="attrValue" pair to the clipboard. The attrValue can be:

- The value of the attribute.
- The value of the default attribute, if the attribute does not appear in the edited document.
- Empty, if the attribute does not appear in the edited document and has no default value set.

Paste

Depending on the content of the clipboard, the following cases are possible:

- If the clipboard contains an attribute and its value, both of them are introduced in the Attributes view. The attribute is selected and its value is changed if they exist in the Attributes view.
- If the clipboard contains an attribute name with an empty value, the attribute is introduced in the Attributes view and you can start editing it. The attribute is selected and you can start editing it if it exists in the Attributes view.
- If the clipboard only contains text, the value of the selected attribute is modified.
In-place Attributes Editor

Oxygen XML Editor includes an in-place attributes editor in Author mode. To edit the attributes of an XML element in-place, do one of the following:

- Select an element or place the cursor inside it and then press the Alt + Enter keyboard shortcut.
- Double-click any named start tag when the document is edited in one of the following display modes. (on page 441): Full Tags with Attributes, Full Tags, Block Tags, or Inline Tags.

This opens an in-place attributes editor that contains the same content as the Attributes view. By default, this editor presents the Name and Value fields, with the list of all the possible attributes collapsed.

![In-place Attributes Editor](image)

**Name Combo Box**

Use this combo box to select an attribute. The drop-down list displays the list of possible attributes allowed by the schema of the document, as in the Attributes view.

**Value Combo Box**

Use this combo box to add, edit, or select the value of an attribute. If the selected attribute has predefined values in the schema, the drop-down list displays those possible values. You can use the Browse button to select a URL for the value of an attribute. You can also press Ctrl + Space to open a content completion window that offers a list of possible choices and allows you to select multiple values.

**Note:** For built-in frameworks, if the selected attribute in the Name field is an @id attribute, the Browse button is replaced by a Generate Unique ID Value button. Clicking this button will automatically generate a unique ID for the selected element.

If you click More while in the collapsed version, it is expanded to the full version of the in-place attribute editor.

![In-place Attributes Editor (Full Version)](image)
The full version includes a table grid, similar to the Attributes view, that presents all the attributes for the selected element.

Elements View in Author Mode

The Elements view presents a list of all defined elements that are valid at the current cursor position according to the schema associated to the document. By default, it is located on the right side of the editor. If the view is not displayed, it can be opened by selecting it from the Window > Show View menu.

The upper part of the view features a combo box that contains the ordered ancestors of the current element. Selecting a new element in this combo box updates the list of the allowed elements. By default, only the elements that are allowed at the current cursor position are listed. However, if the Show only items allowed at cursor position option (on page 260) is not selected in the Views preferences page (on page 259), two additional tabs (Before and After) will be displayed at the bottom of the view and they list elements that are allowed before or after the element at the current cursor position.

Double-clicking any of the listed elements inserts that element into the edited document and its position depends on the tab.

- **Cursor** tab - Double-clicking an element inserts it at the current cursor position.
- **Before** tab - Double-clicking an element inserts it before the element at the cursor position.
- **After** tab - Double-clicking an element inserts it after the element at the cursor position.

Pressing F2 with an element selected will display information about that particular element.

Figure 130. Elements View in Author Mode
Entities View

Entities provide abbreviated entries that can be used in XML files when there is a need of repeatedly inserting certain characters or large blocks of information. An entity is defined using the ENTITY statement either in the DOCTYPE declaration or in a DTD file associated with the current XML file.

There are three types of entities:

- **Predefined** - Entities that are part of the predefined XML markup (`&lt;`, `&gt;`, `&amp;`, `&apos;`, `&quot;`).
- **Internal** - Defined in the DOCTYPE declaration header of the current XML.
- **External** - Defined in an external DTD module included in the DTD referenced in the XML DOCTYPE declaration.

**Note:** If you want to add internal entities, you would need to switch to the Text editing mode and manually modify the DOCTYPE declaration. If you want to add external entities, you need to open the DTD module file and modify it directly.

The Entities view displays a list with all entities declared in the current document, as well as built-in ones. By default, it is located on the right side of the editor. If the view is not displayed, it can be opened by selecting it from the Window > Show View menu.

Double-clicking one of the entities will insert it at the current cursor position in the XML document. You can also sort entities by name and value by clicking the column headers.

Figure 131. Entities View
The view features a filtering capability that allows you to search an entity by name, value, or both. Also, you can choose to display the internal or external entities.

Note: When entering filters, you can use the ? and * wildcards. Also, you can enter multiple filters by separating them with a comma.

Code Templates

Code templates are code fragments that can be inserted quickly at the current editing position. Oxygen XML Editor includes a set of built-in code templates for CSS, LESS, Schematron, XSL, XQuery, JSON, and XML Schema document types. You can also define your own code templates for any type of file and share them with others.

Code templates are displayed with a .tm symbol in the content completion list (Enter in Author mode or Ctrl + Space (Command + Space on OS X) in Text mode). Also, in Text mode you can press Ctrl + Shift + Space to see a complete list of the available code templates. To enter the code template at the cursor position, select it from the content completion list or type its code and press Enter. If a shortcut key has been assigned to the code template, you can also use the shortcut key to enter it.

How to Create Code Templates

To create a code template, follow these steps:

1. Open the Preferences dialog box (Options > Preferences) (on page 79) and go to Editor > Templates > Code Templates.
2. Click New to open a code template configuration dialog box.
Tip: You can use one of the existing code templates as a starting point by selecting that template and clicking **Duplicate**.

Figure 132. Code Template Configuration Dialog Box

3. Configure your template using the fields in the code template configuration dialog box:

   - **Name** - The name of the code template.
   - **Description** - [Optional] The description of the code template that will appear in the **Code Templates** preferences page and in the tooltip message when selecting it from the **Content Completion Assistant (on page 3280)**. HTML markup can be used for better rendering.
   - **Associate with** - You can choose to set the code template to be associated with a specific type of editor or for all editor types.
   - **Shortcut key** - [Optional] If you want to assign a shortcut key that can be used to insert the code template, place the cursor in the **Shortcut key** field and press the desired key combination on your keyboard. Use the **Clear** button if you make a mistake. If the **Enable platform-independent shortcut keys** checkbox is selected, the shortcut is platform-independent and the following modifiers are used:
     - M1 represents the **Command** key on MacOS X, and the **Ctrl** key on other platforms.
     - M2 represents the **Shift** key.
     - M3 represents the **Option** key on MacOS X, and the **Alt** key on other platforms.
     - M4 represents the **Ctrl** key on MacOS X, and is undefined on other platforms.
   - **Content** - Text box where you define the content that is used when the code template is inserted. An **editor variable (on page 276)** can be inserted in the text box using the **Insert Editor Variables** button.

4. Click **OK** to save your new code template.

**Result**: Your code template can now be selected using the **Content Completion Assistant (on page 3280)** (**Enter** in **Author** mode or **Ctrl + Space (Command + Space on OS X)** in **Text** mode). The code templates are displayed with a ✨ symbol.
How to Share Code Templates

There are two ways to easily share all of your code templates with other members of your team:

**Method 1: Export/Import**

1. Open the **Preferences** dialog box (**Options > Preferences** *(on page 79)*) and go to **Editor > Templates > Code Templates**.
2. Click the **Export** button to export all of your code templates into an XML file.
3. Save the XML file.
4. Share the XML file with other members of your team.
5. Instruct them to open the **Preferences** dialog box (**Options > Preferences**) *(on page 79)*, go to **Editor > Templates > Code Templates**, click the **Import** button, and select the file you sent them.

**Result:** The code templates will be now available in their content completion list.

**Method 2: Share Project**

1. Open the **Preferences** dialog box (**Options > Preferences**) *(on page 79)* and go to **Editor > Templates > Code Templates**.
2. Select **Project Options** at the bottom of the dialog box. This stores the preferences in the project file (`.xpr`).
3. Share the project file with the other members of your team. For example, you can commit it to your version control system and have them update their working copy.

**Result:** When they open the updated project file in their **Project view** *(on page 333)*, the code templates will be available in their content completion list.

**Tip:** It is also possible to configure certain actions that function similar to code templates and add them to the content completion list *(on page 2352)* for a particular framework. You could then share the whole framework *(on page 2371)* with other members of your team.

Finding and Replacing Text

You can search for a specific word or string of characters using the following features:

- **Find/Replace** dialog box *(on page 740)*
- **Find/Replace in Files** dialog box *(on page 745)*
- **Quick Find** toolbar *(on page 752)*
- **Find all Elements** dialog box *(on page 751)*
Complex search operations may take some time to complete. If a search operation takes more than 5 seconds, you are prompted to decide whether you want to continue the operation or stop it.

Reviewing Documents

Oxygen XML Editor includes a variety of helpful review tools that improve your ability to collaborate with other members of your team, track changes, mark content for various reasons, add comments in your content, and to manage the review features.

Tracking Document Changes

The Track Changes feature (on page 3288) is a way to keep track of the changes you make in a document. The Track Changes feature highlights changes that you make to the content in a document, as well as changes to attributes. Changes can be tracked for insertions and deletions. When the Track Changes feature is activated (on page 944), insertions are rendered in Author mode with an underline while deletions are rendered with a strike through.

The tracked changes are also displayed in the Review view (on page 964) and you can also choose to present the changes in callouts (on page 958) by selecting the Track Changes Deletions (on page 144) and Track Changes Insertions (on page 144) options in the Callouts preferences page (on page 143).

Adding Comments in Documents

You can associate a comment to a selected area of content. Comments can highlight virtually any content from your document, with the exception of read-only text. The difference between using comments and change tracking is that a comment can be associated to an area of text without modifying or deleting the text.

Comments are presented in callouts (on page 958) with persistent highlights and a colored background. The background color is assigned automatically by the application, but it can also be customized from the Review preferences page (on page 140).

Highlighting Content

Oxygen XML Editor includes a highlighting feature that allows you to create digital markers to emphasize important fragments of your documents. This is especially useful when you want to mark content that needs additional work or the attention of others.
Using the Review View

Oxygen XML Editor includes a Review view (on page 964) that provides a simplified way of monitoring all the insertions, deletions, comments, and highlights in an XML document. This handy tool is especially useful for large teams that need to gather and manage all the edits from all team members who are working on the same project.

The Review view is also useful for managing tracked changes and comments in a single panel. In this view, the changes and comments are presented in a compact form, in the order they appear in the document, and they are synchronized with the changes and comments in the main editing area.

You can use this view to quickly navigate through changes, accept or reject them, or to view and manage comments or highlights. You can also search for specific changes or comments and it includes some filtering options (for example, you can filter it to only show certain types of edits or to only show edits for a particular author).

Printing Review Information

When you print a document from Author mode, whatever review information is shown in the main editing area will be included in the printed output. For example, tracked changes will be included and as long as the Comments option (on page 143) is selected in the Callouts preferences page (on page 143), comment callouts will also be included (same with tracked change callouts if their corresponding options are selected in the Callouts preferences page (on page 143).

Managing Tracked Changes

Oxygen XML Editor includes a Track Changes feature (on page 3288) that allows you to review changes that you or other authors have made and then accept or reject them. You can also manage the visualization mode of the tracked changes, add comments to changes, and mark them as being done. These actions are easily accessible from contextual menus, the toolbar, or the Review view (on page 964).

The Track Changes feature is also able to keep track of changes you make to attributes in a document and the changes are presented in the Review view (on page 964) and Attributes view (on page 426).

Types of Tracked Changes

The types of tracked changes include:

- Inserting, deleting content (text or elements)
- Drag and drop content (text or elements)
• Cutting or pasting content (text or elements)
• Inserting, deleting, and changing the structure of tables
• Inserting and editing lists and their content
• Inserting and deleting entities
• Inserting and deleting element tags
• Editing attributes
• Performing a Split operation
• Performing a Surround with operation
• Changes in referenced content (for example, XInclude fragments or DITA conrefs)

⚠️ **Important:** If you copy content in **Author** mode that contains tracked changes, the changes will automatically be accepted prior to the content being copied to the clipboard. This filtering is performed only if the selection is not entirely inside a tracked change.

**Activating the Change Tracking Feature**

To activate the **Track Changes** feature for the current document, use any of the following methods:

- Click the 💰 **Track Changes** button on the toolbar.
- Select 🍇 **Track Changes** from the **Review** submenu of the contextual menu in the main editing area in **Author** mode.
- Select 🍇 **Track Changes** from the **Edit > Review** menu.

To activate the **Track Changes** feature globally for all documents that you open in Oxygen XML Editor, change the **Initial State** option to **Always On** (on page 141) in the **Review** preferences page (on page 140).

**Rendering Tracked Changes in Author Mode**

When **Track Changes** (on page 3288) is enabled, your modifications are highlighted using a distinctive color. The colors can be customized from the **Review preferences page** (on page 140), along with the name of the author and the initial state of the feature when you open a document. Insertions are rendered with an underline while deletions are rendered with a strike through.

Figure 133. Change Tracking in Author Mode
When hovering over a change a tooltip displays information about the author and modification time.

**Change Tracking Contextual Menu Actions**

You can right-click any change in **Author** mode to access the following contextual menu actions:

- **Accept Change(s)**

  Accepts the *Tracked Change* (on page 3288) located at the cursor position or all of the changes in a selection. If you select a part of a *deletion* or *insertion* change, only the selected content is accepted. If you select multiple changes, all of them are accepted. For an *insertion* change, it keeps the inserted text and for a *deletion* change, it removes the content from the document.

- **Reject Change(s)**

  Rejects the *Tracked Change* (on page 3288) located at the cursor position or all of the changes in a selection. If you select a part of a *deletion* or *insertion* change, only the selected content is rejected. If you select multiple changes, all of them are rejected. For an *insertion* change, it removes the inserted text and for a *deletion* change, it preserves the original content.

- **Comment Change**

  Opens a dialog box that allows you to add a comment to an existing *Tracked Change* (on page 3288). The comment will appear in a callout and a tooltip when hovering over the change. If the action is selected on an existing commented change, the dialog box will allow you to edit the comment.
Change Tracking Toolbar Actions

By default, the toolbar includes the following actions and options for reviewing or tracking changes (on page 3288) (similar actions are also available in the Edit > Review menu and the Review submenu of the contextual menu):

_track_changes_actions

- **Track Changes**
  Enables or disables the Track Changes (on page 3288) support for the current document.

- **Accept Change(s) combo box**
  This combo box is both a button and a drop-down menu that includes the following actions (when you select an action from the drop-down menu, that action becomes the default action for the combo box button):

  - **Accept Change(s) and Move to Next** - Accepts the Tracked Change (on page 3288) located at the cursor position or all of the changes in a selection and then moves to the next change. If you select a part of a deletion or insertion change, only the selected content is accepted.
  - **Accept Change(s)** - Accepts the Tracked Change (on page 3288) located at the cursor position or all of the changes in a selection.
  - **Accept All Changes** - Accepts all Tracked Changes (on page 3288) in the current document.

  **Tip:** You can assign shortcut keys (on page 248) for these actions to make it easier to access them.

- **Reject Change(s) combo box**
  This combo box is both a button and a drop-down menu that includes the following actions (when you select an action from the drop-down menu, that action becomes the default action for the combo box button):

  - **Reject Change(s) and Move to Next** - Rejects the Tracked Change (on page 3288) located at the cursor position or all of the changes in a selection and then moves to the next change. If you select a part of a deletion or insertion change, only the selected content is rejected.
  - **Reject Change(s)** - Rejects the Tracked Change (on page 3288) located at the cursor position or all of the changes in a selection.
  - **Reject All Changes** - Rejects all Tracked Changes (on page 3288) in the current document.
Tip: You can assign shortcut keys (on page 248) for these actions to make it easier to access them.

Comment Change

Opens a dialog box that allows you to add a comment to an existing Tracked Change (on page 3288). The comment will appear in a callout and a tooltip when hovering over the change. If the action is selected on an existing commented change, the dialog box will allow you to edit the comment.

- Track Changes Visualization Modes Drop-Down Menu

This drop-down menu includes specialized actions that allow you to switch between the following visualization modes:

- **View All Changes/Comments** - This mode is active by default. When you use this mode, all tracked changes are represented in the Author mode.

- **View only Changes/Comments by** - Only the tracked changes made by the author you select are presented.

- **View Final** - This mode offers a preview of the document as if all tracked changes (both inserted and deleted) were accepted.

- **View Original** - This mode offers a preview of the document as if all tracked changes (both inserted and deleted) were rejected. If you attempt to edit the document in this mode, the view mode will switch to View All Changes/Comments.

Note: If you use **View Final** mode and **View Original** mode, callouts (on page 3280) are not displayed for comments or changes. To display callouts, use the **View All Changes/Comments** mode.

Highlight

Enables or disables the Highlight tool (on page 956). Use the Highlight drop-down menu to select a new color.

Add Comment

Inserts a comment at the cursor position. The comment appears in a callout box and a tooltip (when hovering over the change).

Show/Edit Comment

Opens a dialog box that displays the discussion thread and allows the current user to edit comments that do not have replies. If you are not the author who inserted the original comment, the dialog box just displays the comment without the possibility of editing it.
Remove Comment

Removes a selected comment. If you remove a comment that contains replies, all of the replies will also be removed.

Manage Reviews

Opens the Review view (on page 964).

Tracked Change Callouts

You can also choose to display insertion and deletion changes in callouts (on page 3280) in Author mode. By default, tracked changes are not displayed in callouts, but you can change this behavior by selecting the Track Changes Deletions (on page 144) and Track Changes Insertions (on page 144) options in the Callouts preferences page (on page 143). You can also choose to display the actual content of the deletion or insertion.

By displaying the changes in callouts, you then have access to even more actions, such as the ability to reply or mark them as being done. For more information, see Author Callouts (on page 958).

Tracked Changes in the Review View

The Review view (on page 964) is also useful for managing tracked changes and comments. In this view, the edits are presented in a compact form, in the order they appear in the document and each edit is marked with a type-specific icon. You can use this view to quickly navigate through changes, accept or reject them, or to add and manage comments for the changes. You can also search for specific changes and it includes some filtering options (for example, you can filter it to only show certain types of changes or to only show changes for a particular author).

For more information, see Review View (on page 964).

Tracked Changes XML Source Code

The changes are stored in the document source code as processing instructions and they do not interfere with validation or transformations. For each change, the author name and the modification time are preserved.

Example - Insertion Change: The following processing instruction is an example of how an insertion change is stored in a document:

```xml
<?oxy_insert_start author="John Doe" timestamp="20090408T164459+0300"?>all<?oxy_insert_end?>
```
**Example - Deletion Change:** The following processing instruction is an example of how a deletion change is stored in a document:

```xml
<?oxy_delete author="John Doe" timestamp="20090508T164459+0300" content="belong"?>
```

For more information about the Track Changes support, watch our video demonstration:

[https://www.youtube.com/embed/L_ESxRMfnek](https://www.youtube.com/embed/L_ESxRMfnek)

**Related Information:**
- Managing Comments ([on page 952](#))
- Author Callouts ([on page 958](#))
- Review View ([on page 964](#))

**Tracked Changes Behavior**

The behavior of the Track Changes feature ([on page 3288](#)) depends on the context, the type of change, and whether or not it is activated.

**Inserting Content**

If the Track Changes feature is disabled and you insert content, the following behavior is possible:

- Making an insertion in a **Delete** change results in the change being split in two and the content is inserted without being marked as change.
- Making an insertion in an **Insert** change results in the change being split in two and the content is inserted without being marked as change.
- Making an insertion in regular content results in a regular insertion.

If the Track Changes feature is enabled and you insert content, the following behavior is possible:

- Making an insertion in a **Delete** change results in the change being split in two and the current inserted content appears marked as an INSERT.
- Making an insertion in an **Insert** change results in the following:
  - If the original insertion was made by another user, the change is split in two and the current inserted content appears marked as an INSERT by the current author.
  - If the original **Insert** change was made by the same user, the change is just expanded to contain the inserted content. The creation time-stamp of the previous insert is preserved.
• If inserted in regular content, the current inserted content appears marked as an **Insert** change.

**Surrounding Content**

If the *Track Changes* feature is enabled and you surround content in a new XML element, the following behavior is possible:

• Making a surround in a **Delete** change results in nothing happening.
• Making a surround in an **Insert** change results in the following:
  ◦ If the original insertion was made by another user, the change is split in two and the surround operation appears marked as being performed by the current author.
  ◦ If the original **Insert** change was made by the same user, the existing change is just expanded to contain the surrounded content.
• Making a surround in regular content results in the operation being marked as a surround change.

**Deleting Characters**

If the *Track Changes* feature is disabled and you delete content character by character, the following behavior is possible:

• Deleting content in an existing **Delete** change results in nothing happening.
• Deleting content in an existing **Insert** change results in the content being deleted without being marked as a deletion and the INSERT change shrinks accordingly.
• Deleting in regular content results in a regular deletion.

If the *Track Changes* feature is enabled and you delete content character by character, the following behavior is possible:

• Deleting content in an existing **Delete** change results in the following:
  ◦ If the same author created the **Delete** change, the previous change is marked as deleted by the current author.
  ◦ If another author created the **Delete** change, nothing happens.
• Deleting content in an existing **Insert** change results in the following:
  ◦ If the same author created the **Insert** change, the content is deleted and the **Insert** change shrinks accordingly.
  ◦ If another author created the **Insert** change, the **Insert** change is split in two and the deleted content appears marked as a **Delete** change by the current author.
• Deleting in regular content results in the content being marked as a **Delete** change by the current author.
Deleting Selections of Content

If the Track Changes feature is disabled and you delete a selection of content, the following behavior is possible:

• If the selection contains an entire Delete change, the change disappears and the content is deleted.
• If the selection intersects with a Delete change (starts or ends in one), it results in nothing happening.
• If the selection contains an entire Insert change, the change disappears and the content is deleted.
• If the selection intersects with an Insert change (starts or ends in one), the Insert change is shrunk and the content is deleted.

If the Track Changes feature is enabled and you delete a selection of content, the following behavior is possible:

• If the selection contains an entire Delete change, the change is considered as rejected and then marked as deleted by the current author, along with the other selected content.
• If the selection intersects a Delete change (starts or ends in one), the change is considered as rejected and marked as deleted by the current author, along with the other selected content.
• If the selection contains an entire Insert change, the following is possible:
  ◦ If the Insert is made by the same author, the change disappears and the content is deleted.
  ◦ If the Insert is made by another author, the change is considered as accepted and then marked as deleted by the current author, along with the other selected content.
• If the selection intersects an Insert change (starts or ends in one), the Insert change shrinks and the part of the Insert change that intersects with the selection is deleted.

Deleting Tags

Assuming you are using any of the Tag Display Modes (on page 441) other than No Tags and the Track Changes feature is disabled, if you delete a start or end tag, both the start and end tag will be removed, while any content that was inside the element is preserved.

Assuming you are using any of the Tag Display Modes (on page 441) other than No Tags and the Track Changes feature is enabled, if you delete a start tag of an inline element (on page 3283), both the start and end tag are marked as a Delete change by the current author, while any content that was inside the element is preserved.
Copying Content

If the Track Changes feature is disabled and you copy content, if the copied area contains Insert or Delete changes (or attribute edits), these are also copied to the clipboard.

If the Track Changes feature is enabled and you copy content, if the copied area contains Insert or Delete changes (or attribute edits), these are all accepted in the content of the clipboard (the changes will no longer be in the clipboard).

Pasting Content

If the Track Changes feature is disabled and you paste content, if the clipboard content contains Insert or Delete changes (or attribute edits), they will be preserved on paste.

If the Track Changes feature is enabled and you paste content, if the clipboard content contains Insert or Delete changes (or attribute edits), all the changes are accepted and then the paste operation proceeds according to the insertion rules.

Tracked Changes Limitations

There are some inherent limitations to the Change Tracking feature. These limitations include the following:

- **Limitations to rejected changes** - Recording changes has limitations and there is no guarantee that rejecting all changes will return the document exactly to its original state.

- **Limitations to hierarchical changes** - Recorded changes are not hierarchical, a change cannot contain other changes inside. For example, if you delete an insertion made by another user, then reject the deletion, the information about the author who made the previous insertion is not preserved.

- **Limitations to using certain actions** - Some actions cannot be implemented with the Track Changes feature enabled. For example, some of the table-related actions (Delete Row(s), Delete Column(s), Join Cells, Split Cell) ignore the Track Changes feature when executing the action.

Tracked Changes XML Markup

Depending on the type of edits, the following markup appears in the document source code when you activate the Track Changes feature:

<table>
<thead>
<tr>
<th>Edit Type</th>
<th>Processing Instruction Start Marker</th>
<th>Processing Instruction End Marker</th>
<th>Attributes</th>
</tr>
</thead>
</table>
## Managing Comments

You can add comments to any selected area of content within XML documents, with the exception of read-only content. The difference between using comments and tracked changes (on page 3288) is that a comment is associated to a selection without modifying or deleting the content.

By default, when you annotate your XML documents, the comments are displayed in the **Author** mode as callouts (on page 3280) (balloons) and they are rendered with a unique name and background for each user. If comments are not currently displayed in callouts, select the **Comments** option (on page 143) in the Callouts preferences page (on page 143). Comments are also displayed in the **Review** view (on page 964).

![Figure 134. Comments in Author Mode](image)

### Managing Comments in the Main Editor

You can insert and manage comments directly in the main editing area in **Author** mode.
To insert a comment at the cursor position or on a specific selection of content, select the Add Comment action from the toolbar (or in the Review submenu of the contextual menu).

Tip: When adding or editing a comment, you can use Enter to insert line breaks and Oxygen XML Editor will take the line breaks into account when presenting the callout. You can also use Ctrl + Enter to accept your changes and close the dialog box.

Show/Edit Comments

To edit an existing comment that you have added in the main editing area in Author mode, select the Show/Edit Comments action from the toolbar (or in the Review submenu of the contextual menu). The action opens a dialog box that allows you to see and edit your comment at the cursor position. Note that you cannot edit a comment that was added by another user, so in that case, the dialog box just displays the comment without the possibility of editing it.

Remove Comments

To remove a comment at the cursor position or multiple comments in a selection, select Remove Comment(s) from the toolbar (or in the Review submenu of the contextual menu).

Copy/Paste

If you copy content that includes comments, they will be preserved when you paste it.

Managing Comments in Callouts

As long as the Comments option (on page 143) is selected in the Callouts preferences page (on page 143), comments are also displayed in callouts (on page 958). By displaying the comments in callouts, you then have access to even more actions, such as the ability to reply or mark them as being done. When you right-click a specific comment in its callout, the contextual menu includes the following actions.

Reply

Opens a dialog box that allows you to add a reply to a comment or Tracked Changes (on page 3288). When replying to a comment, the dialog box shows the entire conversation in the comment thread, starting with the first comment added in the particular thread, followed by all the replies. After replies are added to a comment thread, they are displayed with an indentation in the callouts and Review view (on page 964).

Mark as Done

A toggle action that marks or unmarks a comment or comment thread as being done. It is also available for Tracked Changes (on page 3288) that are displayed in a callout.
When a comment or change is marked as done, the callout is grayed out and cannot be edited unless the action is toggled to the unmarked state. The action applies to the particular comment and all of its descendents. This is useful for marking comments or changes that have been addressed, leaving only those that still need some attention.

Show/Edit Comment

Opens a dialog box that displays the discussion thread and allows the current user to edit comments that do not have replies. If you are not the author who inserted the original comment, the dialog box just displays the comment without the possibility of editing it.

Remove Comment

Removes a selected comment. If you remove a comment that contains replies, all of the replies will also be removed.

Callouts Options

Select this option to open the Callouts preference page (on page 143) where you can configure various callout options.

Tip: When adding, editing, or replying to a comment, you can use Enter to insert line breaks and Oxygen XML Editor will take the line breaks into account when presenting the callout. You can also use Ctrl + Enter to accept your changes and close the dialog box.

Managing Comments in the Review View

The Review view (on page 964) is also useful for managing comments. In this view, comments are presented in a compact form, in the order they appear in the document, along with tracked changes. You can also use this view to search for specific comments and it includes some filtering options (for example, you can filter it to only show comments for a particular author). When you right-click a specific comment in the Review view, the contextual menu includes the following actions.

Reply

Opens a dialog box that allows you to add a reply to a comment or Tracked Changes (on page 3288). When replying to a comment, the dialog box shows the entire conversation in the comment thread, starting with the first comment added in the particular thread, followed by all the replies. After replies are added to a comment thread, they are displayed with an indentation in the callouts and Review view (on page 964).

Mark as Done

A toggle action that marks or unmarks a comment or comment thread as being done. It is also available for Tracked Changes (on page 3288) that are displayed in a callout. When a comment or change is marked as done, the callout is grayed out and cannot
be edited unless the action is toggled to the unmarked state. The action applies to the particular comment and all of its descendents. This is useful for marking comments or changes that have been addressed, leaving only those that still need some attention.

**Show/Edit Comment**

Opens a dialog box that displays the discussion thread and allows the current user to edit comments that do not have replies. If you are not the author who inserted the original comment, the dialog box just displays the comment without the possibility of editing it.

**Remove Comment**

Removes a selected comment. If you remove a comment that contains replies, all of the replies will also be removed.

**Show only reviews by '<author name>'**

Filters the comments to only show comments for the particular author.

**Remove all Comments**

Removes all comments from the document.

**Comments XML Source Code**

The comments are stored in the document source code as processing instructions that contain information about the author name and the comment time:

```xml
<?oxy_comment_start author="John Doe" timestamp="20090508T164459+0300" comment="Do not change this content">
  Important content
</oxy_comment_end>
```

Replies to comments are stored in the document source code as a comment (with information about the author name and time), but with a `parentID` attribute and its value is the same as the `id` value of the parent comment.

```xml
<?oxy_comment_start author="Tom" timestamp="20160217T102630+0200" comment="We should not forget about recycling the oil and oil filter!"
  parentID="vws_x4l_1v" mid="4">
```

**Related Information:**

- Author Callouts *(on page 958)*
Managing Highlights

Use the Highlight tool to mark fragments in your document using various colors. This is especially useful when you want to mark sections that needs additional editing or to draw the attention of others to particular content.

Using the Highlight Tool

You can find the Highlight action on the main toolbar, in the Edit > Review menu, or in the Review submenu of the contextual menu of a document. You can also choose the color to use for the highlight or choose to Stop highlighting from the same menus.

To highlight content, follow these steps:

1. Click the Highlight icon on the toolbar.
   
   **Step Result:** The highlighting mode is on and the cursor changes to a dedicated symbol.

2. Click the small arrow next to the Highlight icon and select the color that you want to use for the highlighting.

3. Select the content you want to highlight. To mark multiple parts of a document, press and hold Ctrl (Meta on Mac OS) and select the parts you want to highlight.

4. To exit the highlighting mode, press Esc, click the Highlight icon, or start editing the document.

To remove highlighting from a document, follow these steps:

1. Either select the text you want to remove highlighting from using your cursor, or press Ctrl + A (Command + A on OS X) if you want to select all of the text.

2. Click the small arrow next to the Highlight icon and select No color (erase), or right-click the highlighted content and select Remove highlight(s).

3. To exit the highlighting mode, press Esc, click the Highlight icon, or start editing the document.

**Note:** Oxygen XML Editor preserves the highlighting of a document between working sessions. Also, if you copy content that includes highlights, the highlighting will be preserved when you paste it.
Review View

The Review view (on page 964) is also useful for managing highlights. In this view, the highlights are presented in a compact form, in the order they appear in the document, along with tracked changes (on page 3288) and comments. The following actions are available in the contextual menu of each highlight in the Review view:

**Change Color**

Allows you to change the color of an existing highlight by selecting the new color from this menu.

**Remove Highlight**

Removes the selected highlight.

**Remove Highlights with the Same Color**

Removes the selected highlight and all others that have the same color.

**Remove All Highlights**

Removes all highlights from the document.

Highlights XML Source Code

The highlights are stored in the document source code as processing instructions that contain information about the color:

```xml
<?oxy_custom_start type="oxy_content_highlight" color="0,128,255"?>
The highlights are stored<?oxy_custom_end?>
```

For more information about using the Highlight tool, watch our video demonstration:

[https://www.youtube.com/embed/RMFyuMfisZY](https://www.youtube.com/embed/RMFyuMfisZY)

Related Information:

- Review View (on page 964)

Author Callouts

Oxygen XML Editor uses callouts (on page 3280) to present comments and tracked change (on page 3288) modifications that you or other members of your team have added to the document.
Displaying Callouts in Author Mode

The callouts are displayed in the right side of the editing area in Author mode. They are decorated with a colored border and also have a colored background. The background color is assigned automatically by the application depending on the user who is editing the document and the type of change, but it can also be customized from the Review preferences page (on page 140). This preferences page allows you to configure the colors for tracked change insertions or deletions, and for comments.

You can also choose to use the same color for all changes of that particular type of change, regardless of who makes the change. To do this, select the Fixed option for the particular type of change and choose a color from the color box. If the Automatic option is selected, Oxygen XML Editor automatically assigns a color based upon the Colors for automatic assignment list (on page 143).

The horizontal line that connects the callouts to their corresponding text fragments has the same color as the border. If this horizontal line is not visible, select the Show all connecting lines option (on page 144) in the Callouts preferences page. If you hover over a callout, it is highlighted and a tooltip is displayed that contains additional information.

Figure 135. Multiple Author Callouts

Note: Oxygen XML Editor displays callouts only if View All Changes/Comments or View Only Changes/Comments by is selected in the Track Changes Visualization Modes drop-down menu. Oxygen XML Editor does not display callouts in View Final and View Original modes.

In some cases, the text you are editing can span into the callouts area. For example, this situation can appear for callouts associated with wide images or space-preserved elements (on page 3287) that
contain long fragments (such as a DITA `codeblock` element or `programlisting` in DocBook). To help you view the text under the covered area, Oxygen XML Editor applies transparency to these callouts. When the cursor is located under a callout, the transparency is enhanced, allowing you to both edit the covered content and access the contextual menu of the editing area.

Figure 136. Transparent Callout

Adjusting Callout Width

To display more of the content in all the callouts in the current document, you can adjust the width by dragging the left side of any of the callouts. This will adjust the width for all comments in the current document. When you end the current editing session, the width of all callouts will revert back to the default value, which is the value of the Initial Width option (on page 144) in the Callouts preferences page.

You can also adjust the maximum number of lines to be shown in the callouts using the Text Lines Count Limit option (on page 144). Note that this does not limit the number of lines in the actual comment. It only limits the number of lines shown without opening or editing it.

Type of Callouts in Oxygen XML Editor

Oxygen XML Editor uses callouts to display comments and Tracked Changes (on page 3288) that you associate with fragments of the document you are editing. You can choose which types of edits will be shown in callouts by configuring the options in the Callouts preferences page (on page 143).

You can choose to enable the following types of review callouts:

- **Comment Callouts** - As long as the Comments option (on page 143) is selected in the Callouts preferences page (on page 143), comments are displayed in callouts. A comment callout contains the name of the author who inserts the callout and the comment itself. You can also select the Show review time option (on page 144) to include timestamp information in the comment callouts.

Figure 137. Comment Callouts
There are several types of comments that can be added in Author mode:

- **Author Review Comments** - Comments that you associate with specific content. To insert this type of comment, select the content and use the Add Comment action that is available on the toolbar (or in the Review submenu of the contextual menu).

- **Comments Added to Tracked Changes** - Comments that you add to an already existing tracked change insertion or deletion. To insert this type of comment, right-click the change in the main editor or its callout and select Comment Change.

- **Replies to Comments** - You can use this type of comment to create discussion threads. To insert this type of comment, right-click the change in the its callout and select Reply. A single callout is presented for a root comment or change and its replies. The replies are displayed with an indentation in the callouts and those that are on the same level are sorted depending on the timestamp.

![Callout for a Comment with Replies](image1.png)

**Tip:** When adding, editing, or replying to a comment, you can use Enter to insert line breaks and Oxygen XML Editor will take the line breaks into account when presenting the callout. You can also use Ctrl + Enter to accept your changes and close the dialog box.

- **Tracked Change Deletion Callouts** - As long as the Track Changes Deletions option (on page 144) is selected in the Callouts preferences page (on page 143), deletions that are made while the Track Changes feature is enabled are displayed in callouts. A deletion callout contains the type of callout (Deleted) and the name of the author that made the deletion. You can also select the Show deleted content in callout option (on page 144) to display the actual deleted content in the callout. Additionally, you can select the Show review time option (on page 144) to include timestamp information in the deletion callouts.

![Deletion Callouts](image2.png)
• **Tracked Change Insertion Callouts** - As long as the [Track Changes Insertions option](on page 144) is selected in the [Callouts preferences page](on page 143), insertions that are done while the [Track Changes](feature is enabled are displayed in callouts. An insertion callout contains the type of callout (Inserted) and the name of the author that inserted the content. You can also select the [Show inserted content in callout option](on page 144) to display the actual deleted content in the callout. Additionally, you can select the [Show review time option](on page 144) to include timestamp information in the deletion callouts.

Figure 140. Insertion Callouts

Callout Contextual Menu Actions

Some useful actions are available when the contextual menu is invoked on a callout. The actions depend on the type of callout.

**Insertion or Deletion Callout Actions**

The following actions are available in the contextual menu of an insertion or deletion callout:

- **Reply**
  
  Opens a dialog box that allows you to add a reply to a comment or [Tracked Changes](on page 3288). When replying to a comment, the dialog box shows the entire conversation in the comment thread, starting with the first comment added in the particular thread, followed by all the replies. After replies are added to a comment thread, they are displayed with an indentation in the callouts and [Review view](on page 964).

- **Mark as Done**
  
  A toggle action that marks or unmarks a comment or comment thread as being done. It is also available for [Tracked Changes](on page 3288) that are displayed in a callout. When a comment or change is marked as done, the callout is grayed out and cannot be edited unless the action is toggled to the unmarked state. The action applies to the particular comment and all of its descendents. This is useful for marking comments or changes that have been addressed, leaving only those that still need some attention.

  ✓ **Accept Change**
Accepts the tracked change, removes the callout, and moves to the next change. For an *insertion* change, it keeps the inserted text and for a *deletion* change, it removes the content from the document.

**Reject Change**

Rejects the tracked change, removes the callout, and moves to the next change. For an *insertion* change, it removes the inserted text and for a *deletion* change, it preserves the original content.

**Comment Change**

Opens a dialog box that allows you to add a comment to an existing *Tracked Change (on page 3288)*. The comment will appear in a callout and a tooltip when hovering over the change. If the action is selected on an existing commented change, the dialog box will allow you to edit the comment.

**Edit Reference**

If the fragment that contains a callout is a reference, use this option to go to the reference and edit the callout.

**Callouts Options**

Select this option to open the *Callouts preference page (on page 143)* where you can configure various callout options.

**Comment Callout Actions**

The following options are available in the contextual menu of a comment callout:

**Reply**

Opens a dialog box that allows you to add a reply to a comment or *Tracked Changes (on page 3288)*. When replying to a comment, the dialog box shows the entire conversation in the comment thread, starting with the first comment added in the particular thread, followed by all the replies. After replies are added to a comment thread, they are displayed with an indentation in the callouts and *Review view (on page 964)*.

**Mark as Done**

A toggle action that marks or unmarks a comment or comment thread as being done. It is also available for *Tracked Changes (on page 3288)* that are displayed in a callout. When a comment or change is marked as done, the callout is grayed out and cannot be edited unless the action is toggled to the unmarked state. The action applies to the particular comment and all of its descendents. This is useful for marking comments
or changes that have been addressed, leaving only those that still need some attention.

Show/Edit Comment

Opens a dialog box that displays the discussion thread and allows the current user to edit comments that do not have replies. If you are not the author who inserted the original comment, the dialog box just displays the comment without the possibility of editing it.

Remove Comment

Removes a selected comment. If you remove a comment that contains replies, all of the replies will also be removed.

Edit Reference

If the fragment that contains a callout is a reference, use this option to go to the reference and edit the callout.

Callouts Options

Select this option to open the Callouts preference page (on page 143) where you can configure various callout options.

Printing Callouts

When you print a document from Author mode, all callouts that you or other authors have added to the document are printed. For a preview of the document and its callouts, go to File > Print Preview.

Review View

The Review view (on page 964) is also useful for managing the information in callouts. In this view, changes and comments are presented in a compact form, in the order they appear in the document, and they are synchronized with the changes in the callouts. You can also search for specific changes or comments and it includes some filtering options (for example, you can filter it to only show certain types of edits or to only show edits for a particular author).

For more information, see Review View (on page 964).

To watch our video demonstration about the Callouts support, see our video demonstration:

https://www.youtube.com/embed/kCCWyFqBaUM

Related Information:

• Managing Tracked Changes (on page 943)
Review View

The Review view is an independent panel, available both for built-in and custom XML document frameworks (on page 3282). It is designed to offer an enhanced way of monitoring all the changes that you make to a document. This means you can view and manage highlights, comments, and tracked changes (on page 3288) using a single view.

The Review view is useful when you are working with documents that contain a large number of edits. The edits are presented in a compact form, in the order they appear in the document. Each type of edit is marked with a specific icon. This view and the editing area are synchronized. When you select an edit listed in the Review view, its corresponding fragment of text is highlighted in the editing area and the reverse is also true. For example, when you place the cursor inside an area of text marked as inserted, its corresponding edit is selected in the list.

You can use this view to quickly navigate through changes and it includes some useful hover actions and contextual menu actions to help you manage changes, comments, and highlights. You can also search for specific changes or comments and it includes some filtering options (for example, you can filter it to only show certain types of edits or to only show edits for a particular author).

Figure 141. Review View

Activating the Review View

To activate the Review view, do one of the following:

- Click the Manage reviews button on the toolbar.
• Right-click anywhere in a document and select **Review > Manage reviews**.
• Open it from the **Window > Show View** menu.

**Review View Toolbar Actions and Settings**

The upper part of the view contains a filtering area that allows you to search for specific edits. The filter field also includes a search history drop-down list. The toolbar also includes **Previous** and **Next** navigation buttons and a **Settings** menu button.

**Previous**

Use this button to navigate to the previous review item. By default, if you reach the first review item in the document, clicking this button will open a dialog box asking if you want to open the previous document (from the current DITA map hierarchy) that contains review items. This default behavior can be changed by choosing one of the options in the **When navigating items in the Review view and you reach the last/first item** section of the **DITA preferences page (on page 226)**.

**Next**

Use this button to navigate to the next review item. By default, if you reach the last review item in the document, clicking this button will open a dialog box asking if you want to open the next document (from the current DITA map hierarchy) that contains review items. This default behavior can be changed by choosing one of the options in the **When navigating items in the Review view and you reach the last/first item** section of the **DITA preferences page (on page 226)**.

**Settings**

The **Settings** menu includes the following options:

**Show highlights**

Controls whether or not the **Review** view displays the highlighting in your document.

**Show comments**

Controls whether or not the **Review** view displays the comments in the document you are editing.

**Show track changes**

Controls whether or not the **Review** view displays the inserted and deleted content in your document.

**Show reviews in read-only content**
Controls whether or not the Review view displays review items from content referenced with a `@conref` or `@conkeyref` attribute.

**Show review time**

Displays the time when the edits from the Review view were made.

**Sort by date**

Expands to offer the following sorting options: Oldest to newest, Newest to oldest, and No sorting.

**Configure review options**

Opens the Review preferences page (on page 140) where you can configure various options for review information.

---

**Hover Actions in the Review View**

You can use this view to easily manage changes, highlights, and comments that have been added by you or other users. The following actions are available when you hover over the changes in the Review view:

- **Remove**
  
  Available for highlights and comments presented in the Review view and it removes the particular highlight or comment from your document and moves to the next change.

- **Accept**
  
  Available for inserted and deleted content presented in the Review view and it accepts the particular change in your document and moves to the next change.

- **Reject**
  
  Available for inserted and deleted content presented in the Review view and it rejects the particular change in your document and moves to the next change.

---

**Contextual Menu Actions in the Review View**

Depending on the type of an edit, the following additional actions are available in the contextual menu of the Review view:

- **Reply**
  
  Opens the Reply dialog box where you can add a reply to comment or change. The replies are displayed with an indentation in this view.

- **Mark as Done**
Toggles the comment or change as being done and grays it out. You can mark a whole discussion thread as being done by selecting the action on the first (parent) comment in the thread.

Show Comment

Available for comments added by other users and you can use this option to view it in a Show comment dialog box.

Edit Comment

Available for comments you have added and you can use this action to edit a comment.

Remove Comment

Use this action to remove the selected comment.

Show only Reviews by '<author name>'

Use this action to filter the edits to only show them for a certain author.

Remove All Comments

Use this action to remove all the comments that appear in the edited document.

Change Color

Available for highlights and it opens a palette where you can choose a new color for the highlighted content.

Remove Highlight

Available for highlights and you can use this action to remove the selected highlight.

Remove Highlights with the Same Color

Available for highlights and you can use this action to remove all the highlights with the same color from the entire document.

Remove All Highlights

Available for highlights and you can use this action to remove all the highlights in your document.

Accept Change

Accepts the selected change and moves to the next change.

Reject change

Rejects the selected change and moves to the next change.

Comment change

Available for insertions or deletions and you can use this option to add a comment for the particular change.
Accept all changes
Accepts all the changes in the current document.

Reject all changes
Rejects all the changes in the current document.

For more information about the Review view, watch our video demonstration:

https://www.youtube.com/embed/W22jkbwlh60

Related Information:

- Managing Tracked Changes (on page 943)
- Managing Comments (on page 952)
- Managing Highlights (on page 956)
- Author Callouts (on page 958)

Profiling and Conditional Text

Profiling text is a way to mark blocks of text meant to appear in some renditions of the document but not in others. Conditional text differs from one variant of the document to another, while unconditional text appears in all document versions. For example, you can mark a section of a document that is to be included in a manual to be designated for expert users and another section for novice users, while unmarked sections are included in all renditions.

Profiling Attributes and Condition Sets

Oxygen XML Editor allows you to define values for the profiling attributes and they can be easily managed to filter content in the published output. You can switch between profile sets to see how the edited content looks like before publishing. You can also conditionally profile parts of a document so that certain parts are displayed when certain profiling conditions are set. You can even customize the colors and styling of how the profiling is displayed in Author mode.

You can use profiling and conditional text to help you create documentation for multiple output scenarios, including:

- Multiple outputs for a series of similar products.
• Multiple outputs for various releases of a product.
• Multiple outputs for various audiences.

This feature helps to reduce the effort for updating and translating your content and provides an easy way to customize the output for various audiences.

Figure 142. Example: Profiling Content

Oxygen XML Editor includes a preconfigured set of profiling attribute values for some of the most popular document types. These attributes can be redefined to match your specific needs in the Profiling/Conditional Text preferences page (on page 144). You can also define your own profiling attributes and condition sets for each document type (framework (on page 3282)) and your profiling configuration can be shared among content authors through the project file.

For information about creating and editing profiling attributes, see Creating and Editing Profiling Attributes (on page 970) (for information about sharing them, see Sharing Profiling Attribute Configurations (on page 973)).

For information about creating and editing condition sets, see Creating and Editing Profiling Condition Sets (on page 975) (for information about sharing them, see Sharing Condition Set Configurations (on page 978)).

Related Information:

• Customizing Elements that Wrap Profiled Content (on page 2425)

Creating and Editing Profiling Attributes

Oxygen XML Editor includes support for defining your own profiling attributes, or modifying existing ones, for each particular document type (framework (on page 3282)). You can then apply the profiling attributes to content in Author mode to see how the profiling will affect the output.
Create or Editing Profiling Attributes

To create or edit profiling attributes for a specific document type, follow these steps:

1. Make sure the attribute is already defined in the document DTD or schema before continuing with the procedure.
2. Open the Preferences dialog box (Options > Preferences) (on page 79) and go to Editor > Edit modes > Author > Profiling/Conditional Text.

   Information: The Profiling Attributes section (on page 145) is used to define the attributes and their values for each document type.
3. To add new attributes and values, click the New button at the bottom of the Profiling Attributes table. To customize existing attributes and their values, select an attribute and click the Edit button.

   Step Result: In either case, this opens a Profiling Attribute configuration dialog box where you can define attributes that exist in your schema.

Figure 143. Profiling Attribute Dialog Box

The following options are available in this dialog box:

**Document type**

Select the document type (framework (on page 3282)).
Tip: You can use the * or ? wildcards in this combo box. For example, DITA* would match any document type that starts with "DITA". You can also specify multiple document types by using commas to separate them.

**Attribute name**

The name of the profiling attribute.

**Display name**

This optional field is used for descriptive rendering in profiling dialog boxes.

**Attribute Values Table**

This table displays information about the values for the profiling attribute. You can configure them by using the buttons at the bottom of the table (New, Edit, Delete).

The columns are as follows:

- **Value** - The attribute value.
- **Label** - You can specify a label for the attribute value that will be rendered as its name in various components in Author mode (Edit Profiling Attributes dialog box on page 973, Condition Set dialog box on page 975, and other UI components where the profiling is shown (on page 980)). If the Label is not specified, the Value will be used as its rendered name.
- **Description** - A description for the attribute value that will be displayed in this table.

**Single value**

Select this option if you want the attribute to only accept a single value.

**Multiple values separated by**

Select this option if you want the attribute to accept multiple values, and you can choose the type of delimiter to use. You can choose between space, comma, and semicolon, or you can enter a custom delimiter in the text field. A custom delimiter must be supported by the specified document type. For example, the DITA document type only accepts spaces as delimiters for attribute values.

4. After defining or configuring the attributes and their values according to your needs, click **OK** to confirm your selections and close the Profiling Attributes configuration dialog box.
5. Click **Apply** to save the changes.

**Adding Profiling Attribute Values Directly in a Document**

You can add values directly to the existing profiling attributes in a document using the In-Place Attributes Editor (on page 915) in Author mode, the Attributes view (on page 426), or in the source code in Text mode. However, this just adds them to the document and does not change the
conditional text configuration. If you invoke the Edit Profiling Attributes action (from the contextual menu in Author mode) on the new value, the Profiling Values Conflict dialog box will appear and it includes an Add these values to the configuration action that will automatically add the new value to the particular profiling attribute. It also includes an Edit the configuration action that opens the Profiling / Conditional Text preferences page (on page 144) where you can edit the profiling configuration.

Note: If the Allow contributing extra profiling attribute values (on page 146) option is not selected in the Profiling / Conditional Text preferences page, the Profiling Values Conflict dialog box will never appear, so this automatically adding value not be possible.

Figure 144. Profiling Values Conflict Dialog Box

Sharing Profiling Attribute Configurations

Your profiling configuration can be shared with other users through a project file. If you select Project Options (on page 3286) at the bottom of the Profiling/Conditional Text preferences page, your configuration is stored in the project file and can be shared with others. For instance, if your project file is saved on a version control system (such as SVN, CVS, or Source Safe) or in a shared folder, your team will have the same option configuration that you stored in the project file.

For more information about sharing project files, see Sharing a Project - Team Collaboration (on page 723).

Related Information:

- Applying Profiling Attributes (on page 973)
- Creating and Editing Profiling Condition Sets (on page 975)
Applying Profiling Attributes

Profiling attributes are applied on element nodes. You can apply profiling attributes on a text fragment (it will automatically be wrapped into a phrase-type element), on a single element, or on multiple elements at the same time. If there is no selection in your document, the profiling attributes are applied on the element at the cursor position.

To apply a profiling attribute to content in Author mode, follow these steps:

1. To apply a profiling attribute to content in Author mode, highlight the content and select Edit Profiling Attributes from the contextual menu. To profile an entire element, position the cursor inside the element, right-click, and select Edit Profiling Attributes (you can also right-click the element in the breadcrumb or Outline view).

Step Result: The Edit Profiling Attributes dialog box is displayed and shows all the profiling attributes and their values, as defined for the particular document type (framework). If you have a large list of profiling attributes, you can use the text filter field to search for attributes or values, and you can expand or collapse attributes by using the Expand All / Collapse All buttons to the right of the text filter or the arrow button to the left of the profiling attribute name.

The attributes and values that appear in the dialog box are determined as follows:

- If you have defined profiling attribute values on page 970 for the DITA document type in the Profiling/Conditional Text preferences page on page 144 and you store them at project-level (on page 3286), those values are displayed in the dialog box.
- If you have defined profiling attribute values on page 970 for the DITA document type in the Profiling/Conditional Text preferences page on page 144 and you store them at global-level (on page 3283), those values are displayed in the dialog box.
- Otherwise, a generic default set of profiling attributes and values are available.

Figure 145. Edit Profiling Attributes Dialog Box
2. In the **Edit Profiling Attributes** dialog box, select the checkboxes that correspond to the attribute values you want to apply on the *document fragment (on page 3281)*.

3. Click **OK** to finish the profiling configuration.

**Result:** The attribute names and values selected in the **Edit Profiling Attributes** dialog box are set on the elements contained in the profiled fragment. If you only select a fragment of content (rather than the entire element), this fragment is wrapped in phrase-type elements in which the profiling attributes are set.

If the **Show Profiling Attributes** option (on page 981) (available in the *Profiling / Conditional Text* toolbar menu) is selected, a green border is painted around profiled text in the **Author mode** and all profiling attributes set on the current element are listed at the end of the highlighted block. To edit the attributes of a profiled fragment, click one of the listed attribute values. A form control pops up and allows you to add or remove attribute values.

Figure 146. Profiling Attribute Value Form Control Pop Up
Creating and Editing Profiling Condition Sets

Multiple profiling attributes can be aggregated into a profiling condition set that allows you to apply more complex filters on the document content. A Profiling Condition Set is a very powerful and convenient tool that can be used to preview the content that goes into the published output. For example, an installation manual available in both Windows and Linux variants can be profiled to highlight only the Linux procedures for more advanced users.

Create Profiling Condition Sets

To create a new profiling condition set, follow these steps:

1. Open the Preferences dialog box (Options > Preferences) (on page 79) and go to Editor > Edit modes > Author > Profiling/Conditional Text.

   **Information:** The Profiling Condition Sets section (on page 146) is used to define condition sets.

2. To add new condition set, click the New button at the bottom of the Profiling Condition Sets table. To customize existing condition sets, select an existing condition set and click the Edit button.

   **Step Result:** In either case, this opens a Condition Set configuration dialog box where you can define attributes that exist in your schema.

   Figure 147. Condition Set Configuration Dialog Box
The following options are available in this dialog box:

**Name**

The name of the new condition set.

**Document type**

Select the document type (*framework (on page 3282)*) for which you have defined profiling attributes.

**Use DITAVAL file**

For DITA projects, select this option if you want the *Profiling Condition Set* to reference a *DITAVAL file (on page 3248)*. You can specify the path by using the text field, its history drop-down, the *Insert Editor Variables (on page 276)* button, or the browsing actions in the *Browse* drop-down list.

**Include the content matching the following conditions**

You can select this option to define the combination of attribute values for your condition set by selecting the appropriate checkboxes for the values you want to be included in this particular condition set. If you have defined a lot of profiling attributes, you can use the *filter* text field to search for specific conditions.

**Shortcut key**
You can click the **Choose** button to open a dialog box that allows you to define a shortcut key for this particular condition set. You can then use that shortcut key anytime you want to select this condition set to filter content.

3. After defining or configuring the condition sets according to your needs, click **OK** to confirm your selections and close the **Condition Set** configuration dialog box.

4. Click **Apply** to save the condition set.

**Result:** All saved profiling condition sets are available in the **Profiling / Conditional Text** toolbar drop-down menu (*on page 980*).

### Sharing Condition Set Configurations

Your condition set configuration can be shared with other users through a project file. If you select **Project Options** (*on page 3286*) at the bottom of the **Profiling/Conditional Text** preferences page, your configuration is stored in the project file and can be shared with others. For instance, if your project file is saved on a version control system (such as SVN, CVS, or Source Safe) or in a shared folder, your team will have the same option configuration that you stored in the project file.

For more information about sharing project files, see **Sharing a Project - Team Collaboration** (*on page 723*).

#### Related Information:

- Applying Profiling Condition Sets (*on page 978*)
- Creating and Editing Profiling Attributes (*on page 970*)
- Applying Profiling Attributes (*on page 973*)
- Showing and Filtering Profilesd Content in Author Mode (*on page 980*)
- Customizing Colors and Styles for Rendering Profiling in Author Mode (*on page 3240*)

### Applying Profiling Condition Sets

All defined **Profiling Condition Sets** (*on page 975*) are available as shortcuts in the **Profiling / Conditional Text** toolbar menu (*on page 980*). Select a menu entry to apply the condition set. The filtered content is then grayed-out in the **Author** mode and **Outline view** (*on page 347*). An element
is filtered-out when one of its attributes is part of the condition set and its value does not match any of the values covered by the condition set.

EXAMPLE:

Suppose that you have the following document:

```xml
Spray painting

Short Description: When paint is applied using a spray nozzle, it is referred to as spray painting.

Context:

The garage is a good place to spray paint.

Step 1
Move the car out of the garage to avoid getting paint on it. Audience [novice]

Step 2
Place newspaper, cardboard, or a drop-cloth on the garage floor. Audience [expert]

Step 3
Place the object to be painted on the covered area. Audience [expert] Other [prop2]

Step 4
Follow the directions on the paint can to paint the object. Audience [expert] Other [prop1]

Step 5
Let the paint dry thoroughly before you move the object. Audience [novice] Other [prop1]
```

If you apply the following condition set, it means that you want to filter out the content to only include content profiled with the `expert` value for the `@audience` attribute and content that has the `prop1` value for the `@other` attribute.
This is how the document looks in **Author** mode after you apply the condition set:

```
```

### Showing and FilteringProfiled Content in Author Mode

You can visualize the effects of profiled content in **Author** mode by using the options in the **Profiling/Conditional Text** drop-down menu that is located on toolbar. This drop-down menu includes the following filtering options:

**Show Profiling Colors and Styles**

Select this option to show colors and styles for profiled content in **Author** mode. You can configure the colors and styles or specify whether or not this option is selected by default in the **Profiling/Conditional Text > Colors and Styles** preferences page (on page 147).

---

**Related Information:**

- Creating and Editing Profiling Condition Sets *(on page 975)*
- Creating and Editing Profiling Attributes *(on page 970)*
- Applying Profiling Attributes *(on page 973)*
- Showing and Filtering Profiled Content in Author Mode *(on page 980)*
- Customizing Colors and Styles for Rendering Profiling in Author Mode *(on page 983)*
Show Profiling Attributes

Select this option to display the values of the profiling attributes at the end of profiled content in Author mode. You can specify whether or not this option is selected by default in the Profiling/Conditional Text > Attributes Rendering preferences page (on page 148).

Show Excluded Content

Controls whether the content filtered out by a particular condition set is hidden or grayed-out in Author mode and the Outline (on page 347) view. When this option is selected and a condition set is selected in this drop-down menu (on page 981), the filtered content is grayed-out. If this option is not selected and a condition set is selected in this drop-down menu (on page 981), the filtered content is hidden. You can specify whether or not this option is selected by default in the Profiling/Conditional Text preferences page (on page 146).

Choose Condition Set (Available if more than 15 condition sets are defined)

This option is available if you have more than 15 conditions sets defined. It opens a dialog box that makes it easier to find and select condition sets that are not displayed in this drop-down menu.

List of Defined Condition Sets

Up to 15 defined condition sets are listed and you can toggle each one of them on to filter the content in Author mode to only show content that will appear in the output for that particular condition set. If there are more than 15 defined condition sets, the rest of them can be accessed in the More submenu or by using the Choose Condition Set option (on page 981) to access a dialog box that presents all of them.

❖ Profiling Settings

Opens the Profiling/Conditional Text preferences page (on page 144) where you can add and edit profiling attributes and condition sets.

Figure 148. Example: Profiling Controls in Author Mode
If the Show Profiling Attributes option is selected, a green border is painted around profiled text in the Author mode. Also, all profiling attributes set on the current element are listed at the end of the highlighted block and in its tooltip message. To edit the attributes of a profiled fragment, click one of the listed attribute values. A form control pops up and allows you to add or remove attribute values.

Figure 149. Profiling Attribute Value Form Control Pop Up

Related Information:

- Creating and Editing Profiling Attributes (on page 970)
- Applying Profiling Attributes (on page 973)
- Creating and Editing Profiling Condition Sets (on page 975)
- Applying Profiling Condition Sets (on page 978)
Customizing Colors and Styles for Rendering Profiling in Author Mode

By applying profiling colors and styles, you can mark profiled content in **Author** mode so that you can instantly spot differences between multiple variants of the output. This allows you to preview the content that will go into the published output. The excluded text is grayed-out or hidden in **Author** mode, allowing you to easily recognize the differences.

Figure 150. Example: Profiling Colors and Styles in Author Mode

Choosing the right style for a specific profiling attribute is a matter of personal taste, but be aware of the following:

- If the same block of text is profiled with two or more profiling attributes, their associated styles combine. Depending on the styling, this might result in an excessively styled content that may prove difficult to read or work with.
- It is recommended that you only profile the differences. There is no need to profile common content, since excessive profiling can visually pollute the document.
- A mnemonic associated with a style will help you instantly spot differences in the types of content.

**Styling Profiling Attribute Values**

To set colors and styles for profiling attribute values, follow these steps:
1. Select the **Show Profiling Colors and Styles** option (on page 980) from the **Profiling / Conditional Text** toolbar drop-down menu.

2. Select **Profiling Settings** (on page 981) from the **Profiling / Conditional Text** toolbar drop-down menu. This is a shortcut to the **Profiling/Conditional Text** preferences page (on page 144).

3. Go to the **Colors and Styles** preferences page (on page 146) to configure the colors and styling for the profiling attributes.

4. Go to the **Attributes Rendering** preferences page (on page 148) to configure how you want the profiling attributes to appear in Oxygen XML Editor.

**Result:** The styling is now applied in the **Author** editing mode and the **Outline view** (on page 347). Also, to help you more easily identify the profiling you want to apply in the current context, the styling is applied in the **Edit Profiling Attributes** dialog box (on page 970) and in the inline form control pop-up that allows you to quickly set the profiling attributes.

Figure 151. Profiling Attribute Value Form Control Pop Up

Related Information:

- Creating and Editing Profiling Attributes (on page 970)

- Applying Profiling Attributes (on page 973)

- Creating and Editing Profiling Condition Sets (on page 975)

- Applying Profiling Condition Sets (on page 978)

- Showing and Filtering Profiled Content in Author Mode (on page 980)
Adding Tables in Author Mode

You can use the Insert Table action on the toolbar or from the contextual menu to add a table in various frameworks (on page 3282) (DITA, DocBook, TEI, and XHTML). This opens the Insert Table dialog box. Each framework has a different set of options that are available in this dialog box for configuring the properties of the tables. In all cases, Oxygen XML Editor includes some general editing actions for configuring tables in Author mode.

This section explains those general actions and the various configuration options and layouts for tables that are inserted in the most commonly used document types.

Editing Tables in Author Mode

Oxygen XML Editor provides support for editing data in a tabular form. A variety of features and operations are available for editing tables in Author mode and they include the following:

**Adjusting Column Width**

To adjust the width of a column or table, drag the border of the column or table. The changes you make to a table are committed into the source document. You can also manage table width and column width specifications from the source document, and some types of tables include a colspecs section that appears above the table in Author mode that allows you to easily configure some column specifications (such as column width). These column width specifications are supported in fixed, dynamic, and proportional dimensions. The built-in DITA, DocBook, and XHTML frameworks (on page 3282) support this feature. The layout of the tables for these document types takes into account the table width and the column width specifications particular to them.

![Figure 152. Resizing a Table Column in Author Mode](image)

**Selecting Columns and Rows**

To select a row or a column of a table, place the mouse cursor above the column or in front of the row you want to select, then click. When hovering the mouse cursor in front of rows or above column headers, the cursor changes to for row selection and to for column selection and that specific row or column is highlighted.
You can use the Ctrl and Shift keys to select multiple rows.

**Selecting Cells**

To select a cell in a table, press and hold the Ctrl key and click anywhere inside the cell. You can also use the Ctrl and Shift keys to select multiple cells or to deselect cells from a selection. Alternatively, you can click the left corner of a cell (right corner if you are editing a RTL document (on page 621)) to select it. The cursor changes to \( \text{cell selection} \) when you hover over the corner of the cell.

You can also select multiple rectangular blocks of cells by using your mouse to select a cell and drag it to expand the selection.

**Drag and Drop**

You can use the drag and drop action to edit the content of a table. You can select a column and drag it to another location in the table you are editing. When you drag a column and hover the cursor over a valid drop position, Oxygen XML Editor decorates the target location with bold rectangles. The same drag and drop action is also available for entire rows or columns by hovering the mouse cursor in front of rows or above column headers, then selecting the row or column and dragging them to the desired location.

**Copy/Cut and Paste**

In Oxygen XML Editor, you can copy/cut entire rows or columns of the table you are editing and paste the copied columns or rows inside the same table or inside other tables. You can also use the copy or cut actions for tables located in other documents. If you paste a row or column into non-table content, Oxygen XML Editor introduces a new table that contains the fragments of the copied row or column content.

For copied columns, the fragments are introduced starting with the header of the column. Also, if the copied column is from a CALS table, Oxygen XML Editor preserves column width information. This information is then used when you paste the column into another CALS table.

For copied cells, when pasting them into another cell without a selection (the cursor is just placed in the new cell), the copied cells are pasted while preserving their initial order and spacing. If pasting them into a selection of cells, first the content of the selected cells is deleted, then the copied cells are pasted with their initial order and spacing preserved and if there are more cells in the selection than in the copied content, the pasting will repeat the copied cells until the end of the selection.
Deleting Content

To delete the content of a cell, select the cell and press the **Delete** or **Backspace** key on your keyboard. If you press **Delete** or **Backspace** again, the selected table structure will also be removed.

To delete an entire row or column, place the cursor inside the row or column (or select it) and use the **Delete Row(s)** or **Delete Column(s)** actions from the toolbar or contextual menu. This will delete both the content and the table structure for the current row or column.

To delete a selection of multiple rows or columns, select them and use the **Delete Row(s)** or **Delete Column(s)** actions from the toolbar or contextual menu. This will delete both the content and the table structure for all rows or columns that exist in the current selection.

Navigating Cells

Along with the normal mouse navigation, you can also navigate between cells by using the arrow keys on your keyboard. By default, when using the arrow keys to navigate between table cells, the cursor jumps from one cell to another. However, if the Quick navigation in tables option (on page 137) is not selected in the Cursor Navigation preferences page, using the arrow keys to navigate between table cells will cause the cursor to navigate between XML nodes, rather than jumping from cell to cell.

Related Information:

- Adding Tables in DocBook (on page 987)
- Adding Tables in DITA Topics (on page 999)
- Adding Tables in XHTML Documents (on page 1013)

Adding Tables in DocBook

You can use the **Insert Table** action on the toolbar or from the contextual menu to add a table in a DocBook document.

DocBook supports two types of tables:

- **CALS** table model - This is used for more advanced functionality.
- **HTML** table model - This is used for inserting a formal (captioned) HTML table.
Inserting a CALS Table Model in DocBook

To insert a CALS table model in DocBook documents, select the Insert Table action on the toolbar or from the contextual menu. The Insert Table dialog box appears. Select CALS for the table Model. This model allows you to configure a few more properties than the HTML model.

Figure 153. Insert Table Dialog Box - CALS Model

The dialog box allows you to configure the following options when you select the CALS table model:

**Title**

If this checkbox is selected, you can specify a title for your table in the adjacent text box.

**Table Size**

Allows you to choose the number of Rows and Columns for the table.

**Generate table header**

If selected, an extra row will be inserted at the top of the table to be used as the table header.

**Generate table footer**

If selected, an extra row will be inserted at the bottom of the table to be used as the table footer.

**Column widths**

Allows you to specify the type of properties for column widths (colwidth attribute). You can choose one of the following properties for the column width:
• **proportional** - The width is specified in proportional (relative) units of measure. The proportion of the column is specified in a `colwidth` attribute with the values listed as the number of shares followed by an asterisk. The value of the shares is totaled and rendered as a percent. For example, `colwidth="1* 2* 3*"` causes widths of 16.7%, 33.3%, and 66.7%. When entering content into a cell in one column, the width proportions of the other columns are maintained. If you change the width by dragging a column in **Author** mode, the values of the `colwidth` attribute are automatically changed accordingly. By default, when you insert, drag and drop, or copy/paste a column, the value of the `colwidth` attribute is `1*`.

• **dynamic** - If you choose this option, the columns are created without a specified width (`colwidth` attribute). Entering content into a cell changes the rendered width dynamically. If you change the width by dragging a column in **Author** mode, a dialog box will be displayed that asks you if you want to switch to proportional or fixed column widths.

• **fixed** - The width is specified in fixed units. By default, the `pt` unit is inserted, but you can change the units in the `colspecs` (column specifications) section above the table or in **Text** mode. The following units are allowed: `pt` (points), `cm` (centimeters), `mm` (millimeters), `pi` (picas), `in` (inches).

**Frame**

Allows you to specify a value for the `frame` attribute. It is used to specify where a border should appear in the table. There are a variety of allowed values, as specified in the DocBook CALS table specifications.

**Row separator**

Specifies whether or not to include row separators (`rowsep` attribute). The allowed values are: `0` (no separator) and `1` (include separators).

**Column separator**

Specifies whether or not to include column separators (`colsep` attribute). The allowed values are: `0` (no separator) and `1` (include separators).

**Alignment**

Specifies the alignment of the text within the table (`align` attribute). The allowed values are:

• **left** - Aligns the text to a left position.
• **right** - Aligns the text to a right position.
• **center** - Aligns the text to a centered position.
• **justify** - Stretches the line of text so that it has equal width.
Note: The justify value cannot be rendered in Author mode, so you will only see it in the output.

- char - Aligns text to the leftmost occurrence of the value specified on the char attribute for alignment.

Note: The options in the Insert Table dialog box for DocBook documents are persistent, so changes made in one session will carry over to another.

When you click Insert, a CALS table is inserted into your document at the current cursor position.

When you insert a CALS table, you see a link for setting the colspecs (column specifications) of your table. Click the link to open the controls that allow you to adjust various column properties. Although they appear as part of the Author mode (on page 402), the colspecs link and its controls will not appear in your output. They are just there to make it easier to adjust how the columns of your table are formatted.

Figure 154. CALS Table in DocBook

Inserting an HTML Table Model

To insert an HTML table model in DocBook documents, select the Insert Table action on the toolbar or from the contextual menu. The Insert Table dialog box appears. Select HTML for the table Model.

Figure 155. Insert Table Dialog Box - Simple Model
The dialog box allows you to configure the following options when you select the HTML table model:

**Title**

If this checkbox is selected, you can specify a title for your table in the adjacent text box.

**Table Size**

Allows you to choose the number of Rows and Columns for the table.

**Generate table header**

If selected, an extra row will be inserted at the top of the table to be used as the table header.

**Generate table footer**

If selected, an extra row will be inserted at the bottom of the table to be used as the table footer.

**Column widths**

Allows you to specify the type of properties for column widths (width attribute). You can choose one of the following properties for the column width:

- **proportional** - The width is specified in proportional (relative) units of measure. The proportion of the column is specified in a width attribute (in a col element) with the values listed as the number of shares followed by an asterisk. The value of the shares is totaled and rendered as a percent. For example, width="1* 2* 3*" causes widths of 16.7%, 33.3%, and 66.7%. When entering content into a cell in one column, the width proportions of the other columns are maintained. If you change the width by dragging a column in Author mode, the values of the width attribute...
are automatically changed accordingly. By default, when you insert, drag and drop, or copy/paste a column, the value of the `width` attribute is `1*`.

- **dynamic** - If you choose this option, the columns are created without a specified width. Entering content into a cell changes the rendered width dynamically. If you change the width by dragging a column in **Author** mode, a dialog box will be displayed that asks you if you want to switch to proportional or fixed column widths.

- **fixed** - The width is specified in fixed units. By default, the `pt` unit is inserted, but you can change the units in the section above the table or in **Text** mode. In addition to the standard pixel, percentage, and relative values, this attribute also allows the special form “0*” (zero asterisk), which means that the width of each column in the group should be the minimum width necessary to hold the contents.

**Frame**

Allows you to specify a value for the `frame` attribute. It is used to specify where a border should appear in the table. There are a variety of allowed values, as specified in the DocBook HTML table specifications.

**Alignment**

Specifies the alignment of the text within the table (`align` attribute). The allowed values are:

- **left** - Aligns the text to a left position.
- **right** - Aligns the text to a right position.
- **center** - Aligns the text to a centered position.
- **justify** - Stretches the line of text so that it has equal width.

**Note:** The `justify` value cannot be rendered in **Author** mode, so you will only see it in the output.

- **char** - Aligns text to the leftmost occurrence of the value specified on the `char` attribute for alignment.

**Note:** The options in the **Insert Table** dialog box for DocBook documents are persistent, so changes made in one session will carry over to another.

When you click **Insert**, an HTML style of table is inserted into your document at the current cursor position.

When you insert an HTML table, you see a section above the table that allows you to easily configure some properties without opening the **Table Properties** dialog box. Although this section appears as part of the **Author mode** (on page 402), it will not appear in your output. It is just there to make it easier to adjust how the columns of your table are formatted.
Editing an Existing Table

You can edit the structure of an existing table using the table buttons on the toolbar (or in the contextual menu) to add or remove cells, rows, or columns, and to set basic table properties. Additional attributes can be used to fine-tune the formatting of your tables by using the Attributes view (on page 426) (Window > Show View > Attributes).

You can also use the Table Properties (Ctrl + T (Command + T on OS X)) (on page 1010) action from the toolbar or contextual menu to modify many of the properties of the table (on page 995).

Also, remember that underneath the visual representation, both table models are really just XML. If necessary, you can edit the XML directly by switching to Text mode (on page 303).

DocBook Table Layouts

The DocBook framework (on page 3282) supports the following two table model layouts:

- CALS table model (on page 993)
- HTML table model (on page 994)

CALS Table Model Layout

The CALS table model allows for more flexibility and table customization than other models. When choosing a CALS table model from the Insert Table dialog box, you have access to more configurable properties. The layout of a CALS table includes a colspecs section that allows you to easily configure some properties without opening the Table Properties dialog box. For example, you can change the value of column widths (colwidth attribute) or the text alignment (align attribute). Although they appear as part of the Author mode (on page 402), the colspecs link and its controls will not appear in your output. They are just there to make it easier to adjust how the columns of your table are formatted.

Figure 156. CALS Table in DocBook
HTML Table Model Layout

Choosing an HTML table model from the Insert Table dialog box in a DocBook document inserts a formal (captioned) HTML table. The layout of an HTML table includes a section above the table that allows you to easily configure some properties without opening the Table Properties dialog box. For example, you can change the value of column widths (width attribute) or the text alignment (align attribute). Although these properties appear as part of the Author mode (on page 402), they will not appear in your output. They are just there to make it easier to adjust how the columns of your table are formatted.

Figure 157. HTML Table in DocBook

Pasting Tables in DocBook

Tables that are pasted into a DocBook file are automatically converted to the CALS model. If you want to overwrite this behavior and instruct Oxygen XML Editor to convert them to HTML tables, set the docbook.html.table parameter to 1. You can find this parameter in the following stylesheet:

• [OXYGEN_INSTALL_DIR]/frameworks/docbook/resources/xhtml2db5Driver.xsl for DocBook 5
Table Validation in DocBook

Oxygen XML Editor reports table layout problems that are detected in manual or automatic validations. The types of errors that may be reported for DocBook table layout problems include:

**CALS Tables**

- A row has fewer cells than the number of columns detected from the table `cols` attribute.
- A row has more cells than the number of columns detected from the table `cols` attribute.
- A cell has a vertical span greater than the available rows count.
- The number of `colspecs` is different than the number of columns detected from the table `cols` attribute.
- The number of columns detected from the table `cols` attribute is different than the number of columns detected in the table structure.
- The value of the `cols`, `rowsep`, or `colsep` attributes are not numeric.
- The `namest`, `nameend`, or `colname` attributes point to an incorrect column name.

**HTML Tables**

- A row has fewer cells than the number of table columns.
- The value of the `colspan`, `rowspan`, or `span` attributes are not numeric.
- A cell has a vertical span greater than the available rows count.

Editing Table Properties in DocBook

You can edit the structure of an existing table using the table buttons on the toolbar (or from the contextual menu) to add or remove cells, rows, or columns, and to set basic table properties. Additional attributes can be used to fine-tune the formatting of your tables by using the Attributes view (on page 426) (Window > Show View > Attributes).

You can use the Table Properties (Ctrl + T (Command + T on OS X)) action to modify many of the properties of the table. You can also adjust some of the properties in the specification section above the table.

The Table properties dialog box allows you to set specific properties to the table elements. The options that are available depend on the context and location within the table in which the action was invoked.
Note: Some properties allow the following special values, depending on the context and the current properties or values:

- `<not set>` - Use this value if you want to remove a property.
- `<preserve>` - If you select multiple elements that have the same property set to different values, you can choose this value to keep the values that are already set. In some cases it can also be used to keep the current non-standard value for a particular property.

Edit Table Properties for a CALS Table Model

For a CALS table model, the Table properties dialog box includes four tabs of options:

- **Table** tab - The options in this tab apply to the entire table.
- **Row** tab - The options in this tab apply to the current row or selection of multiple rows. A message at the bottom of the tab tells you how many rows will be affected.
- **Column** tab - The options in this tab apply to the current column or selection of multiple columns. A message at the bottom of the tab tells you how many columns will be affected.
- **Cell** tab - The options in this tab apply to the current cell or selection of multiple cells. A message at the bottom of the tab tells you how many cells will be affected.

The options in the four tabs include a Preview pane that shows a representation of the modification.

Figure 158. Table Properties Dialog Box with Cell Tab Selected (DocBook CALS Table Model)

The options in the four tabs include the following:

**Horizontal alignment** (Available in the Table, Column, and Cell tabs)
Specifies the horizontal alignment of text within the current table/column/cell or selection of multiple columns/cells (align attribute). The allowed values are as follows:

- **left** - Aligns the text to a left position.
- **right** - Aligns the text to a right position.
- **center** - Aligns the text to a centered position.
- **justify** - Stretches the line of text so that it has equal width.

 помечено: The justify value cannot be rendered in Author mode, so you will only see it in the output.

- **char** - Aligns text to the leftmost occurrence of the value specified on the char attribute for alignment.

**Vertical alignment (Available in the Row and Cell tabs)**

Specifies the vertical alignment of text within the current row/cell or selection of multiple rows/cells (valign attribute). The allowed values are as follows:

- **top** - Aligns the text at the top of the cell.
- **middle** - Aligns the text in a vertically centered position.
- **bottom** - Aligns the text at the bottom of the cell.

**Column separator (Available in the Table, Column, and Cell tabs)**

Specifies whether or not to include column separators (borders/grid lines) in the form of the colsep attribute. The allowed values are: 0 (no separator) and 1 (include separators).

**Row separator (Available in all four tabs)**

Specifies whether or not to include row separators (borders/grid lines) in the form of the rowsep attribute. The allowed values are: 0 (no separator) and 1 (include separators).

**Frame**

Allows you to specify a value for the frame attribute. It is used to specify where a border should appear in the table. There are a variety of allowed values, as specified in the DocBook CALS table specifications.

**Row type (Available in the Row tab only)**

Allows you to change the row to a header, body, or footer type of row (within a thead, tbody, or tfoot attribute).
Edit Table Properties for an HTML Table Model

For an HTML table model, the Table properties dialog box includes four tabs of options (Table, Row, Column, and Cell) and the options include a Preview pane that shows a representation of the modification.

The options in the four tabs include the following:

Frame (Available only in the Table tab)

Allows you to specify a value for the frame attribute. It is used to specify where a border should appear in the table. There are a variety of allowed values, as specified in the DocBook HTML table specifications.

Row type (Available in the Row tab only)

Allows you change the row to a header, body, or footer type of row (within a thead, tbody, or tfoot attribute).

Horizontal alignment (Available in the Row, Column, and Cell tabs)

Specifies the horizontal alignment for the text in the current row/column/cell or selection of multiple rows/columns/cells (align attribute). The allowed values are:

- left - Aligns the text to a left position.
- right - Aligns the text to a right position.
- center - Aligns the text to a centered position.
- justify - Stretches the line of text so that it has equal width.

Note: The justify value cannot be rendered in Author mode, so you will only see it in the output.
- char - Aligns text to the leftmost occurrence of the value specified on the char attribute for alignment.

Vertical alignment (Available in the Row, Column, and Cell tabs)

Specifies the vertical alignment for the text in the current row/column/cell or selection of multiple rows/columns/cells (valign attribute). The allowed values are:

- top - Aligns the text at the top of the cell.
- middle - Aligns the text in a vertically centered position.
- bottom - Aligns the text at the bottom of the cell.
- baseline - Sets the row so that all the table data share the same baseline. This often has the same effect as the bottom value. However, if the fonts are different sizes, the baseline value often makes the table look better.
Adding Tables in DITA Topics

You can use the `Insert Table` action on the toolbar or from the contextual menu to add a table in a DITA topic. By default, DITA supports four types of tables:

- **DITA Simple table model (on page 999)** - This is the most commonly used model for basic tables.
- **CALS table model (OASIS Exchange Table Model) (on page 1001)** - This is used for more advanced functionality.
- **DITA Choice table model (on page 1004)** - This is used within a `step` element in a DITA Task document to describe a series of optional choices that a user must make before proceeding.
- **DITA Properties table model (on page 1005)** - This is used in DITA Reference documents to describe a property (for example, its type, value, and description).

If you are using a specialized DITA vocabulary, it may contain specialized versions of these table models.

Since DITA is a structured format, you can only insert a table in places in the structure of a topic where tables are allowed. The Oxygen XML Editor toolbar provides support for entering and editing tables. It also helps to indicate where you are allowed to insert a table or its components by disabling the appropriate buttons.

**Inserting a Simple Table Model**

To insert a Simple DITA table, select the `Insert Table` action on the toolbar or from the contextual menu (or the Table submenu from the DITA menu). The Insert Table dialog box appears. Select Simple for the table Model.

Figure 159. Insert Table Dialog Box - Simple Model
The dialog box allows you to configure the following options when you select the **Simple** table model:

**Title**

If this checkbox is selected, you can specify a title for your table in the adjacent text box.

**Generate table header**

If selected, an extra row will be inserted at the top of the table to be used as the table header.

**Column widths**

Allows you to specify the type of properties for column widths (`colwidth` attribute). You can choose one of the following properties for the column width:

- **proportional** - The width is specified in proportional (relative) units of measure. The proportion of the column is specified in a `relcolwidth` attribute with the values listed as the number of shares followed by an asterisk. The value of the shares is totaled and rendered as a percent. For example, `relcolwidth="1* 2* 3*"` causes widths of 16.7%, 33.3%, and 66.7%. When entering content into a cell in one column, the width proportions of the other columns are maintained. If you change the width by dragging a column in **Author** mode, the values of the `relcolwidth` attribute are automatically changed accordingly. By default, when you insert, drag and drop, or copy/paste a column, the value of the `relcolwidth` attribute is `1*`.

- **dynamic** - If you choose this option, the columns are created without a specified width. Entering content into a cell changes the rendered width dynamically. If you change the width by dragging a column in **Author** mode, a dialog box will be displayed that asks you if you want to switch to proportional or fixed column widths.

**Frame**
Allows you to specify a value for the `frame` attribute. It is used to specify where a border should appear in the table. The allowed values are as follows:

- **none** - No border will be added.
- **all** - A border will be added to all frames.
- **top** - A border will be added to the top frame.
- **topbot** - A border will be added to the top and bottom frames.
- **bottom** - A border will be added to the bottom frame.
- **sides** - A border will be added to the side frames.
- **-dita-use-conref-target** - Normally, when using a `conref`, the values of attributes specified locally are preserved. You can choose this option to override this behavior and pull the value of this particular attribute from the `conref` target. For more information, see [https://www.oxygenxml.com/dita/1.3/specs/langRef/attributes/ditauseconreftarget.html](https://www.oxygenxml.com/dita/1.3/specs/langRef/attributes/ditauseconreftarget.html).

**Note:** The options in the Insert Table dialog box for DITA documents are persistent, so changes made in one session will carry over to another.

When you click **Insert**, a simple table is inserted into your document at the current cursor position.

### Inserting a CALS Table Model (OASIS Exchange Table)

To insert an OASIS Exchange Table (CALS), select the **Insert Table** action on the toolbar or from the contextual menu (or the Table submenu from the DITA menu). The **Insert Table** dialog box appears. Select **CALS** for the table **Model**. This model allows you to configure more properties than the **Simple** model.

![Figure 160. Insert Table Dialog Box - CALS Model](image-url)
The dialog box allows you to configure the following options when you select the **CALS** table model:

**Title**

If this checkbox is selected, you can specify a title for your table in the adjacent text box.

**Table Size**

Allows you to choose the number of **Rows** and **Columns** for the table.

**Generate table header**

If selected, an extra row will be inserted at the top of the table to be used as the table header.

**Column widths**

Allows you to specify the type of properties for column widths (colwidth attribute). You can choose one of the following properties for the column width:

- **proportional** - The width is specified in proportional (relative) units of measure. The proportion of the column is specified in a colwidth attribute with the values listed as the number of shares followed by an asterisk. The value of the shares is totaled and rendered as a percent. For example, colwidth="1* 2* 3*" causes widths of 16.7%, 33.3%, and 66.7%. When entering content into a cell in one column, the width proportions of the other columns are maintained. If you change the width by dragging a column in **Author** mode, the values of the colwidth attribute are automatically changed accordingly. By default, when you insert, drag and drop, or copy/paste a column, the value of the colwidth attribute is 1*.

- **dynamic** - If you choose this option, the columns are created without a specified width (colwidth attribute). Entering content into a cell changes the rendered width dynamically. If you change the width by dragging a column in **Author** mode, a dialog box will be displayed that asks you if you want to switch to proportional or fixed column widths.

- **fixed** - The width is specified in fixed units. By default, the pt unit is inserted, but you can change the units in the colspeccs (column specifications) section above the table or in **Text** mode. The following units are allowed: pt (points), cm (centimeters), mm (millimeters), pi (picas), in (inches).

**Frame**

Allows you to specify a value for the frame attribute. It is used to specify where a border should appear in the table. The allowed values are as follows:

- **none** - No border will be added.
- **all** - A border will be added to all frames.
- **top** - A border will be added to the top frame.
• **topbot** - A border will be added to the top and bottom frames.
• **bottom** - A border will be added to the bottom frame.
• **sides** - A border will be added to the side frames.
• **-dita-use-conref-target** - Normally, when using a `conref`, the values of attributes specified locally are preserved. You can choose this option to override this behavior and pull the value of this particular attribute from the `conref` target. For more information, see [https://www.oxygenxml.com/dita/1.3/specs/langRef/attributes/ditauseconreftarget.html](https://www.oxygenxml.com/dita/1.3/specs/langRef/attributes/ditauseconreftarget.html).

**Row separator**

Specifies whether or not to include row separators ( `rowsep` attribute). The allowed values are: 0 (no separator) and 1 (include separators).

**Column separator**

Specifies whether or not to include column separators ( `colsep` attribute). The allowed values are: 0 (no separator) and 1 (include separators).

**Alignment**

Specifies the alignment of the text within the table ( `align` attribute). The allowed values are:

- **left** - Aligns the text to a left position.
- **right** - Aligns the text to a right position.
- **center** - Aligns the text to a centered position.
- **justify** - Stretches the line of text so that it has equal width.

**Note:** The `justify` value cannot be rendered in **Author** mode, so you will only see it in the output.

• **char** - Aligns text to the leftmost occurrence of the value specified on the `char` attribute for alignment.
• **-dita-use-conref-target** - Normally, when using a `conref`, the values of attributes specified locally are preserved. You can choose this option to override this behavior and pull the value of this particular attribute from the `conref` target. For more information, see [https://www.oxygenxml.com/dita/1.3/specs/langRef/attributes/ditauseconreftarget.html](https://www.oxygenxml.com/dita/1.3/specs/langRef/attributes/ditauseconreftarget.html).

**Note:** The options in the **Insert Table** dialog box for DITA documents are persistent, so changes made in one session will carry over to another.

When you click **Insert**, a CALS table is inserted into your document at the current cursor position.

When you insert a CALS table, you see a link for setting the `colspecs` (column specifications) of your table. Click the link to open the controls that allow you to adjust various column properties. Although
they appear as part of the Author mode (on page 402), the colspecs link and its controls will not appear in your output. They are just there to make it easier to adjust how the columns of your table are formatted.

Figure 161. CALS Table in DITA

```
<table>
<thead>
<tr>
<th>Sample CALS Table with Fixed Width</th>
</tr>
</thead>
<tbody>
<tr>
<td>name c1</td>
</tr>
<tr>
<td>name c2</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>
```

**Inserting a Choice Table Model**

To insert a Choice table within a step element in a DITA Task document, select the Insert Table action on the toolbar or in the Insert submenu from the contextual menu (or the Table submenu from the DITA menu), or select choicetable from the Content Completion Assistant (on page 3280). The Insert Table dialog box appears. Select Simple for the table Model.

Figure 162. Insert Table Dialog Box - Choice Model

The dialog box allows you to configure the following options when you insert a Choice table model within a DITA Task:

**Table Size**

Allows you to choose the number of Rows and Columns for the table.

**Generate table header**

If selected, an extra row will be inserted at the top of the table to be used as the table header.
Column widths

Allows you to specify the type of properties for column widths (colwidth attribute). You can choose one of the following properties for the column width:

- **proportional** - The width is specified in proportional (relative) units of measure. The proportion of the column is specified in a relcolwidth attribute with the values listed as the number of shares followed by an asterisk. The value of the shares is totaled and rendered as a percent. For example, relcolwidth="1* 2* 3*" causes widths of 16.7%, 33.3%, and 66.7%. When entering content into a cell in one column, the width proportions of the other columns are maintained. If you change the width by dragging a column in Author mode, the values of the relcolwidth attribute are automatically changed accordingly. By default, when you insert, drag and drop, or copy/paste a column, the value of the relcolwidth attribute is 1*.

- **dynamic** - If you choose this option, the columns are created without a specified width. Entering content into a cell changes the rendered width dynamically. If you change the width by dragging a column in Author mode, a dialog box will be displayed that asks you if you want to switch to proportional or fixed column widths.

Frame

Allows you to specify a value for the frame attribute. It is used to specify where a border should appear in the table. The allowed values are as follows:

- **none** - No border will be added.
- **all** - A border will be added to all frames.
- **top** - A border will be added to the top frame.
- **topbot** - A border will be added to the top and bottom frames.
- **bottom** - A border will be added to the bottom frame.
- **sides** - A border will be added to the side frames.
- **-dita-use-conref-target** - Normally, when using a conref, the values of attributes specified locally are preserved. You can choose this option to override this behavior and pull the value of this particular attribute from the conref target. For more information, see https://www.oxygenxml.com/dita/1.3/specs/langRef/attributes/ditauseconreftarget.html.

When you click Insert, a Choice table is inserted into your DITA Task document at the current cursor position (within a step element).

Inserting a Properties Table Model

To insert a Properties table within a refbody element in a DITA Reference document, select the Insert Table action on the toolbar or in the Insert submenu from the contextual menu (or the Table...
submenu from the DITA menu), or select properties (wizard) from the Content Completion Assistant (on page 3280). The Insert Table dialog box appears. Select Properties for the table Model.

Figure 163. Insert Table Dialog Box - Properties Model

The dialog box allows you to configure the following options when you insert a Properties table model within a DITA Reference:

**Table Size**

Allows you to choose the number of **Rows** and **Columns** for the table.

**Generate table header**

If selected, an extra row will be inserted at the top of the table to be used as the table header.

**Frame**

Allows you to specify a value for the `frame` attribute. It is used to specify where a border should appear in the table. The allowed values are as follows:

- **none** - No border will be added.
- **all** - A border will be added to all frames.
- **top** - A border will be added to the top frame.
- **topbot** - A border will be added to the top and bottom frames.
- **bottom** - A border will be added to the bottom frame.
- **sides** - A border will be added to the side frames.
- **-dita-use-conref-target** - Normally, when using a `conref`, the values of attributes specified locally are preserved. You can choose this option to override this behavior and pull the value of this particular attribute from the `conref` target. For more
When you click **Insert**, a **Properties** table is inserted into your DITA Reference document at the current cursor position (within a **refbody** element).

**Editing an Existing Table**

You can edit the structure of an existing table using the table buttons on the toolbar (or in the contextual menu) to add or remove cells, rows, or columns, and to set basic table properties. Additional attributes can be used to fine-tune the formatting of your tables by using the Attributes view (on page 426) (Window > Show View > Attributes). See the DITA documentation for a full explanation of these attributes.

You can also use the **Table Properties** (Ctrl + T (Command + T on OS X)) (on page 1010) action from the toolbar or contextual menu (or DITA menu) to modify many of the properties of the table (on page 1010).

Also, remember that underneath the visual representation, both table models are really just XML. If necessary, you can edit the XML directly by switching to **Text mode** (on page 303).

You can use normal copy/paste shortcuts to move content between cells. Oxygen XML Editor includes a **Smart Paste feature** (on page 918) that preserves certain style and structure information when pasting content.

**Tip:** When copying a multiple selection of table cells and pasting them outside the table, a new table will be created. When pasting into space-preserved elements, the cell content will be pasted as plain text.

**Related Information:**

- Editing Tables in Author Mode (on page 985)

**DITA Table Layouts**

Depending on the context, DITA accepts the following table layouts:

- **CALS table model** (on page 1008)
- **Simple table model** (on page 1008)
- **Choice table model** (on page 1008)
- **Properties table model** (on page 1009)
CALS Table Model Layout

The CALS table model allows for more flexibility and table customization than other models. When choosing a CALS table model from the Insert Table dialog box, you have access to more configurable properties. The layout of a CALS table includes a colspecs section that allows you to easily configure some properties without opening the Table Properties dialog box. For example, you can change the value of column widths (colwidth attribute) or the text alignment (align attribute). Although they appear as part of the Author mode (on page 402), the colspecs link and its controls will not appear in your output. They are just there to make it easier to adjust how the columns of your table are formatted.

Figure 164. CALS Table in DITA

Simple Table Model Layout

When choosing a Simple table model from the Insert Table dialog box, you only have access to configure a few properties. For example, you can choose the number of rows and columns, specify values for frames, and choose from a few types of properties for the column width. The layout of this type of table is very simple, as the name suggests.

Figure 165. DITA Simple Table

Choice Table Model Layout

A Choice table model is used within a step element in a DITA Task document to describe a series of optional choices that a user must make before proceeding. The choicetable element is a useful...
device for documenting options within a single step of a task. You can insert Choice tables in DITA Task documents either by selecting \textit{choicetable} from the \textit{Content Completion Assistant (on page 3280)} (within a \texttt{step} element) or by using the \textbf{Insert Table} action on the toolbar or from the contextual menu. The options and layout of a Choice table is similar to the Simple table model.

Figure 166. DITA Choice Table

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Opt A</td>
<td></td>
</tr>
<tr>
<td>Opt B</td>
<td></td>
</tr>
<tr>
<td>Opt C</td>
<td></td>
</tr>
</tbody>
</table>

Properties Table Model Layout

A Properties table model is used within a \texttt{refbody} element in a DITA Reference document to describe a property (for example, its type, value, and description). You can insert Properties tables in DITA Reference documents either by selecting \textit{properties(wizard)} from the \textit{Content Completion Assistant (on page 3280)} (within a \texttt{refbody} element) or by using the \textbf{Insert Table} action on the toolbar (or from the contextual menu) and selecting Properties for the \texttt{Model}. The layout of a Properties table is very simple. It allows for a maximum of 3 columns (typically for property type, value, and description) and the only options available are for whether or not you want a header row and for specifying frames (borders).

Figure 167. DITA Properties Table

<table>
<thead>
<tr>
<th>Property Type</th>
<th>Property Value</th>
<th>Property Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>B</td>
<td>C</td>
</tr>
</tbody>
</table>

Table Validation in DITA

Oxygen XML Editor reports table layout problems that are detected in manual or automatic validations. When you validate a \textit{DITA map (on page 3281)} with the \textbf{Validate and Check for Completeness} action, if the \textit{Report table layout problems} option is selected in the \textit{DITA Map Completeness Check} dialog box (on page 3040), table layout problems will be reported in the validation results. The types of errors that may be reported for DITA table layout problems include:

**CALS Tables**

- A row has fewer cells than the number of columns detected from the table \texttt{cols} attribute.
- A row has more cells than the number of columns detected from the table \texttt{cols} attribute.
• A cell has a vertical span greater than the available rows count.
• The number of `colspecs` is different than the number of columns detected from the table `cols` attribute.
• The number of columns detected from the table `cols` attribute is different than the number of columns detected in the table structure.
• The value of the `cols`, `rowsep`, or `colsep` attributes are not numeric.
• The `namest`, `nameend`, or `colname` attributes point to an incorrect column name.

Simple or Choice Tables

A row has fewer cells than the number of table columns.

Editing Table Properties in DITA

To customize the look of a table in DITA, place the cursor anywhere in a table and invoke the `Table Properties (Ctrl + T (Command + T on OS X))` action from the toolbar or the Table submenu of the contextual menu (or DITA menu). This opens the Table properties dialog box.

The Table properties dialog box allows you to set specific properties to the table elements. The options that are available depend on the context and location within the table in which the action was invoked.

**Note:** Some properties allow the following special values, depending on the context and the current properties or values:

• `<not set>` - Use this value if you want to remove a property.
• `<preserve>` - If you select multiple elements that have the same property set to different values, you can choose this value to keep the values that are already set. In some cases it can also be used to keep the current non-standard value for a particular property.

Edit Table Properties for a CALS Table Model

For a CALS table model, the Table properties dialog box includes four tabs of options:

• Table tab - The options in this tab apply to the entire table.
• Row tab - The options in this tab apply to the current row or selection of multiple rows. A message at the bottom of the tab tells you how many rows will be affected.
• Column tab - The options in this tab apply to the current column or selection of multiple columns. A message at the bottom of the tab tells you how many columns will be affected.
• Cell tab - The options in this tab apply to the current cell or selection of multiple cells. A message at the bottom of the tab tells you how many cells will be affected.

The options in four tabs include a Preview pane that shows a representation of the modification.
The options in the four tabs include the following:

**Horizontal alignment (Available in the Table, Column, and Cell tabs)**

Specifies the horizontal alignment of text within the current table/column/cell or selection of multiple columns/cells (align attribute). The allowed values are as follows:

- **left** - Aligns the text to a left position.
- **right** - Aligns the text to a right position.
- **center** - Aligns the text to a centered position.
- **justify** - Stretches the line of text so that it has equal width.

**Note:** The justify value cannot be rendered in Author mode, so you will only see it in the output.

- **char** - Aligns text to the leftmost occurrence of the value specified on the char attribute for alignment.
- **-dita-use-conref-target** - Normally, when using a conref, the values of attributes specified locally are preserved. You can choose this option to override this behavior and pull the value of this particular attribute from the conref target. For more information, see https://www.oxygenxml.com/dita/1.3/specs/langRef/attributes/ditauseconreftarget.html.

**Vertical alignment (Available in the Row and Cell tabs)**
Specifies the vertical alignment of text within the current row/cell or selection of multiple rows/cells (\texttt{valign} attribute). The allowed values are as follows:

- \textbf{top} - Aligns the text at the top of the cell.
- \textbf{middle} - Aligns the text in a vertically centered position.
- \textbf{bottom} - Aligns the text at the bottom of the cell.
- \textbf{-dita-use-conref-target} - Normally, when using a \texttt{conref}, the values of attributes specified locally are preserved. You can choose this option to override this behavior and pull the value of this particular attribute from the \texttt{conref} target. For more information, see \url{https://www.oxygenxml.com/dita/1.3/specs/langRef/attributes/ditauseconreftarget.html}.

\textbf{Column separator (Available in the Table, Column, and Cell tabs)}

Specifies whether or not to include column separators (borders/grid lines) in the form of the \texttt{colsep} attribute. The allowed values are: 0 (no separator) and 1 (include separators).

\textbf{Row separator (Available in all four tabs)}

Specifies whether or not to include row separators (borders/grid lines) in the form of the \texttt{rowsep} attribute. The allowed values are: 0 (no separator) and 1 (include separators).

\textbf{Frame (Available only in the Table tab)}

Allows you to specify a value for the \texttt{frame} attribute. It is used to specify where a border should appear in the table. The allowed values are as follows:

- \textbf{none} - No border will be added.
- \textbf{all} - A border will be added to all frames.
- \textbf{top} - A border will be added to the top frame.
- \textbf{topbot} - A border will be added to the top and bottom frames.
- \textbf{bottom} - A border will be added to the bottom frame.
- \textbf{sides} - A border will be added to the side frames.
- \textbf{-dita-use-conref-target} - Normally, when using a \texttt{conref}, the values of attributes specified locally are preserved. You can choose this option to override this behavior and pull the value of this particular attribute from the \texttt{conref} target. For more information, see \url{https://www.oxygenxml.com/dita/1.3/specs/langRef/attributes/ditauseconreftarget.html}.

\textbf{Edit Table Properties for a Simple, Choice, or Properties Table Model}

For a \textit{Simple}, \textit{Choice}, \textit{Properties} table model, the \textbf{Table properties} dialog box only allows you to edit a few options.
Table tab

Frame

Allows you to specify a value for the frame attribute. It is used to specify where a border should appear in the table. The allowed values are as follows:

- **none** - No border will be added.
- **all** - A border will be added to all frames.
- **top** - A border will be added to the top frame.
- **topbot** - A border will be added to the top and bottom frames.
- **bottom** - A border will be added to the bottom frame.
- **sides** - A border will be added to the side frames.
- **-dita-use-conref-target** - Normally, when using a conref, the values of attributes specified locally are preserved. You can choose this option to override this behavior and pull the value of this particular attribute from the conref target. For more information, see https://www.oxygenxml.com/dita/1.3/specs/langRef/attributes/ditauseconreftarget.html.

Row tab (not available for Properties tables)

Row type

Allows you to change the row to a body or header type of row.

Related Information:

- Adding Tables in DITA Topics (on page 999)
- Editing Tables in Author Mode (on page 985)

Adding Tables in XHTML Documents

You can use the Insert Table action on the toolbar or from the contextual menu to add a table in an XHTML document. This action opens the Insert Table dialog box.

Figure 169. Insert Table Dialog Box in XHTML
The dialog box allows you to configure the following options:

**Caption**

If this checkbox is selected, you can specify a title (caption) for your table in the adjacent text box.

**Table Size**

Allows you to choose the number of Rows and Columns for the table.

**Generate table header**

If selected, an extra row will be inserted at the top of the table to be used as the table header.

**Generate table footer**

If selected, an extra row will be inserted at the bottom of the table to be used as the table footer.

**Column widths**

Allows you to specify the type of properties for column widths (width attribute). You can choose one of the following properties for the column width:

- **proportional** - The width is specified in proportional (relative) units of measure. The proportion of the column is specified in a width attribute (in a col element) with the values listed as the number of shares followed by an asterisk. The value of the shares is totaled and rendered as a percent. For example, width="1* 2* 3*" causes widths of 16.7%, 33.3%, and 66.7%. When entering content into a cell in one column, the width proportions of the other columns are maintained. If you change the width by dragging a column in Author mode, the values of the width attribute are automatically changed accordingly. By default, when you insert, drag and drop, or copy/paste a column, the value of the width attribute is 1*.

- **dynamic** - If you choose this option, the columns are created without a specified width. Entering content into a cell changes the rendered width dynamically. If
you change the width by dragging a column in Author mode, a dialog box will be displayed that asks you if you want to switch to proportional or fixed column widths.

- **fixed** - The width is specified in fixed units. By default, the pt unit is inserted, but you can change the units in the section above the table or in Text mode. In addition to the standard pixel, percentage, and relative values, this attribute also allows the special form "0*" (zero asterisk), which means that the width of each column in the group should be the minimum width necessary to hold the contents.

**Frame**

Allows you to specify a value for the `frame` attribute. It is used to specify where a border should appear in the table. There are a variety of allowed values, as specified in HTML specifications.

**Alignment**

Specifies the alignment of the text within the table (`align` attribute). The allowed values are:

- **left** - Aligns the text to a left position.
- **right** - Aligns the text to a right position.
- **center** - Aligns the text to a centered position.
- **justify** - Stretches the line of text so that it has equal width.

**Note:** The justify value cannot be rendered in Author mode, so you will only see it in the output.

- **char** - Aligns text to the leftmost occurrence of the value specified on the `char` attribute for alignment.

**Note:** The options in the Insert Table dialog box for XHTML documents are persistent, so changes made in one session will carry over to another.

When you click Insert, an HTML style of table is inserted into your XHTML document at the current cursor position.

When you insert an HTML table, you see a link for setting the `colspecs` (column specifications) of your table. Click the link to open the controls that allow you to adjust various column properties. Although they appear as part of the Author mode (on page 402), the `colspecs` link and its controls will not appear in your output. They are just there to make it easier to adjust how the columns of your table are formatted.
Editing an Existing Table

You can edit the structure of an existing table using the table buttons on the toolbar (or in the contextual menu) to add or remove cells, rows, or columns, and to set basic table properties. Additional attributes can be used to fine-tune the formatting of your tables by using the Attributes view (on page 426) (Window > Show View > Attributes). Also, remember that underneath the visual representation, the table is really just XML. If necessary, you can edit the XML directly by switching to Text mode (on page 303).

XHTML Table Layout

When you insert a table in an XHTML document, an HTML type of table is added. The layout of an XHTML table includes a colspecs section that allows you to easily configure some properties. For example, you can change the value of column widths (width attribute) or the text alignment (align attribute). Although they appear as part of the Author mode (on page 402), the colspecs link and its controls will not appear in your output. They are just there to make it easier to adjust how the columns of your table are formatted.

Figure 170. Table Layout in XHTML Documents

Table Validation in XHTML

Oxygen XML Editor reports table layout problems that are detected in manual or automatic validations. The types of errors that may be reported for XHTML table layout problems include:

HTML Tables

- A row has fewer cells than the number of table columns.
- The value of the colspan, rowspan, or span attributes are not numeric.
- A cell has a vertical span greater than the available rows count.
Adding Tables in TEI Documents

You can use the `Insert Table` action on the toolbar or from the contextual menu to add a table in a TEI document. This action opens the `Insert Table` dialog box.

Figure 171. Insert Table Dialog Box in TEI

The dialog box allows you to configure the following options:

**Head**

If this checkbox is selected, you can specify a title for your table in the adjacent text box.

**Table Size**

Allows you to choose the number of **Rows** and **Columns** for the table.

**Generate table header**

If selected, an extra row will be inserted at the top of the table to be used as the table header.

**Note:** The options in the `Insert Table` dialog box for TEI documents are persistent, so changes made in one session will carry over to another.

When you click **Insert**, a simple table is inserted into your TEI document at the current cursor position.

**Editing an Existing Table**

You can edit the structure of an existing table using the table buttons on the toolbar (or in the contextual menu) to add or remove cells, rows, or columns. Additional attributes can be used to fine-tune the formatting of your tables by using the `Attributes view` (on page 426) (Window > Show View > Attributes). Also, remember that underneath the visual representation, the table is really just XML. If necessary, you can edit the XML directly by switching to **Text mode** (on page 303).

**Sorting Content in Tables and List Items**

Oxygen XML Editor offers support for sorting the content of tables and list items of ordered and unordered lists.
Sorting a Table

To sort rows in a table, select the entire table (or specific rows) and use the \Sort action from the main toolbar or the contextual menu. This opens the \Sort dialog box.

Figure 172. Sort Dialog Box

This dialog box sets the range that is sorted and the sorting criteria. The range is automatically selected depending on whether you sort an entire table or only a selection of its rows.

Note: When you invoke the sorting operation over an entire table, the \Selected rows option is disabled.

The Criteria section specifies the sorting criteria (a maximum of three sorting criteria are available), defined by the following:

- A name, which is collected from the column heading.
- The type of the information that is sorted. You can choose between the following:
  - Text - Alphanumeric characters.
  - Numeric - Regular integer or floating point numbers are accepted.
  - Date - Default date and time formats from the local OS are accepted (such as short, medium, long, full, xs:date, and xs:dateTime).
- The sorting direction (either ascending or descending).

The sort criteria is automatically set to the column where the cursor is located at the time when the sorting operation is invoked.

After you finish configuring the options in the Sort dialog box, click OK to complete the sorting operation. If you want to revert to the initial order of your content, press Ctrl + Z (Command + Z on OS X) on your keyboard.

Note: The sorting support takes the value of the xml:lang attribute into account and sorts the content in a natural order.
Sorting a Selection of Rows

To sort a selection of rows in a table, select the rows that you want to sort and either right-click the selection and choose **Sort**, or click **Sort** on the main toolbar. This opens the **Sort** dialog box.

Figure 173. Sort Selected Rows

![Sort dialog box](image)

This dialog box sets the range that is sorted and the sorting criteria. The range is automatically selected depending on whether you sort an entire table or only a selection of its rows.

The **Sort** dialog box also allows you to apply the sorting operation to the entire table, using the **All rows** option.

The **Criteria** section specifies the sorting criteria (a maximum of three sorting criteria are available), defined by the following:

- A name, which is collected from the column heading.
- The type of the information that is sorted. You can choose between the following:
  - **Text** - Alphanumeric characters.
  - **Numeric** - Regular integer or floating point numbers are accepted.
  - **Date** - Default date and time formats from the local OS are accepted (such as short, medium, long, full, xs:date, and xs:dateTime).
- The sorting direction (either **ascending** or **descending**).

The sort criteria is automatically set to the column where the cursor is located at the time when the sorting operation is invoked.

After you finish configuring the options in the **Sort** dialog box, click **OK** to complete the sorting operation. If you want to revert to the initial order of your content, press **Ctrl + Z (Command + Z on OS X)** on your keyboard.

**Note:** The sorting support takes the value of the `xml:lang` attribute into account and sorts the content in a natural order.
Sort Using Multiple Criteria

You can also sort an entire table or a selection of its rows based on multiple sorting criteria. To do so, select the rest of boxes in the Criteria section of the Sort dialog box, configure the applicable items, and click OK to complete the sorting operation.

Figure 174. Sorting Based on Multiple Criteria

Sorting a Table that Contains Merged Cells

If a table contains cells that span over multiple rows, you can not perform the sorting operation over the entire table. Still, the sorting mechanism works over a selection of rows that do not contain rowspans.

Note: For this type of table, the Sort dialog box keeps the All rows option disabled even if you perform the sorting operation over a selection of rows.

Sorting List Items

A sorting operation can be performed on various types of lists and list items. The types of lists that can be sorted in Oxygen XML Editor depend on the framework (document type), but examples of the types that can be sorted include:

- Ordered list (DITA, DocBook, XHTML, TEI)
- Unordered list (DITA, DocBook, XHTML, TEI)
- Definition list (DITA)
- Variable list (DocBook)
- Parameter list (DITA)
- Simple list (DITA)
- Required conditions (DITA Machinery Task)
- Supplies list (DITA Machinery Task)
The sorting mechanism works on an entire list or on a selection of list items. To sort items in a list, select the items or list and use the $\mathsection{Sort}$ action from the main toolbar or the contextual menu. This opens the Sort dialog box.

Figure 175. Sorting List Items

This dialog box sets the range that is sorted and the sorting criteria. The range is automatically selected depending on whether you sort an entire list or only a selection of its items.

**Note:** When you invoke the sorting operation over an entire list, the **Selected rows** option is disabled.

The **Criteria** section specifies the sorting criteria, defined by the following:

- The name of the type of item being sorted.
- The type of the information that is sorted. You can choose between the following:
  - **Text** - Alphanumeric characters.
  - **Numeric** - Regular integer or floating point numbers are accepted.
  - **Date** - Default date and time formats from the local OS are accepted (such as short, medium, long, full, xs:date, and xs:dateTime).
- The sorting direction (either **ascending** or **descending**).

After you finish configuring the options in the Sort dialog box, click **OK** to complete the sorting operation. If you want to revert to the initial order of your content, press **Ctrl + Z (Command + Z on OS X)** on your keyboard.

**Note:** The sorting support takes the value of the `xml:lang` attribute into account and sorts the content in a natural order.
Inserting Images

To insert an image in a document while editing in **Author** mode, use one of the following methods:

- Click the **Insert Image** action from the toolbar. This opens a dialog box that allows you to choose the image file you want to insert and configure some properties. Oxygen XML Editor tries to reference the image with a path that is relative to that of the document you are currently editing. For example, if you want to add the `file:/C:/project/xml/dir/img1.jpg` image into the `file:/C:/project/xml/doc1.xml` document, Oxygen XML Editor inserts a reference to `dir/img1.jpg`. This is useful when multiple users work on a common project and they have it stored in multiple locations.

  **Note:** The **Insert Image** action is available for the following document types: DITA, DocBook, TEI, XHTML, JATS.

- Drag an image from other application and drop it in the **Author** editing mode. If it is an image file, it is inserted as a reference to the image file. For example, in a DITA topic the path of the image file is inserted as the value of the `href` attribute in an `image` element:

  ```xml
  <image href="../images/image_file.png"/>
  ```

  **Tip:** To replace an image, just drag and drop a new image over the existing one. Oxygen XML Editor will automatically update the reference to the new image.

- Copy an image file from another document or another application (such as a system file browser or web browser) and paste it into your document. Oxygen XML Editor will insert it as a reference to the image file the same as the drag/drop method.

- Select an image (or part of an image) from another application (such as an image editor), copy it, and paste it into your document. Oxygen XML Editor will prompt you to save it. After saving the image, a reference to that file path is inserted at the paste position.

**Related Information:**

- Image Map Editor ([on page 1029](#))

- Image Rendering in **Author** Mode ([on page 1022](#))

- Adding Video, Audio, and Embedded HTML Resources in DITA Topics ([on page 3066](#))
Image Rendering in Author Mode

The **Author** mode and the output transformation process might render the images referenced in an XML document differently, since they use different rendering engines.

**Table 4. Supported Image Formats**

<table>
<thead>
<tr>
<th>Image Type</th>
<th>Support</th>
<th>Additional Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>GIF</td>
<td>built-in</td>
<td>Animations not yet supported.</td>
</tr>
<tr>
<td>JPG, JPEG</td>
<td>built-in</td>
<td>JPEG images with CMYK color profiles <em>(on page 2968)</em> are properly rendered only if color profile is inside the image.</td>
</tr>
<tr>
<td>PNG</td>
<td>built-in</td>
<td>Rendered using the open-source Apache Batik library that supports SVG 1.1.</td>
</tr>
<tr>
<td>SVG, SVGZ, WMF</td>
<td>built-in</td>
<td>Rendered using the open-source Apache Batik library that supports SVG 1.1.</td>
</tr>
<tr>
<td>BMP</td>
<td>built-in</td>
<td>Rendered by using a part of the Java JAI Image library.</td>
</tr>
<tr>
<td>TIFF</td>
<td>built-in</td>
<td>Renders the preview TIFF image inside the EPS.</td>
</tr>
<tr>
<td>EPS</td>
<td>built-in</td>
<td>Renders the preview image inside the Adobe Illustrator file.</td>
</tr>
<tr>
<td>AI</td>
<td>built-in</td>
<td>Rendered by using the bundled Apache PDF Box library. For versions older than 20.0, you need to install the Apache PDF Box library <em>(on page 1025)</em>.</td>
</tr>
<tr>
<td>PDF</td>
<td>built-in</td>
<td>Rendered by installing the Java Advanced Imaging (JAI) Image I/O Tools plug-in <em>(on page 1027)</em>.</td>
</tr>
<tr>
<td>JPEG 2000, WBMP</td>
<td>plugin</td>
<td>Rendered by installing the Java Advanced Imaging (JAI) Image I/O Tools plug-in <em>(on page 1027)</em>.</td>
</tr>
</tbody>
</table>

When an image cannot be rendered, Oxygen XML Editor **Author** mode displays a warning message that contains the reason why this is happening. Possible causes include the following:

- The image is too large. Select the **Show very large images** option *(on page 133)*.
- The image format is not supported by default. It is recommended to install the Java Advanced Imaging (JAI) Image I/O Tools plug-in *(on page 1027)*.

**Tip:** If you are using a custom XML format and you want images to be displayed in **Author** mode, you could use a custom CSS to define the rendering.

For example, if your XML has something like this:

```xml
<image href="blue.png"/>
```

You can add a selector in your custom CSS like this:

```css
image[href]{
    content: attr(href, url);
}
```
Scaling Images

Image dimension and scaling attributes are taken into account when an image is rendered. The following rules apply:

- If you specify only the width attribute of an image, the height of the image is proportionally applied.
- If you specify only the height attribute of an image, the width of the image is proportionally applied.
- If you specify width and height attributes of an image, both of them control the rendered image.
- If you want to scale both the width and height of an image proportionally, use the `scale` attribute.

**Note:** As a Java application, Oxygen XML Editor uses the Java Advanced Imaging API that provides a pluggable support for new image types. If you have an ImageIO library that supports additional image formats, just copy this library to the `{OXYGEN_INSTALL_DIR}/lib` directory.

Rendering CGM Images (Experimental Support)

Oxygen XML Editor offers a few add-ons that provide experimental support for CGM 1.0 images. To allow the rendering of CGM images in Author mode, follow this procedure:

1. Go to Help > Install new add-ons to open an add-on selection dialog box.
2. Enter or paste `https://www.oxygenxml.com/InstData/Addons/default/updateSite.xml` in the Show add-ons from field or select it from the drop-down menu.
3. Select the Oxygen CGM support add-on and click Next.
4. Select the I accept all terms of the end user license agreement option and click Finish.
5. Restart the application.

**Result:** You should be able to see CGM images in Author mode.

**Note:** If you want to render CGM images in your PDF output, make sure you add support for this image format in the transformation scenario (on page 2179).

Alternate Method for ISOView Active X Component

**Restriction:** This support will only work on 32 bit versions of Oxygen XML Editor.

If you already have the ISOView Active X component for Internet Explorer installed, you may want to use it to render CGM images instead of the components provided in the plugin described above.

To use your existing ISOView Active X component to render CCM images, follow these steps:
1. Go to Help > Install new add-ons to open an add-on selection dialog box.
2. Enter or paste https://www.oxygenxml.com/InstData/Addons/default/updateSite.xml in the Show add-ons from field or select it from the drop-down menu.
3. Select CGM Form control (Active X-based) plugin and click Next.
4. Select the I accept all terms of the end user license agreement option and click Finish.
5. Restart the application.
6. The CGM Form Control plugin automatically renders CGM files in DITA, DocBook, and XHTML, so for those frameworks, this step is not necessary. For other frameworks (on page 3282), modify your CSS according to your particular framework.

If you have an XML:

```xml
<image href="MyCGMFile.cgm"/>
```

You need a CSS rule like this:

```css
image[href$=".cgm"],
image[href$=".CGM"]{
    content: oxy_editor(saHeavyFormControlClassName , "com.oxygenxmlactivex.fctrl.ActiveXFormControl",
                        href, oxy_url(oxy_base-uri() , attr(href)));
}
```

You should be able to see CGM images in Author mode.

### Rendering PDF Images

Starting with version 20.0, Oxygen XML Editor provides built-in support for rendering PDF images in Author mode and PDF output. For previous versions, they are not rendered by default and you need to add the Apache PDFBox library by using one of the following procedures:

#### Installing the PDF Image Rendering Add-on

Oxygen XML Editor offers an add-on that contributes the Apache PDFBox library for you. To install this add-on, follow these steps:

1. Go to Help > Install new add-ons to open an add-on selection dialog box.
2. Enter or paste https://www.oxygenxml.com/InstData/Addons/default/updateSite.xml in the Show add-ons from field or select it from the drop-down menu.
3. Select the PDF Image Rendering add-on and click Next.
4. Select the I accept all terms of the end-user license agreement option and click Finish.
5. Restart the application.
Result: The Apache PDFBox libraries are now contributed to the Oxygen installation directory and you should be able to see PDF images in Author mode.

For more information, see the details about this PDF Image Rendering add-on in GitHub.

Manually Adding the ApachePDFBox Libraries

To manually add the Apache PDFBox library so that PDF images are rendered in Author mode, follow this procedure:

1. Go to http://pdfbox.apache.org/downloads.html and download the pre-built PDFBox standalone binary JAR (on page 3283) files: pdfbox-2.0.3.jar, fontbox-2.0.3.jar, and xmpbox-2.0.3.jar. Alternatively, you can use the 1.8.12 version of these files, as they have been tested and work properly.

Note: It is not recommended to use pdfbox-app-2.0.3.jar file instead of the three specified files because it contains additional classes that may cause conflicts elsewhere in Oxygen XML Editor.

2. Create a subfolder called pdfImageJars in the [OXYGEN_INSTALL_DIR]\lib directory.

3. Copy the downloaded JAR libraries to that newly created subfolder.

4. Restart the application.

Rendering PSD Images

Oxygen XML Editor provides support for rendering PSD (Adobe Photoshop) images.

To allow the rendering of PSD images in Author mode, follow this procedure:

1. Download the following JAR (on page 3283) files:
   - http://search.maven.org/remotecontent?filepath=com/twelvemonkeys/common/common-image/3.1.0/common-image-3.1.0.jar
   - http://search.maven.org/remotecontent?filepath=com/twelvemonkeys/imageio/imageio-metadata/3.1.0/imageio-metadata-3.1.0.jar
2. Copy the downloaded JAR libraries to the \{OXYGEN_INSTALL_DIR\}\lib directory.
3. Restart the application.

Rendering EPS and AI Images

Most EPS and AI image files include a preview picture of the content. Oxygen XML Editor tries to render this preview picture. The following scenarios are possible:

- The EPS or AI image does not include the preview picture. Oxygen XML Editor cannot render the image.
- The EPS image includes a TIFF preview picture.

Note: Some newer versions of the TIFF picture preview are rendered in gray-scale.
- The AI image contains a JPEG preview picture. Oxygen XML Editor renders the image correctly.

 Rendering Special Images with Java Advanced Imaging (JAI) Plugin

Certain special image types can be rendered in Oxygen XML Editor by using a Java Advanced Imaging (JAI) Image I/O Tools plugin.

How to Install JAI Image I/O Tools Plugin

To install this plug, follow this procedure:

1. Start Oxygen XML Editor and open the Help > About dialog box. Go to the System properties tab and look for the java.runtime.name and java.home properties. Keep their values for later use.
2. Download the JAI Image I/O kit corresponding to your operating system and Java distribution (found in the java.runtime.name property). A list of archived JAI distributions can be found at: http://www.oracle.com/technetwork/java/javasebusiness/downloads/java-archive-downloads-java-client-419417.html.

   Note: The JAI API is not the same thing as JAI Image I/O. Make sure you have installed the latter.
3. Run the installer. When the installation wizard displays the Choose Destination Location page, fill-in the Destination Folder field with the value of the java.home property. Continue with the installation procedure and follow the on-screen instructions.

OS X Workaround

There is no native implementation of the JAI Image I/O Tools plugin for OS X 10.5 and later. However, it has a Java implementation fallback that also works on OS X. Some of the image formats are not fully supported in this fallback mode, but at least the TIFF image format is known to be supported.
Use the following procedure for this OS X workaround:

2. In the \{OXYGEN_INSTALL_DIR\}/lib directory, create a directory named endorsed (\{OXYGEN_INSTALL_DIR\}/lib/endorsed).
3. Unpack the tar.gz. Copy the clibwrapper_jiio.jar and jai_imageio.jar files from its lib directory and paste them in the \{OXYGEN_INSTALL_DIR\}/lib/endorsed directory.
4. Restart the application and the JAI Image I/O support will be up and running.

Retina/HiDPI Images in Author Mode

Oxygen XML Editor provides support for Retina and HiDPI images through simple naming conventions. The higher resolution images are stored in the same images folder as the normal resolution images and they are identified by a scaling factor that is included in the name of the image files. For instance, images with a Retina scaling factor of 2 will include @2x in the name (for example, myImage@2x.png). Oxygen XML Editor displays the larger set of icons starting with 150% (1.5x) scaling.

You can reference an image to style an element in a CSS by using the url function in the content property, as in the following example:

```css
listItem:before{
    content: url('..//img/myImage.png');
}
```

This would place the image that is loaded from the myImage.png file just before the listItem element. However, if you are using a Retina display (on a Mac), the icon looks a bit blurry as it automatically gets scaled, or if you are using an HiDPI display (on a Windows-based PC), the icon remains at the original size, thus it will look very small. To solve this rendering problem, you need to be able to reference both a normal DPI image and a high DPI image. However, referencing both of them from the CSS is not practical, as there is no standard way of doing this.

Starting with version 17, Oxygen XML Editor interprets the argument of the url function as key rather than a fixed URL. Therefore, when running on a system with a Retina or HiDPI display, Oxygen XML Editor will first try to find the image file that corresponds to the retina scaling factor. For instance, using the previous example, Oxygen XML Editor would first try to find myImage@2x.png. If this file is not found, it defaults back to the normal resolution image file (myImage.png).

Oxygen XML Editor also supports dark color themes. This means that the background of the editor area can be of a dark color and the foreground a lighter color. On a dark background, you may find it
useful to invert the colors of images. Again, this can be done with simple naming conventions. If an image designed for a dark background is not found, the *normal* image is used.

**Retina/HiDPI Naming Convention**

Refer to the following table for examples of the Retina/HiDPI image naming convention that is used in Oxygen XML Editor:

<table>
<thead>
<tr>
<th>Color Theme</th>
<th>Referred Image File</th>
<th>Double Density Image File</th>
<th>Triple Density Image File</th>
</tr>
</thead>
<tbody>
<tr>
<td>normal</td>
<td>../img/myImage.png</td>
<td>../img/myImage@2x.png</td>
<td>../img/myImage@3x.png</td>
</tr>
<tr>
<td>dark</td>
<td>../img/myImage_dark.png</td>
<td>../img/myImage_dark@2x.png</td>
<td>../img/myImage_dark@3x.png</td>
</tr>
</tbody>
</table>

Related Information:

- [Adding Retina/HiDPI Icons in a Framework (on page 2332)]

**Image Map Editor**

Oxygen XML Editor includes an **Image Map Editor** that allows you to create hyperlinks in specific areas of an image that will link to various destinations. For example, an image that is a map of the seven continents may have a specific hyperlink for each continent that links to a resource that has information about the particular continent. The main purpose of an image map is to provide an easy way of linking various parts of an image without having to divide the image into separate image files.

The support for image maps in Oxygen XML Editor is available for images in DITA, DocBook, TEI, and XHTML document types (*frameworks (on page 3282)*). To create an image map on an existing image and open the **Image Map Editor**, right-click the image and select **Image Map Editor**.

Figure 176. Image Map Rendered in Author Mode
Image Maps in DITA

Oxygen XML Editor includes support for *image maps* in DITA documents through the use of the `imagemap` element. This feature provides an easy way to create hyperlinks in various areas within an image without having to divide the image into separate image files. The visual **Author** editing mode includes an **Image Map Editor** that helps you to easily create and configure image maps.

Figure 177. Image Map Editor in DITA
Image Map Editor Interface in DITA

The interface of the **Image Map Editor** consists of the following sections and actions:

**Toolbar**

- **New Rectangle**
  
  Use this button to draw a rectangular shape over an area in the image. You can drag any of the four points to adjust the size and shape of the rectangle.

- **New Circle**
  
  Use this button to draw a circle over an area in the image. You can drag any of the four points to adjust the size of the circle.

- **New Polygon**
  
  Use this button to draw a polygon shape over an area in the image. This action opens a dialog box that allows you to select the number of points for the polygon. You can drag any of the points to adjust the size and shape of the polygon.

- **New Free Form Shape**
Use this button to draw a free form shape over an area in the image. After selecting this button, left-click anywhere in the image to place the first point of your shape. Then move the cursor to the location of the next desired point and left-click to place the next point, and so on. To complete the shape (area), click the first point again and a line will automatically be added from the last point that was added, or simply double-click the last point to automatically add the line from the last point back to the first.

Duplicate
Use this button to create a duplicate of the currently selected shape.

Delete
Use this button to delete the currently selected shape.

Undo
Use this button to undo the last action.

Redo
Use this button to redo the last action that was undone.

Show/Hide Numbers
Use this button to toggle between showing or hiding the numbers for the shapes.

Bring Shape to Front
Use this button to bring the currently selected shape forward to the top layer.

Bring Shape Forward
Use this button to bring the currently selected shape forward one layer.

Send Shape Backward
Use this button to send the currently selected shape back one layer.

Send Shape to Back
Use this button to send the currently selected shape back to the bottom layer.

Color Chooser
Use this drop-down menu to select a color scheme for the lines and numbers of the shapes.
Zoom Slider

Use this slider to zoom the image in or out in the main image pane.

Image Pane

This main Image Pane is where you work with shapes to add hyperlinks to multiple areas within an image. The editing mechanisms that are supported in the Image Pane include the following:

**Mouse Controls and Keyboard Shortcuts**

- Use the mouse to select and move shapes around in the image pane. It is easy to see which shape is selected in this image pane because the border of the selected shape changes from a solid line to a dotted one.
- You can also drag any of the points of a selected shape to adjust its size and shape.
- You can hold down the Ctrl key to select multiple shapes and then move them simultaneously.
- You can also move shapes by using the arrow keys on your keyboard. In addition, you can hold down Shift while using the arrow keys to move the shape further or Alt to move it 1 pixel at a time.
- To zoom in or out, you can use the NumPad + or NumPad - keys respectively. Use Ctrl + NumPad 0 to reset the zoom level to its default value.
- You can use Ctrl + Z to undo an action or Ctrl + Y to redo the last action that was undone.

**Contextual Menu Actions Available in the Image Pane**

You can right-click the shapes, points, or anywhere in the Image Pane to invoke the contextual menu where the following actions are available:

**Add Point**

Adds a point to Polygon or Free Form shapes.

**Remove Point**

Removes the current point from Polygon or Free Form shapes.

**Duplicate**

Create a duplicate of the currently selected shape.
Delete
Delete the currently selected shape.

New Rectangle
Creates a rectangular shape over an area in the image. You can drag any of the four points to adjust the size and shape of the rectangle.

New Circle
Creates a circle over an area in the image. You can drag any of the four points to adjust the size of the circle.

New Polygon
Creates a polygon shape over an area in the image. This action opens a dialog box that allows you to select the number of points for the polygon. You can drag any of the points to adjust the size and shape of the polygon.

Undo
Use this action to undo the last action.

Redo
Use this action to redo the last action that was undone.

Shape Table
The table at the right of the Image Pane is a sequential list of all the areas (shapes) that have been added in the image. It shows their number, type, and description (if one has been added). If you select one of the entries in the table, the corresponding shape will be selected in the Image Pane.

Properties
Type
Displays information about the selected coordinate.

Target
Allows you to choose the target resource that you want the selected area (shape) to be linked to. Select a target by using the Link drop-down menu to the right of the text field. You can choose between the following types of links: Cross Reference, File Reference, or Web Link. All three types will open a dialog box that allows you to define the target resource. This linking process is similar to the normal process of inserting links in
DITA (on page 3164) by using the identical Link drop-down menu from the main toolbar.

When you click OK to finalize your changes in the Image Map Editor, an xref element will be inserted with either an href attribute or a keyref attribute. Additional attributes may also be inserted and their values depend on the target and the type of link. For details about the three types of links and their dialog boxes, see Inserting a Link in Oxygen XML Editor (on page 3164).

Description

You can enter an optional description for the selected area (shape) that will be displayed in the Image Map Details section (on page 1036) in Author mode and as a tooltip message when the end user hovers over the hyperlink in the output.

How to Create an Image Map in DITA

To create an image map on an existing image in a DITA document, follow these steps:

1. Right-click the image and select Image Map Editor.

   Result: This action will apply an image map to the current image and open the Image Map Editor dialog box.

2. Add hyperlinks to the image by selecting one of the shape buttons (New Rectangle, New Circle, or New Polygon).

3. Move the shape to the desired area in the image and drag any of the points on the shape to adjust its size or form. You can use the other buttons on the toolbar (on page 1031) to adjust its layer and color, or to perform other editing actions.

   Tip: You can right-click any of the points, shapes, or anywhere in the Image Pane to access various helpful contextual menu actions (on page 1033). For example, the easiest way to remove a point is to right-click the point and select Remove Point.

4. With the shape selected, use one of the linking options (on page 1034) in the Link drop-down menu to select a target resource (or enter its path in the Target (on page 1034) text field).

5. (Optional) Enter a Description (on page 1035) for the selected area (shape).

6. If you want to add more hyperlinks to the image, select a shape button again and repeat the appropriate steps.

7. When you are finished creating hyperlinks, click OK to process your changes.

   Result: The image map is applied on the image and the appropriate elements and attributes are automatically added. In Author mode, the image map is now rendered over the image. If the image
includes an alt element, its value will be displayed under the image. The following two buttons will also now be available under the image in Author mode:

- **Image Map Editor** - Click this button to open the Image Map Editor.
- **Image Map Details** - Click this button to expand a section that displays the details of the image map and allows you to change the shape and coordinates of the hyperlinked areas. Keep in mind that if you change the shape in this section, you also need to add or remove coordinates to match the requirements of the new shape.

Figure 178. Image Map Details

How to Edit an Existing Image Map in DITA

To edit an existing image map, use any of the following methods:

- Simply double-click the image.
- Right-click the image and select **Image Map Editor**.
- Click the **Image Map Editor** button below the image.

All three methods open the Image Map Editor where you can make changes to the image map using the various features described above. You can also make changes to the XML structure of the image map in the Text editing mode.

You can also click the **Image Map Details** button below the image to expand a section that displays the details of the image map and allows you to change the shape and coordinates of the hyperlinked areas. Keep in mind that if you change the shape in this section, you also need to add or remove coordinates to match the requirements of the new shape.

Overlapping Areas

If shapes overlap one another in the Image Map Editor, the one on the top layer takes precedence. The number shown inside each shape represent its layer (if the numbers are not displayed, click the **Show/Hide Numbers** button on the Image Map Editor toolbar (on page 1031)). To change the
layer order for a shape, use the layer buttons on the Image Map Editor toolbar (on page 1031).

If you insert a shape and all of its coordinates are completely inside another shape, the Image Map Editor will display a warning to let you know that the shape is entirely covered by a bigger shape. Keep in mind that if a shape is completely inside another shape, its hyperlink will only be accessible if its layer is on top of the bigger shape.

Related Information:

- DITA 'imagemap' Element Specifications
- Working with Images in DITA Topics (on page 3062)

Image Maps in DocBook

Oxygen XML Editor includes support for image maps in DocBook documents through the use of the areaspect element. This feature provides an easy way to create hyperlinks in various parts of an image without having to divide the image into separate image files. The visual Author editing mode includes an Image Map Editor that helps you to easily create and configure image maps.

Figure 179. Image Map Editor in DocBook
Image Map Editor Interface in DocBook

The interface of the **Image Map Editor** consists of the following sections and actions:

**Toolbar**

- **New Rectangle**
  
  Use this button to draw a rectangular shape over an area in the image. You can drag any of the four points to adjust the size and shape of the rectangle.

- **Duplicate**
  
  Use this button to create a duplicate of the currently selected shape.

- **Delete**
  
  Use this button to delete the currently selected shape.

- **Undo**
  
  Use this button to undo the last action.

- **Redo**
  
  Use this button to redo the last action that was undone.
Show/Hide Numbers
Use this button to toggle between showing or hiding the numbers for the shapes.

Bring Shape to Front
Use this button to bring the currently selected shape forward to the top layer.

Bring Shape Forward
Use this button to bring the currently selected shape forward one layer.

Send Shape Backward
Use this button to send the currently selected shape back one layer.

Send Shape to Back
Use this button to send the currently selected shape back to the bottom layer.

Color Chooser
Use this drop-down menu to select a color scheme for the lines and numbers of the shapes.

Zoom Slider
Use this slider to zoom the image in or out in the main image pane.

Image Pane
This main Image Pane is where you work with shapes to add hyperlinks to multiple areas within an image. The editing mechanisms that are supported in the Image Pane include the following:

Mouse Controls and Keyboard Shortcuts
- Use the mouse to select and move shapes around in the image pane. It is easy to see which shape is selected in this image pane because the border of the selected shape changes from a solid line to a dotted one.
- You can also drag any of the points of a selected shape to adjust its size and shape.
- You can hold down the Ctrl key to select multiple shapes and then move them simultaneously.
• You can also move shapes by using the arrow keys on your keyboard. In addition, you can hold down **Shift** while using the arrow keys to move the shape further or **Alt** to move it 1 pixel at a time.

• To zoom in or out, you can use the **NumPad +** or **NumPad -** keys respectively. Use **Ctrl + NumPad 0** to reset the zoom level to its default value.

• You can use **Ctrl + Z** to undo an action or **Ctrl + Y** to redo the last undone action.

**Contextual Menu Actions Available in the Image Pane**

You can right-click the shapes, or anywhere in the Image Pane to invoke the contextual menu where the following actions are available:

- **Duplicate**
  Create a duplicate of the currently selected shape.

- **Delete**
  Delete the currently selected shape.

- **New Rectangle**
  Creates a rectangular shape over an area in the image. You can drag any of the four points to adjust the size and shape of the rectangle.

- **Undo**
  Use this action to undo the last action.

- **Redo**
  Use this action to redo the last action that was undone.

**Shape Table**

The table at the right of the *Image Pane* is a sequential list of all the areas (shapes) that have been added in the image. It shows their number, type, and ID. If you select one of the entries in the table, the corresponding shape will be selected in the *Image Pane*.

**Properties**

- **Type**
  Displays information about the selected coordinate.

- **ID**
The identifier for the selected area. This will become the value of the <xml:id> attribute for the particular <area> element.

**Target**

Allows you to choose the target resource that you want the selected area to be linked to. You can enter the path to the target in the text field but the easiest way to select a target is to use the Link drop-down menu to the right of the text field. You can choose between the following types of links: Cross Reference or Web Link. Both types open a dialog box that allows you to select the target resource and it is inserted as the value of an <xlink:href> attribute.

**Description**

You can enter an optional description for the selected area that will be displayed in the Image Map Details section (on page 1042) in Author mode and as a tooltip message when the end user hovers over the hyperlink in the output.

**How to Create an Image Map in DocBook**

To create an image map on an existing image in a DocBook document, follow these steps:

1. Right-click the image and select Image Map Editor.
   
   **Result:** This action will apply an image map to the current image and open the Image Map Editor dialog box.

2. Add hyperlinks to the image by selecting the New Rectangle button.

3. Move the shape to the desired area in the image and drag any of the points on the shape to adjust its size or form. You can use the other buttons on the toolbar (on page 1038) to adjust its layer and color, or to perform other editing actions.

   **Tip:** You can right-click any of the shapes or anywhere in the Image Pane to access various helpful contextual menu actions (on page 1040).

4. With the shape selected, enter an ID (on page 1040) and use one of the linking options (on page 1041) in the Link drop-down menu to select a target resource (or enter its path in the Target (on page 1041) text field).

5. (Optional) Enter a Description (on page 1041) for the selected area (shape).

6. If you want to add more hyperlinks to the image, select New Rectangle button again and repeat the appropriate steps.

7. When you are finished creating hyperlinks, click OK to process your changes.
Result: The image map is applied on the image and the appropriate elements and attributes are automatically added. In Author mode, the image map is now rendered over the image. If the image includes an alt element, its value will be displayed above the image. The following two buttons will also now be available at the top of the image in Author mode:

- **Image Map Editor** - Click this button to open the Image Map Editor.
- **Image Map Details** - Click this button to expand a section that displays the details of the image map.

How to Edit an Existing Image Map in DocBook

To edit an existing image map, use any of the following methods:

- Simply double-click the image.
- Right-click the image and select Image Map Editor.
- Click the Image Map Editor button below the image.

All three methods open the Image Map Editor where you can make changes to the image map using the various features described above. You can also make changes to the XML structure of the image map in the Text editing mode.

You can also click the Image Map Details button above the image to expand a section that displays the details of the image map and allows you to change the coordinates and IDs of the hyperlinked areas.

**Note:** If you want to link a set of related area elements, you can use areaset elements. To add areaset elements, and area elements to the areaset, switch to Text mode and insert them manually.

Overlapping Areas

If shapes overlap one another in the Image Map Editor, the one on the top layer takes precedence. The number shown inside each shape represent its layer (if the numbers are not displayed, click the **Show/Hide Numbers** button on the Image Map Editor toolbar (on page 1038)). To change the layer order for a shape, use the layer buttons on the Image Map Editor toolbar (on page 1038) (🥝, 🍿, 🍽️, 🍽️).

If you insert a shape and all of its coordinates are completely inside another shape, the Image Map Editor will display a warning to let you know that the shape is entirely covered by a bigger shape. Keep in mind that if a shape is completely inside another shape, its hyperlink will only be accessible if its layer is on top of the bigger shape.
Image Maps in TEI

Oxygen XML Editor includes support for image maps in TEI documents through the use of the `facsimile` element. In TEI documents, this feature provides an easy way to create areas (using `zone` elements) in an image where the end user can hover or click to retrieve more information about that particular area of the image. The visual Author editing mode includes an Image Map Editor that helps you to easily create the areas in the image.

Figure 180. Image Map Editor in TEI

Image Map Editor Interface in TEI

The interface of the Image Map Editor consists of the following sections and actions:

**Toolbar**

- New Rectangle
Use this button to draw a rectangular shape over an area in the image. You can drag any of the four points to adjust the size and shape of the rectangle.

**New Polygon**

Use this button to draw a polygon shape over an area in the image. This action opens a dialog box that allows you to select the number of points for the polygon. You can drag any of the points to adjust the size and shape of the polygon.

**New Free Form Shape**

Use this button to draw a free form shape over an area in the image. After selecting this button, left-click anywhere in the image to place the first point of your shape. Then move the cursor to the location of the next desired point and left-click to place the next point, and so on. To complete the shape (area), click the first point again and a line will automatically be added from the last point that was added, or simply double-click the last point to automatically add the line from the last point back to the first.

**Duplicate**

Use this button to create a duplicate of the currently selected shape.

**Delete**

Use this button to delete the currently selected shape.

**Undo**

Use this button to undo the last action.

**Redo**

Use this button to redo the last action that was undone.

**Show/Hide Numbers**

Use this button to toggle between showing or hiding the numbers for the shapes.

**Bring Shape to Front**

Use this button to bring the currently selected shape forward to the top layer.

**Bring Shape Forward**

Use this button to bring the currently selected shape forward one layer.
Send Shape Backward

Use this button to send the currently selected shape back one layer.

Send Shape to Back

Use this button to send the currently selected shape back to the bottom layer.

Color Chooser

Use this drop-down menu to select a color scheme for the lines and numbers of the shapes.

Zoom Slider

Use this slider to zoom the image in or out in the main image pane.

Image Pane

This main Image Pane is where you work with shapes to add hyperlinks to multiple areas within an image. The editing mechanisms that are supported in the Image Pane include the following:

Mouse Controls and Keyboard Shortcuts

- Use the mouse to select and move shapes around in the image pane. It is easy to see which shape is selected in this image pane because the border of the selected shape changes from a solid line to a dotted one.
- You can also drag any of the points of a selected shape to adjust its size and shape.
- You can hold down the Ctrl key to select multiple shapes and then move them simultaneously.
- You can also move shapes by using the arrow keys on your keyboard. In addition, you can hold down Shift while using the arrow keys to move the shape further or Alt to move it 1 pixel at a time.
- To zoom in or out, you can use the NumPad + or NumPad - keys respectively. Use Ctrl + NumPad 0 to reset the zoom level to its default value.
- You can use Ctrl + Z to undo an action or Ctrl + Y to redo the last action that was undone.

Contextual Menu Actions
You can right-click the shapes, points, or anywhere in the Image Pane to invoke the contextual menu where the following actions are available:

- **Add Point**
  Adds a point to *Polygon* or *Free Form* shapes.

- **Remove Point**
  Removes the current point from *Polygon* or *Free Form* shapes.

- **Duplicate**
  Create a duplicate of the currently selected shape.

- **Delete**
  Delete the currently selected shape.

- **New Rectangle**
  Creates a rectangular shape over an area in the image. You can drag any of the four points to adjust the size and shape of the rectangle.

- **New Polygon**
  Creates a polygon shape over an area in the image. This action opens a dialog box that allows you to select the number of points for the polygon. You can drag any of the points to adjust the size and shape of the polygon.

- **Undo**
  Use this action to undo the last action.

- **Redo**
  Use this action to redo the last action that was undone.

**Shape Table**

The table at the right of the *Image Pane* is a sequential list of all the areas (shapes) that have been added in the image. It shows their number, type, and ID. If you select one of the entries in the table, the corresponding shape will be selected in the *Image Pane*.

**Properties**

**Type**

Displays information about the selected coordinate.
ID

The identifier for the selected area. This will become the value of the xml:id attribute for the particular zone element. When you insert a new zone, a unique ID is automatically generated and displayed in this field. However, you can change this value if you want to.

How to Create an Image Map in TEI

To create an image map on an existing image in a TEI document, follow these steps:

1. The image (graphic) must be inside a facsimile element to support the Image Map Editor feature.
2. Right-click the image and select Image Map Editor.

   Result: This action will apply an image map to the current image and open the Image Map Editor dialog box.
3. Add areas (zones) in the image by selecting one of the shape buttons (New Rectangle or New Polygon).
4. Move the shape to the desired area in the image and drag any of the points on the shape to adjust its size or form. You can use the other buttons on the toolbar (on page 1043) to adjust its layer and color, or to perform other editing actions.

   Tip: You can right-click any of the points, shapes, or anywhere in the Image Pane to access various helpful contextual menu actions (on page 1045). For example, the easiest way to remove a point is to right-click the point and select Remove Point.
5. With the shape selected, enter an ID (on page 1047).
6. If you want to add more areas (zones) to the image, select a shape button again and repeat the appropriate steps.
7. When you are finished, click OK to process your changes.

   Result: The image map is applied on the image and the appropriate elements and attributes are automatically added. In Author mode, the image map is now rendered over the image and the following two buttons will now be available at the bottom of the image:

   • Image Map Editor - Click this button to open the Image Map Editor.
   • Image Map Details - Click this button to expand a section that displays the details of the image map.

How to Edit an Existing Image Map in TEI

To edit an existing image map, use any of the following methods:
• Simply double-click the image.
• Right-click the image and select Image Map Editor.
• Click the Image Map Editor button below the image.

All three methods open the Image Map Editor where you can make changes to the image map using the various features described above. You can also make changes to the XML structure of the image map in the Text editing mode.

You can also click the Image Map Details button below the image to expand a section that displays the details of the image map and allows you to change the coordinates and IDs of the hyperlinked areas.

⚠️ Restriction: Currently, if zone elements contain additional content (such as text or comments) and you edit the image map, the Image Map Editor does not preserve the additional content. Therefore, if you do need to insert additional content inside the zone elements, you should do so after the image map has been created and finalized. Subsequent changes to the image map should then be done in Text mode.

Overlapping Areas

If shapes overlap one another in the Image Map Editor, the one on the top layer takes precedence. The number shown inside each shape represent its layer (if the numbers are not displayed, click the Show/Hide Numbers button on the Image Map Editor toolbar (on page 1043)). To change the layer order for a shape, use the layer buttons on the Image Map Editor toolbar (on page 1043) (↑, ↓, ■, ▼).

If you insert a shape and all of its coordinates are completely inside another shape, the Image Map Editor will display a warning to let you know that the shape is entirely covered by a bigger shape. Keep in mind that if a shape is completely inside another shape, its hyperlink will only be accessible if its layer is on top of the bigger shape.

⚠️ Warning: PDF output is limited to rectangular shaped image map objects. Therefore, if your image contains circles or polygons, those objects will be redrawn as rectangles in the PDF output. Keep in mind that this might affect overlaps in the output.

Related Information:

• TEI ‘facsimile’ Element Specifications
Image Maps in XHTML

Oxygen XML Editor includes support for image maps in XHTML documents. This feature provides an easy way to create hyperlinks in various parts of an image without having to divide the image into separate image files. In HTML, an image (in the form of an `<img>` element) may be associated with an image map (in the form of a `<map>` element) by specifying a `usemap` attribute on the `<img>` element. The visual Author editing mode includes an Image Map Editor that helps you to easily create and configure image maps.

Figure 181. Image Map Editor in XHTML

![Image Map Editor Interface in XHTML](image)

Image Map Editor Interface in XHTML

The interface of the Image Map Editor consists of the following sections and actions:

**Toolbar**

- **New Rectangle**
  
  Use this button to draw a rectangular shape over an area in the image. You can drag any of the four points to adjust the size and shape of the rectangle.

- **New Circle**
Use this button to draw a circle over an area in the image. You can drag any of the four points to adjust the size of the circle.

😊 New Polygon
Use this button to draw a polygon shape over an area in the image. This action opens a dialog box that allows you to select the number of points for the polygon. You can drag any of the points to adjust the size and shape of the polygon.

xcf New Free Form Shape
Use this button to draw a free form shape over an area in the image. After selecting this button, left-click anywhere in the image to place the first point of your shape. Then move the cursor to the location of the next desired point and left-click to place the next point, and so on. To complete the shape (area), click the first point again and a line will automatically be added from the last point that was added, or simply double-click the last point to automatically add the line from the last point back to the first.

_duplicate Duplicate
Use this button to create a duplicate of the currently selected shape.

✖️ Delete
Use this button to delete the currently selected shape.

.undo Undo
Use this button to undo the last action.

.redo Redo
Use this button to redo the last action that was undone.

.show Hide Numbers
Use this button to toggle between showing or hiding the numbers for the shapes.

드리 Bring Shape to Front
Use this button to bring the currently selected shape forward to the top layer.

드리 Bring Shape Forward
Use this button to bring the currently selected shape forward one layer.

드리 Send Shape Backward
Use this button to send the currently selected shape back one layer.

Send Shape to Back

Use this button to send the currently selected shape back to the bottom layer.

Color Chooser

Use this drop-down menu to select a color scheme for the lines and numbers of the shapes.

Zoom Slider

Use this slider to zoom the image in or out in the main image pane.

Image Pane

This main Image Pane is where you work with shapes to add hyperlinks to multiple areas within an image. The editing mechanisms that are supported in the Image Pane include the following:

Mouse Controls and Keyboard Shortcuts

• Use the mouse to select and move shapes around in the image pane. It is easy to see which shape is selected in this image pane because the border of the selected shape changes from a solid line to a dotted one.
• You can also drag any of the points of a selected shape to adjust its size and shape.
• You can hold down the Ctrl key to select multiple shapes and then move them simultaneously.
• You can also move shapes by using the arrow keys on your keyboard. In addition, you can hold down Shift while using the arrow keys to move the shape further or Alt to move it 1 pixel at a time.
• To zoom in or out, you can use the NumPad + or NumPad - keys respectively. Use Ctrl + NumPad 0 to reset the zoom level to its default value.
• You can use Ctrl + Z to undo an action or Ctrl + Y to redo the last action that was undone.

Contextual Menu Actions Available in the Image Pane

You can right-click the shapes, points, or anywhere in the Image Pane to invoke the contextual menu where the following actions are available:
+ **Add Point**

   Adds a point to *Polygon* or *Free Form* shapes.

× **Remove Point**

   Removes the current point from *Polygon* or *Free Form* shapes.

☐ **Duplicate**

   Create a duplicate of the currently selected shape.

× **Delete**

   Delete the currently selected shape.

☐ **New Rectangle**

   Creates a rectangular shape over an area in the image. You can drag any of the four points to adjust the size and shape of the rectangle.

☐ **New Circle**

   Creates a circle over an area in the image. You can drag any of the four points to adjust the size of the circle.

☐ **New Polygon**

   Creates a polygon shape over an area in the image. This action opens a dialog box that allows you to select the number of points for the polygon. You can drag any of the points to adjust the size and shape of the polygon.

⇦ **Undo**

   Use this action to undo the last action.

⇨ **Redo**

   Use this action to redo the last action that was undone.

**Shape Table**

The table at the right of the *Image Pane* is a sequential list of all the areas (shapes) that have been added in the image. It shows their number, type, and description (value of the *Alternative* property). If you select one of the entries in the table, the corresponding shape will be selected in the *Image Pane*.

**Properties**
Type
Displays information about the selected coordinate.

Href
Specifies the hyperlink target for the selected area. This will become the value of the href attribute for the particular area element. The possible values are:

- **An Absolute URL** - A URL of another website (for example, http://www.example.com/index.htm).
- **A Relative URL** - A link to a file within your website (for example, index.htm).
- **An Element** - A link to the ID of an element within the page (for example, #top).
- **Other Protocols** - A specified path using other protocols (such as https://, ftp://, mailto:, file:).
- **A Script** - A link to a script (for example, javascript:alert('Hello');)

Alternate
The description for the selected area. The value is inserted in an alt attribute in the particular area element. This is a required attribute to present a text alternative for browsers that do not display images.

Target
Specifies where to open the linked resource. The allowed values are:

- **_blank** - Opens the linked resource in a new window or tab.
- **_self** - Opens the linked resource in the same frame as it was clicked.
- **_parent** - Opens the linked resource in the full body of the window.
- **framename** - Opens the linked resource in the named frame.

How to Create an Image Map in XHTML

To create an image map on an existing image in an XHTML document, follow these steps:

1. Right-click the image and select **Image Map Editor**.

   **Result:** This action will apply an image map to the current image and open the **Image Map Editor** dialog box.
2. Add hyperlinks to the image by selecting one of the shape buttons (□ New Rectangle, ○ New Circle, or □ New Polygon).
3. Move the shape to the desired area in the image and drag any of the points on the shape to adjust its size or form. You can use the other buttons on the toolbar (on page 1049) to adjust its layer and color, or to perform other editing actions.

   Tip: You can right-click any of the points, shapes, or anywhere in the Image Pane to access various helpful contextual menu actions (on page 1051). For example, the easiest way to remove a point is to right-click the point and select ✗ Remove Point.
4. With the shape selected, specify the hyperlink target in the Href field (on page 1053) and enter a description for the selected area in the Alternate field (on page 1053).
5. (Optional) Specify where the hyperlink resource will be opened in the Target field (on page 1053).
6. If you want to add more hyperlinks to the image, select a shape button again and repeat the appropriate steps.
7. When you are finished creating hyperlinks, click OK to process your changes.

   Result: The image map is applied on the image and the appropriate elements and attributes are automatically added. In Author mode, the image map is now rendered over the image and its properties are displayed in a section below the image.

How to Edit an Existing Image Map in XHTML

To edit an existing image map, use any of the following methods:

• Simply double-click the image.
• Right-click the image and select Image Map Editor.
• Click the Image Map Editor button below the image.

All three methods open the Image Map Editor where you can make changes to the image map using the various features described above. You can also make changes to the XML structure of the image map in the Text editing mode.

In Author mode, the details of the image map are also displayed below the image and you can edit the description, href, shape, and coordinates of the hyperlinked areas. Keep in mind that if you change the shape in this section, you also need to add or remove coordinates to match the requirements of the new shape.

Overlapping Areas

If shapes overlap one another in the Image Map Editor, the one on the top layer takes precedence. The number shown inside each shape represent its layer (if the numbers are not displayed, click the
Show/Hide Numbers button on the Image Map Editor toolbar (on page 1049). To change the layer order for a shape, use the layer buttons on the Image Map Editor toolbar (on page 1049) (*, *, *, *).

If you insert a shape and all of its coordinates are completely inside another shape, the Image Map Editor will display a warning to let you know that the shape is entirely covered by a bigger shape. Keep in mind that if a shape is completely inside another shape, its hyperlink will only be accessible if its layer is on top of the bigger shape.

**Warning:** PDF output is limited to rectangular shaped image map objects. Therefore, if your image contains circles or polygons, those objects will be redrawn as rectangles in the PDF output. Keep in mind that this might affect overlaps in the output.

**Related Information:**
- HTML Image Map Specifications

---

### Adding Video, Audio, and Embedded HTML Resources

You can insert references to media resources (such as videos, audio clips, or embedded HTML frames) in your DITA, DocBook, or XHTML topics. The media resources can be played directly in Author mode and in all HTML5-based outputs. There is a toolbar button (ня) that allows you to insert and configure a reference to the media resource. You can also drag media files from your system explorer or the Project view (on page 333) and drop them into your documents (or copy and paste them).

**Table 5. Supported Media Types**

<table>
<thead>
<tr>
<th>Media</th>
<th>Description</th>
<th>Type</th>
<th>Supported Size Properties</th>
</tr>
</thead>
<tbody>
<tr>
<td>mp3</td>
<td>Moving Picture Experts Group Layer-3 Audio</td>
<td>audio</td>
<td>Width</td>
</tr>
<tr>
<td>wav</td>
<td>Windows Wave</td>
<td>audio</td>
<td>Width</td>
</tr>
<tr>
<td>pcm</td>
<td>Pulse Code Modulation</td>
<td>audio</td>
<td>Width</td>
</tr>
<tr>
<td>m4a</td>
<td>Moving Picture Experts Group Layer-4 Audio</td>
<td>audio</td>
<td>Width</td>
</tr>
<tr>
<td>aif</td>
<td>Audio Interchange Format</td>
<td>audio</td>
<td>Width</td>
</tr>
<tr>
<td>mp4</td>
<td>Moving Picture Experts Group Layer-4 Video</td>
<td>video</td>
<td>Width &amp; Height</td>
</tr>
<tr>
<td>flv</td>
<td>Flash Video</td>
<td>video</td>
<td>Width &amp; Height</td>
</tr>
<tr>
<td>m4v</td>
<td>iTunes Video File</td>
<td>video</td>
<td>Width &amp; Height</td>
</tr>
</tbody>
</table>
### Adding a Media Resource

To insert a media resource in a document, use the following procedure:

1. Place the cursor at the location where you want the media resource.
2. Select the **Insert Media Resource** action from the toolbar. A **Chose Media** dialog box appears.
   
   ![Note: You can also drag media files from your system explorer or the Project view (on page 333) and drop them into your documents (or copy and paste them).](image)

3. Select the URL for the media resource and click **Ok**.

**Result in Author Mode:** A reference to the specified media object is inserted and rendered in **Author** mode so that it can be played directly from there.

**Attention:**

- On Ubuntu 17.10, if you receive an error when trying to play videos in **Author** mode, you need to install the `libavformat57` library.

**Result in Output:** In the publishing stage, the media object is converted to an HTML5 element so that it can be rendered properly and played in all HTML5-based outputs.

### Embedding HTML Content in DITA Topics

The DITA Open Toolkit that comes bundled with Oxygen XML Editor includes a pre-installed plugin (on page 3285) that allows you to embed well-formed HTML content directly in a DITA topic.

For example, suppose you wanted to embed a YouTube video directly in a DITA topic.

The DITA topic would look like this:

```xml
<foreign outputclass="html-embed"><![CDATA[
  <iframe width="420" height="315"
      src="https://www.youtube.com/embed/qepRkQxhTX"
      frameborder="0" allowfullscreen="true">
  </iframe>
]]>
</foreign>
```
The converted HTML output would look like this:

```html
<iframe width="420" height="315" src="https://www.youtube.com/embed/qepRkQxhTX"
    frameborder="0" allowfullscreen="true">
</iframe>
```

The **plugin** is also available on the oxygenxml GitHub projects page.

Related Information:

- How to Add Video and Audio Objects in DITA WebHelp Output *(on page 1964)*

Editing MathML Notations

The **Author** editor includes a built-in editor for **MathML** notations. To start the **MathML** editor, double-click a **MathML** notation (for embedded notations, you can also select the **Edit Equation** action from its contextual menu). In the **MathML** editor you can edit the mathematical symbols of a **MathML** notation. You can open a **MathML** file of your current project directly in the **MathML** editor. To do this, select **Open with > MathML editor** from the contextual menu in the **Project view** *(on page 333)*.

Figure 182. Default **MathML** Editor
The font size and font family that is used for the equations is based upon the context in which the MathML equation appears. To configure the minimum font size of the equation, open the Preferences dialog box (Options > Preferences) (on page 79) and go to Editor > Edit modes > Author > MathML.

Configure the MathFlow Editor

The MathFlow Components product can replace the default MathML editor with a specialized MathML editor. You have to purchase a MathFlow Component from Design Science and configure it in Oxygen XML Editor with the following procedure:

1. Install MathFlow by using the Universal installer (for versions prior to 2.1, use the MathFlow SDK).

2. Set the path to the MathFlow install folder in the MathML preferences page (on page 149).

3. Set the path to the MathFlow license file in the MathML preferences page (on page 149).

Figure 183. Default MathFlow Editor
MathML Equations in HTML Output

Currently, only **Firefox** can render MathML equations embedded in the HTML code. **MathJax** is a solution to properly view MathML equations embedded in HTML content in a variety of browsers.

If you have DocBook or DITA content that has embedded MathML equations and you want to properly view the equations in published HTML output types (WebHelp, CHM, EPUB, etc.), you need to add a reference to the MathJax script in the head element of all HTML files that have the equation embedded.

For example:

```html
<script type="text/javascript"
src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.1/MathJax.js?config=TeX-AMS-MML_HTMLorMML">
</script>
```

For DITA documents, you can also use the following procedure:

1. Edit the DITA Map WebHelp transformation scenario *(on page 1758)* and open the Parameters tab.
2. Set the following parameter to point to an XML resource file that contains your script, depending on your type of WebHelp system.
   - **WebHelp Responsive Systems** - Set the `webhelp.fragment.head` parameter to point to your resource file.
   - **WebHelp Classic Systems** - Set the `webhelp.head.script` parameter to point to your resource file.
3. Run the transformation scenario.

**Result:** The equation should now be properly rendered in other browsers, such as Edge, IE, or Chrome.

### Refreshing the Content

On occasion you may need to reload the content of the document from the disk or reapply the CSS. This can be performed by using the **Reload** action.

To refresh the content of the referenced resources you can use the **Refresh references** action that is available in the current **framework** menu (for example, the DITA or DocBook5 menu). However, this action will not refresh the expanded external entities, for which you will need to use the **Reload** action.

### Generating IDs for Elements in Author Mode

Oxygen XML Editor allows you to manually assign or edit values of `id` attributes in **Author** mode by using the **Attributes View** (on page 426) or an in-place attribute editor (on page 915). Oxygen XML Editor also includes mechanisms to generate ID values for elements, either on-request or automatically, in DITA, DocBook, or TEI documents.

#### Generate IDs On-Request

You can generate ID values for specific elements on-request. To do so, select the element for which you want to generate an ID (or place the cursor inside the element) and select the **Generate IDs** action from the contextual menu. This action generates a unique ID for the current element. If you invoke the action on a block of selected content, the action will generate IDs for all top-level elements and elements that are listed in the **ID Options** dialog box (on page 1061). To open this dialog box, select **ID Options** from the DITA, DocBook, or TEI menu (depending on your document type).

**Note:** The **Generate IDs** action does not overwrite existing ID values. It only affects elements that do not already have an `id` attribute.

#### Automatically Generate IDs

Oxygen XML Editor includes an option to automatically add unique ID values to certain elements when they are created in **Author** mode. The **Auto generate IDs for elements** option can be found in the **ID Options** dialog box (on page 1061) that is displayed when you select the **ID Options** action from the **framework** (on page 3282)-specific menu (DITA, DocBook, or TEI). If this **Auto generate IDs for elements** option is selected, Oxygen XML Editor automatically generates unique ID values for elements that are listed in this dialog box. You can use this dialog box to customize the format of the
ID values and choose which elements will have their ID values automatically generated (for example, you can customize the list of elements to include those that you most often need to identify).

**ID Options Dialog Box**

To configure options for generating IDs, select **ID Options** from the **DITA**, **DocBook**, or **TEI** menu (depending on your document type).

Figure 184. ID Options Dialog Box

The **ID Options** dialog box allows you to configure the following options with regard to generating ID values:

- **ID Pattern**
  - The pattern for the ID values that will be generated. This text field can be customized using constant strings or any of the Oxygen XML Editor **Editor Variables** (on page 276).

- **Element name or class value to generate ID for**
  - The elements for which ID values will be generated, specified using class attribute values. To customize the list, use the **Add**, **Edit**, or **Remove** buttons.

- **Auto generate IDs for elements**
  - If selected, Oxygen XML Editor will automatically generate unique IDs for the elements listed in this dialog box when they are created in **Author** mode.

- **Remove IDs when copying content in the same document** (DITA or TEI)
When copying and pasting content in the same DITA or TEI document, this option allows you to control whether or not pasted elements that are listed in this dialog box should retain their existing IDs. To retain the element IDs, deselect this option.

**Note:** This option does not have an effect on content that is *cut* and *pasted*.

**Remove IDs when copying content (DocBook)**

This option allows you to control whether or not pasted elements that are listed in this dialog box should retain their existing IDs in DocBook documents. If this option is not selected, IDs are always retained when you copy or cut content and paste it in the same document or other documents. If this option is selected, IDs are never retained for copied content, but if you cut the content, they are preserved for the first paste action (and not retained for any subsequent paste actions).

**Duplicating Elements with Existing IDs**

If you duplicate elements with existing IDs (for example, through copy/paste or drag/drop actions), all IDs are removed at the resolution of the operation. However, you can use the options in the **ID Options** dialog box to change this behavior. The options in this dialog box affect duplicated elements with existing IDs in the following ways:

- Only the elements listed in this dialog box are affected by these options. Therefore, if you want to use these options to preserve IDs or generate new ones, you must first add the elements to be duplicated to the list in this dialog box.
- If the **Auto generate IDs for elements** option (on page 1061) is selected and you duplicate elements with existing IDs, Oxygen XML Editor assigns new, unique ID values to the duplicates.
- If the **Auto generate IDs for elements** option (on page 1061) is not selected and you duplicate elements with existing IDs, the ID values are removed from the duplicates.
- For DITA and TEI, if the **Remove IDs when copying content in the same document** option (on page 1061) is selected, the ID values are removed from elements that are duplicated in the same document. If it is not selected, the ID values are preserved when elements are duplicated in the same document. Selecting this option has no effect if the **Auto generate IDs for elements** option is selected and this option has no effect on elements that are duplicated in other documents.
- For DocBook, if the **Remove IDs when copying content** option (on page 1062) is selected, the ID values are removed from any element that is duplicated. If it is not selected, the ID values are preserved when elements are duplicated. Selecting this option has no effect if the **Auto generate IDs for elements** option is selected.
Controlling the Default ID Generation Options

It is possible to configure the default ID generation options for DITA, DocBook, and TEI document types. In the frameworks folder for each of those document types, there is an XML configuration file called idGenerationDefaultOptions.xml that contains the default settings for generating IDs in each particular type of document. To configure the default settings, you can edit this file and save it back to the same directory.

The configuration file can be found in the resources folder within the particular framework (on page 3282). For example, the configuration file for the DITA framework is located in: [OXYGEN_INSTALL_DIR]/frameworks/dita/resources/idGenerationDefaultOptions.xml.

Sharing Default ID Generation Options

If you want to share your configured default ID generation settings with other members of your team, follow these steps:

1. Configure the idGenerationDefaultOptions.xml file for your framework according to your needs.
2. Bundle a modified version of the entire framework folder (for example, [OXYGEN_INSTALL_DIR]/frameworks/dita/). To do this:
   a. Open the Preferences dialog box (Options > Preferences) (on page 79) and go to Document Type Association.
   b. Select your document type and click the Extend button.
   c. In the Document type configuration dialog box (on page 95) that is now displayed, select External for the Storage option. By default, this will save the extension in a new folder in the frameworks folder (for example, [OXYGEN_INSTALL_DIR]/frameworks/dita-extension (1)), but you can also use the Browse button to specify a specific name and folder.
   d. In this new extension folder, create a new folder called resources and add your modified idGenerationDefaultOptions.xml file to this new resources folder.
   e. Go back to the Document Type Association preferences page, select the extended framework, and click Edit.
   f. Go to the Classpath tab (on page 99), add a reference to your new resources folder, and move this reference up (using the Move Up button) so that it is the first one that appears in the list.
   g. Click OK and exit out of the preferences page.
3. Distribute your newly extended folder to other team members by using one of the methods described in Sharing a Custom Framework (on page 2371).
Using Form Controls in Author Mode

Form controls make it easier to capture, organize, and edit content. They are especially helpful for less technical users because form controls provide a way to interact with the content of a document in a graphical manner without intimidating the user with the XML structure.

Oxygen XML Editor includes a variety of built-in form controls (on page 2541) that can be defined in CSS stylesheets that are used to render Author mode (on page 2541). You can also implement custom form controls (on page 2573) for more specific needs. The types of built-in form controls that are available include:

- **Audio (on page 2542)** - A media object that plays audio clips.
- **Browser (on page 2543)** - A media object that renders HTML frames or interact with SVG documents
- **Button (on page 2547)** - A graphical user interface object that performs a specific action.
- **Button Group (on page 2550)** - A graphical user interface group of buttons (such as radio buttons) that perform specific actions.
- **Checkbox (on page 2553)** - A graphical user interface box that you can click to select or deselect a value.
- **Combo Box (on page 2556)** - A graphical user interface object that can be a drop-down menu or a combination of a drop-down menu and a single-line text field.
- **Date Picker (on page 2558)** - A form control object that allows you to select a date in a specified format.
- **HTML Content (on page 2560)** - A graphical user interface box that is used for rendering HTML content.
- **Pop-up (on page 2562)** - A contextual menu that provides quick access to various actions.
- **Text Area (on page 2565)** - A box that allows you to enter multiple lines of text.
- **Text Field (on page 2568)** - A graphical user interface box that allows you to enter a single line of text.
- **URL Chooser (on page 2570)** - A dialog box that allows you to select the location of local or remote resources.
- **Video (on page 2572)** - A media object that plays videos.

The following image is an example of several form controls rendered in Author mode. The first (Direct manager) is a combo box with both a drop-down menu and an editable text field. This is followed by a simple text field (Homepage), and the [+ ] and [- ] icons also represent button form controls that are assigned specific actions to add or delete records from the document.

Figure 185. Example of Form Controls in Author Mode
You can use your imagination to envision the multitude of ways that you can use form controls to make the editing experience for content authors easier and more efficient. As a working example, a bundled samples project (located in the samples folder inside the Oxygen XML Editor installation directory) contains a file called personal.xml that contains form controls. You can use this file, along with its corresponding personal.css file to experiment with an example of how form controls can be implemented in Author mode.

Related Information:

- Form Controls (on page 2541)

Contextual Menu Actions in Author Mode

Oxygen XML Editor includes powerful support for editing XML documents through actions included in the contextual menu. When editing XML documents in Author mode, the contextual menu includes general actions that are available for all of the recognized document types and framework (on page 3282)-specific actions that are configured for each document type.

General Contextual Menu Actions in Author Mode

The general actions that are available in the contextual menu (some of them are also available in the submenus of the Document menu) for all built-in document types include the following:

**Add File to Review Task**

This action can be used to add the current document to a task in the Content Fusion Tasks Manager view. Oxygen Content Fusion is a flexible, intuitive collaboration platform designed to adapt to any type of documentation review workflow. This functionality is available through a pre-installed connector add-on (on page 2679). To fully take advantage of all of the benefits and features of Content Fusion, your
organization will need an Oxygen Content Fusion Enterprise Server. For more information, see the Oxygen Content Fusion website.

Quick Fix (Alt + 1 (Command + Alt + 1 on OS X))

Available when the contextual menu is invoked on an error where Oxygen XML Editor can provide a Quick Fix (on page 1109).

Open Image

Available when the contextual menu is invoked on an image. This action allows you to open an image in the Oxygen XML Editor Image Viewer (on page 721) or in a default system application associated with the current image type.

Track Changes Actions

Available when the Track Changes feature (on page 3288) is enabled and the contextual menu is invoked on a change. The following options are available:

✓ Accept Change(s)

Accepts the Tracked Change (on page 3288) located at the cursor position or all of the changes in a selection. If you select a part of a deletion or insertion change, only the selected content is accepted. If you select multiple changes, all of them are accepted. For an insertion change, it keeps the inserted text and for a deletion change, it removes the content from the document.

✗ Reject Change(s)

Rejects the Tracked Change (on page 3288) located at the cursor position or all of the changes in a selection. If you select a part of a deletion or insertion change, only the selected content is rejected. If you select multiple changes, all of them are rejected. For an insertion change, it removes the inserted text and for a deletion change, it preserves the original content.

�建议 Change

Opens a dialog box that allows you to add a comment to an existing Tracked Change (on page 3288). The comment will appear in a callout and a tooltip when hovering over the change. If the action is selected on an existing commented change, the dialog box will allow you to edit the comment.

Author Callout Actions

Available when the contextual menu is invoked on a callout (on page 3280). If the corresponding options in the Show review callouts section (on page 143) are selected in
the Callouts preferences page (on page 143), the callouts are displayed in Author mode for comments, tracked insertion changes, or tracked deletion changes.

**Insertion or Deletion Callout Actions**

The following actions are available in the contextual menu when invoked on an insertion or deletion callout box:

**Reply**

Opens a dialog box that allows you to add a reply to a comment or Tracked Changes (on page 3288). When replying to a comment, the dialog box shows the entire conversation in the comment thread, starting with the first comment added in the particular thread, followed by all the replies. After replies are added to a comment thread, they are displayed with an indentation in the callouts and Review view (on page 964).

**Mark as Done**

A toggle action that marks or unmarks a comment or comment thread as being done. It is also available for Tracked Changes (on page 3288) that are displayed in a callout. When a comment or change is marked as done, the callout is grayed out and cannot be edited unless the action is toggled to the unmarked state. The action applies to the particular comment and all of its descendents. This is useful for marking comments or changes that have been addressed, leaving only those that still need some attention.

✔️ **Accept Change(s)**

Accepts the Tracked Change (on page 3288) located at the cursor position or all of the changes in a selection. If you select a part of a deletion or insertion change, only the selected content is accepted. If you select multiple changes, all of them are accepted. For an insertion change, it keeps the inserted text and for a deletion change, it removes the content from the document.

❌ **Reject Change(s)**

Rejects the Tracked Change (on page 3288) located at the cursor position or all of the changes in a selection. If you select a part of a deletion or insertion change, only the
selected content is rejected. If you select multiple changes, all of them are rejected. For an *insertion* change, it removes the inserted text and for a *deletion* change, it preserves the original content.

**Comment Change**

Opens a dialog box that allows you to add a comment to an existing [Tracked Change](on page 3288). The comment will appear in a callout and a tooltip when hovering over the change. If the action is selected on an existing commented change, the dialog box will allow you to edit the comment.

**Edit Reference**

If the fragment that contains a callout is a reference, use this option to go to the reference and edit the callout.

**Callouts Options**

Select this option to open the [Callouts preference page](on page 143) where you can configure various callout options.

**Comment Callout Actions**

The following actions are available in the contextual menu when invoked on a *comment* callout box:

**Reply**

Opens a dialog box that allows you to add a reply to a comment or [Tracked Changes](on page 3288). When replying to a comment, the dialog box shows the entire conversation in the comment thread, starting with the first comment added in the particular thread, followed by all the replies. After replies are added to a comment thread, they are displayed with an indentation in the callouts and [Review view](on page 964).

**Mark as Done**

A toggle action that marks or unmarks a comment or comment thread as being done. It is also available for [Tracked Changes](on page 3288) that are displayed in a callout. When a comment or change is marked as done, the callout is grayed out and cannot be edited unless the action is toggled to the unmarked state. The action applies to the particular comment and all of its descendents. This
is useful for marking comments or changes that have been addressed, leaving only those that still need some attention.

**Show/Edit Comment**

Opens a dialog box that displays the discussion thread and allows the current user to edit comments that do not have replies. If you are not the author who inserted the original comment, the dialog box just displays the comment without the possibility of editing it.

**Remove Comment**

Removes a selected comment. If you remove a comment that contains replies, all of the replies will also be removed.

**Callouts Options**

Select this option to open the Callouts preference page (on page 143) where you can configure various callout options.

**Edit Attributes**

Displays an in-place attributes editor (on page 429) that allows you to manage the attributes of an element.

**Edit Profiling Attributes**

Allows you to change the profiling attributes (on page 969) defined on all selected elements.

**Insert submenu**

This submenu includes insert actions that are specific to each framework (on page 3282), along with the following general action:

**Insert Entity**

Allows you to insert a predefined entity or character entity. Surrogate character entities (range #x10000 to #x10FFFF) are also accepted. Character entities can be entered in one of the following forms:

- `#<decimal value>` - e. g. #65
- `&#<decimal value>;` - e. g. &#65
- `#x<hexadecimal value>` - e. g. #x41
- `&#x<hexadecimal value>;` - e. g. &#x41

**Cut (Ctrl + X (Command + X on OS X))**

Removes the current selected content from the document and places it in the clipboard.
**Copy (Ctrl + C (Command + C on OS X))**

Places a copy of the current selected content in the clipboard.

**Paste (Ctrl + V (Command + V on OS X))**

Inserts the current clipboard content into the document at the cursor position.

**Paste special submenu**

This submenu includes special paste actions that are specific to each framework (on page 3282), as well as the following general paste actions:

- **Paste As XML**
  - Pastes clipboard content that is considered to be XML, preserving its XML structure.

- **Paste As Text**
  - Pastes clipboard content, ignoring any structure or styling markup.

**Select submenu**

This submenu allows you to select the following:

- **Element**
  - Selects the entire element at the current cursor position.

- **Content**
  - Selects the entire content of the element at the current cursor position, excluding the start and end tag. Performing this action repeatedly will result in the selection of the content of the ancestor of the currently selected element content.

- **Parent**
  - Selects the entire parent element at the current cursor position.

**Text submenu**

This submenu contains the following actions:

- **To Lower Case**
  - Converts the selected content to lower case characters.

- **To Upper Case**
  - Converts the selected content to upper case characters.

- **Capitalize Sentences**
  - Converts to upper case the first character of every selected sentence.
Capitalize Words

Converts to upper case the first character of every selected word.

Count Words

Counts the number of words and characters (no spaces) in the entire document or in the selection for regular content and read-only content.

Note: The content marked as deleted with change tracking (on page 3288) is ignored when counting words.

Convert Hexadecimal Sequence to Character (Ctrl + Shift + X (Command + Shift + X on OS X))

Converts a sequence of hexadecimal characters to the corresponding Unicode character (on page 770). The action can be invoked if there is a selection containing a valid hexadecimal sequence or if the cursor is placed at the right side of a valid hexadecimal sequence. A valid hexadecimal sequence can be composed of 2 to 4 hexadecimal characters and may or may not be preceded by the 0x or 0X prefix. Examples of valid sequences and the characters they will be converted to:

- 0x0045 will be converted to E
- 0X0125 to #
- 265 to #
- 2190 to #

Note: For more information about finding the hexadecimal value of a character, see Finding the Decimal, Hexadecimal, or Character Entity Equivalent (on page 779).

Refactoring submenu

Contains a series of actions designed to alter the XML structure of the document:

†† Toggle Comment

Encloses the currently selected text in an XML comment, or removes the comment if it is commented.

Move Up (Alt + UpArrow)

Moves the current node or selected nodes in front of the previous node.

Move Down (Alt + DownArrow)

Moves the current node or selected nodes after the subsequent node.

Split Element (Alt + Shift + D (Ctrl + Alt + D on OS X))
Splits the content of the closest element that contains the position of the cursor. Thus, if the cursor is positioned at the beginning or at the end of the element, the newly created sibling will be empty.

Join Elements

Joins two adjacent block elements that have the same name. The action is available only when the cursor position is between the two adjacent block elements. Also, joining two block elements can be done by pressing the Delete or Backspace keys and the cursor is positioned between the boundaries of these two elements.

Surround with Tags (Ctrl + E (Command + E on OS X))

Allows you to choose a tag to enclose a selected portion of content. If there is no selection, the start and end tags are inserted at the cursor position.

- If the Position cursor between tags option (on page 167) is selected in the Content Completion preferences page, the cursor is placed between the start and end tag.
- If the Position cursor between tags option (on page 167) is not selected in the Content Completion preferences page, the cursor is placed at the end of the start tag, in an insert-attribute position.

Surround with 'tag' (Ctrl + ForwardSlash (Command + ForwardSlash on OS X))

Surround the selected content with the last tag used.

Rename Element

The element from the cursor position, and any elements with the same name, can be renamed according to the options from the Rename dialog box.

Delete Element Tags

Deletes the tags of the closest element that contains the position of the cursor. This operation is also executed if the start or end tags of an element are deleted by pressing the Delete or Backspace keys.

Remove All Markup

Removes all the XML markup inside the selected block of content and keeps only the text content.

Remove Text
Removes the text content of the selected block of content and keeps the markup intact with empty elements.

**DITA Refactoring Actions**

A variety of built-in XML refactoring operations that pertain to DITA documents with some of the information preconfigured based upon the current context.

**Change Topic ID to File Name**

Use this operation to change the ID of a topic to be the same as its file name.

**Convert CALS Tables to Simple Tables**

Use this operation to convert DITA CALS tables to simple tables. If you invoke this operation from a nested table (a table inside a table), only the nested table will be affected. If it is invoked on a parent table that contains nested tables, all of the contained tables will be converted.

**Convert conrefs to conkeyrefs**

Use this operation to convert `conref` attributes to `conkeyref` attributes.

**Convert Simple Tables to CALS Tables**

Use this operation to convert DITA simple tables to CALS tables. If you invoke this operation from a nested table (a table inside a table), only the nested table will be affected. If it is invoked on a parent table that contains nested tables, all of the contained tables will be converted.

**Convert to Concept**

Use this operation to convert a DITA topic (of any type) to a DITA Concept topic type (for example, Topic to Concept).

**Convert to General Task**

Use this operation to convert a DITA topic (of any type) to a DITA General Task topic type (for example, Task to General Task). A DITA General Task is a less restrictive alternative to the Strict Task information type.

**Convert to Reference**

Use this operation to convert a DITA topic (of any type) to a DITA Reference topic type (for example, Topic to Reference).
Convert to Task

Use this operation to convert a DITA topic (of any type) to a DITA Task topic type (for example, Topic to Task).

Convert to Topic

Use this operation to convert a DITA topic (of any type) to a DITA Topic (for example, Task to Topic).

Convert to Troubleshooting

Use this operation to convert a DITA topic (of any type) to a DITA Troubleshooting topic type (for example, Topic to Troubleshooting).

Rename Key

Available when invoked on a key, and can be used to quickly rename a key. It also updates all references to it. Note that it does not work on DITA 1.3 key scopes.

Attributes Refactoring Actions

Contains built-in XML refactoring operations that pertain to attributes with some of the information preconfigured based upon the current context.

Add/Change attribute

Allows you to change the value of an attribute or insert a new one.

Convert attribute to element

Allows you to change an attribute into an element.

Delete attribute

Allows you to remove one or more attributes.

Rename attribute

Allows you to rename an attribute.

Replace in attribute value

 Allows you to search for a text fragment inside an attribute value and change the fragment to a new value.

Comments Refactoring Actions

Contains built-in XML refactoring operations that pertain to comments with some of the information preconfigured based upon the current context.
Delete comments

Allows you to delete comments found inside one or more elements.

Elements Refactoring Actions

Contains built-in XML refactoring operations that pertain to elements with some of the information preconfigured based upon the current context.

Delete element

Allows you to delete elements.

Delete element content

Allows you to delete the content of elements.

Insert element

Allows you to insert new elements.

Rename element

Allows you to rename elements.

Unwrap element

Allows you to remove the surrounding tags of elements, while keeping the content unchanged.

Wrap element

Allows you to surround elements with element tags.

Wrap element content

Allows you to surround the content of elements with element tags.

Fragments Refactoring Actions

Contains built-in XML refactoring operations that pertain to XML fragments with some of the information preconfigured based upon the current context.

Insert XML fragment

Allows you to insert an XML fragment.

Replace element content with XML fragment

Allows you to replace the content of elements with an XML fragment.

Replace element with XML fragment
Allows you to replace elements with an XML fragment.

**JATSKit Refactoring Actions**

Available for JATS documents. Contains built-in XML refactoring operations that pertain to JATS documents with some of the information preconfigured based upon the current context.

**Add BITS DOCTYPE - NLM/NCBI Book Interchange 2.0**

Adds an NLM 'BITS' 2.0 DOCTYPE declaration.

**Add Blue DOCTYPE - NISO JATS Publishing 1.1**

Adds a JATS 'Blue' 1.1 DOCTYPE declaration.

**Normalize IDs**

Assigned IDs are normalized and IDs are assigned to some elements that are missing them.

**Review submenu**

This submenu includes the following actions:

- **Track Changes**
  
  Enables or disables the *Track Changes (on page 3288)* support for the current document.

- **Accept Change(s) and Move to Next**
  
  Accepts the *Tracked Change (on page 3288)* located at the cursor position or all of the changes in a selection and then moves to the next change. If you select a part of a *deletion or insertion* change, only the selected content is accepted.

- **Accept All Changes**
  
  Accepts all *Tracked Changes (on page 3288)* in the current document.

- **Reject Change(s) and Move to Next**
  
  Rejects the *Tracked Change (on page 3288)* located at the cursor position or all of the changes in a selection and then moves to the next change. If you select a part of a *deletion or insertion* change, only the selected content is rejected.

- **Reject All Changes**
  
  Rejects all *Tracked Changes (on page 3288)* in the current document.

- **Comment Change**
Opens a dialog box that allows you to add a comment to an existing Tracked Change (on page 3288). The comment will appear in a callout and a tooltip when hovering over the change. If the action is selected on an existing commented change, the dialog box will allow you to edit the comment.

🎉 Highlight

Enables the highlighting tool that allows you to mark text in your document.

Colors

Allows you to select the color for highlighting text.

Stop highlighting

Use this action to deactivate the highlighting tool.

Remove highlight(s)

Use this action to remove highlighting from the document.

✍ Add Comment

Inserts a comment at the cursor position. The comment appears in a callout box and a tooltip (when hovering over the change).

>Show/Edit Comment

Opens a dialog box that displays the discussion thread and allows the current user to edit comments that do not have replies. If you are not the author who inserted the original comment, the dialog box just displays the comment without the possibility of editing it.

✉️ Remove Comment

Removes a selected comment. If you remove a comment that contains replies, all of the replies will also be removed.

🛠️ Manage Reviews

Opens the Review view (on page 964).

Manage IDs submenu

This submenu is available for XML documents that have an associated DTD, XML Schema, or Relax NG schema (not available for DITA documents). It includes the following actions:

🔍 Rename in
Renames the ID and all its occurrences. Selecting this action opens the Rename XML ID dialog box. This dialog box lets you insert the new ID value and choose the scope of the rename operation.

**Search References**

Searches for the references of the ID. By default, the scope of this action is the current project. If you configure a scope using the Select the scope for the Search and Refactor operations (on page 1129) dialog box, this scope will be used instead.

**Search References in**

Searches for the references of the ID. Selecting this action opens the Select the scope for the Search and Refactor operations (on page 1129).

**Search Occurrences in file**

Searches for the occurrences of the ID in the current document.

**Folding submenu**

This submenu includes the following actions:

- **Toggle Fold**
  
  Toggles the state of the current fold.

- **Collapse Other Folds** (Ctrl + NumPad/ (Command + NumPad/ on OS X))
  
  Folds all the elements except the current element.

- **Collapse Child Folds** (Ctrl + NumPad. (Command + NumPad. on OS X))
  
  Folds the elements indented with one level inside the current element.

- **Expand Child Folds**
  
  Unfolds all child elements of the currently selected element.

- **Expand All** (Ctrl + NumPad* (Command + NumPad* on OS X))
  
  Unfolds all elements in the current document.

**Inspect Styles**

Opens the CSS Inspector view (on page 439) that allows you to examine the CSS rules that match the currently selected element.

**Options**

Opens the Author mode options page (on page 131).
Document Type-Specific Contextual Menu Actions in Author Mode

Other document type-specific actions are available in the contextual menu of Author mode for the following document types (click the links to see the default actions that are available for each specific document types):

- DocBook4 Author Actions (on page 1539)
- DocBook5 Author Actions (on page 1555)
- DITA Author Actions (on page 1575)
- DITA Map Author Actions (on page 1598)
- XHTML Author Actions (on page 1605)
- TEI ODD Author Actions (on page 1623)
- TEI P5 Author Actions (on page 1613)
- JATS Author Actions (on page 1632)

Special Character Support in Author Mode

Oxygen XML Editor offers support for bidirectional text, such as Arabic or Hebrew languages that require right-to-left scripts, certain Asian languages (such as Devanagari, Bengali, Gurmukhi, Gujarati, Oriya, Tamil, Telugu, Kannada, Malayalam, Sinhala, Thai, Khmer), or other special characters (such as combining characters). To achieve this, Oxygen XML Editor implements the Unicode Bidirectional Algorithm, as specified by the Unicode Consortium. The text arrangement is similar to what you get in a modern HTML browser. The final text layout is rendered according to the directional CSS properties matching the XML elements and the Unicode directional formatting codes.

By default, when navigating bidirectional text with the arrow keys in Author mode, pressing the right arrow key moves the cursor in the writing direction and the left arrow moves it in the opposite direction. However, if the Arrow keys move the cursor in the writing direction option (on page 137) in the Cursor Navigation preferences page is not selected, pressing the right arrow will simply move the cursor to the right (and the left arrow moves it to the left), regardless of the text direction.

Tip: If you experience performance issues when editing documents that contain bidirectional text, you could try one of the following solutions:

- The Eclipse plugin distribution of Oxygen XML Editor is faster than the standalone version when working with bidirectional text.
- You could try changing the font. For example, you could try using the David font in Hebrew content. If it is not already installed in your operating system, this font is available at: https://www.microsoft.com/typography/fonts/family.aspx?FID=234. To change the font in Oxygen XML Editor, open the Preferences dialog box (Options > Preferences) (on page 79), go to Appearance
> **Fonts**, and change the font using the **Author default font** option in the **Fonts** preferences page *(on page 88)*.

For more information about the bidirectional text support in the **Author** mode, watch our video demonstration:

[https://www.youtube.com/embed/IC0ahH1IS7s](https://www.youtube.com/embed/IC0ahH1IS7s)

**Related Information:**

- Special Character Support in Text Mode *(on page 366)*
- Special Character Support in Grid Mode *(on page 394)*
- Inserting Special Characters with the Character Map *(on page 778)*

### Controlling the Text Direction Using XML Markup

**Oxygen XML Editor** Supports the following CSS properties that control the direction of text:

**Table 6. CSS Properties Controlling Text Direction**

<table>
<thead>
<tr>
<th>Property</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>direction</strong></td>
<td>Specifies the writing direction of the text. The possible values are <strong>ltr</strong> (the text direction is left to right), <strong>rtl</strong> (the text direction is right to left), and <strong>inherit</strong> (the direction property is inherited from the parent element).</td>
</tr>
<tr>
<td><strong>unicodeBidi</strong></td>
<td>Used along with the <strong>direction</strong> property to create levels of embedded text with different text directions in the same document. The possible values of this property are <strong>bidi-override</strong> (creates an additional level of embedding and forces all strong characters to the direction specified in the <strong>direction</strong>), <strong>embed</strong> (creates an additional level of embedding), <strong>normal</strong> (does not use an additional level of embedding), and <strong>inherit</strong> (the value of the <strong>unicodeBidi</strong> property is inherited from parent element).</td>
</tr>
</tbody>
</table>

For instance, to declare an element as being Right to Left, you could use a stylesheet like this:

**XML File:**

```xml
<article>
  <myRTLpara>RIGHT TO LEFT TEXT</myRTLpara>
</article>
```

**Associated CSS File:**

```css
myRTLpara{
}
```
Oxygen XML Editor recognizes the `dir` attribute on any XML document. The supported values are:

<table>
<thead>
<tr>
<th>Values</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>ltr</code></td>
<td>The text from the current element is Left to Right, embedded.</td>
</tr>
<tr>
<td><code>rtl</code></td>
<td>The text from the current element is Right to Left, embedded.</td>
</tr>
<tr>
<td><code>lro</code></td>
<td>The text from the current element is Left to Right, embedded.</td>
</tr>
<tr>
<td><code>rlo</code></td>
<td>The text from the current element is Right to Left, embedded.</td>
</tr>
</tbody>
</table>

The following XML document types make use of the `dir` attribute with the above values:

- DITA
- DocBook
- TEI
- XHTML

**Note:** When the inline element (on page 3283) tags are visible, the text in the line is arranged according to the BIDI algorithm after replacing the tags symbols with Object Replacement Characters. This makes it possible to get a different text arrangement when viewing a document in the No Tags mode versus viewing it in the Full Tags mode.

Controlling the Text Direction Using the Unicode Direction Formatting Codes

These Unicode Direction Formatting Codes codes can be embedded in the edited text, specifying a text direction and embedding. However, it is not recommended to use them in XML as they are zero width characters, making it hard to debug the text arrangement.

**Table 7. Directional Formatting Codes**

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>U+202A</td>
<td>LEFT-TO-RIGHT EMBEDDING Treats the following text as embedded left-to-right.</td>
</tr>
<tr>
<td>U+202B</td>
<td>RIGHT-TO-LEFT EMBEDDING Treats the following text as embedded right to left.</td>
</tr>
<tr>
<td>U+202D</td>
<td>LEFT-TO-RIGHT OVERRIDE Forces the following characters to be treated as strong left-to-right characters.</td>
</tr>
<tr>
<td>U+202E</td>
<td>RIGHT-TO-LEFT OVERRIDE Forces the following characters to be treated as strong right-to-left characters.</td>
</tr>
<tr>
<td>U+202C</td>
<td>POP DIRECTIONAL FORMATTING CODE Restores the bidirectional state to what it was before the last LRE, RLE, RLO, or LRO.</td>
</tr>
<tr>
<td>U+200E</td>
<td>LEFT-TO-RIGHT MARK Left-to-right strong zero-width character.</td>
</tr>
</tbody>
</table>
To insert Unicode Direction Formatting Codes, use the Character Map (on page 778) dialog box. To easily find such a code, you can either enter directly the hexadecimal value, or use the Details tab to enter the codes name.

Oxygen XML Editor offers the support for bi-directional text in all the side views (Outline view (on page 347), Attributes view (on page 426) and so on) and text fields.

**Design Editing Mode (XML Schema Diagram Editor)**

XML Schemas allow document designers to specify the allowed structure and content of an XML document and to check if an XML document is valid.

Oxygen XML Editor provides a simple and expressive XML Schema diagram editor (Design mode) for editing XML Schemas. The schema diagram helps both the content authors who want to understand a schema and schema designers who develop complex schemas.

The diagram font can be increased using the usual Oxygen XML Editor shortcuts: (Ctrl (Meta on Mac OS) + “*”), (Ctrl (Meta on Mac OS)+”-”), (Ctrl (Meta on Mac OS) + 0) or (Ctrl (Meta on Mac OS) - mouse wheel). The whole diagram can also be zoomed with one of the predefined factors available in the Schema preferences panel (on page 153). The same zoom factor is applied for the print and save actions.

To switch to this mode, select Design at the bottom of the editing area.

Figure 186. XML Schema Diagram
For more information about designing XML Schemas, watch our video demonstration:

https://www.youtube.com/embed/vz1eIZELQgc

Navigation in the XML Schema Design Mode

The following editing and navigation features work for all types of schema components in the XML Schema Design mode:

- Select consecutive components on the diagram (components from the same level) using the Shift key. You can also make discontinuous selections in the schema diagram using the Ctrl (Meta on...
Mac OS) key. To deselect one of the components, use Ctrl + Single-Click (Command + Single-Click on OS X).

- Use the arrow keys to navigate the diagram vertically and horizontally.
- Use Home/End keys to jump to the first/last component from the same level. Use Ctrl + Home (Command + Home on OS X) key combination to go to the diagram root and Ctrl + End (Command + End on OS X) to go to the last child of the selected component.
- You can easily go back to a previously visited component while moving from left to right. The path will be preserved only if you use the left arrow key or right arrow key. For example, if the current selection is on the second attribute from an attribute group and you press the left arrow key to jump to the attribute group, when you press the right arrow key, then the selection will be moved to the second attribute.
- Go back and forward between components viewed or edited in the diagram by selecting them in the Outline view (on page 625):
  - Back (go to previous schema component).
  - Forward (go to next schema component).
  - Go to Last Modification (go to last modified schema component).
- Copy, reference, or move global components, attributes, and identity constraints to another position and from one schema to another using the Cut/Copy and Paste/Paste as Reference actions.
- Go to the definition of an element or attribute with the Go to Definition action.
- Search in the diagram using the Find/Replace dialog box (on page 740) or the Quick find toolbar (on page 752). You can find/replace components only in the current file scope.
- You can expand and see the contents of the imports/includes/redefines in the diagram. To edit components from other schemas, the schema for each component will be opened as a separate file in Oxygen XML Editor.

Tip: If an XML Schema referenced by the current opened schema was modified on disk, the change will be detected and you will be asked to refresh the current schema contents.

- Recursive references are marked with a recurse symbol (recurse symbol). Click this symbol to navigate between the element declaration and its reference.

Figure 187. Recursive Reference
XML Schema Outline View

The Outline view for XML Schemas presents all the global components grouped by their location, namespace, or type. By default, it is displayed on the left side of the editor. If the view is not displayed, it can be opened by selecting it from the Window > Show View menu.

Figure 188. Outline View for XML Schema

The Outline view provides the following options in the Settings menu on the Outline view toolbar:

- **Filter returns exact matches**
  
  The text filter of the Outline view returns only exact matches;

- **Selection update on cursor move**
  
  Allows a synchronization between Outline view and schema diagram. The selected view from the diagram is also selected in the Outline view.

- **Sort**
  
  Allows you to sort alphabetically the schema components.

- **Show all components**
  
  Displays all components that were collected starting from the master files (on page 3284). Components that are not referable from the current file are marked with an
orange underline. To reference them, add an import directive with the `componentNS`
namespace.

**Show referable components**

Displays all components (collected starting from the *master files (on page 3284)*) that
can be referenced from the current file. This option is set by default.

**Show only local components**

Displays the components defined in the current file only.

**Group by location/namespace/type**

These three operations allow you to group the components by location, namespace,
or type. When grouping by namespace, the main schema target namespace is the first
presented in the Outline view.

The following contextual menu actions are available in the Outline view:

**Remove (Delete)**

Removes the selected item from the diagram.

**Search References (Ctrl (Meta on Mac OS)+Shift+R)**

Searches all references of the item found at current cursor position in the defined scope,
if any.

**Search References in**

Searches all references of the item found at current cursor position in the specified
scope.

**Component Dependencies (Ctrl (Meta on Mac OS)+Shift+F4)**

Opens the Component Dependencies view (on page 1300) that allows you to see the
dependencies for the current selected component.

**Resource Hierarchy (F4)**

Opens the Resource Hierarchy / Dependencies view (on page 1130) that allows you to
see the hierarchy for the current selected resource.

**Resource Dependencies (Shift + F4)**

Opens the Resource Hierarchy / Dependencies view (on page 1130) that allows you to
see the dependencies for the current selected resource.

**Rename Component in**

Renames the selected component.

**Generate Sample XML Files**
Generate XML files using the current opened schema. The selected component is the XML document root.

The upper part of the Outline view contains a filter box that allows you to focus on the relevant components. Type a text fragment in the filter box and only the components that match it are presented. For advanced usage you can use wildcard characters (such as *, ?) and separate multiple patterns with commas.

**Tip:** The search filter is case insensitive. The following wildcards are accepted:

- * - any string
- ? - any character
- , - patterns separator

If no wildcards are specified, the string to search will be searched as a partial match.

The content of the Outline view and the editing area are synchronized. When you select a component in the Outline view, its definition is highlighted in the editing area.

**Related Information:**

- Searching and Refactoring Actions in XML Schemas *(on page 1302)*
- XML Schema Component Dependencies View *(on page 1300)*
- XML Schema Resource Hierarchy / Dependencies View *(on page 1297)*
- Generating Sample XML Files *(on page 1306)*
- Editing Relax NG Schema in the Master Files Context *(on page 1389)*

**XML Schema Attributes View**

The Attributes view for XML Schemas presents the properties for the selected component in the schema diagram. By default, it is displayed on the right side of the editor. If the view is not displayed, it can be opened by selecting it from the Window > Show View menu.

Figure 189. Attributes View
The default value of a property is presented in the Attributes view with blue foreground. The properties that can not be edited are rendered with gray foreground. A non-editable category that contains at least one child is rendered with bold. Bold properties are properties with values set explicitly to them.

Properties for components that do not belong to the current edited schema are read-only but if you double-click them you can choose to open the corresponding schema and edit them.

You can edit a property by double-clicking by pressing Enter. For most properties you can choose valid values from a list or you can specify another value. If a property has an invalid value or a warning, it will be highlighted in the table with the corresponding foreground color. By default, properties with errors are highlighted with red and the properties with warnings are highlighted with yellow. You can customize these colors from the Document checking user preferences (on page 180).

For imports, includes and redefines, the properties are not edited directly in the Attributes view. A dialog box will open that allows you to specify properties for them.

The schema namespace mappings are not presented in Attributes view. You can view/edit these by choosing Edit Schema Namespaces from the contextual menu on the schema root. See more in the Edit Schema Namespaces (on page 1286) section.

The Attributes view has five actions available on the toolbar and also on the contextual menu:

- **Add**
  Allows you to add a new member type to an union's member types category.

- **Remove**
  Allows you to remove the value of a property.
Move Up

Allows you to move up the current member to an union's member types category.

Move Down

Allows you to move down the current member to an union's member types category.

Copy

Copy the attribute value.

Go to Definition

Shows the definition for the selected type.

Show Facets

Allows you to edit the facets for a simple type.

XML Schema Facets View

The Facets view for XML Schemas presents the facets for the selected component, if available. If the view is not displayed, it can be opened by selecting it from the Window > Show View menu.

Figure 190. Facets View

The default value of a facet is rendered in the Facets view with a blue color. The facets that can not be edited are rendered with a gray color. The grouping categories (for example: Enumerations and Patterns) are not editable. If these categories contain at least one child they are rendered with bold. Bold facets are facets with values set explicitly to them.

Important: Usually inherited facets are presented as default in the Facets view but if patterns are inherited from a base type and also specified in the current simple type only the current specified patterns will be presented. You can see the effective pattern value obtained by combining the inherited and the specified patterns as a tooltip on the Patterns category.
Facets for components that do not belong to the current edited schema are read-only but if you double-click them you can choose to open the corresponding schema and edit them.

You can edit a facet by double-clicking it or by pressing Enter, when that facet is selected. For some facets you can choose valid values from a list or you can specify another value. If a facet has an invalid value or a warning, it will be highlighted in the table with the corresponding foreground color. By default, facets with errors are presented with red and the facets with warnings with yellow. You can customize the error colors from the Document Checking user preferences (on page 180).

The Facets view provides the following actions in its toolbar and contextual menu:

- **Add**
  Allows you to add a new enumeration or a new pattern.

- **Remove**
  Allows you to remove the value of a facet.

- **Edit Annotations**
  Allows you to edit an annotation for the selected facet.

- **Move Up**
  Allows you to move up the current enumeration/pattern in Enumerations/Patterns category.

- **Move Down**
  Allows you to move down the current enumeration/pattern in Enumerations/Patterns category.

- **Copy**
  Copy the attribute value.

**Open in Regular Expressions Builder**

Rather than editing regular expressions manually, this action allows you to open the pattern in the XML Schema Regular Expressions Builder (on page 1332) that guides you through the process of testing and constructing the pattern.

Facets can be fixed to prevent a derivation from modifying its value. To fix a facet value just press the **Pin** button.

**XML Schema Palette View**

The Palette view is designed to offer quick access to XML Schema components and to improve the usability of the XML Schema diagram builder. You can use the Palette to drag and drop components
in the **Design** mode. The components offered in the **Palette** view depend on the XML schema version set in the **XML Schema preferences page** (on page 192). If the view is not displayed, it can be opened by selecting it from the **Window > Show View** menu.

**Figure 191. Palette View**

Components are organized functionally into 4 collapsible categories:

- Basic components: *elements, group, attribute, attribute group, complex type, simple type, type alternative.*
- Compositors and Wildcards: *sequence, choice, all, any, any attribute, open content.*
- Directives: *import, include, redefine, override.*
- Identity constraints: *key, keyref, unique, selector, field, assert.*

**Note:** The *type alternative, open content, override,* and *assert* components are available for XML Schema 1.1.

To add a component to the edited schema:

- Click and hold a graphic symbol from the **Palette** view, then drag the component into the **Design** view.
- A line dynamically connects the component with the XML schema structure.
- Release the component into a valid position.

**Note:** You cannot drop a component into an invalid position. When you hover the component into an invalid position, the mouse cursor changes its shape into ![cursor]. Also, the connector line changes its color from the usual dark gray to the color defined in the **Validation error highlight color option** (on page 180) (default color is red).

For more information about the Schema palette, watch our video demonstration:
Schema Editing Actions

You can edit an XML schema using drag and drop operations or contextual menu actions.

Drag and drop is the easiest way to move the existing components to other locations in an XML schema. For example, you can quickly insert an element reference in the diagram with a drag and drop from the **Outline view (on page 625)** to a compositor in the diagram. Also, the components order in an `xs:sequence` can be easily changed using drag and drop.

If this property has not been set, you can easily set the attribute/element type by dragging over it a simple type or complex type from the diagram. If the type property for a simple type or complex type is not already set, you can set it by dragging over it a simple or complex type.

Depending on the drop area, various actions are available:

- **move** - Context dependent, the selected component is moved to the destination.
- **reference** - Context dependent, the selected component is referenced from the parent.
- **copy** - If *(Ctrl (Meta on Mac OS))* key is pressed, a copy of the selected component is inserted to the destination.

Visual clues about the operation type are indicated by the mouse pointer shape:

- ![arrows](https://www.youtube.com/embed/KalHUXmpuAA)

- **-** When moving a component.
- **-** When referencing a component.
- **-** When copying a component.

You can edit some schema components directly in the diagram. For these components, you can edit the name and the additional properties presented in the diagram by double clicking the value you want to edit. If you want to edit the name of a selected component, you can also press *(Enter)*. The list of properties that can be displayed for each component can be customized in the **Preferences (on page 154)**.

When editing references, you can choose from a list of available components. Components from an imported schema for which the target namespace does not have an associated prefix is displayed in the list as `componentName#targetNamespace`. If the reference is from a target namespace that was not yet mapped, you are prompted to add prefix mappings for the inserted component namespace in the current edited schema.
You can also change the compositor by double-clicking it and choose the compositor you want from the proposals list.

There are some components that cannot be edited directly in the diagram: imports, includes, redefines. The editing action can be performed if you double-click or press (Enter) on an import/include/redefine component. An edit dialog box is displayed, allowing you to customize the directives.

Related Information:

- Searching and Refactoring Actions in XML Schemas (on page 1302)
- XML Schema Component Dependencies View (on page 1300)
- XML Schema Resource Hierarchy / Dependencies View (on page 1297)
- Generating Sample XML Files (on page 1306)
- Schema Design Preferences (on page 153)

Contextual Menu Actions in the Design Mode

The contextual menu of the Design mode includes the following actions:

- Go to Definition (Ctrl + Shift + Enter)
  Shows the definition for the current selected component. For references, this action is available by clicking the arrow displayed in its bottom right corner.

- Open Schema (Ctrl + Shift + Enter)
  Opens the selected schema. This action is available for xsd:import, xsd:include and xsd:redefine elements. If the file you try to open does not exist, a warning message is displayed and you have the possibility to create the file.

- Edit Attributes ()
  Allows you to edit the attributes of the selected component in a small in-place editor that presents the same attributes as in the Attributes view (on page 628) and the Facets view (on page 630). The actions that can be performed on attributes in this dialog box are the same actions presented in the two views.

Append child
Offers a list of valid components, depending on the context, and appends your selection as a child of the currently selected component. You can set a name for a named component after it has been added in the diagram.

**Insert before**

Offers a list of valid components, depending on the context, and inserts your selection before the selected component, as a sibling. You can set a name for a named component after it has been added in the diagram.

**Insert after**

Offers a list of valid components, depending on the context, and inserts your selection after the selected component, as a sibling. You can set a name for a named component after it has been added in the diagram.

**New global**

Inserts a global component in the schema diagram. This action does not depend on the current context. If you choose to insert an import you have to specify the URL of the imported file, the target namespace and the import ID. The same information, excluding the target namespace, is requested for an `xsd:include` or `xsd:redefine` element.

**Note:** If the imported file has declared a target namespace, the field **Namespace** is completed automatically.

**Edit Schema Namespaces**

When performed on the schema root, it allows you to edit the schema target namespace and namespace mappings. You can also invoke the action by double-clicking the target namespace property from **Attributes view** (on page 628) for the schema or by double-clicking the schema component.

**Edit Annotations**

Allows you to edit the annotation for the selected schema component in the **Edit Annotations** dialog box. You can perform the following operations in the dialog box:

- **Edit all appinfo/documentation items for a specific annotation** - All *appinfo/documentation* items for a specific annotation are presented in a table and can be easily edited. Information about an annotation item includes: type (documentation/appinfo), content, source (optional, specify the source of the `documentation/appinfo` element) and `xml:lang`. The content of a `documentation/appinfo` item can be edited in the **Content** area below the table.

- **Insert/Insert before/Remove documentation/appinfo**. The ✪ Add button allows you to insert a new annotation item (*documentation/appinfo*). You can add a new
item before the item selected in table by pressing the "Insert Before" button. Also, you can delete the selected item using the "Remove" button.

- **Move items up/down** - to do this use the "Move up" and "Move down" buttons.
- **Insert/Insert before/Remove annotation** - Available for components that allow multiple annotations such as schemas or redefines.
- **Specify an ID for the component annotation**. An optional identifier for the annotation.

Annotations are rendered by default under the graphical representation of the component. When you have a reference to a component with annotations, these annotations are also presented in the diagram below the referenced component. To edit the annotations, use the **Edit Annotations** action from the contextual menu. If the reference component does not have annotations, you can edit the annotations of the referenced component by double-clicking the annotations area. Otherwise, you can edit the referenced component annotations only if you go to the definition of the component.

**Note:** For imported/included components that do not belong to the currently edited schema, the **Edit Annotations** dialog box presents the annotation as read-only. To edit its annotation, open the schema where the component is defined.

**Extract Global Element**

Action that is available for local elements. A local element is made global and is replaced with a reference to the global element. The local element properties that are also valid for the global element declaration are kept.

**Figure 192. Extracting a Global Element**

If you use the **Extract Global Element** action on a `name` element, the result is:

**Figure 193. Extracting a Global Element on a name Element**
Extract Global Attribute

Action available for local attributes. A local attribute is made global and replaced with a reference to the global attribute. The properties of local attribute that are also valid in the global attribute declaration are kept.

Figure 194. Extracting a Global Attribute

If you use the Extract Global Attribute action on a note attribute, the result is:

Figure 195. Extracting a Global Attribute on a note Attribute
Extract Global Group

Action available for compositors (sequence, choice, all). This action extracts a global group and makes a reference to it. The action is available only if the parent of the compositor is not a group.

Figure 196. Extracting a Global Group

If you use the Extract Global Group action on the sequence element, the Extract Global Component dialog box is displayed and you can choose a name for the group. If you type personGroup, the result is:

Figure 197. Extracting a Global Group on a sequence Element
Extract Global Type

Action used to extract an anonymous simple type or an anonymous complex type as global. For anonymous complex types, the action is available on the parent element.

Figure 198. Extracting a Global Simple Type

If you use the action on the union component and choose numericST for the new global simple type name, the result is:

Figure 199. Extracting a Global Simple Type on a union Component

If you use the action on a person element and choose person_type for the new complex type name, the result is:

Figure 201. Extracting a Global Complex Type on a person Element
Rename Component in

Rename the selected component.

Cut Ctrl + X (Command + X on OS X)

Cut the selected component(s).

Copy Ctrl + C (Command + C on OS X)

Copy the selected component(s).

Copy XPath

This action copies an XPath expression that identifies the selected element or attribute in an instance XML document of the edited schema and places it in the clipboard.

Paste Ctrl + V (Command + V on OS X)

Paste the component(s) from the clipboard as children of the selected component.

Paste as Reference

Create references to the copied component(s). If not possible a warning message is displayed.

Remove (Delete)

Remove the selected component(s).

Override component

Copies the overridden component in the current XML Schema. This option is available for xs:override components.

Redefine component
The referenced component is added in the current XML Schema. This option is available for `xs:redefine` components.

**Optional**

Can be performed on element/attribute/group references, local attributes, elements, compositors, and element wildcards. The `minOccurs` property is set to 0 and the `use` property for attributes is set to `optional`.

**Unbounded**

Can be performed on element/attribute/group references, local attributes, elements, compositors, and element wildcards. The `maxOccurs` property is set to `unbounded` and the `use` property for attributes is set to `required`.

**Search**

Can be performed on local elements or attributes. This action makes a reference to a global element or attribute.

- **Search References**
  
  Searches all references of the item found at current cursor position in the defined scope if any.

- **Search References in**
  
  Searches all references of the item found at current cursor position in the specified scope.

- **Search Occurrences in File**
  
  Searches all occurrences of the item found at current cursor position in the current file.

- **Component Dependencies**
  
  Opens the Component Dependencies view (on page 1300) that allows you to see the dependencies for the current selected component.

**Resource Hierarchy**

Opens the Resource Hierarchy / Dependencies view (on page 1297) that allows you to see the hierarchy for the current selected resource.

**Flatten Schema**

Recursively adds the components of included Schema files to the main one. It also flattens every imported XML Schema from the hierarchy.

**Resource Dependencies**

Allows you to see the dependencies for the current selected resource.

- **Expand All**
Recursively expands all sub-components of the selected component.

Collapse All

Recursively collapses all sub-components of the selected component.

Save as Image

Save the diagram as image, in JPEG, BMP, SVG or PNG format.

Generate Sample XML Files

Generate XML files using the current opened schema. The selected component is the XML document root. See more in the Generate Sample XML Files (on page 1306) section.

Options

Show the Schema preferences panel (on page 153).

XML Schema Components

A schema diagram contains a series of interconnected components. To quickly identify the relation between two connected components, the connection is represented as:

- A thick line to identify a connection with a required component (in the following image, family is a required element).

Figure 202. Example: Required Component

- A thin line to identify a connection with an optional component (in the following image, email is an optional element).

Figure 203. Example: Optional Component

The following topics explain in detail all available components and their symbols as they appear in an XML schema diagram.

xs:schema

Figure 204. The xs:schema Component
Defines the root element of a schema. A schema document contains representations for a collection of schema components, such as type definitions and element declarations, that have a common target namespace. See more info at http://www.w3.org/TR/xmlschema11-1/#element-schema.

By default, it displays the `targetNamespace` property when rendered.

<table>
<thead>
<tr>
<th>Property Name</th>
<th>Description</th>
<th>Possible Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Target Namespace</td>
<td>The schema target namespace</td>
<td>Any URI</td>
</tr>
<tr>
<td>Element Form</td>
<td>Determining whether or not local element declarations will be namespace-qualified by default</td>
<td>qualified, unqualified, [Empty] (default value is unqualified)</td>
</tr>
<tr>
<td>Block Default</td>
<td>Default value of the <code>block</code> attribute of <code>xs:element</code> and <code>xs:complexType</code></td>
<td>#all, extension, restriction, substitution, restriction extension substitution, extension substitution, extension substitution, [Empty]</td>
</tr>
<tr>
<td>Final Default</td>
<td>Default value of the <code>final</code> attribute of <code>xs:element</code> and <code>xs:complexType</code></td>
<td>#all, restriction, extension, restriction extension, [Empty]</td>
</tr>
<tr>
<td>Default Attributes</td>
<td>Specifies a set of attributes that apply to every complex Type in a schema document</td>
<td>Any</td>
</tr>
<tr>
<td>XPath Default</td>
<td>The default namespace used when the XPath expression is evaluated</td>
<td>##defaultNamespace, ##targetNamespace, ##local</td>
</tr>
<tr>
<td>Version</td>
<td>Schema version</td>
<td>Any token</td>
</tr>
<tr>
<td>ID</td>
<td>The schema ID</td>
<td>Any ID</td>
</tr>
<tr>
<td>Component</td>
<td>The edited component name</td>
<td>Not editable property</td>
</tr>
<tr>
<td>SystemID</td>
<td>The schema system ID</td>
<td>Not editable property</td>
</tr>
</tbody>
</table>

Figure 205. The `xs:element` Component
Defines an element. An element declaration is an association of a name with a type definition, either simple or complex, an (optional) default value and a (possibly empty) set of identity-constraint definitions. See more info at http://www.w3.org/TR/xmlschema11-1/#element-element.

An element by default displays the following properties when rendered in the diagram: default, fixed, abstract and type. When referenced or declared locally, the element graphical representation also contains the value for the minOccurs and maxOccurs properties (for 0..1 and 1..1 occurs the values are implied by the connector style) and the connectors to the element are drawn using dotted lines if the element is optional.

Table 9. xs:element Properties

<table>
<thead>
<tr>
<th>Property Name</th>
<th>Description</th>
<th>Possible Values</th>
<th>Mentions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>The element name (always required)</td>
<td>Any NCName for global or local elements, any QName (on page 3286) for element references</td>
<td>If missing, will be displayed as '[element]' in diagram</td>
</tr>
<tr>
<td>Is Reference</td>
<td>When set, the local element is a reference to a global element</td>
<td>true/false</td>
<td>Appears only for local elements</td>
</tr>
<tr>
<td>Type</td>
<td>The element type</td>
<td>All declared or built-in types. In addition, the following anonymous types are available: [ST-restriction], [ST-union], [ST-list], [CT-anonymous], [CT-extension SC], [CT-restriction SC], [CT-restriction CC], [CT-extension CC].</td>
<td>For all elements. For references, the value is set in the referenced element.</td>
</tr>
<tr>
<td>Base Type</td>
<td>The extended/restricted base type</td>
<td>All declared or built-in types</td>
<td>For elements with complex type, with simple or</td>
</tr>
<tr>
<td>Property Name</td>
<td>Description</td>
<td>Possible Values</td>
<td>Mentions</td>
</tr>
<tr>
<td>---------------</td>
<td>-------------</td>
<td>----------------</td>
<td>---------</td>
</tr>
<tr>
<td>Mixed</td>
<td>Defines if the complex type content model will be mixed</td>
<td>true/false</td>
<td>For elements with complex type</td>
</tr>
<tr>
<td>Content</td>
<td>The content of the complex type</td>
<td>simple/complex</td>
<td>For elements with complex type that extends/restricts a base type. It is automatically detected</td>
</tr>
<tr>
<td>Default</td>
<td>Default value of the element. A default value is automatically assigned to the element when no other value is specified</td>
<td>Any string</td>
<td>The fixed and default attributes are mutually exclusive</td>
</tr>
<tr>
<td>Fixed</td>
<td>A simple content element may be fixed to a specific value using this attribute. A fixed value is also automatically assigned to the element and you cannot specify another value.</td>
<td>Any string</td>
<td>The fixed and default attributes are mutually exclusive</td>
</tr>
<tr>
<td>Min Occurs</td>
<td>Minimum number of occurrences of the element</td>
<td>A numeric positive value. Default value is 1</td>
<td>Only for references/local elements</td>
</tr>
<tr>
<td>Max Occurs</td>
<td>Maximum number of occurrences of the element</td>
<td>A numeric positive value (default value is 1)</td>
<td>Only for references/local elements</td>
</tr>
<tr>
<td>Property Name</td>
<td>Description</td>
<td>Possible Values</td>
<td>Mentions</td>
</tr>
<tr>
<td>---------------------</td>
<td>------------------------------------------------------------------------------</td>
<td>----------------------------------------------------------------------------------</td>
<td>-------------------------------</td>
</tr>
<tr>
<td><strong>Substitution Group</strong></td>
<td>Qualified name of the head of the substitution group that this element belongs to</td>
<td>All declared elements. For XML Schema 1.1 this property supports multiple values.</td>
<td>For global and reference elements</td>
</tr>
<tr>
<td><strong>Abstract</strong></td>
<td>Controls whether or not the element may be used directly in instance XML documents. When set to true, the element may still be used to define content models, but it must be substituted through a substitution group in the instance document.</td>
<td>true/false</td>
<td>For global elements and element references</td>
</tr>
<tr>
<td><strong>Form</strong></td>
<td>Defines if the element is &quot;qualified&quot; (belongs to the target namespace) or &quot;unqualified&quot; (doesn't belong to any namespace)</td>
<td>unqualified/qualified</td>
<td>Only for local elements</td>
</tr>
<tr>
<td><strong>Nillable</strong></td>
<td>When this attribute is set to true, the element can be declared as nil using an xsi:nil attribute in the instance documents</td>
<td>true/false</td>
<td>For global elements and element references</td>
</tr>
<tr>
<td><strong>Target Namespace</strong></td>
<td>Specifies the target namespace for local element and attribute declarations. The namespace URI may be different from the schema target namespace. This property is available for local elements only.</td>
<td>Not editable property</td>
<td>For all elements</td>
</tr>
<tr>
<td><strong>Block</strong></td>
<td>Controls if the element can be subject to a type or substitution group substitution. '#all' blocks any substitution, 'substitution' blocks any substitution through substitution groups and 'extension'/'restriction' block any substitution (both through xsi:type and substitution groups) by elements or types, derived respectively by extension or restriction from the type of the element. Its default value is defined by the blockDefault attribute of the parent xs:schema.</td>
<td>#all, restriction, extension, substitution, extension restriction, extension substitution, restriction substitution, restriction extension substitution</td>
<td>For global elements and element references</td>
</tr>
<tr>
<td><strong>Final</strong></td>
<td>Controls whether the element can be used as the head of a substitution group for elements whose types are derived by extension or restriction from the type of the element. Its default value is defined by the finalDefault attribute of the parent xs:schema.</td>
<td>#all, restriction, extension, restriction, [Empty]</td>
<td>For global elements and element references</td>
</tr>
</tbody>
</table>
### xs:attribute

Figure 206. The xs:attribute Component

Defines an attribute. See more info at [http://www.w3.org/TR/xmlschema11-1/#element-attribute](http://www.w3.org/TR/xmlschema11-1/#element-attribute).

An attribute by default displays the following properties when rendered in the diagram: default, fixed, use and type. Connectors to the attribute are drawn using dotted lines if the attribute use is optional. The attribute name is stroked out if prohibited.

#### Table 10. xs:attribute Properties

<table>
<thead>
<tr>
<th>Property Name</th>
<th>Description</th>
<th>Possible Value</th>
<th>Mentions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>Attribute name (always required)</td>
<td>Any NCName for global/local attributes, all declared attributes’ QName (<a href="#">on page 3286</a>) for references</td>
<td>For all local or global attributes. If missing, will be displayed as ‘[attribute]’ in the diagram.</td>
</tr>
<tr>
<td>Is Reference</td>
<td>When set, the local attribute is a reference</td>
<td>true/false</td>
<td>For local attributes</td>
</tr>
<tr>
<td>Type</td>
<td>Qualified name of a simple type All global simple types and built-in simple types. In addition another 3 proposals are present: [anonymous restriction], [anonymous list], [anonymous union] for creating anonymous simple types more easily.</td>
<td>For all attributes. For references, the type is set to the referenced attribute.</td>
<td></td>
</tr>
<tr>
<td>Property Name</td>
<td>Description</td>
<td>Possible Value</td>
<td>Mentions</td>
</tr>
<tr>
<td>---------------</td>
<td>-------------</td>
<td>---------------</td>
<td>----------</td>
</tr>
<tr>
<td>Default</td>
<td>Default value. When specified, an attribute is added by the schema processor (if it is missing from the instance XML document) and it is given this value. The default and fixed attributes are mutually exclusive.</td>
<td>Any string</td>
<td>For all local or global attributes. For references the value is from the referenced attribute.</td>
</tr>
<tr>
<td>Fixed</td>
<td>When specified, the value of the attribute is fixed and must be equal to this value. The default and fixed attributes are mutually exclusive.</td>
<td>Any string</td>
<td>For all local or global attributes. For references the value is from the referenced attribute.</td>
</tr>
<tr>
<td>Use</td>
<td>Possible usage of the attribute. Marking an attribute &quot;prohibited&quot; is useful to exclude attributes during derivations by restriction.</td>
<td>optional, required, prohibited</td>
<td>For local attributes</td>
</tr>
<tr>
<td>Form</td>
<td>Specifies whether or not the attribute is qualified (must have a namespace prefix in the instance XML document). The default value for this attribute is specified by the attributeFormDefault attribute of the xs:schema document element.</td>
<td>unqualified/qualified</td>
<td>For local attributes</td>
</tr>
<tr>
<td>Inheritable</td>
<td>Specifies if the attribute is inheritable. Inheritable attributes can be used by &lt;alternative&gt; element on descendant elements</td>
<td>true/false</td>
<td>For all local or global attributes. The default value is false. This property is available for XML Schema 1.1.</td>
</tr>
<tr>
<td>Target Namespace</td>
<td>Specifies the target namespace for local attribute declarations. The namespace URI may be different from the schema target namespace.</td>
<td>Any URI</td>
<td>Setting a target namespace for local attribute is useful only when restricts attributes of a complex type that is declared in other schema with a different target</td>
</tr>
<tr>
<td>Property Name</td>
<td>Description</td>
<td>Possible Value</td>
<td>Mentions</td>
</tr>
<tr>
<td>---------------</td>
<td>-------------</td>
<td>----------------</td>
<td>---------</td>
</tr>
<tr>
<td>ID</td>
<td>The component ID</td>
<td>Any ID</td>
<td>For all attributes</td>
</tr>
<tr>
<td>Component</td>
<td>The edited component name</td>
<td>Not editable property</td>
<td>For all attributes</td>
</tr>
<tr>
<td>Namespace</td>
<td>The component namespace</td>
<td>Not editable property</td>
<td>For all attributes</td>
</tr>
<tr>
<td>System ID</td>
<td>The component system ID</td>
<td>Not editable property</td>
<td>For all attributes</td>
</tr>
</tbody>
</table>

**xs:attributeGroup**

Figure 207. The *xs:attributeGroup* Component

Defines an attribute group to be used in complex type definitions. See more info at [http://www.w3.org/TR/xmlschema11-1/#element-attributeGroup](http://www.w3.org/TR/xmlschema11-1/#element-attributeGroup).

**Table 11. *xs:attributeGroup* Properties**

<table>
<thead>
<tr>
<th>Property Name</th>
<th>Description</th>
<th>Possible Values</th>
<th>Mentions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>Attribute group name (always required)</td>
<td>Any NCName for global attribute groups, all declared attribute groups for reference</td>
<td>For all global or referenced attribute groups. If missing, will be displayed as ‘[attributeGroup]’ in diagram.</td>
</tr>
<tr>
<td>ID</td>
<td>The component ID</td>
<td>Any ID</td>
<td>For all attribute groups</td>
</tr>
<tr>
<td>Component</td>
<td>The edited component name</td>
<td>Not editable property</td>
<td>For all attribute groups</td>
</tr>
<tr>
<td>Namespace</td>
<td>The component namespace</td>
<td>Not editable property</td>
<td>For all attribute groups</td>
</tr>
<tr>
<td>System ID</td>
<td>The component system ID</td>
<td>Not editable property</td>
<td>For all attribute groups</td>
</tr>
</tbody>
</table>

**xs:complexType**

Figure 208. The *xs:complexType* Component
Defines a top-level complex type. Complex Type Definitions provide for: See more data at http://www.w3.org/TR/xmlschema11-1/#element-complexType.

• Constraining element information items by providing Attribute Declarations governing the appearance and content of attributes.
• Constraining element information item children to be empty, or to conform to a specified element-only or mixed content model, or else constraining the character information item children to conform to a specified simple type definition.
• Using the mechanisms of Type Definition Hierarchy to derive a complex type from another simple or complex type.
• Specifying post-schema-validation infoset contributions for elements.
• Limiting the ability to derive additional types from a given complex type.
• Controlling the permission to substitute, in an instance, elements of a derived type for elements declared in a content model to be of a given complex type.

Tip: A complex type that is a base type to another type will be rendered with yellow background.

<table>
<thead>
<tr>
<th>Property Name</th>
<th>Description</th>
<th>Possible Values</th>
<th>Mentions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>The name of the complex type (always required)</td>
<td>Any NCName</td>
<td>Only for global complex types. If missing, will be displayed as '[complexType]' in diagram.</td>
</tr>
<tr>
<td>Base Type Definition</td>
<td>The name of the extended/restricted types</td>
<td>Any from the declared simple or complex types</td>
<td>For complex types with simple or complex content</td>
</tr>
<tr>
<td>Derivation Method</td>
<td>The derivation method</td>
<td>restriction/extension</td>
<td>Only when base type is set. If the base type is a simple type, the derivation method is always extension.</td>
</tr>
<tr>
<td>Property Name</td>
<td>Description</td>
<td>Possible Values</td>
<td>Mentions</td>
</tr>
<tr>
<td>---------------</td>
<td>-------------</td>
<td>----------------</td>
<td>----------</td>
</tr>
<tr>
<td>Content</td>
<td>The content of the complex type</td>
<td>simple/complex</td>
<td>For complex types that extend/restrict a base type. It is automatically detected.</td>
</tr>
<tr>
<td>Content Mixed</td>
<td>Specifies if the complex content model will be mixed</td>
<td>true/false</td>
<td>For complex contents</td>
</tr>
<tr>
<td>Mixed</td>
<td>Specifies if the complex type content model will be mixed</td>
<td>true/false</td>
<td>For global and anonymous complex types</td>
</tr>
<tr>
<td>Abstract</td>
<td>When set to true, this complex type cannot be used directly in the instance documents and needs to be substituted using an xsi:type attribute</td>
<td>true/false</td>
<td>For global and anonymous complex types</td>
</tr>
<tr>
<td>Block</td>
<td>Controls if a substitution (either through a xsi:type or substitution groups) can be performed for a complex type, which is an extension or a restriction of the current complex type. This attribute can only block such substitutions (it cannot &quot;unblock&quot; them), which can also be blocked in the element definition. The default value is defined by the blockDefault attribute of xs:schema.</td>
<td>all, extension, restriction, extension restriction, [Empty]</td>
<td>For global complex types</td>
</tr>
<tr>
<td>Final</td>
<td>Controls whether the complex type can be further derived by extension or restriction to create new complex types</td>
<td>all, extension, extension restriction, [Empty]</td>
<td>For global complex types</td>
</tr>
<tr>
<td>Default Attributes Apply</td>
<td>The schema element can carry a defaultAttributes attribute, which identifies an attribute group. Each complexType defined in the schema document then automatically includes that attribute group, unless this is overridden by the defaultAttributesApply attribute on the complexType element.</td>
<td>true/false</td>
<td>This property is available only for XML Schema 1.1</td>
</tr>
<tr>
<td>ID</td>
<td>The component ID</td>
<td>Any ID</td>
<td>For all complex types</td>
</tr>
<tr>
<td>Component</td>
<td>The edited component name</td>
<td>Not editable property</td>
<td>For all complex types</td>
</tr>
</tbody>
</table>
**Property Name** | **Description** | **Possible Values** | **Mentions**
---|---|---|---
**Namespace** | The component namespace | Not editable property | For all complex types
**System ID** | The component system ID | Not editable property | For all complex types

**xs:simpleType**

Figure 209. The *xs:simpleType* Component

Defines a simple type. A simple type definition is a set of constraints on strings and information about the values they encode, applicable to the normalized value of an attribute information item or of an element information item with no element children. Informally, it applies to the values of attributes and the text-only content of elements. See more info at [http://www.w3.org/TR/xmlschema11-1/#element-simpleType](http://www.w3.org/TR/xmlschema11-1/#element-simpleType).

**Tip:** A simple type that is a base type to another type will be rendered with yellow background.

**Table 13. *xs:simpleType* Properties**

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
<th>Possible Values</th>
<th>Scope</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Name</strong></td>
<td>Simple type name. Always required.</td>
<td>Any NCName</td>
<td>Only for global simple types. If missing, will be displayed as ’[simpleType]’ in diagram.</td>
</tr>
<tr>
<td><strong>Derivation</strong></td>
<td>A simple type category</td>
<td>restriction, list, or union</td>
<td>For all simple types</td>
</tr>
<tr>
<td><strong>Base Type</strong></td>
<td>A simple type definition component. Required if derivation method is set to restriction. In addition another 3 proposals are present: [anonymous restriction], [anonymous list], [anonymous union] for easily create anonymous simple types.</td>
<td>All global simple types and built-in simple types.</td>
<td>For global and anonymous simple types with the derivation method set to restriction</td>
</tr>
</tbody>
</table>

- [anonymous restriction]
- [anonymous list]
- [anonymous union]
<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
<th>Possible Values</th>
<th>Scope</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Item Type</strong></td>
<td>A simple type definition component. Required if derivation method is set to list.</td>
<td>All global simple types and built-in simple types (from schema for schema). In addition another 3 proposals are present: [anonymous restriction], [anonymous list], [anonymous union] for easily create anonymous simple types.</td>
<td>For global and anonymous simple types with the derivation method set to list. Derivation by list is the process of transforming a simple datatype (named the item type) into a whitespace-separated list of values from this datatype. The item type can be defined inline by adding a simpleType definition as a child element of the list element, or by reference, using the itemType attribute (it is an error to use both).</td>
</tr>
<tr>
<td><strong>Member Types</strong></td>
<td>Category for grouping union members</td>
<td>Not editable property</td>
<td>For global and anonymous simple types with the derivation method set to union</td>
</tr>
<tr>
<td><strong>Member</strong></td>
<td>A simple type definition component. Required if derivation method is set to union.</td>
<td>All global simple types and built-in simple types (from schema for schema). In addition another 3 proposals are present: [anonymous restriction], [anonymous list], [anonymous union] for easily create anonymous simple types.</td>
<td>For global and anonymous simple types with the derivation method set to union. Deriving a simple datatype by union merges the lexical spaces of several simple datatypes (called member types) to create a new simple datatype. The member types can be defined either by reference (through the memberTypes attribute) or embedded as simple datatype local definitions in the xs:union element. Both styles can be mixed.</td>
</tr>
<tr>
<td><strong>Final</strong></td>
<td>Blocks any further derivations of this datatype (by list, union, derivation or all)</td>
<td>#all, list, restriction, union, list restriction, list union, restriction union. In addition, [Empty] proposal is present for set empty string as value.</td>
<td>Only for global simple types</td>
</tr>
<tr>
<td><strong>ID</strong></td>
<td>The component ID</td>
<td>Any ID</td>
<td>For all simple types</td>
</tr>
<tr>
<td><strong>Component</strong></td>
<td>The name of the</td>
<td>Not editable property</td>
<td>Only for global and local simple types</td>
</tr>
</tbody>
</table>
xs:alternative

The type alternatives mechanism allows you to specify type substitutions on an element declaration.

[Note: xs:alternative is available for XML Schema 1.1.]

Figure 210. The xs:alternative Component

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
<th>Possible Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type</td>
<td>Specifies type substitutions for an element, depending on the value of the attributes</td>
<td>All declared or built-in types. In addition, the following anonymous types are available: [ST-restriction], [ST-union], [ST-list], [CT-anonymous], [CT-extension SC], [CT-restriction SC], [CT-restriction CC], [CT-extension CC]</td>
</tr>
<tr>
<td>Test</td>
<td>Specifies an XPath expression. If the XPath condition is valid, the specified type is selected as the element type. The expressions allowed are limited to a subset of XPath 2.0. Only the attributes of the current element and inheritable attributes from ancestor elements are accessible in the XPath expression. When you edit this property, the content completion list of proposals offers XPath expressions.</td>
<td>An XPath expression</td>
</tr>
<tr>
<td>XPath Default Namespace</td>
<td>The default namespace used when the XPath expression is evaluated</td>
<td>##defaultNamespace, ##targetNamespace, ##local</td>
</tr>
</tbody>
</table>

Table 14. xs:alternative Properties
<table>
<thead>
<tr>
<th>Property Name</th>
<th>Description</th>
<th>Possible Values</th>
<th>Mentions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>The group name (always required)</td>
<td>Any NCName for global groups, all declared groups for reference</td>
<td>If missing, will be displayed as '[group]' in diagram</td>
</tr>
<tr>
<td>Min Occurs</td>
<td>Minimum number of occurrences of the group</td>
<td>A numeric positive value. Default value is 1</td>
<td>Appears only for reference groups</td>
</tr>
<tr>
<td>Max Occurs</td>
<td>Maximum number of occurrences of the group</td>
<td>A numeric positive value. Default value is 1</td>
<td>Appears only for reference groups</td>
</tr>
<tr>
<td>ID</td>
<td>The component ID</td>
<td>Any ID</td>
<td>For all groups</td>
</tr>
<tr>
<td>Component</td>
<td>The edited component name</td>
<td>Not editable property</td>
<td>For all groups</td>
</tr>
<tr>
<td>Namespace</td>
<td>The component namespace</td>
<td>Not editable property</td>
<td>For all groups</td>
</tr>
<tr>
<td>System ID</td>
<td>The component system ID</td>
<td>Not editable property</td>
<td>For all groups</td>
</tr>
</tbody>
</table>

**xs:group**

Figure 211. The *xs:group* Component

Defines a group of elements to be used in complex type definitions. See more info at [http://www.w3.org/TR/xmlschema11-1/#element-group](http://www.w3.org/TR/xmlschema11-1/#element-group).

When referenced, the graphical representation also contains the value for the *minOccurs* and *maxOccurs* properties (for 0..1 and 1..1 occurs the values are implied by the connector style) and the connectors to the group are drawn using dotted lines if the group is optional.

**Table 15. *xs:group* Properties**

**xs:include**

Figure 212. The *xs:include* Component

Adds multiple schemas with the same target namespace to a document. See more info at [http://www.w3.org/TR/xmlschema11-1/#element-include](http://www.w3.org/TR/xmlschema11-1/#element-include).
### Table 16. *xs:*include properties

<table>
<thead>
<tr>
<th>Property Name</th>
<th>Description</th>
<th>Possible Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Schema Location</td>
<td>Included schema location</td>
<td>Any URI</td>
</tr>
<tr>
<td>ID</td>
<td>Include ID</td>
<td>Any ID</td>
</tr>
<tr>
<td>Component</td>
<td>The component name</td>
<td>Not editable property</td>
</tr>
</tbody>
</table>

*xs:*import

Figure 213. The *xs:*import Component

![Import](http://www.w3.org/TR/xmlschema11-1/#element-import)

Adds multiple schemas with a different target namespace to a document. See more info at [http://www.w3.org/TR/xmlschema11-1/#element-import](http://www.w3.org/TR/xmlschema11-1/#element-import).

### Table 17. *xs:*import Properties

<table>
<thead>
<tr>
<th>Property Name</th>
<th>Description</th>
<th>Possible Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Schema Location</td>
<td>Imported schema location</td>
<td>Any URI</td>
</tr>
<tr>
<td>Namespace</td>
<td>Imported schema namespace</td>
<td>Any URI</td>
</tr>
<tr>
<td>ID</td>
<td>Import ID</td>
<td>Any ID</td>
</tr>
<tr>
<td>Component</td>
<td>The component name</td>
<td>Not editable property</td>
</tr>
</tbody>
</table>

*xs:*redefine

Figure 214. The *xs:*redefine Component

![Redefine](http://www.w3.org/TR/xmlschema11-1/#element-redefine)

Redefines simple and complex types, groups, and attribute groups from an external schema. See more info at [http://www.w3.org/TR/xmlschema11-1/#element-redefine](http://www.w3.org/TR/xmlschema11-1/#element-redefine).

### Table 18. *xs:*redefine Properties

<table>
<thead>
<tr>
<th>Property Name</th>
<th>Description</th>
<th>Possible Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Schema Location</td>
<td>Redefine schema location</td>
<td>Any URI</td>
</tr>
<tr>
<td>ID</td>
<td>Redefine ID</td>
<td>Any ID</td>
</tr>
<tr>
<td>Component</td>
<td>The component name</td>
<td>Not editable property</td>
</tr>
</tbody>
</table>

*xs:*override

Figure 215. The *xs:*override Component

![Override](http://www.w3.org/TR/xmlschema11-1/#element-override)

The override construct allows replacements of old components with new ones without any constraint. See more info at [http://www.w3.org/TR/xmlschema11-1/#element-override](http://www.w3.org/TR/xmlschema11-1/#element-override).
Table 19. `xs:override` Properties

<table>
<thead>
<tr>
<th>Property Name</th>
<th>Description</th>
<th>Possible Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Schema Location</td>
<td>Redefine schema location</td>
<td>Any URI</td>
</tr>
<tr>
<td>ID</td>
<td>Redefine ID</td>
<td>Any ID</td>
</tr>
</tbody>
</table>

`xs:notation`

Figure 216. The `xs:notation` Component

Describes the format of non-XML data within an XML document. See more info at [http://www.w3.org/TR/xmlschema11-1/#element-notation](http://www.w3.org/TR/xmlschema11-1/#element-notation).

Table 20. `xs:notation` Properties

<table>
<thead>
<tr>
<th>Property Name</th>
<th>Description</th>
<th>Possible values</th>
<th>Mentions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>The notation name (always required)</td>
<td>Any NCName</td>
<td>If missing, will be displayed as <code>[notation]</code> in diagram</td>
</tr>
<tr>
<td>System Identifier</td>
<td>The notation system identifier</td>
<td>Any URI</td>
<td>Required if public identifier is absent (otherwise, optional)</td>
</tr>
<tr>
<td>Public Identifier</td>
<td>The notation public identifier</td>
<td>A Public ID value</td>
<td>Required if system identifier is absent (otherwise, optional)</td>
</tr>
<tr>
<td>ID</td>
<td>The component ID</td>
<td>Any ID</td>
<td>For all notations</td>
</tr>
<tr>
<td>Component</td>
<td>The edited component name</td>
<td>Not editable property</td>
<td>For all notations</td>
</tr>
<tr>
<td>Namespace</td>
<td>The component namespace</td>
<td>Not editable property</td>
<td>For all notations</td>
</tr>
<tr>
<td>System ID</td>
<td>The component system ID</td>
<td>Not editable property</td>
<td>For all notations</td>
</tr>
</tbody>
</table>

`xs:sequence` / `xs:choice` / `xs:all`

Figure 217. `xs:sequence`

`xs:sequence` specifies that the child elements must appear in a sequence. Each child element can occur from 0 to any number of times. See more info at [http://www.w3.org/TR/xmlschema11-1/#element-sequence](http://www.w3.org/TR/xmlschema11-1/#element-sequence).

Figure 218. `xs:choice`
**xs:choice** allows only one of the elements contained in the declaration to be present within the containing element. See more info at [http://www.w3.org/TR/xmlschema11-1/#element-choice](http://www.w3.org/TR/xmlschema11-1/#element-choice).

Figure 219. **xs:**all

**xs:**all specifies that the child elements can appear in any order. See more info at [http://www.w3.org/TR/xmlschema11-1/#element-all](http://www.w3.org/TR/xmlschema11-1/#element-all).

The compositor graphical representation also contains the value for the minOccurs and maxOccurs properties (for 0..1 and 1..1 occurs the values are implied by the connector style) and the connectors to the compositor are drawn using dotted lines if the compositor is optional.

<table>
<thead>
<tr>
<th>Property Name</th>
<th>Description</th>
<th>Possible Values</th>
<th>Mentions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compositor</td>
<td>Compositor type</td>
<td>sequence, choice, all</td>
<td>'all' is only available as a child of a group or complex type</td>
</tr>
<tr>
<td>Min Occurs</td>
<td>Minimum occurrences of compositor</td>
<td>A numeric positive value. Default is 1</td>
<td>The property is not present if compositor is 'all' and is child of a group</td>
</tr>
<tr>
<td>Max Occurs</td>
<td>Maximum occurrences of compositor</td>
<td>A numeric positive value. Default is 1</td>
<td>The property is not present if compositor is 'all' and is child of a group</td>
</tr>
<tr>
<td>ID</td>
<td>The component ID</td>
<td>Any ID</td>
<td>For all compositors</td>
</tr>
<tr>
<td>Component</td>
<td>The edited component name</td>
<td>Not editable property</td>
<td>For all compositors</td>
</tr>
<tr>
<td>System ID</td>
<td>The component system ID</td>
<td>Not editable property</td>
<td>For all compositors</td>
</tr>
</tbody>
</table>

**xs:**any

Figure 220. The **xs:**any Component

Enables the author to extend the XML document with elements not specified by the schema. See more info at [http://www.w3.org/TR/xmlschema11-1/#element-any](http://www.w3.org/TR/xmlschema11-1/#element-any).

The graphical representation also contains the value for the minOccurs and maxOccurs properties (for 0..1 and 1..1 occurs the values are implied by the connector style) and the connectors to the wildcard are drawn using dotted lines if the wildcard is optional.
### Table 22. xs:any Properties

<table>
<thead>
<tr>
<th>Property Name</th>
<th>Description</th>
<th>Possible Values</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Namespace</strong></td>
<td>The list of allowed namespaces. The namespace attribute expects a list of namespace URIs. In this list, two values have a specific meaning: <code>##targetNamespace</code> stands for the target namespace, and <code>##local</code> stands for local attributes (without namespaces).</td>
<td><code>##any, ##other, ##targetNamespace, ##local or anyURI</code></td>
</tr>
<tr>
<td><strong>notNamespace</strong></td>
<td>Specifies the namespace that extension elements or attributes cannot come from</td>
<td><code>##local, ##targetNamespace</code></td>
</tr>
<tr>
<td><strong>notQName</strong></td>
<td>Specifies an element or attribute that is not allowed</td>
<td><code>##defined</code></td>
</tr>
<tr>
<td><strong>Process Contents</strong></td>
<td>Type of validation required on the elements allowed for this wildcard</td>
<td><code>skip, lax, strict</code></td>
</tr>
<tr>
<td><strong>Min Occurs</strong></td>
<td>Minimum occurrences of any</td>
<td>A numeric positive value. Default is 1</td>
</tr>
<tr>
<td><strong>Max Occurs</strong></td>
<td>Maximum occurrences of any</td>
<td>A numeric positive value. Default is 1</td>
</tr>
<tr>
<td><strong>ID</strong></td>
<td>The component ID</td>
<td>Any ID</td>
</tr>
<tr>
<td><strong>Component</strong></td>
<td>The name of the edited component</td>
<td>Not editable property</td>
</tr>
<tr>
<td><strong>System ID</strong></td>
<td>The component system ID</td>
<td>Not editable property</td>
</tr>
</tbody>
</table>

**xs:anyAttribute**

Figure 221. The xs:anyAttribute Component

Enables the author to extend the XML document with attributes not specified by the schema. See more info at [http://www.w3.org/TR/xmlschema11-1/#element-anyAttribute](http://www.w3.org/TR/xmlschema11-1/#element-anyAttribute).

### Table 23. xs:anyAttribute Properties

<table>
<thead>
<tr>
<th>Property Name</th>
<th>Description</th>
<th>Possible Value</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Namespace</strong></td>
<td>The list of allowed namespaces. The namespace attribute expects a list of namespace URIs. In this list, two values have a specific meaning: <code>##targetNamespace</code> stands for the target namespace, and <code>##local</code> stands for local attributes (without namespaces).</td>
<td><code>##any, ##other, ##targetNamespace, ##local or anyURI</code></td>
</tr>
<tr>
<td><strong>Process Contents</strong></td>
<td>Type of validation required on the elements allowed for this wildcard</td>
<td><code>skip, lax, strict</code></td>
</tr>
<tr>
<td><strong>ID</strong></td>
<td>The component ID</td>
<td>Any ID</td>
</tr>
<tr>
<td><strong>Component</strong></td>
<td>The name of the edited component</td>
<td>Not editable property</td>
</tr>
<tr>
<td>Property Name</td>
<td>Description</td>
<td>Possible Value</td>
</tr>
<tr>
<td>---------------</td>
<td>-------------</td>
<td>----------------</td>
</tr>
<tr>
<td>System ID</td>
<td>The component system ID</td>
<td>Not editable property</td>
</tr>
</tbody>
</table>

**xs:unique**

Figure 222. The *xs:unique* Component

Defines that an element or an attribute value must be unique within the scope. See more info at [http://www.w3.org/TR/xmlschema11-1/#element-unique](http://www.w3.org/TR/xmlschema11-1/#element-unique).

**Table 24. xs:unique Properties**

<table>
<thead>
<tr>
<th>Property Name</th>
<th>Description</th>
<th>Possible Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>The unique name (always required)</td>
<td>Any NCName</td>
</tr>
<tr>
<td>ID</td>
<td>The component ID</td>
<td>Any ID</td>
</tr>
<tr>
<td>Component</td>
<td>The edited component name</td>
<td>Not editable property</td>
</tr>
<tr>
<td>Namespace</td>
<td>The component namespace</td>
<td>Not editable property</td>
</tr>
<tr>
<td>System ID</td>
<td>The component system ID</td>
<td>Not editable property</td>
</tr>
</tbody>
</table>

**xs:key**

Figure 223. The *xs:key* Component

Specifies an attribute or element value as a key (unique, non-nullable and always present) within the containing element in an instance document. See more info at [http://www.w3.org/TR/xmlschema11-1/#element-key](http://www.w3.org/TR/xmlschema11-1/#element-key).

**Table 25. xs:key Properties**

<table>
<thead>
<tr>
<th>Property Name</th>
<th>Description</th>
<th>Possible Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>The key name (always required)</td>
<td>Any NCName</td>
</tr>
<tr>
<td>ID</td>
<td>The component ID</td>
<td>Any ID</td>
</tr>
<tr>
<td>Component</td>
<td>The edited component name</td>
<td>Not editable property</td>
</tr>
</tbody>
</table>
### xs:keyRef

Figure 224. The `xs:keyRef` Component

Specifies that an attribute or element value corresponds to that of the specified key or unique element. See more info at [http://www.w3.org/TR/xmlschema11-1/#element-keyref](http://www.w3.org/TR/xmlschema11-1/#element-keyref).

A keyref by default displays the *Referenced Key* property when rendered.

**Table 26. xs:keyRef Properties**

<table>
<thead>
<tr>
<th>Property Name</th>
<th>Description</th>
<th>Possible Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>The keyref name (always required)</td>
<td>Any NCName</td>
</tr>
<tr>
<td>Referenced Key</td>
<td>The name of referenced key</td>
<td>Any declared element constraints</td>
</tr>
<tr>
<td>ID</td>
<td>The component ID</td>
<td>Any ID</td>
</tr>
<tr>
<td>Component</td>
<td>The edited component name</td>
<td>Not editable property</td>
</tr>
<tr>
<td>Namespace</td>
<td>The component namespace</td>
<td>Not editable property</td>
</tr>
<tr>
<td>System ID</td>
<td>The component system ID</td>
<td>Not editable property</td>
</tr>
</tbody>
</table>

### xs:selector

Figure 225. The `xs:selector` Component

Specifies an XPath expression that selects a set of elements for an identity constraint. See more info at [http://www.w3.org/TR/xmlschema11-1/#element-selector](http://www.w3.org/TR/xmlschema11-1/#element-selector).

**Table 27. xs:selector Properties**

<table>
<thead>
<tr>
<th>Property Name</th>
<th>Description</th>
<th>Possible Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>XPath</td>
<td>Relative XPath expression identifying the element that the constraint applies to</td>
<td>An XPath expression</td>
</tr>
<tr>
<td>ID</td>
<td>The component ID</td>
<td>Any ID</td>
</tr>
</tbody>
</table>
### xs:field

Figure 226. The `xs:field` Component

Specifies an XPath expression that specifies the value used to define an identity constraint. See more info at [http://www.w3.org/TR/xmlschema11-1/#element-field](http://www.w3.org/TR/xmlschema11-1/#element-field).

**Table 28. `xs:field` Properties**

<table>
<thead>
<tr>
<th>Property Name</th>
<th>Description</th>
<th>Possible Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>XPath</td>
<td>Relative XPath expression identifying the field(s) composing the key, key reference, or unique constraint</td>
<td>An XPath expression</td>
</tr>
<tr>
<td>ID</td>
<td>The component ID</td>
<td>Any ID</td>
</tr>
<tr>
<td>Component</td>
<td>The edited component name</td>
<td>Not editable property</td>
</tr>
<tr>
<td>System ID</td>
<td>The component system ID</td>
<td>Not editable property</td>
</tr>
</tbody>
</table>

### xs:assert

Assertions provide a flexible way to control the occurrence and values of elements and attributes available in an XML Schema.

**Note:** `xs:assert` is available for XML Schema 1.1.

Figure 227. The `xs:assert` Component

**Table 29. `xs:assert` Properties**

<table>
<thead>
<tr>
<th>Property Name</th>
<th>Description</th>
<th>Possible Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Test</td>
<td>Specifies an XPath expression. If the XPath condition is valid, the specified type is selected as the element type. The expressions allowed are limited to a subset of XPath 2.0. Only the attributes of the current element and inheritable attributes from ancestor</td>
<td>An XPath expression</td>
</tr>
</tbody>
</table>
elements are accessible in the XPath expression. When you edit this property, the content completion list of proposals offers XPath expressions.

<table>
<thead>
<tr>
<th>Property Name</th>
<th>Description</th>
<th>Possible Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>XPath Default Namespace</td>
<td>The default namespace used when the XPath expression is evaluated</td>
<td>##defaultNamespace, ##targetNamespace, ##local</td>
</tr>
<tr>
<td>ID</td>
<td>Specifies the component ID</td>
<td>Any ID</td>
</tr>
<tr>
<td>Component</td>
<td>The edited component name</td>
<td>Not editable property</td>
</tr>
<tr>
<td>System ID</td>
<td>The component system ID</td>
<td>Not editable property</td>
</tr>
</tbody>
</table>

**xs:openContent**

Figure 228. The *xs:openContent* Component

The *openContent* element enables instance documents to contain extension elements to be inserted amongst the elements declared by the schema. You can declare open content for your elements at one place (within the *complexType* definition) or at the schema level.

For further details about the *openContent* component, go to [http://www.w3.org/TR/xmlschema11-1/#element-openContent](http://www.w3.org/TR/xmlschema11-1/#element-openContent).

**Table 30. *xs:openContent* Properties**

<table>
<thead>
<tr>
<th>Property Name</th>
<th>Description</th>
<th>Possible Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mode</td>
<td>Specifies where the extension elements can be inserted</td>
<td>The value can be: &quot;interleave&quot;, &quot;suffix&quot; or &quot;none&quot;. The default value is &quot;interleave&quot;.</td>
</tr>
<tr>
<td>ID</td>
<td>The component ID</td>
<td>Any ID</td>
</tr>
<tr>
<td>Component</td>
<td>The edited component name</td>
<td>Not editable property</td>
</tr>
<tr>
<td>System ID</td>
<td>The component system ID</td>
<td>Not editable property</td>
</tr>
</tbody>
</table>

**Note:** This component is available for XML Schema 1.1 only. To change the version of the XML Schema, open the Preferences dialog box (**Options > Preferences**) (**on page 79**) and go to **XML > XML Parser > XML Schema**.

**Constructs Used to Group Schema Components**

This section explains the components that can be used for grouping other schema components.
Attributes

Figure 229. Attributes Construct

Groups all attributes and attribute groups belonging to a complex type.

<table>
<thead>
<tr>
<th>Property Name</th>
<th>Description</th>
<th>Possible Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Component</td>
<td>The element for which the attributes are displayed</td>
<td>Not editable property</td>
</tr>
<tr>
<td>System ID</td>
<td>The component system ID</td>
<td>Not editable property</td>
</tr>
</tbody>
</table>

Constraints

Figure 230. Constraints Construct

Groups all constraints (xs:key (on page 1280), xs:keyRef (on page 1280), or xs:unique (on page 1279)) belonging to an element.

<table>
<thead>
<tr>
<th>Property Name</th>
<th>Description</th>
<th>Possible Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Component</td>
<td>The element for which the constraints are displayed</td>
<td>Not editable property</td>
</tr>
<tr>
<td>System ID</td>
<td>The component system ID</td>
<td>Not editable property</td>
</tr>
</tbody>
</table>

Substitutions

Figure 231. Substitutions Construct
Groups all elements that can substitute the current element.

**Table 33. substitutions Properties**

<table>
<thead>
<tr>
<th>Property Name</th>
<th>Description</th>
<th>Possible Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Component</td>
<td>The element for which the substitutions are displayed</td>
<td>Not editable property</td>
</tr>
<tr>
<td>System ID</td>
<td>The component system ID</td>
<td>Not editable property</td>
</tr>
</tbody>
</table>

**Schema Validation**

Validation for the **Design** mode is seamlessly integrated in the Oxygen XML Editor [XML documents validation (on page 1079)](#) capability.

**Figure 232. XML Schema Validation**

A schema validation error is presented by highlighting the invalid component:

- In the **Attributes View (on page 628)**.
- In the diagram by surrounding the component that has the error with a red border.
• A marker on the errors stripe at the right of the diagram view.
• A status label with a red icon (🔴) below the diagram view.

Invalid facets for a component are highlighted in the Facets View (on page 630).

Components with invalid properties are rendered with a red border. This is a default color, but you can customize it in the Document checking user preferences (on page 180). When hovering an invalid component, the tooltip will present the validation errors associated with that component.

When editing a value that is supposed to be a qualified or unqualified XML name, the application provides automatic validation of the entered value. This proves to be very useful in avoiding setting invalid XML names for the given property.

If you validate the entire schema using the Validate action from the Document > Validate menu or from the Validation toolbar drop-down menu, all validation errors will be presented in the Errors tab. To resolve an error, just click it (or double-click for errors located in other schemas) and the corresponding schema component will be displayed as the diagram root so that you can easily correct the error.

⚠️ Important: If the schema imports only the namespace of other schema without specifying the schema location and a catalog is set up (on page 1123) that maps the namespace to a certain location both the validation and the diagram will correctly identify the imported schema.

Tip: If the validation action finds that the schema contains unresolved references, the application will suggest the use of validation scenarios, but only if the current edited schema is an XML Schema module.

Edit Schema Namespaces

You can use the XML Schema Namespaces dialog box to easily set a target namespace and define namespace mappings for a newly created XML Schema. In the Design mode these namespaces can be modified anytime by choosing Edit Schema Namespaces from the contextual menu. You can also do this by double-clicking the schema root in the diagram.

The XML Schema Namespaces dialog box allows you to edit the following information:

• Target namespace - The target namespace of the schema.
• Prefixes - The dialog box displays a table with namespaces and the mapped prefixes. You can add a new prefix mapping or remove an already existing one.
7.

Working with Documents

Oxygen XML Editor includes a variety of general features that can be used when working with any type of document. More specialized features are available when working with specific type of documents, such as the various types of XML documents, CSS, JavaScript, Markdown, and more. For details about those specialized features for specific types of documents, see Editing Documents (on page 827).

This chapter includes information about how to create and work with documents, working with projects, and various editing features that are provided in Oxygen XML Editor for all document types. This chapter also includes information about some of the special tools that are included in Oxygen XML Editor, such as the file and directory comparison tools.

Getting Familiar with the Interface

Oxygen XML Editor includes several perspectives (on page 3285) and editing modes (on page 303) to help you accomplish a wide range of tasks. Each perspective and editing mode also includes a large variety of helper view, menu actions, toolbars, and contextual menu functions.

There are various ways that you can configure the layout of the views or editors (on page 268), and you can customize the toolbars (on page 273).

Regardless of the perspective (on page 3285) or editing mode (on page 303) that you are working with, the default layout consists of the following areas:

**Menus**

Menu driven access to all the features and functions available in Oxygen XML Editor. Most of the menus are common for all types of documents, but Oxygen XML Editor also includes some context-sensitive and framework-specific menus and actions that are only available for a specific context or type of document.

**Toolbars**

Easy access to common and frequently used functions. Each icon is a button that acts as a shortcut to a related function. Some of the toolbars are common for all perspectives, editing modes, and types of documents, while others are specific to the particular perspective or mode. Some toolbars are also framework-specific, depending on the type of document that is being edited. All the toolbars can be configured (on page 273) to suit your specific needs.

**Helper Views**
Oxygen XML Editor includes a large variety of dockable views to assist you with editing, viewing, searching, validating, transforming, and organizing your documents. Many of the views also contain useful contextual menu actions, toolbar buttons, or menus. The most commonly used views for each perspective and editing mode are displayed by default and you can choose to display others to suit your specific needs. The layout of the views can also be configured according to your preferences.

**Editor Pane**

The main editing area in the center of the application. Each editing mode provides a main editor pane where you spend most of your time reading, editing, applying markup, and validating your documents. The editor pane in each editing mode also includes a variety of contextual menu actions and other features to help streamline your editing tasks. Each file that has been opened has a tab at the top of the editing pane and there are several ways to switch between tabs or move them.

**Perspectives**

Oxygen XML Editor includes several different perspectives that you can use to work with your documents. The Editor perspective is the most commonly used perspective used for displaying and editing the content of your XML documents, and it is the default perspective when you start Oxygen XML Editor for the first time. Oxygen XML Editor also includes a Database perspective that allows you to manage databases and their connections and a few debugging perspectives that allow you to detect problems in XSLT or XQuery transformations.

**Status Bar**

The status bar at the bottom of the application contains some useful information when you are working with documents. It includes the following information, in the order it is displayed from left to right:

- The path of the current document.
- The Unicode value for the character directly to the right of the current cursor position.
- The status of the current document. The status of Modified is displayed for documents that have not yet been saved. Otherwise, this section is left blank.
- In Text editing mode, the current line and character position is displayed.
- If the Check for notifications option is selected, this section will show you when new messages have been received. The types of messages include the addition of new videos on the Oxygen XML Editor website, the announcement
of upcoming webinars and conferences where the Oxygen XML Editor team will participate, and more.

- The memory consumption, including the memory used by the application and the maximum amount that is allocated to the application.

- If the **Show memory status** option *(on page 83)* is selected, a 💻 **Free unused memory** icon is displayed in the bottom-right corner and you can use this icon to free up unused memory.

### Configuring the Layout of the Views and Editors

All the Oxygen XML Editor views available in the **Editor** *(on page 295)*, **XSLT Debugger**, and **XQuery Debugger** *(on page 299)* perspectives *(on page 3285)* are **dockable** *(on page 3281)* and there are various ways to configure and arrange the layout of the views and editing panes. You can also **configure the layout of the toolbars** *(on page 273)*.

To open a view, select it from the **Window > Show View** menu. You can hide a view by closing it with the ✗ button at the top-right corner of the view, or with the **Window > Hide current view** action.

### Arranging the Layout

You can drag any view to any margin of another view or editor inside the Oxygen XML Editor window. Once you create a layout that suits your needs, you can save it from **Window > Export Layout**. Oxygen XML Editor creates a layout file containing the preferences of the saved layout. To load a layout, go to **Window > Load Layout**. To reset it, select **Window > Reset Layout**.

**Note:** The **Load Layout** menu lets you select between the default layout, a predefined layout, or a custom layout. The changes you make using the **Load Layout** menu are also reflected in the **Application Layout** preferences page.

The changes you make to any layout are preserved between working sessions. The predefined layout files are saved in the **preferences directory** *(on page 80)* of Oxygen XML Editor.

To gain more editing space in the Oxygen XML Editor window, click ✅ **Toggle auto-hide** in any view. This button sets the view in the **auto-hide** state, making it visible only as a vertical tab, at the margins of the Oxygen XML Editor window. To display a view in the **auto-hide** state, hover its side-tab with your cursor, or click it to keep the view visible until you click elsewhere. A view can also be set to a floating state by using the **Toggle floating** action, making it independent from the rest of the Oxygen XML Editor window.

You can drag the editors and arrange them in any order, both horizontally and vertically.
The following image presents two editors arranged as horizontal tiles. To arrange them vertically, drag one of them on top of the other. In this example, the `personal.xml` file was dragged over the `personal-schema.xml` file. When doing this, a dark gray rectangle marks the rearranged layout.

Figure 233. Drag and Drop Editors

Tile/Stack Editor Actions

You can also tile or stack all open editors, both in the Editor perspective (on page 295) or in the Database perspective (on page 300), using the following actions from the Editor toolbar or Window menu:

- **Tile Editors Horizontally**
  Splits the editing area into horizontal tiles, one for each open file.

- **Tile Editors Vertically**
  Splits the editing area into vertical tiles, one for each open file.

- **Stack Editors**
  The reverse of the Tile Editors Horizontally/Vertically actions. Stacks all open editors.

- **Synchronous Scrolling**
Select this action to scroll through the tiled editors at the same time.

**Note:** When tiled, you can still drag and drop the editors, but note that they are docked in the same way as a window/view (instead of just tabs). You are actually rearranging the editor windows, so drag the editor tab and drop it to one of the sides of an editor (left/right/top/bottom). While dragging, you will see the dark gray rectangle aligned to one of the sides of the editor, or around the entire editor window. If you drop it to one of the sides it will dock to that side of the editor. If you drop it when the rectangle is around the entire window of the editor it will get stacked on top of that editor. You can also grab one of the stacked editors and tile it to one of the sides.

### Split Editor Actions

You can divide the editing area vertically and horizontally using the following actions available in the Editor toolbar and Window menu:

- **Split Editor Horizontally** - Splits the editor horizontally. This is useful for comparing and merging content between two documents.
- **Split Editor Vertically** - Splits the editor vertically. This is useful for comparing and merging content between two documents.
- **Unsplit Editor** - Removes a split action on the editing area.

To maximize or restore the editors, go to **Window > Maximize/Restore Editor Area**.

### Switch or Move Editor Tabs

Each file that has been opened has a tab at the top of the editing pane and there are several ways to switch between tabs or move them.

#### Switching Editor Tabs

You can switch between editor tabs by using any of the following methods:

- **Mouse and Scroll Wheel**
  
  Of course, you can switch to a different editor tab by left-clicking the tab with your mouse, but when there are too many tabs opened to fit on the screen, you can hover over the tab stripe and use the scroll wheel on your mouse to scroll to the left or right (same as using the two arrows on the far-right of the tab stripe).

- **Buttons on the Far-Right of the Tab Stripe (⌘) or (⎇)**
  
  You can use the arrow buttons (↑ or ↓) on the right side of the tab stripe to scroll to the left or right and the ▼ **Show List** button opens a pop-up window that displays all the opened file tabs and allows you to select and switch to a specific opened file.
Ctrl + Tab (Command + Tab on OS X) [NOTE: Ctrl + Page Down (Ctrl + Alt + Right Arrow on OS X) does the same]

Switches to the next opened tab in the order specified in the **Order of switching between editor tabs** option (on page 83).

Ctrl + Shift + Tab (Command + Shift + Tab on OS X) [NOTE: Ctrl + Page Up (Ctrl + Alt + Left Arrow on OS X) does the same]

Switches to the previous opened tab in the order specified in the **Order of switching between editor tabs** option (on page 83).

**Window > Switch editor tab (Ctrl + F9 (Command + F9 on OS X))**

This action opens a dialog box that allows you to switch to a particular editor tab by selecting it from a filterable list. This is especially helpful when you have a large amount of file tabs opened and you want to switch to a certain tab this is not shown on the screen. It includes a search filter field and several options to help you find specific opened file tabs.

**Figure 234. Switch Editor Tab Dialog Box**

The **Switch Editor Tab** dialog box contains the following options and features:

**Search Filter**

You can enter text in the filter field at the top of the dialog box to filter the list and search for specific opened files. You can enter any number of terms, separated by space, and wildcards are allowed (for example, * to match any sequence of characters or ? to match a single character). This field also has a history drop-down that allows you to select previously used search terms.

**Match all terms**
If this option is selected, only the files that match all of your search terms will be displayed. If you use a wildcard in the search filter, this option is automatically disabled.

Include file paths
If this option is selected, the search is expanded to include file paths, and also the paths are displayed in this dialog box.

Case sensitive
If this option is selected, the search operation will be case-sensitive.

List of Opened File Tabs
All files that are currently opened are displayed in the main pane of the dialog box. Files that have been modified but not yet saved are prefixed by an asterisk. To switch to a particular file tab, double-click the file or select it and click OK.

Moving Editor Tabs
You can move editor tabs by using any of the following methods:

Mouse Drag
You can use your mouse to drag editor tabs to a new location on the tab stripe.

Ctrl + Alt + Comma
Moves the current file tab one position to the left.

Ctrl + Alt + Period
Moves the current file tab one position to the right.

For more information about configuring the interface of Oxygen XML Editor, watch our video demonstration:

https://www.youtube.com/embed/anwjepfAdEk

Related Information:
- Configuring Toolbars (on page 273)

Configuring Toolbars
You can configure the toolbars in Oxygen XML Editor to personalize the interface for your specific needs. You can choose which toolbars to show or hide in the current editor mode (Text, Author, Design, or Grid) and in the current perspective (on page 3285) (Editor, XSLT Debugger,
You can also choose which actions to display in each toolbar, add actions to toolbars, and customize the layout of the toolbars.

To configure the toolbars, open the **Configure Toolbars** dialog box by doing one of the following:

- Right-click any toolbar and select **Configure Toolbars**.
- Select **Configure Toolbars** from the **Window** menu.

The **Configure Toolbars** dialog box provides the following features:

- **Filter Text Box**
  
  You can use the filter text box at the top of the dialog box to search for a specific toolbar or action.

- **Show or Hide Toolbars**
  
  You can choose whether to show or hide a toolbar by using the checkbox next to the toolbar name. This checkbox is only available for toolbars that are available for the current perspective (on page 3285) and editing mode.

- **Show or Hide Actions in a Toolbar**
  
  To show or hide actions in a toolbar, expand it by clicking the arrow next to the toolbar name, then use the checkbox to select or deselect the appropriate actions. The toolbar configuration changes in the **Preview** column according to your changes.

- **Add Actions to a Toolbar**
Use the **Add Actions** button to open the **Add Actions** dialog box that displays all the actions that can be added to any of the toolbars, with the exception of those that are contributed from *frameworks (on page 3282)* or 3rd party *plugins (on page 3285)*.

**Remove Actions from a Toolbar**

You can remove actions that you have previously added to toolbars by using the **Remove Action** button.

**Move Actions in a Toolbar**

Use the **Move Up** and **Move Down** actions to change the order of the actions in a toolbar.

The **Configure Toolbars** dialog box also provides a variety of other ways to customize the layout in Oxygen XML Editor.

**Customize My Toolbar**

You can customize the **My Toolbar** to include your most commonly used actions. By default, this toolbar is listed first. Also, it is hidden until you add actions to it and you can easily hide it with the **Hide "My Toolbar" Toolbar** action that is available when you right-click anywhere in the toolbar area.

**Drop-down Menu Actions**

Composite actions that are usually displayed as a drop-down menu can only be selected in one toolbar at a time. These actions are displayed in the **Configure Toolbars** dialog box with the name in brackets.

![Configure external tools](image)

**Configure External Tools Action**

There is a **Configure external tools** composite action that appears in the toolbar called **Tools**. It is a drop-down menu that contains any external tools that are configured in the **External Tools** preferences page.

**Note:** If no external tools are configured, this drop-down menu is not shown in the toolbar.

Additional actions are available from the **Window** menu or contextual menu when invoked from a toolbar that allows you to further customize your layout. These actions include:

**Reset Toolbars**

To reset the layout of toolbars to the default setting, select the **Reset Toolbars** action from the contextual menu or **Window** menu.

**Reset Layout**
To reset the entire layout (including toolbars, editing modes, views, etc.) to the default setting, select **Reset Layout** from the contextual menu or **Window** menu.

**Export Layout**

You can use the **Export Layout** action that is available in the **Window** menu to export the entire layout of the application to share it with other users.

**Hide Toolbars**

You can use the **Hide Toolbar** action from the contextual menu to easily hide a displayed toolbar. When you right-click a toolbar it will be highlighted to show you which actions are included in that toolbar.

**Related Information:**

- Configuring the Layout of the Views and Editors *(on page 268)*

---

### Creating and Working with Documents

Oxygen XML Editor includes various features, actions, and wizards to assist you with creating new files and working with existing files. This section explains many of these features, including information on creating new documents, opening, saving, and closing existing files, searching documents, viewing file properties, and more.

### Creating New Documents and Templates

Oxygen XML Editor includes a helpful **New Document** wizard that allows you to customize and create new files from a large list of document types and built-in templates. You can also create your own templates *(on page 683)* and share them with others *(on page 688)*.

To quickly create a new document:

1. Click the **New** button on the toolbar or select **File > New**.
2. Select the type of document that you want to create.

   **Tip:** You can use the text filter field at the top of the dialog box to search for a specific template.
3. Click the **Create** button at the bottom of the dialog box.
New Document Wizard

Oxygen XML Editor supports a wide range of document types. The **New Document** wizard presents the default associations between a file extension and the type of editor that opens the file. To customize these default associations, open the **Preferences** dialog box (**Options > Preferences**) (on page 79) and go to **File Types** (on page 250).

The **New Document** wizard creates a skeleton document that may contain a root element, the document prolog, and possibly other child elements depending on options that are specific for each schema type. You can also create your own custom document templates (on page 683) and select them from this wizard.

**New Document Wizard**

To create a new document using this wizard, follow these steps:

1. Click the **New** button on the toolbar or select **File > New**.

   **Result:** The **New Document** wizard is displayed:

   Figure 236. New Document Wizard

   ![New Document Wizard](image)

   The first page of the wizard displays the supported document types and groups them in the following categories:

   **Recently Used**
Contains the list of the most recently used file types. To clear the history of this folder, right-click an entry and select **Remove all** (or select an entry and press **Ctrl + Delete** on your keyboard). To remove a single entry, right-click and select **Remove** (or select the entry and press **Delete** on your keyboard).

**New Document**

Contains the list of all supported document types. This list includes XML, XSL, XML Schema, Document Type Definition, Relax NG Schema, XQuery, Web Services Definition Language, Schematron Schema, CSS, Text, PHP, JavaScript, Java, C, C++,
Batch, Shell, Properties, SQL, **XML Catalog**, PERL, JSON, and more.

**Global Templates**

Contains the list of built-in templates as well as user-defined custom templates. You can create your own custom document templates (on page 683) and add them to the templates folder of the Oxygen XML Editor installation directory.

**Framework Templates**

Contains the list of templates defined in the Document Type configuration dialog box (Templates tab) (on page 118) for each framework.

**User-defined template directory**

You can add your own custom templates by creating template files (on page 683) in a directory and then add that directory to the list of template directories that Oxygen XML Editor uses in the Document Templates preferences page (on page 123). This user-defined directory will also appear in the New Document wizard.

2. Select the type of document that you want to create.

**Tip:** You can use the text filter field at the top of the dialog box to search for a specific template.

3. If you want to change the default name and path of the file, select the Save as option and specify the file path (the Show "Save as" option to save newly created documents in the "New" document wizard option (on page 156) must be selected in the Save preferences page). Otherwise, the file will be opened in a new tab with a default untitled name and the document path will not yet exist until you save it.

**Note:** For DITA documents, the dialog box includes some additional options for generating a title, file name, and root ID attribute. For more information, see Creating a New DITA Topic (on page 3050).

4. If you want to use the default settings in the creation process, select Create at the bottom of the dialog box.

**Result:** The document is created using the default settings and the new file is opened in the appropriate editor.
5. If you want to configure properties before creating the file, select **Customize**. This action is available for XML, XML Schema, Schematron, and XSL documents.

**Result:** A new file configuration dialog box is opened that allows you to customize various options, depending on the document type you selected. After configuring the options in this wizard, click **Create** to create the file and open it in the appropriate editor.

**XML Document Configuration Page**

Figure 237. New XML Document Configuration Wizard Page

If you selected **XML Document** for the type of file you want to create and selected the **Customize** option, the configuration dialog box will include the following options:

**Schema URL**

Specifies the path to the schema file. When you select a file, Oxygen XML Editor analyzes its content and tries to fill in the rest of the dialog box.

**Schema Type**

Allows you to select the schema type. The following options are available: **XML Schema, DTD, RelaxNG XML syntax, RelaxNG compact syntax, and NVDL.**

**Public ID**

Specifies the PUBLIC identifier declared in the document prolog.
Namespace

Specifies the document namespace.

Prefix

Specifies the prefix for the namespace of the document root.

Root Element

Populated with elements defined in the specified schema, enables selection of the element used as document root.

Description

A small description of the selected document root.

Add Optional Content

If you select this option, the elements and attributes defined in the XML Schema as optional are generated in the skeleton XML document.

Add First Choice Particle

If you select this option, Oxygen XML Editor generates the first element of an `xs:choice` schema element in the skeleton XML document. Oxygen XML Editor creates this document in a new editor panel when you click OK.

XSLT Document Configuration Page

Figure 238. New XSLT Stylesheet Configuration Wizard Page

If you selected XSLT Stylesheet for the type of file you want to create and selected the Customize option, the configuration dialog box will include the following options:

Stylesheet version
Allows you to select the **Stylesheet version** number. You can select from: 1.0, 2.0, and 3.0.

Add documentation annotations

Select this option to generate the stylesheet annotation documentation.

**XML Schema Document Configuration Page**

Figure 239. New XML Schema Configuration Wizard Page

If you selected XML Schema for the type of file you want to create and selected the Customize option, the configuration dialog box will include the following options:

**Default XML Schema version**

Uses the XML Schema version defined in the XML Schema preferences page (on page 192).

**XML Schema 1.0**

Sets the minVersion attribute to 1.0 and the maxVersion attribute to 1.1.

**XML Schema 1.1**

Sets the minVersion attribute to 1.1.

**Target namespace**
Allows you to specify the schema target namespace.

**Namespace prefix declaration table**

This table contains namespace prefix declarations. Table information can be managed using the **New** and **Delete** buttons.

![Image](image.png)

Tip: For further details on how you can set the version of an XML Schema, go to Setting the XML Schema Version (on page 1335).

**Schematron Document Configuration Page**

If you selected Schematron for the type of file you want to create and selected the Customize option, the configuration dialog box will include the following option:

**Schematron version**

Specifies the Schematron version. Possible options: 1.5 (deprecated) and ISO.

Note: Starting with version 16.0 of Oxygen XML Editor, the support for Schematron 1.5 is deprecated. It is recommended to use ISO Schematron instead.

**JSON Document Configuration Page**

Figure 241. New JSON Configuration Wizard Page
If you select **JSON** for the type of file you want to create and select the **Customize** option, the configuration dialog box will include the following options:

**Schema URL**

Specifies the path to a JSON Schema file that will be used to generate key-value pairs.

**Associate Schema in the Document**

If you select this option, the JSON instance will be generated with the JSON Schema associated directly in the document.

**Generate Optional Properties**

If you select this option, the JSON instance will be generated with optional properties that are defined in the JSON schema. Otherwise, only the required properties will be generated.

**Generate Additional Content**

If you select this option, the JSON instance will be generated with additional properties that are defined in the JSON schema as `additionalProperties` and additional items that are defined as `additionalItems` (in the case of an Array).

Creating New Document Templates

Oxygen XML Editor allows you to create your own custom document templates and they will appear in the **New document wizard** *(on page 676)*.

**Creating a New Document Template**

To create your own custom document template and have it appear in the new document wizard, follow these steps:

1. Create a new file (whatever type of document you need) and customize it to become a starting point for creating new files of this type.
Tip: You can use editor variables (on page 276) in the template file content and they will be expanded when the files are opened. Also, see Customizing Document Templates (on page 685) for other template customization tips (for example, you could add placeholders or hints (on page 687) to assist authors).

2. Save the new document template and reference that location in Oxygen XML Editor. There are several options for doing this:

- **Saving the new template in a specific framework's directory** - Save the new template in a directory (for example, called templates) within that specific framework directory (usually a custom framework (on page 2322)). Then open the Document Type configuration dialog box (on page 95) for that specific framework, go to the Templates tab (on page 118), and click the + button in the bottom-right corner to add your new directory to the list. It is recommended that the reference be made relative to the framework directory (for example, ${frameworkDir}/templates). You can also remove any existing entries in the list that aren't applicable or won't be used in your custom framework. Click OK to close the configuration dialog box and then OK or Apply to save your changes.

- **Saving the new template in the Oxygen installation directory** - Save the new template in the templates directory of the Oxygen XML Editor installation directory ([OXYGEN_INSTALL_DIR]/templates). Document templates saved in this directory will appear in the Global templates category in the New document wizard (on page 676).

- **Saving the new template in a custom directory** - Save the new template in any directory of your choice and then add that directory to the list of templates in the Document Templates preferences page (on page 123). This user-defined directory will appear in the New document wizard (on page 676) along with all the new document templates that you save inside it. Click OK or Apply to save your changes.

Attention: The name that you use to save the template will be the name that appears in the new document wizard, including capitalization, space, and characters (for example, My Custom Template1.xml will appear in the new file wizard as My Custom Template1). You can also configure the displayed name in a properties file by following the procedure found in the Configure the Displayed Names for Document Templates (on page 686) section.

3. Open the new document wizard (New toolbar button or File > New) and you should see your custom template in the appropriate folder.

Note: For DITA templates, they will also appear in the dialog box for creating new DITA topics from the DITA Maps Manager, but if you customize the template (on page 685), you need to set the type property to dita in the corresponding properties file.

Related Information:

- Customizing Document Templates (on page 685)
Customizing Document Templates

Oxygen XML Editor allows you to customize certain aspects of built-in or custom document templates. For example, you can customize the icons or specify a prefix/suffix that will be used for the proposed file name in the New document wizard (on page 676).

Customizing the Icons for a Document Template

If you want to customize the icons to be used for document templates, use a properties file to specify the icons using the following procedure:

1. Create a new properties file or edit an existing one following these guidelines:
   a. If you want to create a new properties file, you can use the Properties template found in the New Document folder in the New document wizard (on page 676). If you want to edit an existing template, you can find them within the subfolders in the templates folder for each framework (for example, the DITA topic properties file is located in: OXYGEN_INSTALL_DIR/frameworks/dita/templates/topic/topic.properties).
   b. Use the same name as your custom template file except with a .properties extension (for example, MyTemplate.properties).
   c. In this properties file, specify the paths to the icons that will be used in the new file wizard.
      The properties file should look like this:
      
      ```
      type=general
      smallIcon=../icons/Article_16.png
      bigIcon=../icons/Article_48.png
      ```

      **Tip:** For DITA files, the type property needs to be set to dita. Otherwise, the template will not appear in the dialog box for creating new DITA topics from the DITA Maps Manager (on page 2990). For all other types of files, set it to general. The icons specified in this properties file will only be used for the new file wizards and not in any other part of the interface.

      **Important:** If you created a new template and chose to use a custom directory for the new template (in step 2 of the new template procedure (on page 684)), make sure the path to the icons is relative to that directory.

2. Save the properties file in the same directory as your custom template.
3. Open the new file wizard (File > New) and you should see your custom icons next to the document template in the appropriate folder.
Add a Prefix or Suffix to File Names for a Document Template

You can use a properties file for each document template to add a prefix or suffix to the file name that is proposed in certain dialog boxes when you create a new file from that template. This applies to the following new document dialog boxes:

- The new document dialog box that appears when you click the **New** button on the toolbar (or **File > New**). The prefix or suffix is added to the name of the file in the **Save as** field.
- The new document dialog box that appears when you select **New > File** from the contextual menu in the **Project view (on page 333)**. The prefix or suffix is added to the name of the file in the **Filename** field.
- For DITA files, it also applies to the new document dialog box that appears when you select **Append Child > New, Insert Before > New, or Insert After > New** from the **DITA Maps Manager (on page 2990)**. The prefix or suffix is added to the name of the file in the **Save as** field.
- For DITA files, it also applies to the **Fast Create Topics** dialog box (**on page 3053**) that you can use to create multiple skeleton topics at once.

To add a prefix or suffix to the file names for a document template, follow these steps:

1. Create a new properties file or edit an existing one.
   - If you create a new properties file, use the same name as the template file except with a **.properties** extension (for example, **MyTemplate.properties**). This properties file will specify the prefix/suffix that will be used to propose the file name in the new file wizards.
   - When defining the prefix/suffix, the properties file should look something like this:
     ```
     type=general
     filenamePrefix=prod_
     filenameSuffix=_test
     ```
     **Important:** For DITA files, the **type** property needs to be set to **dita**. For all other types of files, set it to **general**.
   - If you edit an existing template, simply define the prefix/suffix as specified **above (on page 686)**.

2. Save the properties file in the same directory as the document template.

3. Open the new document wizard (using the methods described above (**on page 686**)) and when you select the appropriate template, you should see your prefix or suffix in the file name that is proposed in that dialog box.

Configure the Displayed Names for Document Templates

To change the name that is displayed for a document template, use the following procedure:
1. Create a new properties file or edit an existing one. If you create a new properties file, use the same name as the template file except with a .properties extension (for example, MyTemplate.properties).
2. Add a displayName property in the properties file:
   
   ```
   displayName=My Template Name
   ```

   **Tip:** The names for framework (on page 3282)-specific document templates (such as DITA Topic or DocBook Article, as you would see in the Framework templates folder in the New file wizard) can be translated via the internationalization support. In this case, the properties file should contain something like:

   ```
   displayName=${i18n(tag)}
   ```

   where tag refers to an entry in the translation.xml file for that specific framework (for example, OXYGEN_INSTALL_DIR/frameworks/dita/i18n/translation.xml for DITA).
3. Save the properties file in the same directory as the document template.
4. Open the new file wizard (File > New) and you should see the new name for the template.

### Adding Placeholders or Hints in a Document Template

Document templates sometimes contain empty elements and it may not be clear to the Author what should be inserted. You can define placeholders in document templates that provide hints for Authors to help them understand what type of content should be added in any particular empty element within the document. The placeholder text is specified using a processing instruction and the placeholders are removed when the Author inserts content in the corresponding element.

To define placeholders in a document template to provide authors with hints, follow this procedure:

1. Edit the document template.
2. Add placeholders in the form of processing instructions within the elements where you want hints to be displayed when an Author creates a document from the template. For example:

   ```xml
   <?xml version="1.0" encoding="UTF-8"?>
   <!DOCTYPE topic PUBLIC "-//OASIS//DTD DITA Topic//EN" "topic.dtd">
   <topic id="pi">
     <title><?oxy-placeholder content="Enter a title"?></title>
     <shortdesc><?oxy-placeholder content="Writing short descriptions induces the writer to clarify the main thesis of the topic. We recommended a 50 word limit."?></shortdesc>
     <body>
       <p><?oxy-placeholder content="A paragraph element should be a self-contained unit dealing with one idea or point."?></p>
   ```
3. Save the template file.

4. Use the **New document wizard (on page 676)** to create a new document using your customized template and you should see the hints in the opened document.

**Related Information:**

- Creating New Document Templates (on page 683)
- Sharing Custom Document Templates (on page 688)

**Sharing Custom Document Templates**

Your **custom document templates (on page 683)** can be shared with the other members of your team so that they all have access to the templates in the **New document wizard (on page 676)**. The best way to share them is by integrating them in an extended **framework (on page 3282)** (document type) configuration and then sharing the whole framework with the other users.

**Sharing Custom Document Templates**

To share custom document templates with other members of your team:

1. Create a custom framework by extending an existing one (on page 2322), if you haven't already done so.
2. Create the new document template (on page 683), if you haven't already done so.
3. Save the new template in a directory (for example, called templates) within your custom framework directory. Then open the **Document Type configuration dialog box (on page 95)** for that specific framework, go to the **Templates tab (on page 118)**, and click the **+ button** in the bottom-right corner to add your new directory to the list. It is recommended that the reference be made relative to the framework directory (for example, `${frameworkDir}/templates`). You can also remove any existing entries in the list that aren't applicable or won't be used in your custom framework.
4. Click **OK** to close the configuration dialog box and then **OK** or **Apply** to save your changes.
5. All that remains is to share the entire framework with anyone who needs to have access to the custom templates. There are several methods for sharing frameworks and you can find details here: **Sharing a Custom Framework (on page 2371)**.
Opening Documents

To open a document in Oxygen XML Editor, do one of the following:

- Go to File > Open (Ctrl + O (Command + O on OS X)) or click the Open toolbar button to display the Open File dialog box. The start folder of this dialog box can be either the last folder it visited or the folder of the currently selected file. This can be configured in the Global preferences page. (on page 81)
- Go to File > Open URL or click the Open URL toolbar button to display a dialog box where you can specify a URL (defined by a protocol, host, resource path, and an optional port) or use the browsing actions in the Browse for remote file drop-down menu.
- Click the Open/Find Resource toolbar button to search for a file to open.
- Go to File > Reload to load the last saved file content. All unsaved modifications are lost.
- Go to File > Reopen to reopen one of the recently opened document files. The list containing recently opened files can be emptied by invoking the Clear history action.
- Select the Open or Open with action from the contextual menu of the Project view (on page 333).

Opening the Current Document in a System Application

To open the currently edited document in the associated system application, use the View in Browser/System Application action that is available in the File menu and on the File toolbar. If you want to open XML files in a specific internet browser, instead of the associated system application, you can specify the internet browser to be used. To do so, open the Preferences dialog box (Options > Preferences) (on page 79), go to Global, and set it in the Default Internet browser field. This will take precedence over the default system application settings.
Opening Local Files at Start-up

There are two possibilities for opening local files at startup from a command line by adding their file paths as parameters:

• scriptName [pathToXMLFile1] [pathToXMLFile2]
  - scriptName is the name of the startup script for your platform (oxygen.bat on Windows, oxygen.sh on Mac OS X and Linux).
  - pathToXMLFileN is the name of a local XML file.

• An XML file and a schema file to be associated automatically to the file and used for validation and content completion:

  scriptName -instance pathToXMLFile -schema pathToSchemaFile -schemaType XML_SCHEMA|DTD_SCHEMA|RNG_SCHEMA|RNC_SCHEMA -dtName documentTypeName

  - scriptName is the name of the startup script for your platform (oxygen.bat on Windows, or oxygen.sh on Mac OS X and Linux).
  - pathToXMLFile is the name of a local XML file.
  - pathToSchemaFile is the name of the schema that you want to associate to the XML file, the four constants (XML_SCHEMA, DTD_SCHEMA, RNG_SCHEMA, RNC_SCHEMA) are the possible schema types (XML Schema, DTD, Relax NG schema in full syntax, Relax NG schema in compact syntax).
  - documentTypeName specifies the name of the document type for which the schema is defined. If the document type is already set in preferences, its schema and type are updated.

Tip: You can use the -h or --help parameters to see more detailed information about possible values.

Related Information:

- Opening a Document at a Specific Location Using a Command-Line Interface (on page 690)

Opening a Document at a Specific Location Using a Command-Line Interface

Oxygen XML Editor offers support for opening a file at a specific position using a command-line interface to transmit parameters to the Oxygen XML Editor application launching script file (oxygen.bat/oxygen.sh). The following methods are available, depending on how you identify the position that is needed:

1. Specific position values (line and column number, or character offset)
Oxygen XML Editor supports the following position parameters:

- **line** - The line number.
- **column** - The column number (has meaning if the line parameter is also defined).
- **char** - The character offset.

### Examples for Windows:

The following examples show how you can open an XML document in Oxygen XML Editor from a Windows command-line interface:

- `oxygen.bat file:samples/personal.xml#line=4` (line parameter only)
- `oxygen.bat file:samples/personal.xml#line=4;column=5` (both line and column parameters)
- `oxygen.bat file:samples/personal.xml#char=334` (char parameter)

### 2. Simplified XPath index path

Oxygen XML Editor will open an XML file and select one of its elements identified by a simplified XPath index path. For example, an index path of the form 1/5/7 identifies the seventh child of the fifth child of the root element.

**Restriction:** Oxygen XML Editor will display a selection that starts with the first character of the content of the identified element and spans until the end of the line.

### Examples for Windows:

The following example shows how you can open an XML document in Oxygen XML Editor and select the third child of the root element using a Windows command-line interface:

- `oxygen.bat file:samples/personal.xml#element(1/3)`

### 3. Anchors identified by ID attribute values

Oxygen XML Editor will open an XML file and select the element whose id attribute value is an exact match of the anchor (on page 3279) attached to a command-line instruction.

### Examples for Windows:

The following example shows how you can open an XML document in Oxygen XML Editor and select the element that has the id element set to titleID using a Windows command-line interface:

- `oxygen.bat file:samples/personal.xml#titleID`
Saving Documents

You can save the document you are editing with one of the following actions:

- File > Save.
- Save toolbar button - If the document was not yet saved, it displays the Save As dialog box.
- File > Save As - Displays the Save As dialog box, used either to name and save an open document to a file or to save an existing file with a new name.
- File > Save To URL - Displays a Save to URL dialog box that can be used to save a file identified by its URL (defined by a protocol, host, resource path, and an optional port). You can also use the browsing actions in the Browse for remote file drop-down menu.
- File > Save All - Saves all open documents. If any document does not have a file, displays the Save As dialog box.

Auto Recover Documents

Oxygen XML Editor includes an Auto Recover feature to help prevent losing unsaved content if you encounter an application or system crash. The feature is enabled by default and it automatically saves documents you are working on to a specified auto-recover file location. At every specified interval, all documents that have been modified since the last auto-save are saved to the specified location.

This feature is controlled by two options in the Save preferences page. You can disable it, or configure how often content is saved by selecting the desired value in the drop-down list of the Save auto-recover information every option (on page 157), and you can specify the location of the saved documents in the Auto-recover file location option (on page 157).

In the event of an application or system crash, when you restart the application, Oxygen XML Editor looks for an auto-recover file for each document that was open when the editing session was last saved (by the application). If any auto-recover files are found, a dialog box is displayed with options for how to handle the auto-recovered information. If a previously opened file was not restored from the previous editing session, re-opening the file will also trigger this dialog box.

Figure 242. Auto Recover Dialog Box
The dialog box offers the following choices:

- **Open recovered content in a new tab** - Opens the recovered document in a new tab.

  **Tip:** You can use the **Compare Files** tool (available in the **Tools** menu) to compare the recovered content with the last saved version of the document.

- **Replace current file content with recovered content** - Replaces the content of the last saved version of the document with the content of the recovered version of the document and removes the auto-recover file from disk.

- **Use current file content and discard recovered content** - Discards the recovered document and retains the last saved version of the document.

**Notes About the Auto-Recover Feature:**

- The **Auto Recover** feature works for both local and remote files.
- For DITA projects, the **Auto Recover** feature also works for DITA maps opened in the **DITA Maps Manager**.
- The **Auto Recover** feature does **NOT** work if there is not enough space available on the disk where the auto-recover file location is specified (on page 157).
- The **Auto Recover** feature does **NOT** work on files opened in the huge file editor (on page 783) (if you select the **Optimize loading for huge files** option when opening large documents (on page 781)).

**Working with Remote Documents**

Oxygen XML Editor supports editing remote files, using the FTP, SFTP, WebDAV, SharePoint, and SharePoint Online for Office 365 protocols. You can edit remote files in the same way you edit local files. For example, you can add remote files to a project, or use them in XSL and FO transformations.

You can open one or more remote files in the **Open URL** dialog box (on page 694).

A WebDAV resource can be locked when it is opened in Oxygen XML Editor by selecting the **Lock WebDAV files on open** option (on page 257) to prevent other users to modify it concurrently on the server. If a user tries to edit a locked file, Oxygen XML Editor displays an error message that contains
the lock owner's name. The lock is released automatically when the editor for that resource is closed in Oxygen XML Editor.

To avoid conflicts with other users when you edit a resource stored on a SharePoint server, you can check out the resource.

To improve the transfer speed, the content exchanged between Oxygen XML Editor and the HTTP / WebDAV server is compressed using the GZIP algorithm.

The current WebDAV Connection (on page 2254) details can be saved by switching to the Database perspective (on page 3285) and then you can browse and manage the connection in the Data Source Explorer view (on page 2198).

Open URL

To open this dialog box, go to File > Open URL (or click the Open URL toolbar button), then choose the Browse for remote file option from the drop-down action list.

Figure 243. Open URL Dialog Box

The displayed dialog box is composed of the following:

Server URL
Specifies the protocol (HTTP, HTTPS or FTP) and the host name or IP of the server.

**Tip:** When specifying a URL, follow these rules:

- To access an FTP server, write the protocol, host, and port (if using a non-standard one). For example, `ftp://server.com` or `ftp://server.com:7800/`.
- To access a WebDAV server, write the path to the directory of the WebDAV repository along with the protocol and the host name. For example, `https://www.some-webdav-server.com:443/webdav-repository/`.

**Important:** Make sure that the repository directory ends in a slash "/". For example, `https://www.some-webdav-server.com:443/webdav-repository/`.

**Autoconnect**

If selected, the browse action is performed every time when you open the dialog box.

**User and Password**

To browse for a file on a server, you have to specify the user and password for the server. This information is bound to the selected URL displayed in the **File URL** combo box, and used further in opening/saving the file. If the **Save** option is selected, then the user and password are saved between editing sessions. The password is kept encrypted in the options file.

**Note:** Your password is well protected. If the options file is used on another machine by a user with a different username, the password will become unreadable since the encryption is dependent on the username. This is also true if you add URLs that contain a username and password to your project.

**Connect**

When you press this button, the directory listing will be shown in the main section of the dialog box. If the selected URL points to a SharePoint server, a dedicated SharePoint browsing component is presented.

**Browser view**

- If you are browsing a WebDAV or FTP repository, the items are presented in a tree-like fashion. You can browse the directories, and make multiple selections. Additionally, you may use the **Rename**, **Delete**, and **New Folder** actions to manage the file repository.

  **Note:** The file names are sorted in a case-insensitive way.

- When you browse a SharePoint repository, a specialized component renders the SharePoint site content.
The left side navigation area presents the SharePoint site structure in a tree-like fashion with various node types (such as sites, libraries, and folders).

Depending on the type of node, a contextual menu offers customized actions that can be performed on that node. The contextual menu of a folder allows you to create new folders and documents, import folders and files, and to rename and delete the folder.

**Note:** The rename and delete actions are not available for library root folders (folders located at first level in a SharePoint library).

Each library node displays a drop-down menu next to its name where you can select what you want to display for the current library node. This functionality is also available on the contextual menu of the node.

The content of a folder is displayed in a tabular form, where each row represents the properties of a folder or document. The list of columns and the way the
documents and folders are organized depends on the currently selected view of the parent library.

You can filter and sort the displayed items. To display the available filters of a column, click the filter widget located on the column header. You can apply multiple filters at the same time.

**Note:** A column can be filtered or sorted only if it was configured this way on the server side.

Figure 246. Column Filter

![Column Filter](image)

**File URL**

You can use this combo box to directly specify the URL to be opened or saved. You can type a URL such as `http://some.site/test.xml` (if the file is accessible through normal HTTP protocol), or `ftp://anonymous@some.site/home/test.xml` (if the file is accessible through anonymous FTP).

This combo box also displays the current selection when the user changes selection by browsing the tree of folders and files on the server.

**Changing File Permissions on a Remote FTP Server**

Some FTP servers allow the modification of permissions of the files served over the FTP protocol. This protocol feature is accessible directly in the FTP/WebDAV file browser dialog box by right-clicking a tree node and selecting the **Change permissions** menu item.

In this dialog box, the usual Unix file permissions **Read**, **Write**, and **Execute** are granted or denied for the file owner, owner group, and the rest of the users. The aggregate number of permissions is updated in the **Permissions** text field when it is modified with one of the checkboxes.

**WebDAV over HTTPS**

If you want to access a WebDAV repository across a non-secure network, Oxygen XML Editor allows you to load and save the documents over the HTTPS protocol (if the server understands this protocol) so that any data exchange with the WebDAV server is encrypted.
When a WebDAV repository is first accessed over HTTPS, the server hosting the repository will present a security certificate as part of the HTTPS protocol, without any user intervention. Oxygen XML Editor will use this certificate to decrypt any data stream received from the server. For the authentication to succeed you should make sure the security certificate of the server hosting the repository can be read by Oxygen XML Editor. This means that Oxygen XML Editor can find the certificate in the key store of the Java Runtime Environment in which it runs. You know the server certificate is not in the JRE key store if you get the error *No trusted certificate found* when trying to access the WebDAV repository.

**Troubleshooting HTTPS**

When Oxygen XML Editor cannot connect to an HTTPS-capable server, most likely there is no certificate set in the *Java Runtime Environment (JRE)* that Oxygen XML Editor runs into. The following procedure describes how to:

- Export a certificate to a local file using any HTTPS-capable Web browser (for example, Internet Explorer).
- Import the certificate file into the JRE using the *keytool* that comes bundled with Oxygen XML Editor.

**Tip:** To make Oxygen XML Editor accept a certificate even if it is invalid, open the *Preferences* dialog box (*Options > Preferences*) (on page 79), go to *Connection settings > HTTP(S)/WebDAV*, and select the *Automatically accept a security certificate, even if invalid* option.

1. Export the certificate into a local file
   a. Point your HTTPS-aware Web browser to the repository URL.

   If this is your first visit to the repository it will be displayed a security alert stating that the security certificate presented by the server is not trusted.

   Figure 247. Security alert - untrusted certificate
b. Go to menu **Tools > Internet Options**.
   **Internet Options** dialog box is opened.

c. Select **Security** tab.

d. Select **Trusted sites** icon.

e. Press **Sites** button.
   This will open **Trusted sites** dialog box.

f. Add repository URL to **Websites** list.

g. Close the **Trusted sites** and **Internet Options** dialog boxes.

h. Try again to connect to the same repository URL in Internet Explorer.
   The same error page as above will be displayed.

i. Select **Continue to this website** option.
   A clickable area with a red icon and text **Certificate Error** is added to Internet Explorer address bar.

j. Click the **Certificate Error** area.
   A dialog box containing a **View certificates** link is displayed.

k. Click the **View certificates** link.
   **Certificate** dialog box is displayed.

l. Select **Details** tab of **Certificate** dialog box.

m. Press **Copy to File** button.
Certificate Export Wizard is started.

n. Follow indications of wizard for DER encoded binary X.509 certificate. Save certificate to local file server.cer.

2. Import the local file into the JRE running Oxygen XML Editor.

a. Open a text-mode console with administrative rights.

   If Oxygen XML Editor has been installed in a user's home directory and includes a bundled JRE, administrative rights are not required. In all other cases administrative rights will be required.

b. Go to the lib/security directory of the JRE running Oxygen XML Editor. You find the home directory of the JRE in the java.home property that is displayed in the About dialog box (System properties tab).

   On OS X, for the distribution of Oxygen XML Editor that bundles the JRE from Oracle, the JRE uses the .install4j/jre.bundle/Contents/Home/jre/lib/security/cacerts path within its installation directory.

c. Run the following command:

   ```bash
   ..\..\bin\keytool -import -trustcacerts -file server.cer -keystore cacerts
   ```

   The server.cer file contains the server certificate, created during the previous step. The keytool requires a password before adding the certificate to the JRE keystore (on page 3283). The default password is changeit. If someone changed the default password, then that person is the only one who can perform the import.

   Tip: If you need to import multiple certificates, you need to specify a different alias for each additional imported certificate with the -alias command-line argument, as in the following example:

   ```bash
   ..\..\bin\keytool -import -alias myalias1 -trustcacerts -file server1.cer -keystore cacerts
   ..\..\bin\keytool -import -alias myalias2 -trustcacerts -file server2.cer -keystore cacerts
   ```

3. Restart Oxygen XML Editor.

Related Information:

- HTTP(S)/WebDAV Preferences (on page 256)
HTTP Authentication Schemes

Oxygen XML Editor supports the following HTTP authentication schemes:

- **Basic** - The *basic* authentication scheme defined in the RFC2617 specifications.
- **Digest** - The *digest* authentication scheme defined in the RFC2617 specifications.
- **NTLM** - The *NTLM* scheme is a proprietary Microsoft Windows Authentication protocol (considered to be the most secure among currently supported authentication schemes).

**Note:** For NTLM authentication, the user name must be preceded by the name of the domain it belongs to, as in the following example:

```
domain\username
```

- **Kerberos (on page 701)** - An authentication protocol that works on the basis of *tickets* to allow nodes communicating over a non-secure network to prove their identity to one another in a secure manner.

**Single Sign-on**

Oxygen XML Editor implements the *Single sign-on* property (meaning that you can log on once and gain access to multiple services without being prompted to log on for each of them), based on the *Kerberos* protocol and relies on a *ticket-granting ticket (TGT)* that Oxygen XML Editor obtains from the operating system.

**Restriction:** This *Single sign-on* support is not available for SharePoint integrations.

To turn on the *Kerberos*-based authentication, you need to add the following system property in the `.vmoptions` configuration file or start-up script:

```
-Djavax.security.auth.useSubjectCredsOnly=false
```

**Related Information:**

- Setting a Java Virtual Machine Parameter when Launching Oxygen XML Editor (on page 290)

**Switching and Moving Editor Tabs**

Each file that has been opened has a tab at the top of the editing pane and there are several ways to switch between tabs or move them.
Switching Editor Tabs

You can switch between editor tabs by using any of the following methods:

Mouse and Scroll Wheel

Of course, you can switch to a different editor tab by left-clicking the tab with your mouse, but when there are too many tabs opened to fit on the screen, you can hover over the tab stripe and use the scroll wheel on your mouse to scroll to the left or right (same as using the two arrows on the far-right of the tab stripe).

Buttons on the Far-Right of the Tab Stripe (☞)

You can use the arrow buttons (☞) on the right side of the tab stripe to scroll to the left or right and the ☞ Show List button opens a pop-up window that displays all the opened file tabs and allows you to select and switch to a specific opened file.

Ctrl + Tab (Command + Tab on OS X) [NOTE: Ctrl + Page Down (Ctrl + Alt + Right Arrow on OS X) does the same]

Switches to the next opened tab in the order specified in the Order of switching between editor tabs option (on page 83).

Ctrl + Shift + Tab (Command + Shift + Tab on OS X) [NOTE: Ctrl + Page Up (Ctrl + Alt + Left Arrow on OS X) does the same]

Switches to the previous opened tab in the order specified in the Order of switching between editor tabs option (on page 83).

Window > Switch editor tab (Ctrl + F9 (Command + F9 on OS X))

This action opens a dialog box that allows you to switch to a particular editor tab by selecting it from a filterable list. This is especially helpful when you have a large amount of file tabs opened and you want to switch to a certain tab this is not shown on the screen. It includes a search filter field and several options to help you find specific opened file tabs.

Figure 248. Switch Editor Tab Dialog Box
The **Switch Editor Tab** dialog box contains the following options and features:

**Search Filter**

You can enter text in the filter field at the top of the dialog box to filter the list and search for specific opened files. You can enter any number of terms, separated by space, and wildcards are allowed (for example, `*` to match any sequence of characters or `?` to match a single character). This field also has a history drop-down that allows you to select previously used search terms.

**Match all terms**

If this option is selected, only the files that match all of your search terms will be displayed. If you use a wildcard in the search filter, this option is automatically disabled.

**Include file paths**

If this option is selected, the search is expanded to include file paths, and also the paths are displayed in this dialog box.

**Case sensitive**

If this option is selected, the search operation will be case-sensitive.

**List of Opened File Tabs**

All files that are currently opened are displayed in the main pane of the dialog box. Files that have been modified but not yet saved are prefixed by an asterisk. To switch to a particular file tab, double-click the file or select it and click **OK**.
Moving Editor Tabs

You can move editor tabs by using any of the following methods:

**Mouse Drag**

You can use your mouse to drag editor tabs to a new location on the tab stripe.

**Ctrl + Alt + Comma**

Moves the current file tab one position to the left.

**Ctrl + Alt + Period**

Moves the current file tab one position to the right.

Closing Documents

To close open documents, use one of the following actions that are available in the contextual menu of the current editor tab (or from the File menu):

**Close (Ctrl + W (Command + W on OS X))**

Closes the currently selected editor.

**Close Other Files**

If multiple files are opened, this action is available to close all opened editors in the current group/stack of tabs except for the one you are currently viewing. If this action is selected from the File menu, it closes all opened editors in all groups/stacks of tabs except for the current one.

**Close Files to the Right**

Available only from the contextual menu of the current editor tab and it closes all opened editors to the right of the currently selected editor.

**Close All**

If multiple files are opened, this action is available to close all opened editors in the current group/stack of tabs. If this action is selected from the File menu, it closes all opened editors in all groups/stacks of tabs.

Contextual Menu of the Current Editor Tab

A contextual menu is available when you right-click the current editor tab label.
The actions that are available depend on the context and the number of files that are opened. The menu includes the following actions:

**Close (Ctrl + W (Command + W on OS X))**
Closes the currently selected editor.

**Close Other Files**
If multiple files are opened, this action is available to close all opened editors in the current group/stack of tabs except for the one you are currently viewing.

**Close Files to the Right**
Closes all opened editors to the right of the currently selected editor.

**Close All**
If multiple files are opened, this action is available to close all opened editors.

**Move editor tab to the left (Ctrl + Alt + Comma)**
Moves the current editor tab one position to the left.

**Move editor tab to the right (Ctrl + Alt + Period**
Moves the current editor tab one position to the right.

**Reopen last closed editor Ctrl + Alt + T (Command + Alt + T on OS X)**
Reopens the last closed editor.

**Maximize/Restore Editor Area**
Collapses all the side views and spans the editing area to cover the entire width of the main window.

**Add to project**
Adds the file you are editing to the current project.

**Add all to project**
If multiple files are opened, this action is available to add all the opened files in the current group/stack of tabs to the current project.

**Copy Location**
Copies the disk location of the file.

**Show in Explorer (Show in Finder on OS X)**
Opens the Explorer to the file path of the file.
Viewing File Properties

The Properties view displays information about the currently edited document. The information includes:

- Character encoding.
- Full path on the file system.
- Schema used for content completion and document validation.
- Document type name and path.
- Associated transformation scenario.
- Read-only state of a file.
- Bidirectional text (left to right and right to left) state.
- Total number of characters in the document.
- Line width.
- Indent with tabs state.
- Indent size.

The view can be accessed from Window > Show View > Properties.

To copy a value from the Properties view in the clipboard (for example, the full file path), use the Copy action available on the contextual menu of the view.

Simple Text Editor

While Oxygen XML Editor specializes in XML-related technologies, you can also use it to create and edit various types of non-XML files. Non-XML files are opened in a simple text editor and many of the helpful features that are commonly used when editing XML files in the Oxygen XML Editor Text editing mode (on page 828) are available in this simple editor.

Types of Non-XML Files That are Supported in the Simple Text Editor

The types of non-XML files that can be created and edited in the simple text editor include:

- Java
- C++
- C
- PHP
- Perl
- Properties
- SQL
- Shell executables
Features Available in the Simple Text Editor

When editing files in the simple text editor, the features that are available include the following:

- **Project Support** - The unique features that are designed to help you work with projects (on page 707) are available for all types of files.
- **Shortcut Actions** - Many of the shortcut actions that are available in Text mode (on page 832) are also available in the simple text editor.
- **Drag and Drop** - The normal drag and drop support is available in the simple text editor.
- **Content Selection Features** - The content selection shortcuts (on page 841) that are available in Text mode (including the Rectangular Selection feature) are also available in the simple text editor.
- **Bookmarks** - You can use bookmarks to mark positions (on page 306) in any type of file so that you can return to it later.
- **Convert Hexadecimal Characters** - You can convert a sequence of hexadecimal characters to the corresponding Unicode character (on page 875).
- **Encoding/Decoding Actions** - Contextual menu actions are available to encode or decode Base 64, Base 32, and Hex schemes (on page 876).
- **Code Templates** - You can define your own code templates (on page 855) for any type of file and use the Content Completion Assistant (on page 3280) to invoke them.
- **Syntax Highlighting** - Non-XML files also support syntax highlighting with dedicated coloring schemes. To customize them, open the Preferences dialog box (Options > Preferences) (on page 79) and go to Editor > Syntax Highlight (on page 178). Select and expand the appropriate section in the top pane for the type of file you are editing and you can see the effects of your changes in the Preview pane.
- **Find/Replace** - You can use the Find/Replace action (on page 740) to find or replace all the occurrences of a word or string of characters in any type of file that you are editing.
- **File Comparison Tool** - The Compare Files tool (on page 2770) can also be used to compare non-XML files.

Using Projects to Group Documents

Oxygen XML Editor includes a Project view (on page 333) that helps you organize your projects. Oxygen XML Editor offers a variety of helpful features for working with projects and makes it easy to
share your projects with other members of your team. This section presents various unique features that will help you to create and work with projects.

Creating a New Project

Oxygen XML Editor allows you to organize your XML-related files into projects. This helps you manage and organize your files and also allows you to perform batch operations (such as validation and transformation) over multiple files. You can also share your project settings and transformation/validation scenarios (on page 723) with other users. Use the Project view (on page 333) to manage projects, and the files and folders contained within.

Creating a New Project

To create a new project, select New Project from the Project menu, the New menu in the contextual menu, or the drop-down menu at the top-left of the Project view. This opens a dialog box that allows you to assign a name to the new project and adds it to the structure of the project in the Project view (on page 333).

Adding Items to the Project

To add items to the project, select any of the following actions that are available when invoking the contextual menu in the Project view:

- **New > File**
  
  Opens a New file dialog box that helps you create a new file and adds it to the project structure.

- **New > Folder**
  
  Opens a New Folder dialog box that allows you to specify a name for a new folder and adds it to the structure of the project.

The project itself is considered a logical folder. You can add a logical folder, or content to a logical folder, by using one of the following actions that are available in the contextual menu, when invoked from the project root:

- **New > Logical Folder**
  
  Creates a logical folder in the tree structure (the icon is a magenta folder on Mac OS X - [ ].)

- **New > Logical Folders from Web**
Replicates the structure of a remote folder accessible over FTP/SFTP/WebDAV, as a structure of logical folders. The newly created logical folders contain the file structure of the folder it points to.

Add Folder

Adds a link to a physical folder, whose name and content mirror a real folder that exists in the local file system (the icon of this action is different on Mac OS X - 🖥).

Add Files

Adds links to files on the local file system.

Add Edited File

Adds a link to the currently edited file in the project.

Using Linked Folders (Shortcuts)

Another easy way to organize your XML working files is to place them in a directory and then to create a corresponding linked folder in your project. If you add new files to that folder, you can simply use the Refresh (F5) action from the toolbar or contextual menu and the Project view (on page 333) will display the existing files and subdirectories. If your files are scattered among several folders, but represent the same class of files, you might find it useful to combine them in a logical folder.

You can create linked folders (shortcuts) by dragging and dropping folders from the Windows Explorer (Mac OS X Finder) to the project tree, or by selecting Add Folder in the contextual menu from the project root. Linked folders are displayed in the Project view (on page 333) with bold text. To create a file inside a linked folder, select the New > File action from the contextual menu. The linked files presented in the Project view (on page 333) are marked with a special icon.

Note: Files may have multiple instances within the folder system, but cannot appear twice within the same folder.

For more information on managing projects and their content, see Project View (on page 333).

For more details about how you can share projects with other users, see Sharing a Project - Team Collaboration (on page 723).

Related Information:

- Using Projects to Group Documents (on page 707)
Project View

The Project view is designed to assist you with organizing and managing related files grouped in the same XML project. The actions available in the contextual menu and on the toolbar associated to this panel allows you to create XML projects and provide shortcuts to various operations for the project documents.

Figure 249. Project View

By default, the view is positioned on the left side of the Oxygen XML Editor window, above the Outline view (on page 347). If the view has been closed, it can be reopened at any time from the Window > Show View menu (or using the Show Project View action from the Project menu).

Project View Toolbar

The tree structure occupies most of the view area. In the upper left side of the view, there is a drop-down menu that contains all recently used projects. You can use this history drop-down menu to quickly switch to a recently opened project. If you enable the Remember layout changes for each project option in the Application Layout preferences page (on page 91), the application will remember the layout, files opened, and editing location for your session when you switch projects.

At the bottom of the drop-down menu there are the actions to open and create a project:

- **Open Project** (Ctrl + F2 (Command + F2 on OS X))
  
  Opens an existing project. Alternatively, you can open a project by dropping an Oxygen XML Editor XPR project file from the file explorer into the Project panel.

  **Note:** When a project is opened for the first time, a confirmation dialog box will be displayed that asks you to confirm that the project came from a trusted source. This is meant to help prevent potential security issues.

- **New Project**
Creates a new, empty project.

The following actions are grouped in the upper right corner:

- **Collapse All**
  Collapses all project tree folders. You can also collapse/expand a project tree folder if you select it and press the **Enter** key or **Left Arrow** to collapse and **Right Arrow** to expand.

- **Link with Editor**
  When selected, the project tree highlights the currently edited file, if it is found in the project files.

  **Note:** This button is disabled automatically when you move to the **Debugger perspective** (on page 3285).

- **Settings**
  A submenu that contains the following actions:

  - **Filters**
    Allows you to filter the information displayed in the **Project** view. Click the toolbar button to set filter patterns for the files you want to show or hide. Also, you can set filter patterns for the linked directories that are hidden.

  - **Show Full Path**
    When selected, linked files and folders are presented with a full file path.

  - **Enable Master Files Support**
    Select this option to enable the **Master Files support** (on page 726).

  - **Change Search and Refactor operations scope**
    Allows you to change the collection of documents that define the context of the **search and refactor operations** (on page 1129).

    - **Use only Master Files, if enabled** - Restricts Oxygen XML Editor to perform the search and refactor operations starting from the **master files** (on page 3284) that are defined for the current resource. This option is available when you select **Project** in the **Select the scope for Search and Refactor operations** dialog box and the **Master Files** support is enabled.
    
    - **Working sets** - Allows you to specify the set of files that will be used for the scope of the search and refactor operations.
File Explorer Area

The rest of the view is basically a file explorer similar to most other commonly used file explorers. The XML project (.xpr file) is a logical container with a collection of resources (folders and files). The types of resources displayed include:

- **Logical folders with Linked folders/files** - Marked with a blue icon on Windows and Unix/Linux and a magenta icon on Mac OS X, they help you group files within the project. This folder type is used as containers for linked resources (shortcuts). The icons for file shortcuts include a shortcut symbol and names of folder shortcuts are displayed in bold text. The logical folders are created on the project root or inside other logical folders by using the contextual menu action **New > Logical Folder**, and the linked folders/files are added using **Add Files**, **Add Folder**, or by dragging and dropping files/folders from the view or the system file explorer. **Remove from Project** can be used to remove them from the project and the **Remove from Disk (Shift+Delete)** action can be used to remove them from both the project and the local file system.

- **Physical folders and files** - Marked with the operating system-specific icon for folders (usually a yellow icon on Windows and a blue icon on Mac OS X). These folders and files are mirrors of real folders or files that exist in the local file system. They are created or added to the project by using contextual menu actions (such as **New > File**, **New > Folder**, **Copy**, and **Paste**) or by dragging and dropping files/folders from the view or the system file explorer. Also, the contextual menu action **Remove from Disk (Shift+Delete)** can be used to remove them from the project and local file system.

Figure 250. Project View with Both Types of Resources
Creating New Projects

The following action is available from the New menu when right-clicking any item, the Project menu, or from the drop-down menu in the top-left of the Project view:

- **New Project**
  - Creates a new, empty project.

Managing Project Contents

There are various contextual menu actions, shortcuts, and ways to organize the folders and files inside the project:

Creating New Folders and Files

- **Right-click any item > New > File**
  - Opens a New file dialog box (on page 676) that helps you create a new file and adds it to the project structure.

- **Right-click any item in a physical folder > New > Folder**
  - Opens a New Folder dialog box that allows you to specify a name for a new folder and adds it to the structure of the project.

- **Right-click any item in a logical folder > New > Logical Folder**
  - Creates a logical folder in the tree structure (the icon is a magenta folder on Mac OS X).

- **Right-click on a logical folder > New > Logical Folders from Web**
  - Replicates the structure of a remote folder accessible over FTP/SFTP/WebDAV, as a structure of logical folders. The newly created logical folders contain the file structure of the folder it points to.

Adding Resources

You can add resources by using drag and drop (or Copy and Paste) actions from within the Project view or dragging them from the system file explorer. Files may have multiple instances within the folder system, but cannot appear twice within the same folder.

Adding Resources to Logical Folders

You can add resources to logical folders by using the following actions available in the contextual menu when invoked on a logical folder (or the project's root container):
Add Folder

Adds a link to a physical folder, whose name and content mirror a real folder that exists in the local file system (the icon for this action is different on Mac OS X).

Add Files

Adds links to files on the local file system.

Add Edited File

Adds a link to the currently edited file in the project.

Removing Folders and Files

To remove logical folders or the linked resources inside them from the project, use Remove from Project from the contextual menu (or press Delete on your keyboard).

To remove folders or files from both the project and the local file system, use Remove from Disk from the contextual menu (or press Shift+Delete on your keyboard).

Moving Folders and Files

You can move the resources by using drag and drop actions from within the Project view (the Enable drag-and-drop in Project view option must be selected in the View preferences page (on page 259)).

You can also use the usual Cut, Copy, and Paste actions to move resources in the project.

You can also move certain types of files (such as XML, XML Schema, Relax NG, WSDL, and XSLT) by using the Refactoring > Move resource action from the contextual menu. This action opens the Move resource dialog box that includes the following options:

- **Destination** - Presents the path to the current location of the resource you want to move and gives you the option to introduce a new location.
- **New name** - Presents the current name of the moved resource and gives you the option to change it.
- **Update references of the moved resource(s)** - Select this option to update the references to the resource you are moving, based upon the selected scope. You can select or configure the scope (on page 1129) by using the button.

Renaming Folders and Files

There are several ways to rename a folder or file in the project (this works for both physical and linked resources):
• Select **Rename** from the contextual menu.
• Press **F2** on your keyboard.
• Select the item, then click the name, and type the new name.

You also can rename certain types of files (such as XML, XML Schema, Relax NG, WSDL, and XSLT) by using the **Refactoring > Rename resource** action from the contextual menu. This action opens the **Rename resource** dialog box that includes the following options:

• **New name** - Presents the current name of the edited resource and allows you to modify it.
• **Update references of the renamed resource** - Select this option to update the references to the resource you are renaming. You can **select or configure the scope** *(on page 1129)* by using the **button.

**Opening Files**

There are several ways to open a file:

• Double-click the file.
• Select it and press **Enter** on your keyboard.
• Right-click the file and select **Open**.
• If there are no other files open in the editor area, you can drag the file from the project tree and drop it in the editor area.
• If you want to choose the application or location where to open it, you can right-click the file and select **Open with**.

**Saving the Project**

The project file is automatically saved every time the content of the **Project** view is saved or modified by actions such as adding or removing files and drag and drop.

**Other Contextual Menu Actions**

Numerous other actions are available in the contextual menu, depending on the type of file or folder where it is invoked from (some actions are available for multiple selected files):

**Show in submenu**

**Explorer (Finder on OS X)**

On Windows and Mac OS X, the parent directory of the selected file or folder is presented in a specific Explorer/Finder window, and the selected resource is highlighted. On Linux, the selected file or folder is not highlighted after opening its parent in the file explorer.
Terminal

Opens a console (terminal) at the location of the selected physical resource. If the resource is a file, it will start at the parent directory.

Copy Location

Copies an application-specific URL for the selected resource to the clipboard.

Refactoring submenu

Oxygen XML Editor includes some refactoring operations that help you manage the structure of your documents. The following actions are available from the contextual menu in the Refactoring submenu:

Rename resource (Available for certain types of XML documents)

Opens the Rename resource dialog box (on page 720) where you can change the name of a resource. It also includes an option to update the references to the renamed resource and you can choose between various scopes for the operation.

Move resource (Available for certain types of XML documents)

Opens the Move resource dialog box (on page 720) where you can choose a destination and change the name of a resource. It also includes an option to update the references to the moved resource and you can choose between various scopes for the operation.

XML Refactoring

Opens the XML Refactoring tool wizard (on page 1139) that presents refactoring operations to assist you with managing the structure of your XML documents.

Other XML Refactoring Actions

For your convenience, the last 5 XML Refactoring tool operations (on page 1139) that were finished or previewed will also appear in this submenu.

Resource Hierarchy

Opens the Resource Hierarchy/Dependencies view (on page 1130) that allows you to see the resource hierarchy for an XML document.

Resource Dependencies

Opens the Resource Hierarchy/Dependencies view (on page 1130) that allows you to see the resource dependencies for an XML document.

Refresh
Refreshes the content and the dependencies between the resources in the Master Files directory (on page 726).

Find/Replace in Files

Opens the Find/Replace in Files dialog box (on page 745) that allows you to find and replace text in multiple files.

XPath in Files

Opens the XPath/XQuery Builder view (on page 2185) that allows you to compose XPath and XQuery expressions and execute them over the currently edited XML document.

Open/Find Resource

Opens the Open/Find Resource dialog box (on page 733).

Check Spelling in Files

Allows you to check the spelling of multiple files. (on page 765)

Format and Indent Files

Opens the Format and Indent Files dialog box (on page 869) that allows you to configure the format and indent (pretty-print (on page 3286)) action that will be applied on the selected documents.

Open in SVN Client

Syncro SVN Client (on page 2806) tool is opened and it highlights the selected resource in its corresponding working copy.

Compare

Allows you to compare multiple files or directories and the order of your selection determines where they are opened in the Compare Files (on page 2770) or Compare Directories (on page 808) tool. If you select two files or folders, your first selection will be opened in the left panel and the other one in the right panel.

You can also select 3 files and the tool will automatically be opened in the three-way comparison mode (on page 2774). If you select three files, your first selection will be opened in the left panel, the second in the right panel, and the third selection will be the base (ancestor) file.

Transform submenu

The currently selected files in the Project view can be transformed in one step with one of the following actions available from contextual menu in the Transform submenu:

- Apply Transformation Scenario(s)
Obtains the output with one of the built-in scenarios (on page 1641).

Configure Transformation Scenario(s)
Opens a dialog box (on page 1762) that allows you to configure predefined transformation scenarios.

Transform with
Allows you to select a transformation scenario to be applied to the currently selected files.

Validate submenu
The currently selected files in the Project view can be checked to be XML well-formed or validated against a schema (DTD, XML Schema, Relax NG, Schematron or NVDL) with one of the following contextual menu actions found in the Validate submenu:

Check Well-Formedness
Checks if the selected file or files are well-formed.

Validate
Validates the selected file or files against their associated schema.
For EPUB files, this action triggers an EPUB Validate and Check for Completeness (on page 2194) operation.

Validate with Schema
Validates the selected file of files against a specified schema.

Configure Validation Scenario(s)
Allows you to configure and run a validation scenario (on page 1093).

Generate Documentation submenu
Generate Documentation > XML Schema Documentation
Opens the XML Schema Documentation Dialog Box (on page 1313).

Generate Documentation > XSLT Stylesheet Documentation
Opens the XSLT Stylesheet Documentation Dialog Box (on page 1223).

Generate Documentation > XQuery Documentation
Opens the XQuery Documentation Dialog Box (on page 1349).

Generate Documentation > WSDL Documentation
Opens the WSDL Documentation Dialog Box (on page 1371).

Properties
Displays the properties of the current file in a Properties dialog box.
Enable Master Files Support (Available from the project container)

Allows you to enable the Master Files Support (on page 727) for each project you are working on.

Detect Master Files (Available from the project container when Master Files Support is enabled)

Opens the Detect Master Files wizard (on page 728) that enables the automatic detection of master files.

Add to Master Files (Available when Master Files Support is enabled)

Adds the selected files to the Master Files folder (on page 729).

Project Menu Actions

The following actions are available in the Project menu:

New Project

Creates a new, empty project.

Open Project (Ctrl + F2 (Command + F2 on OS X))

Opens an existing project. Alternatively, you can open a project by dropping an Oxygen XML Editor XPR project file from the file explorer into the Project panel.

Note: When a project is opened for the first time, a confirmation dialog box will be displayed that asks you to confirm that the project came from a trusted source. This is meant to help prevent potential security issues.

Save Project As

Allows you to save the current project under a different name.

Validate all project files

Checks if the project files are well-formed and their mark-up conforms with the specified DTD, XML Schema, or Relax NG schema rules. It returns an error list in the message panel.

Filters

Opens the Project filters dialog box that allows you to decide which files and directories will be shown or hidden.

Enable Master Files Support

Allows you to enable the Master Files Support (on page 727) for each project you are working on.
Change Search and Refactor operations scope

Opens a dialog box that allows you to define the context of search and refactor operations.

Show Project View

Displays the Project view.

Reopen Project

Contains a list of links of previously used projects. This list can be emptied by invoking the Clear history action.

Moving/Renaming Resources in the Project View

The Refactoring submenu in the contextual menu of the Project view (on page 333) provides actions for moving or renaming certain types of XML resources in the current project while offering the option to update the references to the resources.

Moving Resources

You can move certain types of files (such as XML, XML Schema, Relax NG, WSDL, and XSLT) by using the Refactoring > Move resource action from the contextual menu. This action opens the Move resource dialog box that includes the following options:

- **Destination** - Presents the path to the current location of the resource you want to move and gives you the option to introduce a new location.
- **New name** - Presents the current name of the moved resource and gives you the option to change it.
- **Update references of the moved resource(s)** - Select this option to update the references to the resource you are moving, based upon the selected scope. You can select or configure the scope (on page 1129) by using the button.

Renaming Resources

You can rename certain types of files (such as XML, XML Schema, Relax NG, WSDL, and XSLT) by using the Refactoring > Rename resource action from the contextual menu. This action opens the Rename resource dialog box that includes the following options:

- **New name** - Presents the current name of the edited resource and allows you to modify it.
- **Update references of the renamed resource** - Select this option to update the references to the resource you are renaming. You can select or configure the scope (on page 1129) by using the button.
Problems Updating References of Moved/Renamed Resources

In some cases, the references of a moved or a renamed resource cannot be updated. For example, when a resource is resolved through an XML Catalog (on page 3289) or when the path to the moved or renamed resource contains entities. For these cases, Oxygen XML Editor displays a warning dialog box.

Figure 251. Problems Dialog Box

![Problems Dialog Box](image)

Image Preview from the Project View

Images and SVG files from the Project view (on page 333) can be previewed in a separate panel.

To preview an image, either double-click the image name or click the Preview action from the contextual menu of the Project view (on page 333). Supported image types are GIF, JPEG/JPG, PNG, BMP. Once the image is displayed in the Preview panel using the actions from the contextual menu, you can scale the image to its original size (1:1 action) or scale it down to fit in the view’s available area (Scale to fit action).
To preview an SVG file (on page 1499), click the Preview action from the contextual menu of the Project view (on page 333). Once the SVG is displayed in the Preview panel, the following actions are available on the contextual menu: Zoom in, Zoom out, Rotate and Refresh.

Note: You can drag an image from the Image Preview view and drop it in a DITA, DocBook, or TEI document.

Batch Validation and Transformation

Oxygen XML Editor provides support for batch validation and batch transformation. Actions are available in the Project view that provide the ability to validate or transform one or more files attached to a project.

Batch Validation

To batch validate files, select the files (or directories), right-click, and choose one of the following actions from the Validate submenu:

- **Check Well-Formedness**
  Checks if the selected file or files are well-formed.

- **Validate**
  Validates the selected file or files against their associated schema. For EPUB files, this action triggers an EPUB Validate and Check for Completeness (on page 2194) operation.

- **Validate with Schema**
  Validates the selected file of files against a specified schema.

- **Configure Validation Scenario(s)**
  Allows you to configure and run a validation scenario (on page 1093).

Batch Transformation

To batch transform files, select the files (or directories), right-click, and choose one of the following actions from the Transform submenu:

- **Apply Transformation Scenario(s)**
  Obtains the output with one of the built-in scenarios (on page 1641).

- **Configure Transformation Scenario(s)**
Opens a dialog box (on page 1762) that allows you to configure pre-defined transformation scenarios.

Transform with

Allows you to select a transformation scenario to be applied to the currently selected files.

Related Information:

- Master Files Support (on page 726)
- Quick Validation and Transformation for Master Files (on page 729)

Sharing a Project - Team Collaboration

You can use XML projects to make team collaboration and synergy efficient and effective. Not only can you share the project files and folders, but Oxygen XML Editor also allows you to store preferences, transformation scenarios, and validation scenarios at project level (on page 3286) in a project file (.xpr file extension). It can be saved on a version control system (such as SVN, CVS, or Source Safe) or in a shared folder, so that your team will have access to the same resources stored in the project file.

Sharing Preferences (Creating a Project-Level Options File)

To share options that are configured in certain preferences pages, you can store them in a project file (.xpr file extension) that can easily be shared with others. To do so, follow these steps:

1. You may want to use a fresh install for this procedure, to make sure that you do not copy personal or local preferences.
2. In the Project view (on page 333), create a project or open an existing one.
3. Open the Preferences dialog box (Options > Preferences) (on page 79).
4. Configure the options in each preferences page that you want to be included in the project file and switch the storage preference to Project Options (on page 3286) in each page.

Note: Some pages do not have the Project Options button, since the options they host might contain sensitive data (such as passwords, for example) that is unsuitable for sharing with other users.
5. Click OK and close the Preferences dialog box.
All explicitly set values are now saved in the project file. You can then share the project file so that your team will have the same option configuration that you stored in the project file.

**Note:** The project file extension (.xpr) must be preserved when the file is distributed to others.

**Note:** When a project is opened for the first time, a confirmation dialog box will be displayed that asks you to confirm that the project came from a trusted source. This is meant to help prevent potential security issues.

### Sharing Transformation Scenarios

To share created and edited transformation scenarios, you can store them in a project file (.xpr file extension) by following these steps:

1. In the **Project view (on page 333)**, create a project or open an existing one.
2. When you create a new transformation scenario (on page 1674) or edit an existing one (on page 1758), there is a **Storage** option. Switch the storage preference to **Project Options (on page 3286)** in each transformation scenario you want to be included in the project file.
3. Click **OK** to store the scenario in the project file.

You can then share the project file so that your team will have access to the same transformation scenarios that you stored in the project file. When you create a scenario at the project level, the URLs from the scenario become relative to the project URL.

**Note:** The project file extension (.xpr) must be preserved when the file is distributed to others.

**Note:** When a project is opened for the first time, a confirmation dialog box will be displayed that asks you to confirm that the project came from a trusted source. This is meant to help prevent potential security issues.

### Sharing Validation Scenarios

To share created and edited validation scenarios, you can store them in a project file (.xpr file extension) by following these steps:

1. In the **Project view (on page 333)**, create a project or open an existing one.
2. When you create a new validation scenario (on page 1094) or edit an existing one (on page 1100), there is a **Storage** option. Switch the storage preference to **Project Options (on page 3286)** in each validation scenario you want to be included in the project file.
3. Click **OK** to store the scenario in the project file.
You can then share the project file so that your team will have access to the same validation scenarios that you stored in the project file. When you create a scenario at the project level, the URLs from the scenario become relative to the project URL.

Note: The project file extension (.xpr) must be preserved when the file is distributed to others.

Note: When a project is opened for the first time, a confirmation dialog box will be displayed that asks you to confirm that the project came from a trusted source. This is meant to help prevent potential security issues.

**Syncro SVN Client (Apache Subversion™)**

To assist you with team collaboration and sharing projects, Oxygen XML Editor includes an embedded SVN (Subversion) Client (on page 2806). Even if you start developing a new project, or you want to migrate an existing one to Subversion, the Syncro SVN Client allows you to easily share it with the rest of your team.

It can be accessed from the Tools menu and can be used for synchronizing your working copy with a central repository.

It can also be started by selecting the Open in SVN Client action from the contextual menu of the Project view (on page 333). This action opens the Syncro SVN Client and shows the selected project file in the Working Copy view.

Related Information:

- Sharing Application Settings (on page 266)
- Sharing Transformation Scenarios (on page 1768)
- Sharing Validation Scenarios (on page 1105)

Minimize Differences Between Versions Saved on Multiple Computers

The number of differences between versions of the same file saved by multiple content authors on multiple computers can be minimized by imposing the same set of formatting options when saving the file, for all the content authors. An example, the following procedure can be used to minimize the differences:
1. Create an Oxygen XML Editor project file (.xpr) that will be shared by all content authors.
2. Configure your own formatting preferences. To do this, open the Preferences dialog box (Options > Preferences) (on page 79), go to Editor > Format, configure the appropriate options in this page, then go to Editor > Format > XML and configure the options there.
3. Save the configured options into your project file by selecting Project Options (on page 3286) in both of the preferences pages.
4. Save the project and commit the project file to your versioning system so all the content authors can use it.
5. Make sure the project is opened in the Project view (on page 333).
6. Open and save your XML files in the Author mode.
7. Commit the saved XML files to your versioning system.

When other content authors change the files, only the changed lines will be displayed in your diff tool instead of one big change that does not allow you to see the changes between two versions of the file.

Master Files Support

Oxygen XML Editor allows you to define Master Files (on page 3284) at project level. These master files are automatically used by Oxygen XML Editor to determine the context for operations such as validation, transformation, content completion, refactoring, or searches for XML, XSD, XSL, WSDL, and RNG modules. Oxygen XML Editor maintains the hierarchy of the master files, helping you to determine the editing context.

Oxygen XML Editor also provides unique support for using the Master Files support in DITA projects. In DITA, when you rename or move non-DITA resources, it allows you to update all the references to these resources in the scope of the Master Files (in this case the main DITA map (root map) (on page 3287)). For more information, see Master Files Support in DITA (on page 3266).

For more information about the Master Files support for XML documents, watch our video demonstrations:

https://www.youtube.com/embed/e2oo4RWNxW8

https://www.youtube.com/embed/UZwg385RKNw

https://www.youtube.com/embed/FQNSsg57S4E

https://www.youtube.com/embed/gn_YPDSxDCo
Master Files Benefits

Using the Master Files support in Oxygen XML Editor includes the following benefits:

- When the master file is validated, Oxygen XML Editor automatically identifies the modules included in the master file and validates all of them.
- When the master file is transformed, Oxygen XML Editor automatically identifies the modules included in the master file and transforms them accordingly.
- The Content Completion Assistant (on page 3280) presents all the components that are collected from the master files for the modules they include.
- The Outline view (on page 347) displays all the components that are defined in the master files hierarchy.
- The master files that are defined for the current module determines the scope of the search and refactoring actions (on page 1129). Oxygen XML Editor performs the search and refactoring actions in the context that the master files determine, thus improving the speed of execution.

Enabling the Master Files Support

Oxygen XML Editor stores the master files in a folder located in the Project view (on page 333), as the first child of the project root. The Master Files Support is disabled by default and Oxygen XML Editor allows you to enable or disable the Master Files Support for each project you are working on.

To enable Master Files support, do one of the following:

- Select Enable Master Files Support from the Settings menu in the top-right corner of the Project view (on page 333).
- Select Enable Master Files Support from the contextual menu of the project root folder in the Project view (on page 333). If a disabled Master Files folder exists, you can also select that option from its contextual menu.
- Click the Enable button in the tooltip located at the bottom of the Project view (on page 333). This tooltip window is displayed when the Master Files support is disabled. Clicking the Read more link takes you to the user guide. Clicking the Enable button opens the Enable Master Files dialog box. This dialog box contains general information about the Master Files Support and allows you to enable it. You can also use the Detect and Enable button in this dialog box to detect the master files from the current project.

⚠️ Warning: Once you close this window tip, Oxygen XML Editor hides it for all projects. You can make the window tip reappear by resetting Oxygen XML Editor to its default settings (on page 268). However, doing so will result in you losing your customized options.
Detecting Master Files

Oxygen XML Editor allows you to detect the master files using the Detect Master Files option. This action applies to the folders you select in the project.

To detect master files over the entire project, do one of the following:

- Right-click the root of the project and select Detect Master Files.
- Use the Detect Master Files from Project option, available in the contextual menu of the Master Files folder.

Both of these options display the Detect Master Files wizard. In the first panel you can select the type of master files you want Oxygen XML Editor to detect. In the subsequent panel the detected master files are presented in a tree-like fashion. The resources are grouped into three categories:

- **Possible master files** - The files presented on the first level in this category are not imported or included from other files. These files are most likely to be set as master files.

  **Note:** For DITA projects, only DITA Maps are reported as possible master files.

- **Cycles** - The files that are presented on the first level have circular dependencies between them. Any file presented on the first level of a cycle is a possible master file.

- **Standalone** - Files that do not include or import other files and are also not included or imported themselves. It is not necessary to set them as master files.

To set them as master files, simply select their checkboxes. Oxygen XML Editor marks all the children of a master file as modules. Modules are rendered in gray and their tool-tip presents a list of their master files. A module can be accessed from multiple master files.

The master files that are already defined in the project are automatically marked in the tree and cannot be removed. The only way to disable a master file is to delete it from the Master Files folder.

The next panel displays a list with the selected master files. Click the Finish button to add the master files in the Master Files folder.

You can use the Select Master Files option to automatically mark all master files. This action sets all the resources from the Possible Master Files category and the first resource of each Cycle as master files. The Deselect All button simply removes all of your selections.
**Tip:** It is recommended that you only add top-level files (files that are at the root of the include/import graph) in the Master Files directory.

**Attention:** If the Master Files Support is disabled, the Master Files directory is rendered only if it contains master files.

Related Information:

- Enabling the Master Files Support (on page 727)
- Adding Files to the Master File Directory (on page 729)

Adding Files to the Master File Directory

The Master Files directory only contains logical folders and linked files. To add files in the Master Files directory, use one of the following methods:

- Right-click a file from your project and select Add to Master Files from the contextual menu.
- Select Add Files or Add Edited File from the contextual menu of the Master Files directory.
- Drag and drop files into the Master Files directory.
- From the contextual menu of the Resource Hierarchy Dependencies view (on page 1130), use the Add to Master Files action.

You can view the master files for the current resource by selecting Properties from the contextual menu (on page 342) of the Project view (on page 333) and the master files for the current editor in the Properties (on page 705) and Information (on page 822) views.

Related Information:

- Enabling the Master Files Support (on page 727)
- Detecting Master Files (on page 728)

Quick Validation and Transformation for Master Files

If Master Files Support is enabled (on page 727), you can hover the cursor over the Master Files directory, or a node within the directory, and Oxygen XML Editor will display inline Validate and
Transform buttons that can be used to quickly run a validation or transformation over the directory or node. For nodes within the Master Files directory, hovering over the Validate and Transform buttons also displays the most recently used validation or transformation scenario. To change the assigned validation or transformation scenario, right-click the node and select Validate > Configure Validation Scenario(s) or Transform > Configure Transformation Scenario(s), respectively.

Searching Documents

Oxygen XML Editor includes advanced search capabilities to help you locate documents and resources.

Open/Find Resource View

The Open/Find Resource view is designed to offer advanced search capabilities either by using a simple text search or by using the Apache Lucene - Query Parser Syntax. By default, the view is presented in the left side of the Oxygen XML Editor layout, next to the Project view (on page 333) or DITA Maps Manager (on page 2990). If the view is not displayed, it can be opened by selecting it from the Window > Show View menu.

Figure 252. Open/Find Resource View

You can use this view to find a file in the current Oxygen XML Editor project or in one of the DITA maps (on page 3281) opened in the DITA Maps Manager view (on page 2990) by typing only a
few letters of the file name of a document or a fragment of the content you are searching for. The **Open/Find Resource** view also supports searching in document edits (comments, tracked change insertions/deletions, and highlighted content) by selecting the **In reviews option (on page 345)**.

**Note:** Full support for searching in document edits (the In reviews option) is available only in the Enterprise edition of Oxygen XML Editor. The Professional edition offers limited support to search through a maximum of 10 edits.

**Search Results**

Search results are presented instantly, after you finish typing the content. The matching fragments of text are highlighted in the results list displayed in the dialog box. When you open one of the documents from the results list, the matching fragments of text are highlighted in the editing area. To remove the highlighting from your document, close the corresponding tab in the **Results view (on page 357)** at the bottom of the editor. To display the search history, position the cursor in the search field and press **Ctrl + DownArrow (Command + DownArrow on OS X)** or **Ctrl + UpArrow (Command + UpArrow on OS X)** on your keyboard. Pressing only the **DownArrow** key moves the selection to the list of results.

**Note:** Searches are not case-sensitive. For example, if you search for *car* you get the same results as when you search for *Car*.

**Tip:** Suffix searches are also supported, both for searching in the content of your resources and in their name. For this, you can use wildcards. If you search for *ing* with the **in content** option selected, you will find documents that contain the word *presenting*. If you search for */samples/*.gif with the **in file paths** option selected, you will find all the *gif* images from the **samples** directory.

**Options Available in the View**

The **Open/Find Resource** view offers the following options:

- **Settings** - Drop-down menu that includes the following settings for the view:
  - **Clear Index** - Clears the index.
  - **Show description** - Presents the search results in a more compact form, displaying only the title and the location of the resources.
  - **Options** - Opens the **Open/Find Resource preferences page (on page 251)** where you can configure various search options. For example, you can specify a **Content language** that differs from the default UI language in case your document contains multiple languages.
- **In file paths (on page 739)** - Select this option to search for resources by their name or by its path (or a fragment of its path).
- **In content (on page 736)** - Select this option to search through the content of your resources.
• **In reviews (on page 739)** - Select this option to search through the comments, tracked change insertions/deletions, or highlights in your resources.
• **Reindex** - Use this option to reindex your resources.

**Contextual Menu Actions**

A contextual menu is available on each search result and provides actions applicable to that particular document. These actions include:

• **Open** - Opens the document in one of Oxygen XML Editor internal editors.
• **Open with** - Allows you to choose to open the document in the Internal editor or an external System application.
• **Show in Explorer** - Identifies the document in the system file explorer.
• **Copy Location** - Copies the file path and places it in the clipboard.

**Indexing Process**

The content of the resources used to search in is parsed from an index. The indexing is performed both automatically and on request. Automatic indexing is performed when you modify, add, or remove resources in the currently indexed project. If the index was never initialized, the index in not updated on project changes.

To improve performance, the indexing process skips the following set of common English words (the so-called **stop words**): a, an, and, are, as, at, be, but, by, for, if, in, into, is, it, no, not, of, on, or, such, that, the, their, then, there, these, they, this, to, was, will, with. This means that if you are searching for any of these words, the indexing process will not be able to match any of them. However, you can configure the list of **stop words** in the Open/Find Resource preferences page (on page 251).

**Caching Mechanism**

When you perform a search, a caching mechanism is used to gather the paths of all files linked in the current project. When the first search is performed, all project files are indexed and added to the cache. The next search operation uses the information extracted from the cache, thus improving the processing time. The cache is kept for the currently loaded project only, so when you perform a search in a new project, the cache is rewritten. Also, the cache is reset when you press the **Reindex** button.

⚠️ **Important:** Files larger than 2GB are not indexed.

If there is no file found that matches your file pattern or text search, a possible cause is that the file you are searching for was added to the Oxygen XML Editor project after the last caching operation. In this case, re-indexing the project files with the **Reindex** button enables the file to be found. The date and time of the last index operation are displayed below the file list.
Opening the Results

Once you find the files that you want to open, select them in the list and press the Open button (or double-click them). Each of the selected files is opened in the editor associated with the type of the file (on page 250).

Note: You can drag a resource from the Open/Find Resource view and drop it in a DocBook, DITA, TEI or XHTML document to create a link to that resource.

For more information about the Open/Find Resource feature and its search capabilities, watch our video demonstration:

https://www.youtube.com/embed/PENoDNdaGao

Related Information:

• Open/Find Resource Dialog Box (on page 733)

Open/Find Resource Dialog Box

The Open/Find Resource dialog box offers advanced search capabilities. To open the dialog box, go to Find > Open/Find Resource (Ctrl + Shift + R (Command + Shift + R on OS X)). You can also click the Open/Find Resource toolbar button or use the Search for file action that is available in some URL input fields.

Figure 253. Open/Find Resource Dialog Box
You can use this dialog box to find a file in the current Oxygen XML Editor project or in one of the DITA maps (on page 3281) opened in the DITA Maps Manager view (on page 2990) by typing a few letters of the file name or a fragment of the content you are searching for. The Open/Find Resource dialog box also supports searching in document edits (comments, tracked change insertions/deletions, and highlighted content).

Note: Full support for searching in document edits (the In reviews option) is available only in the Enterprise edition of Oxygen XML Editor. The Professional edition offers limited support to search through a maximum of 10 edits.

Search Results

Search results are presented instantly, after you finish typing the content. The matching fragments of text are highlighted in the results list displayed in the dialog box. When you open one of the documents from the results list, the matching fragments of text are highlighted in the editing area. To remove the highlighting from your document, close the corresponding tab in the Results view (on page 357) at the bottom of the editor. To display the search history, position the cursor in the search field and press Ctrl + DownArrow (Command + DownArrow on OS X) or Ctrl + UpArrow (Command + UpArrow on OS X) on your keyboard. Pressing only the DownArrow key moves the selection to the list of results.
**Note:** Searches are not case-sensitive. For example, if you search for `car` you get the same results as when you search for `Car`.

**Tip:** Suffix searches are also supported, both for searching in the content of your resources and in their name. For this, you can use wildcards. If you search for `*ing` with the **in content** option selected, you will find documents that contain the word *presenting*. If you search for `*/samples/*.gif` with the **in file paths** option selected, you will find all the *gif* images from the `samples` directory.

---

**Options Available in the Dialog Box**

The **Open/Find Resource** dialog box includes the following options:

- **In file paths (on page 739)** - Select this option to search for resources by their name or by its path (or a fragment of its path).
- **In content (on page 736)** - Select this option to search through the content of your resources.
- **In reviews (on page 739)** - Select this option to search through the comments, **tracked change** insertions/deletions, or highlights in your resources.
- **Options** - Opens the **Open/Find Resource preferences page (on page 251)** where you can configure various search options. For example, you can specify a **Content language** that differs from the default UI language in case your document contains multiple languages.
- **Clear Index** - Clears the index.
- **Reindex** - Use this option to reindex your resources.

---

**Contextual Menu Actions**

A contextual menu is available on each search result and provides actions applicable to that particular document. These actions include:

- **Open** - Opens the document in one of Oxygen XML Editor internal editors.
- **Open with** - Allows you to choose to open the document in the **Internal editor** or an external **System application**.
- **Show in Explorer** - Identifies the document in the system file explorer.
- **Copy Location** - Copies the file path and places it in the clipboard.

---

**Indexing Process**

The content of the resources used to search in is parsed from an index. The indexing is performed both automatically and on request. Automatic indexing is performed when you modify, add, or remove resources in the currently indexed project. If the index was never initialized, the index in not updated on project changes.
To improve performance, the indexing process skips the following set of common English words (the so-called *stop words*): a, an, and, are, as, at, be, but, by, for, if, in, into, is, it, no, not, of, on, or, such, that, the, their, then, there, these, they, this, to, was, will, with. This means that if you are searching for any of these words, the indexing process will not be able to match any of them. However, you can configure the list of *stop words* in the **Open/Find Resource preferences page (on page 251)**.

**Caching Mechanism**

When you perform a search, a caching mechanism is used to gather the paths of all files linked in the current project. When the first search is performed, all project files are indexed and added to the cache. The next search operation uses the information extracted from the cache, thus improving the processing time. The cache is kept for the currently loaded project only, so when you perform a search in a new project, the cache is rewritten. Also, the cache is reset when you press the **Reindex** button.

⚠️ **Important**: Files larger than 2GB are not indexed.

If there is no file found that matches your file pattern or text search, a possible cause is that the file you are searching for was added to the Oxygen XML Editor project after the last caching operation. In this case, re-indexing the project files with the **Reindex** button enables the file to be found. The date and time of the last index operation are displayed below the file list.

**Opening the Results**

Once you find the files that you want to open, select them in the list and press the **Open** button (or double-click them). Each of the selected files is opened in the editor associated with the type of the file (on page 250).

For more information about the **Open/Find Resource** feature and its search capabilities, watch our video demonstration:

https://www.youtube.com/embed/PENoDNdaGao

**Related Information:**

- **Open/Find Resource View (on page 344)**

- **Open/Find Resource Preferences Page (on page 251)**
Searching in Content

To perform a search through the content of your resources, open the **Open/Find Resource** dialog box (on page 733) (from the Find menu or with **Ctrl + Shift + R (Command + Shift + R on OS X)**) or the **Open/Find Resource** view (on page 344) (by default, located on the left side of the editor), select the in content option, and in the search field enter the terms that you want to search for.

The **Open/Find Resource** feature is powered by **Apache Lucene**. Apache Lucene is a free open source information retrieval software library.

You can use the **Open/Find Resource** feature to either perform a simple text search or a more complex search using the **Apache Lucene - Query Parser Syntax**.

**Complex Query Patterns Using Lucene Syntax**

Using the **Apache Lucene - Query Parser Syntax** means you can perform any of the following searches:

- **Term Searches**

  Searching for plain text:

  Garden Preparation

- **Element-Specific Searches**

  Searching for content that belongs to a specific element:

  title:"Garden Preparation"

- **Wildcard Searches**

  Using wildcards to make your search more permissive:

  Garden Prepar?tion

- **Fuzzy Searches**

  If you are not sure of the exact form of a term that you are interested in, use the fuzzy search to find the terms that are similar to the search term. To perform a fuzzy search, use the ~ symbol after the word that you are not sure of:

  Garden Preparing~

- **Proximity Searches**

  Use proximity searches to find words that are within a specific distance away. To perform a proximity search, use the ~ symbol at the end of your search. For example, to search for the word **Garden** and the word **Preparation** within 6 words of each other use:
Range Searches

Use range searches to match documents whose element values are between the lower and upper bound specified in the range query. For example, to find all documents whose titles are between Iris and Lilac, use:

```
title:{Iris TO Lilac}
```

The curly brackets denote an exclusive query. The results you get when using this query are all the documents whose titles are between Iris and Lilac, but not including Iris and Lilac. To create an inclusive query use square brackets:

```
title:[Iris to Lilac]
```

Term Boosting Searches

Use term prioritising searches if the fragment of text that you are searching for contains certain words that are more important to your search than the rest of them. For example, if you are searching for Autumn Flowers, a good idea is to prioritize the word Autumn since the word Flowers occurs more often. To prioritize a word use the `^` symbol:

```
Autumn^6 Flowers
```

Searches Using Boolean Operators

You can use the AND, +, OR, -, and NOT operators.

To search for documents that contain both the words Garden and Preparation, use:

```
Garden AND Preparation
```

To search for documents that must contain the word Garden and may contain the word Preparation, use:

```
+Garden Preparation
```

To search for documents that contain either the word Garden or the word Preparation, use:

```
Garden OR Preparation
```

To search for documents that contain Garden Preparation but not Preparation of the Flowers, use:

```
"Garden Preparation" - "Preparation of the Flowers"
```

Searches Using Grouping
To search either for the word Garden or Preparation, and the word Flowers, use:

\[(\text{Garden OR Preparation}) \text{ AND Flowers}\]

- **Searches Using Element Grouping**

To search for a title that contains both the word Flowers and the phrase Garden Preparation, use:

\[\text{title: (+Flowers +"Garden Preparation")}\]

- **Searching for Special Characters**

Sometimes you might need to search your content for special character, such as:

\[+ - & | ! ( ) { } [ ] ^ ~ * ? : \]

In this case, you should surround your search query with quotes. For example, to search for \((\text{Hydrogen + Oxygen})\text{=}\text{Water}\), use:

\["(\text{Hydrogen + Oxygen})\text{=}\text{Water}"\]

**Searching in File Paths**

To perform a search in the file paths of your resources, open the Open/Find Resource dialog box *(on page 733)* (from the Find menu or with Ctrl + Shift + R (Command + Shift + R on OS X)) or the Open/Find Resource view *(on page 344)* (by default, located on the left side of the editor), select the In file paths option, and in the search field enter the terms that you want to search for.

The Open/Find Resource feature allows you to search for a resource either by its name or by its path (or by a fragment of its path).

You can use wildcards when you perform such searches:

- Use "*" to match any sequence of characters.
- Use "?" to match any single character.

For example, if you search for 
*,-preferences-page* you will find all the resources that contain the *preferences-page* fragment in their name. If you search for *-/samples/*.gif, you will find all the .gif images from the samples directory.

**Searching in Reviews**

To perform a search in the edits of your resources, open the Open/Find Resource dialog box *(on page 733)* (from the Find menu or with Ctrl + Shift + R (Command + Shift + R on OS X)) or the Open/Find
Resource view (on page 344) (by default, located on the left side of the editor), select the In reviews option, and in the search field enter the terms that you want to search for.

The following options are available:

- **Type** - Specifies whether you want to search for content in comments, tracked change insertions/deletions, or highlighted content.
- **Author** - Displays all the authors of the edits in your resources. The authors are collected when indexing. You can set a specific author for your search or search all of them.
- **Time** - Specifies the time when the edits that you are searching through were created.

Both the view and the dialog box display the edits that contain the search results and their parent topics along with a short description. To hide this description, go to Settings and deselect the Show Description option.

Technical Aspects

When Oxygen XML Editor performs the indexing of your resources, the refereed content from your documents is not taken into account. For example, when DITA documents are indexed, the content from the `conref` elements is not parsed. The files that make up the index are stored on disk in the `\[user_home_directory]\AppData\Roaming\com.oxygenxml\lucene` folder.

Finding and Replacing Text

This section includes topics with regard to the find and replace features available in Oxygen XML Editor.

Related Information:

- Open/Find Resource Dialog Box (on page 733)
- Open/Find Resource View (on page 344)

Find/Replace Dialog Box

To open the Find/Replace dialog box, use the Find/Replace action that is available in the Find menu, on the toolbar, or by pressing Ctrl + F (Command + F on OS X). It is also invoked by the Find/Replace contextual menu action found in certain views.

You can use the Find/Replace dialog box to perform the following operations:
• Replace occurrences of target defined in the **Find** area with a new fragment of text defined in **Replace with** area.

• Find all the occurrences of a word or string of characters (that can span over multiple lines) in the document you are editing. This operation also takes into account all the whitespaces contained in the fragment you are searching for. The **Find/Replace** dialog box counts the number of occurrences of the text you are searching for and displays it at the bottom of the dialog box, above the **Close** button. This number is also displayed in the **Results view** (on page 357) after you press the **Find All** button.

The *find* operation works on multiple lines, meaning that a find match can cover characters on multiple lines of text. To input multiple-line text in the **Find** and **Replace with** areas, do one of the following:

• Press **Ctrl + Enter (Command + Enter on OS X)** on your keyboard.

• Use the **Insert newline** contextual menu action.

You can use **Perl-like regular expressions syntax** (on page 753) to define patterns. A content completion assistance window is available in the **Find** and **Replace with** areas to help you edit regular expressions. It is activated every time you type \ (backslash key) or on-demand if you press **Ctrl + Space (Command + Space on OS X)** on your keyboard.

The *replace* operation can bind regular expression capturing groups ( $1, $2, etc.) from the find pattern.

**Tip:** To replace the tag-name start tag and its attributes with the new-tag-name tag use as **Find** the expression `<tag-name\s+)(.*)>` and as **Replace with** the expression `<new-tag-name$1$2>`.

**Find/Replace Dialog Box**

Figure 254. The Find/Replace Dialog Box
The **Find/Replace** dialog box contains the following options:

**Find text area box**

This is where you enter the character string to search for. You can search for Unicode characters specified in the \uNNNN format. Also, hexadecimal notation ( \xNNNN ) and octal notation ( \0NNNN ) can be used. In this case you have to select the **Regular expression** option (on page 744). For example, to search for a space character you can use the \u0020 code.

You can use the  
button to select from a list of the most recently used expressions. Use the **Clear history** action from the bottom of the lists to remove these expressions.

**Replace with text area box**

The character string with which to replace the target. The string for replace can be on a line or on multiple lines. It can contain Perl notation capturing groups, only if the search expression is a regular expression and the **Regular expression** option (on page 744) is selected.

**Note:** Some regular expressions can indefinitely block the application. If the execution of the regular expression does not end in about 5 seconds, the application displays a dialog box that allows you to interrupt the operation.
Tip: Special characters such as newline and tab can be inserted in the Find and Replace with text boxes using dedicated actions in the contextual menu (Insert newline and Insert tab).

Unicode characters in the \uNNNN format can also be used in the Replace with area.

You can use the History button to select from a list of the most recently used expressions. Use the Clear history action from the bottom of the lists to remove these expressions.

XPath

The XPath 2.0 expression you input in this combo is used for restricting the search scope. Clicking the XPath Options button opens a preferences page where you can configure some XPath-related options.

Note: You can use the Content Completion Assistant (on page 3280) to help you input XPath expressions that are valid in the current context.

Direction

Specifies if the search direction is from current position to end of file (Forward) or to start of file (Backward).

Scope

Specifies whether the Find/Replace operation is executed over the entire content of the edited document (All option), or over the selected content/lines.

Options section

Case sensitive

When selected, the search operation follows the exact letter case of the text entered in the Find field.

Incremental

The search operation is started every time you type or delete a letter in the Find text box.

Wrap around

When the end of the document is reached, the search operation is continued from the start of the document, until its entire content is covered.

Whole words only
Only entire occurrences of a word are included in the search operation. This option is automatically disabled if the Regular expression option (on page 744) is selected.

**Regular expression**

When this option is selected, you can use regular expressions in Perl-like regular expressions syntax (on page 753) to look for specific pieces of text.

- **Dot matches all** - A dot used in a regular expression also matches end of line characters.
- **Canonical equivalence** - If selected, two characters will be considered a match if, and only if, their full canonical (on page 3280) decompositions match. For example, the á symbol can be inserted as a single character or as two characters (the a character followed by the tilde ~ character). This option is not selected by default.

**Find All Elements link**

Available when editing in **Author** mode, you can use this link to extend the search scope to XML-specific markup (names and values of both attributes and elements).

**Find button**

Executes a find operation for the next occurrence of the target. It stops after highlighting the find match in the editor panel.

**Replace/Find button**

Executes a replace operation for the target followed by a find operation for the next occurrence.

**Replace button**

Executes a replace operation for the target without going to the next occurrence.

**Find All button**

Executes a find operation and displays all results in the **Results view** (on page 357).

**Replace All button**

Executes a replace operation in the entire scope of the document.

**Replace to End button**
Executes a replace operation starting from current target until the end of
the document, in the direction specified by the current selection of the
Direction switch (Forward or Backward).

Find/Replace in Multiple Files

The Find/Replace in Files feature enables you to define Search for or Search for and Replace
operations across multiple files (for example, in DITA projects you can search in the scope of an entire
DITA map (on page 3281)). To open the Find/Replace in Files dialog box, use the Find/Replace in Files action that is available in the following locations:

- The Find menu.
- The Find/Replace in Files button on the main toolbar.
- The contextual menu of the DITA Maps Manager view (on page 2990).
- The contextual menu of the Project view (on page 333).
- The contextual menu of the Data Source Explorer view (on page 2198) for most types of
database connections.

The operation works on both local and remote files from an (S)FTP, WebDAV or CMS server.

Find/Replace in Files Dialog Box

Figure 255. Find / Replace in Files Dialog Box (When Opened from the Toolbar Button)
The dialog box contains the following options:

**Text to Find section**

The first text field is where you enter the character string to search for. You can search for Unicode characters specified in the `\uNNNN` format. Also, hexadecimal notation (`\xNNNN`) and octal notation (`\0NNNN`) can be used. In this case you have to select the **Regular expression** option. For example, to search for a space character you can use the `\u0020` code.

The rest of the options in this section can be used to refine your search:

**Case sensitive**

When selected, the search operation follows the exact letter case of the value entered in the **Text to find** field.

**Whole words only**

Only entire occurrences of a word are included in the search operation. This option is automatically disabled if either the **Ignore extra whitespaces**
Ignore extra whitespaces

If selected, the application normalizes the content (collapses any sequence of whitespace characters into a single space) and trims its leading and trailing whitespaces when performing the search operation.

Regular expression

When this option is selected, you can use regular expressions in Perl-like regular expressions syntax (on page 753) to look for specific pieces of text.

- **Dot matches all** - A dot used in a regular expression also matches end of line characters.
- **Canonical equivalence** - If selected, two characters will be considered a match if, and only if, their full canonical (on page 3280) decompositions match. For example, the ŏ symbol can be inserted as a single character or as two characters (the a character followed by the tilde ~ character). This option is not selected by default.

Restrict to XPath

The XPath 2.0 expression you input in this combo is used for restricting the search scope. Clicking the XPath Options button opens a preferences page where you can configure some XPath-related options.

**Note:** You can use the Content Completion Assistant (on page 3280) to help you input XPath expressions that are valid in the current context.

Enable XML search options

This option is only available when editing in Text mode. It provides access to a set of options that allow you to search specific XML component types:

- **Element names** - Only the element names are included in the search operation that ignores XML-tag notations ('<', '/', '>'), attributes or white-spaces.
- **Element contents** - Search in the text content of XML elements.
- **Attribute names** - Only the attribute names are included in the search operation, without the leading or trailing white-spaces.
- **Attribute values** - Only the attribute values are included in the search operation, without single quotes(') or double quotes(").
• **Comments** - Only the content of comments is included in the search operation, excluding the XML comment delimiters (`<!--`, `-->`).

• **PIs (Processing Instructions)** - Only the content is searched, skipping `<?...?>` (for example, `<?processing instruction?>`).

• **CDATA** - Searches inside content of CDATA sections.

• **DOCTYPE** - Searches inside content of DOCTYPE sections.

• **Entities** - Only the entity names are searched.

The two buttons **Select All** and **Deselect All** allow a simple activation and deactivation of all types of XML components.

**Note:** Even if you select all options of the **Enable XML search options** section, the search is still XML-aware. If you want to perform the search over the entire file content, deselect **Enable XML search options**.

**Replace with section**

Use the text field in this section to specify a character string to replace the target with. It may contain regular expression group markers if the search expression is a regular expression and the **Regular expression** checkbox is selected.

**Tip:** If you want to change the XML structure, you could use the built-in XML refactoring operations (on page 1142). You can even customize your own refactoring operations (on page 1153).

**Make backup files with extension**

In the replace process Oxygen XML Editor makes backup files of the modified files. The default extension is `.bak`, but you can change the extension as you prefer.

**Scope section**

The options available in this section depend on the context (how the dialog box was opened). Select one of the listed options to specify the scope for the operation. The possible options include:

**Selected project resources**

Searches only in the selected files.

**Project files**

Searches in all files from the current project.

**All opened files**
Searches in all files opened in Oxygen XML Editor (regular files or DITA maps). You are prompted to save all modified files before any operation is performed.

**Current file directory**

The search is done in the directory of the file opened in the current editor panel. If there is no opened file, this option is not available.

**Current DITA Map hierarchy (only available if opened from the DITA Maps Manager)**

The search is done in all maps and topics referenced by the currently selected DITA map, opened in the DITA Maps Manager view (on page 2990).

**Selected references (only available if opened from the DITA Maps Manager)**

Searches only in the selected DITA references.

**Opened archive (only available if opened from the Archive Browser view)**

The search is done in an archive opened in the Archive Browser (on page 2191) view.

**Specified path**

Use this option to specify the search path.

**Filters section**

The options available in this section depend on the context (how the dialog box was opened) and they can be used to filter the search operation. The possible options include:

**Include files**

Narrows the scope of the operation only to the files that match the given filters. For example, you can choose to filter the search to only include files with a certain file extension (such as *.xml).

**Recurse subdirectories**

When selected, the search is performed recursively for the specified scope. The one exception is that this option is ignored if the scope is set to All opened files.

**Recurse references (only available if opened from the DITA Maps Manager)**

When selected, the search is performed recursively for the selected scope.

**Include hidden files**

When selected, the search is also performed in the hidden files.
Include archives
When selected, the search is also done in all individual file entries from all supported ZIP-type archives.

Show separate results for each search expression
When selected, the application opens a new tab to display the result of each new search expression. When the option is unchecked, the search results are displayed in the Find in Files tab, replacing any previous search results.

Find All
Use the Find All button to execute the search operation. The results are displayed in a view (on page 357) that allows grouping the results as a tree with two levels.

Replace All
Use the Replace All button to execute the search operation and replace all occurrences with the specified string. When you replace a fragment of text, Oxygen XML Editor offers an option to preview of the changes you make. The Preview dialog box is divided in two sections. The first section presents a list of all the documents containing the fragment of text you want to modify. The second section offers a view of the original file and a view of the final result. It also allows you to highlight all changes using the vertical bar from the right side of the view. The Next change and Previous change buttons allow you to navigate through the changes displayed in the Preview dialog box.

⚠️ CAUTION: Use the Replace All option with caution. Global searches may result in matching strings being replaced in instances that were not originally intended.

Note:

- You can use Perl-like regular expression syntax (on page 753) to match patterns in text content. The replace operation can bind regular expression capturing groups ($1, $2, etc.) from the find pattern.
- Exclusion patterns are accepted. For example, *.java, !*Test.java would search for all files with a .java extension, with the exception of any file whose name ends in Test.
- To replace the tag-name start tag and its attributes with the new-tag-name tag use as Text to find the expression <tag-name'(s+)(.*)> and as Replace with the expression <new-tag-name $1$2>.
- The encoding used to read and write the files is detected from the XML header or from the BOM. If a file does not have an XML header or BOM Oxygen XML Editor uses by default the UTF-8 encoding for files of type XML, that is for files with one of the extensions: .xml, .xsl, .fo, .xsd, .rng, .nvd1, .sch, .wsdl or an extension associated with the XML editor type (on page 250). For the other files it uses the encoding configured for non-XML files (on page 123).
• You can cancel a long operation at any time by pressing the Cancel button of the progress dialog box, but doing so will not revert any replacements that have been processed up to that point.
• Since the content of read-only files cannot be modified, the Replace operation does not process those files. For every such file, a warning message is displayed in the message panel.

Related Information:

• Built-in Refactoring Operations (on page 1142)
• Custom Refactoring Operations (on page 1153)

Find All Elements Dialog Box

To open the Find All Elements dialog box, go to Find > Find All Elements (Ctrl + Shift + E (Command + Shift + E on OS X)) or from the shortcut Find All Elements that is available in the Find / Replace dialog box (on page 740). It assists you in defining XML element / attribute search operations in the current document.

Figure 256. Find All Elements Dialog Box

The dialog box can perform the following actions:

• Find all the elements with a specified name.
• Find all the elements that contain, or does not contain, a specified string in their text content.
• Find all the elements that have a specified attribute.
• Find all the elements that have an attribute with, or without, a specified value.

You can combine all of these search criteria to filter your results.

The following fields are available in the dialog box:
• **Element name** - The qualified name of the target element to search for. You can use the drop-down menu to find an element or enter it manually. It is populated with valid element names collected from the associated schema. To specify *any* element name, leave the field empty.

**Note:** Use the qualified name of the element ( `<namespace prefix>:<element name>` ) when the document uses this element notation.

• **Element text** - The target element text to search for. The drop-down menu beside this field allows you to specify whether you are looking for an exact or partial match of the element text. For *any* element text, select `contains` from the drop-down menu and leave the field empty. If you leave the field empty but select `equals` from the drop-down menu, only elements with no text will be found. Select `not contains` to find all elements that do not include the specified text.

• **Attribute name** - The name of the attribute that must be present in the element. You can use the drop-down menu to select an attribute or enter it manually. It is populated with valid attribute names collected from the associated schema. For *any* or no attribute name, leave the field empty.

**Note:** Use the qualified name of the attribute ( `<namespace prefix>:<attribute name>` ) when the document uses this attribute notation.

• **Attribute value** - The drop-down menu beside this field allows you to specify that you are looking for an exact or partial match of the attribute value. For *any* or no attribute value, select `contains` from the drop-down menu and leave the field empty. If you leave the field empty but select `equals` from the drop-down menu, only elements that have at least an attribute with an empty value will be found. Select `not contains` to find all elements that have attributes without a specified value.

• **Case sensitive** - When this option is selected, operations are case-sensitive.

When you press **Find All**, Oxygen XML Editor tries to find the items that match all the search parameters. The results of the operation are presented as a list in the message panel.

**Quick Find Toolbar**

A reduced version of the **Find / Replace** dialog box (on page 740) is available as a dockable toolbar (on page 268). To display it press the **Alt + Shift + F (Command + Alt + F on OS X)** key combination or invoke the **Find > Quick Find** action. By default, the toolbar is displayed at the bottom of the Oxygen XML Editor window, above the status bar, but can be changed at any time by dragging (and docking) it to a different location. To hide the toolbar, use the **Close** button.

All matches are highlighted in the current editor.

**Figure 257. Quick Find Toolbar**

![Quick Find Toolbar](image)

The toolbar offers the following controls:
• Search input box - This is where you can insert the text you want to search for. The input box keeps a history of the last used search text. The background color of the input box turns red when no match is found.

• **Next** - Advances to the next match. You can also use the **Enter** key to jump forward to the next match.

• **Previous** - Jumps to the previous match. You can also use **Shift+Enter** to jump backward to the previous match.

• **All** - Highlights all matches of the search string in the current document.

• **Incremental** - If selected, the search operation is started every time you type or delete a character in the search input box.

• **Case sensitive** - If selected, the search operation follows the exact letter case of the search text.

• **Find/Replace** - Opens the **Find/Replace** dialog box (**on page 740**).

• **Find/Replace in Files** - Opens the **Find/Replace in Files** dialog box (**on page 745**).

• **Close** - Closes the **Quick Find** toolbar.

### Keyboard Shortcuts for Finding the Next and Previous Match

Navigating from one match to the next or previous one is very easy to perform using the **F3** and **Shift + F3 (Command + Shift + G on OS X)** keyboard shortcuts. They are useful for quickly repeating the last find action performed in the **Find / Replace** dialog box (**on page 740**), taking into account the same find options.

⚠️ **Restriction:** These shortcuts only take XPath expressions into account if the **Find / Replace** dialog box remains opened. Once you close it, the XPath expressions are no longer considered.

### Regular Expressions Syntax

Oxygen XML Editor uses the Java regular expression syntax. It is similar to that used in Perl 5, with several exceptions. Thus, Oxygen XML Editor does not support the following constructs:

- The conditional constructs `(?{X})` and `(?{condition}X|Y) .`
- The embedded code constructs `{{code}}` and `{{?{code}}} .`
- The embedded comment syntax `{{#comment}} .`
- The preprocessing operations `\l , \u , \L , and \U .`

When using regular expressions, note that some sets of characters from XPath/XML Schema/Schematron are slightly different than the ones used by Oxygen XML Editor/Java in the text searches from the **Find/Replace** dialog box (**on page 740**) and **Find/Replace in Files** dialog box (**on page 745**). The most common example is with the `\w` and `\w` set of characters. To ensure consistent
results between the two, it is recommended that you use the following constructs in the Find/Replace dialog box (on page 740) and Find/Replace in Files dialog box (on page 745):

- `/w - [\#x0000-\#x10FFFF]-[{P}\{P}\{Z}\{P\{C\}]` instead of `\w`
- `/W - [{P}\{P}\{Z}\{P\{C\}]` instead of `\W`

There are some other notable differences that may cause unexpected results, including the following:

- In Perl, \1 through \9 are always interpreted as back references. A backslash-escaped number greater than 9 is treated as a back reference if at least that many sub-expressions exist. Otherwise, it is interpreted, if possible, as an octal escape. In this class octal escapes must always begin with a zero. In Java, \1 through \9 are always interpreted as back references, and a larger number is accepted as a back reference if at least that many sub-expressions exist at that point in the regular expression. Otherwise, the parser will drop digits until the number is smaller or equal to the existing number of groups or it is one digit.
- Perl uses the \g flag to request a match that resumes where the last match left off.
- In Perl, embedded flags at the top level of an expression affect the whole expression. In Java, embedded flags always take effect at the point where they appear, whether they are at the top level or within a group. In the latter case, flags are restored at the end of the group just as in Perl.
- Perl is forgiving about malformed matching constructs, as in the expression *a, as well as dangling brackets, as in the expression abc), and treats them as literals. This class also accepts dangling brackets but is strict about dangling meta-characters such as +, ? and *.

Related Information:

- Comparison between the Java and Perl 5 regular expression syntax

Spell Checking

Oxygen XML Editor includes an automatic (as-you-type) spell checking feature (on page 764), as well as a manual spell checking action to open a Spelling dialog box that offers a variety of options.

To manually check spelling in the current document, use the ✝ Check Spelling action on the toolbar or from the Edit menu.

Figure 258. Check Spelling Dialog Box
The Spelling dialog box contains the following:

**Unrecognized word**

Displays the word that cannot be found in the selected dictionary. The word is also highlighted in the XML document.

**Replace with**

The character string that will replace the misspelled word.

**Guess**

Displays a list of suggested words to replace the unknown word. Double-click a word to automatically insert it in the document and resume the spell checking process.

**Default language**

Allows you to select the default language dictionary used by the spell checker engine.

**Paragraph language**

In an XML document, you can mix content written in multiple languages. You can set the language code in the `lang` or `xml:lang` attribute for any particular section and Oxygen XML Editor will automatically instruct the spell checker engine to apply the appropriate language dictionary for that section.

**Begin at cursor position**

Instructs the spell checker to begin checking the document starting from the current cursor position.

**Action Buttons**
Replace

Use this button to replace the unrecognized word with the selected word from the Replace with field.

Replace All

Use this button to replace all occurrences of the unrecognized word with the selected word from the Replace with field, starting from the cursor's position to the end of the document.

Note: This action is case-sensitive.

Ignore

Ignores the first occurrence of the unrecognized word and allows you to continue checking the document. Oxygen XML Editor skips the content of the XML elements marked to be ignored (on page 763).

Ignore All

Ignores all instances of the unrecognized word in the current document.

Learn

Adds the unrecognized word to the list of valid words.

Options

Opens the Spell Check preferences page (on page 183) where you can configure various options regarding the feature.

Related Information:

- AutoCorrect Misspelled Words (on page 767)

Spell Check Dictionaries and Term Lists

Oxygen XML Editor uses the Hunspell engine for the spell checking feature. The Hunspell spell checking engine is open source and has an LGPL license. It is designed for languages with rich morphology and complex compounding or character encoding. Each language-country variant combination have their own specific dictionaries. Oxygen XML Editor includes the following built-in dictionaries for the spell checker:

- English (US) [en_US]
- English (UK) [en_GB]
- French [fr]
Other Hunspell Dictionaries

You can also download Hunspell dictionaries for other languages and add them to the Oxygen XML Editor spell checker. An example of a website that includes numerous dictionary files is: http://extensions.services.openoffice.org/dictionary.

If you cannot find a Hunspell dictionary that is already built for your language, you can build the dictionary you need. To build a full Hunspell dictionary, follow these instructions and then add the dictionary to the Oxygen XML Editor spell checker by following this procedure (on page 758).

Personalized Term Lists

Authoring in certain areas of expertise (for example, the pharmaceutical or automobile industries) might require the use of specific terms that are not part of the standard spell checker dictionary. To avoid marking these terms as errors, Oxygen XML Editor provides a way of adding personalized term lists (on page 760) to the spell check engine. This involves creating a term list file that the spell checker will recognize and it is similar to the file Oxygen XML Editor uses for storing learned words (on page 763).

The term list files are specific for each language and can be specific to each domain or area of expertise (for example, legal, medical, automotive). They can also be used to control forbidden words.

Adding Custom Dictionaries and Term Lists

The Oxygen XML Editor spell checker allows you to add customized Hunspell dictionaries and personalized term lists. The Hunspell dictionary mechanism requires a dictionary file (with a .dic file extension) and an affix file (with the .aff file extension). The personalized term lists are custom files (with the .tdi file extension) that you can create to include specialized terms or specify forbidden words in the Oxygen XML Editor spell checker.
You can add dictionaries (on page 758) and personalized term lists (on page 760) to the default folder where they are stored or specify your own custom locations. You can view the default storage location in the Spell Check Dictionaries preferences page (on page 186) and the Include dictionaries and term list from option (on page 186) allows you to choose a custom storage location. All the dictionaries and term lists for a particular language that are found in either location are merged and used by the spell checker in Oxygen XML Editor.

**Related Information:**
- Replacing a Spell Check Dictionary (on page 761)

### Adding Custom Spell Check Dictionaries

There are three possible scenarios for adding Hunspell dictionaries to the Oxygen XML Editor spell checker:

- You can download a pre-built Hunspell dictionary and add it to the spell checking mechanism.
- You can create a custom Hunspell dictionary file that defines your own list of words and add it to the spell checking mechanism.
- You can build your own full Hunspell dictionary and add it to the spell checking mechanism.

### Download and Add a Pre-Built Hunspell Dictionary

To add a downloaded pre-built dictionary, follow these steps:

1. Download the files needed for your dictionary. You will need a dictionary file (with a .dic file extension) and an affix file (with the .aff file extension). If the dictionary does not include an affix file (.aff), you can create one and leave it empty, but it is needed for the mechanism to work properly. An example of a website that includes numerous dictionary files is: [http://extensions.services.openoffice.org/dictionary](http://extensions.services.openoffice.org/dictionary).

   **Important:** The name of the files should begin with a two letter prefix for the language code, followed by an underscore or hyphen, then two letters that indicate the country code, followed by another underscore or hyphen, and then a descriptive name (for example, en_US_medical.dic for a medical dictionary in the US version of the English language, or for a less specific English medical dictionary, you could omit the country code like this: en_medical.dic). For a list of language codes, see [https://en.wikipedia.org/wiki/List_of_ISO_639-1_codes](https://en.wikipedia.org/wiki/List_of_ISO_639-1_codes).

2. Open the Preferences dialog box (Options > Preferences) (on page 79) and go to Editor > Spell Check > Dictionaries (on page 186).

3. Choose one of the following two options for adding the downloaded files.
a. Copy both files (\texttt{.dic} and \texttt{.aff}) to the default directory displayed in the \textit{Dictionaries and term lists default folder} option \textit{(on page 186)}.

b. Copy both files (\texttt{.dic} and \texttt{.aff}) to any other directory, select the \textit{Include dictionaries and term list from} option \textit{(on page 186)}, and select that directory. If you choose this option, make sure you read this important note \textit{(on page 186)}.

4. Restart the application for the spell checker to start using the new dictionary.

### Create a Custom Hunspell Dictionary that Defines a List of Words

To create a custom Hunspell dictionary that defines your own list of words, follow these steps:

1. Create a \textit{dictionary} file (with a \texttt{.dic} file extension) and an \textit{affix} file (with the \texttt{.aff} file extension). The affix file (\texttt{.aff}) can be left empty, but it is needed for the mechanism to work properly.

   \begin{itemize}
   \item \textbf{Important:} The name of the files should begin with a two letter prefix for the language code, followed by an underscore or hyphen, then two letters that indicate the country code, followed by another underscore or hyphen, and then a descriptive name (for example, \texttt{en\_US\_medical.dic} for a medical dictionary in the US version of the English language, or for a less specific English medical dictionary, you could omit the country code like this: \texttt{en\_medical.dic}). For a list of language codes, see https://en.wikipedia.org/wiki/List_of_ISO_639-1_codes.
   \end{itemize}

2. In the dictionary file (\texttt{.dic} extension), add the words you want to be included in your custom dictionary. Add one word per row and the first line needs to contain the number of words, as in the following example:

   
   \begin{verbatim}
   2
   parabola
   asimptotic
   \end{verbatim}

   \begin{itemize}
   \item \textbf{Tip:} Words stored in dictionaries are not handled as case-sensitive. Therefore, you do not need to include both uppercase and lowercase versions of the words.
   \end{itemize}

   \begin{itemize}
   \item \textbf{Note:} If you save the \texttt{.dic} file using UTF-8 encoding, then the corresponding \texttt{.aff} file should specify the encoding as a property inside it (if you do not specify the encoding, the default platform encoding will be used):
   \end{itemize}

   \begin{verbatim}
   SET UTF-8
   \end{verbatim}

3. Open the \textit{Preferences} dialog box (\textit{Options > Preferences}) \textit{(on page 79)} and go to \textit{Editor > Spell Check > Dictionaries} \textit{(on page 186)}.

4. Choose one of the following two options for saving the files.

   a. Save both files (\texttt{.dic} and \texttt{.aff}) to the default directory displayed in the \textit{Dictionaries and term lists default folder} option \textit{(on page 186)}. 

b. Save both files (.dic and .aff) to any other directory, select the Include dictionaries and term list from option (on page 186), and select that directory. If you choose this option, make sure you read this important note (on page 186).

5. Restart the application for the spell checker to start using the new dictionary.

Build and Add a Full Hunspell Dictionary

To build and add a full Hunspell dictionary, follow these steps:

1. Follow these instructions: Building and Testing Hunspell Dictionaries.

   Result: You should end up with a dictionary file (with a .dic file extension) and an affix file (with an .aff file extension). The affix file (.aff) can be empty, but it is needed for the mechanism to work properly.

   ! Important: The name of the files should begin with a two letter prefix for the language code, followed by an underscore or hyphen, then two letters that indicate the country code, followed by another underscore or hyphen, and then a descriptive name (for example, en_US_medical.dic for a medical dictionary in the US version of the English language, or for a less specific English medical dictionary, you could omit the country code like this: en_medical.dic). For a list of language codes, see https://en.wikipedia.org/wiki/List_of_ISO_639-1_codes.

2. Open the Preferences dialog box (Options > Preferences) (on page 79) and go to Editor > Spell Check > Dictionaries (on page 186).

3. Choose one of the following two options for saving the files.

   a. Save both files (.dic and .aff) to the default directory displayed in the Dictionaries and term lists default folder option (on page 186).

   b. Save both files (.dic and .aff) to any other directory, select the Include dictionaries and term list from option (on page 186), and select that directory. If you choose this option, make sure you read this important note (on page 186).

4. Restart the application for the spell checker to start using the new dictionary.

Related Information:

• Adding Custom Spell Check Term Lists (on page 760)

• Editing the Spell Checking Dictionaries
Adding Custom Spell Check Term Lists

You can create personalized term lists that are used to store specialized terms or control forbidden words. They can then be added to one of the directories that store the spell check dictionaries, and the spell checker will merge them with all the dictionaries and other term lists for a particular language.

Create and Add Personalized Term Lists

To create and add a personalized term list, follow these steps:

1. Create a term list file (with the .tdi file extension). The name of the file must begin with a two letter prefix that indicates the language it should be attached to, followed by an underscore or hyphen, and then a descriptive name (for example, en_US_myterms.tdi for term list in the US version of the English language or en_myterms.tdi for a less specific English term list). For a list of language codes, see https://en.wikipedia.org/wiki/List_of_ISO_639-1_codes.

2. In the term list file (.tdi extension), add the terms you want to be included in your custom dictionary. If you need to specify forbidden terms, those words simply need to be preceded by an asterisk. Add one word per row, as in the following example:

   parabola
   asimptotic
   *hyperbola

   **Note:** Words stored in term lists are not handled as case-sensitive. Therefore, you do not need to include both uppercase and lowercase versions of the words.

3. Open the Preferences dialog box (Options > Preferences) (on page 79) and go to Editor > Spell Check > Dictionaries (on page 186).

4. Choose one of the following two options for saving the file.
   a. Save the file (.tdi) to the default directory displayed in the Dictionaries and term lists default folder option (on page 186).
   b. Save the file (.tdi) to any other directory, select the Include dictionaries and term list from option (on page 186), and select that directory. If you choose this option, make sure you read this important note (on page 186).

5. Restart the application for the spell checker to start using the new term list.

Related Information:

- Adding Custom Spell Check Dictionaries (on page 758)
Replacing a Spell Check Dictionary

There are several possible scenarios for replacing an existing Hunspell dictionary for the Oxygen XML Editor spell checker:

- You can download a pre-built Hunspell dictionary and replace an existing dictionary with it.
- You can build your own full Hunspell dictionary and replace an existing dictionary with it.

Download a Pre-Built Hunspell Dictionary and Replace an Existing One

To replace an existing dictionary with a downloaded pre-built dictionary, follow these steps:

1. Download the files needed for your dictionary. You will need a dictionary file (with a .dic file extension) and an affix file (with the .aff file extension). If the dictionary does not include an affix file (.aff), you can create one and leave it empty, but it is needed for the mechanism to work properly. An example of a website that includes numerous dictionary files is: http://extensions.services.openoffice.org/dictionary.
2. Open the Preferences dialog box (Options > Preferences) (on page 79) and go to Editor > Spell Check > Dictionaries (on page 186).
3. Choose one of the following two options to replace existing files.
   a. Replace the existing files (.dic and .aff) for the particular language in the default directory displayed in the Dictionaries and term lists default folder option (on page 186). Leave the Include dictionaries and term list from option deselected.
   b. Replace existing files (.dic and .aff) for the particular language in a directory specified in the Include dictionaries and term list from option (on page 186). If you choose this option, make sure you read this important note (on page 186).

⚠️ Important: Do not alter the naming convention. The name of the files must begin with a two letter prefix that indicates the language it should be attached to (for example, en_US.dic for a US English dictionary or en.dic for a less specific English dictionary). For a list of language codes, see https://en.wikipedia.org/wiki/List_of_ISO_639-1_codes.
4. Restart the application for the spell checker to start using the new dictionary.

Build a Full Hunspell Dictionary and Replace an Existing One

To replace an existing dictionary with a full Hunspell dictionary that you build, follow these steps:

1. Follow these instructions: Building and Testing Hunspell Dictionaries.

   Result: You should end up with a dictionary file (with a .dic file extension) and an affix file (with the .aff file extension). The affix file (.aff) can be empty, but it is needed for the mechanism to work properly.
2. Open the **Preferences** dialog box (*Options > Preferences*) *(on page 79)* and go to **Editor > Spell Check > Dictionaries** *(on page 186)*.

3. Choose one of the following two options to replace existing files.
   a. Replace the existing files (.dic and .aff) for the particular language in the default directory displayed in the **Dictionaries and term lists default folder** option *(on page 186)*. Leave the **Include dictionaries and term list from** option deselected.
   b. Replace existing files (.dic and .aff) for the particular language in a directory specified in the **Include dictionaries and term list from** option *(on page 186)*. If you choose this option, make sure you read this important note *(on page 186)*.

4. Restart the application for the spell checker to start using the new dictionary.

### Related Information:

- *Adding Custom Dictionaries and Term Lists* *(on page 757)*

---

**Learned Words**

Spell checker engines rely on dictionaries to decide if a word is spelled correctly. To instruct the spell checker engine that an unknown word is actually correctly spelled, you need to add that word to a list of learned words. There are two ways to do this:

- Invoke the contextual menu on an unknown word, then select **Learn word**.
- Press the **Learn** button from the **Spelling** dialog box *(on page 754)* that is invoked by using the **Check Spelling** action on the toolbar.

**Note:** To delete items from the list of learned words, use the **Delete learned words** option in the **Editor > Spell Check > Dictionaries** preferences page *(on page 186)*.

### Related Information:

- *Adding Custom Spell Check Term Lists* *(on page 760)*

---

**Ignored Words (Elements)**

There are certain XML elements *(such as programlisting, codeblock, codeph, filepath, or screen)* in which you may want the content to always be skipped during the spell check process. This can be done in one of several ways:
• You can skip through them manually, word by word, using the Ignore button in the Spelling dialog box (on page 754) that is invoked by using the Check Spelling action on the toolbar.
• You can automatically skip the content of certain elements by maintaining a set of known element names that should never be checked. You can manage this set of element names by using the Ignore elements section (on page 186) in the Spell Check preferences page.

Automatic Spell Check

Oxygen XML Editor includes an option to automatically check the spelling as you type. Not only does it check spelling when you are typing in the main editor, but also when you are typing in a comment (on page 952). This feature is disabled by default, but it can be enabled and configured in the Spell Check preferences page (on page 183). When the Automatic Spell Check option (on page 184) is selected, unknown words are underlined and some actions are available in the contextual menu to help you correct the word or prevent the word from being reported in the future.

Figure 259. Automatic Spell Checking in Author Mode

![Image of automatic spell checking in Author Mode]

Figure 260. Automatic Spell Checking in Text Mode

![Image of automatic spell checking in Text Mode]

The contextual menu includes the following actions:

**Delete Repeated Word**

Allows you to delete words that were repeated in consecutive order.
List of Suggestions

A list of words suggested by the spell checking engine as possible replacements for the unknown word.

Learn Word

Allows you to add the current unknown word to the persistent dictionary of learned words (on page 763).

Spell check options (Available in Author mode only)

Opens the Spell Check preferences page (on page 183).

Other actions

This submenu give you access to all the usual contextual menu actions.

Related Information:

• Learned Words (on page 763)

Spell Check Multiple Files

The Check Spelling in Files action allows you to check the spelling on multiple local or remote documents. This action is available in the following locations:

• The Edit menu.
• The contextual menu of the Project view (on page 333).
• The contextual menu of the DITA Maps Manager view (on page 2990), when editing DITA documents.

This action opens the Check Spelling in Files dialog box that allows you to define the scope and several other options. After you configure the settings for the operation, click the Check All button to check the spelling in all specified files. The spelling corrections are displayed in the Results view (on page 357) at the bottom of the editor and you can group the reported errors as a tree with two levels.

Tip: If you want to instruct the spell checking engine to not report a particular word as being a spelling error in the future, use the Learn Word(s) action from the contextual menu in the Results view.

Figure 261. Check Spelling in Files Dialog Box (Invoked from Project View)
The following scopes are possible, depending on where the action was invoked:

- **All opened files** - The spell check is performed in all opened files.
- **Current file directory** - All the files in the folder of the current edited file.
- **Current DITA map hierarchy** - Option available when the dialog is invoked from the DITA Maps Manager view. Checks the spelling in all references contained in the DITA map.
- **Project** - All files from the current project.
- **Selected project resources** - The selected files from the current project.
- **Specified path** - Checks the spelling in the files located at a path that you specify.

The **Options** section includes the following options:

- **File filter** - Allows you to filter the files from the selected scope.
- **Recurse subdirectories** - When selected, the spell check is performed recursively for the specified scope. The one exception is that this option is ignored if the scope is set to **All opened files**.
- **Include hidden files** - When selected, the spell check is also performed in the hidden files.
- **Spell Check Options** - The spell check processor uses the options available in the Spell Check preferences page (on page 183).

When working with DITA documents, if you invoke the **Check Spelling in Files** action in the DITA Maps Manager view (on page 2990), a slightly different version of the dialog box is displayed:

Figure 262. Check Spelling in Files Dialog Box (Invoked from the DITA Maps Manager View)
The following scopes are available when you check the spelling in files from the DITA Maps Manager (on page 2990):

- **Current DITA Map hierarchy** - All the files referenced in the currently selected DITA map (on page 3281), opened in the DITA Maps Manager view.
- **Selected references** - Checks the spelling in the selected references.
- **Specified path** - Checks the spelling in the files located at a path that you specify.

### AutoCorrect Misspelled Words

Oxygen XML Editor includes an *AutoCorrect* feature to automatically correct misspelled words, as well as to insert certain symbols or other text, as you type in Author mode. Oxygen XML Editor includes a default list of commonly misspelled words and symbols, but you can modify the list to suit your needs. You can also choose to have the AutoCorrect feature use suggestions from the main spell checker. The suggestions will only be used if the misspelled words are not found in the Replacements Table (on page 150).

When enabled, the AutoCorrect feature can be used to do the following:

- Automatically correct misspelled words while you edit in Author mode. The actual operation of replacing a word is triggered by a space, dash, or certain punctuation characters (, . ; ? ! " )].
- Easily insert symbols. For example, if you want to insert a ® character, you would type (R).
- Quickly insert text fragments.

*AutoCorrect* is enabled by default. To configure this feature, open the Preferences dialog box (Options > Preferences) (on page 79) and go to Editor > Edit Modes > Author > AutoCorrect.
After the automatic operation of replacing a misspelled word (triggered by a space, dash, or certain punctuation characters), the affected string is highlighted. The highlight is removed upon the next editing action (text insertion or deletion). If you hover over the highlight, a small widget appears below the word. If you hover over the widget, it expands and you can click it to present a drop-down list that includes the following options:

- **Change back to "[original word]"** - Reverts the correction back to its original form.
- **Stop Automatically Correcting "[original word]"** - This option is presented if the correction is performed based on the *AutoCorrect Replacements Table (on page 150)* and selecting it will delete the corresponding entry from the Replacements Table.
- **Learn Word "[original word]"** - This option is presented if the *Use additional suggestions from the spell checker option (on page 150)* is selected in the *AutoCorrect preferences page (on page 150)* and the correction is performed based on the *Spell Checker*. Selecting this option will add the item to the list of *learned words (on page 763)*.
- **AutoCorrect options** - Opens the *AutoCorrect preferences page (on page 150)* that allows you to configure the feature.

Figure 263. AutoCorrect Widget

The *AutoCorrect* feature results in the following types of substitutions regarding case-sensitivity:

- Words with all lower-case characters will be replaced with lower-case substitutions (for example, "abotu" is replaced with "about").
- Words with irregular-case characters will be replaced with lower-case substitutions ("ABotU" is replaced with "about").
- Words with all upper-case characters will be replaced with upper-case substitutions ("ABOTU" is replaced with "ABOUT").
- Words starting with an upper-case character will be replaced with substitutions having the same pattern ("Abotu" is replaced with "About").

The *AutoCorrect* feature also uses the list of *ignored elements from the Spell Check preferences page (on page 186)*. All elements (along with their descendant elements) included in this list will be ignored by the *AutoCorrect* engine.
Add Dictionaries for the AutoCorrect Feature

To add new dictionaries for the AutoCorrect mechanism (on page 767), or to replace an existing one, follow these steps:

1. Download an AutoCorrect dictionary file for the desired language. The file needs to have a .dat file extension. An example of a website that includes some AutoCorrect dictionary files is: OpenOffice Extensions Search Page.
2. Open the Preferences dialog box (Options > Preferences) (on page 79) and go to Editor > Edit Modes > Author > AutoCorrect > Dictionaries (on page 152).
3. Choose one of the following two options for adding the downloaded files.
   a. Copy the downloaded .dat file to the default directory displayed in the Dictionaries default folder option (on page 152). Note that if you are replacing an existing dictionary file, this is the best option.
   b. Copy the downloaded .dat file to any other directory, select the Include dictionaries from option (on page 152), and select that directory. If you choose this option, make sure you read this important note (on page 152).
4. Restart the application for the AutoCorrect mechanism to start using the new dictionary.

Working with Special Characters and Encoding

While regular characters make up the English and European alphabets and the corresponding basic set of figures and symbols, there are many other special characters that belong to various other language representations, such as Arabic, Indian, Japanese, Chinese, or Korean. Oxygen XML Editor provides support for special characters in various ways:

Opening and Saving Documents

The Unicode standard provides support for all the character symbols in all known languages and Oxygen XML Editor provides support for all Unicode characters (on page 770). There are various encoding options and features to help determine how to handle documents with unsupported characters (on page 771).

Fonts

Oxygen XML Editor provides the ability to choose the fonts to be used in the various editing modes (on page 88). In some cases, changing the font may be a solution when special characters are not rendered as expected.
For special characters that are not included in any of the default fonts, Oxygen XML Editor tries to find that symbol in a fallback font (on page 772). For the Author editing mode, you can specify a set of fallback fonts in the `font-family` CSS property (in the particular CSS file used for rendering your documents). For more information, see the Customizing Author Mode Through CSS (on page 2477) section.

Tip: For documents written in languages that use special characters (such as Japanese or Chinese), change the font to one that supports the specific characters (a Unicode font). For the Windows platform, Arial Unicode MS or MS Gothic is recommended. To change the font in Oxygen XML Editor, open the Preferences dialog box (Options > Preferences) (on page 79), go to Appearance > Fonts. You can select a font for each editing mode in this preferences page.

Navigation and Layout

Oxygen XML Editor supports bidirectional text, such as Arabic, Hebrew, and certain Asian languages, or other special characters that are combined into a single glyph. In Text mode, you can enable or disable the support for special characters. See Special Character Support in Text Mode (on page 366) for details about which option to choose.

Editing

Oxygen XML Editor includes a contextual menu action that converts a sequence of hexadecimal characters to the corresponding Unicode character (on page 875).

If you do not have a special way of inserting special characters using your keyboard, you can insert special characters using the Character Map feature (on page 778).

Unicode Support

Unicode is a standard for providing consistent encoding, representation, and handling of text. There is a unique Unicode number for every character, independent of the platform and language. Unicode is internationally recognized and is required by modern standards (such as XML, Java, JavaScript, LDAP, CORBA 3.0, WML, etc.).

Oxygen XML Editor provides support for the Unicode standard, enabling your XML application to be targeted across multiple platforms, languages, and countries without re-engineering. Internally, the Oxygen XML Editor uses 16-bit characters covering the Unicode Character set.

As a Java application, Oxygen XML Editor includes a default Java input method for typing characters with Unicode codes. However, the default input method does not cover all the Unicode codes (for example, the codes for some accented characters or characters found in East Asian languages). Such characters can be inserted in the editor panel of Oxygen XML Editor either with the Character Map dialog box (on page 779) available from Edit > Insert from Character Map or by installing a
Java input method that supports the insertion of the needed characters. The installation of a Java input method depends on the platform (Windows, Mac OS X, Linux, etc.) and is the same for any Java application.

**Note:** Oxygen XML Editor may not be able to display characters that are not supported by the operating system (either not installed or unavailable).

**Tip:** On windows, you can enable the support for CJK (Chinese, Japanese, Korean) languages from Control Panel / Regional and Language Options / Languages / Install files for East Asian languages.

Related Information:

- Unicode Fallback Font Support *(on page 772)*
- Inserting Special Characters with the Character Map *(on page 778)*

Opening and Saving Documents with Unsupported Characters

When loading documents, Oxygen XML Editor reads the document prolog to determine the specified encoding type. This encoding is then used to instruct the Java Encoder to load support for and to save the document using the specified code chart. When the encoding type cannot be determined, Oxygen XML Editor displays the Available Java Encodings dialog box that provides a list of all encodings supported by the Java platform.

**Opening Documents with Unsupported Characters**

When opening a document in Oxygen XML Editor, if it contains characters that are not supported by the specified encoding standard (these unrecognized characters are rendered as an empty box □), the application determines how to handle them based upon the setting specified in the Encoding Errors Handling option in the Encoding preferences page *(on page 124)*. The default setting is REPORT, which means an error message is displayed for characters that cannot be represented in the specified encoding. If the option is set to REPLACE, the character is replaced with a standard replacement character for the particular encoding. If the option is set to IGNORE, the error is ignored and the character is not rendered.
Saving Documents with Unsupported Characters

When saving a document edited in the Text, Grid, or Design modes, if it contains characters that are not supported by the encoding declared in the document prolog, Oxygen XML Editor displays a notification that you need to resolve the conflict before saving the document.

When saving a document edited in the Author mode, all characters that fall outside the detected encoding will be automatically converted to hexadecimal character entities.

When saving a document with UTF-16 encoding, the saved document has a Byte Order Mark (BOM) that specifies the byte order of the document content. The default byte order is platform-dependent. That means that a UTF-16 document created on a Windows platform (where the default byte order mark is UnicodeLittle) has a different BOM than one created on a Mac OS platform (where the byte order mark is UnicodeBig). The byte order and the BOM of an existing document are preserved when the document is edited and saved. This behavior can be changed in Oxygen XML Editor from the Encoding preferences page (on page 123).

Unicode Fallback Font Support

Oxygen XML Editor provides fonts for most common Unicode ranges. However, if you use special symbols or characters (on page 778) that are not included in the default fonts, they will be rendered as small rectangles. A fallback font is a reserve typeface that contains symbols for as many Unicode characters (on page 770) as possible. When a display system encounters a character that is not part of the range of any of the available fonts, Oxygen XML Editor will try to find that symbol in a fallback font.

Example of a Scenario Where a Fallback Font is Needed

Suppose that you need to insert the wheelchair symbol (_wheelchair_ symbol) into your content in a Windows operating system. By default, Oxygen XML Editor does not render this symbol correctly since it is not included in any of the default fonts. It is included in Segoe UI Symbol, but this font is not part of the default fonts that come with Oxygen XML Editor. To allow Oxygen XML Editor to recognize and render the symbol correctly, you can add Segoe UI Symbol as a fallback font.

Adding a Fallback Font in Windows (7 or Later)

To add a fallback font to the Oxygen XML Editor installation, use the following procedure:

1. Start Windows Explorer and browse to the [OXYGEN_INSTALL_DIR]/jre/lib/fonts directory.
2. Create a directory called fallback (if it is not already there).
3. Copy a font file (True Type Font - TTF) that includes the special characters into this directory.

   **Tip:** You could, for example, copy the *Segoe UI Symbol Regular* font from `C:\Windows\Fonts`.

4. Restart Oxygen XML Editor for the changes to take full effect.

**Result:** Whenever Oxygen XML Editor finds a character that cannot be rendered using its standard fonts, it will look for the glyph in the fonts stored in the *fallback* folder.

### Adding a Fallback Font in Other Platforms

For Mac OS X or other platforms, you could use the following approach:

1. Use a font editor (such as *FontForge*) to combine multiple true type fonts into a single custom font.
2. Install the font file into the dedicated font folder of your operating system.
3. In Oxygen XML Editor, open the *Preferences* dialog box (*Options > Preferences*) *(on page 79)*, go to *Appearance > Fonts*.
4. Click the *Choose* button for the particular editing mode (*Editor* for *Text* mode) and select your custom font from the drop-down list in the subsequent dialog box.
5. Restart Oxygen XML Editor for the font changes to take full effect.

**Related Information:**

- [Unicode Support](on page 770)
- [Inserting Special Characters with the Character Map](on page 778)

### Special Character Support in Author Mode

Oxygen XML Editor offers support for bidirectional text, such as Arabic or Hebrew languages that require right-to-left scripts, certain Asian languages (such as Devanagari, Bengali, Gurmukhi, Gujarati, Oriya, Tamil, Telugu, Kannada, Malayalam, Sinhala, Thai, Khmer), or other special characters (such as combining characters). To achieve this, Oxygen XML Editor implements the *Unicode Bidirectional Algorithm*, as specified by the Unicode Consortium. The text arrangement is similar to what you get in a modern HTML browser. The final text layout is rendered according to the directional CSS properties matching the XML elements and the Unicode directional formatting codes.

By default, when navigating bidirectional text with the arrow keys in *Author* mode, pressing the right arrow key moves the cursor in the writing direction and the left arrow moves it in the opposite
direction. However, if the Arrow keys move the cursor in the writing direction option (on page 137) in the Cursor Navigation preferences page is not selected, pressing the right arrow will simply move the cursor to the right (and the left arrow moves it to the left), regardless of the text direction.

**Tip:** If you experience performance issues when editing documents that contain bidirectional text, you could try one of the following solutions:

- The Eclipse plugin distribution of Oxygen XML Editor is faster than the standalone version when working with bidirectional text.
- You could try changing the font. For example, you could try using the David font in Hebrew content. If it is not already installed in your operating system, this font is available at: https://www.microsoft.com/typography/fonts/family.aspx?FID=234. To change the font in Oxygen XML Editor, open the Preferences dialog box (Options > Preferences) (on page 79), go to Appearance > Fonts, and change the font using the Author default font option in the Fonts preferences page (on page 88).

For more information about the bidirectional text support in the Author mode, watch our video demonstration:

https://www.youtube.com/embed/IC0ahH1IS7s

Related Information:

- Special Character Support in Text Mode (on page 366)
- Special Character Support in Grid Mode (on page 394)
- Inserting Special Characters with the Character Map (on page 778)

### Controlling the Text Direction Using XML Markup

Oxygen XML Editor Supports the following CSS properties that control the direction of text:

<table>
<thead>
<tr>
<th>Property</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>direction</td>
<td>Specifies the writing direction of the text. The possible values are ltr (the text direction is left to right), rtl (the text direction is right to left), and inherit (the direction property is inherited from the parent element).</td>
</tr>
<tr>
<td>unicodeBidi</td>
<td>Used along with the direction property to create levels of embedded text with different text directions in the same document. The possible values of this property are bidi-override (creates an additional level of embedding and forces all strong characters to the direction specified in the direction), embed (creates an additional level of...</td>
</tr>
</tbody>
</table>
embedding), normal (does not use an additional level of embedding), and inherit (the value of the unicodeBidi property is inherited from parent element).

For instance, to declare an element as being Right to Left, you could use a stylesheet like this:

XML File:

```xml
<article>
  <myRTLpara>RIGHT TO LEFT TEXT</myRTLPara>
</article>
```

Associated CSS File:

```css
myRTLpara{
  direction:rtl;
  unicode-bidi:embed;
}
```

Oxygen XML Editor recognizes the dir attribute on any XML document. The supported values are:

<table>
<thead>
<tr>
<th>Values</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ltr</td>
<td>The text from the current element is Left to Right, embedded.</td>
</tr>
<tr>
<td>rtl</td>
<td>The text from the current element is Right to Left, embedded.</td>
</tr>
<tr>
<td>lro</td>
<td>The text from the current element is Left to Right, embedded.</td>
</tr>
<tr>
<td>rlo</td>
<td>The text from the current element is Right to Left, embedded.</td>
</tr>
</tbody>
</table>

The following XML document types make use of the dir attribute with the above values:

- DITA
- DocBook
- TEI
- XHTML

**Note:** When the inline element (on page 3283) tags are visible, the text in the line is arranged according to the BIDI algorithm after replacing the tags symbols with Object Replacement Characters. This makes it possible to get a different text arrangement when viewing a document in the No Tags mode versus viewing it in the Full Tags mode.

Controlling the Text Direction Using the Unicode Direction Formatting Codes

These Unicode Direction Formatting Codes codes can be embedded in the edited text, specifying a text direction and embedding. However, it is not recommended to use them in XML as they are zero width characters, making it hard to debug the text arrangement.
Table 35. Directional Formatting Codes

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>U+202A</td>
<td>LEFT-TO-RIGHT EMBEDDING</td>
</tr>
<tr>
<td>U+202B</td>
<td>RIGHT-TO-LEFT EMBEDDING</td>
</tr>
<tr>
<td>U+202D</td>
<td>LEFT-TO-RIGHT OVERRIDE</td>
</tr>
<tr>
<td>U+202E</td>
<td>RIGHT-TO-LEFT OVERRIDE</td>
</tr>
<tr>
<td>U+202C</td>
<td>POP DIRECTIONAL FORMATTING CODE</td>
</tr>
<tr>
<td>U+200E</td>
<td>LEFT-TO-RIGHT MARK</td>
</tr>
<tr>
<td>U+200F</td>
<td>RIGHT-TO-LEFT MARK</td>
</tr>
</tbody>
</table>

To insert Unicode Direction Formatting Codes, use the Character Map (on page 778) dialog box. To easily find such a code, you can either enter directly the hexadecimal value, or use the Details tab to enter the codes name.

Oxygen XML Editor offers the support for bi-directional text in all the side views (Outline view (on page 347), Attributes view (on page 426) and so on) and text fields.

Special Character Support in Text Mode

If bidirectional text, such as Arabic or Hebrew languages, certain Asian languages (such as Devanagari, Bengali, Gurmukhi, Gujarati, Oriya, Tamil, Telugu, Kannada, Malayalam, Sinhala, Thai, Khmer), or other special characters (such as combining characters) are detected in a document, Oxygen XML Editor displays a Special Characters Detected dialog box that prompts you to Enable or Disable support for these special characters (you can also enable or disable the support for special characters in the Open preferences page (on page 155).

Enabled

If you choose to enable support for special characters and as long as you chose a font (on page 88) that supports the particular special characters, this means that the glyphs will be rendered properly in Text mode and the cursor navigation mechanism will recognize them as they are shown.

Example: The À glyph could be inserted using a consecutive combination of two characters (U+00C2 followed by U+0323). With the special characters support enabled and the SansSerif font chosen, that glyph will be rendered properly (a capital letter A with a circumflex above it and a dot below) and you can navigate through the glyph in one step (pressing the right/left arrow key once).
Restriction: When support for special characters is enabled, the folding support (on page 840) is not available.

Disabled

If you choose to disable support for special characters, it may affect text rendering, cursor navigation, and text management operations. However, this is helpful if you need to open very large documents (on page 781) since disabling the bidirectional editing support can enhance performance.

Example: The Ậ glyph could be inserted using a consecutive combination of two characters (U+00C2 followed by U+0323). With the special characters support disabled, that glyph may or may not be rendered properly and when navigating through the glyph, it would take two steps (pressing the right/left arrow key twice).

Restriction: Bidirectional content in the Text mode cannot be rendered using Bold or Italic.

Related Information:

- Special Character Support in Author Mode (on page 620)
- Special Character Support in Grid Mode (on page 394)
- Inserting Special Characters with the Character Map (on page 778)

Special Character Support in Grid Mode

If you are editing documents with a bidirectional text orientation or other special characters (such as combining characters), you can change the way the text is rendered and edited in the grid cells by using the Change Text Orientation (Ctrl + Shift + O (Command + Shift + O on OS X)) action that is available from the Edit menu in the Grid editing mode. Use this action to switch from the default left to right text orientation to the right to left orientation, and vice versa.

Note: This change applies only to the text from the cells, and not to the layout of the grid editor.

Figure 264. Default left to right text orientation
Inserting Special Characters with the Character Map

Oxygen XML Editor includes a **Character Map** for inserting special characters. It can also be used to find the decimal, hexadecimal, or *character entity* equivalent for a particular character or symbol.

**Inserting Special Characters**

To insert a special character at the current location within a document, follow these steps:

1. Open the Character Map.
2. Select the character you wish to insert.
3. Click on the character to insert it at the current location in your document.
1. Open the **Character Map** dialog box (*on page 779*) by selecting **More symbols** from the 💡 Symbols drop-down menu on the toolbar (if this button is not displayed, right-click in the toolbar area, select **Configure Toolbars** and chosen to display the Symbols toolbar (*on page 273*)).

2. Find the symbol you want to insert and double-click it (or select it and click **Insert**).

   **Tip:** The most recently used characters and some of the most common characters are listed when you click the 💡 Symbols drop-down button so you can easily insert any of those characters by simply selecting it from the drop-down.

### Finding the Decimal, Hexadecimal, or Character Entity Equivalent

You can see the hexadecimal value for any character that is already inserted in your document by placing the cursor right after the character and you can see its value in the status bar at the bottom of the application.

For other characters, or to find the decimal equivalent, or even the *character entity* equivalent, following these steps:

1. Open the **Character Map** dialog box (*on page 779*) by selecting **More symbols** from the 💡 Symbols drop-down menu on the toolbar (if this button is not displayed, right-click in the toolbar area, select **Configure Toolbars** and chosen to display the Symbols toolbar (*on page 273*)).

2. Find the symbol and select it. You can use the filters and the **Search** field at the top of the dialog box to narrow the search.

3. Click the **Details** tab on top of the preview window to see the decimal, hexadecimal, and description of the character. The *character entity* equivalent (both its decimal and hexadecimal values) are displayed at the bottom of the dialog box.

### Character Map Dialog Box

Figure 266. Character Map Dialog Box
The **Character Map** dialog box allows you to visualize all characters that are available in a particular font, pick the character you need, and insert it in the document you are editing. It includes the following fields and sections:

**Font**

Use this drop-down list to choose the font for which you want to display characters.

**Unicode Block**

Use this drop-down list to only see a certain range of characters. This will filter the number of characters displayed, showing only a contiguous range of characters corresponding to the selected block. Unassigned characters are displayed as empty squares.

**Search**

Use this filter to search for a character by one of the following attributes:

- hexadecimal
- decimal
- description

⚠️ **Note:** Selecting *description* opens the Details tab (on page 781). If you enter a character description in the Search field, *description* is selected automatically.
Character Table Section

The characters that are available to be inserted are listed in two tabs:

- **Compact** - Matrix-like table that displays a visual representation of the characters.
- **Details** - Displays the available characters in a tabular format, presenting their decimal and hexadecimal value along with their description.

Recently Used Characters Section

Displays the symbols that you have used recently and you can also select one from there to insert it in the current document.

Character Mode Section

The next section of the dialog box allows you to select how you want the character to appear in the Text editing mode. You can choose between the following:

- **Character**
- **Character entity - decimal**
- **Character entity - hexadecimal**

You can see the character or code that will be inserted in Text mode next to the selections in this section and a box on the right side of the dialog box allows you to see the character that will be inserted in Author mode. You can also see the name and range name of a character either at the bottom of the dialog box, or in a tooltip when hovering the cursor over the character.

Press the **Insert** button to insert the selected character in the current editor at cursor position. You will see the character in the editor if the **editor font (on page 88)** is able to render it. The **Copy** button copies it to the clipboard without inserting it in the editor.

**Note:** The **Character Map** dialog box cannot be used to insert Unicode characters in the **Grid editor (on page 392)**. Accordingly, the **Insert** button of the dialog box will be disabled if the current document is edited in **Grid** mode.

Related Information:

- Working with Special Characters and Encoding (on page 769)
Loading Large Documents

When you open a document with a file size larger than the limit configured in Open preferences (on page 155), Oxygen XML Editor prompts you to choose whether you want to optimize the loading of the document for large files or for huge files.

Figure 267. Large File Prompt Dialog Box

If your file has a size smaller than 300 MB, the recommended approach is Optimize loading for large files (on page 782). For documents that exceed 300 MB, the recommended approach is Optimize loading for huge files (on page 783).

Optimize Loading for Large Files

If you open a document that exceeds the limit configured in Open preferences (on page 155) (the default limit is 30 MB), a dialog box will be displayed (on page 781) prompting you to choose whether you want to optimize the loading of the document for large files or for huge files. If you choose the Optimize loading for large files option (typically recommended for files smaller than 300 MB), a special memory optimization is implemented so that the total memory allocated for the application is not exceeded. A temporary buffer file is created on disk and the available free disk space needs to be at least double the size of the file you want to open.

When opening a large file in this optimized editing environment, some editing features are disabled, including:

- The file can only be opened in Text mode.
- The automatic validation (on page 1082) is not available.
- The XPath filter is disabled in the Find/Replace dialog box (on page 740).
- The bidirectional Unicode support (right-to-left writing) is disabled.
• The **Format and indent the document on open** option ([on page 157](#)) is automatically deselected for non-XML documents. For XML documents, the formatting is done while optimizing the memory usage by ignoring the options set in the **Format preferences page** ([on page 157](#)).

• Localizations for the results of an **XPath expression** ([on page 2182](#)) will be less precise.

**Related Information:**

• [Optimize Loading for Huge Files](#) (on page 783)

---

**Optimize Loading for Huge Files**

If you open a document that exceeds the limit configured in **Open preferences** ([on page 155](#)) (the default limit is 30 MB), a dialog box will be displayed ([on page 781](#)) prompting you to choose whether you want to optimize the loading of the document for large files or for huge files. If you choose the **Optimize loading for huge files** option (typically recommended for files larger than 300 MB), the file is split in multiple pages (each approximately 1MB in size). Each page is individually loaded (and edited) in **Text** mode by using a special horizontal slider located at the top of the editing area.

![Figure 268. Huge File Editor Horizontal Slider](#)

When opening a file in this special huge file editor, some editing features are disabled, including:

• For XML files, the UTF-8, UTF-16, ASCII, Windows-1252, and ISO 8859-1 encodings are supported. No other encoding is supported.

• The file can only be opened in **Text** editing mode.

• The **automatic validation** ([on page 1082](#)) is disabled.

• The XPath filter is disabled in the **Find/Replace** dialog box ([on page 740](#)).

• The bidirectional Unicode support (right-to-left writing) is disabled.

• The **Format and indent the document on open** option ([on page 157](#)) is automatically deselected for non-XML documents. For XML documents, the formatting is done while optimizing the memory usage by ignoring the options set in the **Format preferences page** ([on page 157](#)).

• The **Outline view** ([on page 347](#)) is not supported.

• The file content is soft wrapped by default.

• The **Find/Replace** dialog box ([on page 740](#)) only supports the **Find** action.

• Saving changes is only possible if the **Safe save** option ([on page 156](#)) (in the **Save** preferences page) is enabled.

• The undo operation is not available if you go to other pages and come back to the modified page.
Documents with Long Lines

When working with documents that contain lines of text that exceed the boundaries of your monitor, you might want to see the text wrapped. To do so, use one of the following methods:

- Press **Ctrl + Shift + Y (Command + Shift + Y on OS X)** to toggle the line wrap feature for the current document only.
- Select the **Line wrap** (on page 128) option in the **Text** preferences page to apply the line wrap to all documents.

Features that Might be Affected by Wrapping Lines of Text

Documents that contain thousands of characters per line can affect the performance of Oxygen XML Editor Text mode. When a certain line length limit is reached (controlled from the **Optimize loading for documents with lines longer than (Characters)** (on page 156) option), Oxygen XML Editor prompts you to wrap the lines of text. By doing so, the following features may be affected to maintain a reasonable level of productivity:

- The editor uses the **Monospaced** font.
- You cannot set font styles.
- **Automatic validation** (on page 1082) is disabled.
- **Automatic spell checking** (on page 764) is disabled.
- When editing XML documents, the **XPath** field is disabled in the **Find/Replace** dialog box (on page 740).
- Less precise localization for executed XPath expressions in XML documents. The XPath executions use SAX sources for a smaller memory footprint. It is recommended to use XPath 2.0 instead of XPath 1.0 because it features an increased execution speed and uses a smaller memory footprint. Running an XPath expression requires additional memory of about 2 or 3 times the size of the document on disk.
Handling Read-Only Files

If a file marked as read-only is opened in Oxygen XML Editor you can by default perform modifications to it. This behavior is controlled by the Can edit read only files option (on page 126). When attempting to save such files you will be prompted to save them to another location.

You can check out the read-only state of the file by looking in the Properties view (on page 705). If you modify the file properties from the operating system and the file becomes writable, you can modify it on the spot without having to reopen it.

The read-only state is marked with a lock decoration that appears in the editor tab and specified in the tooltip for a certain tab.

Scratch Buffer

The Scratch Buffer view can be used for storing fragments of arbitrary text during the editing process. It can be used to drop bits of paragraphs (including arbitrary XML markup fragments) while rearranging and editing the document and also to drag and drop fragments of text from the Scratch Buffer to the editor panel. The Scratch Buffer is basically a text area offering XML syntax highlight. The view’s contextual menu contains basic edit actions such as Cut, Copy, and Paste.

If the view is not displayed, it can be opened by selecting it from the Window > Show View menu.

Compare Files or Directories

Oxygen XML Editor provides a simple means of performing file and folder comparisons. You can see the differences in your files and folders and merge the changes. You can also use the file comparison to compare fragments or files inside zip-based archives.

There are two types of comparison tools: Compare Directories or Compare Files. These utilities are available from the Tools menu or can be opened as stand-alone applications from the Oxygen XML Editor installation folder (diffDirs.exe and diffFiles.exe).

Starting the Tools from a Command Line

The comparison tools can also be started by using command-line arguments. In the installation folder there are two executable shells (diffFiles.bat and diffDirs.bat on Windows, diffFiles.sh and diffDirs.sh on OS X and Linux). To specify files or directories to compare, you can pass command-line arguments to each of these shells. The arguments can point to file or folder paths in directories or archives (supported formats: zip, docx, and xlsx).

Directory Comparison Example
To start a comparison between the two directories (on page 808), use the following construct:

```
diffDirs.bat/diffDirs.sh [directory path 1] [directory path 2]
```

If you pass only one argument, you are prompted to manually choose the second directory or archive.

For example, to start a comparison between two Windows directories, the command line would look like this:

```
diffDirs.bat "c:\documents new" "c:\documents old"
```

**Tip:** If there are spaces in the path names, surround the paths with quotes.

**File Comparison Example**

To start a comparison between 2 or 3 files (on page 2770), use the following construct:

```
diffFiles.bat/diffFiles.sh [path to left file] [path to right file] [path to base file].
```

If three files are specified, the tool will start in the 3-way comparison mode (on page 2774). If only two files are specified, the tool will start in the 2-way comparison mode (on page 2771). The first specified file will be added to the left panel in the comparison tool, the second file to the right panel, and the optional third file will be the base (ancestor) file used for a 3-way comparison. If you pass only one argument, you are prompted to manually choose another file.

For example, to do a 3-way comparison on Windows, the command line would look like this:

```
diffFiles.bat "c:\docs\file 1" "c:\docs\file 2" c:\docs\basefile
```

**Tip:** If there are spaces in the path names, surround the paths with quotes.

**Compare Files**

The **Compare Files** tool can be used to compare files or XML file fragments. The tool provides a mechanism for comparing two files or fragments, as well as the mechanism for a three-way comparison. The utility is available from the **Tools** menu or can be opened as a stand-alone application from the Oxygen XML Editor installation folder (`diffFiles.exe`).

Figure 269. Compare Files Tool
Two-Way Comparisons

The Compare Files tool can be used to compare the differences between two files or XML fragments.

Compare Files

To perform a two-way comparison, follow these steps:

1. Open a file in the left panel and the file you want to compare it to in the right panel. You can specify the path by using the text field, the history drop-down, or the browsing actions in the · Browse drop-down menu.

   **Step Result:** The selected files are opened in the two side-by-side editors. A text editing mode is used to offer a better view of the differences.

2. To highlight the differences between the two files, click the Perform File Differencing button from the toolbar.

3. You can use the drop-down menu on the left side of the toolbar to change the algorithm (on page 2773) for the operation.

4. You can also use the Diff Options button to access the Files Comparison preferences page where you can choose to ignore certain types of markup and configure various options.
5. If you are comparing XML documents using the XML Fast or XML Accurate algorithms, you can enter an XPath 2.0 expression in the Ignore nodes by XPath text field to ignore certain nodes from the comparison.

The resulting comparison will show you differences between the two files. The line numbers on each side and colored marks on the right-side vertical stripe help you to quickly identify the locations of the differences. Adjacent changes are grouped into blocks of changes. This layout allows you to easily identify and focus on a group of related changes.

Figure 270. Two-Way Differences

Highlighting Colors

The differences are also highlighted in several colors, depending on the type of change, and dynamic lines connect the compared fragments in the middle section between the two panes. The highlighting colors can be customized in the Files Comparison / Appearance preferences page (on page 242), but the default colors and their shades mean the following:

- **Pink** - Identifies modifications on either side.
- **Gray** - Identifies an addition of a node in the left side (your outgoing changes).
- **Blue** - Identifies an addition of a node in the right side (incoming changes).
- **Lighter Shade** - Identifies blocks of changes that can be merged in their entirety.
- **Darker Shade** - Identifies specific changes within the blocks that can be merged more precisely.

Comparing Fragments (Copy/Paste)

To compare XML file fragments, you need to copy and paste the fragments you want to compare into each side, without selecting a file. If a file is already selected, you need to close it using the Close (Ctrl + W (Command + W on OS X)) button, before pasting the fragments. Other notes for pasting fragments:

- As long as the fragment is more than 10 characters, the application will attempt to automatically detect the content type. It can detect the following types: XML, DTD, CSS, JSON, and Markdown (if it starts with #). If one of those content types is detected, the fragments will be displayed with syntax highlights.
- If you save modified fragments, a dialog box opens that allows you to save the changes as a new document.

Navigate Differences

To navigate through differences, do one of the following:
• Use the navigation buttons on the toolbar (or in the Compare menu).
• Select a block of differences by clicking its small colored marker in the overview ruler located in the right-most part of the window. At the top of the overview ruler there is a success indicator that turns green where there are no differences, or red if differences are found.
• Click a colored area in between the two text editors.

Editing Actions

You can edit the files directly in either editing pane. The two editors are constantly synchronized and the differences are refreshed when you save the modified document or when you click the Perform File Differencing button.

A variety of actions are available on the toolbar (on page 2783) and in the various menus (on page 2787) (these same actions are also available in the contextual menu in both editing panes). The tool also includes some inline actions to help you merge, copy, or remove changes. When you select a change, the following inline action widgets are available, depending on the type of change:

- Append left change to right and Append right change to left
  Copies the content of the selected change from one side and appends it on the other, according to the content of the corresponding change. As a result, the side where the arrow points to will contain the changes from both sides.

- Copy change from left to right and Copy change from right to left
  Replaces the content of a change from one side with the content of the corresponding change from the other side.

- Remove change
  Rejects the change on the particular side and preserves the particular content on the other side.

Two-Way Diff Algorithms

Oxygen XML Editor offers the following two-way diff algorithms to compare files or fragments:

- **Auto** - Selects the most appropriate algorithm, based on the compared content and its size (selected by default).
- **Characters** - Computes the differences at character level, meaning that it compares two files or fragments looking for identical characters. This algorithm is not available when the file comparison is in Author mode.
- **Words** - Computes the differences at word level, meaning that it compares two files or fragments looking for identical words. This algorithm is not available when the file comparison is in Author mode.
• **Lines** - Computes the differences at line level, meaning that it compares two files or fragments looking for identical lines of text. This algorithm is not available when the file comparison is in **Author** mode.

• **Syntax Aware** - Computes differences for known file types or fragments. This algorithm splits the files or fragments into sequences of *tokens* and computes the differences between them. The meaning of a *token* depends on the type of compared files or fragments.

Known file types include those listed in the *New* dialog box, such as XML file types (XSLT files, XSL-FO files, XSD files, RNG files, NVDL files, etc.), XQuery file types (*.xquery, .xq, .xqy, .xqm extensions), DTD file types (*.dtd, *.ent, *.mod extensions), TEXT file type (*.txt extension), or PHP file type (*.php extension).

For example:

- When comparing XML files or fragments, a token can be one of the following:
  - The name of an XML tag
  - The `<` character
  - The `/>` sequence of characters
  - The name of an attribute inside an XML tag
  - The `=` sign
  - The `"` character
  - An attribute value
  - The text string between the start tag and the end tag (a text node that is a child of the XML element corresponding to the XML tag that encloses the text string)
- When comparing plain text, a token can be any continuous sequence of characters or any continuous sequence of whitespaces, including a new line character.

• **XML Fast** - Comparison that works well on large files or fragments, but it is less precise than **XML Accurate**.

• **XML Accurate** - Comparison that is more precise than **XML Fast**, at the expense of speed. It compares two XML files or fragments looking for identical XML nodes.

### Three-Way Comparisons

Oxygen XML Editor also includes a three-way comparison feature to help you solve conflicts and merge changes between multiple modifications. It is especially helpful for teams who have multiple authors editing and committing the same documents. It provides a comparison between a local change, another change, and the original base revision. Some additional advantages include:

- Visualize and merge content that was modified by you and another member of your team.
- Marks differences correctly even when the document structure is rearranged.
- Allows you to merge XML-relevant modifications.
To perform a three-way comparison, follow these steps:

1. Open a file in the left panel and the file you want to compare it to in the right panel. You can specify the path by using the text field, the history drop-down, or the browsing actions in the Browse drop-down menu.

   **Step Result:** The selected files are opened in the two side-by-side editors. A text editing mode is used to offer a better view of the differences.

2. Click the Three-Way Comparison button on the toolbar and select the base file in the Base field. You can specify the path by using the text field, the history drop-down, or the browsing actions in the Browse drop-down menu.

3. To highlight the differences, click the Perform File Differencing button on the toolbar.

4. You can use the drop-down menu on the left side of the toolbar to change the algorithm (on page 2773) for the operation.

5. You can also use the Diff Options button to access the Files Comparison preferences page where you can choose to ignore certain types of markup and configure various options.

The resulting comparison will show you differences between the two files, as well as differences between either of them and the base (ancestor) file. The line numbers on each side and colored marks on the right-side vertical stripe help you to quickly identify the locations of the differences. Adjacent changes are grouped into blocks of changes.

![Three-Way Comparison Diagram](image)

**Highlighting Colors**
The differences are also highlighted in several colors, depending on the type of change, and dynamic lines connect the compared fragments in the middle section between the two panes. The highlighting colors can be customized in the Files Comparison / Appearance preferences page (on page 242), but the default colors and their shades mean the following:

- **Pink** - Identifies blocks of changes that include conflicts.
- **Gray** - Identifies your outgoing changes that do not include conflicts.
- **Blue** - Identifies incoming changes that do not include conflicts.
- **Lighter Shade** - Identifies blocks of changes that can be merged in their entirety.
- **Darker Shade** - Identifies specific changes within the blocks that can be merged more precisely.

**Navigate Differences**

To navigate through differences, do one of the following:

- Use the navigation buttons on the toolbar (or in the Compare menu).
- Select a block of differences by clicking its small colored marker in the overview ruler located in the right-most part of the window. At the top of the overview ruler there is a success indicator that turns green where there are no differences, or red if differences are found.
- Click a colored area in between the two text editors.

**Editing Actions**

You can edit the files directly in either editing pane. The two editors are constantly synchronized and the differences are refreshed when you save the modified document or when you click the Perform File Differencing button.

A variety of actions are available on the toolbar (on page 2783) and in the various menus (on page 2787) (these same actions are also available in the contextual menu in both editing panes). The tool also includes some inline actions to help you merge, copy, or remove changes. When you select a change, the following inline action widgets are available, depending on the type of change:

- **Append left change to right** and **Append right change to left**
  
  Copies the content of the selected change from one side and appends it on the other, according to the content of the corresponding change. As a result, the side where the arrow points to will contain the changes from both sides.

- **Copy change from left to right** and **Copy change from right to left**
  
  Replaces the content of a change from one side with the content of the corresponding change from the other side.

- **Remove change**
Rejects the change on the particular side and preserves the particular content on the other side.

**Three-Way Diff Algorithms**

Oxygen XML Editor offers the following three-way diff algorithms to compare files:

- **Auto** - Selects the most appropriate algorithm, based on the compared content and its size (selected by default).
- **Lines** - Computes the differences at line level, meaning that it compares two files or fragments looking for identical lines of text. This algorithm is not available when the file comparison is in **Author** mode.
- **XML Fast** - Comparison that works well on large files or fragments, but it is less precise than **XML Accurate**.
- **XML Accurate** - Comparison that is more precise than **XML Fast**, at the expense of speed. It compares two XML files or fragments looking for identical XML nodes.

**Second-Level Comparisons**

For both two-way and three-way comparisons, Oxygen XML Editor automatically performs a second-level comparison for the **Lines**, **XML Fast**, and **XML Accurate** algorithms. After the first comparison is finished, the second-level comparisons for the **Lines** algorithm is processed on text nodes using a word level comparison, meaning that it looks for identical words. For the **XML Fast** and **XML Accurate** algorithms, the second-level comparison is processed using a syntax-aware comparison (on page 2774), meaning that it looks for identical tokens. This second-level comparison makes it easier to spot precise differences and you can merge or reject the precise modifications.

![Second-Level Diff Comparison](image)

**Note:** If a modified text fragment contains XML markup (such as processing instructions, XML comments, CData, or elements), the second-level comparison will not automatically be performed. In this case you can manually select a second-level comparison by doing a word level or character level comparison.

To do a word level comparison, select **Show word level details** from the contextual menu or **Compare** menu.

![Word Level Comparison](image)
To do a character level comparison, select **Show Character Level details** from the contextual menu or **Compare** menu.

Figure 275. Character Level Comparison

**Author Visual Mode**

The **Compare Files** tool includes an **Author** mode that displays the files in a visual mode similar to the **Author** editing mode in *Oxygen XML Editor/Author*. This makes it easier to see how the compared changes will look in the final output. This visual mode is available when the compared files are detected as being XML. To determine whether the files are initially opened in the merge tool's **Text** or **Author** mode, it detects the **Initial Edit Mode** in the **Document Type Association** configuration (on page 96) and the mode the files were last opened in *Oxygen XML Editor/Author*.

**Note:** This mode is not available if the **Enable file comparison in Author mode** option (on page 239) is not selected in the **Diff > Files Comparison** preferences page.

This visual mode includes unique features such as a **Tags Display Mode** drop-down button (on page 2785) on the toolbar that allows you to select the amount of tags to display in this visual mode. This mode also presents differences that were made using the **Track Changes** feature (although the **Track Changes** feature is not available in the comparison tool).

Figure 276. File Comparison Tool - Author Mode
Author Mode Algorithms

The visual Author mode offers the following diff algorithms to compare files:

- **Auto** - Selects the most appropriate algorithm, based on the compared content and its size (selected by default).
- **XML Fast** - Comparison that works well on large files or fragments, but it is less precise than **XML Accurate**.
- **XML Accurate** - Comparison that is more precise than **XML Fast**, at the expense of speed. It compares two XML files or fragments looking for identical XML nodes.

Author Mode Second-Level Comparisons

The visual Author mode automatically performs a second-level comparison for the **XML Fast** and **XML Accurate** algorithms. After the first comparison is finished, the second-level comparisons is processed on text nodes using a word level comparison, meaning that it looks for identical words. This second-level comparison makes it easier to spot precise differences and you can merge or reject the precise modifications.

Related Information:

- Files Comparison Preferences Page (on page 239)
Starting File Comparison Tool from a Command Line

The file comparison tool can be started by using command-line arguments. In the installation folder there is an executable shell (`diffFiles.bat` on Windows, `diffFiles.sh` on OS X and Linux). To specify the files to compare, you can pass command-line arguments using the following construct:
`diffFiles.bat/diffFiles.sh [path to left file] [path to right file] [path to 3-way base file].`

If three files are specified, the tool will start in the **3-way comparison mode** (on page 2774). If only two files are specified, the tool will start in the **2-way comparison mode** (on page 2771). The first specified file will be added to the left panel in the comparison tool, the second file to the right panel, and the optional third file will be the base (ancestor) file used for a 3-way comparison. If you pass only one argument, you are prompted to manually choose another file.

If you want to launch the file comparison tool from an external application with specified files and you want the file browsing buttons at the top of both panels to be hidden, you should use the `-ext` argument as the first command. There are some additional arguments that are allowed and to see all the details for the command-line construct, type `diffFiles.bat --help` in the command line.

**Example:**

To do a 3-way comparison, the command line might look like this:

**Windows**

```
diffFiles.bat "c:\docs\file 1" "c:\docs\file 2" c:\docs\basefile
```

**Tip:** If there are spaces in the path names, surround the paths with quotes.

**Linux**

```
_diffFiles.sh home/file1 home/file2 home/basefile
```

**Mac OS X**

```
_diffFiles.sh documents/file1 documents/file2 documents/basefile
```

How to Integrate the File Comparison Tool with Git

The file comparison tool can be integrated with Git clients. It requires that you configure your `.gitconfig` file and then you can simply start the tool from the command line.
To integrate the **Compare Files** tool with your Git client, follow this procedure:

1. Use one of the following methods to instruct your Git client to use the **Oxygen Compare Files** tool:
   - **Manual Configuration** - Locate your Git user-specific configuration file (.gitconfig) and edit it with a text editor (for example, in Windows, the .gitconfig file is most likely located in your user home directory). Add (or replace) the following lines:
     ```
     [diff]
     tool = oxygendiff
     [merge]
     tool = oxygendiff
     [difftool "oxygendiff"]
     cmd = '[pathToOxygenInstallDir]/diffFiles.exe' -ext $REMOTE $LOCAL $LOCAL
     [mergetool "oxygendiff"]
     cmd = '[pathToOxygenInstallDir]/diffFiles.exe' -ext $LOCAL $REMOTE $BASE $MERGED
     trustExitCode = true
     [difftool]
     prompt = false
     ```
   - **Command Line Configuration** - To automatically configure the .gitconfig file, you can run the following commands from a command line:
     ```
     git config --global diff.tool oxygendiff
     git config --global difftool.oxygendiff.cmd '[Oxygen install dir]/diffFiles.exe' -ext $REMOTE $LOCAL $LOCAL
     git config --global merge.tool oxygendiff
     git config --global mergetool.oxygendiff.cmd '[Oxygen install dir]/diffFiles.exe' -ext $LOCAL $REMOTE $BASE $MERGED
     git config --global mergetool.oxygendiff.trustExitCode true
     ```
   
   **Note:** For Mac OS X, the cmd lines would start with something like: `sh "/Applications/Oxygen XML Editor/diffFiles.sh"`. For Linux, the cmd lines would start with something like: `sh "/Oxygen XML Editor/diffFiles.sh"`.

2. To start the **Compare Files** tool and see a comparison of changes for a particular file, run the following command from a command line:
git difftool [PathToFile]

Tip: If the file you want to compare has conflicts, you can start the Compare Files tool as a merge conflict resolution tool by running the following command:

git mergetool [PathToFile]

For more information about the Git difftool syntax, see https://git-scm.com/docs/git-difftool.

For more information about the Git mergetool syntax, see https://git-scm.com/docs/git-mergetool.

How to Integrate the File Comparison Tool with SourceTree

The file comparison tool can be integrated with SourceTree so that you can use it to compare changes. The advantages of doing this include:

• The Oxygen Compare Files tool presents the files side-by-side and makes it much easier to determine real changes.
• The Oxygen Compare Files tool includes XML comparison algorithms.
• The Oxygen Compare Files tool includes various options for configuring the comparison.
• The Oxygen Compare Files tool allows you to navigate through changes.

To integrate the Compare Files tool with SourceTree, follow this procedure, depending on your operating system:

Windows

1. In SourceTree, go to Tools > Options.
2. Go to the Diff tab.
3. In the External Diff/Merge section, configure the settings as follows:
   • External Diff Tool - Select Custom.
   • Diff Command - Enter the path of the Oxygen diffFile.exe file (for example: c:\Programs\Oxygen XML Editor 19\diffFiles.exe).
   • Arguments - Enter -ext $REMOTE $LOCAL $LOCAL.
   • Merge Tool - Select Custom.
   • Diff Command - Enter the path of the Oxygen diffFile.exe file (for example: c:\Programs\Oxygen XML Editor 19\diffFiles.exe).
   • Arguments - Enter -ext $LOCAL $REMOTE $BASE $MERGED.
4. Click OK.

Result: In SourceTree, you can now compare file changes with the Oxygen Compare Files tool by simply selecting External Diff from the contextual menu, Actions menu, or Ctrl+D.
Mac OS X

1. In SourceTree, go to SourceTree > Preferences.
2. Go to the Diff tab.
3. In the External Diff/Merge section, configure the settings as follows:
   - **External Diff Tool** - Select Custom.
   - **Diff Command** - Enter a command-line argument to launch the Oxygen diffFiles.sh file (for example: sh "/Applications/Oxygen XML Editor/diffFiles.sh").
   - **Arguments** - Enter -ext $REMOTE $LOCAL $LOCAL.
   - **Merge Tool** - Select Custom.
   - **Diff Command** - Enter a command-line argument to launch the Oxygen diffFiles.sh file (for example: sh "/Applications/Oxygen XML Editor/diffFiles.sh").
   - **Arguments** - Enter -ext $LOCAL $REMOTE $BASE $MERGED.
4. Close the preferences dialog box.

**Result:** In SourceTree, you can now compare file changes with the Oxygen Compare Files tool by simply selecting External Diff from the contextual menu or Actions menu.

**Toolbar and Contextual Menu Actions of the Compare Files Tool**

The toolbar of the Compare Files tool contains operations that can be performed on the source and target files or XML fragments. Many of the actions are also available in the contextual menu.

**Figure 277. Compare Toolbar**

The following actions are available:

**Algorithm**

This drop-down menu allows you to select one of the following diff algorithms (depending on whether it is a two-way or three-way comparison):

- **Auto** - Selects the most appropriate algorithm, based on the compared content and its size (selected by default).
• **Characters** - Computes the differences at character level, meaning that it compares two files or fragments looking for identical characters. This algorithm is not available when the file comparison is in **Author** mode.

• **Words** - Computes the differences at word level, meaning that it compares two files or fragments looking for identical words. This algorithm is not available when the file comparison is in **Author** mode.

• **Lines** - Computes the differences at line level, meaning that it compares two files or fragments looking for identical lines of text. This algorithm is not available when the file comparison is in **Author** mode.

• **Syntax Aware** - Computes differences for the file types or fragments known by Oxygen XML Editor, taking the syntax (the specific types of tokens) into consideration. This algorithm is not available when the file comparison is in **Author** mode.

• **XML Fast** - Comparison that works well on large files or fragments, but it is less precise than **XML Accurate**.

• **XML Accurate** - Comparison that is more precise than **XML Fast**, at the expense of speed. It compares two XML files or fragments looking for identical XML nodes.

---

**Diff Options**

Opens the **Files Comparison** preferences page (on page 239) where you can configure various options.

**Three-Way Comparison**

Toggle action that allows you to perform a three-way comparison between the two files displayed in the two editing panes and a base (ancestor) file.

**Perform Files Differencing**

Looks for differences between the two files displayed in the left and right side panels.

**Synchronized scrolling**

Toggles synchronized scrolling on or off so that a selected difference can be seen on both sides of the application window. This option is on by default.

**Ignore Whitespaces**

Enables or disables the whitespace ignoring feature. Ignoring whitespace means that before performing the comparison, the application normalizes the content and trims its leading and trailing whitespaces. This option is not available when the file comparison is in **Author** mode.

**Format and Indent Both Files** *(Ctrl + Shift + P (Command + Shift + P on OS X))*
Formats and indents both files before comparing them. Use this option for comparisons that contain long lines that make it difficult to spot differences. This option is not available when the file comparison is in Author mode.

Note: When comparing two JSON files, the Format and Indent Both Files action will automatically sort the keys in both files the same to make it easier to compare.

Tags Display Mode

Allows you to select the amount of markup to be displayed in the Author visual mode (on page 2778). You can choose between: Full Tags with Attributes, Full Tags, Block Tags, Inline Tags, Partial Tags, or No Tags.

Copy Change from Right to Left

Copies the selected difference from the file in the right panel to the file in the left panel.

Copy All Changes from Right to Left

Copies all changes from the file in the right panel to the file in the left panel.

Next Block of Changes (Ctrl + Period (Command + Period on OS X))

Jumps to the next block of changes. This action is not available when the cursor is positioned on the last change block or when there are no changes.

Note: A change block groups one or more consecutive lines that contain at least one change.

Previous Block of Changes (Ctrl + Comma (Command + Comma on OS X))

Jumps to the previous block of changes. This action is not available when the cursor is positioned on the first change block or when there are no changes.

Next Change (Ctrl + Shift + Period (Command + Shift + Period on OS X))

Jumps to the next change from the current block of changes. When the last change from the current block of changes is reached, it highlights the next block of changes. This action is not available when the cursor is positioned on the last change or when there are no changes.

Previous Change (Ctrl + Shift + Comma (Command + Shift + M on OS X))

Jumps to the previous change from the current block of changes. When the first change from the current block of changes is reached, it highlights the previous block of changes. This action is not available when the cursor is positioned on the first change or when there are no changes.

Copy All Changes from Left to Right
Copies all changes from the file in the left panel to the file in the right panel.

Copy Change from Left to Right

Copies the selected difference from the file in the left panel to the file in the right panel.

Ignore Nodes by XPath

You can use this text field to enter an XPath expression (on page 2182) to ignore certain nodes from the comparison. It will be processed as XPath version 2.0. You can also enter the name of the node to ignore all nodes with the specified name (for example, if you want to ignore all ID attributes from the document, you could simply enter @id). This field is only available when comparing XML documents using the XML Fast or XML Accurate algorithms.

Note: If an XPath expression is specified in the Ignore nodes by XPath option (on page 241) in the Diff / File Comparison preferences page, that one is used as a default when the application is started. If you then enter an expression in this field on the toolbar, this one will be used instead of the default. If you delete the expression from this field, neither will be used.

First Change (Ctrl + B (Command + B on OS X))

Jumps to the first change.

Base

Available for three-way comparisons (on page 2774). It is the base file that will be compared with the files opened in the left and right editors. You can specify the path to the file by using the text field, its history drop-down, or the browsing actions in the Browse drop-down menu.

Left-Side (Source) File

You can specify the path to the file to be compared on the left side (source) by using the text field, its history drop-down, or the browsing actions in the Browse drop-down menu.

Save

Saves the changes made in the source (left-side) file.

Reload

Reloads the source (left-side) file.

Close

Closes the source (left-side) file.

Right-Side (Target) File
You can specify the path to the file to be compared on the right side (target) by using the
text field, its history drop-down, or the browsing actions in the 
Browse drop-down menu.

Save
Saves the target (right-side) file.

Reload
Reloads the target (right-side) file.

Close
Closes the target (right-side) file.

Compare Files Tool Menus

The menus in the Compare Files tool contain some of the same actions that are on the toolbar, as well as some common actions that are identical to the same actions in the Oxygen XML Editor menus. The menu actions include:

File Menu

Source > Open
Browses for a file that will be displayed in the left panel.

Source > Open URL
Browses for a remote file that will be displayed in the left panel.

Source > Open File from Archive
Browses an archive for a file that will be displayed in the left panel.

Source > Reload
Reloads the file in the left panel.

Source > Save
Saves the changes made to the file in the left panel.

Source > Save As
Allows you to choose a destination to save the file in the left panel.

Source > Close
Closes the file in the left panel.

Target > Open
Browses for a file that will be displayed in the right panel.

**Target > Open URL**
Browses for a remote file that will be displayed in the right panel.

**Target > Open File from Archive**
Browses an archive for a file that will be displayed in the right panel.

**Target > Reload**
Reloads the file in the right panel.

**Target > Save**
Saves the changes made to the file in the right panel.

**Target > Save As**
Allows you to choose a destination to save the file in the right panel.

**Target > Close**
Closes the file in the right panel.

**Base > Open**
Browses for a file that will be compared with both files in a three-way comparison *(on page 2774).*

**Base > Open URL**
Browses for a remote file that will be compared with both files in a three-way comparison *(on page 2774).*

**Base > Open File from Archive**
Browses an archive for a file that will be compared with both files in a three-way comparison *(on page 2774).*

**Close (Ctrl + W (Command + W on OS X))**
Closes the application.

**Edit Menu**

**Cut**
Cut the selection from the currently focused editor panel to the clipboard.

**Copy**
Copy the selection from the currently focused editor panel to the clipboard.

**Paste**
Paste content from the clipboard into the currently focused editor panel.

Select all
Selects all content in the currently focused editor panel.

_undo
Undo changes in the currently focused editor panel.

Redo
Redo changes in the currently focused editor panel.

Find Menu

_find/replace
Perform find/replace operations in the currently focused editor panel.

Find Next
Go to the next match using the same options as the last find operation. This action runs in both editor panels.

Find Previous
Go to the previous match using the same options as the last find operation. This action runs in both editor panels.

Compare Menu

Three-Way Comparison
Toggle action that allows you to perform a three-way comparison between the two files displayed in the two editing panes and a base (ancestor) file.

Perform Files Differencing
Looks for differences between the two files displayed in the left and right side panels.

Next Block of Changes (Ctrl + Period (Command + Period on OS X))
Jumps to the next block of changes. This action is not available when the cursor is positioned on the last change block or when there are no changes.

Note: A change block groups one or more consecutive lines that contain at least one change.

Previous Block of Changes (Ctrl + Comma (Command + Comma on OS X))
Jumps to the previous block of changes. This action is not available when the cursor is positioned on the first change block or when there are no changes.

Next Change (Ctrl + Shift + Period (Command + Shift + Period on OS X))

Jumps to the next change from the current block of changes. When the last change from the current block of changes is reached, it highlights the next block of changes. This action is not available when the cursor is positioned on the last change or when there are no changes.

Previous Change (Ctrl + Shift + Comma (Command + Shift + M on OS X))

Jumps to the previous change from the current block of changes. When the first change from the current block of changes is reached, it highlights the previous block of changes. This action is not available when the cursor is positioned on the first change or when there are no changes.

Last Change (Ctrl + E (Command + E on OS X))

Jumps to the last change.

First Change (Ctrl + B (Command + B on OS X))

Jumps to the first change.

Copy All Changes from Right to Left

Copies all changes from the file in the right panel to the file in the left panel.

Copy All Changes from Left to Right

Copies all changes from the file in the left panel to the file in the right panel.

Copy Change from Right to Left

Copies the selected difference from the file in the right panel to the file in the left panel.

Copy Change from Left to Right

Copies the selected difference from the file in the left panel to the file in the right panel.

Show Word Level Details

Provides a word-level comparison of the selected change.

Show Character Level Details

Provides a character-level comparison of the selected change.

Format and Indent Both Files (Ctrl + Shift + P (Command + Shift + P on OS X))

Formats and indents both files before comparing them. Use this option for comparisons that contain long lines that make it difficult to spot differences.


Note: When comparing two JSON files, the **Format and Indent Both Files** action will automatically sort the keys in both files the same to make it easier to compare.

**Options Menu**

**Preferences**

Opens the preferences dialog box that includes numerous pages of options that can be configured.

**Menu Shortcut Keys**

Opens the **Menu Shortcut Keys** option page where you can configure keyboard shortcuts available for menu items.

**Reset Global Options**

Resets options to their default values. Note that this option appears only when the tool is executed as a stand-alone application.

**Import Global Options**

Allows you to import an options set that you have previously exported.

**Export Global Options**

Allows you to export the current options set to a file.

**Help Menu**

**Help (F1)**

Opens a Help dialog box that displays the User Manual at a section that is appropriate for the context of the current cursor position.

**Use Online Help**

If this option is selected, when you select Help or press F1 while hovering over any part of the interface, Oxygen XML Editor attempts to open the help documentation in online mode. If this option is not selected or an internet connection fails, the help documentation is opened in offline mode.

**Report problem**

Opens a dialog box that allows the user to write the description of a problem that was encountered while using the application. You can change the URL where the reported problem is sent by using the `com.oxygenxml.report.problems.url` system property. The report is sent in XML format through the `report` parameter of the POST HTTP method.

**Support Center**
Opens the Oxygen XML Editor Support Center web page in a browser.

Compare Directories

The Compare Directories tool can be used to compare and manage changes to files and folders within the structure of your directories. The utility is available from the Tools menu or can be opened as a stand-alone application from the Oxygen XML Editor installation folder (diffDirs.exe).

Figure 278. Compare Directories Tool

Starting the Tool from a Command Line

The directory comparison tool can also be started by using command-line arguments. In the installation folder there is an executable shell (diffDirs.bat on Windows, diffDirs.sh on OS X and Linux). To specify the directories to compare, you can pass command-line arguments using the following construct: diffDirs.bat/diffDirs.sh [directory path 1] [directory path 2].

If you pass only one argument, you are prompted to manually choose the second directory or archive.

Example:

To do a comparison between two directories, the command line would look like this:

Windows
To perform a directory comparison, follow these steps:

1. Select a folder in the left panel and the folder you want to compare it to in the right panel. You can specify the path by using the text field, the history drop-down, or the **Browse for local directory** action in the **Browse** drop-down menu.

   **Step Result:** The selected directory structures are opened in the two side-by-side panels.

2. To highlight the differences between the two folders, click the **Perform Directories Differencing** button from the toolbar.

3. You can also use the **Diff Options** button to access the **Directories Comparison preferences page** (on page 242) where you can configure various options.

To compare the content of two archives, follow these steps:

1. Use the **Browse for archive file** action in the **Browse** drop-down menu to select the archives in the left and right panels.

2. By default, the supported archives are not treated as directories and the comparison is not performed on the files inside them. To make Oxygen XML Editor treat supported archives as directories, select the **Look in archives** option (on page 243) in the **Directories Comparison preferences page**.

3. To highlight the differences, click the **Perform Directories Differencing** button from the toolbar.

The directory comparison results are presented using two tree-like structures showing the files and folders, including their name, size, and modification date. A column that contains graphic symbols separates the two tree-like structures. The graphic symbols can be one of the following:

- An X symbol, when a file or a folder exists in only one of the compared directories.
A ≠ symbol, when a file exists in both directories but the content differs. The same sign appears when a collapsed folder contains differing files.

The color used for the symbol and the directory or file name can be customized in the **Directories Comparison / Appearance preferences page** (on page 244). You can double-click lines marked with the ≠ symbol to open a **Compare Files** window, which shows the differences between the two files.

The directories that contain files that differ are expanded automatically so that you can focus directly on the differences. You can merge the contents of the directories by using the copy actions. If you double-click (or press **Enter** on a line with a pair of files, Oxygen XML Editor starts a **file comparison** (on page 2770) between the two files, using the **Compare Files** tool.

### Related Information:

- **Compare Files (on page 2770)**

### Toolbar and Contextual Menu Actions of the Compare Directories Tool

The toolbar of the **Compare Directories** tool contains operations that can be performed on the compared directory structure. Some of the toolbar actions are also available in the contextual menu.

**Figure 279. Compare toolbar**

![Compare toolbar](Image)

**Toolbar Actions**

1. **Perform Directories Differencing**
   
   Looks for differences between the two directories displayed in the left and right side of the application window.

2. **Perform Files Differencing**
   
   Opens the **Compare Files tool** (on page 2770) that allows you to compare the currently selected files.

3. **Copy Change from Right to Left**
   
   Copies the selected change from the right side to the left side (if there is no file/folder in the right side, the left file/folder is deleted).

4. **Copy Change from Left to Right**
Copies the selected change from the left side to the right side (if there is no file/folder in the left side, the right file/folder is deleted).

**Binary Compare**

Performs a byte-level comparison on the selected files.

**Diff Options**

Opens the Directory Comparison preferences page (on page 242) where you can configure various options.

**Show Only Modifications**

Displays a more uncluttered file structure by hiding all identical files.

**File and folder filters**

Differences can be filtered using three combo boxes: Include files, Exclude files, and Exclude folders. They come with predefined values and are editable to allow custom values. All of them accept multiple comma-separated values and the * and ? wildcards. For example, to filter out all JPEG and GIF image files, edit the Exclude files filter box to read * .jpeg, *.png. Each filter includes a drop-down menu with the latest 15 filters applied.

**Contextual Menu Actions**

**Perform Files Differencing**

Opens the Compare Files tool (on page 2770) that allows you to compare the currently selected files.

**Binary Compare**

Performs a byte-level comparison on the selected files.

**Copy Change from Right to Left**

Copies the selected difference from the file in the right panel to the file in the left panel.

**Copy Change from Left to Right**

Copies the selected difference from the file in the left panel to the file in the right panel.

**Open**

If the action is invoked on a file, the selected file is opened in Oxygen XML Editor. If the action is invoked on a directory, the selected directory is opened in the default file browser for your particular operating system.

**Open in System Application**
Opens the selected file in the system application that is associated with that type of file. The action is available when launching the **Compare Directories** tool from the **Tools** menu in Oxygen XML Editor.

**Show in Explorer**

Opens the default file browser for your particular operating system with the selected file highlighted.

### Compare Directories Tool Menus

The menus in the **Compare Directories** tool contain some of the same actions that are on the toolbar, as well as some common actions that are identical to the same actions in the Oxygen XML Editor menus. The menu actions include:

**File Menu**

- **Close (Ctrl + W (Command + W on OS X))**
  
  Closes the application.

**Compare Menu**

- **Perform Directories Differencing**

  Looks for differences between the two directories displayed in the left and right side of the application window.

- **Perform Files Differencing**

  Opens the **Compare Files tool (on page 2770)** that allows you to compare the currently selected files.

- **Copy Change from Right to Left**

  Copies the selected change from the right side to the left side (if there is no file/folder in the right side, the left file/folder is deleted).

- **Copy Change from Left to Right**

  Copies the selected change from the left side to the right side (if there is no file/folder in the left side, the right file/folder is deleted).

**Options Menu**

- **Preferences**
Opens the preferences dialog box that includes numerous pages of options that can be configured.

**Menu Shortcut Keys**

Opens the **Menu Shortcut Keys** option page where you can configure keyboard shortcuts available for menu items.

**Reset Global Options**

Resets options to their default values. Note that this option appears only when the tool is executed as a stand-alone application.

**Import Global Options**

Allows you to import an options set that you have previously exported.

**Export Global Options**

Allows you to export the current options set to a file.

**Help Menu**

**Help (F1)**

Opens a **Help** dialog box that displays the User Manual at a section that is appropriate for the context of the current cursor position.

**Use Online Help**

If this option is selected, when you select Help or press F1 while hovering over any part of the interface, Oxygen XML Editor attempts to open the help documentation in online mode. If this option is not selected or an internet connection fails, the help documentation is opened in offline mode.

**Report problem**

Opens a dialog box that allows the user to write the description of a problem that was encountered while using the application. You can change the URL where the reported problem is sent by using the `com.oxygenxml.report.problems.url` system property. The report is sent in XML format through the `report` parameter of the POST HTTP method.

**Support Center**

Opens the Oxygen XML Editor Support Center web page in a browser.

**Compare Images**

You can use the **Compare Directories** tool to compare images. If you double-click a line that contains two different images, the **Compare images** window is displayed. This dialog box presents the images
in the left and right sides, scaled to fit the available view area. You can use the contextual menu actions to scale the images to their original size or scale them down to fit in the view area.

The supported image types are: GIF, JPG, JPEG, PNG, and BMP.

**Compare Directories Against a Base (3-Way)**

The **Compare Directories Against a Base (3-way)** tool allows you to perform three-way comparisons on directories to help you identify and merge changes between multiple modifications of the same directory structure. It is especially helpful for teams that have multiple authors contributing documents to the same directory system. It offers information about conflicts and changes, and includes actions to easily merge, accept, overwrite, or ignore changes to the directory system.

**How to Perform 3-Way Directory Comparisons**

To perform a 3-way directories comparison, follow these steps:

1. Select **Compare Directories Against a Base (3-way)** from the Tools menu.
   
   **Step Result:** This opens a dialog box that allows you to select the 3 file sets that will be used for the comparison.

   Figure 280. Compare Directories Against a Base File Set Chooser

2. Select the file sets to be compared:
   
   - **Base directory** - This is the original (base) file set before any modifications were made by your or others.
   - **Directory with your changes** - This is the file set with changes that you have made. This file set will be displayed in the left panel in the comparison tool.
   - **Directory with changes made by others** - This is the file set with changes made by others that you want to merge with your changes. This file set will be displayed in the right panel in the comparison tool.
3. Click the **Compare** button to compare the file sets and open the comparison and merge tool.
4. Use the features and actions described in the next section to identify and merge the changes.

### 3-Way Directory Comparison and Merge Tool

**Figure 281. Comparison and Merge Tool**

The 3-way directory comparison and merge tool includes the following information, features, and actions:

**Number of Changes and Conflicts**

The first thing you see in top-left corner of the tool is grand total of all the changes made by others, changes made by you, and the number of conflicts.

**Filter Buttons**

In the top-right corner you can use the toggle buttons to filter the list of modifications:

✈️ **Show all files**

Use this button to show all modified and unmodified files, as well as conflicts.

✈️ **Show only files modified by you and others**
Filters the list to show all files that have been modified, including conflicts.

**Show only files modified by others**
Filters the list to only show the files that were modified by others.

**Show only files modified by you**
Filters the list to only show the files that were modified by you.

**Show only conflicting files**
Filters the list to only show files that contain conflicts.

**List of Files Panel**
This panel shows the list of files in the compared file sets based upon the filter button that is selected. This panel includes the following sortable columns:

- **Name** - The file names.
- **Status** - An icon that represents the file status. Red icons indicate some sort of conflict. Gray icons indicate modifications made by you. Blue icons indicate modifications made by others.
- **Description** - A description of the file status.
- **Merge Action** - This column provides a drop-down menu for each file that allows you to choose some merge actions depending upon its status. A default action is always set to **Automatically merge** the changes made by others with your changes. If there is a conflict, the default is **<Select action>** and you are required to make a selection. Click this column to access the drop-down menu where you can make a selection. The same actions are available in the contextual menu.

You can click a file to open it in the file comparison panel (the file from your file set is shown in the left panel while the file from the file set with changes made by others is shown in the right panel). For image files, the comparison panel shows a preview of the image. For other binary files, a preview is not available and you will just see its status.

**File Comparison Panels**
If you click a file in the top panel, the file is opened in this file comparison section. The file from your file set is shown in the left panel and the file from the other file set is shown in the right panel.

**Note:** If Oxygen XML Editor does not recognize the file type, a dialog box will be displayed that allows you to select the type of editor you want it to be associated with for this comparison (if you want Oxygen XML Editor to remember this association, you can select the **Associate file type with editor** option at the bottom of the dialog box).

This panel includes the following information and toolbar actions:
File Path

The first thing you see in this panel is the file path where merge actions will be applied if you make changes.

× Close

Closes the file comparison panel.

Algorithm Drop-Down Menu

This drop-down menu allows you to select one of the following diff algorithms to be used for file comparisons:

- **Auto** - Selects the most appropriate algorithm, based on the compared content and its size (selected by default).
- **Lines** - Computes the differences at line level, meaning that it compares two files or fragments looking for identical lines of text. This algorithm is not available when the file comparison is in **Author** mode.
- **XML Fast** - Comparison that works well on large files or fragments, but it is less precise than **XML Accurate**.
- **XML Accurate** - Comparison that is more precise than **XML Fast**, at the expense of speed. It compares two XML files or fragments looking for identical XML nodes.

Diff Options

Opens the Files Comparison preferences page (on page 239) where you can configure various options.

Perform Files Differencing

Looks for differences between the two files displayed in the left and right side panels.

Synchronized scrolling

Toggles synchronized scrolling. When toggled on, a selected difference can be seen in both panels.

Ignore Whitespaces

Enables or disables the whitespace ignoring feature. Ignoring whitespace means that before performing the comparison, the application normalizes the content and trims its leading and trailing whitespaces. This option is not available when the file comparison is in **Author** mode.
### Tags Display Mode

Allows you to select the amount of markup to be displayed in the Author visual mode. You can choose between: Full Tags with Attributes, Full Tags, Block Tags, Inline Tags, Partial Tags, or No Tags.

### Copy Change from Right to Left

Copies the selected difference from the file in the right panel to the file in the left panel.

### Copy All Changes from Right to Left

Copies all changes from the file in the right panel to the file in the left panel.

### Next Block of Changes (Ctrl + Period (Command + Period on OS X))

Jumps to the next block of changes. This action is not available when the cursor is positioned on the last change block or when there are no changes.

**Note:** A change block groups one or more consecutive lines that contain at least one change.

### Previous Block of Changes (Ctrl + Comma (Command + Comma on OS X))

Jumps to the previous block of changes. This action is not available when the cursor is positioned on the first change block or when there are no changes.

### Next Change (Ctrl + Shift + Period (Command + Shift + Period on OS X))

Jumps to the next change from the current block of changes. When the last change from the current block of changes is reached, it highlights the next block of changes. This action is not available when the cursor is positioned on the last change or when there are no changes.

### Previous Change (Ctrl + Shift + Comma (Command + Shift + M on OS X))

Jumps to the previous change from the current block of changes. When the first change from the current block of changes is reached, it highlights the previous block of changes. This action is not available when the cursor is positioned on the first change or when there are no changes.

### First Change (Ctrl + B (Command + B on OS X))

Jumps to the first change.

Left-Side File (Your changes)
Above the panel you can see the file path and the following two buttons:

**Save**

Saves changes made to the file.

**Reload**

Reloads the file.

**Right-Side File (Changes made by others)**

Above the panel you can see the file path and the following two buttons:

**Reload**

Reloads the file.

**Displaying Changes in the File Comparison Panels**

The line numbers on each side and colored marks on the right-side vertical stripe help you to quickly identify the locations of the differences. Adjacent changes are grouped into blocks of changes.

Figure 282. File Comparison Panels

The differences are also highlighted in several colors, depending on the type of change, and dynamic lines connect the compared fragments in the middle section between the two panes. The highlighting colors can be customized in the Files Comparison / Appearance preferences page (on page 242), but the default colors and their shades mean the following:

- **Pink** - Identifies modifications on either side.
- **Gray** - Identifies an addition of a node in the left side (your outgoing changes).
- **Blue** - Identifies an addition of a node in the right side (incoming changes).
- **Lighter Shade** - Identifies blocks of changes that can be merged in their entirety.
- **Darker Shade** - Identifies specific changes within the blocks that can be merged more precisely.

**Direct Editing Actions in the File Comparison Panels**

In addition to selecting merge actions from the drop-down menus in the Merge Action column in the top panel, you can also edit the files directly in the left pane (your local changes). The two editors are constantly synchronized and the differences are refreshed.
when you save the modified document (Save button or Ctrl+S) or when you click the Perform File Differencing button.

A variety of actions are available in the contextual menu in both editing panes. The tool also includes some inline actions to help you merge, copy, or remove changes. When you select a change, the following inline action widgets are available, depending on the type of change:

- **Append right change to left**
  
  Copies the content of the selected change from the right side and appends it on the left side.

- **Copy change from right to left**
  
  Replaces the content of a change in the left side with the content of the change in the right side.

- **Remove change**
  
  Removes the change from the left side.

Any time you save manual changes (Save button or Ctrl+S), the selection in the Merge Action column in the top panel automatically changes to Use merged and a copy of the original file is kept so that you can revert to the original file if necessary. To discard your manual changes and revert to your original changes, select a different action in the Merge Action drop-down menu.

**Open Merged Files**

If you select this option, all the files that will be modified by the merge operation will be opened in the editor after the operation is finished.

**Applying Changes**

When you click the Apply button, all the merge actions you have selected and the changes you have made will be processed.

If there are unresolved conflicts (conflicts where no merge action is selected in the Merge Action drop-down menu), a dialog box will be displayed that allows you to choose how to solve the conflicts. You can choose between the following:

- **Keep your changes** - If you select this option and then click Apply, your local changes will be preserved for the unresolved conflicts.

- **Overwrite your changes** - If you select this option and then click Apply, your local changes will be overwritten with the changes made by others, for the unresolved conflicts.
• **Cancel** - You can click the **Cancel** button to go back to the merge tool to resolve the conflicts individually.

**Cancelling Changes**

If you click the **Cancel** button at the bottom of the merge tool, all the changes you made in the tool will be lost.

**Author Visual Mode**

The **Comparison and Merge** tool includes an **Author** mode that displays the files in a visual mode similar to the **Author** editing mode in *Oxygen XML Editor/Author*. This makes it easier to see how the compared changes will look in the final output. This visual mode is available when the compared files are detected as being XML. To determine whether the files are initially opened in the merge tool's **Text** or **Author** mode, it detects the Initial Edit Mode in the **Document Type Association** configuration (on page 96) and the mode the files were last opened in *Oxygen XML Editor/Author*.

**Note**: This mode is not available if the **Enable file comparison in Author mode** option (on page 239) is not selected in the **Diff > Files Comparison** preferences page.

This visual mode includes unique features such as the **Tags Display Mode** drop-down button (on page 818) on the toolbar that allows you to select the amount of tags to display in this visual mode. This mode also presents differences that were made using the **Track Changes** feature (although the **Track Changes** feature is not available in the comparison tool).

Figure 283. File Comparison Tool - Author Mode
Author Mode Algorithms

The visual Author mode offers the following diff algorithms to compare files:

- **Auto** - Selects the most appropriate algorithm, based on the compared content and its size (selected by default).
- **XML Fast** - Comparison that works well on large files or fragments, but it is less precise than XML Accurate.
- **XML Accurate** - Comparison that is more precise than XML Fast, at the expense of speed. It compares two XML files or fragments looking for identical XML nodes.

Author Mode Second Level Comparisons

The visual Author mode automatically performs a second level comparison for the XML Fast and XML Accurate algorithms. After the first comparison is finished, the second level comparisons is processed on text nodes using a word level comparison, meaning that it looks for identical words. This second level comparison makes it easier to spot precise differences and you can merge or reject the precise modifications.

Related Information:

- Compare Directories (on page 808)
- Compare Files (on page 2770)

Viewing Status Information

Status information generated by operations such as schema detection, manual validation, automatic validation, and transformations are fed into the Information view, allowing you to monitor how the operation is being executed.

Figure 284. Information view messages
Messages contain a timestamp, the name of the thread that generated it and the actual status information. The number of displayed messages can be controlled with the Maximum number of lines option (on page 260) in the Views preference page.

To make the view visible, select Window > Show View > Information.

Editor Highlights

An editor highlight is a text fragment emphasized by a colored background.

Highlights are generated in both Text and Author mode when the following actions generate results:

- Find/Replace in Files (on page 745)
- Find/Replace (on page 740)
- Open/Find Resource (on page 733)
- Find All
- Find All Elements (on page 751)
- XPath in Files (on page 341)
- Search References (on page 884)
- Search Declarations (on page 884)

By default, Oxygen XML Editor uses a different color for each type of highlight (XPath in Files, Find/Replace, Search References, Search Declarations, etc.) You can customize these colors and the maximum number of highlights displayed in a document on the Editor preferences page (on page 125). The default maximum number of highlights is 10000.
You can navigate the highlights in the current document by using the following methods:

- Clicking the markers from the range ruler, located at the right side of the editor pane.
- Clicking the Next and Previous buttons (_whitespace) from the bottom of the range ruler, located at the right side of the editor pane.

  **Note:** When there are multiple types of highlights in the document, the Next and Previous buttons (_whitespace) navigate through highlights of the same type.

- Clicking the messages displayed in the Results view (on page 357) at the bottom of the editor.

To remove the highlights, you can do the following:

- Click the ✖️ Remove all button from bottom of the range ruler, located at the right side of the editor pane.
- Close the results tab at the bottom of the editor that contains the output of the action that generated the highlights.
- Click the ✖️ Remove all button on the right side of the Results panel (on page 357) at the bottom of the editor.

  **Note:** Use the 📝 Highlight all results in editor button (on the right side of the Results panel) to either display all the highlights or hide them.

### Printing a Document

Printing is supported in Text, Author, and Grid modes.

The Print (Ctrl + P (Command + P on OS X)) action that is available from File menu displays a series of dialog boxes that allow you to configure print settings. After defining the settings in each dialog box, click OK to continue to the next one.

A Print Preview action is also available in the File menu. It first opens a Page Setup dialog box where you can define some paper, orientation, and margin settings. After you click OK, it displays the Print Preview dialog box where you can see a preview of how the document will look when it is printed.

Figure 285. Print Preview Dialog Box
The main window is split in three sections:

- **Preview area** - Displays the formatted document page as it will appear on printed paper.
- **Left stripe** - The left-side stripe that displays a list of thumbnail pages. Clicking any of them displays the page content in the main preview area.
- **Toolbar** - The toolbar area at the top that contains controls for printing, page settings, page navigation, print scaling, and zoom.

**Other Printing Features**

- If you are printing a document that is opened in the **Author** visual editing mode, you can use the **CSS print media type (on page 2481)** to change the styling in the printed output.
- If you are printing a document that is opened in **Author** mode and it contains **Tracked Changes (on page 941)**, you can print (or print preview) a copy of the document as if all changes have been accepted by switching the **Track Changes Visualization Mode (on page 946)** to **View Final**.
• If you are printing a document that is opened in **Text** mode and line numbers are displayed (the **Show line numbers** option (on page 128) is selected), the printed output will include the line numbers.

• If you are printing an XML document that is opened in **Text** mode and the **folding support** (on page 840) is activated (the **Enable folding** option (on page 128) is selected), the printed output will include the current **folded** state. Note that this applies to printing an entire document and not selections within the document.

• If you are printing an XML document that is opened in **Text** mode and a block of content is selected, you have the ability to print only the selection of text rather than the entire document. When you invoke the print action with a block of content selected in **Text** mode, a dialog box will be presented that offers you the choice to print the selection or the entire document.
Editing Documents

Oxygen XML Editor includes built-in frameworks for the most popular XML document types (DITA, DocBook, TEI, XHTML, JATS) (on page 1537) with a full set of features (full editing support, document templates, enhanced CSS rendering, specific actions, validation, content completion, transformation scenarios, and more). In addition, Oxygen XML Editor provides support for editing numerous other types of documents (all XML document types and even some non-XML formats).

Each type of document has unique features and options and this chapter includes a large amount of information about editing numerous types of documents and various editing features that are provided in Oxygen XML Editor, including general information about editing XML documents in Text mode (on page 828), the visual Author mode (on page 893), and Grid mode (on page 886).

For extensive details about the DITA editing features included in Oxygen XML Editor, see the DITA Authoring chapter (on page 2981).

Related Information:

- Built-in XML Frameworks (Document Types) (on page 1537)

Editing XML Documents

The structure of an XML document and the required restrictions on its elements and their attributes are defined with an XML schema. This makes it easier to edit XML documents in the visual Author editing mode. For more information about schema association, see Associating a Schema to XML Documents (on page 1112).

Oxygen XML Editor includes fully supported built-in frameworks (on page 3282) for the most popular XML document types (DITA, DocBook, TEI, XHTML, JATS) (on page 1537) with a full set of features. These built-in frameworks are defined according to a set of rules and a variety of settings that improve editing capabilities for its particular file type. For extensive details about the DITA editing features included in Oxygen XML Editor, see the DITA Authoring chapter (on page 2981).

This section includes information about the user interface components and actions that are available in the various editing modes and numerous features to help you edit XML documents in any mode.
Related Information:

- Text Editing Mode (on page 303)
- Author Editing Mode (on page 402)
- Grid Editing Mode (on page 392)
- Built-in XML Frameworks (Document Types) (on page 1537)

Editing XML Documents in Text Mode

The Oxygen XML Editor Text editing mode is designed to be a simple, yet powerful, XML source editor. You can use this mode to edit XML code, markup, and text and it provides support to help you transform, and debug XML-based documents. It is similar to other common text editors, but Oxygen XML Editor also includes specialized editing actions, a powerful Content Completion Assistant (on page 844), a helpful Outline view (on page 347), and many other unique features.

To switch to this mode, select Text at the bottom of the editing area.

Navigating the Document Content in Text Mode

Oxygen XML Editor includes some useful features to help you navigate XML documents in Text mode.

Navigation Keyboard Shortcuts

- **Ctrl + CloseBracket (Command + CloseBracket on OS X)**
  
  Navigate to the next XML node.

- **Ctrl + OpenBracket (Command + OpenBracket on OS X)**
  
  Navigate to the previous XML node.

- **Ctrl + RightArrow (Command + RightArrow on OS X)**
  
  Navigate one word forward.

- **Ctrl + LeftArrow (Command + LeftArrow on OS X)**
  
  Navigate one word backward.

- **Ctrl + Home (Command + Home on OS X)**
  
  Position the cursor at the beginning of the document.
Ctrl + End (Command + End on OS X)
Position the cursor at the end of the document.

Navigating to a Modification

Oxygen XML Editor includes some actions that help you to quickly navigate to a particular modification. These navigation buttons are available in the main toolbar (they can also be accessed from the Find menu):

← Last Modification
Navigates to the last modification in any opened tab.

← Back
Navigates to the last selected editor tab or to the last selected element/content in the current tab. You can also go back after clicking on links in Text or Author mode.

→ Forward
Available after you use the Back button at least once, and it navigates in the opposite direction as the Back button.

Navigating with the Outline View

Oxygen XML Editor includes an Outline view (on page 347) that displays a hierarchical tag overview of the currently edited XML Document.

You can use this view to quickly navigate through the current document by selecting nodes in the outline tree. It is synchronized with the editor area, so when you make a selection in the Outline view, the corresponding nodes are highlighted in the editor area.

Figure 286. Outline View Navigation in Text Mode

Using the Breadcrumb to Navigate

A breadcrumb on the top stripe indicates the path from the document root element to the current element. It can also be used as a helpful tool to navigate to specific elements throughout the structure of the document.
Figure 287. Breadcrumb in Text Mode

The last element listed in the breadcrumb is the element at the current cursor position. The current element is also highlighted by a thin light blue bar for easy identification. Clicking an element from the breadcrumb selects the entire element and navigates to it in the editor area.

Navigating with the Go To Dialog Box

In Text mode, you can navigate precisely to a location in the document you are editing by using the Go to dialog box. To open this dialog box, press Ctrl+L (Command+L on OS X) or select Find > Go to.

Figure 288. Go to Dialog Box

The dialog box includes the following fields for specifying a specific navigation location:

- **Line**: Destination line in the current document.
- **Column**: Destination column in the current document.
- **Offset**: Destination offset relative to the beginning of document.

Navigating with Bookmarks

By using bookmarks, you can mark positions in an edited document so that you can return to it later. This is especially helpful for navigating through large documents or while editing multiple documents. You can place up to nine distinct bookmarks in any document. Shortcut keys are available to navigate to any of the marked positions (Ctrl+1 through Ctrl+9). There are also shortcuts for creating bookmarks (Ctrl+Shift+1 through Ctrl+Shift+9). You can also configure these shortcut keys in the Options > Menu Shortcut Keys (on page 248) menu.

Figure 289. Editor Bookmarks
To insert a *bookmark* in **Text** mode, do any of the following:

- Click in the vertical stripe on the left side of the editor (to the left of the line number).
- Press *(F9)* on your keyboard or use any of the specific bookmark creation shortcuts ((**Ctrl**+**Shift** +1 through **Ctrl**+**Shift**+9).
- Select the ![Create Bookmark](image) action from the **Edit > Bookmarks** menu.

To remove *bookmark* in **Text** mode, do either of the following:

- Left-click its icon in the vertical stripe.
- Right-click its icon on the vertical stripe and select **Remove** or **Remove all** (**Ctrl**+**F7** *(Command** +**F7** on OS X)).

To navigate to a specific *bookmark*, do either of the following:

- Use any of the specific bookmark navigation shortcuts (**Ctrl**+1 through **Ctrl**+9).
- Use one of the actions available on the **Edit > Bookmarks > Go to** menu.

**Tip:** The navigation shortcuts work even if the document where the bookmark was inserted has been closed. In this case, using the shortcut will automatically re-open the document.

**Smart Editing in Text Mode**

Oxygen XML Editor includes *smart editing* features to help you edit XML documents in **Text** mode. The following smart editing features are included:

- **Closing tag auto-expansion** - This feature helps save some keystrokes by automatically inserting a closing tag when you insert a complete start tag and the cursor is automatically placed between the start and end tags. For instance, after entering a start `<tag>`, the corresponding closing `</tag>` is automatically inserted and the cursor is placed between the two (`<tag>` | `</tag>`).

- **Auto-rename matching tag** - When you edit the name of a start tag, Oxygen XML Editor will mirror-edit the name of the matching end tag. This feature can be controlled from the **Content Completion** option page *(on page 166)*.

- **Auto-breaking the edited line** - The **Hard line wrap option** *(on page 159)* automatically breaks the edited line when its length exceeds the maximum line length defined for the format and indent operation *(on page 159)*.

- **Indent on Enter** - The **Indent on Enter** option *(on page 159)* indents the new line inserted when you press **Enter**.

- **Smart Enter** - The **Smart Enter** option *(on page 159)* inserts an empty line between the start and end tags. If you press **Enter** between a start and end tag, the action places the cursor in an indented position on the empty line between the lines that contain the start and end tag.
• **Double-click** - A double-click selects certain text, depending on the position of the click in the document:
  ◦ If the click position is on a start tag or end tag, then the element name is selected.
  ◦ If the click position is immediately after the opening quote or immediately before the closing quote of an attribute value, then the entire attribute value is selected.
  ◦ Otherwise, a double-click selects contiguous text.

• **Triple-click** - A triple-click selects entire regions of text, depending on the click position:
  ◦ If the click position is on a start or end tag, then the entire tag is selected, including the start and end tags, and the content in between.
  ◦ If the click position is after a start tag or before an end tag, then the entire content of the element without the start and end tags is selected.
  ◦ If the click position is before a start tag or after an end tag, then the entire tag is selected, including the start and end tags, and the content in between.
  ◦ If the click position is immediately before an attribute, then the entire attribute and its value is selected.
  ◦ If the click position is in between the opening and closing quotes of an attribute value, then the entire attribute value is selected.
  ◦ Otherwise, it selects the entire current line.

**Shortcut Actions in Text Mode**

Oxygen XML Editor includes numerous shortcut actions to help you edit content in the **Text** editing mode.

**Changing the Font Size (Zoom)**

The font size of the editor panel can be changed with the following actions that are available with shortcuts or in the **Document > Font size** menu:

**Increase editor font (Ctrl + NumPad+ (Command + NumPad+ on OS X) or Ctrl + MouseWheelForward (Windows/Linux))**

Increases the font size (zooms in) with one point for each execution of the action.

**Note:** For Mac OS X, if you activate the **Enable mouse-wheel zooming option (on page 126)** in the **Editor** preferences page, you can use **Command + MouseWheelForward** to increase the font size (zoom in). It is disabled by default due to the way inertia affects the mouse wheel on Mac OS X.

**Decrease editor font (Ctrl + NumPad- (Command + NumPad- on OS X) or Ctrl + MouseWheelBackwards (Windows/Linux))**

Decreases the font size (zooms out) with one point for each execution of the action.
Note: For Mac OS X, if you activate the Enable mouse-wheel zooming option (on page 126) in the Editor preferences page, you can use Command + MouseWheelBackwards to decrease the font size (zoom out). It is disabled by default due to the way inertia affects the mouse wheel on Mac OS X.

Normal editor font (Ctrl + 0 (Command + 0 on OS X))

Resets the font size to the value of the editor font set in the Fonts preferences page (on page 88).

Undo/Redo Actions

The typical undo and redo actions are available with shortcuts or in the Edit menu:

Undo (Ctrl + Z (Command + Z on OS X))

Reverses a maximum of 200 editing actions (configurable with the Undo history size option (on page 126) in the Editor preferences page) to return to the preceding state.

Note: Complex operations such as Replace All or Indent selection count as single undo events.

Redo (Ctrl + Y (Command + Shift + Z on OS X, Ctrl + Shift + Z on Linux/Unix))

Recreates a maximum of 100 editing actions that were undone by the Undo function.

Copy and Paste Actions

The typical copying and pasting actions are available with shortcuts or in the contextual menu (or the Edit menu):

Cut (Ctrl + X (Command + X on OS X))

Removes the current selected content from the document and places it in the clipboard.

Copy (Ctrl + C (Command + C on OS X))

Places a copy of the current selected content in the clipboard.

Paste (Ctrl + V (Command + V on OS X))

Inserts the current clipboard content into the document at the cursor position.

Select All (Ctrl + A (Command + A on OS X))

Selects the entire content of the current document.
Moving XML Nodes

You can use the following shortcuts to move XML elements or XSLT variables up or down in Text mode:

- **Ctrl + Alt + UpArrow (Command + Alt + UpArrow on OS X)**
  
  Moves the node up one line.

- **Ctrl + Alt + DownArrow (Command + Alt + DownArrow on OS X)**
  
  Moves the node down one line.

**Note:** The requirements for these node moving actions to work are as follows:

- The mechanism is designed to work without a selection. If you use these actions on a selection of content, it moves the entire selection. To make this mechanism work as intended, simply position the cursor somewhere on the line that you want to move.
- A start tag must be the first text occurrence on the line where the cursor is positioned.
- On the line where the element ends, only whitespaces are allowed after the end tag.

Miscellaneous Shortcut Actions in Text Mode

Oxygen XML Editor also includes the following other miscellaneous shortcut actions in Text mode:

- **Ctrl + Delete (Command + Delete on OS X)**
  
  Deletes the next word.

- **Ctrl + Backspace (Command + Backspace on OS X)**
  
  Deletes the previous word.

- **Ctrl + W (Command + W on OS X)**
  
  Cuts the previous word.

- **Ctrl + K (Command + K on OS X)**
  
  Cuts to end of line.

- **Ctrl + Single-Click (Command + Single-Click on OS X)**
  
  Use this shortcut to open any of the following:

  - Any absolute URL (URLs that have a protocol), regardless of their location in the document.
  - URI attributes such as: `schemaLocation`, `noNamespaceSchemaLocation`, `href` and others.
• Processing instructions used for associating resources, xml-models, xml-stylesheets.

**Ctrl + Shift + Y (Command + Shift + Y on OS X) (Document > Edit > Toggle Line Wrap)**

Enables or disables line wrapping. When enabled, if text exceeds the width of the displayed editor, content is wrapped so that you do not have to scroll horizontally.

**Related Information:**

• Frequently Used Shortcut Keys (on page 27)

---

**Editing XML Markup in Text Mode**

Oxygen XML Editor includes some useful actions that allow you to easily edit XML markup in **Text** mode. These actions are available in the **Refactoring** submenu of the contextual menu and in the **Document > Markup** menu, and many of the actions can also be done with simple keyboard shortcuts.

**Using the Breadcrumb**

A **breadcrumb** on the top stripe indicates the path from the document root element to the current element. It can also be used as a helpful tool to insert and edit specific elements in the document structure.

**Figure 290. Breadcrumb in Text Mode**

![Breadcrumb in Text Mode](image)

The last element listed in the **breadcrumb** is the element at the current cursor position. The current element is also highlighted by a thin light blue bar for easy identification. Clicking an element in the **breadcrumb** selects the entire element in the editor area. Also, each element provides a contextual menu with access to the following actions:

**Append Child**

Allows you to select an element (from a drop-down list) that is allowed by the associated schema and inserts it as a child of the current element.

**Insert Before**

Allows you to select an element (from a drop-down list) that is allowed by the associated schema and inserts it immediately before the current element, as a sibling.

**Insert After**
Allows you to select an element (from a drop-down list) that is allowed by the associated schema and inserts it immediately after the current element, as a sibling.

**Edit Attributes**
Opens an editing window that allows you to edit the attributes of the currently selected element.

**Toggle Comment**
Encloses the currently selected element in an XML comment, if the element is not already commented. If it is already commented, this action will remove the comment.

**Cut**
Removes the selected element and copies it to the clipboard.

**Copy**
Copies the selected element to the clipboard.

**Delete**
Deletes the currently selected element.

### Move Nodes
You can easily move XML nodes in the current document by using the following shortcut keys:

**Alt + UpArrow**
Moves the current node or selected nodes in front of the previous node.

**Alt + DownArrow**
Moves the current node or selected nodes after the subsequent node.

### Rename Elements
You can rename elements by using the following actions in the **Refactoring** submenu of the contextual menu (or from the **Document > Markup** menu):

**Rename Element**
The element from the cursor position, and any elements with the same name, can be renamed according with the options from the **Rename** dialog box.

**Rename Prefix (Alt + Shift + P (Command + Shift + P on OS X))**
The prefix of the element from the cursor position, and any elements with the same prefix, can be renamed according with the options from the **Rename** dialog box.
• If you select the **Rename current element prefix** option, the application will recursively traverse the current element and all its children. *For example*, to change the `xmlns:p1="ns1"` association in the current element to `xmlns:p5="ns1"`, if the `xmlns:p1="ns1"` association is applied on the parent element, then Oxygen XML Editor will introduce `xmlns:p5="ns1"` as a new declaration in the current element and will change the prefix from `p1` to `p5`. If `p5` is already associated with another namespace in the current element, then the conflict will be displayed in a dialog box. By pressing OK, the prefix is modified from `p1` to `p5` without inserting a new declaration.

• If you select the **Rename current prefix in all document** option, the application will apply the change on the entire document.

• To also apply the action inside attribute values, select the **Rename also attribute values that start with the same prefix** checkbox.

### Surround Content with Tags (Wrap)

You can surround a selection of content with tags (*wrap* the content) by using the following action in the **Refactoring** submenu of the contextual menu (or from the **Document > Markup** menu):

- **Surround with submenu**
  
  Presents a drop-down menu that allows you to choose a tag to surround a selected portion of content.

- **Surround with Tags (Ctrl + E (Command + E on OS X))**
  
  Allows you to choose a tag that encloses a selected portion of content. If there is no selection, the start and end tags are inserted at the cursor position.

  • If the **Position cursor between tags** option (on page 167) is selected in the **Content Completion** preferences page, the cursor is placed between the start and end tag.

  • If the **Position cursor between tags** option (on page 167) is not selected in the **Content Completion** preferences page, the cursor is placed at the end of the start tag, in an insert-attribute position.

- **Surround with ‘[tag]’ (Ctrl + ForwardSlash (Command + ForwardSlash on OS X))**

  Surround the selected content with the last tag used.

### Unwrap the Content of Elements

You can unwrap the content of an element by using the following action in the **Refactoring** submenu of the contextual menu (or from the **Document > Markup** menu):
Delete element tags (`Alt + Shift + X (Command + Alt + X on OS X)`)  
Deletes the start and end tag of the current element.

Join or Split Elements

You can join or split elements in the current document by using the following actions in the Refactoring submenu of the contextual menu (or from the Document > Markup menu):

Join elements (`Alt + Shift + J (Command + Alt + J on OS X)`)  
Joins the left and right elements relative to the current cursor position. The elements must have the same name, attributes, and attributes values.

Split element (`Alt + Shift + D (Ctrl + Alt + D on OS X)`)  
Split the element from the cursor position into two identical elements. The cursor must be inside the element.

Other Refactoring Actions

You can also manage the structure of the markup by using the other specific XML refactoring actions that are available in the Refactoring submenu of the contextual menu:

**Attributes Refactoring Actions**

Contains built-in XML refactoring operations that pertain to attributes with some of the information preconfigured based upon the current context.

Add/Change attribute  
Allows you to change the value of an attribute or insert a new one.

Convert attribute to element  
Allows you to change an attribute into an element.

Delete attribute  
Allows you to remove one or more attributes.

Rename attribute  
Allows you to rename an attribute.

Replace in attribute value  
Allows you to search for a text fragment inside an attribute value and change the fragment to a new value.

Comments Refactoring Actions
Contains built-in XML refactoring operations that pertain to comments with some of the information preconfigured based upon the current context.

**Delete comments**
- Allows you to delete comments found inside one or more elements.

**Elements Refactoring Actions**
Contains built-in XML refactoring operations that pertain to elements with some of the information preconfigured based upon the current context.

**Delete element**
- Allows you to delete elements.

**Delete element content**
- Allows you to delete the content of elements.

**Insert element**
- Allows you to insert new elements.

**Rename element**
- Allows you to rename elements.

**Unwrap element**
- Allows you to remove the surrounding tags of elements, while keeping the content unchanged.

**Wrap element**
- Allows you to surround elements with element tags.

**Wrap element content**
- Allows you to surround the content of elements with element tags.

**Fragments Refactoring Actions**
Contains built-in XML refactoring operations that pertain to XML fragments with some of the information preconfigured based upon the current context.

**Insert XML fragment**
- Allows you to insert an XML fragment.

**Replace element content with XML fragment**
- Allows you to replace the content of elements with an XML fragment.

**Replace element with XML fragment**
- Allows you to replace elements with an XML fragment.
Folding XML Elements in Text Mode

When working with a large document, the folding (on page 3282) support in Oxygen XML Editor can be used to collapse some element content leaving only those that you need to edit in focus. Expanding and collapsing works on individual elements. Expanding an element leaves the child elements unchanged.

By default, the folding (on page 3282) feature is enabled in Oxygen XML Editor, but it can be disabled in the Text preferences page with the Enable folding option (on page 128).

Figure 291. Folding of XML Elements in Text Mode

```xml
<xt:template match="article.description"> [28 lines]
  <xt:template match="article.descriptions"> ...
    <xt:apply-templates> ...
  </xt:template>
</xt:template>
<xt:template match="code"> ...
  <p class="textSmall"> ...
    <xt:for-each select="coderow"> [2 lines]
      <p> ...
    </xt:for-each>
  </p> ...
</xt:template>
```

The fact that the folds are persistent is a unique feature of Oxygen XML Editor. The next time you open the document the folds are restored to its last state.

Folding Actions in Text Mode

Element folds are marked with a small triangle (▲/▼) in the left stripe. To toggle the fold, simply click the icon. Also, if you right-click the icon, the following actions are available:

- **Collapse Other Folds (Ctrl + NumPad/ (Command + NumPad/ on OS X))**
  Folds all the elements except the current element.
**Collapse Child Folds (Ctrl + NumPad. (Command + NumPad. on OS X))**

Folds the child elements that are indented one level inside the current element.

**Expand Child Folds**

Unfolds all child elements of the currently selected element.

**Expand All (Ctrl + NumPad* (Command + NumPad* on OS X))**

Unfolds all elements in the current document.

For more information about the folding support in Oxygen XML Editor, watch our video demonstration:

https://www.youtube.com/embed/eR9HfN_peAE

Drag and Drop in Text Mode

To move a whole region of text to other location in the same edited document, just select the text, drag the selection by holding down the left mouse button and drop it to the target location.

You can also copy content from other applications and paste it into the document.

Selecting Content in Text Mode

Oxygen XML Editor includes a variety of keyboard shortcuts that allow you to select content in Text mode. These include numerous standard continuous selection possibilities that are common to many text editors, as well as a selection feature that allows you to select a rectangular area within a document in Text mode.

**Standard Continuous Selection Shortcuts**

**Shift + Left/Right Arrow Keys**

Begins a continuous selection at the cursor position and extends it one character at a time in the direction that you press the arrow keys.

**Shift + Up/Down Arrow Keys**

Begins a continuous selection at the cursor position and extends it one line at a time in the direction that you press the arrow keys.

**Ctrl + Shift + Left/Right Arrow Keys (Meta + Shift + Left/Right Arrow Keys on Mac OS X)**

Begins a continuous selection at the cursor position and extends it one word at a time in the direction that you press the arrow keys.
**Shift + Home**

Begins a continuous selection at the cursor position and extends it to the beginning of the current line (on Mac OS X, it extends to the beginning of the document).

**Shift + End**

Begins a continuous selection at the cursor position and extends it to the end of the current line (on Mac OS X, it extends to the end of the document).

**Ctrl + Shift + Home**

Begins a continuous selection at the cursor position and extends it to the beginning of the document.

**Ctrl + Shift + End**

Begins a continuous selection at the cursor position and extends it to the end of the document.

**Shift + PageUp**

Begins a continuous selection at the cursor position and extends it up one screen page.

**Shift + PageDown**

Begins a continuous selection at the cursor position and extends it down one screen page.

**Double-Click**

Selects certain text, depending on the position of the click in the document. See Smart Editing: Double-Click (on page 832) for the specifics.

**Triple-Click**

Selects entire regions of text, depending on the position of the click in the document. See the Smart Editing: Triple-Click (on page 832) for the specifics.

**Right-Click > Select > Element**

Selects the entire element at the current cursor position.

**Right-Click > Select > Content**

Selects the entire content of the element at the current cursor position, excluding the start and end tag. Performing this action repeatedly will result in the selection of the content of the ancestor of the currently selected element content.

**Right-Click > Select > Attributes**

Selects all the attributes of the element at the current cursor position.

**Right-Click > Select > Parent**

Selects the entire parent element at the current cursor position.
Rectangular Selection Shortcuts

Oxygen XML Editor also includes some keyboard shortcuts that allow you to select a rectangular block of content in Text mode and you can then copy, cut, paste, delete, or edit the selection.

⚠️ **Attention:** The rectangular selection shortcuts will not work if the Line Wrap option (on page 128) is selected in the Text preferences page.

The following shortcuts can be used to create a rectangular selection:

- **Alt + Mouse Click + Mouse Movement** *(Alt + Meta + Mouse Click + Mouse Movement on Mac OS X)*

  Begins a rectangular selection at the mouse click position and extends it in the direction that you move the mouse. Release **Alt** *(Alt + Meta on Mac OS X)* to enter the in-place editing mode (on page 844).

- **Shift + Alt + Left/Right Arrow Keys** *(Shift + Alt + Meta + Left/Right Arrow Keys on Mac OS X)*

  Begins a rectangular selection at the cursor position and extends it one character at a time in the direction that you press the arrow keys (you can also use the mouse to extend the selection).

- **Shift + Alt + Up/Down Arrow Keys** *(Shift + Alt + Meta + Up/Down Arrow Keys on Mac OS X)*

  Begins a rectangular selection at the cursor position and extends it one line at a time in the direction that you press the arrow keys (you can also use the mouse to extend the selection).

- **Ctrl + Shift + Alt + Left/Right Arrow Keys** *(Ctrl + Shift + Alt + Meta + Left/Right Arrow Keys on Mac OS X)*

  Begins a rectangular selection at the cursor position and extends it one word at a time in the direction that you press the arrow keys.

- **Shift + Alt + Home** *(Shift + Alt + Meta + Home on Mac OS X)*

  Begins a rectangular selection at the cursor position and extends it to the beginning of the current line.

- **Shift + Alt + End** *(Shift + Alt + Meta + End on Mac OS X)*

  Begins a rectangular selection at the cursor position and extends it to the end of the current line.

- **Shift + Alt + PageUp** *(Shift + Alt + Meta + PageUp on Mac OS X)*

  Begins a rectangular selection at the cursor position and extends it up one screen page.

- **Shift + Alt + PageDown** *(Shift + Alt + Meta + PageDown on Mac OS X)*
Begins a rectangular selection at the cursor position and extends it down one screen page.

You can then use standard editing actions to copy, cut, paste, or delete the entire selection.

**In-Place Editing Mode**

To edit the content of the rectangular selection, you can enter an in-place editing mode by releasing the Alt key (on Mac OS X, release both Alt & Meta). Once you are in the editing mode, you can simply use your keyboard to edit the entire selection of content, or click anywhere inside the selection to edit the content at the cursor position for all lines within the selection at once (as if the rectangular selection is a selection of columns). To exit the editing mode, press either Enter or Esc.

Content Completion Assistant in Text Mode

Oxygen XML Editor includes an intelligent *Content Completion Assistant (on page 3280)* that offers proposals for inserting structured language elements, attributes, and attribute values that are valid in the current editing context.

The *Content Completion Assistant* is enabled by default. To disable it, open the *Preferences* dialog box (Options > Preferences) (on page 79), go to Editor > Content Completion, and deselect the **Enable content completion** option (on page 167).

**Figure 292. Content Completion Assistant**

![Diagram of an XML element with content completion proposals](image)

Content Completion and the Associated Schema

The *Content Completion Assistant* feature is schema-driven and the list of proposals in the *Content Completion Assistant (on page 3280)* depend on the associated schemas (DTD, XML Schema, Relax NG, or NVDL schema). For information about the various ways to associate a schema and the order of their precedence, see the *Associating a Schema to XML Documents (on page 1112)* section.

Using the Content Completion Assistant in Text Mode

The feature is activated in **Text** mode in the following situations:
• After you press the `<` character when inserting an element, it is automatically activated after a short delay. You can adjust the activation delay with the Activation delay of the proposals window (ms) option (on page 168) from the Content Completion preferences page.

• After typing a partial element or attribute name, you can manually activate it by pressing Ctrl + Space (Command + Space on OS X) or Alt + ForwardSlash (Command + Alt + ForwardSlash on OS X). If there is only one valid proposal at the current location, it is inserted without displaying the list of proposals.

You can navigate through the list of proposals by using the Up and Down keys on your keyboard. In some cases, the Content Completion Assistant displays a documentation window with information about the particular proposal and some of them have links to additional information (for example, DITA elements might have a link to the DITA Style Guide). You can also change the size of the documentation window by dragging its top, right, and bottom borders.

To insert the selected proposal in Text mode, do one of the following:

• Press Enter or Tab to insert both the start and end tags and position the cursor inside the start tag in a position suitable for inserting attributes.

• Press Ctrl + Enter (Command + Enter on OS X) to insert both the start and end tags and positions the cursor between the tags in a position where you can start typing content.

**Note:** When the DTD, XML Schema or RELAX NG schema specifies required child elements for the newly added element, they are inserted automatically only if the Add Element Content option (on page 167) (in the Content Completion preferences page) is selected. The Content Completion Assistant can also add optional content and first choice particle, as specified in the DTD, XML Schema, or RELAX NG schema. To activate these features, select the Add optional content (on page 167) and Add first Choice particle (on page 167) options in the Content Completion preferences page.

After inserting an element, the cursor is positioned:

• Before the `>` character of the start tag, if the element allows attributes, to allow rapid insertion of any of the attributes supported by the element. Pressing the space bar displays the Content Completion list once again. This time it contains the list of allowed attribute names. If the attribute supports a fixed set of parameters, the assistant list displays the list of valid parameters. If the parameter setting is user-defined and therefore variable, the assistant is closed to allow manual insertion. The values of the attributes can be learned from the same elements in the current document.

• After the `>` character of the start tag, if the element has no attributes.

### Where the Content Completion Assistant is Displayed

The Content Completion Assistant is displayed:
• Anywhere within a tag name or at the beginning of a tag name in an XML document, XML Schema, DTD, or Relax NG (full or compact syntax) schema.
• Anywhere within an attribute name or at the beginning of an attribute name in any XML document with an associated schema.
• Within attribute values or at the beginning of attribute values in XML documents where lists of possible values have been defined for that element in the schema associated with the document.

Types of Proposals Listed in the Content Completion Assistant

The following things are considered for determining the proposals that are listed in the content completion window:

Element Structure Specified in DTD or Schema

The proposals that populate the Content Completion Assistant depend on the element structure specified in the DTD, XML Schema, Relax NG (full or compact syntax) schema, or NVDL schema associated with the edited document.

Note: The Content Completion Assistant is able to offer elements defined both by XML Schemas version 1.0 and 1.1.

Current Cursor Position

The number and type of elements displayed by the Content Completion Assistant is dependent on the cursor's current position in the structured document. The child elements displayed within a given element are defined by the structure of the specified DTD, XML Schema, Relax NG (full or compact syntax) schema, or NVDL schema.

Unique ID Attribute Values

A schema may declare certain attributes as ID or IDREF/IDREFS. When the document is validated, Oxygen XML Editor checks the uniqueness and correctness of the ID attributes. It also collects the attribute values declared in the document to prepare the list of proposals. This is available for documents that use DTD, XML Schema, and Relax NG schema.

Values for xml:id Attributes

Values of all the xml:id attributes are handled as ID attributes. They are collected and displayed by the Content Completion Assistant as possible values for anyURI attributes defined in the schema of the edited document. This works only for XML Schema and Relax NG schemas.

Links/References in DITA
When entering values for the various types of links and references in DITA (for example, values for `href` or `conref` elements), the **Content Completion Assistant** will propose potential targets when you use the forward slash key (/).

### ID Values for DITA Key References

In DITA, when inserting key references (`keyref`) or content key references (`conkeyref`), the ID values that are defined in the key reference are presented as possible targets.

The **Content Completion Assistant** will only propose targets that are valid in the current context.

### Element and Attribute Values

For documents that use an XML Schema or Relax NG schema, the **Content Completion Assistant** offers proposals for attribute and element values as long as the allowed values are defined in the schema. Also, if a default value or fixed value is defined in the schema, then that value is offered in the **Content Completion Assistant**.

**Related Information:**

- Customizing the Content Completion Assistant *(on page 2352)*

**Schema Annotations in Text Mode**

A schema annotation is a documentation snippet associated with the definition of an element or attribute in a schema. If such a schema is associated with an XML document, the annotations are displayed in:

- The **Content Completion Assistant** *(on page 3280)*.
- A small tooltip window shown when the mouse hovers over an element or attribute. The tooltip window can be invoked at any time by using the F2 shortcut.

The schema annotations support is available if the schema type is one of the following:

- XML Schema
- Relax NG
- NVDL schema
- DTD

This feature is enabled by default, but you can disable it by deselecting the **Show annotations in Content Completion Assistant** *(on page 171)* option in the **Annotations** preferences page.
Styling Annotations with HTML

You can use HTML format in the annotations you add in an XML Schema or Relax NG schema. This improves the visual appearance and readability of the documentation window displayed when editing XML documents validated against such a schema. An annotation is recognized and displayed as HTML if it contains at least one HTML element (such as `div`, `body`, `p`, `br`, `table`, `ul`, or `ol`).

The HTML rendering is controlled by the Show annotations using HTML format, if possible (on page 172) option in the Annotations preferences page. When this option is deselected, the annotations are converted and displayed as plain text and if the annotation contains one or more HTML tags (`p`, `br`, `ul`, `li`), they are rendered as an HTML document loaded in a web browser. For example, `p` begins a new paragraph, `br` breaks the current line, `ul` encloses a list of items, and `li` encloses an item of the list.

Collecting Annotations from XML Schemas

In an XML Schema, the annotations are specified in an `<xs:annotation>` element like this:

```xml
<xs:annotation>
  <xs:documentation>
    Description of the element.
  </xs:documentation>
</xs:annotation>
```

If an element or attribute does not have a specific annotation, then Oxygen XML Editor looks for an annotation in the type definition of that element or attribute.

Collecting Annotations from Relax NG Schemas

For Relax NG schema, element and attribute annotations are made using the `<documentation>` element from the `http://relaxng.org/ns/compatibility/annotations/1.0` namespace like this:

```xml
<define name="person">
  <element name="person">
    <a:documentation xmlns:a="http://relaxng.org/ns/compatibility/annotations/1.0">
      Information about a person.
    </a:documentation>
    <ref name="name"/>
    <zeroOrMore>
      <ref name="email"/>
    </zeroOrMore>
  </element>
</define>
```
However, any element outside the Relax NG namespace (http://relaxng.org/ns/structure/1.0) is handled as annotation and the text content is displayed in the annotation window. To activate this behavior, select the Use all Relax NG annotations as documentation (on page 172) option in the Annotations preferences page.

Collecting Annotations from Relax NG Compact Syntax Schemas

For Relax NG Compact Syntax schema, annotations are made using comments like this:

```xml
## Information about a person.
element person { name, email*}
```

Collecting Annotation from DTDs

For DTD, Oxygen XML Editor defines a custom mechanism for annotations using comments enabled by the Prefer DTD comments that start with "doc:" as annotations (on page 171) option in the Annotations preferences page. The following is an example of a DTD annotation:

```xml
<!--doc:Description of the element. -->
```

Content Completion Helper Views

Information about the current element being edited is also available in various dockable (on page 3281) views, such as the Model view (on page 353), Attributes view (on page 351), Elements view (on page 355), and Entities view (on page 356). By default, they are located on the right-hand side of the main editor window. These views, along with the powerful Outline view (on page 347), provide spatial and insight information about the edited document and the current element. If any particular view is not displayed, it can be opened by selecting it from the Window > Show View menu.

Model View

The Model view presents the structure of the currently selected tag, and its documentation, defined as annotation in the schema of the current document. By default, it is located on the right side of the editor. If the view is not displayed, it can be opened by selecting it from the Window > Show View menu.

Figure 293. Model View
The Model view is comprised of two sections, an element structure panel and an annotations panel.

**Element Structure Panel**

The element structure panel displays the structure of the currently edited or selected tag in a tree-like format. The information includes the name, model, and attributes of the current tag. The allowed attributes are shown along with imposed restrictions, if any.
Annotation Panel

The Annotation panel displays the annotation information for the currently selected element. This information is collected from the XML schema.

Figure 295. Annotation panel

Attributes View in Text Mode

The Attributes view presents all the attributes of the current element determined by the schema of the document. By default, it is located on the right side of the editor. If the view is not displayed, it can be opened from the Window > Show View menu.

You can use the Attributes view to insert attributes, edit their values, or add values to existing attributes.

The attributes are rendered differently depending on their state:

- The names of the attributes are rendered with a bold font, and their values with a plain font.
- Default values are rendered with a plain font, painted gray.
- Empty values display the text "[empty]", painted gray.
- Invalid attributes and values are painted red.

To edit the value of the corresponding attribute, double-click a cell in the Value column. If the possible values of the attribute are specified as list in the schema of the edited document, the Value column acts as a combo box that allows you to either select the value from a list or manually enter it.

You can sort the attributes table by clicking the Attribute column header. The table contents can be sorted as follows:

- By attribute name in ascending order.
- By attribute name in descending order.
- Custom order, where the used attributes are displayed at the beginning of the table sorted in ascending order, followed by the rest of the allowed elements sorted in ascending order.

Figure 296. Attributes View
Expand/Collapse Button

There is an Expand/Collapse (↑ / ↓) button at the top-right of the view. When expanded, this presents the following additional combo boxes:

Name Combo Box

Use this combo box to select an attribute. The drop-down list displays the list of possible attributes allowed by the schema of the document, as in the Attributes view.

You can use the Remove button to delete an attribute and its value from the selected element.

Value Combo Box

Use this combo box to add, edit, or select the value of an attribute. If the selected attribute has predefined values in the schema, the drop-down list displays those possible values. You can use the Browse button to select a URL for the value of an attribute. You can also press Ctrl + Space to open a content completion window that offers a list of possible choices and allows you to select multiple values. After you have entered or selected a value, use the Update button (or press Enter) to add the value to the attribute.

Note: For built-in frameworks, if the selected attribute in the Name field is an @id attribute, the Browse button is replaced by a Generate Unique ID Value button. Clicking this button will automatically generate a unique ID for the selected element.

Contextual Menu Actions in the Attributes View

The following actions are available in the contextual menu of the Attributes view when editing in Text mode:
Add

Allows you to insert a new attribute. Adding an attribute that is not in the list of all defined attributes is not possible when the Allow only insertion of valid elements and attributes (on page 137) schema-aware option is selected.

Set empty value

Specifies the current attribute value as empty.

Remove

Removes the attribute (action available only if the attribute is specified). You can invoke this action by pressing the (Delete) or (Backspace) keys.

Copy

Copies the attrName="attrValue" pair to the clipboard. The attrValue can be:

- The value of the attribute.
- The value of the default attribute, if the attribute does not appear in the edited document.
- Empty, if the attribute does not appear in the edited document and has no default value set.

Paste

Depending on the content of the clipboard, the following cases are possible:

- If the clipboard contains an attribute and its value, both of them are introduced in the Attributes view. The attribute is selected and its value is changed if they exist in the Attributes view.
- If the clipboard contains an attribute name with an empty value, the attribute is introduced in the Attributes view and you can start editing it. The attribute is selected and you can start editing it if it exists in the Attributes view.
- If the clipboard only contains text, the value of the selected attribute is modified.

Elements View in Text Mode

The Elements view presents a list of all defined elements that are valid at the current cursor position according to the schema associated to the document. By default, it is located on the right side of the editor. If the view is not displayed, it can be opened by selecting it from the Window > Show View menu.

Double-clicking any of the listed elements inserts that element into the edited document, at the current cursor position. Pressing F2 with an element selected will display information about that particular element.
Entities provide abbreviated entries that can be used in XML files when there is a need of repeatedly inserting certain characters or large blocks of information. An entity is defined using the `ENTITY` statement either in the DOCTYPE declaration or in a DTD file associated with the current XML file.

There are three types of entities:

- **Predefined** - Entities that are part of the predefined XML markup (`&lt;`, `&gt;`, `&amp;`, `&apos;`, `&quot;`).
- **Internal** - Defined in the DOCTYPE declaration header of the current XML.
- **External** - Defined in an external DTD module included in the DTD referenced in the XML DOCTYPE declaration.

**Note:** If you want to add internal entities, you would need to switch to the Text editing mode and manually modify the DOCTYPE declaration. If you want to add external entities, you need to open the DTD module file and modify it directly.

The Entities view displays a list with all entities declared in the current document, as well as built-in ones. By default, it is located on the right side of the editor. If the view is not displayed, it can be opened by selecting it from the Window > Show View menu.

Double-clicking one of the entities will insert it at the current cursor position in the XML document. You can also sort entities by name and value by clicking the column headers.
The view features a filtering capability that allows you to search an entity by name, value, or both. Also, you can choose to display the internal or external entities.

**Note:** When entering filters, you can use the `?` and `*` wildcards. Also, you can enter multiple filters by separating them with a comma.

**Code Templates**

Code templates are code fragments that can be inserted quickly at the current editing position. Oxygen XML Editor includes a set of built-in code templates for CSS, LESS, Schematron, XSL, XQuery, JSON, and XML Schema document types. You can also define your own code templates for any type of file and share them with others.

Code templates are displayed with a `+` symbol in the content completion list (Enter in Author mode or Ctrl + Space (Command + Space on OS X) in Text mode). Also, in Text mode you can press Ctrl + Shift + Space to see a complete list of the available code templates. To enter the code template at the cursor position, select it from the content completion list or type its code and press Enter. If a shortcut key has been assigned to the code template, you can also use the shortcut key to enter it.

**How to Create Code Templates**

To create a code template, follow these steps:

1. Open the Preferences dialog box (Options > Preferences) (on page 79) and go to Editor > Templates > Code Templates.
2. Click New to open a code template configuration dialog box.
Tip: You can use one of the existing code templates as a starting point by selecting that template and clicking Duplicate.

Figure 299. Code Template Configuration Dialog Box

3. Configure your template using the fields in the code template configuration dialog box:
   - **Name** - The name of the code template.
   - **Description** - [Optional] The description of the code template that will appear in the Code Templates preferences page and in the tooltip message when selecting it from the Content Completion Assistant (on page 3280). HTML markup can be used for better rendering.
   - **Associate with** - You can choose to set the code template to be associated with a specific type of editor or for all editor types.
   - **Shortcut key** - [Optional] If you want to assign a shortcut key that can be used to insert the code template, place the cursor in the Shortcut key field and press the desired key combination on your keyboard. Use the Clear button if you make a mistake. If the Enable platform-independent shortcut keys checkbox is selected, the shortcut is platform-independent and the following modifiers are used:
     - M1 represents the Command key on MacOS X, and the Ctrl key on other platforms.
     - M2 represents the Shift key.
     - M3 represents the Option key on MacOS X, and the Alt key on other platforms.
     - M4 represents the Ctrl key on MacOS X, and is undefined on other platforms.
   - **Content** - Text box where you define the content that is used when the code template is inserted. An editor variable (on page 276) can be inserted in the text box using the Insert Editor Variables button.

4. Click OK to save your new code template.

Result: Your code template can now be selected using the Content Completion Assistant (on page 3280) (Enter in Author mode or Ctrl + Space (Command + Space on OS X) in Text mode). The code templates are displayed with a symbol.
How to Share Code Templates

There are two ways to easily share all of your code templates with other members of your team:

Method 1: Export/Import

1. Open the Preferences dialog box (Options > Preferences) (on page 79) and go to Editor > Templates > Code Templates.
2. Click the Export button to export all of your code templates into an XML file.
3. Save the XML file.
4. Share the XML file with other members of your team.
5. Instruct them to open the Preferences dialog box (Options > Preferences) (on page 79), go to Editor > Templates > Code Templates, click the Import button, and select the file you sent them.

Result: The code templates will be now available in their content completion list.

Method 2: Share Project

1. Open the Preferences dialog box (Options > Preferences) (on page 79) and go to Editor > Templates > Code Templates.
2. Select Project Options at the bottom of the dialog box. This stores the preferences in the project file (.xpr).
3. Share the project file with the other members of your team. For example, you can commit it to your version control system and have them update their working copy.

Result: When they open the updated project file in their Project view (on page 333), the code templates will be available in their content completion list.

Tip: It is also possible to configure certain actions that function similar to code templates and add them to the content completion list (on page 2352) for a particular framework. You could then share the whole framework (on page 2371) with other members of your team.

Syntax Highlighting in XML Documents

Oxygen XML Editor supports syntax highlighting in Text mode to make it easier to read the semantics of the structured content by displaying each type of code in different colors and fonts.

To customize the colors or styles used for the syntax highlighting colors for XML files, follow these steps:

1. Open the Preferences dialog box (Options > Preferences) (on page 79).
2. Go to Editor > Syntax Highlight (on page 178).
3. Select and expand the XML section in the top pane.
4. Select the component you want to change and customize the colors or styles using the selectors to the right of the pane.
5. Select the XML tab in the Preview pane to see the effects of your changes.

**Tip:** Oxygen XML Editor also allows you to specify syntax highlighting colors for specific XML elements and attributes with specific namespace prefixes. This can be done in the Editor > Syntax Highlight > Elements/Attributes by Prefix preferences page (on page 179).

---

Outline View for XML Documents

The Outline view displays a general tag overview of the currently edited XML Document. When you edit a document, the Outline view dynamically follows the changes that you make, displaying the node that you modify. This functionality gives you great insight on the location of your modifications in the current document. It also shows the correct hierarchical dependencies between elements. This makes it easy for you to be aware of the document structure and the way element tags are nested.

**Outline View Features**

The Outline view allows you to:

- Quickly navigate through the document by selecting nodes in the Outline tree.
- Insert or delete nodes using contextual menu actions.
- Move elements by dragging them to a new position in the tree structure.
- Highlight elements in the editor area. It is synchronized with the editor area, so when you make a selection in the editor area, the corresponding nodes are highlighted in the Outline view, and vice versa.
- View document errors, as they are highlighted in the Outline view. A tooltip also provides more information about the nature of the error when you hover over the faulted element.

**Outline View Interface**

By default, it is displayed on the left side of the editor. If the view is not displayed, it can be opened by selecting it from the Window > Show View menu.

The upper part of the Outline view contains a filter box that allows you to focus on the relevant components. Type a text fragment in the filter box and only the components that match it are
presented. For advanced usage you can use wildcard characters (such as *, ?) and separate multiple patterns with commas.

It also includes a Settings menu in the top-right corner that presents a variety of options to help you filter the view even further.

**Drop and Drop Actions in the Outline View**

Entire XML elements can be moved or copied in the edited document using only the mouse in the Outline view with drag-and-drop operations. Several drag and drop actions are possible:

- If you drag an XML element in the Outline view and drop it on another node, then the dragged element will be moved after the drop target element.
- If you hold the mouse pointer over the drop target for a short time before the drop then the drop target element will be expanded first and the dragged element will be moved inside the drop target element after its opening tag.
- You can also drop an element before or after another element if you hold the mouse pointer towards the upper or lower part of the targeted element. A marker will indicate whether the drop will be performed before or after the target element.
- If you hold down the (Ctrl (Command on OS X)) key after dragging, a copy operation will be performed instead of a move.

Figure 300. Outline View

Outline View Filters

The upper part of the Outline view contains a filter box that allows you to focus on the relevant components. Type a text fragment in the filter box and only the components that match it are
presented. For advanced usage you can use wildcard characters (such as *, ?) and separate multiple patterns with commas.

The following actions are available in the Settings menu of the Outline view:

**Filter returns exact matches**

The text filter of the Outline view returns only exact matches.

**Selection update on cursor move (Available in Text mode)**

Controls the synchronization between Outline view and source document. The selection in the Outline view can be synchronized with the cursor moves or the changes in the editor. Selecting one of the components from the Outline view also selects the corresponding item in the source document.

**Flat presentation mode of the filtered results**

When active, the application flattens the filtered result elements to a single level.

**Show comments and processing instructions**

Show/hide comments and processing instructions in the Outline view.

**Show element name**

Show/hide element name.

**Show text**

Show text additional text content for the displayed elements.

**Show attributes**

Show/hide attribute values for the displayed elements. The displayed attribute values can be changed from the Outline preferences panel (on page 259).

**Configure displayed attributes**

Displays the XML Structured Outline preferences page (on page 259).

**Outline View Contextual Menu Actions**

The contextual menu of the Outline view contains the following actions:

**Edit Attributes**

Displays an in-place attributes editor that allows you to edit the attributes of a selected node.

**Edit Profiling Attributes (Available in Author mode)**

Allows you to change the profiling attributes (on page 969) defined on all selected elements.
Append Child

Invokes a content completion list with the names of all the elements that are allowed by the associated schema and inserts your selection as a child of the current element.

Insert Before

Invokes a content completion list with the names of all the elements that are allowed by the associated schema and inserts your selection immediately before the current element, as a sibling.

Insert After

Invokes a content completion list with the names of all the elements that are allowed by the associated schema and inserts your selection immediately after the current element, as a sibling.

Cut, Copy, Paste, Delete common editing actions

Executes the typical editing actions on the currently selected elements. The Cut and Copy operations preserve the styles of the copied content.

Paste before (Available in Author mode)

Inserts a well-formed copied element before the currently selected element.

Paste after (Available in Author mode)

Inserts a well-formed copied element after the currently selected element.

Paste as XML (Available in Author mode)

Pastes copied content that is considered to be valid XML, preserving its XML structure.

Toggle Comment

Encloses the currently selected element in an XML comment, if the element is not already commented. If it is already commented, this action will remove the comment.

Rename Element (Available in Author mode)

Invokes a Rename dialog box that allows you to rename the currently selected element, siblings with the same name, or all elements with the same name.

Expand More

Expands the structure tree of the currently selected element.

Collapse All

Collapses all of the structure tree of the currently selected node.

Tip: You can copy, cut or delete multiple nodes in the Outline by using the contextual menu after selecting multiple nodes in the tree.
Inserting or Opening a File at Cursor Location

When editing content in **Text** mode, the following actions (with regard to inserting, opening, or comparing files) are available in the **Document > File** menu:

**Insert File**

Inserts the content of the file with the specified file path into the current document, at the current position of the cursor.

**Open File at Cursor**

Opens the file at the cursor position in a new panel. If the file path represents a directory path, it will be opened in system file browser. If the file at the specified location does not exist, an error dialog box is displayed and it includes a **Create new file** button that starts the **New document** wizard. This allows you to choose the type or the template for the file. If the action succeeds, the file is created with the referenced location and name and is opened in a new editor panel.

**Open File at Cursor in System Application**

Opens the file (identified by its link) or web page (identified by a web link) found at cursor position. The target is opened in the default system application associated with that file type.

**Compare**

Opens the current file in the **Compare Files** tool (**on page 2770**).

Adjusting the Transparency of XML Markup

Most of the time you want the content of a document displayed on screen with zero transparency. However, if you want to focus your attention only on editing text content inside XML markup, Oxygen XML Editor offers the option of reducing the visibility of the markup by increasing their transparency when displayed in **Text** mode. To change the level of transparency, use the **Tags Transparency Selector** drop-down menu that is available from the **Source** toolbar. By default, this drop-down menu is not visible. You can add it to the toolbar by using the **Configure Toolbars action** (**on page 273**). There are several levels of transparency that can be adjusted to make the content more or less visible:

- **Normal Contrast** - Resets the transparency level back to normal.
- **Semi-transparent Text** - Slightly reduces the visibility of text to place greater emphasis on the visibility of the XML markup.
- **Transparent Text** - Greatly reduces the visibility of text to place even greater emphasis on the visibility of the XML markup.
- **Semi-transparent Markup** - Slightly reduces the visibility of the XML markup to place greater emphasis on the visibility of the text.
- **Transparent Markup** - Greatly reduces the visibility of the XML markup to place even greater emphasis on the visibility of the text.

Figure 301. Tags Transparency Selector

| 1120 | <sel>={"creating-new-templates"} |
| 1121 | <eql>="phrase lang="en" Creating New Temp... |
| 1122 | <para lang="fr" &quot;Cree un document existant a la main... |
| 1123 | <procedure> |
| 1124 | <step performance="required"> |
| 1125 | <para lang="fr" >>Ouvrir le document qui sera utilisé pour créer le nouvel... |
| 1126 | <step> |
| 1127 | <step performance="required"> |
| 1128 | <para lang="fr" >>Modifier la structure et le contenu comme sou... |

Locking and Unlocking XML Markup

For documents with fixed markup, such as forms in which the XML tags are not allowed to be modified (only their text content), the possibility to edit the XML tag names can be toggled on or off with the Lock / Unlock the XML tags action available in Text editing mode from the Source submenu from the contextual menu (or Document > Source menu).

You can set the default lock state for all opened editors using the Lock the XML tags option in the Text preferences page (on page 129).

Formatting and Indenting XML Documents

Oxygen XML Editor creates XML documents using several edit modes (on page 303). In Text mode (on page 303), you as the author decide how the XML file is formatted and indented. In the other modes, and when you switch between modes, Oxygen XML Editor must decide how to format and indent the XML. Oxygen XML Editor will also format and indent your XML for you in Text mode if you use one of the Format and Indent options:

- **Document > Source > ➕ Format and Indent** - Formats and indents the whole document.
- **Document > Source > ➕ Indent Selection** - Indents the current selection (but does not add line breaks). This action is also available in the Source submenu of the contextual menu.
- **Document > Source > ➕ Format and Indent Element** - Formats and indents the current element (the inmost nested element that currently contains the cursor) and its child-elements. This action is also available in the Source submenu of the contextual menu.

A number of settings affect how Oxygen XML Editor formats and indents XML. Many of these settings have to do with how whitespace is handled.
Significant and insignificant whitespace in XML

XML documents are text files that describe complex documents. Some of the white space (spaces, tabs, line feeds, etc.) in the XML document belongs to the document it describes (such as the space between words in a paragraph) and some of it belongs to the XML document (such as a line break between two XML elements). Whitespace belonging to the XML file is called insignificant whitespace. The meaning of the XML would be the same if the insignificant whitespace were removed. Whitespace belonging to the document being described is called significant whitespace.

Knowing when whitespace is significant or insignificant is not always easy. For instance, a paragraph in an XML document might be laid out like this:

```xml
<p>NO Free man shall be taken or imprisoned, or be stripped of his Freedom, or Liberties, or free Customs, or be outlawed, or exiled, or any otherwise destroyed; nor will we not pass upon him, nor condemn him, but by lawful judgment of his Peers, or by the <xref href="http://en.wikipedia.org/wiki/Law_of_the_land" format="html" scope="external">Law of the land</xref>. We will sell to no man, we will not deny to any man either Justice or Right.</p>
```

By default, XML considers a single whitespace between words to be significant, and all other whitespace to be insignificant. The paragraph above could have been written on one line because the XML parser would see it as exactly the same paragraph since all multiple consecutive whitespaces will be replaced with a single whitespace. Removing the insignificant space in markup like this is called normalizing space.

In some cases, all the spaces inside an element should be treated as significant. For example, in a code sample:

```xml
<codeblock>
class HelloWorld
{
    public static void main(String args[]) {
        System.out.println("Hello World");
    }
}
</codeblock>
```

Here every whitespace character between the codeblock tags should be treated as significant.
How Oxygen XML Editor determines when whitespace is significant

When Oxygen XML Editor formats and indents an XML document, it introduces or removes insignificant whitespace to produce a layout with reasonable line lengths and elements indented to show their place in the hierarchy of the document. To correctly format and indent the XML source, Oxygen XML Editor needs to know when to treat whitespace as significant and when to treat it as insignificant. However it is not always possible to tell this from the XML source file alone. To determine what whitespace is significant, Oxygen XML Editor assigns each element in the document to one of four categories:

Ignore space

In the ignore space category, all whitespace is considered insignificant. This generally applies to content that consists only of elements nested inside other elements, with no text content.

Normalize space

In the normalize space category, a single whitespace character between character strings is considered significant and all other spaces are considered insignificant. Therefore, all consecutive whitespaces will be replaced with a single space. This generally applies to elements that contain text content only.

Mixed content

In the mixed content category, a single whitespace between text characters is considered significant and all other spaces are considered insignificant. However,

- Whitespace between two child elements embedded in the text is normalized to a single space (rather than to zero spaces as would normally be the case for a text node with only whitespace characters, or the space between elements generally).
- The lack of whitespace between a child element embedded in the text and either adjacent text or another child element is considered significant. That is, no whitespace can be introduced here when formatting and indenting the file.

For example:

```xml
<p>The file is located in <i>HOME</i>/USER/hello.
This is a <strong>big</strong> deal.</p>
```
In this example, whitespace should not be introduced around the \textit{\texttt{i}} tags as it would introduce extra significant whitespace into the document. The space between the end \textit{\texttt{<strong>}} tag and the beginning \textit{\texttt{<emphasis>}} tag should be normalized to a single space, not zero spaces.

**Preserve space**

In the preserve space category, all whitespace in the element is regarded as significant. No changes are made to the spaces in elements in this category. However, child elements may be in another category, and may be treated differently.

Attribute values are always in the preserve space category. The spaces between attributes in an element tag are always in the default space category.

Oxygen XML Editor consults several pieces of information to assign an element to one of these categories. An element is always assigned to the most restrictive category (from Ignore to Preserve) that it is assigned to by any of the sources Oxygen XML Editor consults. For instance, if the element is named on the **Default elements** list (as described below) but it has an \textit{\texttt{xml:space="preserve"}} attribute in the source file, it will be assigned to the preserve space category. If an element has the \textit{\texttt{xml:space="default"}} attribute in the source, but is listed on the **Mixed content** elements list, it will be assigned to the mixed content category.

To assign elements to these categories, Oxygen XML Editor consults information from the following sources:

\texttt{xml:space}

If the XML element contains the \texttt{xml:space} attribute, the element is promoted to the appropriate category based on the value of the attribute.

**CSS whitespace property**

If the CSS stylesheet controlling the **Author mode** editor applies the \texttt{white-space: pre} setting to an element, it is promoted to the preserve space category.

**CSS display property**

If a text node contains only white-spaces:

- If the node has a parent element with the CSS \texttt{display} property set to \texttt{inline} then the node is promoted to the mixed content category.
- If the left or right sibling is an element with the CSS \texttt{display} property set to \texttt{inline} then the node is promoted to the mixed content category.
- If one of its ancestors is an element with the CSS \texttt{display} property set to \texttt{table} then the node is assigned to the ignore space category.

**Schema aware formatting**
If a schema is available for the XML document, Oxygen XML Editor can use information from the schema to promote the element to the appropriate category. For example:

- If the schema declares an element to be of type `xs:string`, the element will be promoted to the preserve space category because the string built-in type has the whitespace facet with the value preserve.
- If the schema declares an element to be mixed content, it will be promoted to the mixed content category.

Schema aware formatting can be turned on and off.

- To turn it on or off for Author mode, open the Preferences dialog box (Options > Preferences) (on page 79), go to Editor > Edit modes > Author > Schema aware, and select/deselect the Schema aware normalization, format and indent option (on page 137).
- To turn it on or off for the Text editing mode, open the Preferences editing mode (Options > Preferences) (on page 79), go to Editor > Format > XML, and select/deselect the Schema aware format and indent option (on page 163).

**Preserve space elements list**

If an element is listed in the Preserve space tab of the Element Spacing list (on page 162) in the XML formatting preferences (on page 160), it is promoted to the preserve space category.

**Default space elements list**

If an element is listed in the Default space tab of the Element Spacing list (on page 162) in the XML formatting preferences (on page 160), it is promoted to the default space category.

**Mixed content elements list**

If an element is listed in the Mixed content tab of the Element Spacing list (on page 162) in the XML formatting preferences (on page 160), it is promoted to the mixed content category.

**Element content**

If an element contains mixed content, that is, a mix of text and other elements, it is promoted to the mixed content category. (Note that, in accordance with these rules, this happens even if the schema declares the element to have element only content.)

If an element contains text content, it is promoted to the default space category.
Text node content

If a text node contains any non-whitespace characters then the text node is promoted to the normalize space category.

Exception to the Rule

In general, a element can only be promoted to a more restrictive category (one that treats more whitespace as significant). However, there is one exception. In Author mode, if an element is marked as mixed content in the schema, but the actual element contains no text content, it can be demoted to the space ignore category if all of its child elements are displayed as blocks by the associated CSS (that is, they have a CSS property of display: block). For example, in some schemas, a section or a table entry can be defined as having mixed content but in many cases they contain only block elements (on page 3280). In these cases, any whitespace they contain cannot be significant and they can be treated as space ignore elements. This exception can be turned on or off using the Schema Aware Editing option (on page 138) in the Schema-Aware preferences page.

How Oxygen XML Editor formats and indents XML

You can control how Oxygen XML Editor formats and indents XML documents. This can be particularly important if you store your XML document in a version control system, as it allows you to limit the number of trivial changes in spacing between versions of an XML document. The following preference pages include options that control how XML documents are formatted:

- Format preferences page (on page 157)
- XML Formatting preferences page (on page 160)
- Whitespaces preferences page (on page 164)

When Oxygen XML Editor formats and indents XML

Oxygen XML Editor formats and indents a document, or part of it, on the following occasions:

- In Text mode when you select one of the format and indent actions (Document > Source > Format and Indent, Document > Source > Indent Selection, or Document > Source > Format and Indent Element).
- When saving documents in Author mode.
- When switching from Author mode to another mode.
- When saving documents in Design mode.
- When switching from Design mode to another mode.
- When saving or switching to Text mode from Grid mode, if the Format and Indent when passing from grid to text or on save option (on page 130) is selected in the Grid preferences page.
Setting an Indent Size to Zero

Oxygen XML Editor will automatically format and indent (on page 863) documents at certain times. This includes indenting the content from the margin to reflect its structure. In some cases, you may not want your content indented. To avoid your content being indented, you can set an indent size of zero.

**Note:** Changing the indent size does not override the rules that Oxygen XML Editor uses for handling whitespace when formatting and indenting XML documents. Therefore, changing the indent size will have no effect on elements that require whitespaces to be maintained.

There are two cases to consider.

**Maintaining zero indent in documents with zero indent**

If you have existing documents with zero indent and you want Oxygen XML Editor to maintain a zero indent when editing or formatting those documents:

1. Open the Preferences dialog box (Options > Preferences) (on page 79) and go to Editor > Format (on page 157).
2. Select Detect indent on open.
3. Select Use zero-indent if detected.

Oxygen XML Editor will examine the indent of each document as it is opened and if the indent is zero for all lines, or for nearly all lines, a zero indent will be used when formatting and indenting the document. Otherwise, Oxygen XML Editor will use the indent closest to what it detects in the document.

**Enforcing zero indent for all documents**

If you want all documents to be formatted with zero indent, regardless of their current indenting:

1. Open the Preferences dialog box (Options > Preferences) (on page 79) and go to Editor > Format (on page 157).
2. Deselect Detect indent on open.
3. Set Indent size to 0.

All documents will be formatted and indented with an indent of zero.

**Warning:** Setting the indent size to zero can change the meaning of some file types, such as Python source files.
Format and Indent (Pretty-Print) Multiple Files

Oxygen XML Editor provides support for formatting and indenting (pretty-print (on page 3286)) multiple files at once. This action is available for any document in XML format, as well as for XQuery, CSS, JavaScript, and JSON documents.

To format and indent multiple files, use the Format and Indent Files action that is available in the contextual menu of the Project view (on page 333) or from the Tools menu. This opens the Format and Indent Files dialog box that allows you to configure options for the action.

Figure 302. Format and Indent Files Dialog Box

The Scope section allows you choose from the following scopes:

- **All opened files** - The pretty-print (on page 3286) is performed in all opened files.
- **Directory of the current file** - All the files in the folder of the current edited file.
- **Project files** - All files from the current project.
- **Selected project files** - The selected files from the current project.
- **Specified path** - The pretty-print (on page 3286) is performed in the files located at a specified path.

The Options section includes the following options:

- **File filter** - Allow you to filter the files from the selected scope.
- **Recurse subdirectories** - When selected, the pretty-print (on page 3286) is performed recursively for the specified scope. The one exception is that this option is ignored if the scope is set to All opened files.
- **Include hidden files** - When selected, the pretty-print (on page 3286) is also performed in the hidden files.
- **Make backup files with extension** - When selected, Oxygen XML Editor makes backup files of the modified files. The default extension is `.bak`, but you can change the extension as you prefer.

Managing Highlighted Content

While working with XML documents you often have frequent changes to the structure and content. You are often faced with a situation where you need to make a slight change in multiple places in the same document. Oxygen XML Editor includes a feature, *Manage Highlighted Content*, that is designed to help you achieve this.

When you are in Text mode and you perform a search operation or apply an XPath that highlights multiple results, you can access the *Manage Highlighted Content* submenu by right-clicking any of the highlights in the editing pane. If the results are displayed only in the Results panel at the bottom of the screen, you can use the ✉ Highlight all results in editor button (on the right side of the Results panel) to display all the highlights in the editor (then you can access the *Manage Highlighted Content* submenu from the contextual menu of any highlight.

The following options are available in the *Manage Highlighted Content* submenu:

- **Modify All**
  
  Use this option to modify (in-place) all the occurrences of the selected content. When you use this option, a thin rectangle replaces the highlights and allows you to start editing. If matches with different letter cases are found, a dialog box is displayed that allows you select whether you want to modify only matches with the same letter case or all matches.

  **Note:** If you select a very large number of highlights that you want to modify using this feature, a dialog box informs you that you may experience performance issues. You have the option to either use the Find/Replace operation (on page 740), or continue the operation.

- **Surround All**
  
  Use this option to surround the highlighted content with a specific tag. This option opens the Tag dialog box. The Specify the tag drop-down menu presents all the available elements that you can choose from.

- **Remove All**
  
  Removes all the highlighted content.

If you right-click content in another part of the document, other than a highlight, you have the option to select the following option:

- **Modify All Matches**
Use this option to modify (in-place) all the occurrences of the selected content (or the contiguous fragment in which the cursor is located). When you use this option, a thin rectangle replaces the highlights and allows you to start editing. If matches with different letter cases are found, a dialog box is displayed that allows you select whether you want to modify only matches with the same letter case or all matches.

Quick Assist Support for IDs and IDREFS

The Quick Assist support (on page 3286) is activated automatically when you place the cursor inside an ID or IDREF in Text mode. To access it, click the yellow bulb help marker placed on the current line, in the line number stripe of the editor. You can also invoke the Quick Assist menu from the contextual menu or by pressing Alt+1 (Command+Alt+1 on Mac OS X) on your keyboard.

The following actions are available:

- Rename in
  Renames the ID and all its occurrences. Selecting this action opens the Rename XML ID dialog box. This dialog box lets you insert the new ID value and choose the scope of the rename operation (on page 1129). For a preview of the changes you are about to make, click Preview. This opens the Preview dialog box, which presents a list with the files that contain changes and a preview zone of these changes.

- Search Declarations
  Searches for the declaration of the ID reference. By default, the scope of this action is the current project. If you configure a scope using the Select the scope for the Search and Refactor operations (on page 1129) dialog box, this scope will be used instead.

- Search References
  Searches for the references of the ID. By default, the scope of this action is the current project. If you configure a scope using the Select the scope for the Search and Refactor operations (on page 1129) dialog box, this scope will be used instead.

- Change scope
  Opens the Select the scope for the Search and Refactor operations (on page 1129) dialog box.

- Rename in File
  Renames the ID you are editing and all its occurrences from the current file.

- Search Occurrences
  Searches for the declaration an references of the ID located at the cursor position in the current document.
Highlight ID Occurrences in Text Mode

To see the occurrences of an ID in an XML document in the Text mode, place the cursor inside the ID declaration or reference. The occurrences are marked in the vertical side bar at the right of the editor. Click a marker on the side bar to jump to the occurrence that it corresponds to. The occurrences are also highlighted in the editing area.

Note: Highlighted ID declarations are rendered with a different color than highlighted ID references. To customize these colors or disable this feature, open the Preferences dialog box (Options > Preferences) (on page 79) and go to Editor > Mark Occurrences (on page 179).

Contextual Menu Actions in Text Mode

When editing XML documents in Text mode, Oxygen XML Editor provides the following actions in the contextual menu (many of them also appear in the submenus of the Document menu):

Add File to Review Task

This action can be used to add the current document to a task in the Content Fusion Tasks Manager view. Oxygen Content Fusion is a flexible, intuitive collaboration platform designed to adapt to any type of documentation review workflow. This functionality is available through a pre-installed connector add-on (on page 2679). To fully take advantage of all of the benefits and features of Content Fusion, your organization will need an Oxygen Content Fusion Enterprise Server. For more information, see the Oxygen Content Fusion website.

Cut, Copy, Paste

Executes the typical editing actions on the currently selected content.

Copy XPath

Copies the XPath expression of the current element or attribute (or property for JSON documents) from the current editor to the clipboard.
Toggle Comment (Ctrl + Shift + Comma (Command + Shift + M on OS X))

Comments the current selection of the current editor. If the selection already contains a comment the action removes the comment from around the selection. If there is no selection in the current editor and the cursor is not positioned inside a comment the current line is commented. If the cursor is positioned inside a comment then the commented text is uncommented.

Go to submenu

This submenu includes the following actions:

- Go to Matching Tag (Ctrl + Shift + G)
  Moves the cursor to the end tag that matches the start tag, or vice versa.
- Go after Next Tag (Ctrl + CloseBracket (Command + CloseBracket on OS X))
  Moves the cursor to the end of the next tag.
- Go after Previous Tag (Ctrl + OpenBracket (Command + OpenBracket on OS X))
  Moves the cursor to the end of the previous tag.

Select submenu

This submenu allows you to select the following:

- Element
  Selects the entire element at the current cursor position.
- Content
  Selects the entire content of the element at the current cursor position, excluding the start and end tag. Performing this action repeatedly will result in the selection of the content of the ancestor of the currently selected element content.
- Attributes
  Selects all the attributes of the element at the current cursor position.
- Parent
  Selects the parent element at the current cursor position.

Source submenu

This submenu includes the following actions:

- Shift Right (Tab)
  Shifts the currently selected block to the right.
- Shift Left (Shift + Tab)
Shifts the currently selected block to the left.

럴 Indent selection (Ctrl + I (Command + I on OS X)) اخبار
Corrects the indentation of the selected block of lines if it does not follow the current indenting preferences (on page 157).

الة Escape Selection اريخ
Escapes a range of characters by replacing them with the corresponding character entities.

الة Unescape Selection اريخ
Replaces the character entities with the corresponding characters.

عال Format and Indent Element (Ctrl + Shift + I (Command + Shift + I on OS X)) اريخ
Pretty-prints (on page 3286) the element that surrounds the current cursor position.

عال To Upper Case اريخ
Converts the selected content to upper case characters. This works with contiguous and multiple selections.

عال To Lower Case اريخ
Converts the content selection to lower case characters. This works with contiguous and multiple selections.

عال Capitalize Lines اريخ
It capitalizes the first letter found on every new line that is selected. Only the first letter is affected, the rest of the line remains the same. If the first character on the new line is not a letter then no changes are made.

عال Convert Hexadecimal Sequence to Character (Ctrl + Shift + X (Command + Shift + X on OS X)) اريخ
Converts a sequence of hexadecimal characters to the corresponding Unicode character (on page 770). The action can be invoked if there is a selection containing a valid hexadecimal sequence or if the cursor is placed at the right side of a valid hexadecimal sequence. A valid hexadecimal sequence can be composed of 2 to 4 hexadecimal characters and may or may not be preceded by the 0x or 0X prefix. Examples of valid sequences and the characters they will be converted to:

• 0x0045 will be converted to E
• 0x0125 to #
• 265 to #
• 2190 to #

**Note:** For more information about finding the hexadecimal value of a character, see Finding the Decimal, Hexadecimal, or Character Entity Equivalent *(on page 779).*

**Base64 Encode/Decode submenu**

This submenu include the following actions for encoding or decoding base 64 schemes:

**Import File to Encode and Insert**

Encodes a file and then inserts the encoded content into the current document at the cursor position.

**Decode Selection and Export to File**

Decodes a selection of text from the current document and then exports (saves) the result to another file.

**Encode Selection**

Replaces a selection of text with the result of encoding that selection. By default, a dialog box is displayed that allows you to select the encoding to use. There is an option to choose to not show this dialog box in the future. In this case, the encoding that is specified in the Encoding for Base64, Base32, Hex conversions option in the Encoding preferences page *(on page 125)* will be used. Likewise, the same is true if the Show the dialog box for choosing the encoding for Base64, Base 32, Hex conversions option is not selected in the Messages preference page *(on page 261).*

**Decode Selection**

Replaces a selection of text with the result of decoding that selection. By default, a dialog box is displayed that allows you to select the encoding to use. There is an option to choose to not show this dialog box in the future. In this case, the encoding that is specified in the Encoding for Base64, Base32, Hex conversions option in the Encoding preferences page *(on page 125)* will be used. Likewise, the same is true if the Show the dialog box for choosing the encoding for Base64, Base 32, Hex conversions option is not selected in the Messages preference page *(on page 261).*
Modify All Matches

Use this option to modify (in-place) all the occurrences of the selected content (or the contiguous fragment where the cursor is located). When you use this option, a thin rectangle replaces the highlights and allows you to start editing. If matches with different letter cases are found, a dialog box is displayed that allows you select whether you want to modify only matches with the same letter case or all matches.

Base32 Encode/Decode submenu

This submenu include the following actions for encoding or decoding base32 schemes:

Import File to Encode and Insert

Encodes a file and then inserts the encoded content into the current document at the cursor position.

Decode Selection and Export to File

Decodes a selection of text from the current document and then exports (saves) the result to another file.

Encode Selection

Replaces a selection of text with the result of encoding that selection. By default, a dialog box is displayed that allows you to select the encoding to use. There is an option to choose to not show this dialog box in the future. In this case, the encoding that is specified in the Encoding for Base64, Base32, Hex conversions option in the Encoding preferences page (on page 125) will be used. Likewise, the same is true if the Show the dialog box for choosing the encoding for Base64, Base 32, Hex conversions option is not selected in the Messages preference page (on page 261).

Decode Selection

Replaces a selection of text with the result of decoding that selection. By default, a dialog box is displayed that allows you to select the encoding to use. There is an option to choose to not show this dialog box in the future. In this case, the encoding that is specified in the Encoding for Base64, Base32, Hex conversions option in the Encoding preferences page (on page 125) will be used. Likewise, the same is true
if the **Show the dialog box for choosing the encoding for Base64, Base 32, Hex conversions** option is not selected in the **Messages** preference page.

**Modify All Matches**

Use this option to modify (in-place) all the occurrences of the selected content (or the contiguous fragment where the cursor is located). When you use this option, a thin rectangle replaces the highlights and allows you to start editing. If matches with different letter cases are found, a dialog box is displayed that allows you select whether you want to modify only matches with the same letter case or all matches.

**Hex Encode/Decode submenu**

This submenu include the following actions for encoding or decoding hex schemes:

**Import File to Encode and Insert**

Encodes a file and then inserts the encoded content into the current document at the cursor position.

**Decode Selection and Export to File**

Decodes a selection of text from the current document and then exports (saves) the result to another file.

**Encode Selection**

Replaces a selection of text with the result of encoding that selection. By default, a dialog box is displayed that allows you to select the encoding to use. There is an option to choose to not show this dialog box in the future. In this case, the encoding that is specified in the **Encoding for Base64, Base32, Hex conversions** option in the **Encoding preferences page** will be used. Likewise, the same is true if the **Show the dialog box for choosing the encoding for Base64, Base 32, Hex conversions** option is not selected in the **Messages** preference page.

**Decode Selection**

Replaces a selection of text with the result of decoding that selection. By default, a dialog box is displayed that allows you to select the encoding to use. There is an option to
choose to not show this dialog box in the future. In this case, the encoding that is specified in the **Encoding for Base64, Base32, Hex conversions** option in the Encoding preferences page (on page 125) will be used. Likewise, the same is true if the **Show the dialog box for choosing the encoding for Base64, Base 32, Hex conversions** option is not selected in the Messages preference page (on page 261).

**Modify All Matches**

Use this option to modify (in-place) all the occurrences of the selected content (or the contiguous fragment where the cursor is located). When you use this option, a thin rectangle replaces the highlights and allows you to start editing. If matches with different letter cases are found, a dialog box is displayed that allows you select whether you want to modify only matches with the same letter case or all matches.

**Join and Normalize Lines** (**Ctrl + J (Command + J on OS X)**)

For the current selection, this action joins the lines by replacing the *line separator* with a single space character. It also normalizes the whitespaces by replacing a sequence of such characters with a single space.

**Insert new line after** (**Ctrl + Alt + Enter (Command + Alt + Enter on OS X)**)

This action has the same result as moving the cursor to the end of the current line and pressing the **ENTER** key.

**Insert XInclude**

Displays a dialog box that allows you to browse and select the content to be included and automatically generates the corresponding XInclude instruction.

**Note:** In the **Author** mode, this dialog box presents a preview of the inserted document as an author page in the **Preview** tab and as a text page in the **Source** tab. In the **Text** mode, the **Source** tab is presented.

**Import entities list**

Displays a dialog box that allows you to select a list of files as sources for external DTD entities. The internal subset of the DOCTYPE declaration of your document will be updated with the chosen entities. For instance, choosing the files `chapter1.xml` and `chapter2.xml` inserts the following section in the DOCTYPE:
Lock / Unlock the XML Tags

Disables or enables the ability to edit XML tags.

Canonicalize

Opens the Canonicalize dialog box that allows you to select a canonicalization (on page 3280) algorithm to standardize the format of the document.

Sign

Opens the Sign dialog box that allows you to configure a digital signature for the document.

Verify Signature

Allows you to specify the location of a file to verify its digital signature.

Manage Highlighted Content submenu

This submenu is available from the contextual menu when it is invoked from a highlight after you perform a search operation or apply an XPath expression that highlights more than one result. The following options are available in this submenu:

Modify All

Allows you to modify (in-place) all the occurrences of the selected content. A thin rectangle replaces the highlights and allows you to start editing. If matches with different letter cases are found, a dialog box is displayed that allows you select whether you want to modify only matches with the same letter case or all matches.

Surround All

Surround the highlighted content with a specific tag. This option opens the Tag dialog box. The Specify the tag drop-down menu presents all the available elements that you can choose from.

Remove All

Removes all the highlighted content.

Modify All Matches

Use this option to modify (in-place) all the occurrences of the selected content (or the contiguous fragment where the cursor is located). When you use this option, a thin rectangle replaces the highlights and allows you to start editing. If matches with
different letter cases are found, a dialog box is displayed that allows you select whether you want to modify only matches with the same letter case or all matches.

**Go to Definition (Ctrl + Shift + Enter)**

Navigates to the definition of the current element or attribute in the schema (DTD, XML Schema, Relax NG schema) associated with the edited XML document. If the current attribute is a "type" belonging to the `http://www.w3.org/2001/XMLSchema-instance` namespace, the cursor is moved in the XML schema to the definition of the type referenced in the value of the attribute. For JSON documents, it navigates to the definition of the current JSON property in the associated JSON Schema.

**Refactoring submenu**

This submenu includes the following actions:

- **Rename Element**

  The element from the cursor position, and any elements with the same name, can be renamed according with the options from the *Rename* dialog box.

- **Rename Prefix (Alt + Shift + P (Command + Shift + P on OS X))**

  The prefix of the element from the cursor position, and any elements with the same prefix, can be renamed according with the options from the *Rename* dialog box.

  - If you select the *Rename current element prefix* option, the application will recursively traverse the current element and all its children. For example, to change the `xmlns:p1="ns1"` association in the current element to `xmlns:p5="ns1"`, if the `xmlns:p1="ns1"` association is applied on the parent element, then Oxygen XML Editor will introduce `xmlns:p5="ns1"` as a new declaration in the current element and will change the prefix from `p1` to `p5`. If `p5` is already associated with another namespace in the current element, then the conflict will be displayed in a dialog box. By pressing **OK**, the prefix is modified from `p1` to `p5` without inserting a new declaration.

  - If you select the *Rename current prefix in all document* option, the application will apply the change on the entire document.

  - To also apply the action inside attribute values, select the *Rename also attribute values that start with the same prefix* checkbox.

- **Surround with submenu**
Presents a drop-down menu that allows you to choose a tag to surround a selected portion of content.

**Surround with Tags (Ctrl + E (Command + E on OS X))**

Allows you to choose a tag that encloses a selected portion of content. If there is no selection, the start and end tags are inserted at the cursor position.

- If the **Position cursor between tags** option (on page 167) is selected in the **Content Completion** preferences page, the cursor is placed between the start and end tag.
- If the **Position cursor between tags** option (on page 167) is not selected in the **Content Completion** preferences page, the cursor is placed at the end of the start tag, in an insert-attribute position.

**Surround with [tag] (Ctrl + ForwardSlash (Command + ForwardSlash on OS X))**

Surround the selected content with the last tag used.

**Delete element tags (Alt + Shift + X (Command + Alt + X on OS X))**

Deletes the start and end tag of the current element.

**Split element (Alt + Shift + D (Ctrl + Alt + D on OS X))**

Split the element from the cursor position into two identical elements. The cursor must be inside the element.

**Join elements (Alt + Shift + J (Command + Alt + J on OS X))**

Joins the left and right elements relative to the current cursor position. The elements must have the same name, attributes, and attributes values.

### Attributes Refactoring Actions

Contains built-in XML refactoring operations that pertain to attributes with some of the information preconfigured based upon the current context.

**Add/Change attribute**

Allows you to change the value of an attribute or insert a new one.

**Convert attribute to element**

Allows you to change an attribute into an element.

**Delete attribute**

Allows you to remove one or more attributes.
**Rename attribute**
Allows you to rename an attribute.

**Replace in attribute value**
Allows you to search for a text fragment inside an attribute value and change the fragment to a new value.

**Comments Refactoring Actions**
Contains built-in XML refactoring operations that pertain to comments with some of the information preconfigured based upon the current context.

**Delete comments**
Allows you to delete comments found inside one or more elements.

**Elements Refactoring Actions**
Contains built-in XML refactoring operations that pertain to elements with some of the information preconfigured based upon the current context.

**Delete element**
Allows you to delete elements.

**Delete element content**
Allows you to delete the content of elements.

**Insert element**
Allows you to insert new elements.

**Rename element**
Allows you to rename elements.

**Unwrap element**
Allows you to remove the surrounding tags of elements, while keeping the content unchanged.

**Wrap element**
Allows you to surround elements with element tags.

**Wrap element content**
Allows you to surround the content of elements with element tags.

**Fragments Refactoring Actions**
Contains built-in XML refactoring operations that pertain to XML fragments with some of the information preconfigured based upon the current context.

**Insert XML fragment**
Allows you to insert an XML fragment.

**Replace element content with XML fragment**
Allows you to replace the content of elements with an XML fragment.

**Replace element with XML fragment**
Allows you to replace elements with an XML fragment.

**Manage IDs submenu**
This submenu is available for XML documents that have an associated DTD, XML Schema, or Relax NG schema (not available for DITA). It includes the following actions:

- **Rename in**
  Renames the ID and all its occurrences. Selecting this action opens the **Rename XML ID** dialog box. This dialog box lets you insert the new ID value and choose the scope of the rename operation (on page 1129). For a preview of the changes you are about to make, click **Preview**. This opens the **Preview** dialog box, which presents a list with the files that contain changes and a preview zone of these changes.

- **Rename in File**
  Renames the ID you are editing and all its occurrences from the current file.

- **Search References**
  Searches for the references of the ID. By default, the scope of this action is the current project. If you configure a scope using the **Select the scope for the Search and Refactor operations** (on page 1129) dialog box, this scope will be used instead.

- **Search References in**
  Searches for the references of the ID. Selecting this action opens the **Select the scope for the Search and Refactor operations** (on page 1129).

- **Search Declarations**
  Searches for the declaration of the ID reference. By default, the scope of this action is the current project. If you configure a scope using the **Select...**
the scope for the Search and Refactor operations (on page 1129) dialog box, this scope will be used instead.

Search Declarations in

Searches for the declaration of the ID reference. Selecting this action opens the Select the scope for the Search and Refactor operations (on page 1129).

Search Occurrences in file

Searches for the declaration and references of the ID in the current document.

Quick Assist (Alt + 1 (Command + Alt + 1 on OS X))

Available when the cursor is inside an ID or IDREF, this action opens the Quick Assist (on page 3286) window that allows you to select some search and refactoring actions for the selected ID or IDREF.

Open submenu

The following actions are available in this submenu:

Open File at Cursor

Opens the file at the cursor position in a new panel. If the file path represents a directory path, it will be opened in system file browser. If the file at the specified location does not exist, an error dialog box is displayed and it includes a Create new file button that starts the New document wizard. This allows you to choose the type or the template for the file. If the action succeeds, the file is created with the referenced location and name and is opened in a new editor panel.

Open File at Cursor in System Application

Opens the file (identified by its link) or web page (identified by a web link) found at cursor position. The target is opened in the default system application associated with that file type.

Compare

Opens the current file in the Compare Files tool (on page 2770).

Resource Hierarchy

Opens the Resource Hierarchy/Dependencies view (on page 1130) that allows you to see the resource hierarchy for an XML document.

Resource Dependencies

Opens the Resource Hierarchy/Dependencies view (on page 1130) that allows you to see the resource dependencies for an XML document.
Editing XML Documents in Grid Mode

The Grid mode in Oxygen XML Editor displays the XML document as a structured grid of nested tables where the text content can be modified without directly interacting with the XML markup. This is helpful for non-technical users who want to edit text content without modifying the XML markup. You can easily expand or collapse elements within the table and the document structure can be changed with simple contextual menu actions, drag/drop, or copy/paste operations. The text content can be modified simply by editing the value of cells that contain the text and a useful Content Completion Assistant (on page 3280) is also available to help you edit or insert XML elements.

To switch to this mode, select Grid at the bottom of the editing area.

For more information about some of the features available in the Grid editor, watch our video demonstration:

https://www.youtube.com/embed/PoYm2VqisWk

Editing Actions in Grid Mode

Since Grid mode presents XML content in a structured grid of nested tables, editing content in this mode can be done with a combination of the Content Completion Assistant (on page 891) and actions that allow you to work with the structure or content of the nested tables much like you would with any table. Oxygen XML Editor provides ways to edit content in the cells of the nested tables or to edit the structure of the tables.

Tip: There are two different types of layouts available in Grid mode. Most people prefer to leave it on the default Grid mode layout, but there is also a Tree mode layout that presents the structure of the document in more of a vertical tree-like manner. You can switch between the two layouts to see which one works best for your particular situation from the Document > Grid Layout menu.

Expanding/Collapsing Nodes

An arrow sign (стрелка) displayed at the left of a node indicates that it has child nodes. To display the children, click this arrow sign. To collapse a node, click the reverse arrow sign (стрелка). The expand/collapse actions can also be invoked with the NumPad+ and NumPad- keys, or from the Expand/Collapse submenu of the contextual menu.

To expand all child nodes, right-click the cell that contains the parent node and select Expand All from the Expand/Collapse submenu. To collapse all node, right-click any cell and select Collapse All from the Expand/Collapse submenu.
Editing Elements or Attributes

To edit elements or attributes in Grid mode, simply double-click the cell that contains the element or attribute (or select the cell and press Enter) to invoke the Content Completion Assistant (on page 891). This opens a pop-up window that offers a list of proposals that are valid for that particular node.

Editing Text Content in Cells

To edit the text value of a cell, simply select the grid cell and press Enter (or double-click the cell), and start editing.

To stop editing a cell value, press Enter again.

To cancel the editing without saving the current changes in the document, press the Esc key.

Editing the Structure of the Nested Tables

To edit the structure of the nested tables in Grid mode, Oxygen XML Editor provides the following actions in the contextual menu (many of them also appear in the submenus of the Document menu, or the toolbar):

- Cut, Copy, Paste, X Delete common editing actions
  - Executes the typical editing actions on the currently selected elements. The Cut and Copy operations preserve the styles of the copied content.

Paste as Child
  - Pastes the copied content as the last child of the current selection.

Duplicate
  - Creates a new node by duplicating the currently selected one.

Insert Before
  - Offers a list of valid nodes, depending on the context, and inserts your selection before the currently selected node, as a sibling.

Insert After
  - Offers a list of valid nodes, depending on the context, and inserts your selection after the currently selected node, as a sibling.

Append Child
  - Offers a list of valid nodes, depending on the context, and appends your selection as a child of the currently selected node.
Sort Ascending, Sort Descending

The sorting result depends on the data type of the column content. It could be a numerical sorting for numbers or an alphabetical sorting for text information. The editor automatically analyzes the content and decides what type of sorting to apply. When a mixed set of values is present in the sorted column, a dialog box is displayed that allows you to choose the desired type of sorting between numerical and alphabetical.

Insert Row

Inserts a new row below the current selection. To insert a new row, you could also select the row header (the zone to the left of the row that holds the row number) and press Enter.

Insert Column

Inserts a column after the current selection.

Clear Content

Removes all content from the current cell.

Expand/Collapse > Expand All

Expands the selection and all its children.

Expand/Collapse > Collapse All

Collapses the selection and all its children.

Expand/Collapse > Expand Children

Expands all the children of the selection but not the selection.

Expand/Collapse > Collapse Children

Collapses all the children of the selection but not the selection.

Expand/Collapse > Collapse Others

Collapses all the siblings of the current selection but not the selection.

Refresh Selected

Forces the layout to be recomputed.

Related Information:

- Grid Mode Navigation (on page 393)
- Copy and Paste in the Grid Editing Mode (on page 889)
Drag and Drop in the Grid Editing Mode

You can easily arrange sections in your XML document in the Grid mode by using drag and drop actions.

You can do the following with drag and drop:

- Copy or move a set of nodes.
- Change the order of columns in the tables.
- Move the rows from the tables.

These operations are available for both single and multiple selections. To deselect one of the selected fragments, use Ctrl + Single-Click (Command + Single-Click on OS X).

While dragging, the editor paints guide-lines showing the locations where you can drop the nodes. You can also drag nodes outside the Grid editor and text from other applications into the Grid.

Tip: When using drag and drop to reorganize the document, the resulting layout can be different from what you expected. For instance, the layout can contain a set of sibling tables that can be joined together. To force the layout to be recomputed, you can use the Refresh Selected action that is available in the contextual menu and in the Document > Grid Edit menu.

Copy and Paste in the Grid Editing Mode

Selecting content in the Grid mode is similar to working with any table with a little more complexity. Specifically, depending on the type of node, when you select a cell, the selection may automatically include additional cells that are implied by the currently selected node. For example, if you click a node that contains any child nodes, all cells that contain the parent and child nodes will be selected. In this case, the currently selected cell is painted with a color that is different from the rest of the selection.

You can also select discontinuous regions of nodes and place them in the clipboard with the copy action. To deselect one of the selected fragments, use Ctrl + Single-Click (Command + Single-Click on OS X).
Pasting Content Within Grid Mode

You can paste copied nodes relative to the currently selected cell using one of the following actions (available in the contextual menu):

- **Paste (Ctrl + V (Command + V on OS X))** - Pastes copied content, as a sibling, just below (after) the current selection.
- **Paste as Child** - Pastes copied content as the last child of the current selection.

Pasting Content from Grid Mode to Other Editors

Nodes that are copied from the Grid editor can also be pasted into Text mode or other external applications. When pasting copied content from Grid mode, the inserted string represents the nodes serialization. The nodes from tables can be copied using HTML or RTF in table format. The resulting cells contain only the concatenated values of the text nodes.

![Figure 303. Copying from Grid to Other Editors](image)

Pasting Content from Other Editors into Grid Mode

You can also paste well-formed XML content or tab-separated values from other editors into the Grid editor. If you paste XML content, the result will be the insertion of the nodes obtained by parsing this content.
If the pasted text contains multiple lines of tab-separated values, it can be considered as a matrix of values. By pasting this matrix of values into the Grid editor, the result will be a matrix of cells. If the operation is performed inside existing cells, the existing values will be overwritten and new cells will be created when needed.

If you need to add copied content to your existing content (rather than overwriting existing cells), you need to first insert new cells by using the **Insert row** or **Insert column** actions from the contextual menu. This is useful, for example, when trying to transfer data from spreadsheet-like editors to the Grid editor.

Content Completion Assistant in Grid Mode

If the edited document is associated with a schema (DTD, XML Schema, Relax NG, etc.), the Grid editing mode offers a **Content Completion Assistant (on page 3280)** for the names and values of elements and attributes. If you choose to insert an element that has required content, the sub-tree of needed elements and attributes are also automatically included.

To display the content completion pop-up menu, simply double-click a cell that contains an element or attribute (or press **Enter** on your keyboard).
Exporting XML Content to Excel

For use-cases where you have XML content that needs to be exported to Excel (or any other spreadsheet application) but the content is not already in some sort of table format, **Grid** mode offers you a way to display the content of an XML document as a structured grid of nested tables and you can work with the cells in those tables much like you would with any spreadsheet application. This makes it possible to export content to Excel by copying cells that contain the specific content and then pasting the copied cells in Excel the same as you would when working with any table or spreadsheet.

To export XML content from **Grid** mode to Excel or other spreadsheet applications, follow this procedure:

1. Open the XML document in Oxygen XML Editor and switch to **Grid** mode.
2. **Expand the nodes** *(on page 886)* to gain access to the particular nested table that contains the content you want to export.
3. Copy the cells that contain the content you want to export *(Copy from the contextual menu or Ctrl+C)*.
4. Switch to your spreadsheet application and paste the copied cells.
5. You may need to make some manual adjustments depending on the complexity of the structure in the original XML document.

Note that Oxygen XML Editor also supports the reverse scenario (copying cells from a spreadsheet application and pasting them in **Grid** mode). For more information, see **Import from MS Excel Files – Grid Mode Method** *(on page 2278)*.

For more information about exchanging data between Oxygen XML Editor and spreadsheet applications, watch our video demonstration:

https://www.youtube.com/embed/8VwsF58zLkU

**Related Information:**

- **Import from MS Excel Files - Grid Mode Method** *(on page 2278)*
Editing XML Documents in Author Mode

The Author editing mode in Oxygen XML Editor allows you to visually edit XML documents in a user-friendly interface that is similar to a WYSIWYG word processor. This makes structured authoring easier for people who are not familiar with XML and it also provides easier access to the XML structure for XML experts. Oxygen XML Editor provides support for visually editing the most commonly used XML vocabularies in Author mode, including DITA, DocBook, TEI, and XHTML.

Adding text content in Author mode is as simple as doing so in a standard text editor but the content is rendered similar to how you will see it in the output. Tables, images, and media objects (such as videos) are also rendered comparable to the output. You can even play audio and video objects directly in Author mode and it includes an intuitive Image Map Editor (on page 1029). You can easily change the rendering by selecting one of the preset main styles (on page 3284) from the Styles drop-down menu (on page 2350) (available on the toolbar) and combine multiple alternate styles (on page 3279) that behave like layers. You can also use the options in the Tags Display Mode drop-down menu (on page 441) to control how much XML markup is displayed in Author mode and there are various features and views that provide information about the XML structure based upon your current location within the document.

Author mode provides numerous helpful editing actions, many of which are specific to the type of document you are editing and it includes a variety of other powerful editing features, such as keyboard shortcuts, drag and drop support (on page 918), a Smart Paste mechanism (on page 918), and an intelligent Content Completion Assistant (on page 921). Author mode also allows you to visualize and manage profiled content (on page 969), you can collaborate with others with various review features (on page 941) (such as the ability to add comments, track changes, or highlight content), and includes many other unique features.

To switch to this mode, click the Author button at the bottom of the editing area.

For more information about some of the features available in the visual Author editing mode, watch our video demonstration:

https://www.youtube.com/embed/bnQwJZD58wY

Author Mode User Roles

There are two main types of users for the Author mode: framework developers and content authors.
Framework Developers

A framework developer is a technical person with advanced XML knowledge who defines the framework (on page 3282) for authoring XML documents in the visual editor. Once the framework is created or edited by the developer, it is distributed as a deliverable component ready to plug into the application for the content authors.

The framework (document type) configuration defines a type of XML document by specifying all the details needed for editing the content of XML documents in Author mode.

The framework details that are created and customized by the developer include:

- The CSS stylesheet that drives the visual rendering of the document.
- The rules for associating an XML schema with the document, which is needed for the content completion assistance and validation of the document.
- Transformation scenarios for the document.
- Configuration of XML Catalogs (on page 3289).
- Custom actions available as buttons on the toolbar or in menus.

Oxygen XML Editor includes some ready-to-use built-in document types for XML frameworks, such as DocBook, DITA, TEI, JATS, and XHTML.

Content Authors

A content author does not need to have advanced knowledge about XML markup, operations such as validation of XML documents, or applying XPath expressions to an XML document. The content author just uses the framework set up by the developer in the application and starts editing the content of XML documents without editing the XML tags directly.

Styling XML Documents in Author Mode

The Author mode renders the content of the XML documents visually, based on CSS stylesheets associated with the document.

Selecting and Combining Multiple CSS Styles

Oxygen XML Editor provides a Styles drop-down menu on the toolbar that allows you to select one main (non-alternate) CSS style (on page 3284) and multiple alternate CSS styles (on page 3279). This makes it easy to change the look of the document as it appears in Author mode and the output without having to continually edit the CSS stylesheets.
Tip: For information about configuring the Styles drop-down menu, see Configuring and Managing Multiple CSS Styles for a Framework (on page 2348).

You can select a main CSS style that applies to the whole document and then alternate styles that are applied as layers to specific parts of the document. For example, in the subsequent figure, a DITA document has the Century style selected for the main CSS and the alternate styles Full width, Show table column specification, Hints, and Inline actions are combined for additive styling to specific parts of the document.

The selections from the Styles drop-down menu are persistent, meaning that Oxygen XML Editor will remember the selections when subsequent documents are opened.

Figure 307. Styles Drop-down Menu in a DITA Document

Related Information:

- Associating a Schema to XML Documents (on page 1112)
- Configuring and Managing Multiple CSS Styles for a Framework (on page 2348)
- Customizing Author Mode Using CSS Files Associated with a Framework (on page 2346)
Navigating the Document Content in Author Mode

Oxygen XML Editor includes some useful features to help you navigate XML documents.

**Navigation Keyboard Shortcuts**

**Tab**

Navigate to the next XML node.

**Tip:** If you encounter a *space-preserved element (on page 3287)* when you navigate through a document and you do not press another key, pressing the *Tab* key will continue the navigation. However, if the cursor is positioned in a *space-preserved element* and you press another key or you position the cursor inside such an element using the mouse, the *Tab* key can be used to arrange the text.

**Shift + Tab**

Navigate to the previous XML node.

**Ctrl + RightArrow (Command + RightArrow on OS X)**

Navigate one word forward.

**Ctrl + LeftArrow (Command + LeftArrow on OS X)**

Navigate one word backward.

**Ctrl + Home (Command + Home on OS X)**

Position the cursor at the beginning of the document.

**Ctrl + End (Command + End on OS X)**

Position the cursor at the end of the document.

**Navigating to a Modification**

Oxygen XML Editor includes some actions that help you to quickly navigate to a particular modification. These navigation buttons are available in the main toolbar (they can also be accessed from the *Find* menu):

**Navigate to Last Modification**

Navigates to the last modification in any opened tab.

**Navigate to Last Tab**

Navigates to the last selected editor tab or to the last selected element/content in the current tab. You can also go back after clicking on links in *Text* or *Author* mode.
Forward

Available after you use the Back button at least once, and it navigates in the opposite direction as the Back button.

Navigating with the Outline View

Oxygen XML Editor includes an Outline view (on page 347) that displays a hierarchical tag overview of the currently edited XML Document.

You can use this view to quickly navigate through the current document by selecting nodes in the outline tree. It is synchronized with the editor area, so when you make a selection in the Outline view, the corresponding nodes are highlighted in the editor area.

Figure 308. Outline View Navigation in Author Mode

Using the Breadcrumb to Navigate

A breadcrumb on the stripe at the top of the document indicates the path from document root to the current element. It can also be used as a helpful tool to navigate to specific elements throughout the structure of the document.

Figure 309. Breadcrumb in Author Mode

The last element listed in the breadcrumb is the element at the current cursor position. The last element is also highlighted by a thin light blue bar for easier identification. Clicking an element from the breadcrumb selects the entire element and navigates to it in the editor area.

Using the Linking Support

When working on multiple documents that reference each other (references, external entities, XInclude, DITA conref, etc.), the linking support is useful for navigating between the documents. In the built-in frameworks that are bundled with Oxygen XML Editor, links are marked with an icon representing a chain link (🔗). When hovering over the icon, the mouse pointer changes its shape to indicate that the link can be accessed and a tooltip presents the destination location. Click the link to open the referenced resource in the editor or system browser. The same effect can be obtained
by using the **Document > File > Open file at cursor (Ctrl + Enter (Command + Enter on OS X))** action when the cursor is inside a link element.

**Note:** Depending on the referenced file type, the target link will either be opened in the Oxygen XML Editor or in the default system application. If the target file does not exist, Oxygen XML Editor prompts you to create it.

### Navigating with Bookmarks

A position in a document can be marked with a **bookmark**. You can then quickly go to the marked position with a keyboard shortcut or a menu action. This is useful when navigating large documents or working on multiple documents where the cursor needs to move between several marked positions. The **bookmarks** are displayed with a small icon on the vertical strip to the left of the editor. You can place up to nine distinct **bookmarks** in any document. Shortcut keys are available to navigate to any of the marked positions (**Ctrl+1** through **Ctrl+9**). There are also shortcuts for creating bookmarks (**Ctrl+Shift+1** through **Ctrl+Shift+9**). You can also configure these shortcut keys in the **Options > Menu Shortcut Keys** (on page 248) menu.

Figure 310. Editor Bookmarks

![Editor Bookmarks](image)

To insert a **bookmark** in **Author** mode, do any of the following:

- Click in the vertical stripe on the left side of the editor (to the left of the line number).
- Press **(F9)** on your keyboard or use any of the specific bookmark creation shortcuts (**Ctrl+Shift+1** through **Ctrl+Shift+9**).
- Select the 📞 **Create Bookmark** action from the **Edit > Bookmarks** menu.

To remove **bookmark** in **Author** mode, do either of the following:

- Left-click its icon in the vertical stripe.
- Right-click its icon on the vertical stripe and select **Remove** or **Remove all** (**Ctrl+F7** (Command +F7 on OS X)).

To navigate to a specific **bookmark**, do either of the following:

- Use any of the specific bookmark navigation shortcuts (**Ctrl+1** through **Ctrl+9**).
- Use one of the actions available on the **Edit > Bookmarks > Go to** menu.
Tip: The navigation shortcuts work even if the document where the bookmark was inserted has been closed. In this case, using the shortcut will automatically re-open the document.

Displaying the Markup

You can control the amount of markup that is displayed in the Author mode with various levels of tag modes for both block and in-line elements.

The following dedicated tag modes are available from the Tags Display Mode drop-down menu (available on the toolbar):

- Full Tags with Attributes
  Displays full tag names with attributes for both block and in-line elements.

- Full Tags
  Displays full tag names without attributes for both block and in-line elements.

- Block Tags
  Displays full tag names for block elements and simple tags without names for in-line elements.

- Inline Tags
  Displays full tag names for in-line elements, while block elements are not displayed.

- Partial Tags
  Displays simple tags without names for in-line elements, while block elements are not displayed.

- No Tags
  No tags are displayed. This is the most compact mode and is as close as possible to a word-processor view.

Configure Tags Display Mode

Opens the Author preferences page (on page 131) where you can configure options regarding tags, such as the default Tags Display Mode, Tags Background Color, Tags Foreground Color, Tags Font, and whether or not Oxygen XML Editor will use a Compact Tag Layout for displaying the tags (this option tries to group consecutive block tags on the same line).

Note: The associated CSS information is used to determine whether a tag should be considered in-line or block. If the current document does not have an associated CSS stylesheet, then the Full Tags mode will be used.
Displaying Referenced Content

The references to entities, XInclude, DITA conrefs, and constructs in other vocabularies with displayable referenced content (on page 2402) are expanded by default in Author mode and the referenced content is displayed. You can control this behavior from the Author preferences page (on page 131). The referenced resources are loaded and displayed inside the element or entity that references them, but the displayed content cannot be modified directly in current document.

![XInclude reference](image1)

**Figure 311. XInclude reference**

![External entity reference](image2)

**Figure 312. External entity reference**

When the referenced resource cannot be resolved, an error will be presented inside the element that refers them instead of the content.

If you want to make modifications to the referenced content, you must open the source where the referenced resource resides. The referenced resource can be opened quickly by clicking the link (marked with the ⚙ icon) that is displayed before the referenced content or by using the Edit Reference action from the contextual menu (in this case, the cursor is placed at the precise location where the action was invoked). The referenced resource is resolved through the XML Catalog (on page 3289) set in the XML Catalog preferences page (on page 189).

The referenced content is refreshed as follows:

- Automatically, when it is modified and saved from Oxygen XML Editor.
- On demand, by using the 🔄 Refresh references action (on page 1060). This is useful when the referenced content is modified outside the Oxygen XML Editor scope.

Related Information:
Visual Hints for the Cursor Position

When the cursor is positioned inside a new context, a tooltip will be shown for a couple of seconds displaying the position of the cursor relative to the context of the current element.

Here are some of the common situations that can be encountered:

• Before first block - The cursor is positioned before the first block (on page 3280) child of the current node.

• Between two block elements - The cursor is positioned between two block elements (on page 3280).

• After last block - The cursor is positioned after the last block element (on page 3280) child of the current node.

• Inside a node - The cursor is positioned inside a node.

• Before an inline element - The cursor is positioned inside an element, before a child inline element (on page 3283).

• Between two inline elements - The cursor is positioned between two inline elements (on page 3283).
- **After an inline element** - The cursor is positioned inside an element, after an child *inline element* (on page 3283).

The nodes in these cases are displayed in the tooltip window using the element names.

To deactivate this feature, open the *Preferences* dialog box (*Options > Preferences*) (on page 79), go to *Author > Cursor Navigation*, and deselect the *Show cursor position tooltip* option (on page 136). Even if this option is deselected, you can still display the position tooltip by pressing **Shift+F2**.

**Note:** The position information tooltip is not displayed if *Full Tags with Attributes* or *Full Tags* is selected in the *Tags display mode* drop-down menu (on page 441).

---

**Location Tooltip**

When editing XML documents in a visual environment, you might find it difficult to position the cursor between certain tags that do not have a visual representation. To counterbalance this, Oxygen XML Editor displays a transparent preview of the position information, called the *Location Tooltip*:

Oxygen XML Editor displays a *Location Tooltip* when the following conditions are met:

- You are editing the document in one of the following *tags display modes* (on page 441): *Inline Tags*, *Partial Tags*, *No Tags*.
- The mouse pointer is moved between *block elements* (on page 3280).

To activate or deactivate this feature, use the *Show location tooltip on mouse move* option (on page 136) in the *Cursor Navigation* preferences page (on page 136).

---

**Whitespace Handling in Author Mode**

When you edit a document in *Author* mode, Oxygen XML Editor must serialize the resulting document as XML. Oxygen XML Editor serializes the document when you save it or switch to another editing mode. When the document is serialized, Oxygen XML Editor *formats and indents the XML document* (on page 863) according to the current *format and indent settings* (on page 157).
Minimizing Whitespace Differences Between Versions

When serializing a document to XML, Author mode will only format and indent those elements of the document that have been edited. Any element that has not been edited will be serialized exactly as it was loaded from disk. This is useful when your content is managed in a version control systems, as it avoids introducing insignificant whitespace differences between version, which in turn makes diff output easier to read.

Entering Whitespace in Author Mode

Oxygen XML Editor controls the entry of whitespace characters in Author mode according the XML whitespace rules (on page 863), which means it will not let you insert insignificant whitespace. This means that it will not let you insert extra line-breaks or spaces inside a typical paragraph element, for instance. (Any such whitespace would be normalized away when the document was serialized to XML, so Oxygen XML Editor is saving you from any surprises when this happens.)

Of course, you will legitimately want to enter additional spaces and returns in some cases, such as code samples. Oxygen XML Editor will allow this in elements that are configured as preserve space elements according to the XML whitespace rules. For all of its built-in document types (on page 1537), Oxygen XML Editor is correctly configured to recognize preserve space elements (on page 160) and to allow you to enter additional spaces in them.

If you are using a built-in document type and you are unable to enter additional whitespace, make sure that you are using an element from that document type that is intended to be a preserve-space element.

If you are using a custom document type, make sure that it is configured correctly (on page 2322) so that Oxygen XML Editor recognizes that the current element is a preserve-space element.

Serialization Options for Author Mode

The Author preferences page (on page 131) (open the Preferences dialog box (Options > Preferences) (on page 79) and go to Editor > Edit modes > Author) includes a Serialization section (on page 134) that contains some options that control how the formatting and indenting is applied when a document is saved in Author mode or when switching from Author to Text mode. It also includes a Compatibility with other tools option (on page 135) that controls how line breaks are handled when a document is serialized to help obtain better compatibility with other applications.
Editing Content in Author Mode

The **Author** mode includes a large variety of user-friendly authoring features to help you work with XML content, including numerous toolbar, menu, and shortcut actions and some specialized content editing features.

**Undo/Redo Actions**

The typical undo and redo actions are available with shortcuts or in the **Edit** menu:

- **Undo (Ctrl + Z (Command + Z on OS X))**
  
  Reverses a maximum of 200 editing actions (configurable with the **Undo history size option** (on page 126) in the **Editor** preferences page) to return to the preceding state.

  - **Note:** Complex operations such as **Replace All** or **Indent selection** count as single undo events.

- **Redo (Ctrl + Y (Command + Shift + Z on OS X, Ctrl + Shift + Z on Linux/Unix))**
  
  Recreates a maximum of 100 editing actions that were undone by the **Undo** function.

**Copy and Paste Actions**

The typical copying and pasting actions are available with shortcuts or in the contextual menu (or the **Edit** menu):

- **Cut (Ctrl + X (Command + X on OS X))**
  
  Removes the current selected content from the document and places it in the clipboard.

- **Copy (Ctrl + C (Command + C on OS X))**
  
  Places a copy of the current selected content in the clipboard.

- **Paste (Ctrl + V (Command + V on OS X))**
  
  Inserts the current clipboard content into the document at the cursor position.

- **Select All (Ctrl + A (Command + A on OS X))**
  
  Selects the entire content of the current document.

**Entering Text in Elements**

By default, you can only enter text in elements that accept text content. If the element is declared as **empty** or **element only** in the associated schema, you are not allowed to insert text in it. Instead, a warning message is displayed.
To allow text to be inserted in these instances, go to the Schema-Aware preferences page and
deselect the Reject action when its result is invalid option in the Typing actions section (on page 139).

Editing Text Content Without Modifying the XML Markup

You can use the options in the Tags Display Mode drop-down menu (on page 441) (available
on the toolbar) to control how tags are displayed in Author mode. This can help you to clearly see
where the current cursor position is within the tag structure so that you can avoid making unintended
modifications to the XML markup. You can also switch to the Grid editing mode (on page 886) to
modify text content without affecting the XML tags.

Changing the Font Size (Zoom)

The font size of the editor panel can be changed with the following actions that are available with
shortcuts or in the Document > Font size menu:

Increase editor font (Ctrl + NumPad+ (Command + NumPad+ on OS X) or Ctrl +
MouseWheelForward (Windows/Linux)

Increases the font size (zooms in) with one point for each execution of the action.

Note: For Mac OS X, if you activate the Enable mouse-wheel zooming
option (on page 126) in the Editor preferences page, you can use Command +
MouseWheelForward to increase the font size (zoom in). It is disabled by default due to
the way inertia affects the mouse wheel on Mac OS X.

Decrease editor font (Ctrl + NumPad- (Command + NumPad- on OS X) or Ctrl +
MouseWheelBackwards (Windows/Linux)

Decreases the font size (zooms out) with one point for each execution of the action.

Note: For Mac OS X, if you activate the Enable mouse-wheel zooming
option (on page 126) in the Editor preferences page, you can use Command +
MouseWheelBackwards to decrease the font size (zoom out). It is disabled by default
due to the way inertia affects the mouse wheel on Mac OS X.

Normal editor font (Ctrl + 0 (Command + 0 on OS X))
Resets the font size to the value of the editor font set in the Fonts preferences page (on page 88).

Related Information:

- Editing XML Markup in Author Mode (on page 906)
- Drag and Drop in Author Mode (on page 918)
- Smart Paste Mechanism (on page 918)
- Content Completion Assistant in Author Mode (on page 921)
- Contextual Menu Actions in Author Mode (on page 1065)
- Frequently Used Shortcut Keys (on page 27)

Editing XML Markup in Author Mode

Oxygen XML Editor includes some useful actions that allow you to easily edit XML markup in Author mode. Most of these actions are available in the contextual menu and some of them have simple keyboard shortcuts.

Selecting XML Markup in Author Mode

Selecting XML tags in Oxygen XML Editor is very simple with several methods for selecting entire elements:

- **Breadcrumb** - Click the element (XML tag) on the breadcrumb (on page 907) displayed at the top of the editing window.
- **Outline View** - Click the element name in the Outline view (on page 347).
- **Full Tags Mode** - While editing in Full Tags mode (on page 441), click the start or end tag of the element in the editor.
- **Mouse Selection** - While editing in Full Tags mode (on page 441), click before the start tag of the element, drag the selection, and release the mouse button after the end tag.
- **Shift + Arrow Keys** - While editing in Full Tags mode (on page 441), place the cursor before the start tag of the element, press and hold Shift, and use the arrow keys to make the selection (including the end tag).
**Note:** If the selection does not include the entire element (for example you do not include the end tag of the element), Oxygen XML Editor will automatically close the appropriate tags when pasting the copied selection. This ensures that the pasted content will always result in well-formed XML (on page 1079).

### Using the Breadcrumb in Author Mode

A *breadcrumb* on the top stripe indicates the path from document root to the current element. It can also be used as a helpful tool to insert and edit specific elements in the document structure.

**Figure 315. Breadcrumb in Author Mode**

The last element listed in the *breadcrumb* is the element at the current cursor position. The last element is also highlighted by a thin light blue bar for easier identification. Clicking an element from the *breadcrumb* selects the entire element in the editor area and each element provides a contextual menu with access to the following actions:

#### Edit Attributes

Opens the *in-place attributes editor (on page 429)* that allows you to easily edit the attributes of an element.

#### Edit Profiling Attributes

Allows you to select the *profiling attributes (on page 969)* that apply to a certain element.

#### Append child

Opens a content completion list that allows you to select an element to be inserted as a child of the selected element.

#### Insert before

Opens a content completion list that allows you to select an element to be inserted (as a sibling) before the selected element.

#### Insert after

Opens a content completion list that allows you to select an element to be inserted (as a sibling) after the selected element.

#### Cut

Removes the selected element and copies it to the clipboard, while preserving the styles of the content.

#### Copy
Copies the selected element to the clipboard, while preserving the styles of the copied content.

**Paste**

Pastes a well-formed element from the clipboard at currently selected position in the breadcrumb.

**Paste before**

Insert a well-formed element (from the clipboard) before the currently selected element.

**Paste after**

Insert a well-formed element (from the clipboard) after the currently selected element.

**Paste as XML**

Inserts clipboard content that is considered to be well-formed XML content, preserving its XML structure.

**Delete**

Deletes the currently selected element.

**Toggle Comment**

Encloses the currently selected element in an XML comment, if the element is not commented, or removes the comment if it is commented.

**Rename Element**

Opens the *Rename* dialog box that allows you to rename the currently selected element and other elements with the same name.

**Tip:** The tag names displayed in the breadcrumb can be customized with an Author mode extension class that implements the AuthorBreadCrumbCustomizer API. See the Oxygen SDK for more details.

**Move Nodes**

You can move XML nodes in the current document by using the following actions in the Refactoring submenu of the contextual menu (or from the Document > Markup menu):

**Move Up** *(Alt + UpArrow)*

Moves the current node or selected nodes in front of the previous node.

**Move Down** *(Alt + DownArrow)*

Moves the current node or selected nodes after the subsequent node.
Tip: The easiest way to move nodes is to use the Alt + UpArrow and Alt + DownArrow shortcut keys.

Promote/Demote List Item Nodes

You can easily promote or demote selected list item nodes within ordered lists or unordered lists by using the following keyboard shortcuts:

Promote (Shift + Tab)

Promotes an entirely selected list item node to be a sibling of its parent node (the list item is moved to the left). It also works for selections of multiple list item nodes as long as all the selected nodes are siblings (on the same hierarchical level).

Demote (Tab)

Demotes an entirely selected list item node (the list item is moved to the right). It also works for selections of multiple list item nodes as long as all the selected nodes are siblings (on the same hierarchical level).

Join or Split Elements

You can join or split elements in the current document by using the following actions in the Refactoring submenu of the contextual menu (or from the Document > Markup menu):

Join Elements

Joins two adjacent block elements (on page 3280) that have the same name. The action is available only when the cursor position is between the two adjacent block elements. Also, joining two block elements can be done by pressing the Delete or Backspace keys and the cursor is positioned between the boundaries of these two elements.

Tip: Specifically, the Delete or Backspace keys can be used to join block elements in the following situations:

- The cursor is located before the end position of the first element and (Delete) key is pressed.
- The cursor is located after the end position of the first element and (Backspace) key is pressed.
- The cursor is located before the start position of the second element and (Delete) key is pressed.
- The cursor is located after the start position of the second element and (Backspace) key is pressed.

If the element has no sibling or the sibling element has a different name, an Unwrap operation will be performed.
Split Element (Alt + Shift + D (Ctrl + Alt + D on OS X))

Splits the content of the closest element that contains the position of the cursor. Thus, if the cursor is positioned at the beginning or at the end of the element, the newly created sibling will be empty.

Rename Elements

You can rename elements by using the following action in the Refactoring submenu of the contextual menu (or from the Document > Markup menu):

Renew Element

The element from the cursor position, and any elements with the same name, can be renamed according with the options from the Rename dialog box.

Surround Content with Tags (Wrap)

You can surround a selection of content with tags (wrap the content) by using the following action in the Refactoring submenu of the contextual menu (or from the Document > Markup menu):

Surround with Tags (Ctrl + E (Command + E on OS X))

Allows you to choose a tag to enclose a selected portion of content. If there is no selection, the start and end tags are inserted at the cursor position.

• If the Position cursor between tags option (on page 167) is selected in the Content Completion preferences page, the cursor is placed between the start and end tag.
• If the Position cursor between tags option (on page 167) is not selected in the Content Completion preferences page, the cursor is placed at the end of the start tag, in an insert-attribute position.

Surround with '[tag]' (Ctrl + ForwardSlash (Command + ForwardSlash on OS X))

Surround the selected content with the last tag used.

Unwrap the Content of Elements

You can unwrap the content of an element by using the following action in the Refactoring submenu of the contextual menu (or from the Document > Markup menu):

Delete Element Tags
Deletes the tags of the closest element that contains the position of the cursor. This operation is also executed if the start or end tags of an element are deleted by pressing the Delete or Backspace keys.

Tip: Specifically, the Delete or Backspace keys can be used to unwrap the content of an element in the following situations:

- The cursor is located before the start position of the element and (Delete) key is pressed.
- The cursor is located after the start position of the element and (Backspace) key is pressed.
- The cursor is located before the end position of the element and (Delete) key is pressed.
- The cursor is located after the end position of the element and (Backspace) key is pressed.

If the element has no sibling or the sibling element has a different name, an Unwrap operation will be performed.

Remove Markup from Blocks of Content

You can remove the markup from the current element by highlighting the appropriate block of content and using the following action in the Refactoring submenu of the contextual menu (or from the Document > Markup menu):

- Remove All Markup

Removes all the XML markup inside the selected block of content and keeps only the text content.

Tip: You can use the (Delete) or (Backspace) keys to remove markup, in which case the elements in the selected block will be unwrapped or joined with their sibling, or if the current element is empty, the element tags will be deleted.

Remove Text from Selected Markup

You can remove the text from elements by highlighting the appropriate block of content and using the following action in the Refactoring submenu of the contextual menu (or from the Document > Markup menu):

- Remove Text

Removes the text content of the selected block of content and keeps the markup intact with empty elements.
Other Refactoring Actions

You can also manage the structure of the markup by using the other specific XML refactoring actions that are available in the Refactoring submenu of the contextual menu:

DITA Refactoring Actions

A variety of built-in XML refactoring operations that pertain to DITA documents with some of the information preconfigured based upon the current context.

Change Topic ID to File Name

Use this operation to change the ID of a topic to be the same as its file name.

Convert CALS Tables to Simple Tables

Use this operation to convert DITA CALS tables to simple tables. If you invoke this operation from a nested table (a table inside a table), only the nested table will be affected. If it is invoked on a parent table that contains nested tables, all of the contained tables will be converted.

Convert conrefs to conkeyrefs

Use this operation to convert conref attributes to conkeyref attributes.

Convert Simple Tables to CALS Tables

Use this operation to convert DITA simple tables to CALS tables. If you invoke this operation from a nested table (a table inside a table), only the nested table will be affected. If it is invoked on a parent table that contains nested tables, all of the contained tables will be converted.

Convert to Concept

Use this operation to convert a DITA topic (of any type) to a DITA Concept topic type (for example, Topic to Concept).

Convert to General Task

Use this operation to convert a DITA topic (of any type) to a DITA General Task topic type (for example, Task to General Task). A DITA General Task is a less restrictive alternative to the Strict Task information type.

Convert to Reference

Use this operation to convert a DITA topic (of any type) to a DITA Reference topic type (for example, Topic to Reference).

Convert to Task
Use this operation to convert a DITA topic (of any type) to a DITA Task topic type (for example, Topic to Task).

**Convert to Topic**

Use this operation to convert a DITA topic (of any type) to a DITA Topic (for example, Task to Topic).

**Convert to Troubleshooting**

Use this operation to convert a DITA topic (of any type) to a DITA Troubleshooting topic type (for example, Topic to Troubleshooting).

**Rename Key**

Available when invoked on a key, and can be used to quickly rename a key. It also updates all references to it. Note that it does not work on DITA 1.3 key scopes.

**Attributes Refactoring Actions**

Contains built-in XML refactoring operations that pertain to attributes with some of the information preconfigured based upon the current context.

- **Add/Change attribute**
  - Allows you to change the value of an attribute or insert a new one.

- **Convert attribute to element**
  - Allows you to change an attribute into an element.

- **Delete attribute**
  - Allows you to remove one or more attributes.

- **Rename attribute**
  - Allows you to rename an attribute.

- **Replace in attribute value**
  - Allows you to search for a text fragment inside an attribute value and change the fragment to a new value.

**Comments Refactoring Actions**

Contains built-in XML refactoring operations that pertain to comments with some of the information preconfigured based upon the current context.

- **Delete comments**
  - Allows you to delete comments found inside one or more elements.
Contains built-in XML refactoring operations that pertain to elements with some of the information preconfigured based upon the current context.

**Delete element**

Allows you to delete elements.

**Delete element content**

Allows you to delete the content of elements.

**Insert element**

Allows you to insert new elements.

**Rename element**

Allows you to rename elements.

**Unwrap element**

Allows you to remove the surrounding tags of elements, while keeping the content unchanged.

**Wrap element**

Allows you to surround elements with element tags.

**Wrap element content**

Allows you to surround the content of elements with element tags.

**Fragments Refactoring Actions**

Contains built-in XML refactoring operations that pertain to XML fragments with some of the information preconfigured based upon the current context.

**Insert XML fragment**

Allows you to insert an XML fragment.

**Replace element content with XML fragment**

Allows you to replace the content of elements with an XML fragment.

**Replace element with XML fragment**

Allows you to replace elements with an XML fragment.

---

Related Information:

- [Editing Content in Author Mode](on page 903)
- [Displaying the Markup](on page 441)
Editing Attributes in Author Mode

You can easily edit attributes in Author mode by using the Attributes View (on page 426) and Oxygen XML Editor also allows you to edit attribute and element values in-place, directly in the Author mode, using an in-place attribute editor.

In-place Attributes Editor

Oxygen XML Editor includes an in-place attributes editor in Author mode. To edit the attributes of an XML element in-place, do one of the following:

• Select an element or place the cursor inside it and then press the Alt + Enter keyboard shortcut.
• Double-click any named start tag when the document is edited in one of the following display modes. (on page 441): Full Tags with Attributes, Full Tags, Block Tags, or Inline Tags.

This opens an in-place attributes editor that contains the same content as the Attributes view. By default, this editor presents the Name and Value fields, with the list of all the possible attributes collapsed.

Figure 316. In-place Attributes Editor

Name Combo Box

Use this combo box to select an attribute. The drop-down list displays the list of possible attributes allowed by the schema of the document, as in the Attributes view.
Value Combo Box

Use this combo box to add, edit, or select the value of an attribute. If the selected attribute has predefined values in the schema, the drop-down list displays those possible values. You can use the Browse button to select a URL for the value of an attribute. You can also press Ctrl + Space to open a content completion window that offers a list of possible choices and allows you to select multiple values.

Note: For built-in frameworks, if the selected attribute in the Name field is an @id attribute, the Browse button is replaced by a Generate Unique ID Value button. Clicking this button will automatically generate a unique ID for the selected element.

If you click More while in the collapsed version, it is expanded to the full version of the in-place attribute editor.

Figure 317. In-place Attributes Editor (Full Version)

The full version includes a table grid, similar to the Attributes view, that presents all the attributes for the selected element.

Note: If the cursor is located inside read-only content, the attribute names and values are faded and you cannot add, edit, or remove values.

Related Information:

- Attributes View in Author Mode (on page 426)

Folding XML Elements in Author Mode

When working with a large document, the folding (on page 3282) support in Oxygen XML Editor can be used to collapse some element content leaving only the parts that you need to edit in focus.
Expanding and collapsing works on individual elements. Expanding an element leaves the child elements unchanged.

Figure 318. Folding of XML Elements in Author Mode

The fact that the folds are persistent is a unique feature of Oxygen XML Editor, meaning the next time you open the document the folds are restored to its last state.

Folding Actions in Author Mode

Foldable elements (on page 3282) are marked with a small triangle (✓ / ▼) on the left side of the editor panel. If you hover over that arrow, the entire content of the element is highlighted by a dotted border for quick identification of the foldable area. To toggle the fold, simply click the icon. Also, the following actions are available in the Folding sub-menu of the contextual menu or from the Document > Folding menu:

- **Toggle Fold** (or you can simply click on the ✓ / ▼ arrow)
  Toggles the state of the current fold.

- **Collapse Other Folds** (**Ctrl + NumPad/ (Command + NumPad/ on OS X)**)
  Folds all the elements except the current element.

- **Collapse Child Folds** (**Ctrl + NumPad. (Command + NumPad. on OS X)**)
  Folds the child elements that are indented one level inside the current element.

- **Expand Child Folds**
  Unfolds all child elements of the currently selected element.

- **Expand All** (**Ctrl + NumPad* (Command + NumPad* on OS X)**)
  Unfolds all elements in the current document.

For more information about the folding support in Oxygen XML Editor, watch our video demonstration:

https://www.youtube.com/embed/eR9HfN_peAE

Related Information:
Drag and Drop in Author Mode

The Oxygen XML Editor Author mode includes support for dragging and dropping content in XML documents.

When editing content in Author mode, entire sections or chunks of data can be moved or copied by using the drag and drop feature. The following situations can be encountered:

- When both of the drag and drop sources are from the Author mode editor, a well-formed XML fragment is transferred. The section is balanced before dropping it by adding matching tags when needed.
- When the drag source is from the Author mode editor but the drop target is a text-based editor, only the text inside the selection is transferred as it is.
- The text dropped from another text editor or another application into the Author mode editor is inserted without changes.

Related Information:

- Smart Paste Mechanism (on page 918)

Smart Paste Mechanism

The Author editing mode includes a Smart Paste feature that preserves certain style and structure information when copying content and pasting it into document types that support the feature. You can copy content from various sources, including web pages, external applications (such as Office-type applications), or other document types within Oxygen XML Editor, and then paste it into DITA, TEI, DocBook, JATS, and XHTML documents. Oxygen XML Editor preserves the original text styling (such as bold, italics, underline) and formatting (such as lists, tables, paragraphs) and considers various pasting solutions to keep the resulting document valid.

The styles and general layout of the pasted content are converted to the equivalent XML markup for the target document type while preserving certain style and structure information. For example, if you copy content that includes multiple paragraphs and then paste it in Author mode, the multiple paragraph structure is preserved. If you paste the content in a location where the resulting XML would not be valid, Oxygen XML Editor will attempt to place it in a valid location, and may prompt you with one or more choices for where to place it.
Tip: When pasting text fragments formatted with the *Courier New* font, the *Smart Paste* mechanism will wrap it in an inline code element (for example, in DITA it would be wrapped in a `codeph` element).

**Smart Paste Options**

By default, the *Smart Paste* feature is enabled in Oxygen XML Editor. There are several options in the *Schema Aware* preferences page that control the *Smart Paste* mechanism:

- **Smart paste and drag and drop** - This option determines whether or not Oxygen XML Editor will try to find an appropriate insert position when the current location is not valid for the pasted content. This option is selected by default.

- **Reject action when its result is invalid** - If you select this option, Oxygen XML Editor will not let you paste content into a position where it would be invalid. This option is deselected by default.

- **Convert external content on paste** - This option determines whether or not Oxygen XML Editor will convert the styling and formatting of copied content from external sources when pasting it into a document type that supports the feature. This option is selected by default.

- **Convert even when pasting inside space-preserve elements** - If you select this option, the *Smart Paste* feature will also work when pasting external content into a space-preserve element (such as a `codeblock`). This option is deselected by default.

**Smart Paste Supported Document Types**

The *Smart Paste* feature is supported for the following document types:

- DITA
- DocBook 4
- DocBook 5
- TEI
- XHTML
- JATS

For more information about the *Smart Paste* support, watch our video demonstration:

https://www.youtube.com/embed/bpiXZQwzBfA

**Related Information:**

- Customizing Smart Paste Support (on page 2343)
Selecting Content in Author Mode

Oxygen XML Editor includes a variety of keyboard shortcuts that allow you to easily select content in Author mode.

**Selection Shortcuts in Author Mode**

- **Ctrl + A (Meta + A on Mac OS X)**
  Selects all content in the document.

- **Shift + Left/Right Arrow Keys**
  Begins a continuous selection at the cursor position and extends it one character at a time in the direction that you press the arrow keys.

- **Shift + Up/Down Arrow Keys**
  Begins a continuous selection at the cursor position and extends it one line at a time in the direction that you press the arrow keys.

- **Ctrl + Shift + Left/Right Arrow Keys (Meta + Shift + Left/Right Arrow Keys on Mac OS X)**
  Begins a continuous selection at the cursor position and extends it one word at a time in the direction that you press the arrow keys.

- **Shift + Home**
  Begins a continuous selection at the cursor position and extends it to the beginning of the current line (on Mac OS X, it extends to the beginning of the document).

- **Shift + End**
  Begins a continuous selection at the cursor position and extends it to the end of the current line (on Mac OS X, it extends to the end of the document).

- **Ctrl + Shift + Home**
  Begins a continuous selection at the cursor position and extends it to the beginning of the document.

- **Ctrl + Shift + End**
  Begins a continuous selection at the cursor position and extends it to the end of the document.
**Shift + PageUp**

Begins a continuous selection at the cursor position and extends it up one screen page.

**Shift + PageDown**

Begins a continuous selection at the cursor position and extends it down one screen page.

**Double-Click**

Selects the word at the cursor position.

**Triple-Click**

Selects the node at the cursor position.

**Right-Click > Select > Element**

Selects the entire element at the current cursor position.

**Right-Click > Select > Content**

Selects the entire content of the element at the current cursor position, excluding the start and end tag. Performing this action repeatedly will result in the selection of the content of the ancestor of the currently selected element content.

**Right-Click > Select > Parent**

Selects the entire parent element at the current cursor position.

Content Completion Assistant in Author Mode

One of the most useful features in Author mode is the *Content Completion Assistant* (on page 3280). It offers a list of elements, attributes, attribute values, and other options that are valid in the current editing context.

Figure 319. Content Completion Assistant in Author Mode

The *Content Completion Assistant* is enabled by default. To disable it, open the Preferences dialog box (Options > Preferences) (on page 79), go to Editor > Content Completion, and deselect the Enable content completion option (on page 167).
Using the Content Completion Assistant in Author Mode

To activate the feature in Author mode, use any of the following shortcut keys:

- Enter
- Ctrl + Space (Command + Space on OS X)
- Alt + ForwardSlash (Command + Alt + ForwardSlash on OS X)

You can navigate through the list of proposals by using the Up and Down keys on your keyboard. In some cases, the Content Completion Assistant displays a documentation window with information about the particular proposal and some of them have links to additional information (for example, DITA elements might have a link to the DITA Style Guide). You can use Tab and Shift + Tab to navigate to those links and Space to trigger them. You can also change the size of the documentation window by dragging its top, right, and bottom borders.

To insert the selected proposal in Author mode, simply press Enter.

Types of Proposals Listed in the Content Completion Assistant

The Content Completion Assistant offers the following types of proposed actions depending on the current context:

- Insert allowed elements for the current context schema and the list of proposals contains elements depending on the elements inserted both before and after the cursor position.
- Insert element values if such values are specified in the schema for the current context.
- Insert new undeclared elements by entering their name in the text field.
- Insert CDATA sections, comments, processing instructions.
- Insert code templates (on page 855).
- If invoked on a selection that only contains an element start or end tag (remember that you can see all element tags while working in Full Tags mode (on page 441)), it will allow you to rename the element.
- If invoked on a selection of multiple elements or other content, it will allow you to surround the content with certain tags.
- If invoked on an empty list item that is the last element of the list, it will allow you to convert the list item to a paragraph.
- If the Show all possible elements in the content completion list option from the Schema-Aware preferences page (on page 139) is selected, the content completion pop-up window will present all the elements defined by the schema. When choosing an element from this section, the insertion will be performed using the schema-aware smart editing features.
Note: By default, you are not allowed to insert element names that are not defined by the schema. This can be changed by deselecting the Allow only insertion of valid elements and attributes check box from the Schema-Aware preferences page (on page 139).

Examples of How the Content Completion Assistant Works

To illustrate how the feature works, consider the following examples of invoking the Content Completion Assistant in certain contexts:

• If the cursor is positioned at the beginning or at the end of the element, the first item offered in the Content Completion Assistant is a New <Element> item. Selecting this item will insert an empty element.

Figure 320. Example (New [Element Name])

• If the cursor is positioned somewhere inside the element, the first entry in the Content Completion Assistant is a Split <Element> item. In most cases, you can only split the closest block element (on page 3280) to the cursor position, but if it is inside a list item, the list item will also be proposed for split. Selecting Split <Element> splits the content of the specified element around the cursor position.

Figure 321. Example (Split [Element Name])

• If the cursor is positioned inside a space-preserved element (on page 3287) (for example, a codeblock), the first choice in the Content Completion Assistant is Enter, which will insert a new line in the content of the element, followed by New <Element>.

Figure 322. Example (‘ENTER’ New Line)
• If invoked on a selection that only contains an element start or end tag (remember that you can see all element tags while working in "Full Tags mode (on page 441)"), it will allow you to rename the element.

Figure 323. Example (Rename)

• If invoked on a selection of multiple elements or other content, it will allow you to surround the content with certain tags.

Figure 324. Example (Surround)

Related Information:

• Customizing the Content Completion Assistant (on page 2352)

Set the Schema to be Used for Content Completion

The proposals that are presented in the Content Completion Assistant (on page 3280) depend on the associated schemas. The DTD, XML Schema, Relax NG, or NVDL schema used to populate the Content Completion Assistant is specified in the following methods, in the order of their precedence:
• The schema specified explicitly in the document (on page 1120). In this case, Oxygen XML Editor reads the beginning of the document and resolves the location of the DTD, XML Schema, Relax NG schema, or NVDL schema.
• The default schema declared (on page 1121) in the Schema tab of the Document Type configuration dialog box (on page 99) for the particular document type.

Schema Annotations in Author Mode

A schema annotation is a documentation snippet associated with the definition of an element or attribute in a schema. If such a schema is associated with an XML document, the annotations are displayed in the Content Completion Assistant (on page 3280).

Figure 325. Schema Annotation in the Content Completion Assistant

The schema annotations support is available if the schema type is one of the following:

• XML Schema
• Relax NG
• NVDL schema
• DTD

This feature is enabled by default, but you can disable it by deselecting the Show annotations in Content Completion Assistant (on page 171) option in the Annotations preferences page.

Styling Annotations with HTML

You can use HTML format in the annotations you add in an XML Schema or Relax NG schema. This improves the visual appearance and readability of the documentation window displayed when editing XML documents validated against such a schema. An annotation is recognized and displayed as HTML if it contains at least one HTML element (such as div, body, p, br, table, ul, or ol).

The HTML rendering is controlled by the Show annotations using HTML format, if possible (on page 172) option in the Annotations preferences page. When this option is deselected, the annotations are converted and displayed as plain text and if the annotation contains one or more HTML tags (p, br, ul, li), they are rendered as an HTML document loaded in a web browser. For example, p begins
a new paragraph, \textit{br} breaks the current line, \textit{ul} encloses a list of items, and \textit{li} encloses an item of the list.

**Collecting Annotations from XML Schemas**

In an XML Schema, the annotations are specified in an \textit{<xs:annotation>} element like this:

```xml
<xs:annotation>
  <xs:documentation>
    Description of the element.
  </xs:documentation>
</xs:annotation>
```

If an element or attribute does not have a specific annotation, then Oxygen XML Editor looks for an annotation in the type definition of that element or attribute.

**Collecting Annotations from Relax NG Schemas**

For Relax NG schema, element and attribute annotations are made using the \textit{<documentation>} element from the \textit{http://relaxng.org/ns/compatibility/annotations/1.0} namespace like this:

```xml
<define name="person">
  <element name="person">
    <a:documentation xmlns:a="http://relaxng.org/ns/compatibility/annotations/1.0">
      Information about a person.
    </a:documentation>
    <ref name="name"/>
    <zeroOrMore>
      <ref name="email"/>
    </zeroOrMore>
  </element>
</define>
```

However, any element outside the Relax NG namespace (\textit{http://relaxng.org/ns/structure/1.0}) is handled as annotation and the text content is displayed in the annotation window. To activate this behavior, select the \textbf{Use all Relax NG annotations as documentation} (on page 172) option in the \textbf{Annotations} preferences page.

**Collecting Annotations from Relax NG Compact Syntax Schemas**

For Relax NG Compact Syntax schema, annotations are made using comments like this:

```xml
## Information about a person.
element person { name, email*}
```
Collecting Annotation from DTDs

For DTD, Oxygen XML Editor defines a custom mechanism for annotations using comments enabled by the Prefer DTD comments that start with "doc:" as annotations (on page 171) option in the Annotations preferences page. The following is an example of a DTD annotation:

\[
<!--doc:Description of the element. -->
\]

Related Information:

- Customizing the Rendering of Elements (on page 2364)
- Customizing Annotations in the Content Completion Assistant (on page 2369)

Content Completion Helper Views

Information about the current element being edited is also available in various dockable (on page 3281) views, such as the Model view (on page 353), Attributes view (on page 351), Elements view (on page 355), and Entities view (on page 356). By default, they are located on the right-hand side of the main editor window. These views, along with the powerful Outline view (on page 347), provide spatial and insight information about the edited document and the current element. If any particular view is not displayed, it can be opened by selecting it from the Window > Show View menu.

Model View

The Model view presents the structure of the currently selected tag, and its documentation, defined as annotation in the schema of the current document. By default, it is located on the right side of the editor. If the view is not displayed, it can be opened by selecting it from the Window > Show View menu.

Figure 326. Model View
The Model view is comprised of two sections, an element structure panel and an annotations panel.

**Element Structure Panel**

The element structure panel displays the structure of the currently edited or selected tag in a treelike format. The information includes the name, model, and attributes of the current tag. The allowed attributes are shown along with imposed restrictions, if any.

Figure 327. Element Structure Panel
Annotation Panel

The Annotation panel displays the annotation information for the currently selected element. This information is collected from the XML schema.

Figure 328. Annotation panel

Attributes View in Author Mode

The Attributes view presents all the attributes of the current element determined by the schema of the document. By default, it is located on the right side of the editor. If the view is not displayed, it can be opened from the Window > Show View menu.

You can use this view to edit or add attribute values. The attributes of an element are editable if any one of the following is true:

- The CSS stylesheet associated with the document does not specify a `false` value for the `oxy-editable` property associated with the element.
- The element is entirely included in a deleted Track Changes marker.
- The element is part of a content fragment that is referenced in Author mode from another document.

The attributes are rendered differently depending on their state:

- The names of the attributes are rendered with a bold font, and their values with a plain font.
- Default values are rendered with a plain font, painted gray.
- Empty values display the text “[empty]”, painted gray.
- Invalid attributes and values are painted red.

To edit the value of the corresponding attribute, double-click a cell in the Value column. If the possible values of the attribute are specified as list in the schema of the edited document, the Value column acts as a combo box that allows you to either select the value from a list or manually enter it.

**Note:** If the cursor is located inside read-only content, the attribute names and values are faded and you cannot add, edit, or remove values.
You can sort the attributes table by clicking the **Attribute** column header. The table contents can be sorted as follows:

- By attribute name in ascending order.
- By attribute name in descending order.
- Custom order, where the used attributes are displayed at the beginning of the table sorted in ascending order, followed by the rest of the allowed elements sorted in ascending order.

**Figure 329. Attributes View**

A drop-down list located in the upper part of the view allows you to select the current element or its ancestors.

**Expand/Collapse Button**

There is an **Expand/Collapse** (_expand/collapse_) button at the top-right of the view. When expanded, this presents the following additional combo boxes:

**Name Combo Box**

Use this combo box to select an attribute. The drop-down list displays the list of possible attributes allowed by the schema of the document, as in the **Attributes** view.

You can use the **Remove** button to delete an attribute and its value from the selected element.

**Value Combo Box**

Use this combo box to add, edit, or select the value of an attribute. If the selected attribute has predefined values in the schema, the drop-down list displays those possible values. You can use the **Browse** button to select a URL for the value of an attribute. You can also press **Ctrl + Space** to open a content completion window that offers a list of possible choices and allows you to select multiple values. After you have
entered or selected a value, use the \(\text{Update}\) button (or press \text{Enter}\) to add the value to the attribute.

\[\text{Note:}\] For built-in frameworks, if the selected attribute in the \text{Name}\ field is an \text{@id}\ attribute, the \text{Browse}\ button is replaced by a \text{Generate Unique ID Value}\ button. Clicking this button will automatically generate a unique ID for the selected element.

**Contextual Menu Actions in the Attributes View**

The following actions are available in the contextual menu of the \text{Attributes}\ view when editing in \text{Author}\ mode:

- **Set empty value**
  
  Specifies the current attribute value as empty.

- **Remove**
  
  Removes the attribute (action available only if the attribute is specified). You can invoke this action by pressing the \text{Delete}\ or \text{Backspace}\ keys.

- **Copy**
  
  Copies the \text{attrName}="attrValue"\ pair to the clipboard. The \text{attrValue}\ can be:
  
  - The value of the attribute.
  - The value of the default attribute, if the attribute does not appear in the edited document.
  - Empty, if the attribute does not appear in the edited document and has no default value set.

- **Paste**
  
  Depending on the content of the clipboard, the following cases are possible:
  
  - If the clipboard contains an attribute and its value, both of them are introduced in the \text{Attributes}\ view. The attribute is selected and its value is changed if they exist in the \text{Attributes}\ view.
  - If the clipboard contains an attribute name with an empty value, the attribute is introduced in the \text{Attributes}\ view and you can start editing it. The attribute is selected and you can start editing it if it exists in the \text{Attributes}\ view.
  - If the clipboard only contains text, the value of the selected attribute is modified.
In-place Attributes Editor

Oxygen XML Editor includes an in-place attributes editor in Author mode. To edit the attributes of an XML element in-place, do one of the following:

• Select an element or place the cursor inside it and then press the **Alt + Enter** keyboard shortcut.

• Double-click any named start tag when the document is edited in one of the following display modes. *(on page 441): Full Tags with Attributes, Full Tags, Block Tags, or Inline Tags.*

This opens an in-place attributes editor that contains the same content as the **Attributes** view. By default, this editor presents the **Name** and **Value** fields, with the list of all the possible attributes collapsed.

![In-place Attributes Editor](image)

**Name Combo Box**

Use this combo box to select an attribute. The drop-down list displays the list of possible attributes allowed by the schema of the document, as in the **Attributes** view.

**Value Combo Box**

Use this combo box to add, edit, or select the value of an attribute. If the selected attribute has predefined values in the schema, the drop-down list displays those possible values. You can use the **Browse** button to select a URL for the value of an attribute. You can also press **Ctrl + Space** to open a content completion window that offers a list of possible choices and allows you to select multiple values.

**Note:** For built-in frameworks, if the selected attribute in the **Name** field is an @id attribute, the **Browse** button is replaced by a **Generate Unique ID Value** button. Clicking this button will automatically generate a unique ID for the selected element.

If you click **More** while in the collapsed version, it is expanded to the full version of the in-place attribute editor.

![In-place Attributes Editor (Full Version)](image)
The full version includes a table grid, similar to the Attributes view, that presents all the attributes for the selected element.

Elements View in Author Mode

The Elements view presents a list of all defined elements that are valid at the current cursor position according to the schema associated to the document. By default, it is located on the right side of the editor. If the view is not displayed, it can be opened by selecting it from the Window > Show View menu.

The upper part of the view features a combo box that contains the ordered ancestors of the current element. Selecting a new element in this combo box updates the list of the allowed elements. By default, only the elements that are allowed at the current cursor position are listed. However, if the Show only items allowed at cursor position option (on page 260) is not selected in the Views preferences page (on page 259), two additional tabs (Before and After) will be displayed at the bottom of the view and they list elements that are allowed before or after the element at the current cursor position.

Double-clicking any of the listed elements inserts that element into the edited document and its position depends on the tab.

- **Cursor** tab - Double-clicking an element inserts it at the current cursor position.
- **Before** tab - Double-clicking an element inserts it before the element at the cursor position.
- **After** tab - Double-clicking an element inserts it after the element at the cursor position.

Pressing F2 with an element selected will display information about that particular element.

Figure 332. Elements View in Author Mode
Entities provide abbreviated entries that can be used in XML files when there is a need of repeatedly inserting certain characters or large blocks of information. An entity is defined using the ENTITY statement either in the DOCTYPE declaration or in a DTD file associated with the current XML file.

There are three types of entities:

- **Predefined** - Entities that are part of the predefined XML markup (`&lt;, &gt;, &amp;, &apos;, &quot;`).
- **Internal** - Defined in the DOCTYPE declaration header of the current XML.
- **External** - Defined in an external DTD module included in the DTD referenced in the XML DOCTYPE declaration.

**Note:** If you want to add internal entities, you would need to switch to the Text editing mode and manually modify the DOCTYPE declaration. If you want to add external entities, you need to open the DTD module file and modify it directly.

The Entities view displays a list with all entities declared in the current document, as well as built-in ones. By default, it is located on the right side of the editor. If the view is not displayed, it can be opened by selecting it from the Window > Show View menu.

Double-clicking one of the entities will insert it at the current cursor position in the XML document. You can also sort entities by name and value by clicking the column headers.

Figure 333. Entities View
The view features a filtering capability that allows you to search an entity by name, value, or both. Also, you can choose to display the internal or external entities.

**Note:** When entering filters, you can use the ? and * wildcards. Also, you can enter multiple filters by separating them with a comma.

### Code Templates

Code templates are code fragments that can be inserted quickly at the current editing position. Oxygen XML Editor includes a set of built-in code templates for CSS, LESS, Schematron, XSL, XQuery, JSON, and XML Schema document types. You can also define your own code templates for any type of file and share them with others.

Code templates are displayed with a `.%` symbol in the content completion list (Enter in Author mode or Ctrl + Space (Command + Space on OS X) in Text mode). Also, in Text mode you can press Ctrl + Shift + Space to see a complete list of the available code templates. To enter the code template at the cursor position, select it from the content completion list or type its code and press Enter. If a shortcut key has been assigned to the code template, you can also use the shortcut key to enter it.

### How to Create Code Templates

To create a code template, follow these steps:

1. Open the Preferences dialog box (Options > Preferences) (on page 79) and go to Editor > Templates > Code Templates.
2. Click New to open a code template configuration dialog box.
Tip: You can use one of the existing code templates as a starting point by selecting that template and clicking **Duplicate**.

Figure 334. Code Template Configuration Dialog Box

3. Configure your template using the fields in the code template configuration dialog box:

   - **Name** - The name of the code template.
   - **Description** - [Optional] The description of the code template that will appear in the Code Templates preferences page and in the tooltip message when selecting it from the **Content Completion Assistant (on page 3280)**. HTML markup can be used for better rendering.
   - **Associate with** - You can choose to set the code template to be associated with a specific type of editor or for all editor types.
   - **Shortcut key** - [Optional] If you want to assign a shortcut key that can be used to insert the code template, place the cursor in the **Shortcut key** field and press the desired key combination on your keyboard. Use the **Clear** button if you make a mistake. If the **Enable platform-independent shortcut keys** checkbox is selected, the shortcut is platform-independent and the following modifiers are used:
     - M1 represents the **Command** key on MacOS X, and the **Ctrl** key on other platforms.
     - M2 represents the **Shift** key.
     - M3 represents the **Option** key on MacOS X, and the **Alt** key on other platforms.
     - M4 represents the **Ctrl** key on MacOS X, and is undefined on other platforms.
   - **Content** - Text box where you define the content that is used when the code template is inserted. An **editor variable (on page 276)** can be inserted in the text box using the **Insert Editor Variables** button.

4. Click **OK** to save your new code template.

**Result:** Your code template can now be selected using the **Content Completion Assistant (on page 3280)** (**Enter** in Author mode or **Ctrl + Space** (Command + Space on OS X) in Text mode). The code templates are displayed with a ✂️ symbol.
How to Share Code Templates

There are two ways to easily share all of your code templates with other members of your team:

Method 1: Export/Import

1. Open the Preferences dialog box (Options > Preferences) (on page 79) and go to Editor > Templates > Code Templates.
2. Click the Export button to export all of your code templates into an XML file.
3. Save the XML file.
4. Share the XML file with other members of your team.
5. Instruct them to open the Preferences dialog box (Options > Preferences) (on page 79), go to Editor > Templates > Code Templates, click the Import button, and select the file you sent them.

Result: The code templates will be now available in their content completion list.

Method 2: Share Project

1. Open the Preferences dialog box (Options > Preferences) (on page 79) and go to Editor > Templates > Code Templates.
2. Select Project Options at the bottom of the dialog box. This stores the preferences in the project file (.xpr).
3. Share the project file with the other members of your team. For example, you can commit it to your version control system and have them update their working copy.

Result: When they open the updated project file in their Project view (on page 333), the code templates will be available in their content completion list.

Tip: It is also possible to configure certain actions that function similar to code templates and add them to the content completion list (on page 2352) for a particular framework. You could then share the whole framework (on page 2371) with other members of your team.

Outline View for XML Documents

The Outline view displays a general tag overview of the currently edited XML Document. When you edit a document, the Outline view dynamically follows the changes that you make, displaying the node that you modify. This functionality gives you great insight on the location of your modifications in the current document. It also shows the correct hierarchical dependencies between elements. This makes it easy for you to be aware of the document structure and the way element tags are nested.
Outline View Features

The **Outline** view allows you to:

- Quickly navigate through the document by selecting nodes in the **Outline** tree.
- Insert or delete nodes using contextual menu actions.
- Move elements by dragging them to a new position in the tree structure.
- Highlight elements in the editor area. It is synchronized with the editor area, so when you make a selection in the editor area, the corresponding nodes are highlighted in the **Outline** view, and vice versa.
- View document errors, as they are highlighted in the **Outline** view. A tooltip also provides more information about the nature of the error when you hover over the faulted element.

Outline View Interface

By default, it is displayed on the left side of the editor. If the view is not displayed, it can be opened by selecting it from the **Window > Show View** menu.

The upper part of the **Outline** view contains a filter box that allows you to focus on the relevant components. Type a text fragment in the filter box and only the components that match it are presented. For advanced usage you can use wildcard characters (such as `*`, `?`) and separate multiple patterns with commas.

It also includes a **Settings** menu in the top-right corner that presents a variety of options to help you filter the view even further.

Drop and Drop Actions in the Outline View

Entire XML elements can be moved or copied in the edited document using only the mouse in the **Outline** view with drag-and-drop operations. Several drag and drop actions are possible:

- If you drag an XML element in the **Outline** view and drop it on another node, then the dragged element will be moved after the drop target element.
- If you hold the mouse pointer over the drop target for a short time before the drop then the drop target element will be expanded first and the dragged element will be moved inside the drop target element after its opening tag.
- You can also drop an element before or after another element if you hold the mouse pointer towards the upper or lower part of the targeted element. A marker will indicate whether the drop will be performed before or after the target element.
- If you hold down the **(Ctrl (Command on OS X))** key after dragging, a copy operation will be performed instead of a move.
Outline View Filters

The upper part of the Outline view contains a filter box that allows you to focus on the relevant components. Type a text fragment in the filter box and only the components that match it are presented. For advanced usage you can use wildcard characters (such as *, ?) and separate multiple patterns with commas.

The following actions are available in the Settings menu of the Outline view:

- **Filter returns exact matches**
  The text filter of the Outline view returns only exact matches.

- **Selection update on cursor move (Available in Text mode)**
  Controls the synchronization between Outline view and source document. The selection in the Outline view can be synchronized with the cursor moves or the changes in the editor. Selecting one of the components from the Outline view also selects the corresponding item in the source document.

- **Flat presentation mode of the filtered results**
  When active, the application flattens the filtered result elements to a single level.

- **Show comments and processing instructions**
  Show/hide comments and processing instructions in the Outline view.

- **Show element name**
  Show/hide element name.
Show text

Show/hide additional text content for the displayed elements.

Show attributes

Show/hide attribute values for the displayed elements. The displayed attribute values can be changed from the Outline preferences panel (on page 259).

Configure displayed attributes

Displays the XML Structured Outline preferences page (on page 259).

Outline View Contextual Menu Actions

The contextual menu of the Outline view contains the following actions:

Edit Attributes

Displays an in-place attributes editor that allows you to edit the attributes of a selected node.

Edit Profiling Attributes (Available in Author mode)

Allows you to change the profiling attributes (on page 969) defined on all selected elements.

Append Child

Invokes a content completion list with the names of all the elements that are allowed by the associated schema and inserts your selection as a child of the current element.

Insert Before

Invokes a content completion list with the names of all the elements that are allowed by the associated schema and inserts your selection immediately before the current element, as a sibling.

Insert After

Invokes a content completion list with the names of all the elements that are allowed by the associated schema and inserts your selection immediately after the current element, as a sibling.

Cut, Copy, Paste, Delete common editing actions

Executes the typical editing actions on the currently selected elements. The Cut and Copy operations preserve the styles of the copied content.

Paste before (Available in Author mode)

Inserts a well-formed copied element before the currently selected element.

Paste after (Available in Author mode)
Inserts a well-formed copied element after the currently selected element.

Paste as XML (Available in Author mode)

Pastes copied content that is considered to be valid XML, preserving its XML structure.

Toggle Comment

Encloses the currently selected element in an XML comment, if the element is not already commented. If it is already commented, this action will remove the comment.

Rename Element (Available in Author mode)

Invokes a Rename dialog box that allows you to rename the currently selected element, siblings with the same name, or all elements with the same name.

Expand More

Expands the structure tree of the currently selected element.

Collapse All

Collapses all of the structure tree of the currently selected node.

Tip: You can copy, cut or delete multiple nodes in the Outline by using the contextual menu after selecting multiple nodes in the tree.

Finding and Replacing Text

You can search for a specific word or string of characters using the following features:

- Find/Replace dialog box (on page 740)
- Find/Replace in Files dialog box (on page 745)
- Quick Find toolbar (on page 752)
- Find all Elements dialog box (on page 751)

Complex search operations may take some time to complete. If a search operation takes more than 5 seconds, you are prompted to decide whether you want to continue the operation or stop it.

Reviewing Documents

Oxygen XML Editor includes a variety of helpful review tools that improve your ability to collaborate with other members of your team, track changes, mark content for various reasons, add comments in your content, and to manage the review features.
Tracking Document Changes

The *Track Changes feature (on page 3288)* is a way to keep track of the changes you make in a document. The *Track Changes* feature highlights changes that you make to the content in a document, as well as changes to attributes. Changes can be tracked for insertions and deletions. When the *Track Changes feature is activated (on page 944)*, insertions are rendered in Author mode with an underline while deletions are rendered with a strike through.

The *tracked changes* are also displayed in the *Review view (on page 964)* and you can also choose to present the changes in *callouts (on page 958)* by selecting the *Track Changes Deletions (on page 144)* and *Track Changes Insertions (on page 144)* options in the *Callouts preferences page (on page 143)*.

Adding Comments in Documents

You can associate a comment to a selected area of content. Comments can highlight virtually any content from your document, with the exception of read-only text. The difference between using comments and change tracking is that a comment can be associated to an area of text without modifying or deleting the text.

Comments are presented in *callouts (on page 958)* with persistent highlights and a colored background. The background color is assigned automatically by the application, but it can also be customized from the *Review preferences page (on page 140)*.

Highlighting Content

Oxygen XML Editor includes a highlighting feature that allows you to create digital markers to emphasize important fragments of your documents. This is especially useful when you want to mark content that needs additional work or the attention of others.

Using the Review View

Oxygen XML Editor includes a *Review view (on page 964)* that provides a simplified way of monitoring all the insertions, deletions, comments, and highlights in an XML document. This handy tool is especially useful for large teams that need to gather and manage all the edits from all team members who are working on the same project.

The *Review* view is also useful for managing *tracked changes* and comments in a single panel. In this view, the changes and comments are presented in a compact form, in the order they appear in the document, and they are synchronized with the changes and comments in the main editing area.
You can use this view to quickly navigate through changes, accept or reject them, or to view and manage comments or highlights. You can also search for specific changes or comments and it includes some filtering options (for example, you can filter it to only show certain types of edits or to only show edits for a particular author).

**Printing Review Information**

When you print a document from **Author** mode, whatever review information is shown in the main editing area will be included in the printed output. For example, **tracked changes** will be included and as long as the **Comments option (on page 143)** is selected in the **Callouts preferences page (on page 143)**, comment callouts will also be included (same with **tracked change** callouts if their corresponding options are selected in the **Callouts preferences page (on page 143)**).

**Managing Tracked Changes**

Oxygen XML Editor includes a **Track Changes feature (on page 3288)** that allows you to review changes that you or other authors have made and then accept or reject them. You can also manage the visualization mode of the tracked changes, add comments to changes, and mark them as being done. These actions are easily accessible from contextual menus, the toolbar, or the **Review view (on page 964)**.

The **Track Changes** feature is also able to keep track of changes you make to attributes in a document and the changes are presented in the **Review view (on page 964)** and **Attributes view (on page 426)**.

**Types of Tracked Changes**

The types of **tracked changes** include:

- Inserting, deleting content (text or elements)
- Drag and drop content (text or elements)
- Cutting or pasting content (text or elements)
- Inserting, deleting, and changing the structure of tables
- Inserting and editing lists and their content
- Inserting and deleting entities
- Inserting and deleting element tags
- Editing attributes
- Performing a **Split** operation
- Performing a **Surround with** operation
- Changes in referenced content (for example, XInclude fragments or DITA conrefs)
**Important:** If you copy content in **Author** mode that contains tracked changes, the changes will automatically be accepted prior to the content being copied to the clipboard. This filtering is performed only if the selection is not entirely inside a tracked change.

### Activating the Change Tracking Feature

To activate the **Track Changes** feature for the current document, use any of the following methods:

- Click the **Track Changes** button on the toolbar.
- Select **Track Changes** from the **Review** submenu of the contextual menu in the main editing area in **Author** mode.
- Select **Track Changes** from the **Edit > Review** menu.

To activate the **Track Changes** feature globally for all documents that you open in Oxygen XML Editor, change the **Initial State** option to **Always On** (on page 141) in the **Review** preferences page (on page 140).

### Rendering Tracked Changes in Author Mode

When **Track Changes** (on page 3288) is enabled, your modifications are highlighted using a distinctive color. The colors can be customized from the **Review** preferences page (on page 140), along with the name of the author and the initial state of the feature when you open a document. Insertions are rendered with an underline while deletions are rendered with a strike through.

![Change Tracking in Author Mode](image)

When hovering over a change a tooltip displays information about the author and modification time.
**Change Tracking Contextual Menu Actions**

You can right-click any change in **Author** mode to access the following contextual menu actions:

✅ **Accept Change(s)**

Accepts the *Tracked Change (on page 3288)* located at the cursor position or all of the changes in a selection. If you select a part of a *deletion or insertion* change, only the selected content is accepted. If you select multiple changes, all of them are accepted. For an *insertion* change, it keeps the inserted text and for a *deletion* change, it removes the content from the document.

❌ **Reject Change(s)**

Rejects the *Tracked Change (on page 3288)* located at the cursor position or all of the changes in a selection. If you select a part of a *deletion or insertion* change, only the selected content is rejected. If you select multiple changes, all of them are rejected. For an *insertion* change, it removes the inserted text and for a *deletion* change, it preserves the original content.

💬 **Comment Change**

Opens a dialog box that allows you to add a comment to an existing *Tracked Change (on page 3288)*. The comment will appear in a callout and a tooltip when hovering over the change. If the action is selected on an existing commented change, the dialog box will allow you to edit the comment.

**Change Tracking Toolbar Actions**

By default, the toolbar includes the following actions and options for reviewing or tracking changes (similar actions are also available in the **Edit > Review** menu and the **Review** submenu of the contextual menu):

💬 **Track Changes**

Enables or disables the *Track Changes (on page 3288)* support for the current document.

✅ **Accept Change(s) combo box**

This combo box is both a button and a drop-down menu that includes the following actions (when you select an action from the drop-down menu, that action becomes the default action for the combo box button):

- ✅ **Accept Change(s) and Move to Next** - Accepts the *Tracked Change (on page 3288)* located at the cursor position or all of the changes in a selection and then
moves to the next change. If you select a part of a deletion or insertion change, only the selected content is accepted.

- ✓ Accept Change(s) - Accepts the Tracked Change (on page 3288) located at the cursor position or all of the changes in a selection.
- ✓✓ Accept All Changes - Accepts all Tracked Changes (on page 3288) in the current document.

Tip: You can assign shortcut keys (on page 248) for these actions to make it easier to access them.

✗ Reject Change(s) combo box

This combo box is both a button and a drop-down menu that includes the following actions (when you select an action from the drop-down menu, that action becomes the default action for the combo box button):

- ✗ Reject Change(s) and Move to Next - Rejects the Tracked Change (on page 3288) located at the cursor position or all of the changes in a selection and then moves to the next change. If you select a part of a deletion or insertion change, only the selected content is rejected.
- ✗ Reject Change(s) - Rejects the Tracked Change (on page 3288) located at the cursor position or all of the changes in a selection.
- ✗✓Reject All Changes - Rejects all Tracked Changes (on page 3288) in the current document.

Tip: You can assign shortcut keys (on page 248) for these actions to make it easier to access them.

📝 Comment Change

Opens a dialog box that allows you to add a comment to an existing Tracked Change (on page 3288). The comment will appear in a callout and a tooltip when hovering over the change. If the action is selected on an existing commented change, the dialog box will allow you to edit the comment.

🔍 Track Changes Visualization Modes Drop-Down Menu

This drop-down menu includes specialized actions that allow you to switch between the following visualization modes:

- ★ View All Changes/Comments - This mode is active by default. When you use this mode, all tracked changes are represented in the Author mode.
• **View only Changes/Comments by** - Only the tracked changes made by the author you select are presented.

• **View Final** - This mode offers a preview of the document as if all tracked changes (both inserted and deleted) were accepted.

• **View Original** - This mode offers a preview of the document as if all tracked changes (both inserted and deleted) were rejected. If you attempt to edit the document in this mode, the view mode will switch to **View All Changes/Comments**.

**Note:** If you use **View Final** mode and **View Original** mode, callouts (on page 3280) are not displayed for comments or changes. To display callouts, use the **View All Changes/Comments** mode.

**Highlight**

Enables or disables the **Highlight** tool (on page 956). Use the **Highlight** dropdown menu to select a new color.

**Add Comment**

Inserts a comment at the cursor position. The comment appears in a callout box and a tooltip (when hovering over the change).

**Show/Edit Comment**

Opens a dialog box that displays the discussion thread and allows the current user to edit comments that do not have replies. If you are not the author who inserted the original comment, the dialog box just displays the comment without the possibility of editing it.

**Remove Comment**

Removes a selected comment. If you remove a comment that contains replies, all of the replies will also be removed.

**Manage Reviews**

Opens the **Review view** (on page 964).

**Tracked Change Callouts**

You can also choose to display insertion and deletion changes in callouts (on page 3280) in **Author** mode. By default, tracked changes are not displayed in callouts, but you can change this behavior by selecting the **Track Changes Deletions** (on page 144) and **Track Changes Insertions** (on page 144) options in the **Callouts preferences page** (on page 143). You can also choose to display the actual content of the deletion or insertion.
By displaying the changes in callouts, you then have access to even more actions, such as the ability to reply or mark them as being done. For more information, see Author Callouts (on page 958).

### Tracked Changes in the Review View

The Review view (on page 964) is also useful for managing tracked changes and comments. In this view, the edits are presented in a compact form, in the order they appear in the document and each edit is marked with a type-specific icon. You can use this view to quickly navigate through changes, accept or reject them, or to add and manage comments for the changes. You can also search for specific changes and it includes some filtering options (for example, you can filter it to only show certain types of changes or to only show changes for a particular author).

For more information, see Review View (on page 964).

### Tracked Changes XML Source Code

The changes are stored in the document source code as processing instructions and they do not interfere with validation or transformations. For each change, the author name and the modification time are preserved.

**Example - Insertion Change:** The following processing instruction is an example of how an insertion change is stored in a document:

```xml
<?oxy_insert_start author="John Doe" timestamp="20090408T164459+0300"?>all<?oxy_insert_end?>
```

**Example - Deletion Change:** The following processing instruction is an example of how a deletion change is stored in a document:

```xml
<?oxy_delete author="John Doe" timestamp="20090508T164459+0300" content="belong"?>
```

For more information about the Track Changes support, watch our video demonstration:

https://www.youtube.com/embed/L_ESxRMfnek

**Related Information:**

- Managing Comments (on page 952)
- Author Callouts (on page 958)
- Review View (on page 964)
Tracked Changes Behavior

The behavior of the *Track Changes feature (on page 3288)* depends on the context, the type of change, and whether or not it is activated.

Inserting Content

If the *Track Changes* feature is disabled and you insert content, the following behavior is possible:

- Making an insertion in a *Delete* change results in the change being split in two and the content is inserted without being marked as change.
- Making an insertion in an *Insert* change results in the change being split in two and the content is inserted without being marked as change.
- Making an insertion in regular content results in a regular insertion.

If the *Track Changes* feature is enabled and you insert content, the following behavior is possible:

- Making an insertion in a *Delete* change results in the change being split in two and the current inserted content appears marked as an INSERT.
- Making an insertion in an *Insert* change results in the following:
  - If the original insertion was made by another user, the change is split in two and the current inserted content appears marked as an INSERT by the current author.
  - If the original *Insert* change was made by the same user, the change is just expanded to contain the inserted content. The creation timestamp of the previous insert is preserved.
- If inserted in regular content, the current inserted content appears marked as an *Insert* change.

Surrounding Content

If the *Track Changes* feature is enabled and you surround content in a new XML element, the following behavior is possible:

- Making a surround in a *Delete* change results in nothing happening.
- Making a surround in an *Insert* change results in the following:
  - If the original insertion was made by another user, the change is split in two and the surround operation appears marked as being performed by the current author.
  - If the original *Insert* change was made by the same user, the existing change is just expanded to contain the surrounded content.
- Making a surround in regular content results in the operation being marked as a surround change.
Deleting Characters

If the Track Changes feature is disabled and you delete content character by character, the following behavior is possible:

- Deleting content in an existing Delete change results in nothing happening.
- Deleting content in an existing Insert change results in the content being deleted without being marked as a deletion and the INSERT change shrinks accordingly.
- Deleting in regular content results in a regular deletion.

If the Track Changes feature is enabled and you delete content character by character, the following behavior is possible:

- Deleting content in an existing Delete change results in the following:
  - If the same author created the Delete change, the previous change is marked as deleted by the current author.
  - If another author created the Delete change, nothing happens.
- Deleting content in an existing Insert change results in the following:
  - If the same author created the Insert change, the content is deleted and the Insert change shrinks accordingly.
  - If another author created the Insert change, the Insert change is split in two and the deleted content appears marked as a Delete change by the current author.
- Deleting in regular content results in the content being marked as a Delete change by the current author.

Deleting Selections of Content

If the Track Changes feature is disabled and you delete a selection of content, the following behavior is possible:

- If the selection contains an entire Delete change, the change disappears and the content is deleted.
- If the selection intersects with a Delete change (starts or ends in one), it results in nothing happening.
- If the selection contains an entire Insert change, the change disappears and the content is deleted.
- If the selection intersects with an Insert change (starts or ends in one), the Insert change is shrunk and the content is deleted.

If the Track Changes feature is enabled and you delete a selection of content, the following behavior is possible:
• If the selection contains an entire **Delete** change, the change is considered as rejected and then marked as deleted by the current author, along with the other selected content.
• If the selection intersects a **Delete** change (starts or ends in one), the change is considered as rejected and marked as deleted by the current author, along with the other selected content.
• If the selection contains an entire **Insert** change, the following is possible:
  ◦ If the **Insert** is made by the same author, the change disappears and the content is deleted.
  ◦ If the **Insert** is made by another author, the change is considered as accepted and then marked as deleted by the current author, along with the other selected content.
• If the selection intersects an **Insert** change (starts or ends in one), the **Insert** change shrinks and the part of the **Insert** change that intersects with the selection is deleted.

**Deleting Tags**

Assuming you are using any of the **Tag Display Modes (on page 441)** other than **No Tags** and the **Track Changes** feature is disabled, if you delete a start or end tag, both the start and end tag will be removed, while any content that was inside the element is preserved.

Assuming you are using any of the **Tag Display Modes (on page 441)** other than **No Tags** and the **Track Changes** feature is enabled, if you delete a start tag of an **inline element (on page 3283)**, both the start and end tag are marked as a **Delete** change by the current author, while any content that was inside the element is preserved.

**Copying Content**

If the **Track Changes** feature is disabled and you copy content, if the copied area contains **Insert** or **Delete** changes (or attribute edits), these are also copied to the clipboard.

If the **Track Changes** feature is enabled and you copy content, if the copied area contains **Insert** or **Delete** changes (or attribute edits), these are all accepted in the content of the clipboard (the changes will no longer be in the clipboard).

**Pasting Content**

If the **Track Changes** feature is disabled and you paste content, if the clipboard content contains **Insert** or **Delete** changes (or attribute edits), they will be preserved on paste.

If the **Track Changes** feature is enabled and you paste content, if the clipboard content contains **Insert** or **Delete** changes (or attribute edits), all the changes are accepted and then the paste operation proceeds according to the insertion rules.
Tracked Changes Limitations

There are some inherent limitations to the Change Tracking (on page 3288) feature. These limitations include the following:

- **Limitations to rejected changes** - Recording changes has limitations and there is no guarantee that rejecting all changes will return the document exactly to its original state.
- **Limitations to hierarchical changes** - Recorded changes are not hierarchical, a change cannot contain other changes inside. For example, if you delete an insertion made by another user, then reject the deletion, the information about the author who made the previous insertion is not preserved.
- **Limitations to using certain actions** - Some actions cannot be implemented with the Track Changes feature (on page 3288) enabled. For example, some of the table-related actions (Delete Row(s), Delete Column(s), Join Cells, Split Cell) ignore the Track Changes feature when executing the action.

Tracked Changes XML Markup

Depending on the type of edits, the following markup appears in the document source code when you activate the Track Changes feature (on page 3288):

<table>
<thead>
<tr>
<th>Edit Type</th>
<th>Processing Instruction Start Marker</th>
<th>Processing Instruction End Marker</th>
<th>Attributes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Split</td>
<td>&lt;?oxy_insert_start?&gt;</td>
<td>&lt;?oxy_insert_end?&gt;</td>
<td>author, timestamp, type=&quot;split&quot;</td>
</tr>
<tr>
<td>Surround</td>
<td>&lt;?oxy_insert_start?&gt;</td>
<td>&lt;?oxy_insert_end?&gt;</td>
<td>author, timestamp, type=&quot;surround&quot;</td>
</tr>
<tr>
<td>Deletion</td>
<td>&lt;?oxy_delete?&gt;</td>
<td>_</td>
<td>author, timestamp, content</td>
</tr>
<tr>
<td>Comment</td>
<td>&lt;?oxy_comment_start?&gt;</td>
<td>&lt;?oxy_comment_end?&gt;</td>
<td>author, timestamp, comment, mid</td>
</tr>
<tr>
<td>Attribute Change</td>
<td>&lt;?oxy_attributes?&gt;</td>
<td>_</td>
<td>id, type, oldValue, author, timestamp</td>
</tr>
</tbody>
</table>
Managing Comments

You can add comments to any selected area of content within XML documents, with the exception of read-only content. The difference between using comments and tracked changes (on page 3288) is that a comment is associated to a selection without modifying or deleting the content.

By default, when you annotate your XML documents, the comments are displayed in the Author mode as callouts (on page 3280) (balloons) and they are rendered with a unique name and background for each user. If comments are not currently displayed in callouts, select the Comments option (on page 143) in the Callouts preferences page (on page 143). Comments are also displayed in the Review view (on page 964).

Figure 337. Comments in Author Mode

Managing Comments in the Main Editor

You can insert and manage comments directly in the main editing area in Author mode.

Add Comment

To insert a comment at the cursor position or on a specific selection of content, select the Add Comment action from the toolbar (or in the Review submenu of the contextual menu).

Tip: When adding or editing a comment, you can use Enter to insert line breaks and Oxygen XML Editor will take the line breaks into account when presenting the callout. You can also use Ctrl + Enter to accept your changes and close the dialog box.

Show/Edit Comments

To edit an existing comment that you have added in the main editing area in Author mode, select the Show/Edit Comments action from the toolbar (or in the Review submenu of the contextual menu). The action opens a dialog box that allows you to see and edit your comment at the cursor position. Note that you cannot edit a comment that was added by another user, so in that case, the dialog box just displays the comment without the possibility of editing it.

Remove Comments
To remove a comment at the cursor position or multiple comments in a selection, select Remove Comment(s) from the toolbar (or in the Review submenu of the contextual menu).

**Copy/Paste**

If you copy content that includes comments, they will be preserved when you paste it.

**Managing Comments in Callouts**

As long as the Comments option (on page 143) is selected in the Callouts preferences page (on page 143), comments are also displayed in callouts (on page 958). By displaying the comments in callouts, you then have access to even more actions, such as the ability to reply or mark them as being done. When you right-click a specific comment in its callout, the contextual menu includes the following actions.

**Reply**

Opens a dialog box that allows you to add a reply to a comment or Tracked Changes (on page 3288). When replying to a comment, the dialog box shows the entire conversation in the comment thread, starting with the first comment added in the particular thread, followed by all the replies. After replies are added to a comment thread, they are displayed with an indentation in the callouts and Review view (on page 964).

**Mark as Done**

A toggle action that marks or unmarks a comment or comment thread as being done. It is also available for Tracked Changes (on page 3288) that are displayed in a callout. When a comment or change is marked as done, the callout is grayed out and cannot be edited unless the action is toggled to the unmarked state. The action applies to the particular comment and all of its descendents. This is useful for marking comments or changes that have been addressed, leaving only those that still need some attention.

**Show/Edit Comment**

Opens a dialog box that displays the discussion thread and allows the current user to edit comments that do not have replies. If you are not the author who inserted the original comment, the dialog box just displays the comment without the possibility of editing it.

**Remove Comment**

Removes a selected comment. If you remove a comment that contains replies, all of the replies will also be removed.

**Callouts Options**
Select this option to open the Callouts preference page (on page 143) where you can configure various callout options.

**Tip:** When adding, editing, or replying to a comment, you can use Enter to insert line breaks and Oxygen XML Editor will take the line breaks into account when presenting the callout. You can also use Ctrl + Enter to accept your changes and close the dialog box.

**Managing Comments in the Review View**

The Review view (on page 964) is also useful for managing comments. In this view, comments are presented in a compact form, in the order they appear in the document, along with tracked changes. You can also use this view to search for specific comments and it includes some filtering options (for example, you can filter it to only show comments for a particular author). When you right-click a specific comment in the Review view, the contextual menu includes the following actions.

**Reply**

Opens a dialog box that allows you to add a reply to a comment or Tracked Changes (on page 3288). When replying to a comment, the dialog box shows the entire conversation in the comment thread, starting with the first comment added in the particular thread, followed by all the replies. After replies are added to a comment thread, they are displayed with an indentation in the callouts and Review view (on page 964).

**Mark as Done**

A toggle action that marks or unmarks a comment or comment thread as being done. It is also available for Tracked Changes (on page 3288) that are displayed in a callout. When a comment or change is marked as done, the callout is grayed out and cannot be edited unless the action is toggled to the unmarked state. The action applies to the particular comment and all of its descendents. This is useful for marking comments or changes that have been addressed, leaving only those that still need some attention.

**Show/Edit Comment**

Opens a dialog box that displays the discussion thread and allows the current user to edit comments that do not have replies. If you are not the author who inserted the original comment, the dialog box just displays the comment without the possibility of editing it.

**Remove Comment**

Removes a selected comment. If you remove a comment that contains replies, all of the replies will also be removed.

**Show only reviews by ‘<author name>’**

Filters the comments to only show comments for the particular author.
Remove all Comments

Removes all comments from the document.

Comments XML Source Code

The comments are stored in the document source code as processing instructions that contain information about the author name and the comment time:

```xml
<?oxy_comment_start author="John Doe" timestamp="20090508T164459+0300" comment="Do not change this content"?>
  Important content
<?oxy_comment_end?>
```

Replies to comments are stored in the document source code as a comment (with information about the author name and time), but with a `parentID` attribute and its value is the same as the `id` value of the parent comment.

```xml
<?oxy_comment_start author="Tom" timestamp="20160217T102630+0200" comment="We should not forget about recycling the oil and oil filter!"
  parentID="vws_x4l_1v" mid="4"?>
```

Related Information:

- Author Callouts *(on page 958)*
- Review View *(on page 964)*

Managing Highlights

Use the Highlight tool to mark fragments in your document using various colors. This is especially useful when you want to mark sections that needs additional editing or to draw the attention of others to particular content.

Using the Highlight Tool

You can find the Highlight action on the main toolbar, in the **Edit > Review** menu, or in the **Review** submenu of the contextual menu of a document. You can also choose the color to use for the highlight or choose to **Stop highlighting** from the same menus.

To highlight content, follow these steps:
1. Click the Highlight icon on the toolbar.

   **Step Result:** The highlighting mode is on and the cursor changes to a dedicated symbol.

2. Click the small arrow next to the Highlight icon and select the color that you want to use for the highlighting.

3. Select the content you want to highlight. To mark multiple parts of a document, press and hold Ctrl (Meta on Mac OS) and select the parts you want to highlight.

4. To exit the highlighting mode, press Esc, click the Highlight icon, or start editing the document.

To remove highlighting from a document, follow these steps:

1. Either select the text you want to remove highlighting from using your cursor, or press Ctrl + A (Command + A on OS X) if you want to select all of the text.

2. Click the small arrow next to the Highlight icon and select **No color (erase)**, or right-click the highlighted content and select **Remove highlight(s)**.

3. To exit the highlighting mode, press Esc, click the Highlight icon, or start editing the document.

**Note:** Oxygen XML Editor preserves the highlighting of a document between working sessions. Also, if you copy content that includes highlights, the highlighting will be preserved when you paste it.

**Review View**

The **Review view (on page 964)** is also useful for managing highlights. In this view, the highlights are presented in a compact form, in the order they appear in the document, along with tracked changes (on page 3288) and comments. The following actions are available in the contextual menu of each highlight in the **Review view**:

**Change Color**

Allows you to change the color of an existing highlight by selecting the new color from this menu.

**Remove Highlight**

Removes the selected highlight.

**Remove Highlights with the Same Color**

Removes the selected highlight and all others that have the same color.

**Remove All Highlights**

Removes all highlights from the document.
Highlights XML Source Code

The highlights are stored in the document source code as processing instructions that contain information about the color:

```xml
<?oxy_custom_start type="oxy_content_highlight" color="0,128,255"?>
The highlights are stored<?oxy_custom_end?>
```

For more information about using the Highlight tool, watch our video demonstration:

https://www.youtube.com/embed/RMFyuMfisZY

Related Information:
- Review View (on page 964)

Author Callouts

Oxygen XML Editor uses callouts (on page 3280) to present comments and tracked change (on page 3288) modifications that you or other members of your team have added to the document.

Displaying Callouts in Author Mode

The callouts are displayed in the right side of the editing area in Author mode. They are decorated with a colored border and also have a colored background. The background color is assigned automatically by the application depending on the user who is editing the document and the type of change, but it can also be customized from the Review preferences page (on page 140). This preferences page allows you to configure the colors for tracked change insertions or deletions, and for comments.

You can also choose to use the same color for all changes of that particular type of change, regardless of who makes the change. To do this, select the Fixed option for the particular type of change and choose a color from the color box. If the Automatic option is selected, Oxygen XML Editor automatically assigns a color based upon the Colors for automatic assignment list (on page 143).

The horizontal line that connects the callouts to their corresponding text fragments has the same color as the border. If this horizontal line is not visible, select the Show all connecting lines option (on page 144) in the Callouts preferences page. If you hover over a callout, it is highlighted and a tooltip is displayed that contains additional information.

Figure 338. Multiple Author Callouts
Note: Oxygen XML Editor displays callouts only if View All Changes/Comments or View Only Changes/Comments by is selected in the Track Changes Visualization Modes drop-down menu. Oxygen XML Editor does not display callouts in View Final and View Original modes.

In some cases, the text you are editing can span into the callouts area. For example, this situation can appear for callouts associated with wide images or space-preserved elements (on page 3287) that contain long fragments (such as a DITA codeblock element or programlisting in DocBook). To help you view the text under the covered area, Oxygen XML Editor applies transparency to these callouts. When the cursor is located under a callout, the transparency is enhanced, allowing you to both edit the covered content and access the contextual menu of the editing area.

Figure 339. Transparent Callout

Adjusting Callout Width

To display more of the content in all the callouts in the current document, you can adjust the width by dragging the left side of any of the callouts. This will adjust the width for all comments in the current document. When you end the current editing session, the width of all callouts will revert back to the default value, which is the value of the Initial Width option (on page 144) in the Callouts preferences page.
You can also adjust the maximum number of lines to be shown in the callouts using the **Text Lines Count Limit** option (on page 144). Note that this does not limit the number of lines in the actual comment. It only limits the number of lines shown without opening or editing it.

**Type of Callouts in Oxygen XML Editor**

Oxygen XML Editor uses callouts to display comments and Tracked Changes (on page 3288) that you associate with fragments of the document you are editing. You can choose which types of edits will be shown in callouts by configuring the options in the **Callouts preferences page** (on page 143). You can choose to enable the following types of review callouts:

- **Comment Callouts** - As long as the **Comments** option (on page 143) is selected in the **Callouts preferences page** (on page 143), comments are displayed in callouts. A comment callout contains the name of the author who inserts the callout and the comment itself. You can also select the **Show review time** option (on page 144) to include timestamp information in the comment callouts.

![Figure 340. Comment Callouts](image)

There are several types of comments that can be added in **Author** mode:

- **Author Review Comments** - Comments that you associate with specific content. To insert this type of comment, select the content and use the **Add Comment** action that is available on the toolbar (or in the **Review** submenu of the contextual menu).
- **Comments Added to Tracked Changes** - Comments that you add to an already existing tracked change insertion or deletion. To insert this type of comment, right-click the change in the main editor or its callout and select **Comment Change**.
- **Replies to Comments** - You can use this type of comment to create discussion threads. To insert this type of comment, right-click the change in its callout and select **Reply**. A single callout is presented for a root comment or change and its replies. The replies are displayed with an indentation in the callouts and those that are on the same level are sorted depending on the timestamp.

![Figure 341. Callout for a Comment with Replies](image)
Tip: When adding, editing, or replying to a comment, you can use Enter to insert line breaks and Oxygen XML Editor will take the line breaks into account when presenting the callout. You can also use Ctrl + Enter to accept your changes and close the dialog box.

- **Tracked Change Deletion Callouts** - As long as the Track Changes Deletions option (on page 144) is selected in the Callouts preferences page (on page 143), deletions that are made while the Track Changes feature is enabled are displayed in callouts. A deletion callout contains the type of callout (Deleted) and the name of the author that made the deletion. You can also select the Show deleted content in callout option (on page 144) to display the actual deleted content in the callout. Additionally, you can select the Show review time option (on page 144) to include timestamp information in the deletion callouts.

Figure 342. Deletion Callouts

- **Tracked Change Insertion Callouts** - As long as the Track Changes Insertions option (on page 144) is selected in the Callouts preferences page (on page 143), insertions that are done while the Track Changes feature is enabled are displayed in callouts. An insertion callout contains the type of callout (Inserted) and the name of the author that inserted the content. You can also select the Show inserted content in callout option (on page 144) to display the actual deleted content in the callout. Additionally, you can select the Show review time option (on page 144) to include timestamp information in the deletion callouts.

Figure 343. Insertion Callouts
Callout Contextual Menu Actions

Some useful actions are available when the contextual menu is invoked on a callout. The actions depend on the type of callout.

**Insertion or Deletion Callout Actions**

The following actions are available in the contextual menu of an insertion or deletion callout:

**Reply**

Opens a dialog box that allows you to add a reply to a comment or Tracked Changes (on page 3288). When replying to a comment, the dialog box shows the entire conversation in the comment thread, starting with the first comment added in the particular thread, followed by all the replies. After replies are added to a comment thread, they are displayed with an indentation in the callouts and Review view (on page 964).

**Mark as Done**

A toggle action that marks or unmarks a comment or comment thread as being done. It is also available for Tracked Changes (on page 3288) that are displayed in a callout. When a comment or change is marked as done, the callout is grayed out and cannot be edited unless the action is toggled to the unmarked state. The action applies to the particular comment and all of its descendents. This is useful for marking comments or changes that have been addressed, leaving only those that still need some attention.

** ✓ Accept Change**

Accepts the tracked change, removes the callout, and moves to the next change. For an insertion change, it keeps the inserted text and for a deletion change, it removes the content from the document.

** ✗ Reject Change**

Rejects the tracked change, removes the callout, and moves to the next change. For an insertion change, it removes the inserted text and for a deletion change, it preserves the original content.

** 📣 Comment Change**

Opens a dialog box that allows you to add a comment to an existing Tracked Change (on page 3288). The comment will appear in a callout and a tooltip when hovering over the change. If the action is selected on
an existing commented change, the dialog box will allow you to edit the comment.

**Edit Reference**

If the fragment that contains a callout is a reference, use this option to go to the reference and edit the callout.

**Callouts Options**

Select this option to open the Callouts preference page (on page 143) where you can configure various callout options.

**Comment Callout Actions**

The following options are available in the contextual menu of a comment callout:

**Reply**

Opens a dialog box that allows you to add a reply to a comment or Tracked Changes (on page 3288). When replying to a comment, the dialog box shows the entire conversation in the comment thread, starting with the first comment added in the particular thread, followed by all the replies. After replies are added to a comment thread, they are displayed with an indentation in the callouts and Review view (on page 964).

**Mark as Done**

A toggle action that marks or unmarks a comment or comment thread as being done. It is also available for Tracked Changes (on page 3288) that are displayed in a callout. When a comment or change is marked as done, the callout is grayed out and cannot be edited unless the action is toggled to the unmarked state. The action applies to the particular comment and all of its descendents. This is useful for marking comments or changes that have been addressed, leaving only those that still need some attention.

**Show/Edit Comment**

Opens a dialog box that displays the discussion thread and allows the current user to edit comments that do not have replies. If you are not the author who inserted the original comment, the dialog box just displays the comment without the possibility of editing it.

**Remove Comment**

Removes a selected comment. If you remove a comment that contains replies, all of the replies will also be removed.

**Edit Reference**
If the fragment that contains a callout is a reference, use this option to go to the reference and edit the callout.

- **Callouts Options**
  Select this option to open the **Callouts preference page** (on page 143) where you can configure various callout options.

### Printing Callouts

When you print a document from **Author** mode, all callouts that you or other authors have added to the document are printed. For a preview of the document and its callouts, go to **File > Print Preview**.

### Review View

The **Review view** (on page 964) is also useful for managing the information in callouts. In this view, changes and comments are presented in a compact form, in the order they appear in the document, and they are synchronized with the changes in the callouts. You can also search for specific changes or comments and it includes some filtering options (for example, you can filter it to only show certain types of edits or to only show edits for a particular author).

For more information, see **Review View** (on page 964).

To watch our video demonstration about the Callouts support, see our video demonstration:

[https://www.youtube.com/embed/kCCWyFqBaUM](https://www.youtube.com/embed/kCCWyFqBaUM)

**Related Information:**

- Managing Tracked Changes (on page 943)
- Managing Comments (on page 952)
- Review View (on page 964)

### Review View

The **Review view** is an independent panel, available both for built-in and custom XML document frameworks (on page 3282). It is designed to offer an enhanced way of monitoring all the changes that you make to a document. This means you can view and manage highlights, comments, and tracked changes (on page 3288) using a single view.
The **Review** view is useful when you are working with documents that contain large number of edits. The edits are presented in a compact form, in the order they appear in the document. Each type of edit is marked with a specific icon. This view and the editing area are synchronized. When you select an edit listed in the **Review** view, its corresponding fragment of text is highlighted in the editing area and the reverse is also true. For example, when you place the cursor inside an area of text marked as inserted, its corresponding edit is selected in the list.

You can use this view to quickly navigate through changes and it includes some useful hover actions and contextual menu actions to help you manage changes, comments, and highlights. You can also search for specific changes or comments and it includes some filtering options (for example, you can filter it to only show certain types of edits or to only show edits for a particular author).

![Review View](image)

**Figure 344. Review View**

### Activating the Review View

To activate the **Review** view, do one of the following:

- Click the ![Manage reviews](image) button on the toolbar.
- Right-click anywhere in a document and select **Review > Manage reviews**.
- Open it from the **Window > Show View** menu.

### Review View Toolbar Actions and Settings

The upper part of the view contains a filtering area that allows you to search for specific edits. The filter field also includes a search history drop-down list. The toolbar also includes ![Previous](image) and ![Next](image) navigation buttons and a ![Settings](image) menu button.
Use this button to navigate to the previous review item. By default, if you reach the first review item in the document, clicking this button will open a dialog box asking if you want to open the previous document (from the current DITA map hierarchy) that contains review items. This default behavior can be changed by choosing one of the options in the When navigating items in the Review view and you reach the last/first item section of the DITA preferences page (on page 226).

Next

Use this button to navigate to the next review item. By default, if you reach the last review item in the document, clicking this button will open a dialog box asking if you want to open the next document (from the current DITA map hierarchy) that contains review items. This default behavior can be changed by choosing one of the options in the When navigating items in the Review view and you reach the last/first item section of the DITA preferences page (on page 226).

Settings

The Settings menu includes the following options:

Show highlights

Controls whether or not the Review view displays the highlighting in your document.

Show comments

Controls whether or not the Review view displays the comments in the document you are editing.

Show track changes

Controls whether or not the Review view displays the inserted and deleted content in your document.

Show reviews in read-only content

Controls whether or not the Review view displays review items from content referenced with a @conref or @conkeyref attribute.

Show review time

Displays the time when the edits from the Review view were made.

Sort by date

Expands to offer the following sorting options: Oldest to newest, Newest to oldest, and No sorting.

Configure review options
Opens the Review preferences page (on page 140) where you can configure various options for review information.

Hover Actions in the Review View

You can use this view to easily manage changes, highlights, and comments that have been added by you or other users. The following actions are available when you hover over the changes in the Review view:

Remove
Available for highlights and comments presented in the Review view and it removes the particular highlight or comment from your document and moves to the next change.

Accept
Available for inserted and deleted content presented in the Review view and it accepts the particular change in your document and moves to the next change.

Reject
Available for inserted and deleted content presented in the Review view and it rejects the particular change in your document and moves to the next change.

Contextual Menu Actions in the Review View

Depending on the type of an edit, the following additional actions are available in the contextual menu of the Review view:

Reply
Opens the Reply dialog box where you can add a reply to comment or change. The replies are displayed with an indentation in this view.

Mark as Done
Toggles the comment or change as being done and grays it out. You can mark a whole discussion thread as being done by selecting the action on the first (parent) comment in the thread.

Show Comment
Available for comments added by other users and you can use this option to view it in a Show comment dialog box.

Edit Comment
Available for comments you have added and you can use this action to edit a comment.

Remove Comment
Use this action to remove the selected comment.

**Show only Reviews by `<author name>`**

Use this action to filter the edits to only show them for a certain author.

**Remove All Comments**

Use this action to remove all the comments that appear in the edited document.

**Change Color**

Available for highlights and it opens a palette where you can choose a new color for the highlighted content.

**Remove Highlight**

Available for highlights and you can use this action to remove the selected highlight.

**Remove Highlights with the Same Color**

Available for highlights and you can use this action to remove all the highlights with the same color from the entire document.

**Remove All Highlights**

Available for highlights and you can use this action to remove all the highlights in your document.

✔ **Accept Change**

Accepts the selected change and moves to the next change.

❌ **Reject change**

Rejects the selected change and moves to the next change.

➡️ **Comment change**

Available for insertions or deletions and you can use this option to add a comment for the particular change.

✔️ **Accept all changes**

Accepts all the changes in the current document.

❌ ✔️ **Reject all changes**

Rejects all the changes in the current document.

For more information about the Review view, watch our video demonstration:

[https://www.youtube.com/embed/W22jkbwlh60](https://www.youtube.com/embed/W22jkbwlh60)

Related Information:
Profiling and Conditional Text

Profiling text is a way to mark blocks of text meant to appear in some renditions of the document but not in others. Conditional text differs from one variant of the document to another, while unconditional text appears in all document versions. For example, you can mark a section of a document that is to be included in a manual to be designated for expert users and another section for novice users, while unmarked sections are included in all renditions.

Profiling Attributes and Condition Sets

Oxygen XML Editor allows you to define values for the profiling attributes and they can be easily managed to filter content in the published output. You can switch between profile sets to see how the edited content looks like before publishing. You can also conditionally profile parts of a document so that certain parts are displayed when certain profiling conditions are set. You can even customize the colors and styling of how the profiling is displayed in Author mode.

You can use profiling and conditional text to help you create documentation for multiple output scenarios, including:

- Multiple outputs for a series of similar products.
- Multiple outputs for various releases of a product.
- Multiple outputs for various audiences.

This feature helps to reduce the effort for updating and translating your content and provides an easy way to customize the output for various audiences.

Figure 345. Example: Profiling Content
Oxygen XML Editor includes a preconfigured set of profiling attribute values for some of the most popular document types. These attributes can be redefined to match your specific needs in the Profiling/Conditional Text preferences page (on page 144). You can also define your own profiling attributes and condition sets for each document type (framework (on page 3282)) and your profiling configuration can be shared among content authors through the project file.

For information about creating and editing profiling attributes, see Creating and Editing Profiling Attributes (on page 970) (for information about sharing them, see Sharing Profiling Attribute Configurations (on page 973)/Sharing Profiling Attribute Configurations (on page 3229)).

For information about creating and editing condition sets, see Creating and Editing Profiling Condition Sets (on page 975) (for information about sharing them, see Sharing Condition Set Configurations (on page 978)).

Related Information:

- Customizing Elements that Wrap Profiled Content (on page 2425)

Creating and Editing Profiling Attributes

Oxygen XML Editor includes support for defining your own profiling attributes, or modifying existing ones, for each particular document type (framework (on page 3282)). You can then apply the profiling attributes to content in Author mode to see how the profiling will affect the output.

Create or Editing Profiling Attributes

To create or edit profiling attributes for a specific document type, follow these steps:

1. Make sure the attribute is already defined in the document DTD or schema before continuing with the procedure.
2. Open the Preferences dialog box (Options > Preferences) (on page 79) and go to Editor > Edit modes > Author > Profiling/Conditional Text.
Information: The Profiling Attributes section (on page 145) is used to define the attributes and their values for each document type.

3. To add new attributes and values, click the New button at the bottom of the Profiling Attributes table. To customize existing attributes and their values, select an attribute and click the Edit button.

Step Result: In either case, this opens a Profiling Attribute configuration dialog box where you can define attributes that exist in your schema.

Figure 346. Profiling Attribute Dialog Box

The following options are available in this dialog box:

**Document type**

Select the document type (framework (on page 3282)).

Tip: You can use the * or ? wildcards in this combo box. For example, DITA* would match any document type that starts with "DITA". You can also specify multiple document types by using commas to separate them.

**Attribute name**

The name of the profiling attribute.

**Display name**

This optional field is used for descriptive rendering in profiling dialog boxes.

**Attribute Values Table**
This table displays information about the values for the profiling attribute. You can configure them by using the buttons at the bottom of the table (New, Edit, Delete).

The columns are as follows:

- **Value** - The attribute value.
- **Label** - You can specify a label for the attribute value that will be rendered as its name in various components in Author mode (Edit Profiling Attributes dialog box (on page 973), Condition Set dialog box (on page 975), and other UI components where the profiling is shown (on page 980)). If the Label is not specified, the Value will be used as its rendered name.
- **Description** - A description for the attribute value that will be displayed in this table.

**Single value**

Select this option if you want the attribute to only accept a single value.

**Multiple values separated by**

Select this option if you want the attribute to accept multiple values, and you can choose the type of delimiter to use. You can choose between space, comma, and semicolon, or you can enter a custom delimiter in the text field. A custom delimiter must be supported by the specified document type. For example, the DITA document type only accepts spaces as delimiters for attribute values.

4. After defining or configuring the attributes and their values according to your needs, click OK to confirm your selections and close the Profiling Attributes configuration dialog box.
5. Click Apply to save the changes.

### Adding Profiling Attribute Values Directly in a Document

You can add values directly to the existing profiling attributes in a document using the In-Place Attributes Editor (on page 915) in Author mode, the Attributes view (on page 426), or in the source code in Text mode. However, this just adds them to the document and does not change the conditional text configuration. If you invoke the Edit Profiling Attributes action (from the contextual menu in Author mode) on the new value, the Profiling Values Conflict dialog box will appear and it includes an Add these values to the configuration action that will automatically add the new value to the particular profiling attribute. It also includes an Edit the configuration action that opens the Profiling / Conditional Text preferences page (on page 144) where you can edit the profiling configuration.

Note: If the Allow contributing extra profiling attribute values (on page 146) option is not selected in the Profiling / Conditional Text preferences page, the Profiling Values Conflict dialog box will never appear, so this automatically adding value not be possible.
Sharing Profiling Attribute Configurations

Your profiling configuration can be shared with other users through a project file. If you select Project Options (on page 3286) at the bottom of the Profiling/Conditional Text preferences page, your configuration is stored in the project file and can be shared with others. For instance, if your project file is saved on a version control system (such as SVN, CVS, or Source Safe) or in a shared folder, your team will have the same option configuration that you stored in the project file.

For more information about sharing project files, see Sharing a Project - Team Collaboration (on page 723).

Related Information:

- Applying Profiling Attributes (on page 973)
- Creating and Editing Profiling Condition Sets (on page 975)
- Applying Profiling Condition Sets (on page 978)
- Showing and Filtering Profiled Content in Author Mode (on page 980)

Applying Profiling Attributes

Profiling attributes are applied on element nodes. You can apply profiling attributes on a text fragment (it will automatically be wrapped into a phrase-type element), on a single element, or on multiple
elements at the same time. If there is no selection in your document, the profiling attributes are
applied on the element at the cursor position.

To apply a profiling attribute to content in Author mode, follow these steps:

1. To apply a profiling attribute to content in Author mode, highlight the content and select Edit
   Profiling Attributes from the contextual menu. To profile an entire element, position the cursor
   inside the element, right-click, and select Edit Profiling Attributes (you can also right-click the
   element in the breadcrumb (on page 907) or Outline (on page 347) view).

   Step Result: The Edit Profiling Attributes dialog box is displayed and shows all the profiling
   attributes and their values, as defined for the particular document type (framework). If you have
   a large list of profiling attributes, you can use the text filter field to search for attributes or values,
   and you can expand or collapse attributes by using the Expand All / Collapse All buttons to
   the right of the text filter or the arrow button to the left of the profiling attribute name.

   The attributes and values that appear in the dialog box are determined as follows:
   • If you have defined profiling attribute values (on page 970) for the DITA document type
     in the Profiling/Conditional Text preferences page (on page 144) and you store them at
     project-level (on page 3286), those values are displayed in the dialog box.
   • If you have defined profiling attribute values (on page 970) for the DITA document type in
     the Profiling/Conditional Text preferences page (on page 144) and you store them at global-
     level (on page 3283), those values are displayed in the dialog box.
   • Otherwise, a generic default set of profiling attributes and values are available.

Figure 348. Edit Profiling Attributes Dialog Box
2. In the **Edit Profiling Attributes** dialog box, select the checkboxes that correspond to the attribute values you want to apply on the *document fragment (on page 3281)*.

3. Click **OK** to finish the profiling configuration.

**Result:** The attribute names and values selected in the **Edit Profiling Attributes** dialog box are set on the elements contained in the profiled fragment. If you only select a fragment of content (rather than the entire element), this fragment is wrapped in phrase-type elements in which the profiling attributes are set.

If the **Show Profiling Attributes** option *(on page 981)* (available in the **Profiling / Conditional Text** toolbar menu) is selected, a green border is painted around profiled text in the **Author** mode and all profiling attributes set on the current element are listed at the end of the highlighted block. To edit the attributes of a profiled fragment, click one of the listed attribute values. A form control pops up and allows you to add or remove attribute values.

**Figure 349. Profiling Attribute Value Form Control Pop Up**

---

**Related Information:**

- Creating and Editing Profiling Attributes *(on page 970)*
- Creating and Editing Profiling Condition Sets *(on page 975)*
- Applying Profiling Condition Sets *(on page 978)*
- Showing and Filtering Profiled Content in Author Mode *(on page 980)*
- Customizing Colors and Styles for Rendering Profiling in Author Mode *(on page 3240)*
Creating and Editing Profiling Condition Sets

Multiple profiling attributes can be aggregated into a profiling condition set that allows you to apply more complex filters on the document content. A Profiling Condition Set is a very powerful and convenient tool that can be used to preview the content that goes into the published output. For example, an installation manual available in both Windows and Linux variants can be profiled to highlight only the Linux procedures for more advanced users.

Create Profiling Condition Sets

To create a new profiling condition set, follow these steps:

1. Open the Preferences dialog box (Options > Preferences) (on page 79) and go to Editor > Edit modes > Author > Profiling/Conditional Text.

   Information: The Profiling Condition Sets section (on page 146) is used to define condition sets.

2. To add new condition set, click the New button at the bottom of the Profiling Condition Sets table. To customize existing condition sets, select an existing condition set and click the Edit button.

   Step Result: In either case, this opens a Condition Set configuration dialog box where you can define attributes that exist in your schema.

Figure 350. Condition Set Configuration Dialog Box
The following options are available in this dialog box:

**Name**

The name of the new condition set.

**Document type**

Select the document type ([framework](on page 3282)) for which you have defined profiling attributes.

**Use DITAVAL file**

For DITA projects, select this option if you want the Profiling Condition Set to reference a DITAVAL file ([on page 3248](on page 3248)). You can specify the path by using the text field, its history drop-down, the Insert Editor Variables ([on page 276](on page 276)) button, or the browsing actions in the Browse drop-down list.

**Include the content matching the following conditions**

You can select this option to define the combination of attribute values for your condition set by selecting the appropriate checkboxes for the values you want to be included in this particular condition set. If you have defined a lot of profiling attributes, you can use the filter text field to search for specific conditions.

**Shortcut key**
You can click the Choose button to open a dialog box that allows you to define a shortcut key for this particular condition set. You can then use that shortcut key anytime you want to select this condition set to filter content.

3. After defining or configuring the condition sets according to your needs, click OK to confirm your selections and close the Condition Set configuration dialog box.

4. Click Apply to save the condition set.

Result: All saved profiling condition sets are available in the Profiling / Conditional Text toolbar drop-down menu (on page 980).

Sharing Condition Set Configurations

Your condition set configuration can be shared with other users through a project file. If you select Project Options (on page 3286) at the bottom of the Profiling/Conditional Text preferences page, your configuration is stored in the project file and can be shared with others. For instance, if your project file is saved on a version control system (such as SVN, CVS, or Source Safe) or in a shared folder, your team will have the same option configuration that you stored in the project file.

For more information about sharing project files, see Sharing a Project - Team Collaboration (on page 723).

Related Information:

- Applying Profiling Condition Sets (on page 978)
- Creating and Editing Profiling Attributes (on page 970)
- Applying Profiling Attributes (on page 973)
- Showing and Filtering Profiled Content in Author Mode (on page 980)
- Customizing Colors and Styles for Rendering Profiling in Author Mode (on page 3240)

Applying Profiling Condition Sets

All defined Profiling Condition Sets (on page 975) are available as shortcuts in the Profiling / Conditional Text toolbar menu (on page 980). Select a menu entry to apply the condition set. The filtered content is then grayed-out in the Author mode and Outline view (on page 347). An element is
filtered-out when one of its attributes is part of the condition set and its value does not match any of the values covered by the condition set.

**EXAMPLE:**

Suppose that you have the following document:

```
Spray painting

Short Description: When paint is applied using a spray nozzle, it is referred to as spray painting.
Context:

The garage is a good place to spray paint.

Step 1
Move the car out of the garage to avoid getting paint on it. Audience [novice]

Step 2
Place newspaper, cardboard, or a drop-cloth on the garage floor. Audience [expert]

Step 3
Place the object to be painted on the covered area. Audience [expert] Other [prop2]

Step 4
Follow the directions on the paint can to paint the object. Audience [expert] Other [prop1]

Step 5
Let the paint dry thoroughly before you move the object. Audience [novice] Other [prop1]
```

If you apply the following condition set, it means that you want to filter out the content to only include content profiled with the `expert` value for the `@audience` attribute and content that has the `prop1` value for the `@other` attribute.
This is how the document looks in Author mode after you apply the condition set:

```
Spray painting

Short Description: When paint is applied using a spray nozzle, it is referred to as spray painting.
Context:

The garage is a good place to spray paint.

1. Move the car out of the garage to avoid getting paint on it. [Audience: novice]
2. Place newspaper, cardboard, or a drop-cloth on the garage floor. [Audience: expert]
3. Place the object to be painted on the covered area. [Audience: expert] Other [prop?]
4. Follow the directions on the paint can to paint the object. [Audience: expert] Other [prop?]
5. Let the paint dry thoroughly before you move the object. [Audience: novice] Other [prop?]
```

Related Information:

- Creating and Editing Profiling Condition Sets (on page 975)
- Creating and Editing Profiling Attributes (on page 970)
- Applying Profiling Attributes (on page 973)
- Showing and Filtering Profiled Content in Author Mode (on page 980)
- Customizing Colors and Styles for Rendering Profiling in Author Mode (on page 983)

Showing and Filtering Profiled Content in Author Mode

You can visualize the effects of profiled content in Author mode by using the options in the Profiling/Conditional Text drop-down menu that is located on toolbar. This drop-down menu includes the following filtering options:

**Show Profiling Colors and Styles**

Select this option to show colors and styles for profiled content in Author mode. You can configure the colors and styles or specify whether or not this option is selected by default in the Profiling/Conditional Text > Colors and Styles preferences page (on page 147).
Show Profiling Attributes

Select this option to display the values of the profiling attributes at the end of profiled content in Author mode. You can specify whether or not this option is selected by default in the Profiling/Conditional Text > Attributes Rendering preferences page (on page 148).

Show Excluded Content

Controls whether the content filtered out by a particular condition set is hidden or grayed-out in Author mode and the Outline (on page 347) view. When this option is selected and a condition set is selected in this drop-down menu (on page 981), the filtered content is grayed-out. If this option is not selected and a condition set is selected in this drop-down menu (on page 981), the filtered content is hidden. You can specify whether or not this option is selected by default in the Profiling/Conditional Text preferences page (on page 146).

Choose Condition Set (Available if more than 15 condition sets are defined)

This option is available if you have more than 15 conditions sets defined. It opens a dialog box that makes it easier to find and select condition sets that are not displayed in this drop-down menu.

List of Defined Condition Sets

Up to 15 defined condition sets are listed and you can toggle each one of them on to filter the content in Author mode to only show content that will appear in the output for that particular condition set. If there are more than 15 defined condition sets, the rest of them can be accessed in the More submenu or by using the Choose Condition Set option (on page 981) to access a dialog box that presents all of them.

♀ Profiling Settings

Opens the Profiling/Conditional Text preferences page (on page 144) where you can add and edit profiling attributes and condition sets.

Figure 351. Example: Profiling Controls in Author Mode
If the Show Profiling Attributes option is selected, a green border is painted around profiled text in the Author mode. Also, all profiling attributes set on the current element are listed at the end of the highlighted block and in its tooltip message. To edit the attributes of a profiled fragment, click one of the listed attribute values. A form control pops up and allows you to add or remove attribute values.

Figure 352. Profiling Attribute Value Form Control Pop Up

Related Information:

- Creating and Editing Profiling Attributes (on page 970)
- Applying Profiling Attributes (on page 973)
- Creating and Editing Profiling Condition Sets (on page 975)
- Applying Profiling Condition Sets (on page 978)
Customizing Colors and Styles for Rendering Profiling in Author Mode

By applying profiling colors and styles, you can mark profiled content in Author mode so that you can instantly spot differences between multiple variants of the output. This allows you to preview the content that will go into the published output. The excluded text is grayed-out or hidden in Author mode, allowing you to easily recognize the differences.

Figure 353. Example: Profiling Colors and Styles in Author Mode

Choosing the right style for a specific profiling attribute is a matter of personal taste, but be aware of the following:

- If the same block of text is profiled with two or more profiling attributes, their associated styles combine. Depending on the styling, this might result in an excessively styled content that may prove difficult to read or work with.
- It is recommended that you only profile the differences. There is no need to profile common content, since excessive profiling can visually pollute the document.
- A mnemonic associated with a style will help you instantly spot differences in the types of content.

Styling Profiling Attribute Values

To set colors and styles for profiling attribute values, follow these steps:
1. Select the Show Profiling Colors and Styles option (on page 980) from the Profiling / Conditional Text toolbar drop-down menu.

2. Select Profiling Settings (on page 981) from the Profiling / Conditional Text toolbar drop-down menu. This is a shortcut to the Profiling/Conditional Text preferences page (on page 144).

3. Go to the Colors and Styles preferences page (on page 146) to configure the colors and styling for the profiling attributes.

4. Go to the Attributes Rendering preferences page (on page 148) to configure how you want the profiling attributes to appear in Oxygen XML Editor.

**Result:** The styling is now applied in the Author editing mode and the Outline view (on page 347). Also, to help you more easily identify the profiling you want to apply in the current context, the styling is applied in the Edit Profiling Attributes dialog box (on page 970) and in the inline form control pop-up that allows you to quickly set the profiling attributes.

Figure 354. Profiling Attribute Value Form Control Pop Up

Related Information:

- Creating and Editing Profiling Attributes (on page 970)

- Applying Profiling Attributes (on page 973)

- Creating and Editing Profiling Condition Sets (on page 975)

- Applying Profiling Condition Sets (on page 978)

- Showing and Filtering Profiled Content in Author Mode (on page 980)
Adding Tables in Author Mode

You can use the **Insert Table** action on the toolbar or from the contextual menu to add a table in various frameworks (on page 3282) (DITA, DocBook, TEI, and XHTML). This opens the **Insert Table** dialog box. Each framework has a different set of options that are available in this dialog box for configuring the properties of the tables. In all cases, Oxygen XML Editor includes some general editing actions for configuring tables in **Author** mode.

This section explains those general actions and the various configuration options and layouts for tables that are inserted in the most commonly used document types.

**Editing Tables in Author Mode**

Oxygen XML Editor provides support for editing data in a tabular form. A variety of features and operations are available for editing tables in **Author** mode and they include the following:

### Adjusting Column Width

To adjust the width of a column or table, drag the border of the column or table. The changes you make to a table are committed into the source document. You can also manage table width and column width specifications from the source document, and some types of tables include a `colspecs` section that appears above the table in **Author** mode that allows you to easily configure some column specifications (such as column width). These column width specifications are supported in fixed, dynamic, and proportional dimensions. The built-in DITA, DocBook, and XHTML frameworks (on page 3282) support this feature. The layout of the tables for these document types takes into account the table width and the column width specifications particular to them.

**Figure 355. Resizing a Table Column in Author Mode**

![Table Column Resizing](image)

### Selecting Columns and Rows

To select a row or a column of a table, place the mouse cursor above the column or in front of the row you want to select, then click. When hovering the mouse cursor in front of rows or above column headers, the cursor changes to ▶️ for row selection and to ▼️ for column selection and that specific row or column is highlighted.
You can use the Ctrl and Shift keys to select multiple rows.

**Selecting Cells**

To select a cell in a table, press and hold the Ctrl key and click anywhere inside the cell. You can also use the Ctrl and Shift keys to select multiple cells or to deselect cells from a selection. Alternatively, you can click the left corner of a cell (right corner if you are editing a RTL document (on page 621)) to select it. The cursor changes to when you hover over the corner of the cell.

You can also select multiple rectangular blocks of cells by using your mouse to select a cell and drag it to expand the selection.

**Drag and Drop**

You can use the drag and drop action to edit the content of a table. You can select a column and drag it to another location in the table you are editing. When you drag a column and hover the cursor over a valid drop position, Oxygen XML Editor decorates the target location with bold rectangles. The same drag and drop action is also available for entire rows or columns by hovering the mouse cursor in front of rows or above column headers, then selecting the row or column and dragging them to the desired location.

**Copy/Cut and Paste**

In Oxygen XML Editor, you can copy/cut entire rows or columns of the table you are editing and paste the copied columns or rows inside the same table or inside other tables. You can also use the copy or cut actions for tables located in other documents. If you paste a row or column into non-table content, Oxygen XML Editor introduces a new table that contains the fragments of the copied row or column content.

For copied columns, the fragments are introduced starting with the header of the column. Also, if the copied column is from a CALS table, Oxygen XML Editor preserves column width information. This information is then used when you paste the column into another CALS table.

For copied cells, when pasting them into another cell without a selection (the cursor is just placed in the new cell), the copied cells are pasted while preserving their initial order and spacing. If pasting them into a selection of cells, first the content of the selected cells is deleted, then the copied cells are pasted with their initial order and spacing preserved and if there are more cells in the selection than in the copied content, the pasting will repeat the copied cells until the end of the selection.
Deleting Content

To delete the content of a cell, select the cell and press the **Delete** or **Backspace** key on your keyboard. If you press **Delete** or **Backspace** again, the selected table structure will also be removed.

To delete an entire row or column, place the cursor inside the row or column (or select it) and use the **Delete Row(s)** or **Delete Column(s)** actions from the toolbar or contextual menu. This will delete both the content and the table structure for the current row or column.

To delete a selection of multiple rows or columns, select them and use the **Delete Row(s)** or **Delete Column(s)** actions from the toolbar or contextual menu. This will delete both the content and the table structure for all rows or columns that exist in the current selection.

Navigating Cells

Along with the normal mouse navigation, you can also navigate between cells by using the arrow keys on your keyboard. By default, when using the arrow keys to navigate between table cells, the cursor jumps from one cell to another. However, if the **Quick navigation in tables** option (on page 137) is not selected in the **Cursor Navigation** preferences page, using the arrow keys to navigate between table cells will cause the cursor to navigate between XML nodes, rather than jumping from cell to cell.

Related Information:

- Adding Tables in DocBook (on page 987)
- Adding Tables in DITA Topics (on page 999)
- Adding Tables in XHTML Documents (on page 1013)

Adding Tables in DocBook

You can use the **Insert Table** action on the toolbar or from the contextual menu to add a table in a DocBook document.

DocBook supports two types of tables:

- **CALS** table model - This is used for more advanced functionality.
- **HTML** table model - This is used for inserting a formal (captioned) HTML table.
Inserting a CALS Table Model in DocBook

To insert a CALS table model in DocBook documents, select the Insert Table action on the toolbar or from the contextual menu. The Insert Table dialog box appears. Select CALS for the table Model. This model allows you to configure a few more properties than the HTML model.

Figure 356. Insert Table Dialog Box - CALS Model

The dialog box allows you to configure the following options when you select the CALS table model:

**Title**

If this checkbox is selected, you can specify a title for your table in the adjacent text box.

**Table Size**

Allows you to choose the number of Rows and Columns for the table.

**Generate table header**

If selected, an extra row will be inserted at the top of the table to be used as the table header.

**Generate table footer**

If selected, an extra row will be inserted at the bottom of the table to be used as the table footer.

**Column widths**

Allows you to specify the type of properties for column widths (colwidth attribute). You can choose one of the following properties for the column width:
**proportional** - The width is specified in proportional (relative) units of measure. The proportion of the column is specified in a `colwidth` attribute with the values listed as the number of shares followed by an asterisk. The value of the shares is totaled and rendered as a percent. For example, `colwidth="1* 2* 3*"` causes widths of 16.7%, 33.3%, and 66.7%. When entering content into a cell in one column, the width proportions of the other columns are maintained. If you change the width by dragging a column in Author mode, the values of the `colwidth` attribute are automatically changed accordingly. By default, when you insert, drag and drop, or copy/paste a column, the value of the `colwidth` attribute is 1*.

**dynamic** - If you choose this option, the columns are created without a specified width (`colwidth` attribute). Entering content into a cell changes the rendered width dynamically. If you change the width by dragging a column in Author mode, a dialog box will be displayed that asks you if you want to switch to proportional or fixed column widths.

**fixed** - The width is specified in fixed units. By default, the `pt` unit is inserted, but you can change the units in the `colspecs` (column specifications) section above the table or in Text mode. The following units are allowed: `pt` (points), `cm` (centimeters), `mm` (millimeters), `pi` (picas), `in` (inches).

**Frame**

Allows you to specify a value for the `frame` attribute. It is used to specify where a border should appear in the table. There are a variety of allowed values, as specified in the DocBook CALS table specifications.

**Row separator**

Specifies whether or not to include row separators (`rowsep` attribute). The allowed values are: 0 (no separator) and 1 (include separators).

**Column separator**

Specifies whether or not to include column separators (`colsep` attribute). The allowed values are: 0 (no separator) and 1 (include separators).

**Alignment**

Specifies the alignment of the text within the table (`align` attribute). The allowed values are:

- **left** - Aligns the text to a left position.
- **right** - Aligns the text to a right position.
- **center** - Aligns the text to a centered position.
- **justify** - Stretches the line of text so that it has equal width.
Note: The `justify` value cannot be rendered in `Author` mode, so you will only see it in the output.

- `char` - Aligns text to the leftmost occurrence of the value specified on the `char` attribute for alignment.

Note: The options in the `Insert Table` dialog box for DocBook documents are persistent, so changes made in one session will carry over to another.

When you click `Insert`, a CALS table is inserted into your document at the current cursor position.

When you insert a CALS table, you see a link for setting the `colspecs` (column specifications) of your table. Click the link to open the controls that allow you to adjust various column properties. Although they appear as part of the `Author mode (on page 402)`, the `colspecs` link and its controls will not appear in your output. They are just there to make it easier to adjust how the columns of your table are formatted.

Figure 357. CALS Table in DocBook

Inserting an HTML Table Model

To insert an `HTML` table model in DocBook documents, select the `Insert Table` action on the toolbar or from the contextual menu. The `Insert Table` dialog box appears. Select `HTML` for the table `Model`.

Figure 358. Insert Table Dialog Box - Simple Model
The dialog box allows you to configure the following options when you select the HTML table model:

**Title**

If this checkbox is selected, you can specify a title for your table in the adjacent text box.

**Table Size**

Allows you to choose the number of *Rows* and *Columns* for the table.

**Generate table header**

If selected, an extra row will be inserted at the top of the table to be used as the table header.

**Generate table footer**

If selected, an extra row will be inserted at the bottom of the table to be used as the table footer.

**Column widths**

Allows you to specify the type of properties for column widths (*width* attribute). You can choose one of the following properties for the column width:

- **proportional** - The width is specified in proportional (relative) units of measure. The proportion of the column is specified in a *width* attribute (in a *col* element) with the values listed as the number of shares followed by an asterisk. The value of the shares is totaled and rendered as a percent. For example, `width="1* 2* 3*"` causes widths of 16.7%, 33.3%, and 66.7%. When entering content into a cell in one column, the width proportions of the other columns are maintained. If you change the width by dragging a column in **Author** mode, the values of the *width* attribute
are automatically changed accordingly. By default, when you insert, drag and drop, or copy/paste a column, the value of the `width` attribute is 1\*.

- **dynamic** - If you choose this option, the columns are created without a specified width. Entering content into a cell changes the rendered width dynamically. If you change the width by dragging a column in **Author** mode, a dialog box will be displayed that asks you if you want to switch to proportional or fixed column widths.
- **fixed** - The width is specified in fixed units. By default, the `pt` unit is inserted, but you can change the units in the section above the table or in **Text** mode. In addition to the standard pixel, percentage, and relative values, this attribute also allows the special form "0\*" (zero asterisk), which means that the width of each column in the group should be the minimum width necessary to hold the contents.

**Frame**

Allows you to specify a value for the `frame` attribute. It is used to specify where a border should appear in the table. There are a variety of allowed values, as specified in the **DocBook HTML table specifications**.

**Alignment**

Specifies the alignment of the text within the table (`align` attribute). The allowed values are:

- **left** - Aligns the text to a left position.
- **right** - Aligns the text to a right position.
- **center** - Aligns the text to a centered position.
- **justify** - Stretches the line of text so that it has equal width.

**Note:** The `justify` value cannot be rendered in **Author** mode, so you will only see it in the output.

- **char** - Aligns text to the leftmost occurrence of the value specified on the `char` attribute for alignment.

**Note:** The options in the **Insert Table** dialog box for DocBook documents are persistent, so changes made in one session will carry over to another.

When you click **Insert**, an HTML style of table is inserted into your document at the current cursor position.

When you insert an HTML table, you see a section above the table that allows you to easily configure some properties without opening the **Table Properties** dialog box. Although this section appears as part of the **Author mode** (on page 402), it will not appear in your output. It is just there to make it easier to adjust how the columns of your table are formatted.
Editing an Existing Table

You can edit the structure of an existing table using the table buttons on the toolbar (or in the contextual menu) to add or remove cells, rows, or columns, and to set basic table properties. Additional attributes can be used to fine-tune the formatting of your tables by using the Attributes view (on page 426) (Window > Show View > Attributes).

You can also use the Table Properties (Ctrl + T (Command + T on OS X)) (on page 1010) action from the toolbar or contextual menu to modify many of the properties of the table (on page 995).

Also, remember that underneath the visual representation, both table models are really just XML. If necessary, you can edit the XML directly by switching to Text mode (on page 303).

DocBook Table Layouts

The DocBook framework (on page 3282) supports the following two table model layouts:

- CALS table model (on page 993)
- HTML table model (on page 994)

CALS Table Model Layout

The CALS table model allows for more flexibility and table customization than other models. When choosing a CALS table model from the Insert Table dialog box, you have access to more configurable properties. The layout of a CALS table includes a colspecs section that allows you to easily configure some properties without opening the Table Properties dialog box. For example, you can change the value of column widths (colwidth attribute) or the text alignment (align attribute). Although they appear as part of the Author mode (on page 402), the colspecs link and its controls will not appear in your output. They are just there to make it easier to adjust how the columns of your table are formatted.

Figure 359. CALS Table in DocBook
HTML Table Model Layout

Choosing an **HTML** table model from the **Insert Table** dialog box in a DocBook document inserts a formal (captioned) HTML table. The layout of an **HTML** table includes a section above the table that allows you to easily configure some properties without opening the **Table Properties** dialog box. For example, you can change the value of column widths (**width** attribute) or the text alignment (**align** attribute). Although these properties appear as part of the **Author mode** (on page 402), they will not appear in your output. They are just there to make it easier to adjust how the columns of your table are formatted.

Figure 360. HTML Table in DocBook

Pasting Tables in DocBook

Tables that are pasted into a DocBook file are automatically converted to the **CALS** model. If you want to overwrite this behavior and instruct Oxygen XML Editor to convert them to **HTML** tables, set the **docbook.html.table** parameter to **1**. You can find this parameter in the following stylesheet:

- **[OXYGEN_INSTALL_DIR]/frameworks/docbook/resources/xhtml2db5Driver.xsl** for DocBook 5
Table Validation in DocBook

Oxygen XML Editor reports table layout problems that are detected in manual or automatic validations. The types of errors that may be reported for DocBook table layout problems include:

**CALS Tables**

- A row has fewer cells than the number of columns detected from the table `cols` attribute.
- A row has more cells than the number of columns detected from the table `cols` attribute.
- A cell has a vertical span greater than the available rows count.
- The number of `colspecs` is different than the number of columns detected from the table `cols` attribute.
- The number of columns detected from the table `cols` attribute is different than the number of columns detected in the table structure.
- The value of the `cols`, `rowsep`, or `colsep` attributes are not numeric.
- The `namest`, `nameend`, or `colname` attributes point to an incorrect column name.

**HTML Tables**

- A row has fewer cells than the number of table columns.
- The value of the `colspan`, `rowspan`, or `span` attributes are not numeric.
- A cell has a vertical span greater than the available rows count.

Editing Table Properties in DocBook

You can edit the structure of an existing table using the table buttons on the toolbar (or from the contextual menu) to add or remove cells, rows, or columns, and to set basic table properties. Additional attributes can be used to fine-tune the formatting of your tables by using the Attributes view (on page 426) (Window > Show View > Attributes).

You can use the Table Properties (Ctrl + T (Command + T on OS X)) action to modify many of the properties of the table. You can also adjust some of the properties in the specification section above the table.

The Table properties dialog box allows you to set specific properties to the table elements. The options that are available depend on the context and location within the table in which the action was invoked.
Note: Some properties allow the following special values, depending on the context and the current properties or values:

- `<not set>` - Use this value if you want to remove a property.
- `<preserve>` - If you select multiple elements that have the same property set to different values, you can choose this value to keep the values that are already set. In some cases it can also be used to keep the current non-standard value for a particular property.

Edit Table Properties for a CALS Table Model

For a CALS table model, the Table properties dialog box includes four tabs of options:

- **Table** tab - The options in this tab apply to the entire table.
- **Row** tab - The options in this tab apply to the current row or selection of multiple rows. A message at the bottom of the tab tells you how many rows will be affected.
- **Column** tab - The options in this tab apply to the current column or selection of multiple columns. A message at the bottom of the tab tells you how many columns will be affected.
- **Cell** tab - The options in this tab apply to the current cell or selection of multiple cells. A message at the bottom of the tab tells you how many cells will be affected.

The options in four tabs include a Preview pane that shows a representation of the modification.

Figure 361. Table Properties Dialog Box with Cell Tab Selected (DocBook CALS Table Model)

The options in the four tabs include the following:

**Horizontal alignment** (Available in the Table, Column, and Cell tabs)
Specifies the horizontal alignment of text within the current table/column/cell or selection of multiple columns/cells (align attribute). The allowed values are as follows:

- **left** - Aligns the text to a left position.
- **right** - Aligns the text to a right position.
- **center** - Aligns the text to a centered position.
- **justify** - Stretches the line of text so that it has equal width.

Note: The justify value cannot be rendered in Author mode, so you will only see it in the output.

- **char** - Aligns text to the leftmost occurrence of the value specified on the char attribute for alignment.

**Vertical alignment (Available in the Row and Cell tabs)**

Specifies the vertical alignment of text within the current row/cell or selection of multiple rows/cells (valign attribute). The allowed values are as follows:

- **top** - Aligns the text at the top of the cell.
- **middle** - Aligns the text in a vertically centered position.
- **bottom** - Aligns the text at the bottom of the cell.

**Column separator (Available in the Table, Column, and Cell tabs)**

Specifies whether or not to include column separators (borders/grid lines) in the form of the colsep attribute. The allowed values are: 0 (no separator) and 1 (include separators).

**Row separator (Available in all four tabs)**

Specifies whether or not to include row separators (borders/grid lines) in the form of the rowsep attribute. The allowed values are: 0 (no separator) and 1 (include separators).

**Frame**

Allows you to specify a value for the frame attribute. It is used to specify where a border should appear in the table. There are a variety of allowed values, as specified in the DocBook CALS table specifications.

**Row type (Available in the Row tab only)**

Allows you change the row to a header, body, or footer type of row (within a thead, tbody, or tfoot attribute).
Edit Table Properties for an HTML Table Model

For an HTML table model, the Table properties dialog box includes four tabs of options (Table, Row, Column, and Cell) and the options include a Preview pane that shows a representation of the modification.

The options in the four tabs include the following:

Frame (Available only in the Table tab)

Allows you to specify a value for the frame attribute. It is used to specify where a border should appear in the table. There are a variety of allowed values, as specified in the DocBook HTML table specifications.

Row type (Available in the Row tab only)

Allows you change the row to a header, body, or footer type of row (within a thead, tbody, or tfoot attribute).

Horizontal alignment (Available in the Row, Column, and Cell tabs)

Specifies the horizontal alignment for the text in the current row/column/cell or selection of multiple rows/columns/cells (align attribute). The allowed values are:

- left - Aligns the text to a left position.
- right - Aligns the text to a right position.
- center - Aligns the text to a centered position.
- justify - Stretches the line of text so that it has equal width.

Note: The justify value cannot be rendered in Author mode, so you will only see it in the output.

- char - Aligns text to the leftmost occurrence of the value specified on the char attribute for alignment.

Vertical alignment (Available in the Row, Column, and Cell tabs)

Specifies the vertical alignment for the text in the current row/column/cell or selection of multiple rows/columns/cells (valign attribute). The allowed values are:

- top - Aligns the text at the top of the cell.
- middle - Aligns the text in a vertically centered position.
- bottom - Aligns the text at the bottom of the cell.
- baseline - Sets the row so that all the table data share the same baseline. This often has the same effect as the bottom value. However, if the fonts are different sizes, the baseline value often makes the table look better.
Adding Tables in DITA Topics

You can use the Insert Table action on the toolbar or from the contextual menu to add a table in a DITA topic. By default, DITA supports four types of tables:

- **DITA Simple table model** *(on page 999)* - This is the most commonly used model for basic tables.
- **CALS table model (OASIS Exchange Table Model)** *(on page 1001)* - This is used for more advanced functionality.
- **DITA Choice table model** *(on page 1004)* - This is used within a `step` element in a DITA Task document to describe a series of optional choices that a user must make before proceeding.
- **DITA Properties table model** *(on page 1005)* - This is used in DITA Reference documents to describe a property (for example, its type, value, and description).

If you are using a specialized DITA vocabulary, it may contain specialized versions of these table models.

Since DITA is a structured format, you can only insert a table in places in the structure of a topic where tables are allowed. The Oxygen XML Editor toolbar provides support for entering and editing tables. It also helps to indicate where you are allowed to insert a table or its components by disabling the appropriate buttons.

**Inserting a Simple Table Model**

To insert a Simple DITA table, select the Insert Table action on the toolbar or from the contextual menu (or the Table submenu from the DITA menu). The Insert Table dialog box appears. Select Simple for the table Model.

Figure 362. Insert Table Dialog Box - Simple Model
The dialog box allows you to configure the following options when you select the **Simple** table model:

**Title**

If this checkbox is selected, you can specify a title for your table in the adjacent text box.

**Generate table header**

If selected, an extra row will be inserted at the top of the table to be used as the table header.

**Column widths**

Allows you to specify the type of properties for column widths (colwidth attribute). You can choose one of the following properties for the column width:

- **proportional** - The width is specified in proportional (relative) units of measure. The proportion of the column is specified in a relcolwidth attribute with the values listed as the number of shares followed by an asterisk. The value of the shares is totaled and rendered as a percent. For example, relcolwidth="1* 2* 3*" causes widths of 16.7%, 33.3%, and 66.7%. When entering content into a cell in one column, the width proportions of the other columns are maintained. If you change the width by dragging a column in **Author** mode, the values of the relcolwidth attribute are automatically changed accordingly. By default, when you insert, drag and drop, or copy/paste a column, the value of the relcolwidth attribute is 1*.

- **dynamic** - If you choose this option, the columns are created without a specified width. Entering content into a cell changes the rendered width dynamically. If you change the width by dragging a column in **Author** mode, a dialog box will be displayed that asks you if you want to switch to proportional or fixed column widths.

**Frame**
Allows you to specify a value for the `frame` attribute. It is used to specify where a border should appear in the table. The allowed values are as follows:

- **none** - No border will be added.
- **all** - A border will be added to all frames.
- **top** - A border will be added to the top frame.
- **topbot** - A border will be added to the top and bottom frames.
- **bottom** - A border will be added to the bottom frame.
- **sides** - A border will be added to the side frames.
- **-dita-use-conref-target** - Normally, when using a `conref`, the values of attributes specified locally are preserved. You can choose this option to override this behavior and pull the value of this particular attribute from the `conref` target. For more information, see [https://www.oxygenxml.com/dita/1.3/specs/langRef/attributes/ditauseconreftarget.html](https://www.oxygenxml.com/dita/1.3/specs/langRef/attributes/ditauseconreftarget.html).

**Note:** The options in the **Insert Table** dialog box for DITA documents are persistent, so changes made in one session will carry over to another.

When you click **Insert**, a simple table is inserted into your document at the current cursor position.

**Inserting a CALS Table Model (OASIS Exchange Table)**

To insert an OASIS Exchange Table (CALS), select the **Insert Table** action on the toolbar or from the contextual menu (or the Table submenu from the DITA menu). The **Insert Table** dialog box appears. Select **CALS** for the table **Model**. This model allows you to configure more properties than the **Simple** model.

Figure 363. Insert Table Dialog Box - CALS Model
The dialog box allows you to configure the following options when you select the CALS table model:

**Title**

If this checkbox is selected, you can specify a title for your table in the adjacent text box.

**Table Size**

Allows you to choose the number of **Rows** and **Columns** for the table.

**Generate table header**

If selected, an extra row will be inserted at the top of the table to be used as the table header.

**Column widths**

Allows you to specify the type of properties for column widths (colwidth attribute). You can choose one of the following properties for the column width:

- **proportional** - The width is specified in proportional (relative) units of measure. The proportion of the column is specified in a colwidth attribute with the values listed as the number of shares followed by an asterisk. The value of the shares is totaled and rendered as a percent. For example, colwidth="1* 2* 3*" causes widths of 16.7%, 33.3%, and 66.7%. When entering content into a cell in one column, the width proportions of the other columns are maintained. If you change the width by dragging a column in Author mode, the values of the colwidth attribute are automatically changed accordingly. By default, when you insert, drag and drop, or copy/paste a column, the value of the colwidth attribute is 1*.

- **dynamic** - If you choose this option, the columns are created without a specified width (colwidth attribute). Entering content into a cell changes the rendered width dynamically. If you change the width by dragging a column in Author mode, a dialog box will be displayed that asks you if you want to switch to proportional or fixed column widths.

- **fixed** - The width is specified in fixed units. By default, the pt unit is inserted, but you can change the units in the colspecs (column specifications) section above the table or in Text mode. The following units are allowed: pt (points), cm (centimeters), mm (millimeters), pi (picas), in (inches).

**Frame**

Allows you to specify a value for the frame attribute. It is used to specify where a border should appear in the table. The allowed values are as follows:

- **none** - No border will be added.
- **all** - A border will be added to all frames.
- **top** - A border will be added to the top frame.
- **topbot** - A border will be added to the top and bottom frames.
- **bottom** - A border will be added to the bottom frame.
- **sides** - A border will be added to the side frames.
- **-dita-use-conref-target** - Normally, when using a `conref`, the values of attributes specified locally are preserved. You can choose this option to override this behavior and pull the value of this particular attribute from the `conref` target. For more information, see [https://www.oxygenxml.com/dita/1.3/specs/langRef/attributes/ditauseconreftarget.html](https://www.oxygenxml.com/dita/1.3/specs/langRef/attributes/ditauseconreftarget.html).

### Row separator
Specifies whether or not to include row separators (`rowsep` attribute). The allowed values are: 0 (no separator) and 1 (include separators).

### Column separator
Specifies whether or not to include column separators (`colsep` attribute). The allowed values are: 0 (no separator) and 1 (include separators).

### Alignment
Specifies the alignment of the text within the table (`align` attribute). The allowed values are:

- **left** - Aligns the text to a left position.
- **right** - Aligns the text to a right position.
- **center** - Aligns the text to a centered position.
- **justify** - Stretches the line of text so that it has equal width.

**Note:** The `justify` value cannot be rendered in Author mode, so you will only see it in the output.

- **char** - Aligns text to the leftmost occurrence of the value specified on the `char` attribute for alignment.
- **-dita-use-conref-target** - Normally, when using a `conref`, the values of attributes specified locally are preserved. You can choose this option to override this behavior and pull the value of this particular attribute from the `conref` target. For more information, see [https://www.oxygenxml.com/dita/1.3/specs/langRef/attributes/ditauseconreftarget.html](https://www.oxygenxml.com/dita/1.3/specs/langRef/attributes/ditauseconreftarget.html).

**Note:** The options in the Insert Table dialog box for DITA documents are persistent, so changes made in one session will carry over to another.

When you click **Insert**, a CALS table is inserted into your document at the current cursor position.

When you insert a CALS table, you see a link for setting the `colspecs` (column specifications) of your table. Click the link to open the controls that allow you to adjust various column properties. Although
they appear as part of the **Author mode** (on page 402), the `colspecs` link and its controls will not appear in your output. They are just there to make it easier to adjust how the columns of your table are formatted.

Figure 364. CALS Table in DITA

![Sample CALS Table with Fixed Width](image)

**Inserting a Choice Table Model**

To insert a **Choice** table within a `step` element in a DITA Task document, select the **Insert Table** action on the toolbar or in the `Insert` submenu from the contextual menu (or the `Table` submenu from the **DITA** menu), or select `choicetable` from the **Content Completion Assistant** (on page 3280). The **Insert Table** dialog box appears. Select **Simple** for the table **Model**.

Figure 365. Insert Table Dialog Box - Choice Model

![Insert Choice Table](image)

The dialog box allows you to configure the following options when you insert a **Choice** table model within a DITA Task:

**Table Size**

Allows you to choose the number of **Rows** and **Columns** for the table.

**Generate table header**

If selected, an extra row will be inserted at the top of the table to be used as the table header.
**Column widths**

Allow you to specify the type of properties for column widths (colwidth attribute). You can choose one of the following properties for the column width:

- **proportional** - The width is specified in proportional (relative) units of measure. The proportion of the column is specified in a relcolwidth attribute with the values listed as the number of shares followed by an asterisk. The value of the shares is totaled and rendered as a percent. For example, relcolwidth="1* 2* 3*" causes widths of 16.7%, 33.3%, and 66.7%. When entering content into a cell in one column, the width proportions of the other columns are maintained. If you change the width by dragging a column in Author mode, the values of the relcolwidth attribute are automatically changed accordingly. By default, when you insert, drag and drop, or copy/paste a column, the value of the relcolwidth attribute is 1*.

- **dynamic** - If you choose this option, the columns are created without a specified width. Entering content into a cell changes the rendered width dynamically. If you change the width by dragging a column in Author mode, a dialog box will be displayed that asks you if you want to switch to proportional or fixed column widths.

**Frame**

Allows you to specify a value for the frame attribute. It is used to specify where a border should appear in the table. The allowed values are as follows:

- **none** - No border will be added.
- **all** - A border will be added to all frames.
- **top** - A border will be added to the top frame.
- **topbot** - A border will be added to the top and bottom frames.
- **bottom** - A border will be added to the bottom frame.
- **sides** - A border will be added to the side frames.
- **-dita-use-conref-target** - Normally, when using a conref, the values of attributes specified locally are preserved. You can choose this option to override this behavior and pull the value of this particular attribute from the conref target. For more information, see https://www.oxygenxml.com/dita/1.3/specs/langRef/attributes/ditauseconreftarget.html.

When you click Insert, a Choice table is inserted into your DITA Task document at the current cursor position (within a step element).

**Inserting a Properties Table Model**

To insert a Properties table within a refbody element in a DITA Reference document, select the Insert Table action on the toolbar or in the Insert submenu from the contextual menu (or the Table
submenu from the DITA menu), or select properties(wizard) from the Content Completion Assistant (on page 3280). The Insert Table dialog box appears. Select Properties for the table Model.

Figure 366. Insert Table Dialog Box - Properties Model

The dialog box allows you to configure the following options when you insert a Properties table model within a DITA Reference:

**Table Size**

Allows you to choose the number of Rows and Columns for the table.

**Generate table header**

If selected, an extra row will be inserted at the top of the table to be used as the table header.

**Frame**

Allows you to specify a value for the frame attribute. It is used to specify where a border should appear in the table. The allowed values are as follows:

- **none** - No border will be added.
- **all** - A border will be added to all frames.
- **top** - A border will be added to the top frame.
- **topbot** - A border will be added to the top and bottom frames.
- **bottom** - A border will be added to the bottom frame.
- **sides** - A border will be added to the side frames.
- **-dita-use-conref-target** - Normally, when using a conref, the values of attributes specified locally are preserved. You can choose this option to override this behavior and pull the value of this particular attribute from the conref target. For more
When you click Insert, a Properties table is inserted into your DITA Reference document at the current cursor position (within a refbody element).

**Editing an Existing Table**

You can edit the structure of an existing table using the table buttons on the toolbar (or in the contextual menu) to add or remove cells, rows, or columns, and to set basic table properties. Additional attributes can be used to fine-tune the formatting of your tables by using the Attributes view (on page 426) (Window > Show View > Attributes). See the DITA documentation for a full explanation of these attributes.

You can also use the Table Properties (Ctrl + T (Command + T on OS X)) (on page 1010) action from the toolbar or contextual menu (or DITA menu) to modify many of the properties of the table (on page 1010).

Also, remember that underneath the visual representation, both table models are really just XML. If necessary, you can edit the XML directly by switching to Text mode (on page 303).

You can use normal copy/paste shortcuts to move content between cells. Oxygen XML Editor includes a Smart Paste feature (on page 918) that preserves certain style and structure information when pasting content.

**Tip:** When copying a multiple selection of table cells and pasting them outside the table, a new table will be created. When pasting into space-preserved elements, the cell content will be pasted as plain text.

**Related Information:**

- Editing Tables in Author Mode (on page 985)

**DITA Table Layouts**

Depending on the context, DITA accepts the following table layouts:

- CALS table model (on page 1008)
- Simple table model (on page 1008)
- Choice table model (on page 1008)
- Properties table model (on page 1009)
CALS Table Model Layout

The CALS table model allows for more flexibility and table customization than other models. When choosing a CALS table model from the **Insert Table** dialog box, you have access to more configurable properties. The layout of a CALS table includes a *colspecs* section that allows you to easily configure some properties without opening the **Table Properties** dialog box. For example, you can change the value of column widths (*colwidth* attribute) or the text alignment (*align* attribute). Although they appear as part of the **Author mode (on page 402)**, the *colspecs* link and its controls will not appear in your output. They are just there to make it easier to adjust how the columns of your table are formatted.

Figure 367. CALS Table in DITA

---

Simple Table Model Layout

When choosing a **Simple** table model from the **Insert Table** dialog box, you only have access to configure a few properties. For example, you can choose the number of rows and columns, specify values for frames, and choose from a few types of properties for the column width. The layout of this type of table is very simple, as the name suggests.

Figure 368. DITA Simple Table

---

Choice Table Model Layout

A **Choice** table model is used within a **step** element in a DITA Task document to describe a series of optional choices that a user must make before proceeding. The *choicetable* element is a useful
device for documenting options within a single step of a task. You can insert Choice tables in DITA Task documents either by selecting choicetable from the Content Completion Assistant (on page 3280) (within a step element) or by using the Insert Table action on the toolbar or from the contextual menu). The options and layout of a Choice table is similar to the Simple table model.

Figure 369. DITA Choice Table

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Opt A</td>
<td></td>
</tr>
<tr>
<td>Opt B</td>
<td></td>
</tr>
<tr>
<td>Opt C</td>
<td></td>
</tr>
</tbody>
</table>

Properties Table Model Layout

A Properties table model is used within a refbody element in a DITA Reference document to describe a property (for example, its type, value, and description). You can insert Properties tables in DITA Reference documents either by selecting properties(wizard) from the Content Completion Assistant (on page 3280) (within a refbody element) or by using the Insert Table action on the toolbar (or from the contextual menu) and selecting Properties for the Model. The layout of a Properties table is very simple. It allows for a maximum of 3 columns (typically for property type, value, and description) and the only options available are for whether or not you want a header row and for specifying frames (borders).

Figure 370. DITA Properties Table

<table>
<thead>
<tr>
<th>Property Type</th>
<th>Property Value</th>
<th>Property Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>B</td>
<td>C</td>
</tr>
</tbody>
</table>

Table Validation in DITA

Oxygen XML Editor reports table layout problems that are detected in manual or automatic validations. When you validate a DITA map (on page 3281) with the Validate and Check for Completeness action, if the Report table layout problems option is selected in the DITA Map Completeness Check dialog box (on page 3040), table layout problems will be reported in the validation results. The types of errors that may be reported for DITA table layout problems include:

CALS Tables

- A row has fewer cells than the number of columns detected from the table cols attribute.
- A row has more cells than the number of columns detected from the table cols attribute.
• A cell has a vertical span greater than the available rows count.
• The number of cols specs is different than the number of columns detected from the table cols attribute.
• The number of columns detected from the table cols attribute is different than the number of columns detected in the table structure.
• The value of the cols, rowsep, or colsep attributes are not numeric.
• The namest, nameend, or colname attributes point to an incorrect column name.

Simple or Choice Tables

A row has fewer cells than the number of table columns.

Editing Table Properties in DITA

To customize the look of a table in DITA, place the cursor anywhere in a table and invoke the Table Properties (Ctrl + T (Command + T on OS X)) action from the toolbar or the Table submenu of the contextual menu (or DITA menu). This opens the Table properties dialog box.

The Table properties dialog box allows you to set specific properties to the table elements. The options that are available depend on the context and location within the table in which the action was invoked.

Note: Some properties allow the following special values, depending on the context and the current properties or values:

• <not set> - Use this value if you want to remove a property.
• <preserve> - If you select multiple elements that have the same property set to different values, you can choose this value to keep the values that are already set. In some cases it can also be used to keep the current non-standard value for a particular property.

Edit Table Properties for a CALS Table Model

For a CALS table model, the Table properties dialog box includes four tabs of options:

• Table tab - The options in this tab apply to the entire table.
• Row tab - The options in this tab apply to the current row or selection of multiple rows. A message at the bottom of the tab tells you how many rows will be affected.
• Column tab - The options in this tab apply to the current column or selection of multiple columns. A message at the bottom of the tab tells you how many columns will be affected.
• Cell tab - The options in this tab apply to the current cell or selection of multiple cells. A message at the bottom of the tab tells you how many cells will be affected.

The options in four tabs include a Preview pane that shows a representation of the modification.
The options in the four tabs include the following:

**Horizontal alignment (Available in the Table, Column, and Cell tabs)**

Specifies the horizontal alignment of text within the current table/column/cell or selection of multiple columns/cells (align attribute). The allowed values are as follows:

- **left** - Aligns the text to a left position.
- **right** - Aligns the text to a right position.
- **center** - Aligns the text to a centered position.
- **justify** - Stretches the line of text so that it has equal width.

**Note:** The justify value cannot be rendered in Author mode, so you will only see it in the output.

- **char** - Aligns text to the leftmost occurrence of the value specified on the char attribute for alignment.
- **-dita-use-conref-target** - Normally, when using a conref, the values of attributes specified locally are preserved. You can choose this option to override this behavior and pull the value of this particular attribute from the conref target. For more information, see https://www.oxygenxml.com/dita/1.3/specs/langRef/attributes/ditauseconreftarget.html.

**Vertical alignment (Available in the Row and Cell tabs)**
Specifies the vertical alignment of text within the current row/cell or selection of multiple rows/cells (valign attribute). The allowed values are as follows:

- **top** - Aligns the text at the top of the cell.
- **middle** - Aligns the text in a vertically centered position.
- **bottom** - Aligns the text at the bottom of the cell.
- **-dita-use-conref-target** - Normally, when using a conref, the values of attributes specified locally are preserved. You can choose this option to override this behavior and pull the value of this particular attribute from the conref target. For more information, see https://www.oxygenxml.com/dita/1.3/specs/langRef/attributes/ditauseconreftarget.html.

**Column separator (Available in the Table, Column, and Cell tabs)**

Specifies whether or not to include column separators (borders/grid lines) in the form of the colsep attribute. The allowed values are: 0 (no separator) and 1 (include separators).

**Row separator (Available in all four tabs)**

Specifies whether or not to include row separators (borders/grid lines) in the form of the rowsep attribute. The allowed values are: 0 (no separator) and 1 (include separators).

**Frame (Available only in the Table tab)**

Allows you to specify a value for the frame attribute. It is used to specify where a border should appear in the table. The allowed values are as follows:

- **none** - No border will be added.
- **all** - A border will be added to all frames.
- **top** - A border will be added to the top frame.
- **topbot** - A border will be added to the top and bottom frames.
- **bottom** - A border will be added to the bottom frame.
- **sides** - A border will be added to the side frames.
- **-dita-use-conref-target** - Normally, when using a conref, the values of attributes specified locally are preserved. You can choose this option to override this behavior and pull the value of this particular attribute from the conref target. For more information, see https://www.oxygenxml.com/dita/1.3/specs/langRef/attributes/ditauseconreftarget.html.

**Edit Table Properties for a Simple, Choice, or Properties Table Model**

For a Simple, Choice, Properties table model, the Table properties dialog box only allows you to edit a few options.
Table tab

Frame

Allows you to specify a value for the frame attribute. It is used to specify where a border should appear in the table. The allowed values are as follows:

- **none** - No border will be added.
- **all** - A border will be added to all frames.
- **top** - A border will be added to the top frame.
- **topbot** - A border will be added to the top and bottom frames.
- **bottom** - A border will be added to the bottom frame.
- **sides** - A border will be added to the side frames.
- **-dita-use-conref-target** - Normally, when using a conref, the values of attributes specified locally are preserved. You can choose this option to override this behavior and pull the value of this particular attribute from the conref target. For more information, see https://www.oxygenxml.com/dita/1.3/specs/langRef/attributes/ditauseconreftarget.html.

Row tab (not available for Properties tables)

Row type

Allows you to change the row to a body or header type of row.

Related Information:

- Adding Tables in DITA Topics (on page 999)
- Editing Tables in Author Mode (on page 985)

Adding Tables in XHTML Documents

You can use the Insert Table action on the toolbar or from the contextual menu to add a table in an XHTML document. This action opens the Insert Table dialog box.

Figure 372. Insert Table Dialog Box in XHTML
The dialog box allows you to configure the following options:

**Caption**

If this checkbox is selected, you can specify a title (caption) for your table in the adjacent text box.

**Table Size**

Allows you to choose the number of **Rows** and **Columns** for the table.

**Generate table header**

If selected, an extra row will be inserted at the top of the table to be used as the table header.

**Generate table footer**

If selected, an extra row will be inserted at the bottom of the table to be used as the table footer.

**Column widths**

Allows you to specify the type of properties for column widths (width attribute). You can choose one of the following properties for the column width:

- **proportional** - The width is specified in proportional (relative) units of measure. The proportion of the column is specified in a width attribute (in a col element) with the values listed as the number of shares followed by an asterisk. The value of the shares is totaled and rendered as a percent. For example, width="1* 2* 3*" causes widths of 16.7%, 33.3%, and 66.7%. When entering content into a cell in one column, the width proportions of the other columns are maintained. If you change the width by dragging a column in **Author** mode, the values of the width attribute are automatically changed accordingly. By default, when you insert, drag and drop, or copy/paste a column, the value of the width attribute is 1*.

- **dynamic** - If you choose this option, the columns are created without a specified width. Entering content into a cell changes the rendered width dynamically. If
you change the width by dragging a column in **Author** mode, a dialog box will be displayed that asks you if you want to switch to proportional or fixed column widths.

- **fixed** - The width is specified in fixed units. By default, the \texttt{pt} unit is inserted, but you can change the units in the section above the table or in **Text** mode. In addition to the standard pixel, percentage, and relative values, this attribute also allows the special form "0*" (zero asterisk), which means that the width of each column in the group should be the minimum width necessary to hold the contents.

**Frame**

Allows you to specify a value for the \texttt{frame} attribute. It is used to specify where a border should appear in the table. There are a variety of allowed values, as specified in HTML specifications.

**Alignment**

Specifies the alignment of the text within the table (\texttt{align} attribute). The allowed values are:

- **left** - Aligns the text to a left position.
- **right** - Aligns the text to a right position.
- **center** - Aligns the text to a centered position.
- **justify** - Stretches the line of text so that it has equal width.

**Note:** The \texttt{justify} value cannot be rendered in **Author** mode, so you will only see it in the output.

- **char** - Aligns text to the leftmost occurrence of the value specified on the \texttt{char} attribute for alignment.

**Note:** The options in the **Insert Table** dialog box for XHTML documents are persistent, so changes made in one session will carry over to another.

When you click **Insert**, an HTML style of table is inserted into your XHTML document at the current cursor position.

When you insert an HTML table, you see a link for setting the \texttt{colspecs} (column specifications) of your table. Click the link to open the controls that allow you to adjust various column properties. Although they appear as part of the **Author mode (on page 402)**, the \texttt{colspecs} link and its controls will not appear in your output. They are just there to make it easier to adjust how the columns of your table are formatted.
Editing an Existing Table

You can edit the structure of an existing table using the table buttons on the toolbar (or in the contextual menu) to add or remove cells, rows, or columns, and to set basic table properties. Additional attributes can be used to fine-tune the formatting of your tables by using the Attributes view (Window > Show View > Attributes). Also, remember that underneath the visual representation, the table is really just XML. If necessary, you can edit the XML directly by switching to Text mode (on page 303).

XHTML Table Layout

When you insert a table in an XHTML document, an HTML type of table is added. The layout of an XHTML table includes a colspecs section that allows you to easily configure some properties. For example, you can change the value of column widths (width attribute) or the text alignment (align attribute). Although they appear as part of the Author mode (on page 402), the colspecs link and its controls will not appear in your output. They are just there to make it easier to adjust how the columns of your table are formatted.

Figure 373. Table Layout in XHTML Documents

Table Validation in XHTML

Oxygen XML Editor reports table layout problems that are detected in manual or automatic validations. The types of errors that may be reported for XHTML table layout problems include:

HTML Tables

- A row has fewer cells than the number of table columns.
- The value of the colspan, rowspan, or span attributes are not numeric.
- A cell has a vertical span greater than the available rows count.
Adding Tables in TEI Documents

You can use the **Insert Table** action on the toolbar or from the contextual menu to add a table in a TEI document. This action opens the **Insert Table** dialog box.

**Figure 374. Insert Table Dialog Box in TEI**

The dialog box allows you to configure the following options:

**Head**

If this checkbox is selected, you can specify a title for your table in the adjacent text box.

**Table Size**

Allows you to choose the number of **Rows** and **Columns** for the table.

**Generate table header**

If selected, an extra row will be inserted at the top of the table to be used as the table header.

![Insert Table Dialog Box in TEI](image)

**Note:** The options in the **Insert Table** dialog box for TEI documents are persistent, so changes made in one session will carry over to another.

When you click **Insert**, a simple table is inserted into your TEI document at the current cursor position.

Editing an Existing Table

You can edit the structure of an existing table using the table buttons on the toolbar (or in the contextual menu) to add or remove cells, rows, or columns. Additional attributes can be used to fine-tune the formatting of your tables by using the **Attributes view** (on page 426) ([Window > Show View > Attributes](#)). Also, remember that underneath the visual representation, the table is really just XML. If necessary, you can edit the XML directly by switching to **Text mode** (on page 303).

Sorting Content in Tables and List Items

Oxygen XML Editor offers support for sorting the content of tables and list items of ordered and unordered lists.
**Sorting a Table**

To sort rows in a table, select the entire table (or specific rows) and use the `Sort` action from the main toolbar or the contextual menu. This opens the `Sort` dialog box.

![Sort Dialog Box](image)

This dialog box sets the range that is sorted and the sorting criteria. The range is automatically selected depending on whether you sort an entire table or only a selection of its rows.

**Note:** When you invoke the sorting operation over an entire table, the `Selected rows` option is disabled.

The **Criteria** section specifies the sorting criteria (a maximum of three sorting criteria are available), defined by the following:

- A name, which is collected from the column heading.
- The type of the information that is sorted. You can choose between the following:
  - **Text** - Alphanumeric characters.
  - **Numeric** - Regular integer or floating point numbers are accepted.
  - **Date** - Default date and time formats from the local OS are accepted (such as `short`, `medium`, `long`, `full`, `xs:date`, and `xs:dateTime`).
- The sorting direction (either `ascending` or `descending`).

The sort criteria is automatically set to the column where the cursor is located at the time when the sorting operation is invoked.

After you finish configuring the options in the `Sort` dialog box, click **OK** to complete the sorting operation. If you want to revert to the initial order of your content, press `Ctrl + Z (Command + Z on OS X)` on your keyboard.

**Note:** The sorting support takes the value of the `xml:lang` attribute into account and sorts the content in a natural order.
Sorting a Selection of Rows

To sort a selection of rows in a table, select the rows that you want to sort and either right-click the selection and choose \texttt{Sort}, or click \texttt{Sort} on the main toolbar. This opens the \texttt{Sort} dialog box.

Figure 376. Sort Selected Rows

This dialog box sets the range that is sorted and the sorting criteria. The range is automatically selected depending on whether you sort an entire table or only a selection of its rows.

The \texttt{Sort} dialog box also allows you to apply the sorting operation to the entire table, using the \texttt{All rows} option.

The \texttt{Criteria} section specifies the sorting criteria (a maximum of three sorting criteria are available), defined by the following:

- A name, which is collected from the column heading.
- The type of the information that is sorted. You can choose between the following:
  - \texttt{Text} - Alphanumeric characters.
  - \texttt{Numeric} - Regular integer or floating point numbers are accepted.
  - \texttt{Date} - Default date and time formats from the local OS are accepted (such as \texttt{short}, \texttt{medium}, \texttt{long}, \texttt{full}, \texttt{xs:date}, and \texttt{xs:dateTime}).
- The sorting direction (either \texttt{ascending} or \texttt{descending}).

The sort criteria is automatically set to the column where the cursor is located at the time when the sorting operation is invoked.

After you finish configuring the options in the \texttt{Sort} dialog box, click \texttt{OK} to complete the sorting operation. If you want to revert to the initial order of your content, press \texttt{Ctrl + Z (Command + Z on OS X)} on your keyboard.

\textbf{Note:} The sorting support takes the value of the \texttt{xml:lang} attribute into account and sorts the content in a natural order.
Sort Using Multiple Criteria

You can also sort an entire table or a selection of its rows based on multiple sorting criteria. To do so, select the rest of boxes in the Criteria section of the Sort dialog box, configure the applicable items, and click OK to complete the sorting operation.

Figure 377. Sorting Based on Multiple Criteria

Sorting a Table that Contains Merged Cells

If a table contains cells that span over multiple rows, you can not perform the sorting operation over the entire table. Still, the sorting mechanism works over a selection of rows that do not contain rowspans.

Note: For this type of table, the Sort dialog box keeps the All rows option disabled even if you perform the sorting operation over a selection of rows.

Sorting List Items

A sorting operation can be performed on various types of lists and list items. The types of lists that can be sorted in Oxygen XML Editor depend on the framework (document type), but examples of the types that can be sorted include:

- Ordered list (DITA, DocBook, XHTML, TEI)
- Unordered list (DITA, DocBook, XHTML, TEI)
- Definition list (DITA)
- Variable list (DocBook)
- Parameter list (DITA)
- Simple list (DITA)
- Required conditions (DITA Machinery Task)
- Supplies list (DITA Machinery Task)
The sorting mechanism works on an entire list or on a selection of list items. To sort items in a list, select the items or list and use the $\text{Sort}$ action from the main toolbar or the contextual menu. This opens the \text{Sort} dialog box.

![Sorting List Items](image)

This dialog box sets the range that is sorted and the sorting criteria. The range is automatically selected depending on whether you sort an entire list or only a selection of its items.

**Note:** When you invoke the sorting operation over an entire list, the \text{Selected rows} option is disabled.

The \text{Criteria} section specifies the sorting criteria, defined by the following:

- The name of the type of item being sorted.
- The type of the information that is sorted. You can choose between the following:
  - \text{Text} - Alphanumeric characters.
  - \text{Numeric} - Regular integer or floating point numbers are accepted.
  - \text{Date} - Default date and time formats from the local OS are accepted (such as \text{short}, \text{medium}, \text{long}, \text{full}, \text{xs:dateTime}, and \text{xs:dateTime}).
- The sorting direction (either \text{ascending} or \text{descending}).

After you finish configuring the options in the \text{Sort} dialog box, click \text{OK} to complete the sorting operation. If you want to revert to the initial order of your content, press \text{Ctrl + Z (Command + Z on OS X)} on your keyboard.

**Note:** The sorting support takes the value of the \text{xml:lang} attribute into account and sorts the content in a natural order.

**Inserting Images**

To insert an image in a document while editing in \text{Author} mode, use one of the following methods:
• Click the **Insert Image** action from the toolbar. This opens a dialog box that allows you to choose the image file you want to insert and configure some properties. Oxygen XML Editor tries to reference the image with a path that is relative to that of the document you are currently editing. For example, if you want to add the file:/C:/project/xml/dir/img1.jpg image into the file:/C:/project/xml/doc1.xml document, Oxygen XML Editor inserts a reference to dir/img1.jpg. This is useful when multiple users work on a common project and they have it stored in multiple locations.

**Note:** The **Insert Image** action is available for the following document types: DITA, DocBook, TEI, XHTML, JATS.

• Drag an image from other application and drop it in the **Author** editing mode. If it is an image file, it is inserted as a reference to the image file. For example, in a DITA topic the path of the image file is inserted as the value of the `href` attribute in an `image` element:

```
<image href="../images/image_file.png"/>
```

**Tip:** To replace an image, just drag and drop a new image over the existing one. Oxygen XML Editor will automatically update the reference to the new image.

• Copy an image file from another document or another application (such as a system file browser or web browser) and paste it into your document. Oxygen XML Editor will insert it as a reference to the image file the same as the drag/drop method.

• Select an image (or part of an image) from another application (such as an image editor), copy it, and paste it into your document. Oxygen XML Editor will prompt you to save it. After saving the image, a reference to that file path is inserted at the paste position.

**Related Information:**

• [Image Map Editor (on page 1029)]

• [Image Rendering in Author Mode (on page 1022)]

• [Adding Video, Audio, and Embedded HTML Resources in DITA Topics (on page 3066)]

**Image Rendering in Author Mode**

The **Author** mode and the output transformation process might render the images referenced in an XML document differently, since they use different rendering engines.
Table 36. Supported Image Formats

<table>
<thead>
<tr>
<th>Image Type</th>
<th>Support</th>
<th>Additional Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>GIF</td>
<td>built-in</td>
<td>Animations not yet supported.</td>
</tr>
<tr>
<td>JPG, JPEG</td>
<td>built-in</td>
<td>JPEG images with CMYK color profiles <em>(on page 2968)</em> are properly rendered only if color profile is inside the image.</td>
</tr>
<tr>
<td>PNG</td>
<td>built-in</td>
<td></td>
</tr>
<tr>
<td>SVG, SVGZ, WMF</td>
<td>built-in</td>
<td>Rendered using the open-source Apache Batik library that supports SVG 1.1.</td>
</tr>
<tr>
<td>BMP</td>
<td>built-in</td>
<td></td>
</tr>
<tr>
<td>TIFF</td>
<td>built-in</td>
<td>Rendered using a part of the Java JAI Image library.</td>
</tr>
<tr>
<td>EPS</td>
<td>built-in</td>
<td>Renders the preview TIFF image inside the EPS.</td>
</tr>
<tr>
<td>AI</td>
<td>built-in</td>
<td>Renders the preview image inside the Adobe Illustrator file.</td>
</tr>
<tr>
<td>PDF</td>
<td>built-in</td>
<td>Rendered by using the bundled Apache PDF Box library. For versions older than 20.0, you need to install the Apache PDF Box library <em>(on page 1025)</em>.</td>
</tr>
<tr>
<td>JPEG 2000, WBMP</td>
<td>plugin</td>
<td>Renders by installing the Java Advanced Imaging (JAI) Image I/O Tools plug-in <em>(on page 1027)</em>.</td>
</tr>
</tbody>
</table>

When an image cannot be rendered, Oxygen XML Editor **Author** mode displays a warning message that contains the reason why this is happening. Possible causes include the following:

- The image is too large. Select the **Show very large images** option *(on page 133)*.
- The image format is not supported by default. It is recommended to install the Java Advanced Imaging (JAI) Image I/O Tools plug-in *(on page 1027)*.

**Tip:** If you are using a custom XML format and you want images to be displayed in **Author** mode, you could use a custom CSS to define the rendering.

For example, if your XML has something like this:

```xml
<image href="blue.png"/>
```

You can add a selector in your custom CSS like this:

```css
image[href]{
    content: attr(href, url);
}
```

**Scaling Images**

Image dimension and scaling attributes are taken into account when an image is rendered. The following rules apply:
• If you specify only the width attribute of an image, the height of the image is proportionally applied.
• If you specify only the height attribute of an image, the width of the image is proportionally applied.
• If you specify width and height attributes of an image, both of them control the rendered image.
• If you want to scale both the width and height of an image proportionally, use the `scale` attribute.

**Note:** As a Java application, Oxygen XML Editor uses the Java Advanced Imaging API that provides a pluggable support for new image types. If you have an `ImageIO` library that supports additional image formats, just copy this library to the `[OXYGEN_INSTALL_DIR]/lib` directory.

**Rendering CGM Images (Experimental Support)**

Oxygen XML Editor offers a few add-ons that provide experimental support for CGM 1.0 images. To allow the rendering of CGM images in **Author** mode, follow this procedure:

1. Go to `Help > Install new add-ons` to open an add-on selection dialog box.
2. Enter or paste `https://www.oxygenxml.com/InstData/Addons/default/updateSite.xml` in the `Show add-ons from` field or select it from the drop-down menu.
3. Select the **Oxygen CGM support** add-on and click `Next`.
4. Select the `I accept all terms of the end user license agreement` option and click `Finish`.
5. Restart the application.

**Result:** You should be able to see CGM images in **Author** mode.

**Note:** If you want to render CGM images in your PDF output, make sure you add support for this image format in the transformation scenario (on page 2179).

**Alternate Method for ISOView Active X Component**

**Restriction:** This support will only work on 32 bit versions of Oxygen XML Editor.

If you already have the **ISOView Active X** component for Internet Explorer installed, you may want to use it to render CGM images instead of the components provided in the plugin described above.

To use your existing **ISOView Active X** component to render CCM images, follow these steps:

1. Go to `Help > Install new add-ons` to open an add-on selection dialog box.
2. Enter or paste `https://www.oxygenxml.com/InstData/Addons/default/updateSite.xml` in the `Show add-ons from` field or select it from the drop-down menu.
3. Select **CGM Form control (Active X-based)** plugin and click `Next`.
4. Select the `I accept all terms of the end user license agreement` option and click `Finish`. 
5. Restart the application.

6. The **CGM Form Control** plugin automatically renders CGM files in DITA, DocBook, and XHTML, so for those frameworks, this step is not necessary. For other frameworks ([on page 3282](#)), modify your CSS according to your particular framework.

If you have an XML:

```xml
<image href="MyCGMFile.cgm"/>
```

You need a CSS rule like this:

```css
image[href$=".cgm"],
image[href$=".CGM"]{
    content: oxy_editor(
        saHeavyFormControlClassName , "com.oxygenxmlactivex.fctrl.ActiveXFormControl",
        href, oxy_url(oxy_base-uri() , attr(href)));
}
```

You should be able to see CGM images in **Author** mode.

### Rendering PDF Images

Starting with version 20.0, Oxygen XML Editor provides built-in support for rendering PDF images in **Author** mode and PDF output. For previous versions, they are not rendered by default and you need to add the *Apache PDFBox* library by using one of the following procedures:

#### Installing the PDF Image Rendering Add-on

Oxygen XML Editor offers an add-on that contributes the *Apache PDFBox* library for you. To install this add-on, follow these steps:

1. Go to **Help > Install new add-ons** to open an add-on selection dialog box.
2. Enter or paste `https://www.oxygenxml.com/InstData/Addons/default/updateSite.xml` in the **Show add-ons from** field or select it from the drop-down menu.
3. Select the **PDF Image Rendering** add-on and click **Next**.
4. Select the **I accept all terms of the end-user license agreement** option and click **Finish**.
5. Restart the application.

**Result:** The Apache PDFBox libraries are now contributed to the **Oxygen** installation directory and you should be able to see PDF images in **Author** mode.

For more information, see the details about this **PDF Image Rendering** add-on in GitHub.
Manually Adding the ApachePDFBox Libraries

To manually add the Apache PDFBox library so that PDF images are rendered in Author mode, follow this procedure:

1. Go to [http://pdfbox.apache.org/downloads.html](http://pdfbox.apache.org/downloads.html) and download the pre-built PDFBox standalone binary JAR files: `pdfbox-2.0.3.jar`, `fontbox-2.0.3.jar`, and `xmpbox-2.0.3.jar`. Alternatively, you can use the 1.8.12 version of these files, as they have been tested and work properly.

   **Note:** It is not recommended to use `pdfbox-app-2.0.3.jar` file instead of the three specified files because it contains additional classes that may cause conflicts elsewhere in Oxygen XML Editor.

2. Create a subfolder called `pdfImageJars` in the `\[OXYGEN_INSTALL_DIR\]\lib` directory.

3. Copy the downloaded JAR libraries to that newly created subfolder.

4. Restart the application.

Rendering PSD Images

Oxygen XML Editor provides support for rendering PSD (Adobe Photoshop) images.

To allow the rendering of PSD images in Author mode, follow this procedure:

1. Download the following JAR files:
   
   - [http://search.maven.org/remotecontent?filepath=com/twelvemonkeys/common/common-image/3.1.0/common-image-3.1.0.jar](http://search.maven.org/remotecontent?filepath=com/twelvemonkeys/common/common-image/3.1.0/common-image-3.1.0.jar)

2. Copy the downloaded JAR libraries to the `\[OXYGEN_INSTALL_DIR]\lib` directory.

3. Restart the application.
Rendering EPS and AI Images

Most EPS and AI image files include a preview picture of the content. Oxygen XML Editor tries to render this preview picture. The following scenarios are possible:

- The EPS or AI image does not include the preview picture. Oxygen XML Editor cannot render the image.
- The EPS image includes a TIFF preview picture.

**Note:** Some newer versions of the TIFF picture preview are rendered in gray-scale.
- The AI image contains a JPEG preview picture. Oxygen XML Editor renders the image correctly.

Rendering Special Images with Java Advanced Imaging (JAI) Plugin

Certain special image types can be rendered in Oxygen XML Editor by using a Java Advanced Imaging (JAI) Image I/O Tools plugin.

**How to Install JAI Image I/O Tools Plugin**

To install this plug, follow this procedure:

1. Start Oxygen XML Editor and open the Help > About dialog box. Go to the System properties tab and look for the `java.runtime.name` and `java.home` properties. Keep their values for later use.
2. Download the JAI Image I/O kit corresponding to your operating system and Java distribution (found in the `java.runtime.name` property). A list of archived JAI distributions can be found at: http://www.oracle.com/technetwork/java/javasebusiness/downloads/java-archive-downloads-java-client-419417.html.

**Note:** The JAI API is not the same thing as JAI Image I/O. Make sure you have installed the latter.
3. Run the installer. When the installation wizard displays the Choose Destination Location page, fill-in the Destination Folder field with the value of the `java.home` property. Continue with the installation procedure and follow the on-screen instructions.

**OS X Workaround**

There is no native implementation of the JAI Image I/O Tools plugin for OS X 10.5 and later. However, it has a Java implementation fallback that also works on OS X. Some of the image formats are not fully supported in this fallback mode, but at least the TIFF image format is known to be supported.

Use the following procedure for this OS X workaround:

2. In the \[OXYGEN_INSTALL_DIR\]/lib directory, create a directory named endorsed (\[OXYGEN_INSTALL_DIR\]/lib/endorsed).

3. Unpack the tar.gz. Copy the clibwrapper_jiio.jar and jai_imageio.jar files from its lib directory and paste them in the \[OXYGEN_INSTALL_DIR\]/lib/endorsed directory.

4. Restart the application and the JAI Image I/O support will be up and running.

Retina/HiDPI Images in Author Mode

Oxygen XML Editor provides support for Retina and HiDPI images through simple naming conventions. The higher resolution images are stored in the same images folder as the normal resolution images and they are identified by a scaling factor that is included in the name of the image files. For instance, images with a Retina scaling factor of 2 will include @2x in the name (for example, myImage@2x.png). Oxygen XML Editor displays the larger set of icons starting with 150% (1.5x) scaling.

You can reference an image to style an element in a CSS by using the url function in the content property, as in the following example:

```css
listItem:before{
    content: url('../img/myImage.png');
}
```

This would place the image that is loaded from the myImage.png file just before the listItem element. However, if you are using a Retina display (on a Mac), the icon looks a bit blurry as it automatically gets scaled, or if you are using an HiDPI display (on a Windows-based PC), the icon remains at the original size, thus it will look very small. To solve this rendering problem, you need to be able to reference both a normal DPI image and a high DPI image. However, referencing both of them from the CSS is not practical, as there is no standard way of doing this.

Starting with version 17, Oxygen XML Editor interprets the argument of the url function as key rather than a fixed URL. Therefore, when running on a system with a Retina or HiDPI display, Oxygen XML Editor will first try to find the image file that corresponds to the retina scaling factor. For instance, using the previous example, Oxygen XML Editor would first try to find myImage@2x.png. If this file is not found, it defaults back to the normal resolution image file (myImage.png).

Oxygen XML Editor also supports dark color themes. This means that the background of the editor area can be of a dark color and the foreground a lighter color. On a dark background, you may find it useful to invert the colors of images. Again, this can be done with simple naming conventions. If an image designed for a dark background is not found, the normal image is used.
Retina/HiDPI Naming Convention

Refer to the following table for examples of the Retina/HiDPI image naming convention that is used in Oxygen XML Editor:

<table>
<thead>
<tr>
<th>Color Theme</th>
<th>Referred Image File</th>
<th>Double Density Image File</th>
<th>Triple Density Image File</th>
</tr>
</thead>
<tbody>
<tr>
<td>normal</td>
<td>../img/myImage.png</td>
<td>../img/myImage@2x.png</td>
<td>../img/myImage@3x.png</td>
</tr>
<tr>
<td>dark</td>
<td>../img/myImage_dark.png</td>
<td>../img/myImage_dark@2x.png</td>
<td>../img/myImage_dark@3x.png</td>
</tr>
</tbody>
</table>

Related Information:

- Adding Retina/HiDPI Icons in a Framework (on page 2332)

Image Map Editor

Oxygen XML Editor includes an **Image Map Editor** that allows you to create hyperlinks in specific areas of an image that will link to various destinations. For example, an image that is a map of the seven continents may have a specific hyperlink for each continent that links to a resource that has information about the particular continent. The main purpose of an image map is to provide an easy way of linking various parts of an image without having to divide the image into separate image files.

The support for image maps in Oxygen XML Editor is available for images in DITA, DocBook, TEI, and XHTML document types (frameworks (on page 3282)). To create an image map on an existing image and open the Image Map Editor, right-click the image and select Image Map Editor.

Figure 379. Image Map Rendered in Author Mode
Image Maps in DITA

Oxygen XML Editor includes support for image maps in DITA documents through the use of the `imagemap` element. This feature provides an easy way to create hyperlinks in various areas within an image without having to divide the image into separate image files. The visual Author editing mode includes an Image Map Editor that helps you to easily create and configure image maps.

Figure 380. Image Map Editor in DITA
Image Map Editor Interface in DITA

The interface of the Image Map Editor consists of the following sections and actions:

**Toolbar**

- **New Rectangle**
  
  Use this button to draw a rectangular shape over an area in the image. You can drag any of the four points to adjust the size and shape of the rectangle.

- **New Circle**
  
  Use this button to draw a circle over an area in the image. You can drag any of the four points to adjust the size of the circle.

- **New Polygon**
  
  Use this button to draw a polygon shape over an area in the image. This action opens a dialog box that allows you to select the number of points for the polygon. You can drag any of the points to adjust the size and shape of the polygon.

- **New Free Form Shape**
Use this button to draw a free form shape over an area in the image. After selecting this button, left-click anywhere in the image to place the first point of your shape. Then move the cursor to the location of the next desired point and left-click to place the next point, and so on. To complete the shape (area), click the first point again and a line will automatically be added from the last point that was added, or simply double-click the last point to automatically add the line from the last point back to the first.

**Duplicate**

Use this button to create a duplicate of the currently selected shape.

**Delete**

Use this button to delete the currently selected shape.

**Undo**

Use this button to undo the last action.

**Redo**

Use this button to redo the last action that was undone.

**Show/Hide Numbers**

Use this button to toggle between showing or hiding the numbers for the shapes.

**Bring Shape to Front**

Use this button to bring the currently selected shape forward to the top layer.

**Bring Shape Forward**

Use this button to bring the currently selected shape forward one layer.

**Send Shape Backward**

Use this button to send the currently selected shape back one layer.

**Send Shape to Back**

Use this button to send the currently selected shape back to the bottom layer.

**Color Chooser**

Use this drop-down menu to select a color scheme for the lines and numbers of the shapes.
Zoom Slider

Use this slider to zoom the image in or out in the main image pane.

Image Pane

This main Image Pane is where you work with shapes to add hyperlinks to multiple areas within an image. The editing mechanisms that are supported in the Image Pane include the following:

**Mouse Controls and Keyboard Shortcuts**

- Use the mouse to select and move shapes around in the image pane. It is easy to see which shape is selected in this image pane because the border of the selected shape changes from a solid line to a dotted one.
- You can also drag any of the points of a selected shape to adjust its size and shape.
- You can hold down the Ctrl key to select multiple shapes and then move them simultaneously.
- You can also move shapes by using the arrow keys on your keyboard. In addition, you can hold down Shift while using the arrow keys to move the shape further or Alt to move it 1 pixel at a time.
- To zoom in or out, you can use the NumPad + or NumPad - keys respectively. Use Ctrl + NumPad 0 to reset the zoom level to its default value.
- You can use Ctrl + Z to undo an action or Ctrl + Y to redo the last action that was undone.

**Contextual Menu Actions Available in the Image Pane**

You can right-click the shapes, points, or anywhere in the Image Pane to invoke the contextual menu where the following actions are available:

- **Add Point**
  Adds a point to Polygon or Free Form shapes.

- **Remove Point**
  Removes the current point from Polygon or Free Form shapes.

- **Duplicate**
  Create a duplicate of the currently selected shape.
**Delete**

Delete the currently selected shape.

**New Rectangle**

Creates a rectangular shape over an area in the image. You can drag any of the four points to adjust the size and shape of the rectangle.

**New Circle**

Creates a circle over an area in the image. You can drag any of the four points to adjust the size of the circle.

**New Polygon**

Creates a polygon shape over an area in the image. This action opens a dialog box that allows you to select the number of points for the polygon. You can drag any of the points to adjust the size and shape of the polygon.

**Undo**

Use this action to undo the last action.

**Redo**

Use this action to redo the last action that was undone.

**Shape Table**

The table at the right of the *Image Pane* is a sequential list of all the areas (shapes) that have been added in the image. It shows their number, type, and description (if one has been added). If you select one of the entries in the table, the corresponding shape will be selected in the *Image Pane*.

**Properties**

**Type**

Displays information about the selected coordinate.

**Target**

Allows you to choose the target resource that you want the selected area (shape) to be linked to. Select a target by using the Link drop-down menu to the right of the text field. You can choose between the following types of links: *Cross Reference*, *File Reference*, or *Web Link*. All three types will open a dialog box that allows you to define the target resource. This linking process is similar to the normal process of inserting links in
DiT A (on page 3164) by using the identical Link drop-down menu from the main toolbar.

When you click OK to finalize your changes in the Image Map Editor, an xref element will be inserted with either an href attribute or a keyref attribute. Additional attributes may also be inserted and their values depend on the target and the type of link. For details about the three types of links and their dialog boxes, see Inserting a Link in Oxygen XML Editor (on page 3164).

Description

You can enter an optional description for the selected area (shape) that will be displayed in the Image Map Details section (on page 1036) in Author mode and as a tooltip message when the end user hovers over the hyperlink in the output.

How to Create an Image Map in DITA

To create an image map on an existing image in a DITA document, follow these steps:

1. Right-click the image and select Image Map Editor.

   **Result:** This action will apply an image map to the current image and open the Image Map Editor dialog box.

2. Add hyperlinks to the image by selecting one of the shape buttons (☐ New Rectangle, ☐ New Circle, or ☐ New Polygon).

3. Move the shape to the desired area in the image and drag any of the points on the shape to adjust its size or form. You can use the other buttons on the toolbar (on page 1031) to adjust its layer and color, or to perform other editing actions.

   **Tip:** You can right-click any of the points, shapes, or anywhere in the Image Pane to access various helpful contextual menu actions (on page 1033). For example, the easiest way to remove a point is to right-click the point and select X Remove Point.

4. With the shape selected, use one of the linking options (on page 1034) in the Link drop-down menu to select a target resource (or enter its path in the Target (on page 1034) text field).

5. (Optional) Enter a Description (on page 1035) for the selected area (shape).

6. If you want to add more hyperlinks to the image, select a shape button again and repeat the appropriate steps.

7. When you are finished creating hyperlinks, click OK to process your changes.

   **Result:** The image map is applied on the image and the appropriate elements and attributes are automatically added. In Author mode, the image map is now rendered over the image. If the image
includes an alt element, its value will be displayed under the image. The following two buttons will also now be available under the image in Author mode:

• **Image Map Editor** - Click this button to open the Image Map Editor.
• **Image Map Details** - Click this button to expand a section that displays the details of the image map and allows you to change the shape and coordinates of the hyperlinked areas. Keep in mind that if you change the shape in this section, you also need to add or remove coordinates to match the requirements of the new shape.

**Figure 381. Image Map Details**

| Gear Pump |
|---|---|---|
| 1 | orfe | 172, 265, 14 | Bushings |
| 2 | orfe | 171, 331, 15 | Bushings |
| 3 | orfe | 327, 198, 14 | Bushings |

**How to Edit an Existing Image Map in DITA**

To edit an existing image map, use any of the following methods:

• Simply double-click the image.
• Right-click the image and select **Image Map Editor**.
• Click the **Image Map Editor** button below the image.

All three methods open the Image Map Editor where you can make changes to the image map using the various features described above. You can also make changes to the XML structure of the image map in the Text editing mode.

You can also click the **Image Map Details** button below the image to expand a section that displays the details of the image map and allows you to change the shape and coordinates of the hyperlinked areas. Keep in mind that if you change the shape in this section, you also need to add or remove coordinates to match the requirements of the new shape.

**Overlapping Areas**

If shapes overlap one another in the **Image Map Editor**, the one on the top layer takes precedence. The number shown inside each shape represent its layer (if the numbers are not displayed, click the **Show/Hide Numbers** button on the **Image Map Editor toolbar (on page 1031)**). To change the
layer order for a shape, use the layer buttons on the Image Map Editor toolbar (on page 1031) (`,` `, `, `).

If you insert a shape and all of its coordinates are completely inside another shape, the Image Map Editor will display a warning to let you know that the shape is entirely covered by a bigger shape. Keep in mind that if a shape is completely inside another shape, its hyperlink will only be accessible if its layer is on top of the bigger shape.

Related Information:

- DITA 'imagemap' Element Specifications
- Working with Images in DITA Topics (on page 3062)

Image Maps in DocBook

Oxygen XML Editor includes support for image maps in DocBook documents through the use of the areaspec element. This feature provides an easy way to create hyperlinks in various parts of an image without having to divide the image into separate image files. The visual Author editing mode includes an Image Map Editor that helps you to easily create and configure image maps.

Figure 382. Image Map Editor in DocBook
Image Map Editor Interface in DocBook

The interface of the Image Map Editor consists of the following sections and actions:

**Toolbar**

- **New Rectangle**
  
  Use this button to draw a rectangular shape over an area in the image. You can drag any of the four points to adjust the size and shape of the rectangle.

- **Duplicate**
  
  Use this button to create a duplicate of the currently selected shape.

- **Delete**
  
  Use this button to delete the currently selected shape.

- **Undo**
  
  Use this button to undo the last action.

- **Redo**
  
  Use this button to redo the last action that was undone.
Show/Hide Numbers

Use this button to toggle between showing or hiding the numbers for the shapes.

Bring Shape to Front

Use this button to bring the currently selected shape forward to the top layer.

Bring Shape Forward

Use this button to bring the currently selected shape forward one layer.

Send Shape Backward

Use this button to send the currently selected shape back one layer.

Send Shape to Back

Use this button to send the currently selected shape back to the bottom layer.

Color Chooser

Use this drop-down menu to select a color scheme for the lines and numbers of the shapes.

Zoom Slider

Use this slider to zoom the image in or out in the main image pane.

Image Pane

This main Image Pane is where you work with shapes to add hyperlinks to multiple areas within an image. The editing mechanisms that are supported in the Image Pane include the following:

Mouse Controls and Keyboard Shortcuts

- Use the mouse to select and move shapes around in the image pane. It is easy to see which shape is selected in this image pane because the border of the selected shape changes from a solid line to a dotted one.
- You can also drag any of the points of a selected shape to adjust its size and shape.
- You can hold down the Ctrl key to select multiple shapes and then move them simultaneously.
• You can also move shapes by using the arrow keys on your keyboard. In addition, you can hold down `Shift` while using the arrow keys to move the shape further or `Alt` to move it 1 pixel at a time.

• To zoom in or out, you can use the `NumPad +` or `NumPad -` keys respectively. Use `Ctrl + NumPad 0` to reset the zoom level to its default value.

• You can use `Ctrl + Z` to undo an action or `Ctrl + Y` to redo the last action that was undone.

**Contextual Menu Actions Available in the Image Pane**

You can right-click the shapes, or anywhere in the Image Pane to invoke the contextual menu where the following actions are available:

- **Duplicate**
  Create a duplicate of the currently selected shape.

- **Delete**
  Delete the currently selected shape.

- **New Rectangle**
  Creates a rectangular shape over an area in the image. You can drag any of the four points to adjust the size and shape of the rectangle.

- **Undo**
  Use this action to undo the last action.

- **Redo**
  Use this action to redo the last action that was undone.

**Shape Table**

The table at the right of the `Image Pane` is a sequential list of all the areas (shapes) that have been added in the image. It shows their number, type, and ID. If you select one of the entries in the table, the corresponding shape will be selected in the `Image Pane`.

**Properties**

- **Type**
  Displays information about the selected coordinate.

- **ID**
The identifier for the selected area. This will become the value of the \texttt{xml:id} attribute for the particular \texttt{area} element.

\textbf{Target}

Allows you to choose the target resource that you want the selected area to be linked to. You can enter the path to the target in the text field but the easiest way to select a target is to use the Link drop-down menu to the right of the text field. You can choose between the following types of links: Cross Reference or Web Link. Both types open a dialog box that allows you to select the target resource and it is inserted as the value of an \texttt{xlink:href} attribute.

\textbf{Description}

You can enter an optional description for the selected area that will be displayed in the Image Map Details section (on page 1042) in Author mode and as a tooltip message when the end user hovers over the hyperlink in the output.

\section*{How to Create an Image Map in DocBook}

To create an image map on an existing image in a DocBook document, follow these steps:

1. Right-click the image and select \textbf{Image Map Editor}.

   \textbf{Result:} This action will apply an image map to the current image and open the Image Map Editor dialog box.

2. Add hyperlinks to the image by selecting the \textbf{New Rectangle} button.

3. Move the shape to the desired area in the image and drag any of the points on the shape to adjust its size or form. You can use the other buttons on the toolbar (on page 1038) to adjust its layer and color, or to perform other editing actions.

   \textbf{Tip:} You can right-click any of the shapes or anywhere in the Image Pane to access various helpful contextual menu actions (on page 1040).

4. With the shape selected, enter an \textbf{ID} (on page 1040) and use one of the linking options (on page 1041) in the Link drop-down menu to select a target resource (or enter its path in the Target (on page 1041) text field).

5. (Optional) Enter a \textbf{Description} (on page 1041) for the selected area (shape).

6. If you want to add more hyperlinks to the image, select \textbf{New Rectangle} button again and repeat the appropriate steps.

7. When you are finished creating hyperlinks, click OK to process your changes.
Result: The image map is applied on the image and the appropriate elements and attributes are automatically added. In Author mode, the image map is now rendered over the image. If the image includes an alt element, its value will be displayed above the image. The following two buttons will also now be available at the top of the image in Author mode:

- Image Map Editor - Click this button to open the Image Map Editor.
- Image Map Details - Click this button to expand a section that displays the details of the image map.

How to Edit an Existing Image Map in DocBook

To edit an existing image map, use any of the following methods:

- Simply double-click the image.
- Right-click the image and select Image Map Editor.
- Click the Image Map Editor button below the image.

All three methods open the Image Map Editor where you can make changes to the image map using the various features described above. You can also make changes to the XML structure of the image map in the Text editing mode.

You can also click the Image Map Details button above the image to expand a section that displays the details of the image map and allows you to change the coordinates and IDs of the hyperlinked areas.

Note: If you want to link a set of related area elements, you can use areaset elements. To add areaset elements, and area elements to the areaset, switch to Text mode and insert them manually.

Overlapping Areas

If shapes overlap one another in the Image Map Editor, the one on the top layer takes precedence. The number shown inside each shape represent its layer (if the numbers are not displayed, click the Show/Hide Numbers button on the Image Map Editor toolbar (on page 1038)). To change the layer order for a shape, use the layer buttons on the Image Map Editor toolbar (on page 1038) (↑, ↓, ←, →). If you insert a shape and all of its coordinates are completely inside another shape, the Image Map Editor will display a warning to let you know that the shape is entirely covered by a bigger shape. Keep in mind that if a shape is completely inside another shape, its hyperlink will only be accessible if its layer is on top of the bigger shape.
Related Information:

- DocBook 'areaspec' Element Specifications

Image Maps in TEI

Oxygen XML Editor includes support for image maps in TEI documents through the use of the facsimile element. In TEI documents, this feature provides an easy way to create areas (using zone elements) in an image where the end user can hover or click to retrieve more information about that particular area of the image. The visual Author editing mode includes an Image Map Editor that helps you to easily create the areas in the image.

Figure 383. Image Map Editor in TEI

Image Map Editor Interface in TEI

The interface of the Image Map Editor consists of the following sections and actions:

**Toolbar**

- New Rectangle
Use this button to draw a rectangular shape over an area in the image. You can drag any of the four points to adjust the size and shape of the rectangle.

- **New Polygon**
  Use this button to draw a polygon shape over an area in the image. This action opens a dialog box that allows you to select the number of points for the polygon. You can drag any of the points to adjust the size and shape of the polygon.

- **New Free Form Shape**
  Use this button to draw a free form shape over an area in the image. After selecting this button, left-click anywhere in the image to place the first point of your shape. Then move the cursor to the location of the next desired point and left-click to place the next point, and so on. To complete the shape (area), click the first point again and a line will automatically be added from the last point that was added, or simply double-click the last point to automatically add the line from the last point back to the first.

- **Duplicate**
  Use this button to create a duplicate of the currently selected shape.

- **Delete**
  Use this button to delete the currently selected shape.

- **Undo**
  Use this button to undo the last action.

- **Redo**
  Use this button to redo the last action that was undone.

- **Show/Hide Numbers**
  Use this button to toggle between showing or hiding the numbers for the shapes.

- **Bring Shape to Front**
  Use this button to bring the currently selected shape forward to the top layer.

- **Bring Shape Forward**
  Use this button to bring the currently selected shape forward one layer.
Send Shape Backward

Use this button to send the currently selected shape back one layer.

Send Shape to Back

Use this button to send the currently selected shape back to the bottom layer.

Color Chooser

Use this drop-down menu to select a color scheme for the lines and numbers of the shapes.

Zoom Slider

Use this slider to zoom the image in or out in the main image pane.

Image Pane

This main Image Pane is where you work with shapes to add hyperlinks to multiple areas within an image. The editing mechanisms that are supported in the Image Pane include the following:

Mouse Controls and Keyboard Shortcuts

- Use the mouse to select and move shapes around in the image pane. It is easy to see which shape is selected in this image pane because the border of the selected shape changes from a solid line to a dotted one.
- You can also drag any of the points of a selected shape to adjust its size and shape.
- You can hold down the Ctrl key to select multiple shapes and then move them simultaneously.
- You can also move shapes by using the arrow keys on your keyboard. In addition, you can hold down Shift while using the arrow keys to move the shape further or Alt to move it 1 pixel at a time.
- To zoom in or out, you can use the NumPad + or NumPad - keys respectively. Use Ctrl + NumPad 0 to reset the zoom level to its default value.
- You can use Ctrl + Z to undo an action or Ctrl + Y to redo the last action that was undone.

Contextual Menu Actions
You can right-click the shapes, points, or anywhere in the Image Pane to invoke the contextual menu where the following actions are available:

**Add Point**
Adds a point to *Polygon* or *Free Form* shapes.

**Remove Point**
Removes the current point from *Polygon* or *Free Form* shapes.

**Duplicate**
Create a duplicate of the currently selected shape.

**Delete**
Delete the currently selected shape.

**New Rectangle**
Creates a rectangular shape over an area in the image. You can drag any of the four points to adjust the size and shape of the rectangle.

**New Polygon**
Creates a polygon shape over an area in the image. This action opens a dialog box that allows you to select the number of points for the polygon. You can drag any of the points to adjust the size and shape of the polygon.

**Undo**
Use this action to undo the last action.

**Redo**
Use this action to redo the last action that was undone.

**Shape Table**
The table at the right of the *Image Pane* is a sequential list of all the areas (shapes) that have been added in the image. It shows their number, type, and ID. If you select one of the entries in the table, the corresponding shape will be selected in the *Image Pane*.

**Properties**

**Type**
Displays information about the selected coordinate.
ID

The identifier for the selected area. This will become the value of the xml:id attribute for the particular zone element. When you insert a new zone, a unique ID is automatically generated and displayed in this field. However, you can change this value if you want to.

How to Create an Image Map in TEI

To create an image map on an existing image in a TEI document, follow these steps:

1. The image (graphic) must be inside a facsimile element to support the Image Map Editor feature.
2. Right-click the image and select Image Map Editor.

   Result: This action will apply an image map to the current image and open the Image Map Editor dialog box.

3. Add areas (zones) in the image by selecting one of the shape buttons (New Rectangle or New Polygon).
4. Move the shape to the desired area in the image and drag any of the points on the shape to adjust its size or form. You can use the other buttons on the toolbar (on page 1043) to adjust its layer and color, or to perform other editing actions.

   Tip: You can right-click any of the points, shapes, or anywhere in the Image Pane to access various helpful contextual menu actions (on page 1045). For example, the easiest way to remove a point is to right-click the point and select Remove Point.
5. With the shape selected, enter an ID (on page 1047).
6. If you want to add more areas (zones) to the image, select a shape button again and repeat the appropriate steps.
7. When you are finished, click OK to process your changes.

   Result: The image map is applied on the image and the appropriate elements and attributes are automatically added. In Author mode, the image map is now rendered over the image and the following two buttons will now be available at the bottom of the image:

   - Image Map Editor - Click this button to open the Image Map Editor.
   - Image Map Details - Click this button to expand a section that displays the details of the image map.

How to Edit an Existing Image Map in TEI

To edit an existing image map, use any of the following methods:
• Simply double-click the image.
• Right-click the image and select **Image Map Editor**.
• Click the **Image Map Editor** button below the image.

All three methods open the **Image Map Editor** where you can make changes to the image map using the various features described above. You can also make changes to the XML structure of the image map in the **Text** editing mode.

You can also click the **Image Map Details** button below the image to expand a section that displays the details of the image map and allows you to change the coordinates and IDs of the hyperlinked areas.

**Restriction:** Currently, if `zone` elements contain additional content (such as text or comments) and you edit the image map, the **Image Map Editor** does not preserve the additional content. Therefore, if you do need to insert additional content inside the `zone` elements, you should do so after the image map has been created and finalized. Subsequent changes to the image map should then be done in **Text** mode.

**Overlapping Areas**

If shapes overlap one another in the **Image Map Editor**, the one on the top layer takes precedence. The number shown inside each shape represent its layer (if the numbers are not displayed, click the **Show/Hide Numbers** button on the **Image Map Editor toolbar**). To change the layer order for a shape, use the layer buttons on the **Image Map Editor toolbar** (``, ```).

If you insert a shape and all of its coordinates are completely inside another shape, the **Image Map Editor** will display a warning to let you know that the shape is entirely covered by a bigger shape. Keep in mind that if a shape is completely inside another shape, its hyperlink will only be accessible if its layer is on top of the bigger shape.

**Warning:** PDF output is limited to rectangular shaped image map objects. Therefore, if your image contains circles or polygons, those objects will be redrawn as rectangles in the PDF output. Keep in mind that this might affect overlaps in the output.

**Related Information:**

• TEI 'facsimile' Element Specifications
Image Maps in XHTML

Oxygen XML Editor includes support for image maps in XHTML documents. This feature provides an easy way to create hyperlinks in various parts of an image without having to divide the image into separate image files. In HTML, an image (in the form of an img element) may be associated with an image map (in the form of a map element) by specifying a usemap attribute on the img element.

The visual Author editing mode includes an Image Map Editor that helps you to easily create and configure image maps.

Figure 384. Image Map Editor in XHTML

Image Map Editor Interface in XHTML

The interface of the Image Map Editor consists of the following sections and actions:

**Toolbar**

- **New Rectangle**
  
  Use this button to draw a rectangular shape over an area in the image. You can drag any of the four points to adjust the size and shape of the rectangle.

- **New Circle**
Use this button to draw a circle over an area in the image. You can drag any of the four points to adjust the size of the circle.

**New Polygon**

Use this button to draw a polygon shape over an area in the image. This action opens a dialog box that allows you to select the number of points for the polygon. You can drag any of the points to adjust the size and shape of the polygon.

**New Free Form Shape**

Use this button to draw a free form shape over an area in the image. After selecting this button, left-click anywhere in the image to place the first point of your shape. Then move the cursor to the location of the next desired point and left-click to place the next point, and so on. To complete the shape (area), click the first point again and a line will automatically be added from the last point that was added, or simply double-click the last point to automatically add the line from the last point back to the first.

**Duplicate**

Use this button to create a duplicate of the currently selected shape.

**Delete**

Use this button to delete the currently selected shape.

**Undo**

Use this button to undo the last action.

**Redo**

Use this button to redo the last action that was undone.

**Show/Hide Numbers**

Use this button to toggle between showing or hiding the numbers for the shapes.

**Bring Shape to Front**

Use this button to bring the currently selected shape forward to the top layer.

**Bring Shape Forward**

Use this button to bring the currently selected shape forward one layer.

**Send Shape Backward**
Use this button to send the currently selected shape back one layer.

Send Shape to Back

Use this button to send the currently selected shape back to the bottom layer.

Color Chooser

Use this drop-down menu to select a color scheme for the lines and numbers of the shapes.

Zoom Slider

Use this slider to zoom the image in or out in the main image pane.

Image Pane

This main Image Pane is where you work with shapes to add hyperlinks to multiple areas within an image. The editing mechanisms that are supported in the Image Pane include the following:

Mouse Controls and Keyboard Shortcuts

- Use the mouse to select and move shapes around in the image pane. It is easy to see which shape is selected in this image pane because the border of the selected shape changes from a solid line to a dotted one.
- You can also drag any of the points of a selected shape to adjust its size and shape.
- You can hold down the Ctrl key to select multiple shapes and then move them simultaneously.
- You can also move shapes by using the arrow keys on your keyboard. In addition, you can hold down Shift while using the arrow keys to move the shape further or Alt to move it 1 pixel at a time.
- To zoom in or out, you can use the NumPad + or NumPad - keys respectively. Use Ctrl + NumPad 0 to reset the zoom level to its default value.
- You can use Ctrl + Z to undo an action or Ctrl + Y to redo the last action that was undone.

Contextual Menu Actions Available in the Image Pane

You can right-click the shapes, points, or anywhere in the Image Pane to invoke the contextual menu where the following actions are available:
+ **Add Point**

  Adds a point to *Polygon* or *Free Form* shapes.

× **Remove Point**

  Removes the current point from *Polygon* or *Free Form* shapes.

☐ **Duplicate**

  Create a duplicate of the currently selected shape.

× **Delete**

  Delete the currently selected shape.

d | **New Rectangle**

  Creates a rectangular shape over an area in the image. You can drag any of the four points to adjust the size and shape of the rectangle.

d | **New Circle**

  Creates a circle over an area in the image. You can drag any of the four points to adjust the size of the circle.

d | **New Polygon**

  Creates a polygon shape over an area in the image. This action opens a dialog box that allows you to select the number of points for the polygon. You can drag any of the points to adjust the size and shape of the polygon.

← **Undo**

  Use this action to undo the last action.

→ **Redo**

  Use this action to redo the last action that was undone.

**Shape Table**

The table at the right of the *Image Pane* is a sequential list of all the areas (shapes) that have been added in the image. It shows their number, type, and description (value of the *Alternative* property). If you select one of the entries in the table, the corresponding shape will be selected in the *Image Pane*.

**Properties**
Type

Displays information about the selected coordinate.

Href

Specifies the hyperlink target for the selected area. This will become the value of the href attribute for the particular area element. The possible values are:

- **An Absolute URL** - A URL of another website (for example, http://www.example.com/index.htm).
- **A Relative URL** - A link to a file within your website (for example, index.htm).
- **An Element** - A link to the ID of an element within the page (for example, #top).
- **Other Protocols** - A specified path using other protocols (such as https://, ftp://, mailto:, file:).
- **A Script** - A link to a script (for example, javascript:alert('Hello');)

Alternate

The description for the selected area. The value is inserted in an alt attribute in the particular area element. This is a required attribute to present a text alternative for browsers that do not display images.

Target

Specifies where to open the linked resource. The allowed values are:

- **_blank** - Opens the linked resource in a new window or tab.
- **_self** - Opens the linked resource in the same frame as it was clicked.
- **_parent** - Opens the linked resource in the full body of the window.
- **framename** - Opens the linked resource in the named frame.

How to Create an Image Map in XHTML

To create an image map on an existing image in an XHTML document, follow these steps:

1. Right-click the image and select **Image Map Editor**.

   **Result:** This action will apply an image map to the current image and open the **Image Map Editor** dialog box.
2. Add hyperlinks to the image by selecting one of the shape buttons (New Rectangle, New Circle, or New Polygon).

3. Move the shape to the desired area in the image and drag any of the points on the shape to adjust its size or form. You can use the other buttons on the toolbar (on page 1049) to adjust its layer and color, or to perform other editing actions.

   **Tip:** You can right-click any of the points, shapes, or anywhere in the Image Pane to access various helpful contextual menu actions (on page 1051). For example, the easiest way to remove a point is to right-click the point and select Remove Point.

4. With the shape selected, specify the hyperlink target in the Href field (on page 1053) and enter a description for the selected area in the Alternate field (on page 1053).

5. (Optional) Specify where the hyperlink resource will be opened in the Target field (on page 1053).

6. If you want to add more hyperlinks to the image, select a shape button again and repeat the appropriate steps.

7. When you are finished creating hyperlinks, click OK to process your changes.

**Result:** The image map is applied on the image and the appropriate elements and attributes are automatically added. In Author mode, the image map is now rendered over the image and its properties are displayed in a section below the image.

### How to Edit an Existing Image Map in XHTML

To edit an existing image map, use any of the following methods:

- Simply double-click the image.
- Right-click the image and select Image Map Editor.
- Click the Image Map Editor button below the image.

All three methods open the Image Map Editor where you can make changes to the image map using the various features described above. You can also make changes to the XML structure of the image map in the Text editing mode.

In Author mode, the details of the image map are also displayed below the image and you can edit the description, href, shape, and coordinates of the hyperlinked areas. Keep in mind that if you change the shape in this section, you also need to add or remove coordinates to match the requirements of the new shape.

### Overlapping Areas

If shapes overlap one another in the Image Map Editor, the one on the top layer takes precedence. The number shown inside each shape represent its layer (if the numbers are not displayed, click the
Show/Hide Numbers button on the Image Map Editor toolbar (on page 1049). To change the layer order for a shape, use the layer buttons on the Image Map Editor toolbar (on page 1049) (Widgets, Rooms, Rooms).

If you insert a shape and all of its coordinates are completely inside another shape, the Image Map Editor will display a warning to let you know that the shape is entirely covered by a bigger shape. Keep in mind that if a shape is completely inside another shape, its hyperlink will only be accessible if its layer is on top of the bigger shape.

⚠️ Warning: PDF output is limited to rectangular shaped image map objects. Therefore, if your image contains circles or polygons, those objects will be redrawn as rectangles in the PDF output. Keep in mind that this might affect overlaps in the output.

Related Information:

- HTML Image Map Specifications

Adding Video, Audio, and Embedded HTML Resources

You can insert references to media resources (such as videos, audio clips, or embedded HTML frames) in your DITA, DocBook, or XHTML topics. The media resources can be played directly in Author mode and in all HTML5-based outputs. There is a toolbar button that allows you to insert and configure a reference to the media resource. You can also drag media files from your system explorer or the Project view (on page 333) and drop them into your documents (or copy and paste them).

**Table 37. Supported Media Types**

<table>
<thead>
<tr>
<th>Media</th>
<th>Description</th>
<th>Type</th>
<th>Supported Size Properties</th>
</tr>
</thead>
<tbody>
<tr>
<td>mp3</td>
<td>Moving Picture Experts Group Layer-3 Audio</td>
<td>audio</td>
<td>Width</td>
</tr>
<tr>
<td>wav</td>
<td>Windows Wave</td>
<td>audio</td>
<td>Width</td>
</tr>
<tr>
<td>pcm</td>
<td>Pulse Code Modulation</td>
<td>audio</td>
<td>Width</td>
</tr>
<tr>
<td>m4a</td>
<td>Moving Picture Experts Group Layer-4 Audio</td>
<td>audio</td>
<td>Width</td>
</tr>
<tr>
<td>aif</td>
<td>Audio Interchange Format</td>
<td>audio</td>
<td>Width</td>
</tr>
<tr>
<td>mp4</td>
<td>Moving Picture Experts Group Layer-4 Video</td>
<td>video</td>
<td>Width &amp; Height</td>
</tr>
<tr>
<td>flv</td>
<td>Flash Video</td>
<td>video</td>
<td>Width &amp; Height</td>
</tr>
<tr>
<td>m4v</td>
<td>iTunes Video File</td>
<td>video</td>
<td>Width &amp; Height</td>
</tr>
</tbody>
</table>
### Adding a Media Resource

To insert a media resource in a document, use the following procedure:

1. Place the cursor at the location where you want the media resource.
2. Select the **Insert Media Resource** action from the toolbar. A **Chose Media** dialog box appears.

   **Note:** You can also drag media files from your system explorer or the **Project view** (on page 333) and drop them into your documents (or copy and paste them).
3. Select the URL for the media resource and click **Ok**.

**Result in Author Mode:** A reference to the specified media object is inserted and rendered in **Author** mode so that it can be played directly from there.

**Attention:**

- On Ubuntu 17.10, if you receive an error when trying to play videos in **Author** mode, you need to install the **libavformat57** library.

**Result in Output:** In the publishing stage, the media object is converted to an HTML5 element so that it can be rendered properly and played in all HTML5-based outputs.

#### Embedding HTML Content in DITA Topics

The DITA Open Toolkit that comes bundled with Oxygen XML Editor includes a pre-installed plugin (on page 3285) that allows you to embed well-formed HTML content directly in a DITA topic.

For example, suppose you wanted to embed a YouTube video directly in a DITA topic.

The DITA topic would look like this:

```xml
....
<foreign outputclass="html-embed"><![CDATA[
  <iframe width="420" height="315"
    src="https://www.youtube.com/embed/qepRkQxhTX"
    frameborder="0" allowfullscreen="true">
  </iframe>
</foreign>
```
The converted HTML output would look like this:

```html
<iframe width="420" height="315" src="https://www.youtube.com/embed/qepRkQxhTX"
frameborder="0" allowfullscreen="true">
</iframe>
```

The plugin is also available on the oxygenxml GitHub projects page.

Related Information:

- How to Add Video and Audio Objects in DITA WebHelp Output (on page 1964)

Editing MathML Notations

The Author editor includes a built-in editor for MathML notations. To start the MathML editor, double-click a MathML notation (for embedded notations, you can also select the Edit Equation action from its contextual menu). In the MathML editor you can edit the mathematical symbols of a MathML notation. You can open a MathML file of your current project directly in the MathML editor. To do this, select Open with > MathML editor from the contextual menu in the Project view (on page 333).

Figure 385. Default MathML Editor
The font size and font family that is used for the equations is based upon the context in which the MathML equation appears. To configure the minimum font size of the equation, open the Preferences dialog box (Options > Preferences) (on page 79) and go to Editor > Edit modes > Author > MathML.

Configure the MathFlow Editor

The MathFlow Components product can replace the default MathML editor with a specialized MathML editor. You have to purchase a MathFlow Component from Design Science and configure it in Oxygen XML Editor with the following procedure:

1. Install MathFlow by using the Universal installer (for versions prior to 2.1, use the MathFlow SDK).

2. Set the path to the MathFlow install folder in the MathML preferences page (on page 149).

3. Set the path to the MathFlow license file in the MathML preferences page (on page 149).
MathML Equations in HTML Output

Currently, only Firefox can render MathML equations embedded in the HTML code. MathJax is a solution to properly view MathML equations embedded in HTML content in a variety of browsers.

If you have DocBook or DITA content that has embedded MathML equations and you want to properly view the equations in published HTML output types (WebHelp, CHM, EPUB, etc.), you need to add a reference to the MathJax script in the head element of all HTML files that have the equation embedded.

For example:

```html
<script type="text/javascript"
src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.1/MathJax.js?config=TeX-AMS-MML_HTMLorMML">
</script>
```

For DITA documents, you can also use the following procedure:

1. Edit the DITA Map WebHelp transformation scenario (on page 1758) and open the Parameters tab.
2. Set the following parameter to point to an XML resource file that contains your script, depending on your type of WebHelp system.
   - **WebHelp Responsive Systems** - Set the `webhelp.fragment.head` parameter to point to your resource file.
   - **WebHelp Classic Systems** - Set the `webhelp.head.script` parameter to point to your resource file.
3. Run the transformation scenario.

**Result:** The equation should now be properly rendered in other browsers, such as Edge, IE, or Chrome.

Refreshing the Content

On occasion you may need to reload the content of the document from the disk or reapply the CSS. This can be performed by using the **Reload** action.

To refresh the content of the referenced resources you can use the **Refresh references** action that is available in the current framework menu (for example, the DITA or DocBook5 menu). However, this action will not refresh the expanded external entities, for which you will need to use the **Reload** action.

Generating IDs for Elements in Author Mode

Oxygen XML Editor allows you to manually assign or edit values of `id` attributes in Author mode by using the Attributes View (on page 426) or an in-place attribute editor (on page 915). Oxygen XML Editor also includes mechanisms to generate ID values for elements, either on-request or automatically, in DITA, DocBook, or TEI documents.

**Generate IDs On-Request**

You can generate ID values for specific elements on-request. To do so, select the element for which you want to generate an ID (or place the cursor inside the element) and select the **Generate IDs** action from the contextual menu. This action generates a unique ID for the current element. If you invoke the action on a block of selected content, the action will generate IDs for all top-level elements and elements that are listed in the ID Options dialog box (on page 1061). To open this dialog box, select ID Options from the DITA, DocBook, or TEI menu (depending on your document type).

**Note:** The **Generate IDs** action does not overwrite existing ID values. It only affects elements that do not already have an `id` attribute.

**Automatically Generate IDs**

Oxygen XML Editor includes an option to automatically add unique ID values to certain elements when they are created in Author mode. The **Auto generate IDs for elements** option can be found in the ID Options dialog box (on page 1061) that is displayed when you select the **ID Options** action from the framework (on page 3282)-specific menu (DITA, DocBook, or TEI). If this **Auto generate IDs for elements** option is selected, Oxygen XML Editor automatically generates unique ID values for elements that are listed in this dialog box. You can use this dialog box to customize the format of the
ID values and choose which elements will have their ID values automatically generated (for example, you can customize the list of elements to include those that you most often need to identify).

**ID Options Dialog Box**

To configure options for generating IDs, select **ID Options** from the **DITA, DocBook**, or **TEI** menu (depending on your document type).

Figure 387. ID Options Dialog Box

The **ID Options** dialog box allows you to configure the following options with regard to generating ID values:

**ID Pattern**

The pattern for the ID values that will be generated. This text field can be customized using constant strings or any of the Oxygen XML Editor **Editor Variables (on page 276)**.

**Element name or class value to generate ID for**

The elements for which ID values will be generated, specified using class attribute values. To customize the list, use the **Add**, **Edit**, or **Remove** buttons.

**Auto generate IDs for elements**

If selected, Oxygen XML Editor will automatically generate unique IDs for the elements listed in this dialog box when they are created in **Author** mode.

**Remove IDs when copying content in the same document (DITA or TEI)**
When copying and pasting content in the same DITA or TEI document, this option allows you to control whether or not pasted elements that are listed in this dialog box should retain their existing IDs. To retain the element IDs, deselect this option.

**Note:** This option does not have an effect on content that is cut and pasted.

### Remove IDs when copying content (DocBook)

This option allows you to control whether or not pasted elements that are listed in this dialog box should retain their existing IDs in DocBook documents. If this option is not selected, IDs are always retained when you copy or cut content and paste it in the same document or other documents. If this option is selected, IDs are never retained for copied content, but if you cut the content, they are preserved for the first paste action (and not retained for any subsequent paste actions).

## Duplicating Elements with Existing IDs

If you duplicate elements with existing IDs (for example, through copy/paste or drag/drop actions), all IDs are removed at the resolution of the operation. However, you can use the options in the **ID Options** dialog box to change this behavior. The options in this dialog box affect duplicated elements with existing IDs in the following ways:

- Only the elements listed in this dialog box are affected by these options. Therefore, if you want to use these options to preserve IDs or generate new ones, you must first add the elements to be duplicated to the list in this dialog box.
- If the **Auto generate IDs for elements** option is selected and you duplicate elements with existing IDs, Oxygen XML Editor assigns new, unique ID values to the duplicates.
- If the **Auto generate IDs for elements** option is not selected and you duplicate elements with existing IDs, the ID values are removed from the duplicates.
- For DITA and TEI, if the **Remove IDs when copying content in the same document** option is selected, the ID values are removed from elements that are duplicated in the same document. If it is not selected, the ID values are preserved when elements are duplicated in the same document. Selecting this option has no effect if the **Auto generate IDs for elements** option is selected and this option has no effect on elements that are duplicated in other documents.
- For DocBook, if the **Remove IDs when copying content** option is selected, the ID values are removed from any element that is duplicated. If it is not selected, the ID values are preserved when elements are duplicated. Selecting this option has no effect if the **Auto generate IDs for elements** option is selected.
**Controlling the Default ID Generation Options**

It is possible to configure the default ID generation options for DITA, DocBook, and TEI document types. In the `frameworks` folder for each of those document types, there is an XML configuration file called `idGenerationDefaultOptions.xml` that contains the default settings for generating IDs in each particular type of document. To configure the default settings, you can edit this file and save it back to the same directory.

The configuration file can be found in the `resources` folder within the particular `framework` (on page 3282). For example, the configuration file for the DITA `framework` is located in: `{OXYGEN_INSTALL_DIR}/frameworks/dita/resources/idGenerationDefaultOptions.xml.`

**Sharing Default ID Generation Options**

If you want to share your configured default ID generation settings with other members of your team, follow these steps:

1. Configure the `idGenerationDefaultOptions.xml` file for your `framework` according to your needs.
2. Bundle a modified version of the entire `framework` folder (for example, `{OXYGEN_INSTALL_DIR}/frameworks/dita`). To do this:
   a. Open the Preferences dialog box (Options > Preferences) (on page 79) and go to Document Type Association.
   b. Select your document type and click the Extend button.
   c. In the Document type configuration dialog box (on page 95) that is now displayed, select External for the Storage option. By default, this will save the extension in a new folder in the `frameworks` folder (for example, `{OXYGEN_INSTALL_DIR}/frameworks/dita-extension (1)`), but you can also use the Browse button to specify a specific name and folder.
   d. In this new extension folder, create a new folder called resources and add your modified `idGenerationDefaultOptions.xml` file to this new resources folder.
   e. Go back to the Document Type Association preferences page, select the extended `framework`, and click Edit.
   f. Go to the Classpath tab (on page 99), add a reference to your new resources folder, and move this reference up (using the Move Up button) so that it is the first one that appears in the list.
   g. Click OK and exit out of the preferences page.
3. Distribute your newly extended folder to other team members by using one of the methods described in Sharing a Custom Framework (on page 2371).
Using Form Controls in Author Mode

Form controls make it easier to capture, organize, and edit content. They are especially helpful for less technical users because form controls provide a way to interact with the content of a document in a graphical manner without intimidating the user with the XML structure.

Oxygen XML Editor includes a variety of built-in form controls (on page 2541) that can be defined in CSS stylesheets that are used to render Author mode (on page 2541). You can also implement custom form controls (on page 2573) for more specific needs. The types of built-in form controls that are available include:

- **Audio (on page 2542)** - A media object that plays audio clips.
- **Browser (on page 2543)** - A media object that renders HTML frames or interact with SVG documents
- **Button (on page 2547)** - A graphical user interface object that performs a specific action.
- **Button Group (on page 2550)** - A graphical user interface group of buttons (such as radio buttons) that perform specific actions.
- **Checkbox (on page 2553)** - A graphical user interface box that you can click to select or deselect a value.
- **Combo Box (on page 2556)** - A graphical user interface object that can be a drop-down menu or a combination of a drop-down menu and a single-line text field.
- **Date Picker (on page 2558)** - A form control object that allows you to select a date in a specified format.
- **HTML Content (on page 2560)** - A graphical user interface box that is used for rendering HTML content.
- **Pop-up (on page 2562)** - A contextual menu that provides quick access to various actions.
- **Text Area (on page 2565)** - A box that allows you to enter multiple lines of text.
- **Text Field (on page 2568)** - A graphical user interface box that allows you to enter a single line of text.
- **URL Chooser (on page 2570)** - A dialog box that allows you to select the location of local or remote resources.
- **Video (on page 2572)** - A media object that plays videos.

The following image is an example of several form controls rendered in Author mode. The first (Direct manager) is a combo box with both a drop-down menu and an editable text field. This is followed by a simple text field (Homepage), and the [+ ] and [- ] icons also represent button form controls that are assigned specific actions to add or delete records from the document.

Figure 388. Example of Form Controls in Author Mode
You can use your imagination to envision the multitude of ways that you can use form controls to make the editing experience for content authors easier and more efficient. As a working example, a bundled samples project (located in the samples folder inside the Oxygen XML Editor installation directory) contains a file called personal.xml that contains form controls. You can use this file, along with its corresponding personal.css file to experiment with an example of how form controls can be implemented in Author mode.

Related Information:

- Form Controls (on page 2541)

Contextual Menu Actions in Author Mode

Oxygen XML Editor includes powerful support for editing XML documents through actions included in the contextual menu. When editing XML documents in Author mode, the contextual menu includes general actions that are available for all of the recognized document types and framework (on page 3282)-specific actions that are configured for each document type.

**General Contextual Menu Actions in Author Mode**

The general actions that are available in the contextual menu (some of them are also available in the submenus of the Document menu) for all built-in document types include the following:

1. **Add File to Review Task**
   
   This action can be used to add the current document to a task in the Content Fusion Tasks Manager view. Oxygen Content Fusion is a flexible, intuitive collaboration platform designed to adapt to any type of documentation review workflow. This functionality is available through a pre-installed connector add-on (on page 2679). To fully take advantage of all of the benefits and features of Content Fusion, your
organization will need an Oxygen Content Fusion Enterprise Server. For more information, see the Oxygen Content Fusion website.

Quick Fix (Alt + 1 (Command + Alt + 1 on OS X))

Available when the contextual menu is invoked on an error where Oxygen XML Editor can provide a Quick Fix (on page 1109).

Open Image

Available when the contextual menu is invoked on an image. This action allows you to open an image in the Oxygen XML Editor Image Viewer (on page 721) or in a default system application associated with the current image type.

Track Changes Actions

Available when the Track Changes feature (on page 3288) is enabled and the contextual menu is invoked on a change. The following options are available:

✓ Accept Change(s)

Accepts the Tracked Change (on page 3288) located at the cursor position or all of the changes in a selection. If you select a part of a deletion or insertion change, only the selected content is accepted. If you select multiple changes, all of them are accepted. For an insertion change, it keeps the inserted text and for a deletion change, it removes the content from the document.

✗ Reject Change(s)

Rejects the Tracked Change (on page 3288) located at the cursor position or all of the changes in a selection. If you select a part of a deletion or insertion change, only the selected content is rejected. If you select multiple changes, all of them are rejected. For an insertion change, it removes the inserted text and for a deletion change, it preserves the original content.

✍ Comment Change

Opens a dialog box that allows you to add a comment to an existing Tracked Change (on page 3288). The comment will appear in a callout and a tooltip when hovering over the change. If the action is selected on an existing commented change, the dialog box will allow you to edit the comment.

Author Callout Actions

Available when the contextual menu is invoked on a callout (on page 3280). If the corresponding options in the Show review callouts section (on page 143) are selected in
the Callouts preferences page (on page 143), the callouts are displayed in Author mode for comments, tracked insertion changes, or tracked deletion changes.

**Insertion or Deletion Callout Actions**

The following actions are available in the contextual menu when invoked on an insertion or deletion callout box:

**Reply**

Opens a dialog box that allows you to add a reply to a comment or Tracked Changes (on page 3288). When replying to a comment, the dialog box shows the entire conversation in the comment thread, starting with the first comment added in the particular thread, followed by all the replies. After replies are added to a comment thread, they are displayed with an indentation in the callouts and Review view (on page 964).

**Mark as Done**

A toggle action that marks or unmarks a comment or comment thread as being done. It is also available for Tracked Changes (on page 3288) that are displayed in a callout. When a comment or change is marked as done, the callout is grayed out and cannot be edited unless the action is toggled to the unmarked state. The action applies to the particular comment and all of its descendents. This is useful for marking comments or changes that have been addressed, leaving only those that still need some attention.

✔ **Accept Change(s)**

Accepts the Tracked Change (on page 3288) located at the cursor position or all of the changes in a selection. If you select a part of a deletion or insertion change, only the selected content is accepted. If you select multiple changes, all of them are accepted. For an insertion change, it keeps the inserted text and for a deletion change, it removes the content from the document.

✗ **Reject Change(s)**

Rejects the Tracked Change (on page 3288) located at the cursor position or all of the changes in a selection. If you select a part of a deletion or insertion change, only the
selected content is rejected. If you select multiple changes, all of them are rejected. For an insertion change, it removes the inserted text and for a deletion change, it preserves the original content.

Comment Change

Opens a dialog box that allows you to add a comment to an existing Tracked Change (on page 3288). The comment will appear in a callout and a tooltip when hovering over the change. If the action is selected on an existing commented change, the dialog box will allow you to edit the comment.

Edit Reference

If the fragment that contains a callout is a reference, use this option to go to the reference and edit the callout.

Callouts Options

Select this option to open the Callouts preference page (on page 143) where you can configure various callout options.

Comment Callout Actions

The following actions are available in the contextual menu when invoked on a comment callout box:

Reply

Opens a dialog box that allows you to add a reply to a comment or Tracked Changes (on page 3288). When replying to a comment, the dialog box shows the entire conversation in the comment thread, starting with the first comment added in the particular thread, followed by all the replies. After replies are added to a comment thread, they are displayed with an indentation in the callouts and Review view (on page 964).

Mark as Done

A toggle action that marks or unmarks a comment or comment thread as being done. It is also available for Tracked Changes (on page 3288) that are displayed in a callout. When a comment or change is marked as done, the callout is grayed out and cannot be edited unless the action is toggled to the unmarked state. The action applies to the particular comment and all of its descendents. This
is useful for marking comments or changes that have been addressed, leaving only those that still need some attention.

- **Show/Edit Comment**
  Opens a dialog box that displays the discussion thread and allows the current user to edit comments that do not have replies. If you are not the author who inserted the original comment, the dialog box just displays the comment without the possibility of editing it.

- **Remove Comment**
  Removes a selected comment. If you remove a comment that contains replies, all of the replies will also be removed.

- **Callouts Options**
  Select this option to open the Callouts preference page (on page 143) where you can configure various callout options.

- **Edit Attributes**
  Displays an in-place attributes editor (on page 429) that allows you to manage the attributes of an element.

**Edit Profiling Attributes**
Allows you to change the profiling attributes (on page 969) defined on all selected elements.

- **Insert submenu**
  This submenu includes insert actions that are specific to each framework (on page 3282), along with the following general action:

- **Insert Entity**
  Allows you to insert a predefined entity or character entity. Surrogate character entities (range #x10000 to #x10FFFF) are also accepted. Character entities can be entered in one of the following forms:

  - #<decimal value> - e. g. #65
  - &#<decimal value>; - e. g. &#65
  - #x<hexadecimal value> - e. g. #x41
  - &#x<hexadecimal value>; - e. g. &#x41

- **Cut (Ctrl + X (Command + X on OS X))**
  Removes the current selected content from the document and places it in the clipboard.
Copy (Ctrl + C (Command + C on OS X))

Places a copy of the current selected content in the clipboard.

Paste (Ctrl + V (Command + V on OS X))

Inserts the current clipboard content into the document at the cursor position.

Paste special submenu

This submenu includes special paste actions that are specific to each framework (on page 3282), as well as the following general paste actions:

- **Paste As XML**
  Pastes clipboard content that is considered to be XML, preserving its XML structure.

- **Paste As Text**
  Pastes clipboard content, ignoring any structure or styling markup.

Select submenu

This submenu allows you to select the following:

- **Element**
  Selects the entire element at the current cursor position.

- **Content**
  Selects the entire content of the element at the current cursor position, excluding the start and end tag. Performing this action repeatedly will result in the selection of the content of the ancestor of the currently selected element content.

- **Parent**
  Selects the entire parent element at the current cursor position.

Text submenu

This submenu contains the following actions:

- **To Lower Case**
  Converts the selected content to lower case characters.

- **To Upper Case**
  Converts the selected content to upper case characters.

- **Capitalize Sentences**
  Converts to upper case the first character of every selected sentence.
Capitalize Words

Converts to upper case the first character of every selected word.

Count Words

Counts the number of words and characters (no spaces) in the entire document or in the selection for regular content and read-only content.

Note: The content marked as deleted with change tracking (on page 3288) is ignored when counting words.

Convert Hexadecimal Sequence to Character (Ctrl + Shift + X (Command + Shift + X on OS X))

Converts a sequence of hexadecimal characters to the corresponding Unicode character (on page 770). The action can be invoked if there is a selection containing a valid hexadecimal sequence or if the cursor is placed at the right side of a valid hexadecimal sequence. A valid hexadecimal sequence can be composed of 2 to 4 hexadecimal characters and may or may not be preceded by the 0x or 0X prefix. Examples of valid sequences and the characters they will be converted to:

- 0x0045 will be converted to E
- 0X0125 to #
- 265 to #
- 2190 to #

Note: For more information about finding the hexadecimal value of a character, see Finding the Decimal, Hexadecimal, or Character Entity Equivalent (on page 779).

Refactoring submenu

Contains a series of actions designed to alter the XML structure of the document:

†† Toggle Comment

Encloses the currently selected text in an XML comment, or removes the comment if it is commented.

Move Up (Alt + UpArrow)

Moves the current node or selected nodes in front of the previous node.

Move Down (Alt + DownArrow)

Moves the current node or selected nodes after the subsequent node.

Split Element (Alt + Shift + D (Ctrl + Alt + D on OS X))
Splits the content of the closest element that contains the position of the cursor. Thus, if the cursor is positioned at the beginning or at the end of the element, the newly created sibling will be empty.

**Join Elements**

Joins two adjacent block elements that have the same name. The action is available only when the cursor position is between the two adjacent block elements. Also, joining two block elements can be done by pressing the Delete or Backspace keys and the cursor is positioned between the boundaries of these two elements.

**Surround with Tags (Ctrl + E (Command + E on OS X))**

Allows you to choose a tag to enclose a selected portion of content. If there is no selection, the start and end tags are inserted at the cursor position.

- If the Position cursor between tags option (on page 167) is selected in the Content Completion preferences page, the cursor is placed between the start and end tag.
- If the Position cursor between tags option (on page 167) is not selected in the Content Completion preferences page, the cursor is placed at the end of the start tag, in an insert-attribute position.

**Surround with ‘[tag]’ (Ctrl + ForwardSlash (Command + ForwardSlash on OS X))**

Surround the selected content with the last tag used.

**Rename Element**

The element from the cursor position, and any elements with the same name, can be renamed according to the options from the Rename dialog box.

**Delete Element Tags**

Deletes the tags of the closest element that contains the position of the cursor. This operation is also executed if the start or end tags of an element are deleted by pressing the Delete or Backspace keys.

**Remove All Markup**

Removes all the XML markup inside the selected block of content and keeps only the text content.

**Remove Text**
Removes the text content of the selected block of content and keeps the markup intact with empty elements.

**DITA Refactoring Actions**

A variety of built-in XML refactoring operations that pertain to DITA documents with some of the information preconfigured based upon the current context.

**Change Topic ID to File Name**

Use this operation to change the ID of a topic to be the same as its file name.

**Convert CALS Tables to Simple Tables**

Use this operation to convert DITA CALS tables to simple tables. If you invoke this operation from a nested table (a table inside a table), only the nested table will be affected. If it is invoked on a parent table that contains nested tables, all of the contained tables will be converted.

**Convert conrefs to conkeyrefs**

Use this operation to convert `conref` attributes to `conkeyref` attributes.

**Convert Simple Tables to CALS Tables**

Use this operation to convert DITA simple tables to CALS tables. If you invoke this operation from a nested table (a table inside a table), only the nested table will be affected. If it is invoked on a parent table that contains nested tables, all of the contained tables will be converted.

**Convert to Concept**

Use this operation to convert a DITA topic (of any type) to a DITA Concept topic type (for example, Topic to Concept).

**Convert to General Task**

Use this operation to convert a DITA topic (of any type) to a DITA General Task topic type (for example, Task to General Task). A DITA General Task is a less restrictive alternative to the Strict Task information type.

**Convert to Reference**

Use this operation to convert a DITA topic (of any type) to a DITA Reference topic type (for example, Topic to Reference).
Convert to Task
Use this operation to convert a DITA topic (of any type) to a DITA Task topic type (for example, Topic to Task).

Convert to Topic
Use this operation to convert a DITA topic (of any type) to a DITA Topic (for example, Task to Topic).

Convert to Troubleshooting
Use this operation to convert a DITA topic (of any type) to a DITA Troubleshooting topic type (for example, Topic to Troubleshooting).

Rename Key
Available when invoked on a key, and can be used to quickly rename a key. It also updates all references to it. Note that it does not work on DITA 1.3 key scopes.

Attributes Refactoring Actions
Contains built-in XML refactoring operations that pertain to attributes with some of the information preconfigured based upon the current context.

Add/Change attribute
Allows you to change the value of an attribute or insert a new one.

Convert attribute to element
Allows you to change an attribute into an element.

Delete attribute
Allows you to remove one or more attributes.

Rename attribute
Allows you to rename an attribute.

Replace in attribute value
Allows you to search for a text fragment inside an attribute value and change the fragment to a new value.

Comments Refactoring Actions
Contains built-in XML refactoring operations that pertain to comments with some of the information preconfigured based upon the current context.
Delete comments

Allows you to delete comments found inside one or more elements.

Elements Refactoring Actions

Contains built-in XML refactoring operations that pertain to elements with some of the information preconfigured based upon the current context.

Delete element

Allows you to delete elements.

Delete element content

Allows you to delete the content of elements.

Insert element

Allows you to insert new elements.

Rename element

Allows you to rename elements.

Unwrap element

Allows you to remove the surrounding tags of elements, while keeping the content unchanged.

Wrap element

Allows you to surround elements with element tags.

Wrap element content

Allows you to surround the content of elements with element tags.

Fragments Refactoring Actions

Contains built-in XML refactoring operations that pertain to XML fragments with some of the information preconfigured based upon the current context.

Insert XML fragment

Allows you to insert an XML fragment.

Replace element content with XML fragment

Allows you to replace the content of elements with an XML fragment.

Replace element with XML fragment
Allows you to replace elements with an XML fragment.

**JATSKit Refactoring Actions**

Available for JATS documents. Contains built-in XML refactoring operations that pertain to JATS documents with some of the information preconfigured based upon the current context.

**Add BITS DOCTYPE - NLM/NCBI Book Interchange 2.0**

Adds an NLM 'BITS' 2.0 DOCTYPE declaration.

**Add Blue DOCTYPE - NISO JATS Publishing 1.1**

Adds a JATS 'Blue' 1.1 DOCTYPE declaration.

**Normalize IDs**

Assigned IDs are normalized and IDs are assigned to some elements that are missing them.

**Review submenu**

This submenu includes the following actions:

- ✔ **Track Changes**
  
  Enables or disables the *Track Changes (on page 3288)* support for the current document.

- ✔ **Accept Change(s) and Move to Next**
  
  Accepts the *Tracked Change (on page 3288)* located at the cursor position or all of the changes in a selection and then moves to the next change. If you select a part of a deletion or insertion change, only the selected content is accepted.

- ✔ **Accept All Changes**
  
  Accepts all *Tracked Changes (on page 3288)* in the current document.

- ❌ **Reject Change(s) and Move to Next**
  
  Rejects the *Tracked Change (on page 3288)* located at the cursor position or all of the changes in a selection and then moves to the next change. If you select a part of a deletion or insertion change, only the selected content is rejected.

- ❌ **Reject All Changes**
  
  Rejects all *Tracked Changes (on page 3288)* in the current document.

- 💬 **Comment Change**
Opens a dialog box that allows you to add a comment to an existing 
_Tracked Change (on page 3288)_ . The comment will appear in a callout 
and a tooltip when hovering over the change. If the action is selected on 
an existing commented change, the dialog box will allow you to edit the 
comment.

**Highlight**

Enables the highlighting tool that allows you to mark text in your 
document.

**Colors**

Allows you to select the color for highlighting text.

**Stop highlighting**

Use this action to deactivate the highlighting tool.

**Remove highlight(s)**

Use this action to remove highlighting from the document.

**Add Comment**

Inserts a comment at the cursor position. The comment appears in a 
callout box and a tooltip (when hovering over the change).

**Show/Edit Comment**

Opens a dialog box that displays the discussion thread and allows the 
current user to edit comments that do not have replies. If you are not the 
author who inserted the original comment, the dialog box just displays the 
comment without the possibility of editing it.

**Remove Comment**

Removes a selected comment. If you remove a comment that contains 
replies, all of the replies will also be removed.

**Manage Reviews**

Opens the _Review view (on page 964)_ .

**Manage IDs submenu**

This submenu is available for XML documents that have an associated DTD, XML 
Schema, or Relax NG schema (not available for DITA documents). It includes the 
following actions:

**Rename in**
Renames the ID and all its occurrences. Selecting this action opens the 
**Rename XML ID** dialog box. This dialog box lets you insert the new ID value and choose the scope of the rename operation.

**Search References**

Searches for the references of the ID. By default, the scope of this action is the current project. If you configure a scope using the **Select the scope for the Search and Refactor operations** (on page 1129) dialog box, this scope will be used instead.

**Search References in**

Searches for the references of the ID. Selecting this action opens the **Select the scope for the Search and Refactor operations** (on page 1129).

**Search Occurrences in file**

Searches for the occurrences of the ID in the current document.

**Folding submenu**

This submenu includes the following actions:

- **Toggle Fold**
  Toggles the state of the current fold.

- **Collapse Other Folds (Ctrl + NumPad/ (Command + NumPad/ on OS X))**
  Folds all the elements except the current element.

- **Collapse Child Folds (Ctrl + NumPad. (Command + NumPad. on OS X))**
  Folds the elements indented with one level inside the current element.

- **Expand Child Folds**
  Unfolds all child elements of the currently selected element.

- **Expand All (Ctrl + NumPad* (Command + NumPad* on OS X))**
  Unfolds all elements in the current document.

**Inspect Styles**

Opens the **CSS Inspector view** (on page 439) that allows you to examine the CSS rules that match the currently selected element.

**Options**

Opens the **Author mode options page** (on page 131).
Document Type-Specific Contextual Menu Actions in Author Mode

Other document type-specific actions are available in the contextual menu of Author mode for the following document types (click the links to see the default actions that are available for each specific document types):

- DocBook4 Author Actions (on page 1539)
- DocBook5 Author Actions (on page 1555)
- DITA Author Actions (on page 1575)
- DITA Map Author Actions (on page 1598)
- XHTML Author Actions (on page 1605)
- TEI ODD Author Actions (on page 1623)
- TEI P5 Author Actions (on page 1613)
- JATS Author Actions (on page 1632)

Validating XML Documents

The W3C XML specification states that a program should not continue to process an XML document if it finds a validation error. The reason is that XML software should be easy to write and all XML documents should be compatible. With HTML, for example, it is possible to create documents with lots of errors (for instance, when you forget an end tag). One of the main reasons that various HTML browsers have performance and compatibility problems is that they have different methods of figuring out how to render a document when an HTML error is encountered. Using XML helps to eliminate such problems.

Even when creating XML documents, errors are easily introduced. When working with large projects or a large number of files, the probability that errors will occur is even greater. Preventing and solving errors in your projects can be time consuming and frustrating. Fortunately, Oxygen XML Editor provides validation functions that allow you to easily identify errors and their location.

Related Information:

- Working with Modular XML Files in the Master Files Context (on page 1126)

Checking XML Well-Formedness

A Well-formed XML document is a document that conforms to the XML syntax rules. A Namespace Well-Formed XML document is a document that is Well-formed XML and is also Namespace-wellformed and Namespace-valid.
Well-Formedness Rules

The XML Syntax rules for Well-formed XML include:

- All XML elements must have a closing tag.
- XML tags are case-sensitive.
- All XML elements must be properly nested.
- All XML documents must have a root element.
- Attribute values must always be quoted.
- With XML, whitespace is preserved.

The Namespace-wellformed rules include:

- All element and attribute names contain either zero or one colon.
- No entity names, processing instruction targets, or notation names contain any colons.

The Namespace-valid rules include:

- The xml prefix is by definition bound to the namespace name: http://www.w3.org/XML/1998/namespace. It MAY be declared, but MUST NOT be undeclared or bound to any other namespace name. Other prefixes MUST NOT be bound to this namespace name.
- The xmlns prefix is used only to declare namespace bindings and is by definition bound to the namespace name: http://www.w3.org/2000/xmlns/. It MUST NOT be declared or undeclared. Other prefixes MUST NOT be bound to this namespace name.
- All other prefixes beginning with the three-letter sequence x, m, l, in any case combination, are reserved. This means that users SHOULD NOT use them except as defined by later specifications and processors MUST NOT treat them as fatal errors.
- The namespace prefix (unless it is xml or xmlns) MUST have been declared in a namespace declaration attribute in either the start tag of the element where the prefix is used or in an ancestor element (for example, an element in whose content the prefixed markup occurs). Furthermore, the attribute value in the innermost such declaration MUST NOT be an empty string.

Check for Well-Formedness

To check if a document is Namespace Well-Formed XML and Namespace-valid:

- Select the Check Well-Formedness (Ctrl + Shift + W (Command + Shift + W on OS X)) action from the Validation drop-down menu on the toolbar (or the Document > Validate menu).
- A selection of files can be checked for well-formedness by selecting the Check Well-Formedness action from the Validate submenu when invoking the contextual menu in the Project view (on page 333).
Result: If any errors are found, the result is displayed in the message panel at the bottom of the editor. Each error is displayed as one record in the result list and is accompanied by an error message. Clicking the record will open the document containing the error and highlight its approximate location.

Example: A non Well-formed XML Document

```
<root><tag></root>
```

When Check Well-Formedness is performed the following error is raised:

```
The element type "tag" must be terminated by the matching end-tag "</tag>"
```

To resolve the error, click the record in the result list and it will locate and highlight the approximate position of the error. In this case, identify the tag that is missing an end tag and insert </tag>.

Example: A non Namespace-wellformed Document

```
<prefix:elem></prefix:elem>
```

When Check document form is performed the following error is raised:

```
The prefix "prefix" for element "prefix:elem" is not bound.
```

Example: A non Namespace-valid Document

```
<x:y></x:y>
```

When Check document form is performed the following error is raised:

```
The prefix "x" for element "x:y" is not bound.
```

Validating XML Documents Against a Schema

A Valid XML document is a Well-Formed XML document that also conforms to the rules of a schema that defines the legal elements of an XML document. The schema type can be: XML Schema, Relax NG (full or compact syntax), Schematron, Document Type Definition (DTD), or Namespace-based Validation Dispatching Language (NVDL).

The purpose of the schema is to define the legal building blocks of an XML document. It defines the document structure with a list of legal elements.

This section contains topics that explain the automatic and manual validation possibilities in Oxygen XML Editor, how validation errors are presented, and information about built-in and custom validation scenarios.
For information about how to associate a schema for the purposes of validation (and content completion), see the `Associating a Schema to XML Documents (on page 1112)` section.

**Automatic Validation**

By default, Oxygen XML Editor automatically checks for validation errors in the document as you are editing. The `Enable automatic validation option (on page 181)` in the `Document Checking preferences page (on page 180)` controls whether or not all validation errors and warnings will automatically be highlighted in the editor panel.

The automatic validation starts parsing the document and marking the errors after a configurable delay (on page 181) from the last key typed. Errors are highlighted with underline markers in the main editor panel and small rectangles on the right side ruler of the editor panel. Hovering over a validation error presents a tooltip message with more details about the error.

If the error message is long and it is not displayed completely in the error line at the bottom of the editing area, double-clicking the error icon at the left of the error line or on the error line displays an information dialog box with the full error message. You can use the arrow buttons in this dialog box to navigate through the errors issued by the Automatic Validation feature.

**Related Information:**
- Manual Validation Actions (on page 1082)
- Presenting Validation Errors in Text Mode (on page 364)
- Presenting Validation Errors in Author Mode (on page 445)

**Manual Validation Actions**

You can choose to validate documents at any time by using the manual validation actions that are available in Oxygen XML Editor.

**Manual Validation Actions**

To manually validate the currently edited document, use one of the following actions:

- ✔️ **Validate (Ctrl + Shift + V (Command + Shift + V on OS X))**
  
  Available from the ✔️ Validation drop-down menu on the toolbar, the **Document > Validate** menu, or from the Validate submenu when invoking the contextual menu in the Project view (on page 333).
An error list is presented in the message panel at the bottom of the editor. Markup of the current document is checked to conform with the specified DTD, XML Schema, or Relax NG schema rules. This action also re-parses the XML Catalogs (on page 3289) and resets the schema used for content completion.

☑ Validate (cached)

Available from the ☐ Validation drop-down menu on the toolbar or the Document > Validate menu.

This action caches the schema, allowing it to be reused for the next validation. Markup of the current document is checked to conform with the specified DTD, XML Schema, or Relax NG schema rules.

Note: Automatic validation also caches the associated schema.

Validate with

Available from the ☐ Validation drop-down menu on the toolbar, (or Document > Validate menu).

This action opens a dialog box that allows you to specify a schema for validating the current document (on page 1116).

You can use this action to validate the current document using a schema of your choice (XML Schema, DTD, Relax NG, NVDL, Schematron schema), other than the associated one. An error list is presented in the message panel at the bottom of the editor. Markup of current document is checked to conform with the specified schema rules.

Note: The Validate with action does not work for files loaded through an Oxygen XML Editor custom protocol plugin (on page 2595) developed independently and added to Oxygen XML Editor after installation.

Validate with Schema

Available from the Validate submenu when invoking contextual menu in the Project view (on page 333).

This action opens a dialog box that allows you to specify a schema for validating all selected files (on page 1117).

Other Validation Options

To quickly open the schema used for validating the current document, select the ☐ Open Associated Schema action from the toolbar (or Document > Schema menu).
The **Validation options** button, available in the **Document > Validate** menu, allows you to quickly access to the validation options *(on page 191)* for the built-in validator in the Oxygen XML Editor preferences page.

**Tip:** If a large number of validation errors are detected and the validation process takes too long, you can limit the maximum number of reported errors in the **Document Checking** preferences page *(on page 180)*.

### Related Information:

- Automatic Validation *(on page 1082)*
- Presenting Validation Errors in Text Mode *(on page 364)*
- Presenting Validation Errors in Author Mode *(on page 445)*

### Presenting Validation Errors in Text Mode

By default, Oxygen XML Editor automatically validates documents *(on page 1082)* while editing in the **Text** mode, and actions are also available to manually validate documents *(on page 1082)* on-request.

#### Figure 389. Presenting Validation Errors in Text Mode

![Image of validation errors in Text mode]

### Validation Marker Locations

In **Text** mode, validation issues are marked in the following locations:

- In the main editing pane, with the issue underlined in a color according to the type of issue.
In the right-side vertical stripe, with a marker that is colored according to the type of issue.

For attributes with detected issues, in the Attributes view (on page 351), with the attribute and its value colored according to the type of issue.

Validation Marker Colors

The colors for each type of issue are as follows:

- **Validation Errors** [Red] - By default, the underline in the editing pane, the marker in the right vertical stripe, and the foreground color of the attribute in the Attributes view are colored in red.

- **Validation Warnings** [Yellow] - By default, the underline in the editing pane, the marker in the right vertical stripe, and the foreground color of the attribute in the Attributes view are colored in yellow.

- **Validation Info** [Blue] - By default, the underline in the editing pane, the marker in the right vertical stripe, and the foreground color of the attribute in the Attributes view are colored in blue.

You can configure the color for each type in the **Document Checking** preferences page (on page 180).

Validation Markers in the Right-Side Stripe

Also, the stripe on the right side of the editor panel is designed to display the issues found during the validation process and to help you locate them in the document. The stripe contains the following:

**Upper Part of the Stripe**

A success indicator square will turn green if the validation is successful or only info messages are found, red if validation errors are found, or yellow if only validation warnings are found. More details about the issues are displayed in a tool tip when you hover over indicator square. If there are numerous problems, only the first three are presented in the tool tip.

**Middle Part of the Stripe**

Errors are presented with red markers, warnings with yellow markers, and info message with blue markers. If you want to limit the number of markers that are displayed, open the Preferences dialog box (Options > Preferences) (on page 79), go to Editor > Document checking, and specify the desired limit in the **Maximum number of validation highlights** option (on page 180).

Clicking a marker will highlight the corresponding text area in the editor. The validation message is also displayed both in a tool tip (when hovering over the marker) and in the message area on the bottom of the editor panel (clicking the Document checking options button opens the **Document Checking** preferences page (on page 180).

**Bottom Part of the Stripe**
Two navigation arrows (➡️) allow you to jump to the next or previous issue. The same actions can be triggered from Document > Automatic validation > Next error (Ctrl + Period (Command + Period on OS X)) and Document > Automatic validation > Previous error (Ctrl + Comma (Command + Comma on OS X)). Also, the ✗ Remove All button can be used to clear all the validation markers.

Hovering Over Validation Issues

Hovering over a validation issue presents a tooltip message with more details about the problem and possible quick fixes (on page 1109) (if available for that issue). Also, when hovering over an issue, pressing F2 will change the focus to the tooltip where you can use Tab and Shift + Tab to navigate between quick fixes and Space to trigger them.

Details About Validation Issues

- Information about the issue is also displayed in the message area on the bottom of the editor panel (clicking the Document checking options button opens the Document Checking preferences page (on page 180) where you can configure some validation options (such as the colors used to present the validation issues).
- Status messages from every validation action are also logged in the Information view (on page 822).
- If you want to see all the validation messages grouped in the Results panel (on page 357), you should use the Validate action from the toolbar or Document > Validate menu..

Related Information:

- Validating XML Documents Against a Schema (on page 1081)
- Presenting Schematron Validation Issues (on page 1464)

Presenting Validation Errors in Author Mode

By default, Oxygen XML Editor automatically validates documents (on page 1082) while editing in the Author mode, and actions are also available to manually validate documents (on page 1082) on-request.

Figure 390. Presenting Validation Errors in Author Mode
Validation Marker Locations

In Author mode, validation issues are marked in the following locations:

- In the main editing pane, with the issue underlined in a color according to the type of issue.
- In the right-side vertical stripe, with a marker that is colored according to the type of issue.
- For attributes with detected issues, in the Attributes view (on page 426), with the attribute and its value colored according to the type of issue.

Validation Marker Colors

The colors for each type of issue are as follows:

- **Validation Errors** [Red] - By default, the underline in the editing pane, the marker in the right vertical stripe, and the foreground color of the attribute in the Attributes view are colored in red.
- **Validation Warnings** [Yellow] - By default, the underline in the editing pane, the marker in the right vertical stripe, and the foreground color of the attribute in the Attributes view are colored in yellow.
- **Validation Info** [Blue] - By default, the underline in the editing pane, the marker in the right vertical stripe, and the foreground color of the attribute in the Attributes view are colored in blue.

Validation Markers in the Right-Side Stripe

Also, the stripe on the right side of the editor panel is designed to display the issues found during the validation process and to help you locate them in the document. The stripe contains the following:

**Upper Part of the Stripe**

A success indicator square will turn green if the validation is successful or only info messages are found, red if validation errors are found, or yellow if only validation
warnings are found. More details about the issues are displayed in a tool tip when you hover over indicator square. If there are numerous problems, only the first three are presented in the tool tip.

**Middle Part of the Stripe**

Errors are presented with red markers, warnings with yellow markers, and info message with blue markers. If you want to limit the number of markers that are displayed, open the Preferences dialog box (Options > Preferences) (on page 79), go to Editor > Document checking, and specify the desired limit in the Maximum number of validation highlights option (on page 180).

Clicking a marker will highlight the corresponding text area in the editor. The validation message is also displayed both in a tool tip (when hovering over the marker) and in the message area on the bottom of the editor panel (clicking the Document checking options button opens the Document Checking preferences page (on page 180).

**Bottom Part of the Stripe**

Two navigation arrows (←) allow you to jump to the next or previous issue. The same actions can be triggered from Document > Automatic validation > Next error (Ctrl + Period (Command + Period on OS X)) and Document > Automatic validation > Previous error (Ctrl + Comma (Command + Comma on OS X)). Also, the Remove All button can be used to clear all the validation markers.

You can configure the color for each type in the Document Checking preferences page (on page 180).

**Hovering Over Validation Issues**

Hovering over a validation issue presents a tooltip message with more details about the problem and possible quick fixes (on page 1109) (if available for that issue). Also, when hovering over an issue, pressing F2 will change the focus to the tooltip where you can use Tab and Shift + Tab to navigate between quick fixes and Space to trigger them.

**Details About Validation Issues**

- Information about the issue is also displayed in the message area on the bottom of the editor panel (clicking the Document checking options button opens the Document Checking preferences page (on page 180) where you can configure some validation options (such as the colors used to present the validation issues).
- Status messages from every validation action are also logged in the Information view (on page 822).
• If you want to see all the validation messages grouped in the Results panel (on page 357), you should use the Validate action from the toolbar or Document > Validate menu.

Related Information:

• Validating XML Documents Against a Schema (on page 1081)

• Presenting Schematron Validation Issues (on page 1464)

Customizing Assert Error Messages

To customize the error messages that the Xerces or Saxon validation engines display for the assert and assertion elements, set the message attribute on these elements.

  • For Xerces, the message attribute has to belong to the http://xerces.apache.org namespace.
  • For Saxon, the message attribute has to belong to the http://saxon.sourceforge.net/ namespace.

The value of the message attribute is the error message displayed if the assertion fails.

Custom Validators

If you need to validate the edited document with a validation engine that is different from the built-in engine, you can configure external validators in the Custom Validation Engines preferences page (on page 181). After a custom validation engine is properly configured (on page 181), it can be applied on the current document by selecting it from the list of custom validation engines in the Validation toolbar drop-down menu. The document is validated against the schema declared in the document.

Some validators are configured by default but there are third-party processors that do not support the output message format (on page 1091) of Oxygen XML Editor for linked messages:

  • Saxon-EE - Included in Oxygen XML Editor. It is associated to XML Editor and XSD Editor. It is able to validate XML Schema schemas and XML documents against XML Schema schemas. The validation is done according to the W3C XML Schema 1.0 or 1.1. This can be configured in Preferences (on page 192).
  • MSXML 4.0 - Included in Oxygen XML Editor (Windows edition only). It is associated to XML Editor, XSD Editor and XSL Editor. It is able to validate the edited document against XML Schema, internal DTD (included in the XML document), external DTD or a custom schema type.
  • MSXML.NET - Included in Oxygen XML Editor (Windows edition only). It is associated to XML Editor, XSD Editor and XSL Editor. It is able to validate the edited document against XML Schema, internal DTD (included in the XML document), external DTD or a custom schema type.
• **LIBXML** - Not included in Oxygen XML Editor and, depending on your operating system, the libraries need to be downloaded and installed separately from [http://xmlsoft.org/downloads.html](http://xmlsoft.org/downloads.html). Afterwards, the **PATH** environment variable needs to be updated to contain the parent folder of the `xmllint` executable. Alternatively, you can go to Options > Preferences > Editor > Custom Validation Engines, edit the LIBXML validation engine and set a custom path to the `xmllint` executable.

The LIBXML validator is associated with the XML Editor. It is able to validate the edited document against XML Schema, Relax NG schema full syntax, internal DTD (included in the XML document) or a custom schema type. Support for **XML Catalogs** (on page 3289) (the **--catalogs** parameter) and XInclude processing (**--xinclude**) are enabled by default in the preconfigured LIBXML validator. The **--postvalid** parameter is also set by default and it allows LIBXML to validate correctly the main document even if the XInclude fragments contain IDREFS to ID's located in other fragments.

For validation against an external DTD specified by URI in the XML document, add the **--dtdvalid** `${ds}` parameter manually to the DTD validation command line. `${ds}` represents the detected DTD declaration in the XML document.

⚠️ **CAUTION:** File paths containing spaces are not handled correctly in the LIBXML processor. For example, the built-in **XML Catalog** (on page 3289) files of the built-in document types (DocBook, TEI, DITA, etc.) are not handled by LIBXML if Oxygen XML Editor is installed in the default location on Windows (`C:\Program Files`) because the built-in **XML catalog** files are stored in the **frameworks** subfolder of the installation folder and in this case, the file path contains at least one space character.

⚠️ **Attention:** On OS X, if the full path to the LIBXML executable file is not specified in the **Executable path** text field, some errors may occur during validation against a W3C XML Schema, such as:

```
Unimplemented block at ... xsmlschema.c
```

To avoid these errors, specify the full path to the LIBXML executable file.

• **XSV** - Not included in Oxygen XML Editor. Windows and Linux distributions of XSV can be downloaded from [http://www.cogsci.ed.ac.uk/~ht/xsv-status.html](http://www.cogsci.ed.ac.uk/~ht/xsv-status.html). The executable path is already configured in Oxygen XML Editor (on page 181) for the `[OXYGEN_INSTALL_DIR]/xsv` installation folder. If it is installed in a different folder, the predefined executable path must be corrected in Preferences. (on page 181) It is associated to XML Editor and XSD Editor. It is able to validate the edited document against XML Schema or a custom schema type.

• **SQC (Schema Quality Checker from IBM)** - Not included in Oxygen XML Editor. It can be downloaded from here (it comes as a .zip file, at the time of this writing SQC2.2.1.zip is about 3 megabytes). The executable path and working directory are already configured for the SQC installation directory `[OXYGEN_INSTALL_DIR]/sqa`. If it is installed in a different folder, the
predefined executable path and working directory must be corrected in the Preferences page. (on page 181) It is associated to XSD Editor.

A custom validator cannot be applied on files loaded through an Oxygen XML Editor custom protocol plugin (on page 2595) developed independently and added to Oxygen XML Editor after installation.

Linked Output Messages of an External Engine

Validation engines display messages in an output view at the bottom of the Oxygen XML Editor window. If such an output message (warning, error, fatal error, etc) spans between three to six lines of text and has the format specified below, then the message is linked to a location in the validated document. Clicking the message in the output view highlights the location of the message in an editor panel containing the file referenced in the message. This behavior is similar to the linked messages generated by the default built-in validator.

Linked messages have the following format:

- **Type**: [F|E|W] (the string Type: followed by a letter for the type of the message: fatal error, error, warning). This property is optional in a linked message.
- **SystemID**: A system ID of a file (the string SystemID: followed by the system ID of the file that will be opened for highlighting when the message is clicked in the output message - usually the validated file, the schema file or an included file).
- **Line**: A line number (the string Line: followed by the number of the line that will be highlighted).
- **Column**: A column number (the string Column: followed by the number of the column where the highlight will start on the highlighted line). This property is optional in a linked message.
- **EndLine**: A line number (the string EndLine: followed by the number of the line where the highlight ends). This property is optional in a linked message.
- **EndColumn**: A column number (the string EndColumn: followed by the number of the column where the highlight ends on the end line). This property is optional in a linked message.

**Note:** The Line/Column pair works in conjunction with the EndLine/EndColumn pair. Thus, if both pairs are specified, then the highlight starts at Line/Column and ends at EndLine/EndColumn. If the EndLine/EndColumn pair is missing, the highlight starts from the beginning of the line identified by the Line parameter and ends at the column identified by the Column parameter.

- **AdditionalInfoURL**: The URL string pointing to a remote location where additional information about the error can be found - this line is optional in a linked message.
- **Description**: Message content (the string Description: followed by the content of the message that will be displayed in the output view).

**Example:**

Example of how a custom validation engine can report an error using the format specified above:
Using Saxon Integrated Extension Functions

Saxon, the transformation and validation engine used by Oxygen XML Editor, can be customized by adding custom functions (called Integrated Extension Functions) that can be called from XPath.

To define such a function, follow these steps:

1. Create a file with a Java class that extends net.sf.saxon.lib.ExtensionFunctionDefinition. Here is an example:

```java
private static class ShiftLeft extends ExtensionFunctionDefinition {
    @Override
    public StructuredQName getFunctionQName() {
        return new StructuredQName("eg", "http://example.com/saxon-extension", "shift-left");
    }

    @Override
    public SequenceType[] getArgumentTypes() {
        return new SequenceType[]{SequenceType.SINGLE_INTEGER, SequenceType.SINGLE_INTEGER};
    }

    @Override
    public SequenceType getResultType(SequenceType[] suppliedArgumentTypes) {
        return SequenceType.SINGLE_INTEGER;
    }

    @Override
    public SequenceType getReturnType(SequenceType[] suppliedArgumentTypes) {
        return SequenceType.SINGLE_INTEGER;
    }
```
```java
public ExtensionFunctionCall makeCallExpression() {
    return new ExtensionFunctionCall() {
        public SequenceIterator call(SequenceIterator[] arguments, XPathContext context)
            throws XPathException {
            long v0 = ((IntegerValue)arguments[0].next()).longValue();
            long v1 = ((IntegerValue)arguments[1].next()).longValue();
            long result = v0<<v1;
            return Value.asIterator(Int64Value.makeIntegerValue(result));
        }
    };
}
```

2. Compile the class and add it to a JAR file.
3. Add a file called `net.sf.saxon.lib.ExtensionFunctionDefinition` that contains the fully qualified name of the Java class in the `META-INF/services/` folder of the JAR file.

**Note:** To add more function definitions in the same JAR file, you need to add their fully qualified names on different lines.

To enable Oxygen XML Editor to pick up your custom function definition, the JAR file should be added to the classpath of the transformer. Here are some possibilities:

- If you develop a framework, you just need to link the JAR file in the **Classpath** tab (on page 99).
- In a validation scenario (on page 1094), you can use the **Extensions** button to open a dialog box where you can add libraries.
- In a transformation scenario, you can use the **Extensions** button in the **XSLT** tab (on page 1676) to open a dialog box where you can add libraries.
- You can also create a plugin that contributes such a JAR file in the classpath (on page 2580).

Validation Scenarios

A complex XML document is split in smaller interrelated modules. These modules do not make much sense individually and cannot be validated in isolation due to interdependencies with other modules. Oxygen XML Editor validates the main module of the document when an imported module is checked for errors.

A typical example is the chunking of a DocBook XSL stylesheet that has **chunk.xsl** as the main module and **param.xsl**, **chunk-common.xsl**, and **chunk-code.xsl** as imported modules. **param.xsl** only defines XSLT parameters. The module **chunk-common.xsl** defines an XSLT template with the name **chunk**. **Chunk-code.xsl** calls this template. The parameters defined in **param.xsl** are used in the other modules without being redefined.
Validating `chunk-code.xsl` as an individual XSLT stylesheet generates misleading errors regarding parameters and templates that are used but undefined. These errors are only caused by ignoring the context in which this module is used in real XSLT transformations and in which it is validated. To validate such a module, define a validation scenario to set the main module of the stylesheet and the validation engine used to find the errors. Usually this engine applies the transformation during the validation process to detect the errors that the transformation generates.

You can validate a stylesheet with several engines to make sure that you can use it in various environments and have the same results. For example, an XSLT stylesheet may be applied with Saxon 6.5, Xalan, and MSXML 4.0 engines in different production systems.

Other examples of documents that can benefit from a validation scenario include:

- A complex XQuery file with a main module that imports modules developed independently but validated in the context of the main module of the query. In an XQuery validation scenario, the default validator of Oxygen XML Editor (Saxon 9) or any connection to a database that supports validation (Berkeley DB XML Database, eXist XML Database, MarkLogic version 5 or newer) can be set as a validation engine.
- An XML document in which the `master file (on page 3284)` includes smaller fragment files using XML entity references.

**Note:** If a `master file` is associated with the current file, the validation scenarios defined in the `master file`, along with any Schematron schema defined in the default scenarios for that particular `framework`, are used for the validation. These take precedence over other types of validation units defined in the default scenarios for the particular `framework`. For more information on `master files`, see Master Files Support (on page 726) or Working with Modular XML Files in the Master Files Context (on page 1126).

For more information about how to use a validation scenario in Oxygen XML Editor, watch our video demonstration:

[https://www.youtube.com/embed/9RMPcckVMJA](https://www.youtube.com/embed/9RMPcckVMJA)

**Related Information:**

- Validating XML Documents Against a Schema (on page 1081)

- Presenting Validation Errors in Author Mode (on page 445)

- Presenting Validation Errors in Text Mode (on page 364)
Creating a New Validation Scenario

To create a validation scenario, follow these steps:

1. Select the Configure Validation Scenario(s) from the Validation toolbar drop-down menu, or from the Document > Validate menu (or the Validate submenu when invoking the contextual menu on a file in the Project view (on page 333)).

The Configure Validation Scenario(s) dialog box is displayed. It contains built-in and user-defined scenarios. The built-in scenarios are organized in categories depending on the type of file they apply to and you can identify them by a yellow key icon that marks them as read-only. The user-defined scenarios are organized under a single category. The default scenarios for the particular framework (on page 3282) are rendered in bold.

Note: If a master file is associated with the current file, the validation scenarios defined in the master file, along with any Schematron schema defined in the default scenarios for that particular framework, are used for the validation. These take precedence over other types of validation units defined in the default scenarios for the particular framework. For more information on master files, see Master Files Support (on page 726) or Working with Modular XML Files in the Master Files Context (on page 1126).

Figure 391. Configure Validation Scenario Dialog Box

The top section of the dialog box contains a filter that allows you to search through the scenarios list and the Settings button allows you to configure the following options:

**Show all scenarios**

Select this option to display all the available scenarios, regardless of the document they are associated with.

**Show only the scenarios available for the editor**
Select this option to only display the scenarios that Oxygen XML Editor can apply for the current document type.

**Show associated scenarios**

Select this option to only display the scenarios associated with the document you are editing.

**Import scenarios**

This option opens the **Import scenarios** dialog box that allows you to select the `scenarios` file that contains the scenarios you want to import. If one of the scenarios you import is identical to an existing scenario, Oxygen XML Editor ignores it. If a conflict appears (an imported scenario has the same name as an existing one), you can choose between two options:

- Keep or replace the existing scenario.
- Keep both scenarios.

Note: When you keep both scenarios, Oxygen XML Editor adds `imported` to the name of the imported scenario.

**Export selected scenarios**

Use this option to export selected scenarios individually. Oxygen XML Editor creates a `scenarios` file that contains the scenarios that you export. This is useful if you want to share scenarios with others or export them to another computer.

2. To add a scenario, click the **New** button.

A validation scenario configuration dialog box is displayed and it lists all the validation units for the scenario.

Figure 392. Validation Scenario Configuration Dialog Box
This scenario configuration dialog box allows you to configure the following information and options:

**Name**

The name of the validation scenario.

**Storage**

You can choose between storing the scenario in the Project Options (on page 3286) or Global Options (on page 3283).

**URL of the file to validate**

The URL of the main module that includes the current module. It is also the entry module of the validation process when the current one is validated. To edit the URL, double-click its cell and specify the URL of the main module by doing one of the following:

- Enter the URL in the text field or select it from the drop-down list.
- Use the **Browse** drop-down button to browse for a local, remote, or archived file.
- Use the **Insert Editor Variable** button to insert an editor variable (on page 276) or a custom editor variable (on page 284).

Figure 393. Insert an Editor Variable

<table>
<thead>
<tr>
<th>Variable</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>${Desktop}</td>
<td>My Desktop</td>
</tr>
<tr>
<td>${startdir}</td>
<td>Start directory of custom validator</td>
</tr>
<tr>
<td>${standardparams}</td>
<td>List of standard parameters for command line</td>
</tr>
<tr>
<td>${fn}</td>
<td>The current file name without extension</td>
</tr>
<tr>
<td>${currentfile.URL}</td>
<td>The path of the currently edited file (URL)</td>
</tr>
<tr>
<td>${dfu}</td>
<td>The path of current file directory (URL)</td>
</tr>
<tr>
<td>${frameworks}</td>
<td>Oxygen frameworks directory (URL)</td>
</tr>
<tr>
<td>${project}</td>
<td>Project directory (URL)</td>
</tr>
<tr>
<td>${oxygenhome}</td>
<td>Oxygen installation directory (URL)</td>
</tr>
<tr>
<td>${home}</td>
<td>The path to user home directory (URL)</td>
</tr>
<tr>
<td>${platform}</td>
<td>Project name</td>
</tr>
<tr>
<td>${envVAR_NAME}</td>
<td>Value of environment variable VAR_NAME</td>
</tr>
<tr>
<td>${systemVAR_VARNAME}</td>
<td>Value of system variable varname</td>
</tr>
</tbody>
</table>

**File type**

The type of the document that is validated in the current validation unit. Oxygen XML Editor automatically selects the file type depending on the value of the **URL of the file to validate** field.

**Validation engine**

You can select one of the engines available in Oxygen XML Editor for validation of the particular document type.
Default engine means that the default engine is used to run the validation for the current document type, as specified in the preferences page for that type of document (for example, XSLT preferences page (on page 200), XQuery preferences page (on page 208), XML Schema preferences page (on page 192)).

The DITA Validation engine performs DITA-specific checks in the context of the specifications (it is similar to the checks done with the DITA Maps Manager Validate and Check for Completeness action (on page 3036), but for a local file rather than an entire DITA map (on page 3281)).

The Table Layout Validation engine looks for table layout problems (for more information, see Report table layout problems (on page 3040)).

Automatic validation

If this option is selected, the validation operation defined by this row is also applied by the automatic validation feature (on page 1082). If the Automatic validation feature is disabled in the Document Checking preferences page (on page 180), then this option is ignored, as the preference setting has a higher priority.

Schema

This option becomes active when you set the File type to XML Document and allows you to specify the schema used for the validation unit.

Specify Schema

Opens the Specify Schema dialog box that allows you to set a schema to be used for validating XML documents.

Figure 394. Specify Schema Dialog Box

The Specify Schema dialog box contains the following options:

Use detected schema
Uses the schema detected for the particular document (on page 1113).

**Use custom schema**

Allows you to specify the schema using the following options:

- **URL** - Allows you to specify or select a URL for the schema. It also keeps a history of the last used schemas. The URL must point to the schema file that can be loaded from the local disk or from a remote server through HTTP(S), FTP(S) or a custom protocol (on page 2610). You can specify the URL by using the text field, the history drop-down, the `Insert Editor Variables` (on page 276) button, or the browsing actions in the `Browse` drop-down list.

- **Schema type** - Select a possible schema type from this combo box that is populated based on the extension of the schema file that was entered in the URL field. The possible schema types are: XML Schema, DTD, Relax NG, Relax NG Compact, Schematron, or NVDL.

- **Embedded Schematron rules** - If you have selected XML Schema or Relax NG schemas with embedded Schematron rules and you want to use those embedded rules, select this option.

- **Extensions** - Opens a dialog box that allows you to specify Java extension JARs (on page 3283) to be used during the validation.

- **Public ID** - Allows you to specify a public ID if you have selected a DTD.

- **Schematron phase** - If you select a Schematron schema, this drop-down list allows you to select a Schematron phase that you want to use for validation. The listed phases are defined in the Schematron document.

**Move Up**

Moves the selected scenario up one spot in the list.

**Move Down**

Moves the selected scenario down one spot in the list.

**Add**

Adds a new validation unit to the list.

**Remove**

Removes an existing validation unit from the list.
3. Configure any of the existing validation units according to the information above, and you can use the buttons at the bottom of the table to add, remove, or move validation units. Note that if you add a Schematron validation unit, you can also select the **validation phase**.

4. Press **OK**.
   The newly created validation scenario will now be included in the list of scenarios in the **Configure Validation Scenario(s)** dialog box. You can select the scenario in this dialog box to associate it with the current document and press the **Apply associated** button to run the validation scenario.

**Editing a Validation Scenario**

To edit an existing validation scenario, follow these steps:

1. Select the **Configure Validation Scenario(s)** from the **Validation** toolbar drop-down menu, or from the **Document > Validate** menu (or the **Validate** submenu when invoking the contextual menu on a file in the **Project view** (on page 333)).
   The **Configure Validation Scenario(s)** dialog box is displayed. It contains built-in and user-defined scenarios. The built-in scenarios are organized in categories depending on the type of file they apply to and you can identify them by a yellow key icon that marks them as **read-only**. The user-defined scenarios are organized under a single category. The default scenarios for the particular **framework** (on page 3282) are rendered in bold.

   **Note:** If a **master file** is associated with the current file, the validation scenarios defined in the **master file**, along with any Schematron schema defined in the default scenarios for that particular **framework**, are used for the validation. These take precedence over other types of validation units defined in the default scenarios for the particular **framework**. For more information on **master files**, see **Master Files Support** (on page 726) or **Working with Modular XML Files in the Master Files Context** (on page 1126).

Figure 395. Configure Validation Scenario Dialog Box
The top section of the dialog box contains a filter that allows you to search through the scenarios list and the 👇 Settings button allows you to configure the following options:

**Show all scenarios**
Select this option to display all the available scenarios, regardless of the document they are associated with.

**Show only the scenarios available for the editor**
Select this option to only display the scenarios that Oxygen XML Editor can apply for the current document type.

**Show associated scenarios**
Select this option to only display the scenarios associated with the document you are editing.

**Import scenarios**
This option opens the Import scenarios dialog box that allows you to select the scenarios file that contains the scenarios you want to import. If one of the scenarios you import is identical to an existing scenario, Oxygen XML Editor ignores it. If a conflict appears (an imported scenario has the same name as an existing one), you can choose between two options:

- Keep or replace the existing scenario.
- Keep both scenarios.

**Note:** When you keep both scenarios, Oxygen XML Editor adds imported to the name of the imported scenario.

**Export selected scenarios**
Use this option to export selected scenarios individually. Oxygen XML Editor creates a scenarios file that contains the scenarios that you export. This is useful if you want to share scenarios with others or export them to another computer.

2. Select the scenario and press the **Edit** button. If you try to edit one of the **read-only** built-in scenarios, you will receive a warning message that Oxygen XML Editor needs to creates customizable duplicate (you can also use the **Duplicate** button).

The **Edit scenario** dialog box is displayed and it lists all the validation units for the scenario.

![Edit Validation Scenario](image)

This scenario configuration dialog box allows you to configure the following information and options:

**Name**

The name of the validation scenario.

**Storage**

You can choose between storing the scenario in the **Project Options** (on page 3286) or **Global Options** (on page 3283).

**URL of the file to validate**

The URL of the main module that includes the current module. It is also the entry module of the validation process when the current one is validated. To edit the URL, double-click its cell and specify the URL of the main module by doing one of the following:

- Enter the URL in the text field or select it from the drop-down list.
- Use the ![Browse](image) drop-down button to browse for a local, remote, or archived file.
• Use the **Insert Editor Variable** button to insert an editor variable (on page 276) or a custom editor variable (on page 284).

Figure 397. Insert an Editor Variable

```
$[@desktop] - My Desktop
$[@start-dir] - Start directory of custom validator
$[@standard-params] - List of standard parameters for command line
$[@fn] - The current file name without extension
$[@current-URL] - The path of the currently edited file (URL)
$[@fd] - The path of current file directory (URL)
$[@frameworks] - Oxygen frameworks directory (URL)
$[@project] - Project directory (URL)
$[@oxygen_home] - Oxygen installation directory (URL)
$[@home] - The path to user home directory (URL)
$[@p] - Project name
$[@env[VAR_NAME]] - Value of environment variable VAR_NAME
$[@system[VAR_NAME]] - Value of system variable VAR_NAME
```

**File type**

The type of the document that is validated in the current validation unit. Oxygen XML Editor automatically selects the file type depending on the value of the **URL of the file to validate** field.

**Validation engine**

You can select one of the engines available in Oxygen XML Editor for validation of the particular document type.

**Default engine** means that the default engine is used to run the validation for the current document type, as specified in the preferences page for that type of document (for example, **XSLT preferences page** (on page 200), **XQuery preferences page** (on page 208), **XML Schema preferences page** (on page 192)).

The **DITA Validation** engine performs DITA-specific checks in the context of the specifications (it is similar to the checks done with the **DITA Maps Manager** Validate and Check for Completeness action (on page 3036), but for a local file rather than an entire DITA map (on page 3281)).

The **Table Layout Validation** engine looks for table layout problems (for more information, see **Report table layout problems** (on page 3040)).

**Automatic validation**

If this option is selected, the validation operation defined by this row is also applied by the automatic validation feature (on page 1082). If the **Automatic validation** feature is disabled in the **Document Checking preferences page** (on page 180), then this option is ignored, as the preference setting has a higher priority.
Schema

This option becomes active when you set the File type to XML Document and allows you to specify the schema used for the validation unit.

Specify Schema

Opens the Specify Schema dialog box that allows you to set a schema to be used for validating XML documents.

Figure 398. Specify Schema Dialog Box

The Specify Schema dialog box contains the following options:

Use detected schema

Uses the schema detected for the particular document (on page 1113).

Use custom schema

Allows you to specify the schema using the following options:

- **URL** - Allows you to specify or select a URL for the schema. It also keeps a history of the last used schemas. The URL must point to the schema file that can be loaded from the local disk or from a remote server through HTTP(S), FTP(S) or a custom protocol (on page 2610). You can specify the URL by using the text field, the history drop-down, the Insert Editor Variables (on page 276) button, or the browsing actions in the Browse drop-down list.

- **Schema type** - Select a possible schema type from this combo box that is populated based on the extension of the schema file that was entered in the URL field. The possible schema types are: XML Schema, DTD, Relax NG, Relax NG Compact, Schematron, or NVDL.
• **Embedded Schematron rules** - If you have selected XML Schema or Relax NG schemas with embedded Schematron rules and you want to use those embedded rules, select this option.

• **Extensions** - Opens a dialog box that allows you to specify *Java extension JARs (on page 3283)* to be used during the validation.

• **Public ID** - Allows you to specify a public ID if you have selected a DTD.

• **Schematron phase** - If you select a Schematron schema, this drop-down list allows you to select a Schematron phase that you want to use for validation. The listed phases are defined in the Schematron document.

  - **Move Up**
    
    Moves the selected scenario up one spot in the list.

  - **Move Down**
    
    Moves the selected scenario down one spot in the list.

  - **Add**
    
    Adds a new validation unit to the list.

  - **Remove**
    
    Removes an existing validation unit from the list.

3. Configure any of the existing validation units according to the information above, and you can use the buttons at the bottom of the table to add, remove, or move validation units. Note that if you add a Schematron validation unit, you can also select the **validation phase**.

4. When you are done configuring the scenario, press **OK**.

   The modified validation scenario will now be included in the list of scenarios in the **Configure Validation Scenario(s)** dialog box. If you chose to duplicate an existing one, the modified scenario will be listed with the word *copy* at the end of its name.

**Sharing Validation Scenarios**

The validation scenarios and their settings can be shared with other users by saving them at **project level (on page 3286)** or by exporting them to a specialized scenarios file (on page 276) that can then be imported. When you create a new validation scenario or edit an existing one, there is a **Storage option** to control whether the scenarios are stored in **Project Options (on page 3286)** or **Global Options (on page 3283)**.
Selecting **Project Options** *(on page 3286)* stores the scenario in the project file and can be shared with other users that have access to the project. If your project is saved on a source versioning/sharing system (CVS, SVN, Source Safe, etc.) then your team will have access to the scenarios that you define. When you create a scenario at the project level, the URLs from the scenario become relative to the project URL.

Selecting **Global Options** *(on page 3283)* stores the scenario in the global options that are stored in the user home directory.

You can also change the storage options on existing validation scenarios by using the **Change storage** action from the contextual menu of the list of scenarios.

**Related Information:**
- **Sharing Application Settings** *(on page 266)*

**Resolving References to Remote Schemas with an XML Catalog**

When a reference to a remote schema must be used in the validated XML document for interoperability purposes, but a local copy of the schema should actually be used for performance reasons, the reference can be resolved to the local copy of the schema with an **XML Catalog** *(on page 3289)*.

For example, if the XML document contains a reference to a remote schema `docbook.rng` like this:

```xml
<?xml-model href="http://www.oasis-open.org/docbook/xml/5.0/rng/docbook.rng" type="application/xml" schematypens="http://relaxng.org/ns/structure/1.0"?>
```

it can be resolved to a local copy with a catalog entry like this:

```xml
<uri name="http://www.oasis-open.org/docbook/xml/5.0/rng/docbook.rng" uri="rng/docbook.rng"/>
```

An **XML Catalog** can also be used to map an XML Schema specified with a URN in the `xsi:schemaLocation` attribute of an XML document to a local copy of the schema. For example, if the XML document specifies the schema with:

```xml
<topic xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
```

the URN can be resolved to a local schema file with a catalog entry like this:

```xml
<uri name="urn:oasis:names:tc:dita:xsd:topic.xsd:1.1"
```
Related Information:

- Working with XML Catalogs (on page 1123)

Validation Example - A DocBook Validation Error

In the following DocBook 4 document, the content of the `listitem` element does not match the rules of the DocBook 4 schema (`docbookx.dtd`).

```xml
<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE article PUBLIC "-//OASIS//DTD DocBook XML V4.4//EN" "http://www.docbook.org/xml/4.4/docbookx.dtd">
<article>
  <title>Article Title</title>
  <sect1>
    <title>Section1 Title</title>
    <itemizedlist>
      <listitem>
        <link>a link here</link>
      </listitem>
    </itemizedlist>
  </sect1>
</article>
```

The Validate Document action will return the following error:

Unexpected element "link". The content of the parent element type must match

```
"(calloutlist|glosslist|bibliolist|itemizedlist|orderedlist|segmentedlist|simplelist|
variablelist|caution|important|note|tip|warning|literallayout|programlisting|
programlistingco|screen|screenco|screenshot|synopsis|cmsynthesis|functionsynopsis|
classsynopsis|fieldsynopsis|constructorsynthesis|destructorsynthesis|methodsynthesis|
formalpara|para|simparsa|address|blockquote|graphic|graphicco|mediaobject|mediaobjectco|
informalequation|informalexample|informalfigure|informaltable|equation|example|figure|
table|msgset|procedure|sidebar|gandaset|task|anchor|bridgehead|remark|highlights|
abstract|authorblurb|epigraph|indexterm|beginpage)+*.
```

This error message is a little more difficult to understand, so understanding of the syntax or processing rules for the DocBook XML DTD `listitem` element is recommended. However, the error
message does offer a clue as to the source of the problem, indicating that “The content of element type must match”.

Fortunately, most standards-based DTDs, XML Schemas, and Relax NG schemas are supplied with reference documentation. This enables you to lookup the element and read about it. In this case, you should learn about the child elements of `listitem` and their nesting rules. Once you have correctly inserted the required child element and nested it in accordance with the XML rules, the document will become valid.

Embedding Schematron Rules in XML Schema or RELAX NG

Schematron rules can be embedded into an XML Schema through annotations (using the `appinfo` element), or in any element on any level of a RELAX NG Schema (taking into account that the RELAX NG validator ignores all elements that are not in the RELAX NG namespace).

Oxygen XML Editor accepts such documents as Schematron validation schemas and it is able to extract and use the embedded rules.

**Validating XML Documents with XML Schema and Embedded Schematron**

To validate an XML document with XML Schema and its embedded Schematron, you can associate the document like this:

```xml
<?xml-model href="percent.xsd" type="application/xml"
  schematypens="http://purl.oclc.org/dsdl/schematron"?>
```

**Validating XML Documents with Relax NG and Embedded Schematron**

To validate an XML document with RELAX NG schema and its embedded Schematron rules, you need to associate the document with both schemas like this:

```xml
<?xml-model href="percent.rng" type="application/xml"
  schematypens="http://relaxng.org/ns/structure/1.0"?>
<?xml-model href="percent.rng" type="application/xml"
  schematypens="http://purl.oclc.org/dsdl/schematron"?>
```

The second association validates your document with Schematron rules extracted from the RELAX NG Schema.

**Note:** When you work with XML Schema or Relax NG documents that have embedded Schematron rules Oxygen XML Editor provides two built-in validation scenarios: **Validate XML Schema with embedded Schematron** for XML schema, and **Validate Relax NG with embedded Schematron** for Relax NG. You can use one of these scenarios to validate the embedded Schematron rules.
Example: Embedded Schematron in XML Schema

```xml
<xsd:appinfo>
  <sch:pattern>
    <sch:rule context="...">
      <sch:assert test="...">Message.</sch:assert>
    </sch:rule>
  </sch:pattern>
</xsd:appinfo>
```

Example: Embedded Schematron in Relax NG Schema

```xml
<grammar
  xmlns="http://relaxng.org/ns/structure/1.0"
  xmlns:sch="http://purl.oclc.org/dsdl/schematron">
  <sch:pattern>
    <sch:rule context="...">
      <sch:assert test="...">Message.</sch:assert>
    </sch:rule>
  </sch:pattern>
  <start>
    ..............
  </start>
</grammar>
```

Related Information:

- Embedding Schematron Quick Fixes in Relax NG or XML Schema (on page 1498)

XML Quick Fixes

The Oxygen XML Editor *Quick Fix support (on page 3287)* helps you resolve errors that appear in an XML document by offering *Quick Fixes* to problems such as missing required attributes or invalid elements. *Quick Fixes* are available in *Text* mode and *Author* mode.

To activate this feature, hover over or place the cursor in the highlighted area of text where a validation error or warning occurs. If a *Quick Fix* is available for that particular error or warning, you can access the *Quick Fix* proposals with any of the following methods:
• When hovering over the error or warning, the proposals may be presented in a tooltip pop-up window and the available quick *Quick Fixes* include a link that can be used to perform the fix.

Figure 399. Quick Fix Presented in a Tooltip in Text Mode

![Quick Fix Presented in a Tooltip in Text Mode](image)

Figure 400. Quick Fix Presented in a Tooltip in Author Mode

![Quick Fix Presented in a Tooltip in Author Mode](image)

• When hovering over the error or warning in **Author** mode, a small *Quick Fix* drop-down menu is presented. You can use the drop-down menu to display a list of available *Quick Fixes* to select from for the particular error or warning.

Figure 401. Quick Fix Drop-Down Menu in Author Mode

![Quick Fix Drop-Down Menu in Author Mode](image)

• If you place the cursor in the highlighted area where a validation error or warning occurs, a *Quick Fix* icon (.currentTarget) is displayed in the stripe on the left side of the editor. If you click this icon, Oxygen XML Editor displays the list of available fixes.

Figure 402. Quick Fix Menu Invoked by Clicking on the Icon

![Quick Fix Menu Invoked by Clicking on the Icon](image)

• With the cursor placed in the highlighted area of the error or warning, you can also invoke the *Quick Fix* menu by pressing **Alt + 1** (**Command + Alt + 1 on OS X**) on your keyboard.

Whenever you make a modification in the XML document or you apply a fix, the list of *Quick Fixes* is recomputed to ensure that you always have valid proposals.
**Note:** A *Quick Fix* that adds an element inserts it along with required and optional elements, and required and fixed attributes, depending on how the *Content Completion preferences* (on page 166) are configured.

Quick Fixes for DTD, XSD, and Relax NG Errors

Oxygen XML Editor offers *Quick Fixes* (on page 3287) for common errors that appear in XML documents that are validated against DTD, XSD, or Relax NG schemas.

**Note:** For XML documents validated against XSD schemas, the *Quick Fixes* are only available if you use the default Xerces validation engine.

*Quick Fixes* are available in *Text* mode and *Author* mode.

Oxygen XML Editor provides *Quick Fixes* for numerous types of problems, including the following:

<table>
<thead>
<tr>
<th>Problem Type</th>
<th>Available Quick Fixes</th>
</tr>
</thead>
<tbody>
<tr>
<td>A specific element is required in the current context</td>
<td>Insert the required element</td>
</tr>
<tr>
<td>An element is invalid in the current context</td>
<td>Remove the invalid element</td>
</tr>
<tr>
<td>The content of the element should be empty</td>
<td>Remove the element content</td>
</tr>
<tr>
<td>An element is not allowed to have child elements</td>
<td>Remove all child elements</td>
</tr>
<tr>
<td>Text is not allowed in the current element</td>
<td>Remove the text content</td>
</tr>
<tr>
<td>A required attribute is missing</td>
<td>Insert the required attribute</td>
</tr>
<tr>
<td>An attribute is not allowed to be set for the current element</td>
<td>Remove the attribute</td>
</tr>
<tr>
<td>The attribute value is invalid</td>
<td>Propose the correct attribute values</td>
</tr>
<tr>
<td>ID value is already defined</td>
<td>Generate a unique ID value</td>
</tr>
<tr>
<td>References to an invalid ID</td>
<td>Change the reference to an already defined ID</td>
</tr>
</tbody>
</table>

**Related Information:**

- Schematron Quick Fixes (SQF) (on page 1111)

Schematron Quick Fixes (SQF)

Oxygen XML Editor provides support for Schematron *Quick Fixes* (on page 3287) (SQF). They help you resolve issues that appear in XML documents that are validated against Schematron schemas by offering you solution proposals. The Schematron *Quick Fixes* are an extension of the Schematron
language and they allow you to define fixes for Schematron validation messages. Specifically, they are associated with *assert* or *report* messages.

A typical use case is using Schematron *Quick Fixes* to assist content authors with common editing tasks. For example, you can use Schematron rules to automatically report certain validation warnings (or errors) when performing regular editing tasks, such as inserting specific elements or changing IDs to match specific naming conventions. For more details and examples, see the following blog post: [http://blog.oxygenxml.com/2015/05/schematron-checks-to-help-technical.html](http://blog.oxygenxml.com/2015/05/schematron-checks-to-help-technical.html).

**Displaying the Schematron Quick Fix Proposals**

The defined Schematron *Quick Fixes* are displayed on validation errors in **Text mode** and **Author mode**.

Figure 403. Example of a Schematron Quick Fix

Related Information:

- [Editing Schematron Quick Fixes](on page 1481)
- Schematron Quick Fix Specifications
- [Presenting Schematron Validation Issues](on page 1464)

**Associating a Schema to XML Documents**

To provide as-you-type validation and to compute valid proposals for the *Content Completion Assistant* (on page 3280), Oxygen XML Editor requires a schema to be associated with the XML document. The schema specifies how the internal structure of the XML is defined.

**Supported Types of Schema**

The following schema types are supported:
- W3C XML Schema 1.0 and 1.1 (with and without embedded Schematron rules) - The association with an XML Schema is added as an attribute of the root element with one of the following:
  - xsi:schemaLocation attribute, if the root element of the document is in the namespace.
  - xsi:noNamespaceSchemaLocation attribute, if the root element is not in the namespace.
- DTD - The association with a DTD is added as a DOCTYPE declaration.
- Relax NG - XML Syntax (with and without embedded Schematron rules) - The association is added as an xml-model processing instruction.
- Relax NG - Compact Syntax - The association is added as an xml-model processing instruction.
- NVDL - The association is added as an xml-model processing instruction.
- Schematron (both ISO Schematron and Schematron 1.5) - The association is added as an xml-model processing instruction.

Detecting the Schema(s) for Validation

For validation, Oxygen XML Editor tries to detect one or more schemas by searching multiple locations, in the following order:

1. The schema or multiple schemas referenced in validation stages from the validation scenario(s) (on page 1114) associated with the current XML document.
2. If no validation scenario is selected to be used with the current XML document, then it falls back to the schema or multiple schemas defined in validation stages from the validation scenarios specified as default in the particular document type configuration (on page 1118).
3. If a schema is still not detected, then it falls back to the schema or multiple schemas associated directly in the XML document (on page 1120).

**Tip:** To quickly open the schema used for validating the current document, select the Open Associated Schema action from the toolbar (or Document > Schema menu).
4. If a schema is still not detected, then it falls back to the schema defined in the Schema tab of a framework (document type) configuration (on page 1121).

Detecting a Schema for Content Completion

For content completion, Oxygen XML Editor uses just one schema and tries to detect that schema by searching multiple locations, in the following order:

1. If no schema is detected in the document, then it falls back to the highest ranking schema defined in validation stages from the validation scenario(s) associated with the current document (on page 1114).
2. If a schema is still not detecting, then it falls back to the highest ranking schema defined in validation stages from validation scenarios specified as default in the particular document type configuration (on page 1118).
3. Oxygen XML Editor determines the most appropriate or highest ranking schema that is associated directly in the XML document (on page 1120) and uses it for content completion.
4. If a schema is still not detecting, then it falls back to the schema defined in the Schema tab of a framework (document type) configuration (on page 1121).

Related Information:

- Working with Modular XML Files in the Master Files Context (on page 1126)
- W3C: Associating Schemas with XML Documents

Associating a Schema Through a Validation Scenario

Oxygen XML Editor uses the rules defined in the detected schema to report errors and warnings during automatic and manual validations that help maintain the structural integrity of your XML documents. You can specify the schema to be used for validation directly in validation scenarios (on page 1093) and there are several methods that can be used to do so.

Configure a Validation Scenario and Specify the Schema

To associate a schema to a validation scenario to be used whenever the scenario is invoked, follow these steps:

1. Select the Configure Validation Scenario(s) from the Validation toolbar drop-down menu, or from the Document > Validate menu (or the Validate submenu when invoking the contextual menu on a file in the Project view (on page 333)).
2. Press the New button to create a new validation scenario or the Edit button to modify an existing one.
3. Add or configure validation units (on page 1102) according to your needs and click the Specify Schema button.

Step Result: The Specify Schema dialog box is displayed:

Figure 404. Specify Schema Dialog Box
The **Specify Schema** dialog box contains the following options:

**Use detected schema**

Uses the **schema detected for the particular document (on page 1113)**.

**Use custom schema**

Allows you to specify the schema using the following options:

- **URL** - Allows you to specify or select a URL for the schema. It also keeps a history of the last used schemas. The URL must point to the schema file that can be loaded from the local disk or from a remote server through HTTP(S), FTP(S) or a **custom protocol (on page 2610)**. You can specify the URL by using the text field, the history drop-down, the **Insert Editor Variables (on page 276)** button, or the browsing actions in the **Browse** drop-down list.

- **Schema type** - Select a possible schema type from this combo box that is populated based on the extension of the schema file that was entered in the **URL** field. The possible schema types are: XML Schema, DTD, Relax NG, Relax NG Compact, Schematron, or NVDL.

- **Embedded Schematron rules** - If you have selected XML Schema or Relax NG schemas with embedded Schematron rules and you want to use those embedded rules, select this option.

- **Public ID** - Allows you to specify a public ID if you have selected a DTD.

- **Extensions** - Opens a dialog box that allows you to specify **Java extension JARs (on page 3283)** to be used during the validation.

- **Schematron phase** - If you select a Schematron schema, this drop-down list allows you to select a Schematron phase that you want to use for validation. The listed phases are defined in the Schematron document.

4. Select the schema to be associated with the validation unit and configure the rest of the options according to your preferences.

5. Click **OK** on both dialog boxes.
Result: The schema is now associated with that validation scenario whenever it is invoked.

Use the Validate with Action to Specify a Schema for Validating the Current Document

To validate the current document using a specified schema, follow these steps:

1. Select the Validate with action from the Validation drop-down menu on the toolbar (or Document > Validate menu).

   Step Result: The Validate with dialog box is displayed:

   Figure 405. Validate with Dialog Box

   ![Validate with Dialog Box](image)

   This dialog box contains the following options:

   - **URL** - Allows you to specify or select a URL for the schema. It also keeps a history of the last used schemas. The URL must point to the schema file that can be loaded from the local disk or from a remote server through HTTP(S), FTP(S) or a custom protocol (on page 2610).
     
     You can specify the URL by using the text field, the history drop-down, the Insert Editor Variables (on page 276) button, or the browsing actions in the Browse drop-down list.
   
   - **Schema type** - Select a possible schema type from this combo box that is populated based on the extension of the schema file that was entered in the URL field. The possible schema types are: XML Schema, DTD, Relax NG, Relax NG Compact, Schematron, or NVDL.
   
   - **Embedded Schematron rules** - If you have selected XML Schema or Relax NG schemas with embedded Schematron rules and you want to use those embedded rules, select this option.
   
   - **Public ID** - Allows you to specify a public ID if you have selected a DTD.
   
   - **Extensions** - Opens a dialog box that allows you to specify Java extension JARs (on page 3283) to be used during the validation.
   
   - **Schematron phase** - If you select a Schematron schema, this drop-down list allows you to select a Schematron phase that you want to use for validation. The listed phases are defined in the Schematron document.

2. Select the schema to be associated with the manual validation and configure the rest of the options according to your preferences.

3. Click OK.
Result: The current document is validated using the schema you specified.

Tip: To quickly open the schema used for validating the current document, select the Open Associated Schema action from the toolbar (or Document > Schema menu).

Use the Validate with Schema Action to Specify a Schema for Validating all Selected Documents

To validate multiple documents using a specified schema, follow these steps:

1. Select all the documents you want to validate in the Project view.
2. Invoke the contextual menu (right-click) and select the Validate with Schema action from the Validate submenu.

Step Result: The Validate with dialog box is displayed:

Figure 406. Validate with Dialog Box

This dialog box contains the following options:

- **URL** - Allows you to specify or select a URL for the schema. It also keeps a history of the last used schemas. The URL must point to the schema file that can be loaded from the local disk or from a remote server through HTTP(S), FTP(S) or a custom protocol (on page 2610). You can specify the URL by using the text field, the history drop-down, the Insert Editor Variables (on page 276) button, or the browsing actions in the Browse drop-down list.

- **Schema type** - Select a possible schema type from this combo box that is populated based on the extension of the schema file that was entered in the URL field. The possible schema types are: XML Schema, DTD, Relax NG, Relax NG Compact, Schematron, or NVDL.

- **Embedded Schematron rules** - If you have selected XML Schema or Relax NG schemas with embedded Schematron rules and you want to use those embedded rules, select this option.

- **Public ID** - Allows you to specify a public ID if you have selected a DTD.

- **Extensions** - Opens a dialog box that allows you to specify Java extension JARs (on page 3283) to be used during the validation.
• **Schematron phase** - If you select a Schematron schema, this drop-down list allows you to select a Schematron phase that you want to use for validation. The listed phases are defined in the Schematron document.

3. Select the schema that you want to use to validate all selected documents and configure the rest of the options according to your preferences.

4. Click **OK**.

**Result:** The selected documents are validated using the schema you specified.

Associating a Schema in Validation Scenarios Defined in the Document Type

To report errors and warnings during automatic and manual validations that help maintain the structural integrity of particular XML document types, Oxygen XML Editor uses rules defined in the schema that is detected in the validation scenarios that are associated to each particular document type.

To associate a schema in validation scenarios defined in the framework (on page 3282) (document type) configuration, follow these steps:

1. **Open the Preferences dialog box (Options > Preferences)** (on page 79) and go to **Document Type Association**.

2. Select your particular document type and click the **Edit** or **Duplicate** button to modify an existing framework (or use the **New** button to create a new one).

   **Step Result:** This opens a **Document type configuration dialog box** (on page 95).

3. Go to the **Validation tab** (on page 121).

4. Create or edit a validation scenario:

   a. To **create a new validation scenario** (on page 1094), click the **+ New** button.

   b. To **edit the properties of an existing validation scenario** (on page 1100), select it and click the **Edit** button (you can also use the **Duplicate** button to copy an existing scenario and edit its properties).

5. **Add or configure validation units** (on page 1102) according to your needs and click the **Specify Schema** button.

   **Step Result:** The **Specify Schema** dialog box is displayed:

   Figure 407. Specify Schema Dialog Box
The **Specify Schema** dialog box contains the following options:

### Use detected schema

Uses the schema detected for the particular document *(on page 1113)*.

### Use custom schema

Allows you to specify the schema using the following options:

- **URL** - Allows you to specify or select a URL for the schema. It also keeps a history of the last used schemas. The URL must point to the schema file that can be loaded from the local disk or from a remote server through HTTP(S), FTP(S) or a custom protocol *(on page 2610)*. You can specify the URL by using the text field, the history drop-down, the ![Insert Editor Variables](on page 276) button, or the browsing actions in the ![Browse](drop-down list).

- **Schema type** - Select a possible schema type from this combo box that is populated based on the extension of the schema file that was entered in the URL field. The possible schema types are: XML Schema, DTD, Relax NG, Relax NG Compact, Schematron, or NVDL.

- **Embedded Schematron rules** - If you have selected XML Schema or Relax NG schemas with embedded Schematron rules and you want to use those embedded rules, select this option.

- **Public ID** - Allows you to specify a public ID if you have selected a DTD.

- **Extensions** - Opens a dialog box that allows you to specify *Java extension JARs (on page 3283)* to be used during the validation.

- **Schematron phase** - If you select a Schematron schema, this drop-down list allows you to select a Schematron phase that you want to use for validation. The listed phases are defined in the Schematron document.

6. Select the schema to be associated with the validation unit and configure the rest of the options according to your preferences.

7. Click **OK** on both dialog boxes.
Result: The schema is now associated with the validation scenario you just configured for that particular document type.

Associating a Schema Directly in XML Documents

The schema used by the Content Completion Assistant (on page 3280) and document validation engine can be directly associated with the current document by using the Associate Schema action. For most of the schema types, it uses the xml-model processing instruction, with the exceptions of:

- **W3C XML Schema** - The xsi:schemaLocation attribute or xsi:noNamespaceSchemaLocation attribute is used.
- **DTD** - The DOCTYPE declaration is used.

The association can specify a relative file path or a URL of the schema. The advantage of relative file path is that you can configure the schema at file level instead of framework (on page 3282) level.

To associate a schema to the current document, follow these steps:

1. Select the Associate Schema action from the toolbar (or Document > Schema menu).

   **Step Result:** The Associate Schema dialog box is displayed:

   Figure 408. Associate Schema Dialog Box

   ![Associate Schema Dialog Box]

   This dialog box contains the following options:

   - **URL** - Allows you to specify or select a URL for the schema. It also keeps a history of the last used schemas. The URL must point to the schema file that can be loaded from the local disk or from a remote server through HTTP(S), FTP(S) or a custom protocol (on page 2610).
• **Use path relative to file location** - Select this option if the XML instance document and the associated schema contain relative paths. The location of the schema file is inserted in the XML instance document as a relative file path. This practice allows you, for example, to share these documents with other users without running into problems caused by multiple project locations on physical disk.

• **Schema type** - Select a possible schema type from this combo box that is populated based on the extension of the schema file that was entered in the URL field. The possible schema types are: XML Schema, DTD, Relax NG, Relax NG Compact, Schematron, or NVDL.

• **Add additional association for embedded Schematron rules** - If you have selected XML Schema or Relax NG schemas with embedded Schematron rules and you want to use those embedded rules, select this option.

• **Public ID** - Allows you to specify a public ID if you have selected a DTD.

• **Keep existing schema associations** - Select this option to use the existing schema associations of the currently edited document.

2. Select the schema that will be associated with the XML document and configure the rest of the options according to your preferences.

3. Click **OK**.

**Result:** The schema association is created based upon the specified type.

• **XML Schema** - The association with an XML Schema is added as an attribute of the root element with one of the following:
  ◦ **xsi:schemaLocation** attribute, if the root element of the document is in the namespace.
  ◦ **xsi:noNamespaceSchemaLocation** attribute, if the root element is not in the namespace.

• **DTD** - The association with a DTD is added as a **DOCTYPE** declaration.

• **Other** - The association with a Relax NG, Schematron, or NVDL schema is added as an **xml-model processing instruction**.

**Tip:** To quickly open the schema used for validating the current document, select the **Open Associated Schema** action from the toolbar (or **Document > Schema** menu).

**Related Information:**

- Validating XML Documents ([on page 1079](#))
- Content Completion Assistant in Text Mode ([on page 844](#))
- Content Completion Assistant in Author Mode ([on page 921](#))
Associating a Schema in a Framework (Document Type) Configuration

The schema used to compute valid proposals in the Content Completion Assistant (on page 3280) and by the document validation engine to report errors and warnings can be defined in each particular framework (on page 3282) (document type). This schema will be used only if one is not detected in the current XML file (on page 1120).

To associate a schema in a particular framework (document type), follow these steps:

1. Open the Preferences dialog box (Options > Preferences) (on page 79) and go to Document Type Association.
2. Select your particular document type and click the Edit (on page 93), Extend (on page 93), or Duplicate (on page 93) button to modify an existing framework (or use the New button to create a new one).

   **Step Result:** This opens a Document type configuration dialog box (on page 95).
4. Select the schema type and its URI.
5. Click OK.

**Result:** The schema is now associated with the particular document type and will be used by the Content Completion Assistant and validation engine if a schema is not detected in the current XML document.

Learn Document Structure when Schema is not Detected

When working with documents that do not specify a schema, or for which the schema is not known or does not exist, Oxygen XML Editor is able to learn and translate the document structure to a DTD. You can choose to save the learned structure to a file to provide a DTD as an initialization source for content completion (on page 844) and document validation (on page 1079). This feature is also useful for producing DTDs for documents that contain personal or custom element types.

When you open a document that is not associated with a schema, Oxygen XML Editor automatically learns the document structure and uses it for content completion (on page 844). To disable this feature, deselect the Learn on open document option in the user preferences (on page 166).

**Related Information:**

- Detecting a Schema (on page 1112)
Create a DTD from Learn Document Structure Option

When there is no schema associated with an XML document, Oxygen XML Editor can learn the document structure by parsing the document internally. This feature is enabled by the **Learn on open document option** (on page 166) that is available in the user preferences.

To create a DTD from the learned structure, follow these steps:

1. Open the XML document for which a DTD will be created.
2. Go to **Document > XML Document > Learn Structure** (Ctrl + Shift + L (Command + Shift + L on OS X)).
   - The **Learn Structure** action reads the mark-up structure of the current document. The **Learn completed** message is displayed in the application status bar when the action is finished.
3. Go to **Document > XML Document > Save Structure** (Ctrl + Shift + S (Command + Shift + S on OS X)) and enter the DTD file path.
4. Press the **Save** button.

Working with XML Catalogs

Oxygen XML Editor uses **XML Catalogs** (on page 3289) to resolve references for validations and transformations and they are especially helpful for resolving external resources when internet access is not available or your connection is slow.

Oxygen XML Editor supports any **XML Catalog** file that conforms to one of the following:

1. **OASIS XML Catalogs Committee Specification v1.1**.
2. **OASIS Technical Resolution 9401:1997**, including the plain-text flavor described in that resolution.

The version 1.1 of the OASIS XML Catalog specification introduces the possibility to map a system ID, public ID, or a URI to a local copy using only a suffix of the ID or URI used in the actual document. This is done using the catalog elements **systemSuffix** and **uriSuffix**.

Depending on the resource type, Oxygen XML Editor uses different catalog mappings.

**Table 38. Catalog Mappings**

<table>
<thead>
<tr>
<th>Doc Type</th>
<th>Referenced Resource</th>
<th>Mappings</th>
</tr>
</thead>
<tbody>
<tr>
<td>XML</td>
<td>DTD</td>
<td>system or public</td>
</tr>
<tr>
<td></td>
<td></td>
<td>The <strong>Prefer</strong> option (on page 189) controls which one of the mappings should be used.</td>
</tr>
<tr>
<td>Doc Type</td>
<td>Referenced Resource</td>
<td>Mappings</td>
</tr>
<tr>
<td>----------</td>
<td>---------------------</td>
<td>----------</td>
</tr>
<tr>
<td>XML Schema</td>
<td>The following strategy is used (if one step fails to provide a resource, the next is applied):</td>
<td></td>
</tr>
<tr>
<td>Relax NG</td>
<td>1. Resolve the schema using <em>URI</em> catalog mappings.</td>
<td></td>
</tr>
<tr>
<td>Schematron</td>
<td>2. Resolve the schema using <em>system</em> catalog mappings.</td>
<td></td>
</tr>
<tr>
<td>NVDL</td>
<td>This happens only if the <em>Resolve schema locations also through system mappings</em> option <em>(on page 190)</em> is selected (it is by default).</td>
<td></td>
</tr>
<tr>
<td>Relax NG</td>
<td>3. Resolve the root <em>namespace</em> using <em>URI</em> catalog mappings.</td>
<td></td>
</tr>
</tbody>
</table>

| XSL | XSL/ANY | *URI* |
| CSS | CSS | *URI* |
| JSON | JSON | *URI* |
| XML Schema | The following strategy is used (if one step fails to provide a resource, the next is applied): |
| Relax NG | 1. Resolve schema reference using *URI* catalog mappings. |
| Relax NG | 2. Resolve schema reference using *system* catalog mappings. |

This happens only if the *Resolve schema locations also through system mappings* option *(on page 190)* is selected (it is by default). |

3. Resolve schema *namespace* using *URI* catalog mappings. |

This happens only if the *Process namespaces through URI mappings for XML Schema* option *(on page 190)* is selected (it is not by default). |

Creating an XML Catalog with a Template

An *XML Catalog* *(on page 3289)* file can be created quickly in Oxygen XML Editor starting from the two document templates called *OASIS XML Catalog 1.0* and *OASIS XML Catalog 1.1*. They are available when creating new document templates *(on page 676)*.

```xml
<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE catalog
PUBLIC "-//OASIS//DTD XML Catalogs V1.1//EN"
"http://www.oasis-open.org/committees/entity/release/1.1/catalog.dtd">
<catalog xmlns="urn:oasis:names:tc:entity:xmlns:xml:catalog">
  <!-- Use "system" and "public" mappings when resolving DTDs -->
  <system
How Oxygen XML Editor Determines which Catalog to Use

Oxygen XML Editor uses **XML Catalogs** to resolve references for validations and transformations and it maps such references to the built-in local copies of the schemas associated with the various frameworks (DocBook, DITA, TEI, XHTML, SVG, etc.)

Oxygen XML Editor includes default global catalogs as well as default catalogs for each of the built-in frameworks, and you can also create your own.

Oxygen XML Editor looks for catalogs in the following order:

- Global user-defined catalogs that are set in the XML Catalog preferences page.
- User-defined catalogs that are set for each framework in the Catalog tab of the Document Type configuration dialog box.
- Default built-in catalogs.

**Example:**

An XML Catalog can be used to map an XML Schema specified with an URN in the xsi:noNamespaceSchemaLocation attribute of an XML document to a local copy of the schema.

Considering the following XML document code snippet:
Resolving Schema Locations Through XML Catalogs

Schema locations can be mapped using an XML Catalog. Oxygen XML Editor resolves the location of a schema in the following order:

• First, it attempts to resolve the schema location as a URI (uri, uriSuffix, rewriteUri, delegateUri mappings from the XML Catalog). If this succeeds, the process ends here.
• If the Resolve schema locations also through system mappings option is selected, it attempts to resolve the schema location as a system ID (system, systemSuffix, rewriteSuffix, rewriteSystem from the XML Catalog). If this succeeds, the process ends here.
• If the Process "schemaLocation" namespaces through URI mappings for XML Schema option is selected, the target namespace of the imported XML Schema is resolved through URI mappings. If the schema specified in the schemaLocation attribute is not resolved successfully, the namespace of the root element is taken into account. If this succeeds, the process ends here.
• If none of these succeeds, the actual schema location is used.

Related Information:

• Working with XML Catalogs
the support for defining the main module (or modules), allowing you to edit any file from the hierarchy in the context of the master files (on page 3284).

You can set a main XML document either using the master files support from the Project view (on page 726), or using a validation scenario.

To set a master file using a validation scenario, add validation units that point to the main modules. Oxygen XML Editor warns you if the current module is not part of the dependencies graph computed for the main XML document. In this case, it considers the current module as the main XML document.

The advantages of working with modular XML files in the context of a master file (on page 3284) include:

- Correct validation of a module in the context of a larger XML structure.
- Content Completion Assistant (on page 3280) displays all collected entities and IDs starting from the master files.
- Oxygen XML Editor uses the schema defined in the master file when you edit a module that is included in the hierarchy through the External Entity mechanism.
- The master files defined for the current module determines the scope of the search and refactoring actions (on page 1129) for ID/IDREFS values and for updating references when renaming/moving a resource. Oxygen XML Editor performs the search and refactoring actions in the context that the master files determine, improving the speed of execution.

For more information about editing modular XML files in the master files context, watch our video demonstration:

https://www.youtube.com/embed/e2oo4RWNxW8

Related Information:

- Master Files Support (on page 726)
- XML Resource Hierarchy/Dependencies View (on page 1130)

Search and Refactoring Actions for IDs and IDREFS

Oxygen XML Editor allows you to search for ID declarations and references (IDREFS) and to define the scope of the search and refactor operations (on page 1129). These operations are available for XML documents that have an associated DTD, XML Schema, or Relax NG schema. These operations are available through the search and refactoring actions in the contextual menu. In Text mode, these actions are also available in the Quick Assist (on page 872) menu.
The search and refactor actions from the contextual menu are grouped in the **Manage IDs** section:

### Rename in

Renames the ID and all its occurrences. Selecting this action opens the *Rename XML ID* dialog box. This dialog box lets you insert the new ID value and **choose the scope of the rename operation (on page 1129)**. For a preview of the changes you are about to make, click **Preview**. This opens the **Preview** dialog box, which presents a list with the files that contain changes and a preview zone of these changes.

#### Rename in File

Renames the ID you are editing and all its occurrences from the current file.

**Note:** Available in the **Text** mode only.

### Search References

Searches for the references of the ID. By default, the scope of this action is the current project. If you configure a scope using the **Select the scope for the Search and Refactor operations (on page 1129)** dialog box, this scope will be used instead.

#### Search References in

Searches for the references of the ID. Selecting this action opens the **Select the scope for the Search and Refactor operations (on page 1129)**.

### Search Declarations

Searches for the declaration of the ID reference. By default, the scope of this action is the current project. If you configure a scope using the **Select the scope for the Search and Refactor operations (on page 1129)** dialog box, this scope will be used instead.

**Note:** Available in the **Text** mode only.

#### Search Declarations in

Searches for the declaration of the ID reference. Selecting this action opens the **Select the scope for the Search and Refactor operations (on page 1129)**.

**Note:** Available in the **Text** mode only.

### Search Occurrences in file

Searches for the declaration and references of the ID in the current document.

**Tip:** A quick way to go to the declaration of an ID in **Text** mode is to move the cursor over an ID reference and use the **Ctrl + Single-Click (Command + Single-Click on OS X)** navigation.

Selecting an ID that you use for search or refactor operations differs between the **Text** and **Author** modes. In the **Text** mode, you position the cursor inside the declaration or reference of an ID. In the
Author mode, Oxygen XML Editor collects all the IDs by analyzing each element from the path to the root. If more IDs are available, you are prompted to choose one of them.

Figure 409. Selecting an ID in the Author Mode

Related Information:

- Working with Modular XML Files in the Master Files Context (on page 1126)

Search and Refactor Operations Scope

The scope is a collection of documents that define the context of a search and refactor operation. To control it you can use the Change scope operation, available in the Quick Assist action set or on the Resource Hierarchy/Dependency View toolbar. You can restrict the scope to the current project or to one or multiple working sets (on page 3288). The Use only Master Files, if enabled checkbox allows you to restrict the scope of the search and refactor operations to the resources from the Master Files directory. Click read more for details about the Master Files support (on page 726).

Figure 410. Change Scope Dialog Box
The scope you define is applied to all future search and refactor operations until you modify it. Contextual menu actions allow you to add or delete files, folders, and other resources to the working set (on page 3288) structure.

**XML Resource Hierarchy/Dependencies View**

The Resource Hierarchy/Dependencies view displays the hierarchy or dependencies for an XML document. The tree structure presented in this view is built based on the XInclude and External Entity mechanisms. If the view is not displayed, it can be opened by selecting it from the Window > Show View menu.

If you want to see the hierarchy or dependencies of an XML document, select the document in the Project view (on page 333) and choose Resource Hierarchy or Resource Dependencies from the contextual menu.

Figure 411. Resource Hierarchy/Dependencies View
The following actions are available on the toolbar of the Resource Hierarchy/Dependencies view:

- **Refresh**
  Refreshes the Hierarchy/Dependencies structure.

- **Stop**
  Stops the hierarchy/dependencies computing.

- **Show Hierarchy**
  Allows you to choose a resource to compute the hierarchy structure.

- **Show Dependencies**
  Allows you to choose a resource to compute the dependencies structure.

- **Configure dependencies search scope**
  Allows you to configure a scope to compute the dependencies structure. There is also an option for automatically using the defined scope for future operations.

- **History**
  Provides access to the list of previously computed dependencies. Use the **Clear history** button to remove all items from this list.

The contextual menu for a resource listed in the Resource Hierarchy/Dependencies view contains the following actions:

- **Open**
Opens the resource. You can also double-click a resource in the Hierarchy/Dependencies structure to open it.

**Go to reference**

Opens the source document where the resource is referenced.

**Copy location**

Copies the location of the resource.

**Move resource**

Moves the selected resource.

**Rename resource**

Renames the selected resource.

**Show Resource Hierarchy**

Shows the hierarchy for the selected resource.

**Show Resource Dependencies**

Shows the dependencies for the selected resource.

**Add to Master Files**

Adds the currently selected resource in the **Master Files** directory (on page 726).

**Expand All**

Expands all the children of the selected resource from the Hierarchy/Dependencies structure.

**Collapse All**

Collapses all children of the selected resource from the Hierarchy/Dependencies structure.

**Tip:** When a recursive reference is encountered in the Hierarchy view, the reference is marked with a special icon.

**Note:** The **Move resource** or **Rename resource** actions give you the option to update the references to the resource (on page 1133). Only the references made through the **XInclude** and **External Entity** mechanisms are handled.

Related Information:

- Working with Modular XML Files in the Master Files Context (on page 1126)
Moving/Renaming XML Resources

When you select the Rename action in the contextual menu of the Resource/Hierarchy Dependencies view, the Rename resource dialog box is displayed. The following fields are available:

- **New name** - Presents the current name of the edited resource and allows you to modify it.
- **Update references of the renamed resource(s)** - Select this option to update the references to the resource you are renaming. A Preview option is available that allows you to see what will be updated before selecting Rename to process the operation.

When you select the Move action from the contextual menu of the Resource/Hierarchy Dependencies view, the Move resource dialog box is displayed. The following fields are available:

- **Destination** - Presents the path to the current location of the resource you want to move and gives you the option to introduce a new location.
- **New name** - Presents the current name of the moved resource and gives you the option to change it.
- **Update references of the moved resource(s)** - Select this option to update the references to the resource you are moving, in accordance with the new location and name. A Preview option is available that allows you to see what will be updated before selecting Move to process the operation.

Combining XML Content Using DTD Entities and XInclude

When documenting large projects, it is likely that there are multiple people involved. In this case, it is usually more efficient to using a modular approach so that everyone involved in the project can work in parallel. Other advantages of modular documentation include: reusable content possibilities, smaller file units are easier to edit, and better version control.

Two possible solutions for this are to use **DTD Entities** or **XInclude** to combine XML content in a master file (on page 3284). A master document can be created with references to various document parts, users can edit those documents individually, and then apply an XSLT stylesheet over the master document to obtain the output files in various formats (for example, PDF or HTML).

Combining XML Document Content Using DTD Entities

There are two conditions for including a document fragment using DTD entities:
• The master document should declare the DTD to be used, while the external entities should declare the XML fragments to be referenced.

• The referenced documents that contain the fragments cannot also define the DTD because the main document will not be valid. If you want to validate the parts separately you have to use XInclude (on page 1135) for assembling the parts together with the master file.

The master document looks like this:

```xml
<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE book SYSTEM "../xml/docbookx.dtd" [ 
<!ENTITY testing SYSTEM "testing.xml" > ]>
<book>
  <chapter>
  ...
</chapter>
</book>
```

The referenced document (testing.xml) looks like this:

```xml
<section> ... here is the section content ... </section>
```

**Note:**

The indicated DTD and the element names (section, chapter) are used here only for illustrating the inclusion mechanism. You can use any DTD and element names you need.

The content from the referenced file (in the example above, it is a section in the test.xml file) can be inserted somewhere in the master document:

```xml
... &testing; ...
```

To obtain output in various formats (for example, PDF or HTML), you simply need to apply an XSLT stylesheet over the master document using a transformation scenario.

**Viewing the Expanded Content in Oxygen XML Editor**

When a transformation scenario is applied on the master file, an intermediary file combines all the referenced content and it will be expanded in the final output. If you want to see how the referenced content will be expanded before applying the transformation, you can do one of the following:

• Simply switch to **Author** mode.

• Create a minimal XSLT stylesheet that simply copies the XML content, then create a new XSLT transformation scenario that applies the stylesheet over the XML. The XSLT stylesheet would look like this:

```xml
<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
```
Combining XML Documents and Fragments Using XInclude

**XInclude** is a standard for assembling XML instances into another XML document through inclusion. A *master file (on page 3284)* can be dynamically created from smaller XML documents without having to physically duplicate the content of the smaller files. The advantage of using XInclude instead of the **DTD Entities method (on page 1133)** is that each of the assembled documents is permitted to contain a Document Type Declaration (DOCTYPE). This means that each file is a valid XML instance and can be independently validated. It also means that the main document, which includes smaller instances, can be validated without having to remove or comment out the DOCTYPE (as is the case with External Entities).

**Enabling XInclude Support in Oxygen XML Editor**

The XInclude support in Oxygen XML Editor is enabled by default. It is controlled by the **Enable XInclude processing** option *(on page 192)* in the **XML > XML Parser** preferences page *(on page 191)*. When enabled, Oxygen XML Editor will be able to validate and transform documents comprised of parts added using XInclude.

**Example: Using XInclude to Combine Files**

A chapter file *(introduction.xml)* looks like this:

```xml
<?xml version="1.0"?>
<chapter>
  <title>Getting started</title>
  <section>
    <title>Section title</title>
```
The main article (master file) looks like this:

```xml
<?xml version="1.0"?>
<!DOCTYPE article PUBLIC "-//OASIS//DTD DocBook XML V4.3//EN"
"http://www.docbook.org/xml/4.3/docbookx.dtd"
[ <!ENTITY % xinclude SYSTEM "../frameworks/docbook/dtd/xinclude.mod">
%xinclude; ]>
<article>
  <title>Install guide</title>
  <para>This is the install guide.</para>
  <xi:include xmlns:xi="http://www.w3.org/2001/XInclude"
              href="introduction.xml">
    <xi:fallback>
      <para><emphasis>FIXME: MISSING XINCLUDE CONTENT</emphasis></para>
    </xi:fallback>
  </xi:include>
</article>
```

In this example, note the following:

- The DOCTYPE declaration defines an entity that references a file containing the information to add the `xi` namespace to certain elements defined by the DocBook DTD.
- The `href` attribute of the `xi:include` element specifies that the `introduction.xml` file will replace the `xi:include` element when the document is parsed.
- If the `introduction.xml` file cannot be found, the parser will use the value of the `xi:fallback` element - a `FIXME` message.

**Example: Using XInclude to Combine Fragments of Files**

If you want to include only a fragment of a file in the master file (on page 3284), the fragment must be contained in a tag having an `xml:id` attribute and you must use an XPointer expression pointing to the `xml:id` value.

**Note:** Oxygen XML Editor supports the XPointer Framework and the XPointer element() Scheme, but it does NOT support the XPointer xpointer() Scheme.
For example, if the *master file* is:

```xml
<?xml version="1.0" encoding="UTF-8"?>
<?xml-model href="test.rng" type="application/xml"
  schematypens="http://relaxng.org/ns/structure/1.0"?>
<test>
  <xi:include href="a.xml" xpointer="a1"
    xmlns:xi="http://www.w3.org/2001/XInclude"/>
</test>
```

and the file (`a.xml`) is:

```xml
<?xml version="1.0" encoding="UTF-8"?>
<test>
  <a xml:id="a1">test</a>
</test>
```

after resolving the XPointer reference, the document is:

```xml
<?xml version="1.0" encoding="UTF-8"?>
<?xml-model href="test.rng" type="application/xml"
  schematypens="http://relaxng.org/ns/structure/1.0"?>
<test>
  <a xml:id="a1" xml:base="a.xml">test</a>
</test>
```

**Viewing the Expanded Content in Oxygen XML Editor**

When a transformation scenario is applied on the *master file*, an intermediary file combines all the referenced content and it will be expanded in the final output. If you want to see how the referenced content will be expanded before applying the transformation, you can do one of the following:

- Simply switch to **Author** mode.
- Create a minimal XSLT stylesheet that simply copies the XML content, then create a new XSLT transformation scenario that applies the stylesheet over the XML. The XSLT stylesheet would look like this:

```xml
<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
  xmlns:xs="http://www.w3.org/2001/XMLSchema"
  xmlns:math="http://www.w3.org/2005/xpath-functions/math"
  exclude-result-prefixes="xs math"
  version="3.0">
  <xsl:template match="node | @*"/>
</xsl:stylesheet>
```
XInclude 1.1 Features

Oxygen XML Editor offers partial support for XInclude 1.1 features. This includes support for fragment identifiers and attribute copying.

• Fragment Identifiers

You can `xi:include` a text file and specify the `@fragid` value so that you only get part of that text file in the main document. For some examples and to see how `xi:include` gets expanded when the `@fragid` specifies a line range or character range, see Textual Inclusion Examples with RFC5147 Fragment Identifiers.

• Attribute Copying

Any namespaced attribute defined on the `xi:include` element will be passed to the root element of the included content.

For example, if you have this:

```xml
<xi:include href="section2.xml" xmlns:xi="http://www.w3.org/2001/XInclude"
  xml:id="sectInner1"/>
```

and `section2.xml` looks like this:

```xml
<sect2 xmlns="http://docbook.org/ns/docbook" version="5.0"
  xmlns:xlink="http://www.w3.org/1999/xlink" xml:id="section2">
  <title>FS2</title>
  <para>P2</para>
</sect2>
```

then the final processed result will have the original `xml:id="section2"` replaced with the value specified in the `xi:included` section.

For more information, see Attribute Copying when Processing XML. Also, to see more examples, see Attribute Copying Examples.
Refactoring XML Documents

In the life cycle of XML documents there are instances when the XML structure needs to be changed to accommodate various needs. For example, when an associated schema is updated, an attribute may have been removed, or a new element added to the structure.

These types of situations cannot be resolved with a traditional *Find/Replace* tool, even if the tool accepts regular expressions. The problem becomes even more complicated if an XML document is computed or referenced from multiple modules, since multiple resources need to be changed.

To assist you with these types of refactoring tasks, Oxygen XML Editor includes a specialized **XML Refactoring** tool that helps you manage the structure of your XML documents.

**XML Refactoring Tool**

The **XML Refactoring** tool is presented in the form of an easy to use wizard that is designed to reduce the time and effort required to perform various structure management tasks. For example, you can insert, delete, or rename an attribute in all instances of a particular element that is found in all documents within your project.

To access the tool, select the ✉️ **XML Refactoring** action from one of the following locations:

- The **Tools** menu.
- The **Refactoring** submenu from the contextual menu in the **Project view** (on page 333).
- The **Refactoring** submenu from the contextual menu in the **DITA Maps Manager view** (on page 2990).

**Note:** The built-in refactoring operations are also available from the **Refactoring** submenu in the contextual menu of **Author** or **Text** mode. This is useful because by selecting the operations from the contextual menu, Oxygen XML Editor considers the editing context to skip directly to the wizard page of the appropriate operation and to help you by preconfiguring some of the parameter values. For your convenience, the last 5 operations that were finished (on page 1142) or previewed (on page 1142) also appear in the **Refactoring** submenu of the contextual menu in the **Project** view and the **DITA Maps Manager**.

**XML Refactoring Wizard**

The XML Refactoring tool includes the following wizard pages:
Refactoring operations

The first wizard page presents the available operations, grouped by category. To search for an operation, you can use the filter text box at the top of the page.

Figure 412. XML Refactoring Wizard

Configure Operation Parameters

The next wizard page allows you to specify the parameters for the refactoring operation. The parameters are specific to the type of refactoring operation that is being performed. For example, to delete an attribute you need to specify the parent element and the qualified name of the attribute to be removed.

Figure 413. XML Refactoring 2nd Wizard Page (Delete Attribute Operation)
Scope and Filters

The last wizard page allows you to select the set of files that represent the input of the operation.

Figure 414. XML Refactoring - Scope and Filters Wizard Page

Scope section

In the Scope section, you can select from predefined resource sets (such as the current file, your whole project, the current DITA map (on page 3281) hierarchy for DITA projects, etc.) or you can define your own set of resources by creating a working set (on page 3288).

Filters

The Filters section includes the following options:
• **Include files** - Allows you to filter the selected resources by using a file pattern. For example, to restrict the operation to only analyze build files you could use `build*.xml` for the file pattern.

• **Restrict only to known XML file types** - When selected, only resources with a known XML file type will be affected by the operation.

• **Look inside archives** - When selected, the resources inside archives will also be affected.

**Preview**

You can use the **Preview** button to open a comparison panel where you can review all the changes that will be made by the refactoring operation before applying the changes.

**Finish**

After clicking the **Finish** button, the operation will be processed and Oxygen XML Editor provides no automatic means for reverting the operations. Any **Undo** action will only revert changes on the current document.

**Troubleshooting:** If an operation fails, a notification will be displayed in the **Results** panel with some information about the error. For example, if the operation was invoked on a read-only resource, the error will indicate that a read-only file cannot be converted.

**Tip:** If an operation takes longer than expected you can use the ⏹ **Stop** button in the progress bar to cancel the operation.

**Restriction:** XML refactoring operations cannot preserve CDATA sections. If your document contains XML CDATA sections, the refactoring operations will convert them to plain text nodes.

**Built-in Refactoring Operations**

The XML Refactoring tool includes a variety of built-in operations that can be used for common refactoring tasks. They are grouped by category in the **Refactoring operations** wizard page. You can also access the operations from the **Refactoring** submenu in the contextual menu of **Author** or **Text** mode. The operations are also grouped by category in this submenu. When selecting the operations from the contextual menu, Oxygen XML Editor considers the editing context to get the names and namespaces of the current element or attribute, and uses this information to preconfigure some of the parameter values for the selected refactoring operation.
Tip: Each operation includes a link in the lower part of the wizard that opens the XML / XSLT-FO-XQuery / XPath preferences page where you can configure XPath options and declare namespace prefixes.

The following built-in operations are available:

Refactoring Operations for Attributes

Add/Change attribute

Use this operation to change the value of an attribute or insert a new one. This operation allows you to specify the following parameters:

Parent element section

Element

The parent element of the attribute to be changed, in the form of a local name from any namespace, a local name with a namespace prefix, or an XPath expression.

Attribute section

Local name

The local name of the affected attribute.

Namespace

The namespace of the affected attribute.

Value

The value for the affected attribute.

Options section

You can choose between one of the following options for the Operation mode:

Add the attribute in the parent elements where it is missing

Adds the attribute to all instances of the specified parent element.

Change the value in the parent elements where the attribute already exists

Replaces the value of the already existing attribute in all instance of the specified parent element.

Both
Adds the attributes to the instances where it is missing and replaces the value in instances where the attribute already exists.

**Convert attribute to element**

Use this operation to convert a specified attribute to an element. This operation allows you to specify the following parameters:

**Parent element section**

**Element**

The parent element of the attribute to be converted, in the form of a local name from any namespace, a local name with a namespace prefix, or an XPath expression.

**Attribute section**

**Local name**

The local name of the affected attribute.

**Namespace**

The namespace of the affected attribute.

**New element section**

**Local name**

The local name of the new element.

**Namespace**

The namespace of the new element.

**Delete attribute**

Use this operation to remove one or more attributes. This operation requires you to specify the following parameters:

**Element**

The parent element of the attribute to be deleted, in the form of a local name from any namespace, a local name with a namespace prefix, or an XPath expression.

**Attribute**

The name of the attribute to be deleted.

**Rename attribute**
Use this operation to rename an attribute. This operation requires you to specify the following parameters:

**Element**

The parent element of the attribute to be renamed, in the form of a local name from any namespace, a local name with a namespace prefix, or an XPath expression.

**Attribute**

The name of the attribute to be renamed.

**New local name**

The new local name of the attribute.

**Replace in attribute value**

Use this operation to search for a text fragment inside an attribute value and change the fragment to a new value. This operation allows you to specify the following parameters:

**Target attribute section**

**Element**

The parent element of the attribute to be modified, in the form of a local name from any namespace, a local name with a namespace prefix, or an XPath expression.

**Attribute**

The name of the attribute to be modified.

**Find / Replace section**

**Find**

The text fragments to find. You can use Perl-like regular expressions.

**Replace with**

The text fragment to replace the target with. This parameter can bind regular expression capturing groups (\$1, \$2, etc.) from the find pattern.

**Refactoring Operations for Comments**

**Delete comments**
Use this operation to delete comments from one or more elements. This operation requires you specify the following parameter:

**Element**

The target element (or elements) for which comments will be deleted, in the form of a local name from any namespace, a local name with a namespace prefix, or an XPath expression.

**Note:** Comments that are outside the root element will not be deleted because the serializer preserves the content before and after the root.

**Refactoring Operations for DITA**

**Change topic ID to file name**

Use this operation to change the ID of a topic to be the same as its file name.

**Convert CALS tables to simple tables**

Use this operation to convert DITA CALS tables to simple tables.

**Convert conrefs to conkeyrefs**

Use this operation to convert conref attributes to conkeyref attributes. For more information and instructions for using this operation, see [Converting Conrefs to Conkeyrefs](on page 3133).

**Convert simple tables to CALS tables**

Use this operation to convert DITA simple tables to CALS tables.

**Convert Nested Topics to New Topics (Available from the contextual menu of editable maps/nodes in the DITA Maps Manager [on page 2990])**

Use this operation on topics that contain nested `<topic>` elements to convert each nested topic to a new topic. Also, the new topics are added in the DITA Maps Manager as the first child topics of the original topic.

**Convert Sections to New Topics (Available from the contextual menu of editable maps/nodes in the DITA Maps Manager [on page 2990])**

Use this operation on topics that contain multiple sections to convert each section to a new topic. Also, the new topics are added in the DITA Maps Manager as the first child topics of the original topic.

**Convert to Concept**

Use this operation to convert a DITA topic (of any type) to a DITA Concept topic type (for example, Topic to Concept). For more information, see [Converting DITA Topics to Another Type](on page 3059).
Convert to General Task

Use this operation to convert a DITA topic (of any type) to a DITA General Task topic type (for example, Task to General Task). For more information, see Converting DITA Topics to Another Type (on page 3059).

Convert to Reference

Use this operation to convert a DITA topic (of any type) to a DITA Reference topic type (for example, Topic to Reference). For more information, see Converting DITA Topics to Another Type (on page 3059).

Convert to Task

Use this operation to convert a DITA topic (of any type) to a DITA Task topic type (for example, Topic to Task). For more information, see Converting DITA Topics to Another Type (on page 3059).

Convert to Topic

Use this operation to convert a DITA topic (of any type) to a DITA Topic (for example, Task to Topic). For more information, see Converting DITA Topics to Another Type (on page 3059).

Convert to Troubleshooting

Use this operation to convert a DITA topic (of any type) to a DITA Troubleshooting topic type (for example, Topic to Troubleshooting). For more information, see Converting DITA Topics to Another Type (on page 3059).

Rename Key

Use this operation to rename a key. It also updates all references to it. Note that it does not work on DITA 1.3 key scopes.

All of these DITA refactoring actions allow you to choose a scope for the operation and some filters:

Scope

Select from a variety of options to define the scope for which resources will be affected by the operation. For example, you can choose to affect all resources in the Project, All opened files, Current DITA map hierarchy, or just the Current file.

Filters section

Include files

Specifies files to be excluded from the operation. You can specify multiple files by separating them with commas and the patterns can include wildcards (such as * or ?).

Restrict to known XML file types only
Excludes non-XML file types from the operation.

**Look inside archives**

If this option is selected, the scope of the operation will include files inside archives.

### Refactoring Operations for *Elements*

#### Delete element

Use this operation to delete elements. This operation requires you to specify the following parameter:

**Element**

The target element to be deleted, in the form of a local name from any namespace, a local name with a namespace prefix, or an XPath expression.

#### Delete element content

Use this operation to delete the content of elements. This operation requires you to specify the following parameter:

**Element**

The target element whose content is to be deleted, in the form of a local name from any namespace, a local name with a namespace prefix, or an XPath expression.

#### Insert element

Use this operation to insert new elements. This operation allows you to specify the following parameters:

**Element section**

**Local name**

The local name of the element to be inserted.

**Namespace**

The namespace of the element to be inserted.

**Location section**

**XPath**
An XPath expression that identifies an existing element to which the new element is relative, in the form of a local name from any namespace, a local name with a namespace prefix, or other XPath expressions.

**Position**

The position where the new element will be inserted, in relation to the specified existing element. The possible selections in the drop-down menu are: After, Before, First child, or Last child.

**Rename element**

Use this operation to rename elements. This operation requires you to specify the following parameters:

**Target elements (XPath)**

The target elements to be renamed, in the form of a local name from any namespace, a local name with a namespace prefix, or other XPath expressions.

**New local name**

The new local name of the element.

**Unwrap element**

Use this operation to remove the surrounding tags of elements, while keeping the content unchanged. This operation requires you to specify the following parameter:

**Target elements (XPath)**

The target elements whose surrounding tags will be removed, in the form of a local name from any namespace, a local name with a namespace prefix, or other XPath expressions.

**Wrap element**

Use this operation to surround elements with element tags. This operation allows you to specify the following parameters:

**Target elements (XPath)**

The target elements to be surrounded with tags, in the form of a local name from any namespace, a local name with a namespace prefix, or other XPath expressions.

**Wrapper element section**
Local name
   The local name of the Wrapper element.

Namespace
   The namespace of the Wrapper element.

Wrap element content
   Use this operation to surround the content of elements with element tags. This operation allows you to specify the following parameters:

   Target elements (XPath)
      The target elements whose content will be surrounded with tags, in the form of a local name from any namespace, a local name with a namespace prefix, or other XPath expressions.

Wrapper element section
   Local name
      The local name of the Wrapper element that will surround the content of the target.

   Namespace
      The namespace of the Wrapper element that will surround the content of the target.

Refactoring Operations for Fragments

Insert XML fragment
   Use this operation to insert an XML fragment. This operation allows you to specify the following:

   XML Fragment
      The XML fragment to be inserted.

   Location section
      XPath
         An XPath expression that identifies an existing element to which the inserted fragment is relative, in the form of a local name from any namespace, a local name with a namespace prefix, or other XPath expressions.
The position where the fragment will be inserted, in relation to the specified existing element. The possible selections in the drop-down menu are: **After, Before, First child, or Last child**.

**Replace element content with XML fragment**

Use this operation to replace the content of elements with an XML fragment. This operation allows you to specify the following parameters:

**Target elements (XPath)**

The target elements whose content will be replaced, in the form of a local name from any namespace, a local name with a namespace prefix, or other XPath expressions.

**XML Fragment**

The XML fragment with which to replace the content of the target element.

**Replace element with XML fragment**

Use this operation to replace elements with an XML fragment. This operation allows you to specify the following parameters:

**Target elements (XPath)**

The target elements to be replaced, in the form of a local name from any namespace, a local name with a namespace prefix, or other XPath expressions.

**XML Fragment**

The XML fragment with which to replace the target element.

**Refactoring Operations for JATSKit**

**Add BITS DOCTYPE - NLM/NCBI Book Interchange 2.0**

Use this operation to add an NLM 'BITS' 2.0 DOCTYPE declaration.

**Add Blue DOCTYPE - NISO JATS Publishing 1.1**

Use this operation to add a JATS 'Blue' 1.1 DOCTYPE declaration.

**Normalize IDs**

Use this operation to normalize assigned IDs and assigned IDs to elements that are missing them.

All of these JATSKit refactoring actions allow you to choose a scope for the operation and some filters:
Scope

Select from a variety of options to define the scope for which resources will be affected by the operation. For example, you can choose to affect all resources in the Project, All opened files, or just the Current file.

Filters section

Include files

Specifies files to be excluded from the operation. You can specify multiple files by separating them with commas and the patterns can include wildcards (such as * or ?).

Restrict to known XML file types only

Excludes non-XML file types from the operation.

Look inside archives

If this option is selected, the scope of the operation will include files inside archives.

Refactoring Operations for Publishing Template

These operations are for those who use Oxygen Publishing Templates for WebHelp Responsive output customization.

Migrate HTML Page Layout Files to v21

Use this operation to convert custom HTML page layout files (on page 1909) that are included in a custom Publishing Template that was created in Oxygen XML Editor version 20.0 or 20.1 so that they will be compatible with Oxygen XML Editor version 21.0.

Update HTML Pages

⚠️ Attention: This operation is only used by Oxygen XML Editor and should not be used manually.

Additional Notes

⚠️ Note: There are some operations that allow <ANY> for the local name and namespace parameters. This value can be used to select an element or attribute regardless of its local name or namespace. Also, the <NO_NAMESPACE> value can be used to select nodes that do not belong to a namespace.

⚠️ Note: Some operations have parameters that accept XPath expressions to match elements or attributes. In these XPath expressions you can only use the prefixes declared in the Options >
Preferences > XML > XSLT-FO-XQUERY > XPath (on page 214) page. This preferences page can be easily opened by clicking the link in the note (Each prefix used in an XPath expression must be declared in the Default prefix-namespace mappings section) at the bottom of the Configure Operation Parameters wizard page.

Custom Refactoring Operations

While Oxygen XML Editor includes a variety of built-in XML refactoring operations to help you accomplish particular tasks, you can also create custom operations according to your specific needs. For example, you could create a custom refactoring operation to convert an attribute to an element and insert the element as the first child of the parent element.

An XML Refactoring operation is defined as a pair of resources:

- An XQuery Update script or XSLT stylesheet that Oxygen XML Editor will run to refactor the XML files.
- An XML Operation Descriptor file that contains information about the operation (such as the name, description, and parameters).

Figure 415. Diagram of an XML Refactoring Operation

All the defined custom operations are loaded by the XML Refactoring Tool and presented in the Refactoring Operations wizard page (on page 1140), along with the built-in operations.
After the user chooses an operation and specifies its parameters, Oxygen XML Editor processes an XQuery Update or XSLT transformation over the input file. This transformation is executed in a **safe mode**, which implies the following:

- **When loading the document:**
  - The **Xinclude** mechanism is disabled. This means that the resources included by using Xinclude will not be visible in the transformation.
  - The DTD entities will be processed without being expanded.
  - The associated DTD will be not loaded, so the default attributes declared in the DTD will not be visible in the transformation.

- **When saving the updated XML document:**
  - The **DOCTYPE** will be preserved.

  **Note:** This can be changed using *[Saxon extension functions in XSLT](on page 1170)*.
  - The DTD entities will be preserved as they are in the original document when the document is saved.
  - The attribute values will be kept in their original form without being normalized.
  - The spaces between attributes are preserved. Basically, the spaces are lost by a regular XML serialization since they are not considered important.

The result of this transformation overrides the initial input file.

**Note:** To achieve some of the previous goals, the XML Refactoring mechanism adds several attributes that are interpreted internally. The attributes belong to the **http://www.oxygenxml.com/ns/xmlRefactoring/additional_attributes** namespace. These attributes should not be taken into account when processing the input XML document since they are discarded when the transformed document is serialized.

**Restriction:** *Comments or processing instructions* that are in any node before or after the root element cannot be modified by an XML Refactoring operation. In other words, XML Refactoring operations can only be applied on the root element and the nodes inside it. However, as a work around to this limitation, you can use *[Saxon extension functions and the XSLT stylesheet method](on page 1170)* to implement the new custom XML refactoring operation.

**Creating a Custom Refactoring Operation**

To create a custom refactoring operation, follow these steps:

1. Create an *[XQuery Update script](on page 1160)* or *[XSLT stylesheet file](on page 1165)*.
2. Create an *[XML Refactoring Operation Descriptor]* file contains the path to the XQuery Update script (*on page 1163*) or XSLT stylesheet (*on page 1168*).
3. Store both files in one of the locations that Oxygen XML Editor (on page 1172) scans when loading the custom operations.

**Result:** Once you run the XML Refactoring tool again, the custom operation appears in the Refactoring Operations wizard page (on page 1140).

**Related Information:**
- Storing and Sharing Refactoring Operations (on page 1172)

**Custom Refactoring Script**

The first step in creating a custom refactoring operation is to create an XQuery Update script (on page 1160) or XSLT stylesheet (on page 1165) that is needed to process the refactoring operations. The easiest way to create this script file is to use the New document wizard to create a new XQuery or XSLT file and you can use the XQuery method example (on page 1160) or XSLT method example (on page 1165) to help you with the content.

There are cases when it is necessary to add parameters in the XQuery script (on page 1160) or XSLT stylesheet (on page 1165). For instance, if you want to rename an element, you may want to declare an external parameter associated with the name of the element to be renamed. To allow you to specify the value for these parameters, they need to be declared in the refactoring operation descriptor file that is associated with this operation.

**Note:** The XQuery Update processing is disabled by default in Oxygen XML Editor. Thus, if you want to create or edit an XQuery Update script you have to enable this mechanism by creating an XQuery transformation scenario (on page 1749) and choose Saxon EE as the transformation engine. Also, you need to make sure the Enable XQuery update option is selected in the Saxon processor advanced options (on page 1696).

**Note:** If you are using an XSLT file, XPath expressions that are passed as parameters will automatically be rewritten to conform with the mapping of the namespace prefixes declared in the XML /XSLT-FO-XQuery / XPath preferences page (on page 214).

The next step in creating a custom refactoring operation is to create an XML Refactoring Operation Descriptor file contains the path to the XQuery Update script (on page 1163) or XSLT stylesheet (on page 1168).

**Related Information:**
- XQuery Update Script for Creating a Custom Operation (on page 1160)
Custom Refactoring Operation Descriptor File

The second step in creating a custom refactoring operation is to create an operation descriptor file. The easiest way to do this is to use the New document wizard and choose the XML Refactoring Operation Descriptor template.

Introduction to the Descriptor File

This file contains information (such as name, description, and id) that is necessarily when loading an XML Refactoring operation. It also contains the path to the XQuery Update script (on page 1160) or XSLT stylesheet (on page 1165) that is associated with the particular operation through the script element.

You can specify a category for your custom operations to logically group certain operations. The category element is optional and if it is not included in the descriptor file, the default name of the category for the custom operations is Other operations.

The descriptor file is edited and validated against the following schema: frameworks/xml_refactoring/operation_descriptor.xsd.

Declaring Parameters in the Descriptor File

If the XQuery Update script or XSLT stylesheet includes parameters, they should be declared in the parameters section of the descriptor file. All the parameters specified in this section of the descriptor file will be displayed in the XML Refactoring tool within the Configure Operation Parameters wizard page (on page 1140) for that particular operation.

The value of the first description element in the parameters section will be displayed at the top of the Configure Operation Parameters wizard page (on page 1140).

To declare a parameter, specify the following information:

- label - This value is displayed in the user interface for the parameter.
- name - The parameter name used in the XQuery Update script or XSLT stylesheet and it should be the same as the one declared in the script.
- type - Defines the type of the parameter and how it will be rendered. There are several types available:
  - TEXT - Generic type used to specify a simple text fragment.
- **XPATH** - Type of parameter whose value is an XPATH expression. For this type of parameter, Oxygen XML Editor will use a text input with corresponding content completion and syntax highlighting.

**Note:** The value of this parameter is transferred as plain text to the XQuery Update or XSLT transformation without being evaluated. You should evaluate the XPath expression inside the XQuery Update script or XSLT stylesheet. For example, you could use the `saxon:evaluate` Saxon extension function.

**Note:** A relative XPath expression is converted to an absolute XPath expression by adding `// before it (`//XPathExp`). This conversion is done before transferring the XPath expression to the XML refactoring engine.

**Note:** When writing XPath expressions, you can only use prefixes declared in the Options > Preferences > XML > XSLT-FO-XQUERY > XPath (on page 214) options page.

- **NAMESPACE** - Used for editing namespace values.

- **REG_EXP_FIND** - Used when you want to match a certain text by using Perl-like regular expressions.

- **REG_EXP_REPLACE** - Used along with `REG_EXP_FIND` to specify the replacement string.

- **XML_FRAGMENT** - This type is used when you want to specify an XML fragment. For this type, Oxygen XML Editor will display a text area specialized for inserting XML documents.

- **NC_NAME** - The parameter for NC_NAME values. It is useful when you want to specify the local part of a QName (on page 3286) for an element or attribute.

- **BOOLEAN** - Used to edit boolean parameters.

- **TEXT_CHOICE** - It is useful for parameters whose value should be from a list of possible values. Oxygen XML Editor renders each possible value as a radio button option.

  - **description** - The description of the parameter. It is used by the application to display a tooltip when you hover over the parameter.

  - **possibleValues** - Contains the list with possible values for the parameter and you can specify the default value, as in the following example:

```xml
<possibleValues onlyPossibleValuesAllowed="true">
  <value name="before">Before</value>
  <value name="after" default="true">After</value>
  <value name="firstChild">First child</value>
  <value name="lastChild">Last child</value>
</possibleValues>
```
Specialized Parameters to Match Elements or Attributes

If you want to match elements or attributes, you can use some specialized parameters, in which case Oxygen XML Editor will propose all declared elements or attributes based on the schema associated with the currently edited file. The following specialized parameters are supported:

**elementLocation**

This parameter is used to match elements. For this type of parameter, the application displays a text field where you can enter the element name or an XPath expression. The text from the `label` attribute is displayed in the application as the label of the text field. The `name` attribute is used to specify the name of the parameter from the XQuery Update script or XSLT stylesheet. If the value of the `useCurrentContext` attribute is set to `true`, the element name from the cursor position is used as proposed values for this parameter.

Example of an `elementLocation`:

```xml
<elementLocation name="elem_loc" useCurrentContext="false">
  <element label="Element location">
    <description>Element location description.</description>
  </element>
</elementLocation>
```

**attributeLocation**

This parameter is used to match attributes. For this type of parameter, the application displays two text fields where you can enter the parent element name and the attribute name (both text fields accept XPath expressions for a finer match). The text from the `label` attributes is displayed in the application as the label of the associated text fields. The `name` attribute is used to specify the name of the parameter from the XQuery Update script or XSLT stylesheet. The value of this parameter is an XPath expression that is computed by using the values of the expression from the `element` and `attribute` text fields. For example, if `section` is entered for the element and a `title` is entered for the attribute, the XPath expression would be computed as `//section/@title`. If the value of the `useCurrentContext` attribute is set to `true`, the element and attribute name from the cursor position is used as proposed values for the operation parameters.

Example of an `attributeLocation`:

```xml
<attributeLocation name="attr_xpath" useCurrentContext="true">
  <element label="Element path">
  </element>
</attributeLocation>
```
elementParameter

This parameter is used to specify elements by local name and namespace. For this type of parameter, the application displays two combo boxes with elements and namespaces collected from the associated schema of the currently edited file. The text from the label attribute is displayed in the application as label of the associated combo. The name attribute is used to specify the name of the parameter from the XQuery Update script or XSLT stylesheet. If you specify the allowsAny attribute, the application will propose <ANY> as a possible value for the Name and Namespace combo boxes. You can also use the useCurrentContext attribute and if its value is set to true, the element name and namespace from the cursor position is used as proposed values for the operation parameters.

Example of an elementParameter:

```xml
<elementParameter id="elemID" useCurrentContext="true">
  <localName label="Name" name="element_localName" allowsAny="true">
    <description>Local name of the parent element.</description>
  </localName>

  <namespace label="Namespace" name="element_namespace" allowsAny="true">
    <description>Local name of the parent element</description>
  </namespace>
</elementParameter>
```

attributeParameter

This parameter is used to specify attributes by local name and namespace. For this type of parameter, the application displays two combo boxes with attributes and their namespaces collected from the associated schema of the currently edited file. The text from the label attribute is displayed in the application as the label of the associated combo box. You can also use the useCurrentContext attribute and if its value is set to true, the attribute name and namespace from the cursor position is used as proposed values for the operation parameters.
Note: An attributeParameter is dependant upon an elementParameter. The list of attributes and namespaces are computed based on the selection in the elementParameter combo boxes.

Example of an attributeParameter:

```xml
<attributeParameter dependsOn="elemID" useCurrentContext="true">
  <localName label="Name" name="attribute_localName">
    <description>The name of the attribute to be converted.</description>
  </localName>

  <namespace label="Namespace" name="attribute_namespace" allowsAny="true">
    <description>Namespace of the attribute to be converted.</description>
  </namespace>
</attributeParameter>
```

Note: All built-in operations are loaded from the `{OXYGEN_INSTALL_DIR}/refactoring` folder.

Related Information:

- Example of an Operation Descriptor File with an XSLT Stylesheet (on page 1168)
- Example of an Operation Descriptor File with an XQuery Update script (on page 1163)

**XQuery Update Script for Creating a Custom Operation**

To demonstrate creating a custom operation, suppose that you have a task where you need to convert an attribute into an element and insert it inside another element. A specific example would be if you have a project with a variety of `image` elements where a deprecated `alt` attribute was used for the description and you want to convert all instances of that attribute into an element with the same name and insert it as the first child of the `image` element.

Thus, the task is to convert this attribute into an element with the same name and insert it as the first child of the `image` element.

Figure 416. Example: Custom XML Refactoring Operation
An XQuery Update script can be used to implement the new custom XML refactoring operation. The second requirement is an XML Refactoring operation descriptor file (on page 1163) that contains the path to the XQuery Update script.

⚠️ **Restriction**: There is a limitation to using an XQuery script in that comments or processing instructions that are in any node before or after the root element cannot be modified by an XML Refactoring operation. In other words, XML Refactoring operations can only be performed on comments or processing instructions that are inside the root element. However, as a work around to this limitation, you can use Saxon extension functions and the XSLT stylesheet method (on page 1170) to implement the new custom XML refactoring operation.

**Example of an XQuery Update Script for Creating a Custom Operation to Convert an Attribute to an Element**

The XQuery Update script does the following:

- Iterates over all elements from the document that have the specified local name and namespace.
- Finds the attribute that will be converted to an element.
- Computes the QName (on page 3286) of the new element to be inserted and inserts it as the first child of the parent element.

```xquery
<image href="../image/insertBattery.jpg" alt="Insert the battery into the battery compartment." placement="break"/>

<image href="../image/insertBattery.jpg" placement="break">
  <alt>Insert the battery into the battery compartment.</alt>
</image>
```

```xquery
{
  XQuery document used to implement 'Convert attribute to element' operation from XML Refactoring tool.
}
```
declare namespace output = "http://www.w3.org/2010/xslt-xquery-serialization";
declare option output:method   "xml";
declare option output:indent   "no"

(: Local name of the attribute's parent element. :) 
declare variable $element_localName as xs:string external;

(: Namespace of the attribute's parent element. :) 
declare variable $element_namespace as xs:string external;

(: The local name of the attribute to be converted :) 
declare variable $attribute_localName as xs:string external;

(: The namespace of the attribute to be converted :) 
declare variable $attribute_namespace as xs:string external;

(: Local name of the new element. :) 
declare variable $new_element_localName as xs:string external;

(: Namespace of the new element. :) 
declare variable $new_element_namespace as xs:string external;

(: Convert attribute to element:) 
for $node in //*
 (: Find the attribute to convert :) 
let $attribute := 
  $node/@*[local-name() = $attribute_localName and ($attribute_namespace = '<ANY>' or $attribute_namespace = namespace-uri())]

(: Compute the prefix for the new element to insert :) 
let $prefix :=
  for $p in in-scope-prefixes($node)
    where $new_element_namespace = namespace-uri-for-prefix($p, $node)
  return $p

(: Compute the qname for the new element to insert :) 
let $new_element_qName :=
  if (empty($prefix) or $prefix[1] = '') then $new_element_localName 
  else $prefix[1] || ':' || $new_element_localName
where ('<ANY>' = $element_localName or local-name($node) = $element_localName)
   and
($element_namespace = '<ANY>' or $element_namespace = namespace-uri($node))

return
   if (exists($attribute)) then
      (insert node element {QName($new_element_namespace, $new_element_qName)}
       {string($attribute)} as first into $node,
       delete node $attribute)
   else ()

Example of an Operation Descriptor File That References the XQuery Script for Creating a Custom Operation to Convert an Attribute to an Element

After you have developed the XQuery script, you have to create an XML Refactoring operation descriptor. This descriptor is used by the application to load the operation details such as name, description, or parameters.

```xml
<?xml version="1.0" encoding="UTF-8"?>
<refactoringOperationDescriptor
   xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
   xmlns="http://www.oxygenxml.com/ns/xmlRefactoring"
   id="convert-attribute-to-element"
   name="Convert attribute to element">
  <description>Converts the specified attribute to an element. The new element will be inserted as first child of the attribute's parent element.</description>

  <!-- For the XSLT stylesheet option uncomment the following line and comment the line referring the XQuery Update script -->
  <!-- <script type="XSLT" href="convert-attribute-to-element.xsl"/> -->
  <script type="XQUERY_UPDATE" href="convert-attribute-to-element.xq"/>

  <parameters>
    <section label="Parent element">
      <elementParameter id="elemID">
        <localName label="Name" name="element_localName" allowsAny="true">
          <description>Local name of the parent element.</description>
        </localName>
      </elementParameter>
    </section>
    <section label="Parent element">
      <namespace label="Namespace" name="element_namespace" allowsAny="true">
        <description>Local name of the parent element.</description>
      </namespace>
    </section>
  </parameters>
</refactoringOperationDescriptor>
```
<section label="Attribute">
  <attributeParameter dependsOn="elemID">
    <localName label="Name" name="attribute_localName">
      <description>Name of the attribute to be converted.</description>
    </localName>
    <namespace label="Namespace" name="attribute_namespace" allowsAny="true">
      <description>Namespace of the attribute to be converted.</description>
    </namespace>
  </attributeParameter>
</section>

<section label="New element">
  <elementParameter>
    <localName label="Name" name="new_element_localName">
      <description>The name of the new element.</description>
    </localName>
    <namespace label="Namespace" name="new_element_namespace">
      <description>The namespace of the new element.</description>
    </namespace>
  </elementParameter>
</section>

<parameters>
</refactoringOperationDescriptor>

Results

After you have created these files, copy them into a folder scanned by Oxygen XML Editor when it loads the custom operation (on page 1172). When the XML Refactoring tool is started again, you will see the created operation.

Since various parameters can be specified, this custom operation can also be used for other similar tasks. The following image shows the parameters that can be specified in the example of the custom operation to convert an attribute to an element:

Figure 417. Example: XML Refactoring Wizard for a Custom Operation
XSLT Stylesheet for Creating a Custom Operation

To demonstrate creating a custom operation, suppose that you have a task where you need to convert an attribute into an element and insert it inside another element. A specific example would be if you have a project with a variety of `image` elements where a deprecated `alt` attribute was used for the description and you want to convert all instances of that attribute into an element with the same name and insert it as the first child of the `image` element.

Thus, the task is to convert this attribute into an element with the same name and insert it as the first child of the `image` element.

Figure 418. Example: Custom XML Refactoring Operation

```xml
<image
   href="../image/insertBattery.jpg"
   alt="Insert the battery into the battery compartment."
   placement="break"/>

<alt>Insert the battery into the battery compartment.</alt>
</image>
```
An XSLT stylesheet can be used to implement the new custom XML refactoring operation. The second requirement is an XML Refactoring operation descriptor file (on page 1168) that contains the path to the XSLT stylesheet.

**Example of an XSLT Script for Creating a Custom Operation to Convert an Attribute to an Element**

The XSLT stylesheet does the following:

- Iterates over all elements from the document that have the specified local name and namespace.
- Finds the attribute that will be converted to an element.
- Adds the new element as the first child of the parent element.

```xml
<?xml version="1.0" encoding="UTF-8"?>
<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
    xmlns:xs="http://www.w3.org/2001/XMLSchema"
    exclude-result-prefixes="xs"
    xmlns:xr="http://www.oxygenxml.com/ns/xmlRefactoring"
    version="2.0">


    <xsl:param name="element_localName" as="xs:string" required="yes"/>
    <xsl:param name="element_namespace" as="xs:string" required="yes"/>
    <xsl:param name="attribute_localName" as="xs:string" required="yes"/>
    <xsl:param name="attribute_namespace" as="xs:string" required="yes"/>
    <xsl:param name="new_element_localName" as="xs:string" required="yes"/>
    <xsl:param name="new_element_namespace" as="xs:string" required="yes"/>

    <xsl:template match="node() | @*">
        <xsl:copy>
            <xsl:apply-templates select="node() | @*"/>
        </xsl:copy>
    </xsl:template>

    <xsl:template match="/*/xr:check-local-name($element_localName, ., true())
        and
        xr:check-namespace-uri($element_namespace, .))">
        <xsl:variable name="attributeToConvert"
            select="@*[xr:check-local-name($attribute_localName, ., true())]">
        </xsl:variable>
    </xsl:template>
</xsl:stylesheet>
```
and

    xr:check-namespace-uri($attribute_namespace, .)]"/>

    <xsl:choose>
      <xsl:when test="empty($attributeToConvert)">
        <xsl:copy>
          <xsl:apply-templates select="node() | @*"/>
        </xsl:copy>
      </xsl:when>
      <xsl:otherwise>
        <xsl:copy>
          <xsl:for-each select="@*[empty(. intersect $attributeToConvert)]">
            <xsl:copy-of select="."/>
          </xsl:for-each>
        </xsl:copy>
      </xsl:otherwise>
    </xsl:choose>

    <!-- The new element namespace -->
    <xsl:variable name="nsURI" as="xs:string">
      <xsl:choose>
        <xsl:when test="$new_element_namespace eq $xr:NO-NAMESPACE">
          <xsl:value-of select="''"/>
        </xsl:when>
        <xsl:otherwise>
          <xsl:value-of select="$new_element_namespace"/>
        </xsl:otherwise>
      </xsl:choose>
    </xsl:variable>

    <xsl:element name="{$new_element_localName}" namespace="{$nsURI}">
      <xsl:value-of select="$attributeToConvert"/>
    </xsl:element>

    <xsl:apply-templates select="node()"/>
  </xsl:copy>
</xsl:otherwise>
</xsl:choose>
</xsl:template>
</xsl:stylesheet>

**Note:** The XSLT stylesheet imports a module library that contains utility functions and variables. The location of this module is resolved via an XML Catalog (on page 3289) set in the XML Refactoring framework (on page 3282).
Example of an Operation Descriptor File That References the XSLT Stylesheet for
Creating a Custom Operation to **Convert an Attribute to an Element**

After you have developed the XSLT stylesheet, you have to create an XML Refactoring operation
descriptor. This descriptor is used by the application to load the operation details such as name,
description, or parameters.

```xml
<?xml version="1.0" encoding="UTF-8"/>
<refactoringOperationDescriptor
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns="http://www.oxygenxml.com/ns/xmlRefactoring"
 id="convert-attribute-to-element"
 name="Convert attribute to element">
  <description>Converts the specified attribute to an element.
   The new element will be inserted as first child of the attribute's
   parent element.</description>
  <!-- For the XSLT stylesheet option uncomment the following line and comment
   the line referring the XQuery Update script -->
  <!-- <script type="XSLT" href="convert-attribute-to-element.xsl"/> -->
  <script type="XQUERY_UPDATE" href="convert-attribute-to-element.xq"/>
  <parameters>
    <section label="Parent element">
      <elementParameter id="elemID">
        <localName label="Name" name="element_localName" allowsAny="true">
          <description>Local name of the parent element.</description>
        </localName>
        <namespace label="Namespace" name="element_namespace" allowsAny="true">
          <description>Local name of the parent element</description>
        </namespace>
      </elementParameter>
    </section>
    <section label="Attribute">
      <attributeParameter dependsOn="elemID">
        <localName label="Name" name="attribute_localName">
          <description>Name of the attribute to be converted.</description>
        </localName>
        <namespace label="Namespace" name="attribute_namespace" allowsAny="true">
          <description>Namespace of the attribute to be converted.</description>
        </namespace>
      </attributeParameter>
    </section>
  </parameters>
</refactoringOperationDescriptor>
```
Note: If you are using an XSLT file, the line with the `<script>` element would look like this:

```xml
<script type="XSLT" href="convert-attribute-to-element.xsl"/>
```

**Results**

After you have created these files, copy them into a folder scanned by Oxygen XML Editor when it loads the custom operation (on page 1172). When the XML Refactoring tool is started again, you will see the created operation.

Since various parameters can be specified, this custom operation can also be used for other similar tasks. The following image shows the parameters that can be specified in the example of the custom operation to convert an attribute to an element:

Figure 419. Example: XML Refactoring Wizard for a Custom Operation
Using Saxon Extension Functions to Allow Custom Refactoring Operations to Read and Modify Content Outside the Root Node

One advantage to using an XSLT stylesheet is that there is limitation when using an XQuery Update script (on page 1160) in that refactoring operations can only be performed on comments or processing instructions that are inside the root element. Thus, using the XQuery method, comments or processing instructions that are in any node before or after the root element cannot be modified by an XML Refactoring operation.

The XSLT stylesheet method offers a work-around to this limitation through the use of some Saxon extension functions.

To illustrate the use of these functions, consider the following sample XML file:

```xml
<?xml version="1.0" encoding="UTF-8"?>
<!-- comment before root -->
<?pi before root ?>
<root>
  <child></child>
</root>
<!-- comment after root -->
<?pi after root ?>
```

The following Saxon extension functions can be used to read and modify content outside the root node:

• **get-content-after-root()** - Returns the content after root as `xs:string`.

For the XML above, the call of this function will return the following string value:

```xml
<!-- comment after root -->
<?pi after root ?>
```

• **set-content-after-root(xs:string)** - Updates the content that will be serialized in the refactored document after the root node.

The function call `set-content-after-root('<!-- Inserted comment -->')` will result in replacing the nodes after the root element with the comment passed as string argument. The XML document will be modified as follows:

```xml
<?xml version="1.0" encoding="UTF-8"?>
<!-- comment before root -->
<?pi before root ?>
<root>
  <child></child>
</root><!-- Inserted comment -->
```

• **get-content-before-root()** - Returns the content before root as `xs:string`.

For the XML above, the call of this function will return the following string value:

```xml
<?xml version="1.0" encoding="UTF-8"?>
<!-- comment before root -->
<?pi before root ?>
```

• **set-content-before-root(xs:string)** - Updates the content that will be serialized in the refactored document after the root node.

The function call `set-content-before-root('<!-- Inserted comment -->')` will result in replacing the nodes before the root element with the comment passed as string argument. The XML document will be modified as follows:

```xml
<!-- Inserted comment -->
<root><child></child>
</root><!-- Inserted comment -->
```

**XSLT Example:**

To process content after the root node, the XSLT would look like this:
Note: The above XSLT retrieves the nodes after the root element as string, appends a new comment, and then sets back the updated content into the XML document.

Storing and Sharing Refactoring Operations

Oxygen XML Editor scans the following locations when looking for XML Refactoring operations to provide flexibility:

- A refactoring folder, created inside a directory that is associated to a framework you are customizing. To associate the parent directory to the framework, you need to add it in the Classpath tab of the Document type configuration dialog box (on page 99).
Sharing Custom Refactoring Operations

The purpose of Oxygen XML Editor scanning multiple locations for the XML Refactoring operations is to provide more flexibility for developers who want to share the refactoring operations with the other team members. Depending on your particular use case, you can attach the custom refactoring operations to other resources, such as framework (on page 3282) or projects.

After storing custom operations, you can share them with other users by sharing the resources.

Localizing XML Refactoring Operations

Oxygen XML Editor includes localization support for the XML refactoring operations.

The translation keys for the built-in refactoring operations are located in \[OXYGEN_INSTALL_DIR]/refactoring/i18n/translation.xml.

The localization support is also available for custom refactoring operations. The following information can be translated:

- The operation name, description, and category.
- The description of the parameters element.
- The label, description, and possibleValues for each parameter.

Translated refactoring information uses the following form:

\${i18n(translation_key)}
Oxygen XML Editor scans the following locations to find the translation.xml files that are used to load the translation keys:

- A refactoring/i18n folder, created inside a directory that is associated to a customized framework.
- A i18n folder, created inside a directory that is associated to a customized framework.
- An i18n folder inside any specified folder. In this case, you need to open the Preferences dialog box (Options > Preferences) (on page 79), go to XML > XML Refactoring, and specify the folder in the Load additional refactoring operations from text box.
- An i18n folder located in directories specified through the XML Refactoring Operations Plugin Extension (on page 2601).
- The refactoring/i18n folder from the Oxygen XML Editor installation directory ([OXYGEN_INSTALL_DIR]/refactoring/i18n).

**Example: Refactoring Operation Descriptor File with i18n Support**

```xml
<?xml version="1.0" encoding="UTF-8"?>

<refactoringOperationDescriptor
    xmlns="http://www.oxygenxml.com/ns/xmlRefactoring" id="remove_text_content"
    name="$\{i18n(Remove_text_content)\}"
>
    <description>$\{i18n(Remove_text_content_description)\}$</description>

    <script type="XQUERY_UPDATE" href="remove_text_content.xq"/>

    <parameters>
        <description>$\{i18n(parameters_description)\}$</description>

        <parameter label="$\{i18n(Element_name)\}$" name="element_localName"
            type="NC_NAME">
            <description>$\{i18n(Element_name_descriptor)\}$</description>

            <possibleValues>
                <value default="true" name="value1">$\{i18n(value_1)\}$</value>

                <value name="value2">$\{i18n(value_2)\}$</value>
            </possibleValues>
        </parameter>
    </parameters>
</refactoringOperationDescriptor>
```

**XML Digital Signatures**

This chapter explains how to apply and verify digital signatures on XML documents.
Digital Signatures Overview

Digital signatures are widely used as security tokens, not just in XML. A digital signature provides a mechanism for assuring integrity of data, the authentication of its signer, and the non-repudiation of the entire signature to an external party:

- A digital signature must provide a way to verify that the data has not been modified or replaced to ensure integrity.
- The signature must provide a way to establish the identity of the data's signer for authentication.
- The signature must provide the ability for the data's integrity and authentication to be provable to a third party for non-repudiation.

A public key system is used to create the digital signature and it is also used for verification. The signature binds the signer to the document because digitally signing a document requires the originator to create a hash of the message and then encrypt that hash value with their own private key. Only the originator has that private key and that person is the only one who can encrypt the hash so that it can be unencrypted using their public key. The recipient, upon receiving both the message and the encrypted hash value, can decrypt the hash value, knowing the originator's public key. The recipient must also try to generate the hash value of the message and compare the newly generated hash value with the unencrypted hash value received from the originator. If the hash values are identical, it proves that the originator created the message, because only the actual originator could encrypt the hash value correctly.

XML Signatures can be applied to any digital content (data object), including XML (see W3C Recommendation, XML-Signature Syntax and Processing). An XML Signature may be applied to the content of one or more resources:

- Enveloped or enveloping signatures are applied over data within the same XML document as the signature
- Detached signatures are applied over data external to the signature element; the signature is "detached" from the content it signs. This definition typically applies to separate data objects, but it also includes the instance where the signature and data object reside within the same XML document but are sibling elements.

The XML Signature is a method of associating a key with referenced data. It does not normatively specify how keys are associated with persons or institutions, nor the meaning of the data being referenced and signed.

The original data is not actually signed. Instead, the signature is applied to the output of a chain of canonicalization (on page 3280) and transformation algorithms, which are applied to the data in a designated sequence. This system provides the flexibility to accommodate whatever "normalization"
or desired preprocessing of the data that might be required or desired before subjecting it to being signed.

Since the signature is dependent on the content it is signing, a signature produced from a non-canonicalized document could possibly be different from one produced from a canonicalized document. The canonical form of an XML document is physical representation of the document produced by the method described in this specification. The XML canonicalization method is the algorithm defined by this specification that generates the canonical form of a given XML document or document subset. XML canonicalization is designed to be useful for applications that require the ability to test whether or not the information content of a document or document subset has been changed. This is done by comparing the canonical form of the original document before application processing with the canonical form of the document result of the application processing.

A digital signature over the canonical form of an XML document or document subset allows the signature digest calculations to be oblivious to changes in the original document's physical representation. During signature generation, the digest is computed over the canonical form of the document. The document is then transferred to the relying party, which validates the signature by reading the document and computing a digest of the canonical form of the received document. The equivalence of the digests computed by the signing and relying parties (hence, the equivalence of the canonical forms for which they were computed) ensures that the information content of the document has not been altered since it was signed.

The following canonicalization algorithms are used in Oxygen XML Editor:

- **Canonical XML (or Inclusive XML Canonicalization) (XMLC14N)** - Used for XML where the context doesn't change.

  Inclusive Canonicalization copies all the declarations, even if they are defined outside of the scope of the signature, and all the declarations you might use will be unambiguously specified. Inclusive Canonicalization is useful when it is less likely that the signed data will be inserted in other XML document and it is the safer method from the security standpoint because it requires no knowledge of the data that are to be secured to safely sign them. A problem may occur if the signed document is moved into another XML document that has other declarations because the Inclusive Canonicalization will copy them and the signature will be invalid.

- **Exclusive XML Canonicalization (EXCC14N)** - Designed for canonicalization where the context might change.

  Exclusive Canonicalization just copies the namespaces you are actually using (the ones that are a part of the XML syntax). It does not look into attribute values or element content, so the namespace declarations required to process these are not copied. This is useful if you have a signed XML document that you want to insert into other XML documents (or you need self-signed
structures that support placement within various XML contexts), as it will ensure the signature is verified correctly each time.

The canonicalization (on page 3280) method can specify whether or not comments should be included in the canonical form output by the XML canonicalization method. If a canonical form contains comments corresponding to the comment nodes in the input node-set, the result is called canonical XML with comments. In an uncommented canonical form, comments are removed, including the delimiter for comments outside the document element.

The three operations, Canonicalize (on page 1178), Sign (on page 1179), and Verify Signature (on page 1181), are available from the Source submenu when invoking the contextual menu in Text mode or from the Tools menu.

Related Information:

• Certificates (on page 1177)

• Canonicalizing Files (on page 1178)

• Signing Files (on page 1179)

• Verifying Signature (on page 1181)

• Example of How to Digitally Sign XML Files or Content (on page 1182)

Certificates

A certificate is a digitally signed statement from the issuer (an individual, an organization, a website or a firm), saying that the public key (and some other information) of some other entity has a particular value. When data is digitally signed, the signature can be verified to check the data integrity and authenticity. Integrity means that the data has not been modified. Authenticity means the data comes indeed from the entity that claims to have created and signed it. Certificates are kept in special repositories called keystores (on page 3283).

All keystore entries (key and trusted certificate entries) are accessed via unique aliases. An alias must be assigned for every new entry of either a key or certificate as a reference for that entity. No keystore can store an entity if its alias already exists in that keystore and cannot store trusted certificates generated with keys in its keystore.
Oxygen XML Editor provides two types of keystores: Java Key Store (JKS) and Public-Key Cryptography Standards version 12 (PKCS-12). A keystore file is protected by a password. In a PKCS 12 keystore you should not store a certificate without alias together with other certificates, with or without alias, as in such a case the certificate without alias cannot be extracted from the keystore.

To configure the options for a certificate or to validate it, open the Preferences dialog box (Options > Preferences) (on page 79) and go to XML > XML Signing Certificates. This opens the certificates preferences page (on page 223).

Related Information:

- Digital Signatures Overview (on page 1174)

Canonicalizing Files

You can select the canonicalization (on page 3280) algorithm to be used for a document from the dialog box that is displayed by using the Canonicalize action that is available from the Source submenu when invoking the contextual menu in Text mode or from the Tools menu.

Figure 420. Canonicalization Settings Dialog Box

The Canonicalize dialog box allows you to set the following options:

- **Input URL** - Available if the Canonicalize action was selected from the Tools menu. It allows you to specify the location of the input file.
• **Exclusive** - If selected, the exclusive (uncommented) canonicalization (on page 3280) method is used.

  **Note:** Exclusive Canonicalization just copies the namespaces you are actually using (the ones that are a part of the XML syntax). It does not look into attribute values or element content, so the namespace declarations required to process these are not copied. This is useful if you have a signed XML document that you want to insert into other XML documents (or you need self-signed structures that support placement within various XML contexts), as it will ensure the signature is verified correctly each time.

  • **Exclusive with comments** - If selected, the exclusive with comments canonicalization (on page 3280) method is used.

  • **Inclusive** - If selected, the inclusive (uncommented) canonicalization (on page 3280) method is used.

  **Note:** Inclusive Canonicalization copies all the declarations, even if they are defined outside of the scope of the signature, and all the declarations you might use will be unambiguously specified. Inclusive Canonicalization is useful when it is less likely that the signed data will be inserted in other XML document and it is the safer method from the security standpoint because it requires no knowledge of the data that are to be secured to safely sign them. A problem may occur if the signed document is moved into another XML document that has other declarations because the Inclusive Canonicalization will copy them and the signature will be invalid.

  • **Inclusive with comments** - If selected, the inclusive with comments canonicalization (on page 3280) method is used.

  • **XPath** - The XPath expression provides the fragments of the XML document to be signed.

  • **Output** - Available if the Canonicalize action was selected from the Tools menu. It allows you to specify the output file path where the signed XML document will be saved.

  • **Open in editor** - If selected, the output file will be opened in the editor.

**Related Information:**

• Digital Signatures Overview (on page 1174)

**Signing Files**

You can select the type of signature to be used for documents from a signature settings dialog box. To open this dialog box, select the **Sign** action from the **Source** submenu when invoking the contextual menu in **Text** mode or from the **Tools** menu.

Figure 421. Signature Settings Dialog Box
The following options are available:

**Note:** If Oxygen XML Editor could not find a valid certificate, a link is provided at the top of the dialog box that opens the XML Signing Certificates preferences page (on page 223) where you can configure a valid certificate.

- **Input** - Available if the **Sign** action was selected from the **Tools** menu. Specifies the location of the input URL.
- **Transformation Options** - See the Digital Signature Overview (on page 1174) section for more information about these options.
  - **None** - If selected, no canonicalization (on page 3280) algorithm is used.
  - **Exclusive** - If selected, the exclusive (uncommented) canonicalization (on page 3280) method is used.

  **Note:** Exclusive Canonicalization just copies the namespaces you are actually using (the ones that are a part of the XML syntax). It does not look into attribute values or element content, so the namespace declarations required to process these are not copied. This is useful if you have a signed XML document that you want to insert into other XML documents.
(or you need self-signed structures that support placement within various XML contexts), as it will ensure the signature is verified correctly each time.

- **Exclusive with comments** - If selected, the exclusive with comments canonicalization (on page 3280) method is used.
- **Inclusive** - If selected, the inclusive (uncommented) canonicalization (on page 3280) method is used.

**Note:** *Inclusive Canonicalization* copies all the declarations, even if they are defined outside of the scope of the signature, and all the declarations you might use will be unambiguously specified. *Inclusive Canonicalization* is useful when it is less likely that the signed data will be inserted in other XML document and it is the safer method from the security standpoint because it requires no knowledge of the data that are to be secured to safely sign them. A problem may occur if the signed document is moved into another XML document that has other declarations because the Inclusive Canonicalization will copy them and the signature will be invalid.

- **Inclusive with comments** - If selected, the inclusive with comments canonicalization (on page 3280) method is used.

- **XPath** - The XPath expression provides the fragments of the XML document to be signed.
- **ID** - Provides ID of the XML element to be signed.
- **Envelope** - If selected, the enveloped signature is used. See the Digital Signature Overview (on page 1174) for more information.
- **Detached** - If selected, the detached signature is used. See the Digital Signature Overview (on page 1174) for more information.
- **Append KeyInfo** - If this option is selected, the ds:KeyInfo element will be added in the signed document.
- **Signature algorithm** - The algorithm used for signing the document. The following options are available: RSA with SHA1, RSA with SHA256, RSA with SHA384, and RSA with SHA512.
- **Output** - Available if the Sign action was selected from the Tools menu. Specifies the path of the output file where the signed XML document will be saved.
- **Open in editor** - If selected, the output file will be opened in Oxygen XML Editor.

**Related Information:**

- Digital Signatures Overview (on page 1174)
- Verifying Signature (on page 1181)
- Example of How to Digitally Sign XML Files or Content (on page 1182)
Verifying Signature

You can verify the signature of a file by selecting the **Verify Signature** action from the **Source** submenu when invoking the contextual menu in **Text** mode or from the **Tools** menu. The **Verify Signature** dialog box then allows you to specify the location of the file whose signature is verified.

If the signature is valid, a dialog box displays the name of the signer. Otherwise, an error shows details about the problem.

**Related Information:**

- Digital Signatures Overview (*on page 1174*)
- Signing Files (*on page 1179*)
- Example of How to Digitally Sign XML Files or Content (*on page 1182*)

Example of How to Digitally Sign XML Files or Content

Suppose you want to digitally sign an XML document, but more specifically, suppose you have multiple instances of the same element in the document and you just want to sign a specific ID. Oxygen XML Editor includes a signature tool that allows you to digitally sign XML documents or specific content.

The Oxygen XML Editor installation directory includes a **samples** folder that contains a file called **personal.xml**. For the purposes of this example, this file will be used to demonstrate how to digitally sign specific content. Notice that this file has multiple **person** elements inside the **personnel** element. Suppose you want to digitally sign the specific **person** element that contains the id=robert.taylor. To do this, follow this procedure:

1. Open the **personal.xml** file in Oxygen XML Editor in **Text** editing mode.
2. Right-click anywhere in the editor and select the **Sign** action from the **Source** submenu. The **Sign** dialog box is displayed.
   
   **Tip:** If you want to sign a file but create a new output file so that the original file remains unchanged, use the **Sign** action from the **Tools** menu. Selecting the action from this menu will allow you to choose an input file and output file in the **Sign** dialog box.
3. If Oxygen XML Editor cannot find a valid certificate, click the link at the top of the dialog box to **configure a valid certificate**. This opens the **XML Signing Certificates** preferences page (*on page 223*) that allows you to configure and validate a certificate.
4. Once a valid certificate is recognized, continue to configure the **Sign** dialog box.
   a. Select one of the **Transformation Options** (on page 1180). For the purposes of this example, select the **Inclusive with comments** option.
   b. Specify the appropriate **XPath** expression for the specific element that needs to be signed. For this example, type `/personnel/person` in the **XPath** text box.
   c. Enter the specific **ID** that needs to be signed. For this example, type `robert.taylor` in the **ID** field.
   d. Select the **Envelope** option (on page 1181) and leave the other options as their default values.

   The digital signature is added at the end of the XML document, just before the end tag. It is always added at the end of the document, even if you only sign specific content within the document.

5. You can verify the signature by choosing the **Verify Signature** action from the **Source** submenu of the contextual menu.

---

### Related Information:

- Digital Signatures Overview (on page 1174)
- Signing Files (on page 1179)
- Verifying Signature (on page 1181)

---

**Editing XSLT Stylesheets**

Oxygen XML Editor includes a built-in editor for XSLT stylesheets. This section presents the features of the XSLT editor and how these features can be used. The features of the XSLT editor include:

- **Create new XSLT files and templates** - You can use the built-in new file wizards to create new XSLT documents or templates (on page 676).
- **Open and Edit XSLT files** - XSLT files can be opened and edited in the source editor (Text mode (on page 828)).
- **Visual Editing** - XSLT stylesheets are rendered, and can be edited, in the visual Author editing mode (on page 893).
- **Validation** - Presents validation errors in XSLT files.
- **Content completion** - Offers proposals for properties and the values that are available for each property.
• **Syntax highlighting** - The syntax highlighting in Oxygen XML Editor makes XSLT files more readable.

**Editing XSLT Stylesheets in the Master Files Context**

Smaller interrelated modules that define a complex stylesheet cannot be correctly edited or validated individually, due to their interdependency with other modules. For example, a function defined in a main stylesheet is not visible when you edit an included or imported module. Oxygen XML Editor provides the support for defining the main module (or modules), allowing you to edit any of the imported/included files in the context of the larger stylesheet structure.

You can set a main XSLT stylesheet either using the *master files support from the Project view (on page 726)*, or using a validation scenario.

To set a *master file* using a validation scenario, add validation units that point to the main modules. Oxygen XML Editor warns you if the current module is not part of the dependencies graph computed for the main stylesheet. In this case, it considers the current module as the main stylesheet.

The advantages of editing in the context of *master file (on page 3284)* include:

- Correct validation of a module in the context of a larger stylesheet structure.
- *Content Completion Assistant (on page 3280)* displays all components valid in the current context.
- The *Outline view (on page 1197)* displays the components collected from the entire stylesheet structure.

For more information about editing XSLT stylesheets in the *master files* context, watch our video demonstration:

[https://www.youtube.com/embed/UZwg385RKNw](https://www.youtube.com/embed/UZwg385RKNw)

**Related Information:**

- [XSLT Resource Hierarchy/Dependencies View (on page 1204)](#)
- [XSLT Component Dependencies View (on page 1207)](#)

**Validating XSLT Stylesheets**

Numerous XSLT code quality assurance checks are done during automatic validation to help you keep your stylesheets valid and well formed. Oxygen XML Editor performs the validation of XSLT
documents with the help of an XSLT processor that you can configure in the preferences pages (on page 200) according to the XSLT version.

For XSLT 1.0, the options are: Xalan, Saxon 6.5.5, Saxon 9.8.0.12 and a JAXP transformer specified by the main Java class. (on page 200) For XSLT 2.0, the options are: Saxon 9.8.0.12 and a JAXP transformer specified by the main Java class. (on page 200) For XSLT 3.0, the options are Saxon 9.8.0.12 and a JAXP transformer specified by the main Java class. (on page 200)

To access the XSLT preferences (on page 200) quickly, use the Validation options action from the Document > Validate menu.

Creating a Validation Scenario for XSLT Stylesheets

You can validate an XSLT document using the engine defined in the transformation scenario, or a custom validation scenario. If you choose to validate using the engine from transformation scenario, and a transformation scenario is not associated with the current document or the engine has no validation support, the default engine is used. To set the default engine, open the Preferences dialog box (Options > Preferences) (on page 79) and go to XML > XSLT/FO/XQuery > XSLT.

You can also create new validation scenarios or edit existing ones, and you can add JARS (on page 3283) and classes that contain extension functions. To create or edit a validation scenario for an XSLT stylesheet, follow these steps:

1. With the XSLT file opened in Oxygen XML Editor, select the Configure Validation Scenario(s) from the Document > Validate menu, or the Validation toolbar drop-down menu, or from the Validate submenu when invoking the contextual menu on the XSLT file in the Project view (on page 333).

   The Configure Validation Scenario(s) dialog box is displayed. It contains the existing scenarios, organized in categories depending on the type of file they apply to. You can use the options in the Settings drop-down menu to filter which scenarios are shown.

2. To edit an existing scenario, select the scenario and press the Edit button. If you try to edit one of the read-only built-in scenarios, Oxygen XML Editor creates a customizable duplicate (you can also use the Duplicate button).

3. To add a new scenario, press the New button.

   The New scenarios dialog box is displayed. It lists all validation units of the scenario.
4. Configure the following information in this dialog box:
   a. **Name** - The name of the validation scenario.
   b. **Storage** - You can choose between storing the scenario in the Project Options (on page 3286) or Global Options (on page 3283).
   c. **URL of the file to validate** - In most cases, leave this field as the default selection (the URL of the current file). If you want to specify a different URL, double-click its cell and enter the URL in the text field, select it from the drop-down list, or use the **Browse** drop-down menu or **Insert Editor Variable** (on page 276) button.
   d. **File type** - The file type should be XSLT Document.
   e. **Validation engine** - Click the cell to select a validation engine. You must select an engine to be able to add or edit extensions.
   f. **Automatic validation** - If this option is selected, the validation operation defined by this row is also used by the automatic validation feature (on page 1082).

5. To add or edit extensions, click the **Edit extensions** button. This button is only available if the **File type** is set as XSLT Document and a Validation engine is chosen.
   The Libraries dialog box is opened. It is used to specify the JARS and classes that contain extension functions called from the XSLT file of the current validation scenario. They will be searched, in the specified extensions, in the order displayed in this dialog box. To change the order of the items, select the item and press the **Move up** or **Move down** buttons.

6. Press **OK** to close the New scenario dialog box.
   The newly created validation scenario is now included in the list of scenarios in the Configure Validation Scenario(s) dialog box. You can select the scenario in this dialog box to associate it with the current XSLT document and press the Apply associated button to run the validation scenario.
Validating XSLT Stylesheets with Custom Engines

If you need to validate an XSLT stylesheet with a validation engine that is different from the built-in engine, you can configure external engines as custom XSLT validation engines in the Oxygen XML Editor preferences. After a custom validation engine is properly configured (on page 181), it can be applied on the current document by selecting it from the list of custom validation engines in the ☑ Validation toolbar drop-down menu. The document is validated against the schema declared in the document.

By default, there are two validators that are configured for XSLT stylesheets:

- **MSXML 4.0** - included in Oxygen XML Editor (Windows edition). It is associated to the XSL Editor type in Preferences page. (on page 181)
- **MSXML.NET** - included in Oxygen XML Editor (Windows edition). It is associated to the XSL Editor type in Preferences page. (on page 181)

Validating XSLT Stylesheets that Call Java Extensions

It is possible to validate XSLT that call Java extensions. This is achieved through a transformation scenario in which the Java extensions are specified, and the default validation will be processed using the parameters defined in the transformation scenario.

To validate XSLT with Java extensions, follow this procedure:

1. Create an XSLT transformation scenario (on page 1722) for your XSLT document (select ☑ Configure Transformation Scenario(s) action from the toolbar, then click New, and select XSLT transformation).
2. In the New scenario dialog box, click the Extensions button (in the XSLT tab), specify the Java extensions (JAR libraries) that are needed, and click OK.
3. Once you are finished configuring the transformation scenario, click OK, then select Save and close.
4. Use the ☑ Validate button on the toolbar (or Ctrl + Shift + V (Command + Shift + V on OS X)) and the default validation will detect and use the transformation scenario profile you just configured and saved.

Related Information:

- Debugging XSLT that Call Java Extensions (on page 2319)
XSLT Quick Fix Support

The Oxygen XML Editor Quick Fix support (on page 3287) helps you resolve various errors that appear in a stylesheet by proposing Quick Fixes to problems such as missing templates, misspelled template names, missing functions, or references to an undeclared variable or parameter.

To activate this feature, hover over or place the cursor in the highlighted area of text where a validation error or warning occurs. If a Quick Fix is available for that particular error or warning, you can access the Quick Fix proposals with any of the following methods:

• When hovering over the error or warning, the proposals are presented in a tooltip pop-up window.
• If you place the cursor in the highlighted area where a validation error or warning occurs, a Quick Fix icon (✔️) is displayed in the stripe on the left side of the editor. If you click this icon, Oxygen XML Editor displays the list of available fixes.
• With the cursor placed in the highlighted area of the error or warning, you can also invoke the Quick Fix menu by pressing Alt + 1 (Command + Alt + 1 on OS X) on your keyboard.

Note: The Quick Fixes are available only when validating an XSLT file with Saxon HE/PE/EE.

Figure 423. Example of an Undefined XSLT Functions Quick Fix

Figure 424. Example of an Undeclared XSLT Variables/Parameters Quick Fix

Oxygen XML Editor provides XSLT Quick Fixes for the following types of instances:

• **Template does not exist**, when the template name referenced in a call-template element does not exist. The following fixes are available:
  • Create template "templateName" - creates a template and generates its corresponding parameters. The template name and parameter names and types are collected from the call-template element.
• **Change reference to "newTemplateName"** - changes the name of the missing template referenced in the `call-template` element. The proposed new names are the existing templates with names similar with the missing one.

• **Variable/Parameter not declared**, when a parameter or variable reference cannot be found. The following fixes are available:
  - **Create global variable "varName"** - creates a global variable with the specified name in the current stylesheet. The new variable is added at the beginning of the stylesheet after the last global variable or parameter declaration.
  - **Create global parameter "paramName"** - creates a global parameter with the specified name in the current stylesheet. The new parameter is added at the beginning of the stylesheet after the last global parameter or variable declaration.
  - **Create local variable "varName"** - creates a local variable with the specified name before the current element.
  - **Create template parameter "paramName"** - creates a new parameter with the specified name in the current template. This fix is available if the error is located inside a template.
  - **Create function parameter "paramName"** - creates a new parameter with the specified name in the current function. This fix is available if the error is located inside a function.
  - **Change reference to "varName"** - changes the name of the referenced variable/parameter to an existing local or global variable/parameter, that has a similar name with the current one.

• **Parameter from a called template is not declared**, when a parameter referenced from a `call-template` element is not declared. The following fixes are available:
  - **Create parameter "paramName" in the template "templateName"** - creates a new parameter with the specified name in the referenced template.
  - **Change "paramName" parameter reference to "newParamName"** - changes the parameter reference from the `call-template` element to a parameter that is declared in the called template.
  - **Remove parameter "paramName" from call-template** - removes the parameter with the specified name from the `call-template` element.

• **No value supplied for required parameter**, when a required parameter from a template is not referenced in a `call-template` element. The **Add parameter "paramName" in call-template** quick-fix is available. It creates a new parameter with the specified name in call-template element.

• **Function "prefix:functionName()" has not been defined**, when a function declaration is not found. The following *Quick Fixes* are available:
  - **Create function "prefix:functionName(param1, param2)"** - creates a new function with the specified signature, after the current top level element from stylesheet.
  - **Change function to "newFunctionName(..)"** - changes the referenced function name to an already defined function. The proposed names are collected from functions with similar names and the same number of parameters.
• **Attribute-set "attrSetName" does not exist**, when the referenced attribute set does not exist. The following *Quick Fixes* are available:
  ◦ **Create attribute-set "attrSetName"** - creates a new attribute set with the specified name, after the current top level element from stylesheet.
  ◦ **Change reference to "attrSetName"** - changes the referenced attribute set to an already defined one.

• **Character-map "characterMap" has not been defined**, when the referenced character map declaration is not found. The following *Quick Fixes* are available:
  ◦ **Create character-map "characterMapName"** - creates a new character map with the specified name, after the current top level element from stylesheet.
  ◦ **Change reference to "characterMapName"** - changes the referenced character map to an already defined one.

Content Completion in XSLT Stylesheets

The list of proposals offered by the *Content Completion Assistant (on page 3280)* in XSLT are context-sensitive and includes proposals that are valid at the current cursor position. It can be manually activated with the *Ctrl + Space (Command + Space on OS X)* shortcut.

You can enhance the list of proposals by specifying an additional schema. This schema is defined in the *Content Completion / XSLT preferences (on page 169)* page and can be any of the following: XML Schema, DTD, RELAX NG schema, or NVDL schema.

Figure 425. XSLT Content Completion Assistant

The feature is activated in *Text* mode in the following situations:

• After you press the `<` character when inserting an element, it is automatically activated after a short delay. You can adjust the activation delay with the *Activation delay of the proposals window (ms) option (on page 168)* from the *Content Completion* preferences page.
After typing a partial element or attribute name, you can manually activate it by pressing Ctrl + Space (Command + Space on OS X) or Alt + ForwardSlash (Command + Alt + ForwardSlash on OS X). If there is only one valid proposal at the current location, it is inserted without displaying the list of proposals.

The Content Completion Assistant proposes numerous item types (such as templates, variables, parameters, keys, etc.) that are defined in the current stylesheet, and in the imported and included XSLT stylesheets. The Content Completion Assistant also includes code templates that can be used to quickly insert code fragments (on page 855) into stylesheets.

Note: For XSL and XSD resources, the Content Completion Assistant collects its components starting from the master files (on page 3284). The master files can be defined in the project or in the associated validation scenario. For further details about the Master Files support go to Defining Master Files at Project Level (on page 726).

The extension functions included in the Saxon 6.5.5 and 9.8.0.12 transformation engines are presented in the content completion list only if the Saxon namespace (http://saxon.sf.net for XSLT version 2.0 / 3.0 or http://icl.com/saxon for XSLT version 1.0) is declared and one of the following conditions is true:

- The edited file has a transformation scenario that uses as transformation engine Saxon 6.5.5 (for XSLT version 1.0), Saxon 9.8.0.12 PE or Saxon 9.8.0.12 EE (for XSLT version 2.0 / 3.0).
- The edited file has a validation scenario that uses as validation engine Saxon 6.5.5 (for version 1.0), Saxon 9.8.0.12 PE or Saxon 9.8.0.12 EE (for version 2.0 / 3.0).
- The validation engine specified in Options (on page 200) page is Saxon 6.5.5 (for version 1.0), Saxon 9.8.0.12 PE or Saxon 9.8.0.12 EE (for version 2.0 / 3.0).

Additionally, the Saxon-CE-specific extension functions and instructions are presented in the list of content completion assistance proposals only if the http://saxonica.com/ns/interactiveXSLT namespace is declared.

Namespace prefixes in the scope of the current context are presented at the top of the content completion assistance window to speed up the insertion into the document of prefixed elements.

Figure 426. Namespace Prefixes in the Content Completion Assistant
For the common namespaces such as XSL namespace (http://www.w3.org/1999/XSL/Transform), XML Schema namespace (http://www.w3.org/2001/XMLSchema), or Saxon namespace (http://icl.com/saxon for version 1.0, http://saxon.sf.net/ for version 2.0 / 3.0), Oxygen XML Editor provides an easy mode to declare them by proposing a prefix for these namespaces.

Content Completion in XPath Expressions

In XSLT stylesheets, the Content Completion Assistant (on page 3280) provides all the features available in the XML editor (on page 844) and also adds some enhancements. In XPath expressions used in attributes of XSLT stylesheets (elements such as match, select, and test), the Content Completion Assistant offers the names of XPath and XSLT functions, XSLT axes, and user-defined functions (the name of the function and its parameters). If a transformation scenario was defined and associated to the edited stylesheet, the Content Completion Assistant computes and presents elements and attributes based on:

- The input XML document selected in the scenario.
- The current context in the stylesheet.

The associated document is displayed in the XSLT/XQuery Input view (on page 1202).

Content completion for XPath expressions is started:

- On XPath operators detected in one of the match, select and test attributes of XSLT elements: " , /, //, (, [ , ] , : , ::, $
- For attribute value templates of non-XSLT elements, that is the { character when detected as the first character of the attribute value.
- On request, if the combination Ctrl + Space (Command + Space on OS X) is pressed inside an edited XPath expression.

The proposals presented in the Content Completion Assistant are dependent on:

- The context of the current XSLT element.
- The XML document associated with the edited stylesheet in the stylesheet transformation scenario.
- The XSLT version of the stylesheet (1.0, 2.0, or 3.0).

Note: The XSLT 3.0 content completion list of proposals includes specific elements and attributes for the 3.0 version.

For example, if the document associated with the edited stylesheet is:

```xml
<personnel>
  <person id="Big.Boss">
```

If you enter an `xsl:template` element using the Content Completion Assistant, the following actions are triggered:

- The `match` attribute is inserted automatically.
- The cursor is placed between the quotes.
- The XPath Content Completion Assistant automatically displays a pop-up window with all the XSLT axes, XPath functions and elements and attributes from the XML input document that can be inserted in the current context.

The set of XPath functions depends on the XSLT version declared in the root element `xsl:stylesheet`: 1.0, 2.0, or 3.0. Functions from other namespaces, such as `maps`, `arrays`, and `math`, are presented only if the namespaces are declared.

Figure 427. Content Completion in the `match` Attribute
If the cursor is inside the `select` attribute of an `xsl:for-each`, `xsl:apply-templates`, `xsl:value-of` or `xsl:copy-of` element the content completion proposals depend on the path obtained by concatenating the XPath expressions of the parent XSLT elements `xsl:template` and `xsl:for-each` as shown in the following figure:

**Figure 428. Content Completion in the select Attribute**

```
<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform" version="1.0">
  <xsl:template match="personnel">
    <xsl:for-each>
      <xsl:select="(name,family)"/>
    </xsl:for-each>
  </xsl:template>
</xsl:stylesheet>
```

Also XPath expressions typed in the `test` attribute of an `xsl:if` or `xsl:when` element benefit of the assistance of the content completion.

**Figure 429. Content Completion in the test Attribute**

```
<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform" version="1.0">
  <xsl:template match="personnel">
    <xsl:for-each select="name,link">
      <xsl:if test="@name">...</xsl:if>
    </xsl:for-each>
  </xsl:template>
</xsl:stylesheet>
```

XSLT variable references are easier to insert in XPath expressions with the help of the content completion pop-up triggered by the `$` character, which signals the start of such a reference in an XPath expression.

**Figure 430. Content Completion in the test Attribute**
If the `:` character is the first one in the value of the attribute, the same **Content Completion Assistant** is available also in attribute value templates of non-XSLT elements.

Figure 431. Content Completion in Attribute Value Templates

The time delay (configured in the **Content Completion** preferences page *(on page 168)*) is also applied for the content completion in XPath expressions.

**Related Information:**

- Working with XPath Expressions *(on page 2182)*

**Tooltip Helper for the XPath Functions Arguments**

When editing the arguments of an XPath/XSLT function, Oxygen XML Editor tracks the current entered argument by displaying a tooltip containing the function signature. The currently edited argument is highlighted with a bolder font.

When moving the cursor through the expression, the tooltip is updated to reflect the argument found at the cursor position.

**Examples:**

If you want to concatenate the absolute values of two variables, named `v1` and `v2`: 

```
<value-of select='abs(v1) + abs(v2)' />
```
When moving the cursor before the first `abs` function, Oxygen XML Editor identifies it as the first argument of the `concat` function. The tooltip shows in bold font the following information about the first argument:

- Its name is `$arg1`.
- Its type is `xdt:anyAtomicType`.
- It is optional (note the `?` sign after the argument type).

The function also takes other arguments that have the same type and returns a `xs:string`.

Related Information:

- The tooltip helper is also available in the XPath Builder view (on page 2185) and XPath toolbar (on page 2182).
Syntax Highlighting in XSLT

Oxygen XML Editor supports syntax highlighting in Text mode to make it easier to read the semantics of the structured content by displaying each type of code in different colors and fonts.

To customize the colors or styles used for the syntax highlighting colors for XSLT files, follow these steps:

1. Open the Preferences dialog box (Options > Preferences) (on page 79).
2. Go to Editor > Syntax Highlight (on page 178).
3. Select and expand the XML section in the top pane.
4. Select the component you want to change and customize the colors or styles using the selectors to the right of the pane.
5. Select the XSL tab in the Preview pane to see the effects of your changes.

Tip: Oxygen XML Editor also allows you to specify syntax highlighting colors for specific XML elements and attributes with specific namespace prefixes. This can be done in the Editor > Syntax Highlight > Elements/Attributes by Prefix preferences page (on page 179).

Related Information:
- Customize Syntax Highlight colors (on page 178)

XSLT Outline View

The Outline view for XSLT stylesheets displays the list of all the components (templates, attribute-sets, character-maps, variables, functions, keys, outputs) from both the edited stylesheet and its imports or includes. For XSL and XSD resources, the Outline view collects its components starting from the master files (on page 3284). The master files can be defined in the project or in the associated validation scenario. For further details about the Master Files support go to Defining Master Files at Project Level (on page 726).

By default, it is displayed on the left side of the editor. If the view is not displayed, it can be opened by selecting it from the Window > Show View menu.

Figure 435. XSLT Outline View
The following actions are available in the Settings menu on the Outline view toolbar:

**Filter returns exact matches**

The text filter of the Outline view returns only exact matches;

**Selection update on cursor move**

Controls the synchronization between Outline view and source document. The selection in the Outline view can be synchronized with the cursor moves or the changes in the XSLT editor. Selecting one of the components from the Outline view also selects the corresponding item in the source document.

When the Show components option is selected, the following actions are available:

**Show XML structure**

Displays the XML document structure in a tree-like structure.

**Show all components**

Displays all components that were collected starting from the master file (on page 3284). This option is set by default.

**Show only local components**

Displays the components defined in the current file only.

**Group by location/type**

The stylesheet components can be grouped by location and type.

When the Show XML structure option is selected, the following actions are available:
Show components

Switches the Outline view to the components display mode.

Flat presentation mode of the filtered results

When active, the application flattens the filtered result elements to a single level.

Show comments and processing instructions

Show/hide comments and processing instructions in the Outline view.

Show element name

Show/hide element name.

Show text

Show/hide additional text content for the displayed elements.

Show attributes

Show/hide attribute values for the displayed elements. The displayed attribute values can be changed from the Outline preferences panel (on page 259).

Configure displayed attributes

Displays the XML Structured Outline preferences page (on page 259).

The following contextual menu actions are also available when the Show components option is selected in the Settings menu:

Edit Attributes

Opens a small in-place editor that allow you to edit the attributes of the selected node.

Cut

Cuts the currently selected node.

Copy

Copies the currently selected node.

Delete

Deletes the currently selected node.

Search References Ctrl + Shift + R (Command + Shift + R on OS X)

Searches all references of the item found at current cursor position in the defined scope, if any. See Finding XSLT References and Declarations (on page 1209) for more details.

Search References in
Searches all references of the item found at current cursor position in the specified scope. See Finding XSLT References and Declarations (on page 1209) for more details.

Component Dependencies

Opens the Component Dependencies view (on page 1207) that allows you to see the dependencies for the current selected component.

Resource Hierarchy

Opens the Resource Hierarchy/Dependencies view (on page 1204) that displays the hierarchy for the currently selected resource.

Resource Dependencies

Opens the Resource Hierarchy/Dependencies view (on page 1204) that displays the dependencies of the currently selected resource.

Rename Component in

Renames the selected component. See XSLT Refactoring Actions (on page 1213) for more details.

The following contextual menu actions are available in the Outline view when the Show XML structure option is selected in the Settings menu:

Append Child

Displays a list of elements that you can insert as children of the current element.

Insert Before

Displays a list of elements that you can insert as siblings of the current element, before the current element.

Insert After

Displays a list of elements that you can insert as siblings of the current element, after the current element.

Edit Attributes

Opens a small in-place editor that allow you to edit the attributes of the selected node.

Toggle Comment

Comments/uncomments the currently selected element.

Search references

Searches for the references of the currently selected component.
Searches for the references of the currently selected component in the context of a scope that you define.

Component dependencies

Opens the Component Dependencies view (on page 1207) that displays the dependencies of the currently selected component.

Rename Component in

Renames the currently selected component in the context of a scope that you define.

Cut

Cuts the currently selected component.

Copy

Copies the currently selected component.

Delete

Deletes the currently selected component.

Expand More

Expands the structure of a component in the Outline view.

Collapse All

Collapses the structure of all the component in the Outline view.

The stylesheet components information is presented on two columns: the first column presents the name and match attributes, the second column the mode attribute. If you know the component name, match or mode, you can search it in the Outline view by typing one of these pieces of information in the filter text field from the top of the view or directly on the tree structure. When you type de component name, match or mode in the text field, you can switch to the tree structure using:

- Keyboard arrow keys
- Enter key
- Tab key
- Shift-Tab key combination

To switch from tree structure to the filter text field, you can use Tab and Shift-Tab.

Tip: The search filter is case insensitive. The following wildcards are accepted:

- * - any string
- ? - any character
- , - patterns separator
If no wildcards are specified, the string to search is used as a partial match.

The content of the Outline view and the editing area are synchronized. When you select a component in the Outline view, its definition is highlighted in the editing area.

Oxygen XML Editor allows you to sort the components of the tree in the Outline view.

Note: Sorting groups in the Outline view is not supported.

Oxygen XML Editor has a predefined order of the groups in the Outline view:

- For location, the names of the files are sorted alphabetically. The file you are editing is located at the top of the list.
- For type, the order is: parameters, variables, templates, functions, set attributes, character-map.

Note: When no grouping is available and the table is not sorted, Oxygen XML Editor sorts the components depending on their order in the document. Oxygen XML Editor also takes into account the name of the file that the components are part of.

XSLT Input View

The structure of the XML document associated to the edited XSLT stylesheet is displayed in a tree form in a view called the XSLT Input view. If the view is not displayed, it can be opened by selecting it from the Window > Show View menu. The tree nodes represent the elements of the documents.

If you click a node in the XSLT Input view, the corresponding template from the stylesheet is highlighted. A node can be dragged from this view and dropped in the editor area for quickly inserting xsl:template, xsl:for-each, or other XSLT elements that have the match, select, or test attribute already completed. The value of the attribute is the correct XPath expression that refers to the dragged tree node. This value is based on the current editing context of the drop spot.

Example:
For the following XML document:

```xml
<personnel>
  <person id="Big.Boss">
    <name>
      <family>Boss</family>
      <given>Big</given>
    </name>
    <email>chief@oxygenxml.com</email>
    <link subordinates="one.worker"/>
  </person>
  <person id="one.worker">
    <name>
      <family>Worker</family>
      <given>One</given>
    </name>
    <email>one@oxygenxml.com</email>
    <link manager="Big.Boss"/>
  </person>
</personnel>
```

and the following XSLT stylesheet:

```xml
<?xml version="1.0" encoding="UTF-8"?>
<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
  version="2.0">
  <xsl:template match="personnel">
    <xsl:for-each select="*"/>
  </xsl:template>
</xsl:stylesheet>
```

if you drag the `given` element and drop it inside the `xsl:for-each` element, the following pop-up menu is displayed:
if you select **Insert xsl:copy-of** (for example), the resulting document will look like this:

```xml
<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform" version="2.0">
  <xsl:template match="personnel">
    <xsl:for-each select="v">
      <xsl:copy-of select="name/given"/>
    </xsl:for-each>
  </xsl:template>
</xsl:stylesheet>
```

### XSLT Resource Hierarchy/Dependencies View

The **Resource Hierarchy/Dependencies** view displays the hierarchy or dependencies for a stylesheet. If the view is not displayed, it can be opened by selecting it from the **Window > Show View** menu.

If you want to see the hierarchy or dependencies of a stylesheet, select the desired stylesheet in the **Project view** and choose **Resource Hierarchy** or **Resource Dependencies** from the contextual menu.

![Resource Hierarchy/Dependencies View](image)
If you want to see the dependencies of a stylesheet, select the desired stylesheet in the **Project view (on page 333)** and choose **Resource Dependencies** from the contextual menu.

The following actions are available on the toolbar of the **Resource Hierarchy/Dependencies** view:

- **Refresh**
  
  Refreshes the Hierarchy/Dependencies structure.

- **Stop**
  
  Stops the hierarchy/dependencies computing.

- **Show Hierarchy**
  
  Allows you to choose a resource to compute the hierarchy structure.

- **Show Dependencies**
  
  Allows you to choose a resource to compute the dependencies structure.

- **Configure dependencies search scope**
  
  Allows you to configure a scope to compute the dependencies structure. There is also an option for automatically using the defined scope for future operations.

- **History**
  
  Provides access to the list of previously computed dependencies. Use the **Clear history** button to remove all items from this list.

The contextual menu for a resource listed in the **Resource Hierarchy/Dependencies** view contains the following actions:

- **Open**
  
  Opens the resource. You can also double-click a resource in the Hierarchy/Dependencies structure to open it.

- **Go to reference**
  
  Opens the source document where the resource is referenced.

- **Copy location**
  
  Copies the location of the resource.

- **Move resource**
  
  Moves the selected resource.

- **Rename resource**
  
  Renames the selected resource.

- **Show Resource Hierarchy**
Shows the hierarchy for the selected resource.

**Show Resource Dependencies**

Shows the dependencies for the selected resource.

**Add to Master Files**

Adds the currently selected resource in the **Master Files** directory (on page 726).

**Expand All**

Expands all the children of the selected resource from the Hierarchy/Dependencies structure.

**Collapse All**

Collapses all children of the selected resource from the Hierarchy/Dependencies structure.

**Tip:** When a recursive reference is encountered in the Hierarchy view, the reference is marked with a special icon 🕹️.

**Related Information:**

- Working with Modular XML Files in the Master Files Context (on page 1126)
- Search and Refactor Operations Scope (on page 1129)

**Moving/Renaming XSLT Resources**

You can move and rename a resource presented in the **Resource/Hierarchy Dependencies** view, using the **Rename resource** and **Move resource** refactoring actions from the contextual menu.

When you select the **Rename** action in the contextual menu of the **Resource/Hierarchy Dependencies** view, the **Rename resource** dialog box is displayed. The following fields are available:

- **New name** - Presents the current name of the edited resource and allows you to modify it.
- **Update references of the renamed resource(s)** - Select this option to update the references to the resource you are renaming. A **Preview** option is available that allows you to see what will be updated before selecting **Rename** to process the operation.

When you select the **Move** action from the contextual menu of the **Resource/Hierarchy Dependencies** view, the **Move resource** dialog box is displayed. The following fields are available:
• **Destination** - Presents the path to the current location of the resource you want to move and gives you the option to introduce a new location.

• **New name** - Presents the current name of the moved resource and gives you the option to change it.

• **Update references of the moved resource(s)** - Select this option to update the references to the resource you are moving, in accordance with the new location and name. A *Preview* option is available that allows you to see what will be updated before selecting *Move* to process the operation.

**XSLT Component Dependencies View**

The **Component Dependencies** view allows you to see the dependencies for a selected component. This is helpful if you want to see where components are used in the entire hierarchy. For example, if you want to find all the references where a given component is used.

If the view is not displayed, it can be opened by selecting it from the *Window > Show View* menu.

To see the dependencies of an XSLT component:

1. Right-click the desired component in the editor or *Outline* view.
2. Select the **Component Dependencies** action from the contextual menu.

The action is available for all named components (templates, variables, parameters, attribute sets, keys, functions, outputs).

If a component contains multiple references, a small table is displayed at the bottom of the view that contains all the references. When a recursive reference is encountered, it is marked with a special icon "a.

Figure 438. Component Dependencies View - Hierarchy for table.xsl
The **Component Dependencies** view includes the following toolbar actions:

- **Refresh**
  
  Refreshes the dependencies structure.

- **Stop**
  
  Stops the dependency computation.

- **Configure**
  
  Allows you to choose the search scope for computing the dependencies structure. This is helpful for making sure all imported/included resources are computed.

- **History**
  
  Allows you to select from a list of the most recently used dependency computations.

In addition, the following actions are available in the contextual menu:

- **Go to First Reference**
  
  Selects the first reference of the currently selected component in the dependencies tree.

- **Go to Component**
  
  Shows the definition of the currently selected component in the dependencies tree.

**Related Information:**
**Highlight Component Occurrences**

When a component (for example variable or named template) is found at current cursor position, Oxygen XML Editor performs a search over the entire document to find the component declaration and all its references. When found, they are highlighted both in the document and in the stripe bar, at the right side of the document.

**Note:** Oxygen XML Editor also supports occurrences highlight for template modes.

Customizable colors are used: one for the component definition and another one for component references. Occurrences are displayed until another component is selected and a new search is performed. All occurrences are removed when you start to edit the document.

This feature is enabled by default. To configure it, open the Preferences dialog box (Options > Preferences) and go to Editor > Mark Occurrences. A search can also be triggered with the Search > Search Occurrences in File (Ctrl + Shift + U (Command + Shift + U on OS X)) contextual menu action. Matches are displayed in separate tabs of the Results view.

**Finding XSLT References and Declarations**

The following search actions related with XSLT references and declarations are available from the Search submenu of the contextual menu and from the Document > References menu:

- **Search References**
  
  Searches all references of the item found at current cursor position in the defined scope, if any. If a scope is defined but the currently edited resource is not part of the range of determined resources, a warning dialog box is displayed that allows you to define another search scope.

- **Search References in**
  
  Searches all references of the item found at current cursor position in the file or files that you specify when a scope is defined.

- **Search Declarations**
  
  Searches all declarations of the item found at current cursor position in the defined scope, if any. If a scope is defined but the current edited resource is not part of the range of resources determined by this scope, a warning dialog box is displayed that allows you to define another search scope.
**Search Declarations in**

Searches all declarations of the item found at current cursor position in the file or files that you specify when a scope is defined.

**Search Occurrences in File**

Searches all occurrences of the item at the cursor position in the currently edited file.

The following action is available from the contextual menu and the Document > Schema menu:

- **Go to Definition**

  Moves the cursor to the location of the definition of the current item.

  **Note:** You can also use the Ctrl + Single-Click (Command + Single-Click on OS X) shortcut on a reference to display its definition.

**Related Information:**

- Search and Refactor Operations Scope (on page 1129)

---

**XSLT Stylesheet Component Documentation Support**

Oxygen XML Editor offers built-in support for documenting XSLT stylesheets. If the expanded QName (on page 3286) of the element has a non-null namespace URI, the `xsl:stylesheet` element may contain any element not from the XSLT namespace. Such elements are referenced as user-defined data elements. Such elements can contain the documentation for the stylesheet and its elements (top-level elements whose names are in the XSLT namespace). Oxygen XML Editor offers its own XML schema that defines such documentation elements. The schema is named `stylesheet_documentation.xsd` and can be found in `[OXYGEN_INSTALL_DIR]/frameworks/stylesheet_documentation`. The user can also specify a custom schema in XSL Content Completion options (on page 169).

**Content Completion**

When content completion is invoked inside an XSLT editor by pressing Ctrl + Space (Command + Space on OS X), it offers elements from the XSLT documentation schema (either the built-in one or one specified by user).
Adding Documentation Blocks

In **Text** mode, to add documentation blocks, press **Ctrl + Alt + D (Command + Alt + D on OS X)** or select **Add component documentation** from the contextual menu.

In **Author** mode, the following stylesheet documentation actions are available in the contextual menu, **Component Documentation** submenu:

- **Add component documentation** - Adds documentation blocks for the component at cursor position.
- **Paragraph** - Inserts a new documentation paragraph.
- **Bold** - Makes the selected documentation text bold.
- **Italic** - Makes the selected documentation text italic.
- **List** - Inserts a new list.
- **List Item** - Inserts a list item.

If the cursor is positioned inside the `xsl:stylesheet` element context, documentation blocks are generated for all XSLT elements. If the cursor is positioned inside a specific XSLT element (such as a template or function), a documentation block is generated for that element only.

**Example: Documentation Block Using Oxygen XML Editor Built-in Schema**

```xml
<xd:doc>
  <xd:desc>
    Search inside parameter `<xd:i>string</xd:i>`
    for the last occurrence of parameter
    `<xd:i>searched</xd:i>`. The substring starting from the 0 position
to the identified last occurrence will be returned.
    <xd:ref name="f:substring-after-last" type="function"
           xmlns:f="http://www.oxygenxml.com/doc/xsl/functions">See also</xd:ref>
  </xd:desc>
  <xd:param name="string">
    String to be analyzed</xd:param>
  </xd:param>
  <xd:param name="searched">
    Marker string. Its last occurrence will be identified</xd:param>
  </xd:param>
  <xd:return>
    A substring starting from the beginning of `<xd:i>string</xd:i>`
  </xd:return>
</xd:doc>
```
to the last occurrence of `<xd:i>`searched`</xd:i>`.
If no occurrence is found an empty string will be returned.

`</xd:p>`
`</xd:return>`
`</xd:doc>`

**XSLT Documentation Links**

Oxygen XML Editor includes support for links inside XSLT documentation blocks. Using a construct like `<xd:a docid="user-defined-id">TEXT</xd:a>` will cause the browser to scroll to the particular anchor (the defined ID) in the current document. Using a construct like `<xd:a href="http://www.my-web-site">TEXT</xd:a>` or `<xd:a href="local-file-path/filename">TEXT</xd:a>` will open the referenced link in a new tab.

**Example: Documentation Links**

```xml
<xd:doc xmlns:xd="http://www.oxygenxml.com/ns/doc/xsl" id="thisDoc">
  <xd:desc>
    <xd:p>
      <xd:ref name="test" type="variable">My test variable</xd:ref>
      <xd:a docid="thisDoc">Link to this documentation, see the the id="thisDoc" above</xd:a>
      <xd:a docid="otherDocID" href="included.xsl">Link to otherDocID defined in included.xsl</xd:a>
    </xd:p>
  </xd:desc>
</xd:doc>
```

**Related Information:**

- Generating Documentation for an XSLT Stylesheet *(on page 1223)*

**XSLT 3.0 Text Value Templates**

Oxygen XML Editor offers built-in support for **XSLT 3.0 Text Value Templates**, including content completion to present the variables, functions, and parameters from the current context and syntax highlighting.

A text node in the stylesheet is treated as a *text value template* if the following things are true:
• It is part of a sequence constructor or a child of an `xsl:text` instruction.
• There is an ancestor element with an `[xsl:]expand-text` attribute and on the innermost ancestor element that has such an attribute, the value of the attribute is `yes`.

**Example:**

```xml
<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
xmlns:xs="http://www.w3.org/2001/XMLSchema"
expand-text="yes"
version="3.0">

  <xsl:param name="seq" as="xs:string*" select="'c', 'a', 'b', 'z'"/>
  <xsl:template name="main">
    {sort($seq)}
  </xsl:template>
</xsl:stylesheet>
```

For more information, see: [W3C XSLT Specifications: Text Value Templates](#).

**Related Information:**

• [Content Completion in XPath Expressions (on page 1192)](#)

---

**XSLT Refactoring Actions**

Oxygen XML Editor offers a set of actions that allow you to change the structure of an XSLT stylesheet without changing the results of running it in an XSLT transformation. Depending on the selected text, the following XSLT refactoring actions are available from the Refactoring submenu of the contextual menu (or from the **Document > Refactoring** menu):

- **Extract template (Active only when the selection contains well-formed elements)**

  Extracts the selected XSLT instructions sequence into a new template. It opens a dialog box that allows you to specify the name of the new template to be created. The possible changes to perform on the document can be previewed before altering the document. After pressing OK, the template is created and the selection is replaced with a `<xsl:call-template>` instruction referencing the newly created template.

  **Note:** The newly created template is indented and its name is highlighted in the `<xsl:call-template>` element.

- **Extract function**
Extracts the selected XSLT instructions sequence into a new function. It opens a dialog box that allows you to specify the name of the new function. It then moves the selected lines to a newly created XSLT function and inserts a function call in the place of the selected lines. You can also use parts of an XPath expression to create the new functions.

Create local variable

Creates an XSLT variable, wrapped around the selection. It opens a dialog box that allows you to specify the name of the new variable. It then wraps the selection in the variable and you can reference it at anytime in the code.

Move to another stylesheet (Active only when entire components are selected)

Allows you to move one or more XSLT global components (templates, functions, or parameters) to another stylesheet. It opens a dialog box that allows you to specify where the selected components will be moved to. Follow these steps when using the dialog box:

1. Choose whether you want to move the selected components to a new stylesheet or an existing one.
2. If you choose to move the components to an existing one, select the destination stylesheet. Press the Choose button to select the destination stylesheet file. Oxygen XML Editor will automatically check if the destination stylesheet is already contained by the hierarchy of the current stylesheet. If it is not contained, choose whether or not the destination stylesheet will be referenced (imported or included) from the current stylesheet. The following options are available:
   - Include - The current stylesheet will use an \texttt{xsl:include} instruction to reference the destination stylesheet.
   - Import - The current stylesheet will use an \texttt{xsl:import} instruction to reference the destination stylesheet.
   - None - There will be created no relation between the current and destination stylesheets.
3. Press the Move button to move the components to the destination. The moved components are highlighted in the destination stylesheet.

Convert attributes to \texttt{xsl:attribute}

Converts the attributes from the selected element and represents each of them with an \texttt{xsl:attribute} instruction. For example, the following element:

\begin{verbatim}
<person id="Big\{test\}Boss"/>
\end{verbatim}

is converted to:
Convert `xsl:attributes` to attributes

Converts `xsl:attribute` elements to inline attributes for elements outside the XSL namespace. For example, the following element: It is the reverse of the Convert attributes to `xsl:attributes` action with the following limitations:

- The `xsl:attribute` element is "text only".
- The `xsl:attribute` element has a single `xsl:text` child element.
- The `xsl:attribute` element has a single `xsl:value-of` child element. In this case, the value of the attribute will be the XPath expression from the `select` attribute surrounded by curly brackets (text value template).

```xml
<person>
  <xsl:attribute name="id">john.doe</xsl:attribute>
  <xsl:attribute name="email">john.doe@example.com</xsl:attribute>
  <xsl:attribute name="manager"><xsl:value-of select="person[@id='boss']/name"/>
  </xsl:attribute>
</person>
```

is converted to:

```xml
<person id="john.doe" email="john.doe@example.com" manager="{person[@id='boss']/name}"/>
```

Convert `xsl:if` into `xsl:choose/xsl:when`

Converts one or more `xsl:if` element blocks into one or more `xsl:when` blocks surrounded by an `xsl:choose` element. If it is invoked on a selection, the selection must contain a well-formed fragment. If there is no selection, the `xsl:if` element that surrounds the content at the current cursor position is converted.

For example, the following block:

```xml
<xsl:if test="a"/>
```
<!-- XSLT code -->
</xsl:if>

is converted to:

```xml
<xsl:choose>
  <xsl:when test="a">
    <!-- XSLT code -->
  </xsl:when>
  <xsl:when test="c1">
    <!-- XSLT statement 1 -->
  </xsl:when>
  <xsl:when test="c2">
    <!-- XSLT statement 2 -->
  </xsl:when>
  <xsl:when test="c3">
    <!-- XSLT statement 3 -->
  </xsl:when>
  <xsl:otherwise>
    <!-- XSLT "otherwise" statement-->
  </xsl:otherwise>
</xsl:choose>
```

(where the | character is the current cursor position)

**Convert xsl:choose/xsl:when into xsl:if**

Converts each `xsl:when` block into an `xsl:if` block. For the `otherwise` branch, it also adds an `and` statement to each negated form of the conditions. For example, the following block:

```xml
<xsl:choose>
  <xsl:when test="c1">
    <!-- XSLT statement 1 -->
  </xsl:when>
  <xsl:when test="c2">
    <!-- XSLT statement 2 -->
  </xsl:when>
  <xsl:when test="c3">
    <!-- XSLT statement 3 -->
  </xsl:when>
  <xsl:otherwise>
    <!-- XSLT "otherwise" statement-->
  </xsl:otherwise>
</xsl:choose>
```

is converted to:

```xml
<xsl:if test="c1">
  <!-- XSLT statement 1 -->
</xsl:if>
<xsl:if test="c2">
  <!-- XSLT statement 2 -->
</xsl:if>
```
Extract local variable (Active on a selection made inside an attribute that contains an XPath expression)

Allows you to create a new local variable by extracting the selected XPath expression. After creating the new local variable before the current element, Oxygen XML Editor allows you to edit the name of the variable.

Extract global variable (Active on a selection made inside an attribute that contains an XPath expression)

Allows you to create a new global variable by extracting the selected XPath expression. After creating the new global variable, Oxygen XML Editor allows you to edit the name of the variable.

Note: Oxygen XML Editor checks if the selected expression depends on local variables or parameters that are not available in the global context where the new variable is created.

Extract template parameter (Active on a selection made inside an attribute that contains an XPath expression)

Allows you to create a new template parameter by extracting the selected XPath expression. After creating the new parameter, Oxygen XML Editor allows you to edit the name of the parameter.

Extract global parameter (Active on a selection made inside an attribute that contains an XPath expression)

Allows you to create a new global parameter by extracting the selected XPath expression. After creating the new parameter, Oxygen XML Editor allows you to edit the name of the parameter.

Note: Oxygen XML Editor checks if the selected expression depends on local variables or parameters that are not available in the global context where the new parameter is created.

Rename Component
Allows you to rename the current component (in-place). The component and all its references in the document are highlighted with a thin border and the changes you make to the component at the cursor position are updated in real time to all occurrences of the component. To exit the in-place editing, press the Esc or Enter key on your keyboard.

**Rename Component in**

Opens a dialog box that allows you to rename the selected component by specifying the new component name and the files to be affected by the modification. If you click the Preview button, you can view the files to be affected by the action.

![Figure 439. Rename Identity Constraint Dialog Box](image)

**Note:** Many of these refactoring actions are also proposed by the Quick Assist support (on page 1218).

For more information about XSLT refactoring, watch our video demonstration:

https://www.youtube.com/embed/4ir5XWyp8Zo

### XSLT Quick Assist Support

The [Quick Assist support (on page 3286)](section) helps you to rapidly access search and refactoring actions. If one or more actions are available in the current context, they are accessible via a yellow bulb help...
(✔) placed at the current line in the stripe on the left side of the editor. Also, you can invoke the *Quick Assist* menu by using the **Alt + 1** (**Meta + Alt + 1** on Mac OS X) keyboard shortcuts.

Two categories of actions are available in the *Quick Assist* menu:

- Actions available on a selection made inside an attribute that contains an XPath expression:
  
  - **Extract template**
    
    Extracts the selected XSLT instructions sequence into a new template.
  
  - **Move to another stylesheet**
    
    Allows you to move one or more XSLT global components (templates, functions, or parameters) to another stylesheet.
  
  - **Extract local variable**
    
    Allows you to create a new local variable by extracting the selected XPath expression.
  
  - **Extract global variable**
    
    Allows you to create a new global variable by extracting the selected XPath expression.
  
  - **Extract template parameter**
    
    Allows you to create a new template parameter by extracting the selected XPath expression.
  
  - **Extract global parameter**
    
    Allows you to create a new global parameter by extracting the selected XPath expression.

  - **Actions available when the cursor is positioned over the name of a component:**
    
    - **Rename Component in**
      
      Renames the component and all its dependencies.
  
    - **Search Declarations**

Figure 440. XSLT Quick Assist Support - Refactoring Actions

- **Select**
  
  - **Refactor selection**
    
    - **Extract local variable**
    
    - **Extract global variable**
    
    - **Extract template parameter**
    
    - **Extract global parameter**

- **Select**
  
  - **p:name/prop/text()"/>**
  
  - **Extract the selected text to a new local variable**

- **Select**
  
  - **p:email/text()"/>**
  
  - **Extract the selected text to a new local variable**
Searches the declaration of the component in a predefined scope. It is available only when the context represents a component name reference.

- **Search References**
  Searches all references of the component in a predefined scope.

- **Component Dependencies**
  Searches the component dependencies in a predefined scope.

- **Change Scope**
  Configures the scope that will be used for future search or refactor operations.

- **Rename Component**
  Allows you to rename the current component in-place.

- **Search Occurrences**
  Searches all occurrences of the component within the current file.

Figure 441. XSLT Quick Assist Support - Component Actions

Related Information:

- Component Dependencies View (*on page 1207*)

- XSLT Hierarchy View (*on page 1204*)

- XSLT Refactoring Actions (*on page 1213*)

- Search and Refactor Operations Scope (*on page 1129*)
XSLT Unit Test (XSpec)

XSpec is a behavior driven development (BDD) framework for XSLT, XQuery, and Schematron. XSpec consists of syntax for describing the behavior of your XSLT, XQuery, or Schematron code, and some code that enables you to test your code against those descriptions.

Creating an XSLT Unit Test

To create an XSLT Unit Test, go to File > New > XSLT Unit Test. You can also create an XSLT Unit Test from the contextual menu of an XSL file in the Project view (on page 333). Oxygen XML Editor allows you to customize the XSpec document when you create it. In the customization dialog box, you can enter the path to an XSL document or to a master XSL document.

When you create an XSpec document based on an XSL document, Oxygen XML Editor uses information from the validation and transformation scenarios associated with the XSL file. From the transformation scenario Oxygen XML Editor uses extensions and properties of Saxon 9.8.0.12, improving the Ant scenario associated with the XSpec document.

Figure 442. New XSLT Unit Test Wizard
Running an XSLT Unit Test

To run a Unit Test, open the XSpec file in an editor and click **Apply Transformation Scenario(s)** on the main toolbar. This will run the built-in **Run XSpec Test** transformation scenario that is defined in the XSpec framework (on page 3282).

Testing a Stylesheet

An XSpec file contains one or more test scenarios. You can test a stylesheet in one of the following ways:

• Test an entire stylesheet.

Testing is performed in a certain context. You can define a context as follows:

◦ Inline context, building the test based on a string.

```xml
<x:scenario label="when processing a para element">
  <x:context>
    <para>...</para>
  </x:context>
  ...
</x:scenario>
```

◦ Based on an external file, or on a part of an external file extracted with an XPath expression.

```xml
<x:scenario label="when processing a para element">
  <x:context href="source/test.xml" select="/doc/body/p[1]" />
  ...
</x:scenario>
```

• Test a function.

```xml
<x:scenario label="when capitalising a string">
  <x:call function="eg:capital-case">
    <x:param select="'an example string'" />
    <x:param select="true()" />
  </x:call>
  ...
</x:scenario>
```

• Test a template with a name.

```xml
<x:scenario label="when creating a table">
  <x:call template="createTable" />
</x:scenario>
```
You can reference test files between each other, which allows you to define a suite of tests. For further details about test scenarios, go to https://github.com/expath/xspec/wiki/Writing-Scenarios.

**Adding a Catalog to an XSpec Transformation**

If your XSLT needs a catalog, you can add one to the XSpec transformation by doing one of the following:

- If you are using a project (on page 707) in Oxygen XML Editor, create a catalog.xml file in the project directory. This catalog will then be loaded automatically.
- Edit (on page 1758) the Run XSpec Test transformation scenario, go to the Parameters tab (on page 1720), and set the value of the catalog parameter to the location of your catalog file.

**Generating Documentation for an XSLT Stylesheet**

You can use Oxygen XML Editor to generate detailed documentation in HTML format for the elements (top-level elements whose names are in the XSLT namespace) of an XSLT stylesheet. You can select what XSLT elements to include in the generated documentation and also the level of details to present for each of them. The elements are hyperlinked. To generate documentation in a custom output format (on page 1229), you can edit the XSLT stylesheet used to generate the documentation, or create your own stylesheet.

To open the XSLT Stylesheet Documentation dialog box, select XSLT Stylesheet Documentation from the Tools > Generate Documentation menu or from the Generate Documentation submenu in the contextual menu of the Project view (on page 333).

Figure 443. XSLT Stylesheet Documentation Dialog Box
The XSL URL field of the dialog box must contain the full path to the XSL Stylesheet file you want to generate documentation for. The stylesheet may be a local or a remote file. You can specify the path to the stylesheet by entering it in the text field, or by using the Insert Editor Variables button or the options in the Browse drop-down menu.

Output Tab

The following options are available in the Output tab:

- **Format** - Allows you to choose between the following formats:
  - **HTML** - The documentation is generated in HTML output format (on page 1227).
  - **Custom** - The documentation is generated in a custom output format (on page 1229), allowing you to control the output. Click the Options button to open a Custom format options dialog box (on page 1230) where you can specify a custom stylesheet for creating the output. There is also an option to Copy additional resources to the output folder and you can select the path to the additional Resources that you want to copy. You can also choose to keep the intermediate XML files created during the documentation process by deselecting the Delete intermediate XML file option.

- **Output file** - You can specify the path of the output file by entering it in the text field, or by using the Insert Editor Variables button or the options in the Browse drop-down menu.

- **Split output into multiple files** - Instructs the application to split the output into multiple files. For large XSLT stylesheets, choosing another split criterion may generate smaller output files, providing faster documentation browsing. You can choose to split them by namespace, location, or component name.
• **Open in Browser/System Application** - Opens the result in the system application associated with the output file type.

*Note:* To set the browser or system application that will be used, open the Preferences dialog box (Options > Preferences) (on page 79), go to Global, and set it in the Default Internet browser field. This will take precedence over the default system application settings.

**Settings Tab**

When you generate documentation for an XSLT stylesheet you can choose what XSLT elements to include in the output (templates, functions, global parameters, global variables, attribute sets, character maps, keys, decimal formats, output formats, XSLT elements from referenced stylesheets) and the details to include in the documentation.

![Figure 444. Settings Tab of the XSLT Stylesheet Documentation Dialog Box](image)

The **Settings** tab allows you to choose whether or not to include the following components:
- Templates, Functions, Global parameters, Global variables, Attribute sets, Character maps, Keys, Decimal formats, Output formats, Referenced stylesheets.

You can choose whether or not to include the following other details:

- **Documentation** - Shows the documentation for each XSLT element. For HTML format, the user-defined data elements that are recognized and transformed in documentation blocks of the XSLT elements they precede, are the ones from the following schemas:
  - Oxygen XML Editor built-in XSLT documentation schema.
A subset of DocBook 5 elements. The recognized elements are: section, sect1 to sect5, emphasis, title, ulink, programlisting, para, orderedlist, itemizedlist.

A subset of DITA elements. The recognized elements are: concept, topic, task, codeblock, p, b, i, ul, ol, pre, sl, sli, step, steps, li, title, xref.

Full XHTML 1.0 support.

XSLStyle documentation environment. XSLStyle uses DocBook or DITA languages inside its own user-defined data elements. The supported DocBook and DITA elements are the ones mentioned above.

DOXSL documentation framework (on page 3282). Supported elements are: codefrag, description, para, docContent, documentation, parameter, function, docSchema, link, list, listitem, module, parameter, template, attribute-set.

Other XSLT documentation blocks that are not recognized will just be serialized inside an HTML pre element. You can change this behavior by using a custom format (on page 1229) instead of the built-in HTML format (on page 1227) and providing your own XSLT stylesheets.

- **Use comments** - Controls whether or not the comments that precede an XSLT element is treated as documentation for the element they precede. Comments that precede or succeed the xsl:stylesheet element, are treated as documentation for the whole stylesheet. Note that comments that precede an import or include directive are not collected as documentation for the imported/included module. Also, comments from within the body of the XSLT elements are not collected at all.

- **Namespace** - Shows the namespace for named XSLT elements.

- **Location** - Shows the stylesheet location for each XSLT element.

- **Parameters** - Shows parameters of templates and functions.

- **References** - Shows the named XSLT elements that are referenced from within an element.

- **Used by** - Shows the list of all the XSLT elements that reference the current named element.

- **Supersedes** - Shows the list of all the XSLT elements that supersede the current element.

- **Overriding** - Shows the list of all the XSLT elements that override the current element.

- **Return type** - Shows the return type of the function.

- **Source** - Shows the text stylesheet source for each XSLT element.

- **Import precedence** - Shows the computed import precedence as declared in the XSL transformation specifications.

- **Generate index** - Creates an index with all the XSLT elements included in the documentation.

**Export settings** - Save the current settings in a settings file for further use (for example, with the exported settings file you can generate the same documentation from the command-line interface (on page 1230).)

**Import settings** - Reloads the settings from the exported file.

**Generate** - Use this button to generate the XSLT documentation.
Generate XSLT Documentation in HTML Format

When using the XSLT Stylesheet Documentation dialog box (on page 1223) to generate XSLT documentation in HTML format, it is presented in a visual diagram style with various sections, hyperlinks, and options.

Figure 445. XSLT Stylesheet Documentation Example

The generated documentation includes the following:

- Table of Contents - You can group the contents by namespace, location, or component type. The XSLT elements from each group are sorted alphabetically (named templates are presented first and the match ones second).
- Information about main, imported, and included stylesheets. This information consists of:
- XSLT modules included or imported by the current stylesheet.
- The XSLT stylesheets where the current stylesheet is imported or included.
- The stylesheet location.

Figure 446. Information About an XSLT Stylesheet

<table>
<thead>
<tr>
<th>Stylesheet table.xsl</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Description</strong></td>
</tr>
<tr>
<td>This file was created automatically by html2xhtml from the HTML stylesheet.</td>
</tr>
<tr>
<td><strong>Included modules</strong></td>
</tr>
<tr>
<td>table.xsl</td>
</tr>
<tr>
<td><strong>Included from</strong></td>
</tr>
<tr>
<td>docbook.xsl</td>
</tr>
</tbody>
</table>

If you choose to split the output into multiple files, the table of contents is displayed in the left frame. The contents are grouped using the same criteria as the split.

After the documentation is generated, you can collapse or expand details for some stylesheet XSLT elements by using the **Showing** options or the **Collapse** or **Expand** buttons.

Figure 447. Showing Options

For each element included in the documentation, the section presents the element type followed by the element name (value of the name or match attribute for match templates).

Figure 448. Documentation for an XSLT Element
Generate XSLT Documentation in a Custom Format

XSLT stylesheet documentation can be also generated in a custom format. You must write your custom stylesheet based on the schema xslDocSchema.xsd from \[OXYGEN_INSTALL_DIR\]/frameworks/stylesheet_documentation. You can create a custom format starting from one of the stylesheets used in the built-in HTML, PDF, and DocBook formats. These stylesheets are available in \[OXYGEN_INSTALL_DIR\]/frameworks/stylesheet_documentation/xsl.

To generate XSLT documentation in a custom format:

1. Select Tools > Generate Documentation > XSLT Stylesheet Documentation to open the XSLT Stylesheet Documentation dialog box (on page 1223).
2. Select Custom for the Format and click the Options button.
3. In this next dialog box, specify your own stylesheet to transform the intermediary XML generated in the documentation process.
4. You can also choose to copy additional resources into the output folder or choose whether or not to keep the intermediate XML files created during the documentation process.

5. Click **OK** to close this dialog box and then click **Generate**.

Figure 449. Custom Format Options Dialog Box

Generating XSLT Documentation From the Command-Line Interface

You can export the settings of the **XSLT Stylesheet Documentation** dialog box to an XML file by pressing the **Export settings** button. With the exported settings file, you can generate the same documentation from the command line by running the script `stylesheetDocumentation.bat` (on Windows) / `stylesheetDocumentation.sh` (on OS X / Linux) located in the Oxygen XML Editor installation folder. The script can be integrated in an external batch process launched from the command-line interface.

The command-line parameter of the script is the relative path to the exported XML settings file. The files that are specified with relative paths in the exported XML settings are resolved relative to the script directory.

**Example:**

```xml
<serialized>
  <map>
    <entry>
      <String xml:space="preserve">xsd.documentation.options</String>
      <xsdDocumentationOptions>
        <field name="outputFile">
          <String xml:space="preserve">${cfn}.html</String>
        </field>
        <field name="splitMethod">
          <Integer xml:space="preserve">1</Integer>
        </field>
        <field name="openOutputInBrowser">
          <Boolean xml:space="preserve">true</Boolean>
        </field>
        <field name="format">

```
<Integer xml:space="preserve">1</Integer>
</field>
<field name="customXSL">
  <null/>
</field>
<field name="deleteXMLFiles">
  <Boolean xml:space="preserve">true</Boolean>
</field>
<field name="includeIndex">
  <Boolean xml:space="preserve">true</Boolean>
</field>
<field name="includeGlobalElements">
  <Boolean xml:space="preserve">true</Boolean>
</field>
<field name="includeGlobalAttributes">
  <Boolean xml:space="preserve">true</Boolean>
</field>
<field name="includeLocalElements">
  <Boolean xml:space="preserve">true</Boolean>
</field>
<field name="includeLocalAttributes">
  <Boolean xml:space="preserve">true</Boolean>
</field>
<field name="includeSimpleTypes">
  <Boolean xml:space="preserve">true</Boolean>
</field>
<field name="includeComplexTypes">
  <Boolean xml:space="preserve">true</Boolean>
</field>
<field name="includeGroups">
  <Boolean xml:space="preserve">true</Boolean>
</field>
<field name="includeAttributesGroups">
  <Boolean xml:space="preserve">true</Boolean>
</field>
<field name="includeRedefines">
  <Boolean xml:space="preserve">true</Boolean>
</field>
<field name="includeReferencedSchemas">
  <Boolean xml:space="preserve">true</Boolean>
</field>
Compiling an XSL Stylesheet for Saxon

As of Saxon 9.7, it is possible to export a compiled form of a stylesheet as an XML file (called a stylesheet export file or SEF). Oxygen XML Editor includes a simple tool called **Compile XSL Stylesheet for Saxon** (found in the **Tools** menu) that does this for you.

**Use-Cases for a Stylesheet Export File (SEF)**

- **Use Saxon-JS to run transformations in a browser** - A stylesheet export file (SEF) is needed if you want to use the Saxon-JS product to run transformations in a browser, as in the following example:

```javascript
<script type="text/javascript" src="SaxonJS/SaxonJS.min.js"></script>
<script>
  window.onload = function() {
    SaxonJS.transform({
      stylesheetLocation: "books.sef",
      sourceLocation: "books.xml"
    });
  }
</script>
```

- **Use SEF to run transformations in Oxygen XML Editor** - You can also use a stylesheet export file (SEF) in Oxygen XML Editor to apply an XSLT transformation over an XML file. This requires Saxon-EE or Saxon-PE versions of the Saxon product and you must select one of those two versions for the **Target when you configure the SEF file** *(on page 1234)*. When configuring the XSLT transformation, you will specify the SEF file in the **XSL URL** field *(on page 1675)*.
Compiling an SEF File

The Compile XSL Stylesheet for Saxon tool can be found in the Tools menu and it compiles a specified stylesheet as an XML file (stylesheet export file with a file extension of .sef).

Selecting this tool opens the Compile XSL Stylesheet for Saxon dialog box that allows you to configure some options for conversion.

Figure 450. Compile XSL Stylesheet for Saxon Dialog Box

This dialog box includes the following options:

**XSL URL**

Allows you to select URL of the source XSL stylesheet. You can specify the URL by using the text field, the history drop-down, or the browsing actions in the Browse drop-down list.

**Target**

Allows you to select the type of Saxon product that the export file will be used with. You can choose Saxon-JS, Saxon-EE, Saxon-PE, or Saxon-HE.

**Relocatable**

Can be used to control the Saxon -relocate parameter. You can select this option to produce a relocatable export package (SEF) that can be deployed to a different location, with a different base URI.

**Output file**

You can specify the path where the output file will be saved by entering it in the text field, using the Insert Editor Variables button, or using the browsing actions in the Browse drop-down list.

**Open in Editor**
Select this option to open the resulting stylesheet export file in the main Oxygen XML Editor editing pane.

**Use a configuration file (“-config”)**

Select this option if you want to use a Saxon 9.8.0.12 configuration file that will be executed for the XSLT transformation and validation processes. You can specify the path to the configuration file by entering it in the URL field, or by using the Insert Editor Variables button, or using the browsing actions in the Browse drop-down list.

**Compile**

Use this button to generate the stylesheet export file according the options selected in this dialog box.

---

**Editing Ant Build Files**

Oxygen XML Editor includes an Ant editor that provides a variety of specialized features to assist you with creating and editing Ant build files. The editor includes some specialized views, content completion assistance, automatic validation, syntax highlighting, Quick Assist (on page 3286) and Quick Fix (on page 3287) support, as well as numerous common editing and search features.

**Related Information:**

- Editing XML Documents in Text Mode (on page 828)

---

**Editing Ant Build Files in the Context of Master Files**

Smaller interrelated modules that define a complex Ant build file cannot be correctly edited or validated individually due to their interdependency with other modules. For example, a target defined in a main build file is not visible when you edit an included or imported module. Oxygen XML Editor provides support for defining the main module (or modules), allowing you to edit any of the imported/included files in the context of the larger Ant build structure.

You can set a main Ant build file either by using the master files support from the Project view (on page 726), or a validation scenario (on page 1236).

To set a master file using a validation scenario, add validation units that point to the main modules. Oxygen XML Editor warns you if the current module is not part of the dependencies graph computed for the main build file. In this case, it considers the current module as the main build file.

The advantages of editing in the context of master file (on page 3284) include:
• Correct validation of a module in the context of a larger build structure.
• *Content Completion Assistant (on page 3280)* displays all components valid in the current context.
• The *Outline view (on page 1239)* displays the components collected from the entire build file structure.

**Validating Ant Build Files**

Oxygen XML Editor performs the validation of Ant build files with the help of a built-in processor, which is largely based on the *Apache Ant (on page 3279)* libraries. The path to these libraries can be configured in the *Ant preferences page (on page 221)*. The validation processor accesses the parameters set in the associated Ant transformation scenario (on page 1720) and uses them as Ant properties when validating the current build script.

Oxygen XML Editor automatically validates Ant build files as you type. You can also validate the currently edited file by selecting the ☑ Validate action from the ☑ Validation toolbar drop-down menu or the Document > Validate menu.

**Tip:** To make a custom task available in the Ant validation engine, add a *JAR (on page 3283)* file that contains the task implementation to the library directory of the built-in Ant distribution that comes bundled with Oxygen XML Editor (for example, [OXYGEN_INSTALL_DIR]/tools/ant/lib folder).

**Create a Validation Scenario for Ant Build Files**

If you want to customize the validation process for Ant build files, you can create a new validation scenario (or configure an existing one). For example, if you want to validate interrelated modules that define a complex Ant build file, you can specify the main Ant file by configuring a validation scenario.

To create or configure a validation scenario, select ☑ Configure Validation Scenario(s) from the ☑ Validation toolbar drop-down menu or the Document > Validate menu.

**Passing parameters to the Ant validation engine**

Ant validation scenarios cannot be configured to accept custom Ant parameters. However, you can specify values for the parameters in your Ant document using an Ant transformation scenario:

1. Create a new *Ant transformation scenario (on page 1718)*.
2. Edit the transformation scenario and set all parameters (on page 1720) you need to pass to your Ant document.
3. Associate the new scenario with your Ant document (in the *Configure Transformation Scenarios(s) dialog box (on page 1762)*). You do not need to run the transformation scenario.
Every time a validation operation is triggered, the built-in validation engine uses the parameters set in the transformation scenario.

**Note:** This behavior is available only for the validation scenarios that use the built-in validation engine. The custom defined validation engines do not benefit from this functionality.

### Transforming Ant Build Files

Oxygen XML Editor includes a few built-in transformation scenarios that allow you to transform Ant build files. They are listed in the **Ant** section in the [Configure Transformation Scenario(s) dialog box](#) (on page 1762):

- **ANT** - This transformation scenario runs as an external process that executes the Ant build script with the built-in Ant distribution ([Apache Ant](#) version 1.9.8) that is included with Oxygen XML Editor, or optionally with a custom Ant distribution configured in the scenario.

- **ANT (with Saxon 9 EE XSLT support)** - This transformation scenario allows Ant XSLT tasks to be performed using Saxon 9 **JAR** libraries that come bundled with Oxygen XML Editor and all defined XML catalogs are also taken into account during the transformation.

**Tip:** Certain Ant tasks require additional JAR libraries (for example, Ant mail tasks). The additional libraries can be added by editing the Ant transformation scenario, and in the **Output tab, click the Libraries button** (on page 1719) in the bottom right corner. This opens a dialog box where you can add JAR libraries. For a list of library dependencies, see [https://ant.apache.org/manual/install.html#librarydependencies](https://ant.apache.org/manual/install.html#librarydependencies).

### Related Information:

- Editing a Transformation Scenario (on page 1758)
- Configure Transformation Scenario(s) Dialog Box (on page 1762)
- Applying Associated Transformation Scenarios (on page 1761)
- Ant Transformation (on page 1718)

### Ant Quick Fix Support

The Oxygen XML Editor **Quick Fix support** (on page 3287) helps you resolve missing target reference errors that may occur when developing Ant build documents.
To activate this feature, hover over or place the cursor in the highlighted area of text where a validation error or warning occurs. If a Quick Fix is available for that particular error or warning, you can access the Quick Fix proposals with any of the following methods:

- When hovering over the error or warning, the proposals are presented in a tooltip pop-up window.
- If you place the cursor in the highlighted area where a validation error or warning occurs, a Quick Fix icon ( располагается) is displayed in the stripe on the left side of the editor. If you click this icon, Oxygen XML Editor displays the list of available fixes.
- With the cursor placed in the highlighted area of the error or warning, you can also invoke the Quick Fix menu by pressing Alt + 1 (Command + Alt + 1 on OS X) on your keyboard.

Oxygen XML Editor provides the following types of Quick Fixes for Ant build files:

- **Create new target** - Creates a new target with the specified name.
- **Change reference to “targetName”** - Corrects the reference to point to an already defined target.
- **Remove target reference** - Removes the erroneous reference.

### Content Completion in Ant Build Files

The list of proposals offered by the Content Completion Assistant (on page 3280) in Ant build files are context-sensitive and includes proposals that are valid at the current cursor position. It can be manually activated with the Ctrl + Space (Command + Space on OS X) shortcut.

The Content Completion Assistant proposes various item types that are defined in the current Ant build and in the imported and included builds. The proposals include:

- Element names
- Attribute names
- Property names

**Note:** In addition to the user-defined properties, the Content Completion Assistant offers the following values:

- The system properties set in the Java Virtual Machine.
- The built-in properties that Ant provides.

- Target names
- Task and type reference IDs

**Tip:** To make a custom task available in the Content Completion Assistant, add a JAR (on page 3283) file that contains the task implementation to the library directory of the built-in Ant distribution that comes bundled with Oxygen XML Editor (for example, \{OXYGEN_INSTALL_DIR\}/tools/ant/lib folder).
**Note:** For Ant resources, the proposals are collected starting from the master files (on page 3284). The master files can be defined in the project or in the associated validation scenario. For further details about the Master Files support go to Defining Master Files at Project Level (on page 726).

**Related Information:**

## Syntax Highlighting in Ant Files

Oxygen XML Editor supports syntax highlighting in **Text** mode to make it easier to read the semantics of the structured content by displaying each type of code in different colors and fonts.

To customize the colors or styles used for the syntax highlighting colors for Ant build files, follow these steps:

1. Open the Preferences dialog box (Options > Preferences) (on page 79).
2. Go to Editor > Syntax Highlight (on page 178).
3. Select and expand the Ant Property section in the top pane.
4. Select the component you want to change and customize the colors or styles using the selectors to the right of the pane.

You can see the effects of your changes in the Preview pane.

**Related Information:**
- Syntax Highlight Preferences (on page 178)

## Ant Outline View

The Outline view for Ant files displays the list of all the components (properties, targets, extension points, task/type definitions and references) from both the edited Ant build file and its imported and included modules. For Ant resources, the Outline view collects its components starting from the master files (on page 3284). The master files can be defined in the project and the main build file can be specified in a validation scenario. For more details, see Defining Master Files at Project Level (on page 726).
By default, it is displayed on the left side of the editor. If the view is not displayed, it can be opened by selecting it from the **Window > Show View** menu.

Figure 451. Ant Outline View

The following actions are available in the **Settings** menu on the Outline view toolbar:

- **Filter returns exact matches**
  
  The text filter of the **Outline** view returns only exact matches. By default, this filter is not selected.

- **Selection update on cursor move**
  
  Controls the synchronization between **Outline** view and source document. The selection in the **Outline** view can be synchronized with the cursor moves or the changes in the Ant editor. Selecting one of the components from the outline view also selects the corresponding item in the source document.

When the **Show components** option is selected, the following actions are available:

- **Show XML structure**
  
  Displays the XML document structure in a tree-like manner.

- **Sort**
  
  Sorts the components in the **Outline** view alphabetically.

**Show all components**

Displays all components that were collected starting from the *master file (on page 3284)*. This option is set by default.

**Show only local components**

Displays the components defined in the current file only.
Group by location/type

The build file components can be grouped by location and type.

When the Show XML structure option is selected, the following actions are available:

- **Show components**
  
  Switches the Outline view to the components display mode.

- **Flat presentation mode of the filtered results**
  
  When active, the application flattens the filtered result elements to a single level.

- **Show comments and processing instructions**
  
  Show/hide comments and processing instructions in the Outline view.

- **Show element name**
  
  Show/hide element name.

- **Show text**
  
  Show/hide additional text content for the displayed elements.

- **Show attributes**
  
  Show/hide attribute values for the displayed elements. The displayed attribute values can be changed from the Outline preferences panel (on page 259).

- **Configure displayed attributes**
  
  Displays the XML Structured Outline preferences page (on page 259).

The following actions are available in the contextual menu of the Outline view (when the Show XML structure option is selected in the Settings menu):

- **Append Child**
  
  Displays a list of elements that can be inserted as children of the current element.

- **Insert Before**
  
  Displays a list of elements that can be inserted as siblings of the current element, before the current element.

- **Insert After**
  
  Displays a list of elements that can be inserted as siblings of the current element, after the current element.

- **Edit Attributes**
  
  Displays an in-place attribute editing window.
**Toggle Comment**

Comments/uncomments the currently selected element.

**Search References** Ctrl + Shift + R (Command + Shift + R on OS X)

Searches all references of the item found at current cursor position in the defined scope. See Find References and Declarations of Ant Components (on page 1246) for more details.

**Search References in**

Searches all references of the item found at current cursor position in the specified scope. See Find References and Declarations of Ant Components (on page 1246) for more details.

**Component Dependencies**

Opens the Ant Component Dependencies view (on page 1244) that allows you to see the dependencies for the current selected component.

**Rename Component in**

Renames the selected component. See Ant Refactoring Actions (on page 1247) for more details.

**Cut, Copy, Delete**

Executes the typical editing actions on the currently selected component.

**Expand More**

Expands recursively all sub-components of the selected component.

**Collapse All**

Collapses recursively all sub-components of the selected component.

You can search a component in the Outline view by typing its name in the filter text field at the top of the view or directly on the tree structure. When you type the component name in the text field, you can switch to the tree structure using the following:

- **Down** arrow key
- **Tab** key
- **Shift-Tab** key combination

To switch from tree structure to the filter text field, you can use **Tab** and **Shift-Tab**.

**Tip:** The search filter is case insensitive. The following wildcards are accepted:

- * - any string
• ? - any character
• , - patterns separator

If no wildcards are specified, the string to search is used as a partial match (such as *textToFind*).

The content of the Outline view and the editing area are synchronized. When you select a component in the Outline view, its definition is highlighted in the editing area.

Oxygen XML Editor has a predefined order for the groups in the Outline view:

• For location, the names of the files are sorted alphabetically. The file you are editing is located at the top of the list.
• For type, the order is: properties, targets, references.

Note: When no grouping is available Oxygen XML Editor sorts the components depending on their order in the document. Oxygen XML Editor also takes into account the name of the file that the components are part of.

Ant Resource Hierarchy/Dependencies View

The Resource Hierarchy/Dependencies view displays the hierarchy or dependencies for an Ant build file by analyzing imported or included build files. If the view is not displayed, it can be opened by selecting it from the Window > Show View menu.

If you want to see the hierarchy or dependencies of a build file, select it in the Project view (on page 333) and choose Resource Hierarchy or Resource Dependencies from the contextual menu.

The following actions are available on the toolbar of the Resource Hierarchy/Dependencies view:

- **Refresh**
  
  Refreshes the Hierarchy/Dependencies structure.

- **Stop**
  
  Stops the hierarchy/dependencies computing.

- **Show Hierarchy**
  
  Allows you to choose a resource to compute the hierarchy structure.

- **Show Dependencies**
  
  Allows you to choose a resource to compute the dependencies structure.

- **Configure dependencies search scope**
  
  Allows you to configure a scope to compute the dependencies structure. There is also an option for automatically using the defined scope for future operations.
History

Provides access to the list of previously computed dependencies. Use the **Clear history** button to remove all items from this list.

The contextual menu for a resource listed in the **Resource Hierarchy/Dependencies** view contains the following actions:

**Open**

Opens the resource. You can also double-click a resource in the Hierarchy/ Dependencies structure to open it.

**Go to reference**

Opens the source document where the resource is referenced.

**Copy location**

Copies the location of the resource.

**Move resource**

Moves the selected resource.

**Rename resource**

Renames the selected resource.

**Show Resource Hierarchy**

Shows the hierarchy for the selected resource.

**Show Resource Dependencies**

Shows the dependencies for the selected resource.

**Add to Master Files**

Adds the currently selected resource in the **Master Files** directory (on page 726).

**Expand All**

Expands all the children of the selected resource from the Hierarchy/Dependencies structure.

**Collapse All**

Collapses all children of the selected resource from the Hierarchy/Dependencies structure.

**Tip:** When a recursive reference is encountered in the Hierarchy view, the reference is marked with a special icon `.`.
Ant Component Dependencies View

The **Component Dependencies** view allows you to see the dependencies for a selected component. This is helpful if you want to see where components are used in the entire hierarchy. For example, if you want to find all the references where a given component is used.

If the view is not displayed, it can be opened by selecting it from the **Window > Show View** menu.

To see the dependencies of an Ant component:

1. Right-click the desired component in the editor or **Outline** view.
2. Select the **Component Dependencies** action from the contextual menu.

The action is available for the following components: **properties**, **targets**, **extension-points**, and **references** (those that have an ID set).

If a component contains multiple references, a small table is displayed at the bottom of the view that contains all the references. When a recursive reference is encountered, it is marked with a special icon.

The **Component Dependencies** view includes the following toolbar actions:

- **Refresh**
  - Refreshes the dependencies structure.

- **Stop**
  - Stops the dependency computation.

- **Configure**
  - Allows you to choose the search scope for computing the dependencies structure. This is helpful for making sure all imported/included resources are computed.

- **History**
  - Allows you to select from a list of the most recently used dependency computations.

In addition, the following actions are available in the contextual menu:

- **Go to First Reference**
  - Selects the first reference of the currently selected component in the dependencies tree.

- **Go to Component**
  - Shows the definition of the currently selected component in the dependencies tree.

**Related Information:**
Highlight Component Occurrences

When a component (for example property or target) is found at the current cursor position, they are highlighted in both the document and in the stripe bar at the right side of the document. Oxygen XML Editor also supports occurrences highlight for type and task references.

Customizable colors are used (one for the component definition and another one for component references). Occurrences are displayed until another component is selected and a new search is performed. All highlights are removed when you start to edit the document.

This feature is enabled by default. To configure it, open the Preferences dialog box (Options > Preferences) and go to Editor > Mark Occurrences. If your particular type of file is not selected, you can perform this search by going to Search > Search Occurrences in File Ctrl + Shift + U (Command + Shift + U on OS X) in the contextual menu. Matches are displayed in separate tabs of the Results view (on page 357).

Related Information:

- Mark Occurrences Preferences (on page 179)

Find References and Declarations of Ant Components

The following search actions related to references and declarations of Ant components are available from the Search submenu of the contextual menu and from the Document > References menu:

- **Search References**
  
  Searches all references of the item found at current cursor position in the defined scope.

- **Search References in**
  
  Searches all references of the item found at current cursor position in the file or files that you specify after selecting a scope for the search operation.

- **Search Declarations**
  
  Searches all declarations of the item found at current cursor position in the defined scope.

- **Search Declarations in**
Searches all declarations of the item found at current cursor position in the file or files that you specify when defining a new scope.

**Search Occurrences in File**

Searches all occurrences of the item at the cursor position in the currently edited file.

The following action is available from the contextual menu and the **Document > Schema** menu:

- **Go to Definition**
  
  Moves the cursor to the location of the definition of the current item.

  **Note:** You can also use the **Ctrl + Single-Click (Command + Single-Click on OS X)** shortcut on a reference to display its definition.

**Related Information:**

- **Search and Refactor Operations Scope (on page 1129)**

---

### Ant Refactoring Actions

The following refactoring actions can be applied on **targets, extension-points, properties, and references** and allow you to consistently rename a component in the entire Ant build file structure. They are available from the **Refactoring** submenu in the contextual menu of the current editor or from the **Document > Refactoring** menu:

- **Rename Component**
  
  Allows you to rename the current component (in-place). The component and all its references in the document are highlighted with a thin border and the changes you make to the component at the cursor position are updated in real time to all occurrences of the component. To exit the in-place editing, press the **Esc** or **Enter** key on your keyboard.

- **Rename Component in**
  
  Opens a dialog box that allows you to rename the selected component by specifying the new component name and the files to be affected by the modification. If you click the **Preview** button, you can view the files to be affected by the action.

  Figure 452. Rename Identity Constraint Dialog Box
Ant Quick Assist Support

The Quick Assist support (on page 3286) helps you to rapidly access search and refactoring actions. If one or more actions are available in the current context, they are accessible via a yellow bulb icon (💡) placed at the current line in the stripe on the left side of the editor. Also, you can invoke the Quick Assist menu by using the Alt + 1 (Meta + Alt + 1 on Mac OS X) keyboard shortcuts.

The Quick Assist support offers direct access to the following actions:

- Rename Component in

  Renames the component and all its dependencies.

- Search Declarations

  Searches the declaration of the component in a predefined scope. It is available only when the context represents a component name reference.

- Search References

  Searches all references of the component in a predefined scope.

- Component Dependencies

  Searches the component dependencies in a predefined scope.

- Change Scope
Configures the scope that will be used for future search or refactor operations.

**Rename Component**

Allows you to rename the current component in-place.

**Search Occurrences**

Searches all occurrences of the component within the current file.

**Related Information:**

- Ant Component Dependencies View *(on page 1244)*
- Ant resource Hierarchy/Dependencies View *(on page 1243)*
- Ant Refactoring Actions *(on page 1247)*
- Search and Refactor Operations Scope *(on page 1129)*

---

**Editing XML Schemas**

An XML Schema describes the structure of an XML document and is used to validate XML document instances against it, to check that the XML instances conform to the specified requirements. If an XML instance conforms to the schema then it is said to be valid. Otherwise, it is invalid.

Oxygen XML Editor offers support for both XML Schema 1.0 and 1.1 and you can edit XML Schema files in the following editing modes:

- **Text editing mode *(on page 1286)*** - Allows you to edit XML Schema files in a source editing mode.
- **Grid editing mode *(on page 392)*** - Displays XML Schema files in a structured spreadsheet-like grid.
- **Design editing mode *(on page 623)*** - Visual schema designer that helps you understand the structure and develop complex schemas.
- **Author editing mode *(on page 893)*** - The visual Author mode is also available for XML Schema, allowing you to visually edit the schema annotations. It presents a polished and compact view of the XML Schema, with support for links on imported/included schemas.

For information about applying and detecting schemas, see **Associating a Schema to XML Documents *(on page 1112)***.
For more information about editing XML Schemas, see our video demonstration:

https://www.youtube.com/embed/vz1eIZELQgc

Related Information:
- Associating a Schema to XML Documents (on page 1112)

Design Editing Mode (XML Schema Diagram Editor)

XML Schemas allow document designers to specify the allowed structure and content of an XML document and to check if an XML document is valid.

Oxygen XML Editor provides a simple and expressive XML Schema diagram editor (Design mode) for editing XML Schemas. The schema diagram helps both the content authors who want to understand a schema and schema designers who develop complex schemas.

The diagram font can be increased using the usual Oxygen XML Editor shortcuts: (Ctrl (Meta on Mac OS) + "+"), (Ctrl (Meta on Mac OS)+"-"), (Ctrl (Meta on Mac OS) + 0) or (Ctrl (Meta on Mac OS) - mouse wheel). The whole diagram can also be zoomed with one of the predefined factors available in the Schema preferences panel (on page 153). The same zoom factor is applied for the print and save actions.

To switch to this mode, select Design at the bottom of the editing area.

Figure 453. XML Schema Diagram
For more information about designing XML Schemas, watch our video demonstration:

https://www.youtube.com/embed/vz1eIZELQgc

Navigation in the XML Schema Design Mode

The following editing and navigation features work for all types of schema components in the XML Schema Design mode:

- Select consecutive components on the diagram (components from the same level) using the Shift key. You can also make discontinuous selections in the schema diagram using the Ctrl (Meta on...
Mac OS) key. To deselect one of the components, use Ctrl + Single-Click (Command + Single-Click on OS X).

- Use the arrow keys to navigate the diagram vertically and horizontally.
- Use Home/End keys to jump to the first/last component from the same level. Use Ctrl + Home (Command + Home on OS X) key combination to go to the diagram root and Ctrl + End (Command + End on OS X) to go to the last child of the selected component.
- You can easily go back to a previously visited component while moving from left to right. The path will be preserved only if you use the left arrow key or right arrow key. For example, if the current selection is on the second attribute from an attribute group and you press the left arrow key to jump to the attribute group, when you press the right arrow key, then the selection will be moved to the second attribute.
- Go back and forward between components viewed or edited in the diagram by selecting them in the Outline view (on page 625):
  - Back (go to previous schema component).
  - Forward (go to next schema component).
  - Go to Last Modification (go to last modified schema component).
- Copy, reference, or move global components, attributes, and identity constraints to another position and from one schema to another using the Cut/Copy and Paste/Paste as Reference actions.
- Go to the definition of an element or attribute with the Go to Definition action.
- Search in the diagram using the Find/Replace dialog box (on page 740) or the Quick find toolbar (on page 752). You can find/replace components only in the current file scope.
- You can expand and see the contents of the imports/includes/redefines in the diagram. To edit components from other schemas, the schema for each component will be opened as a separate file in Oxygen XML Editor.

Tip: If an XML Schema referenced by the current opened schema was modified on disk, the change will be detected and you will be asked to refresh the current schema contents.

- Recursive references are marked with a recurse symbol ( recurse). Click this symbol to navigate between the element declaration and its reference.

Figure 454. Recursive Reference

Schema Editing Actions

You can edit an XML schema using drag and drop operations or contextual menu actions.
Drag and drop is the easiest way to move the existing components to other locations in an XML schema. For example, you can quickly insert an element reference in the diagram with a drag and drop from the **Outline view (on page 625)** to a compositor in the diagram. Also, the components order in an **xs:sequence** can be easily changed using drag and drop.

If this property has not been set, you can easily set the attribute/element type by dragging over it a simple type or complex type from the diagram. If the type property for a simple type or complex type is not already set, you can set it by dragging over it a simple or complex type.

Depending on the drop area, various actions are available:

- **move** - Context dependent, the selected component is moved to the destination.
- **reference** - Context dependent, the selected component is referenced from the parent.
- **copy** - If **(Ctrl (Meta on Mac OS))** key is pressed, a copy of the selected component is inserted to the destination.

Visual clues about the operation type are indicated by the mouse pointer shape:

- - When moving a component.
- - When referencing a component.
- - When copying a component.

You can edit some schema components directly in the diagram. For these components, you can edit the name and the additional properties presented in the diagram by double clicking the value you want to edit. If you want to edit the name of a selected component, you can also press **(Enter)**. The list of properties that can be displayed for each component can be customized in the **Preferences (on page 154)**.

When editing references, you can choose from a list of available components. Components from an imported schema for which the target namespace does not have an associated prefix is displayed in the list as **componentName#targetNamespace**. If the reference is from a target namespace that was not yet mapped, you are prompted to add prefix mappings for the inserted component namespace in the current edited schema.

You can also change the compositor by double-clicking it and choose the compositor you want from the proposals list.

There are some components that cannot be edited directly in the diagram: imports, includes, redefines. The editing action can be performed if you double-click or press **(Enter)** on an import/include/redefine component. An edit dialog box is displayed, allowing you to customize the directives.
Related Information:

-Searching and Refactoring Actions in XML Schemas (on page 1302)

-XML Schema Component Dependencies View (on page 1300)

-XML Schema Resource Hierarchy / Dependencies View (on page 1297)

-Generating Sample XML Files (on page 1306)

-Schema Design Preferences (on page 153)

Contextual Menu Actions in the Design Mode

The contextual menu of the Design mode includes the following actions:

- **Go to Definition (Ctrl + Shift + Enter)**
  
  Shows the definition for the current selected component. For references, this action is available by clicking the arrow displayed in its bottom right corner.

- **Open Schema (Ctrl + Shift + Enter)**
  
  Opens the selected schema. This action is available for xsd:import, xsd:include and xsd:redefine elements. If the file you try to open does not exist, a warning message is displayed and you have the possibility to create the file.

- **Edit Attributes ()**
  
  Allows you to edit the attributes of the selected component in a small in-place editor that presents the same attributes as in the Attributes view (on page 628) and the Facets view (on page 630). The actions that can be performed on attributes in this dialog box are the same actions presented in the two views.

- **Append child**
  
  Offers a list of valid components, depending on the context, and appends your selection as a child of the currently selected component. You can set a name for a named component after it has been added in the diagram.

- **Insert before**
Offers a list of valid components, depending on the context, and inserts your selection before the selected component, as a sibling. You can set a name for a named component after it has been added in the diagram.

**Insert after**

Offers a list of valid components, depending on the context, and inserts your selection after the selected component, as a sibling. You can set a name for a named component after it has been added in the diagram.

**New global**

Inserts a global component in the schema diagram. This action does not depend on the current context. If you choose to insert an import you have to specify the URL of the imported file, the target namespace and the import ID. The same information, excluding the target namespace, is requested for an `xsd:include` or `xsd:redefine` element.

**Note:** If the imported file has declared a target namespace, the field **Namespace** is completed automatically.

**Edit Schema Namespaces**

When performed on the schema root, it allows you to edit the schema target namespace and namespace mappings. You can also invoke the action by double-clicking the target namespace property from **Attributes view (on page 628)** for the schema or by double-clicking the schema component.

**Edit Annotations**

Allows you to edit the annotation for the selected schema component in the **Edit Annotations** dialog box. You can perform the following operations in the dialog box:

- **Edit all appinfo/documentation items for a specific annotation** - All `appinfo/documentation` items for a specific annotation are presented in a table and can be easily edited. Information about an annotation item includes: type (documentation/appinfo), content, source (optional, specify the source of the `documentation/appinfo` element) and `xml:lang`. The content of a `documentation/appinfo` item can be edited in the **Content** area below the table.

- **Insert/Insert before/Remove documentation/appinfo**. The "Add" button allows you to insert a new annotation item (`documentation/appinfo`). You can add a new item before the item selected in table by pressing the "Insert Before" button. Also, you can delete the selected item using the "Remove" button.

- **Move items up/down** - to do this use the "Move up" and "Move down" buttons.

- **Insert/Insert before/Remove annotation** - Available for components that allow multiple annotations such as schemas or redefines.
• **Specify an ID for the component annotation.** An optional identifier for the annotation.

Annotations are rendered by default under the graphical representation of the component. When you have a reference to a component with annotations, these annotations are also presented in the diagram below the referenced component. To edit the annotations, use the **Edit Annotations** action from the contextual menu. If the reference component does not have annotations, you can edit the annotations of the referenced component by double-clicking the annotations area. Otherwise, you can edit the referenced component annotations only if you go to the definition of the component.

**Note:** For imported/included components that do not belong to the currently edited schema, the **Edit Annotations** dialog box presents the annotation as read-only. To edit its annotation, open the schema where the component is defined.

**Extract Global Element**

Action that is available for local elements. A local element is made global and is replaced with a reference to the global element. The local element properties that are also valid for the global element declaration are kept.

**Figure 455. Extracting a Global Element**

If you use the **Extract Global Element** action on a `name` element, the result is:

**Figure 456. Extracting a Global Element on a name Element**

**Extract Global Attribute**
Action available for local attributes. A local attribute is made global and replaced with a reference to the global attribute. The properties of local attribute that are also valid in the global attribute declaration are kept.

Figure 457. Extracting a Global Attribute

If you use the Extract Global Attribute action on a note attribute, the result is:

Figure 458. Extracting a Global Attribute on a note Attribute

**Extract Global Group**

Action available for compositors (sequence, choice, all). This action extracts a global group and makes a reference to it. The action is available only if the parent of the compositior is not a group.
If you use the **Extract Global Group** action on the `sequence` element, the **Extract Global Component** dialog box is displayed and you can choose a name for the group. If you type `personGroup`, the result is:

![Figure 460. Extracting a Global Group on a sequence Element](image)

**Extract Global Type**

Action used to extract an anonymous simple type or an anonymous complex type as global. For anonymous complex types, the action is available on the parent element.

![Figure 461. Extracting a Global Simple Type](image)

If you use the action on the `union` component and choose `numericST` for the new global simple type name, the result is:

![Figure 462. Extracting a Global Simple Type on a union Component](image)
If you use the action on a `person` element and choose `person_type` for the new complex type name, the result is:

Figure 464. Extracting a Global Complex Type on a `person` Element

---

**Rename Component in**

Rename the selected component.

**Cut Ctrl + X (Command + X on OS X)**

Cut the selected component(s).

**Copy Ctrl + C (Command + C on OS X)**

Copy the selected component(s).
**Copy XPath**

This action copies an XPath expression that identifies the selected element or attribute in an instance XML document of the edited schema and places it in the clipboard.

**Paste Ctrl + V (Command + V on OS X)**

Paste the component(s) from the clipboard as children of the selected component.

**Paste as Reference**

Create references to the copied component(s). If not possible a warning message is displayed.

**Remove (Delete)**

Remove the selected component(s).

**Override component**

Copies the overridden component in the current XML Schema. This option is available for `xs:override` components.

**Redefine component**

The referenced component is added in the current XML Schema. This option is available for `xs:redefine` components.

**Optional**

Can be performed on element/attribute/group references, local attributes, elements, compositors, and element wildcards. The `minOccurs` property is set to 0 and the `use` property for attributes is set to `optional`.

**Unbounded**

Can be performed on element/attribute/group references, local attributes, elements, compositors, and element wildcards. The `maxOccurs` property is set to `unbounded` and the `use` property for attributes is set to `required`.

**Search**

Can be performed on local elements or attributes. This action makes a reference to a global element or attribute.

**Search References**

Searches all references of the item found at current cursor position in the defined scope if any.

**Search References in**

Searches all references of the item found at current cursor position in the specified scope.
Search Occurrences in File

Searches all occurrences of the item found at current cursor position in the current file.

Component Dependencies

Opens the Component Dependencies view (on page 1300) that allows you to see the dependencies for the current selected component.

Resource Hierarchy

Opens the Resource Hierarchy / Dependencies view (on page 1297) that allows you to see the hierarchy for the current selected resource.

Flatten Schema

Recursively adds the components of included Schema files to the main one. It also flattens every imported XML Schema from the hierarchy.

Resource Dependencies

Allows you to see the dependencies for the current selected resource.

Expand All

Recursively expands all sub-components of the selected component.

Collapse All

Recursively collapses all sub-components of the selected component.

Save as Image

Save the diagram as image, in JPEG, BMP, SVG or PNG format.

Generate Sample XML Files

Generate XML files using the current opened schema. The selected component is the XML document root. See more in the Generate Sample XML Files (on page 1306) section.

Options

Show the Schema preferences panel (on page 153).

XML Schema Components

A schema diagram contains a series of interconnected components. To quickly identify the relation between two connected components, the connection is represented as:

- A thick line to identify a connection with a required component (in the following image, family is a required element).

Figure 465. Example: Required Component
A thin line to identify a connection with an optional component (in the following image, `email` is an optional element).

Figure 466. Example: Optional Component

The following topics explain in detail all available components and their symbols as they appear in an XML schema diagram.

**xs:schema**

Figure 467. The `xs:schema` Component

![XSD Component](http://www.oxygenxml.com/supportedschemas)

Defines the root element of a schema. A schema document contains representations for a collection of schema components, such as type definitions and element declarations, that have a common target namespace. See more info at [http://www.w3.org/TR/xmlschema11-1/#element-schema](http://www.w3.org/TR/xmlschema11-1/#element-schema).

By default, it displays the `targetNamespace` property when rendered.

<table>
<thead>
<tr>
<th><strong>Table 39. <code>xs:schema</code> Properties</strong></th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Property Name</strong></td>
</tr>
<tr>
<td><strong>Target Namespace</strong></td>
</tr>
<tr>
<td><strong>Element Form Default</strong></td>
</tr>
<tr>
<td><strong>Attribute Form Default</strong></td>
</tr>
<tr>
<td><strong>Block Default</strong></td>
</tr>
<tr>
<td>Property Name</td>
</tr>
<tr>
<td>---------------</td>
</tr>
<tr>
<td>Final Default</td>
</tr>
<tr>
<td>Default Attributes</td>
</tr>
<tr>
<td>XPath Default Namespace</td>
</tr>
<tr>
<td>Version</td>
</tr>
<tr>
<td>ID</td>
</tr>
<tr>
<td>Component</td>
</tr>
<tr>
<td>SystemID</td>
</tr>
</tbody>
</table>

**xs:element**

Figure 468. The `xs:element` Component

![](image)

Defines an element. An element declaration is an association of a name with a type definition, either simple or complex, an (optional) default value and a (possibly empty) set of identity-constraint definitions. See more info at [http://www.w3.org/TR/xmlschema11-1/#element-element](http://www.w3.org/TR/xmlschema11-1/#element-element).

An element by default displays the following properties when rendered in the diagram: `default`, `fixed`, `abstract` and `type`. When referenced or declared locally, the element graphical representation also contains the value for the `minOccurs` and `maxOccurs` properties (for 0..1 and 1..1 occurs the values are implied by the connector style) and the connectors to the element are drawn using dotted lines if the element is optional.

**Table 40. `xs:element` Properties**

<table>
<thead>
<tr>
<th>Property Name</th>
<th>Description</th>
<th>Possible Values</th>
<th>Mentions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>The element name (always required)</td>
<td>Any NCName for global or local elements, any QName (on page 3286) for element references</td>
<td>If missing, will be displayed as '[element]' in diagram</td>
</tr>
<tr>
<td>Property Name</td>
<td>Description</td>
<td>Possible Values</td>
<td>Mentions</td>
</tr>
<tr>
<td>---------------</td>
<td>-------------</td>
<td>----------------</td>
<td>----------</td>
</tr>
<tr>
<td>Is Reference</td>
<td>When set, the local element is a reference to a global element</td>
<td>true/false</td>
<td>Appears only for local elements</td>
</tr>
<tr>
<td>Type</td>
<td>The element type</td>
<td>All declared or built-in types. In addition, the following anonymous types are available: [ST-restriction], [ST-union], [ST-list], [CT-anonymous], [CT-extension SC], [CT-restriction SC], [CT-restriction CC], [CT-extension CC].</td>
<td>For all elements. For references, the value is set in the referenced element.</td>
</tr>
<tr>
<td>Base Type</td>
<td>The extended/restricted base type</td>
<td>All declared or built-in types</td>
<td>For elements with complex type, with simple or complex content</td>
</tr>
<tr>
<td>Mixed</td>
<td>Defines if the complex type content model will be mixed</td>
<td>true/false</td>
<td>For elements with complex type</td>
</tr>
<tr>
<td>Content</td>
<td>The content of the complex type</td>
<td>simple/complex</td>
<td>For elements with complex type that extends/restricts a base type. It is automatically detected</td>
</tr>
<tr>
<td>Content Mixed</td>
<td>Defines if the complex content model will be mixed</td>
<td>true/false</td>
<td>For elements with complex type that has a complex content</td>
</tr>
<tr>
<td>Property Name</td>
<td>Description</td>
<td>Possible Values</td>
<td>Mentions</td>
</tr>
<tr>
<td>---------------</td>
<td>-------------</td>
<td>----------------</td>
<td>---------</td>
</tr>
<tr>
<td>Default</td>
<td>Default value of the element. A default value is automatically assigned to the element when no other value is specified</td>
<td>Any string</td>
<td>The fixed and default attributes are mutually exclusive</td>
</tr>
<tr>
<td>Fixed</td>
<td>A simple content element may be fixed to a specific value using this attribute. A fixed value is also automatically assigned to the element and you cannot specify another value.</td>
<td>Any string</td>
<td>The fixed and default attributes are mutually exclusive</td>
</tr>
<tr>
<td>Min Occurs</td>
<td>Minimum number of occurrences of the element</td>
<td>A numeric positive value. Default value is 1</td>
<td>Only for references/local elements</td>
</tr>
<tr>
<td>Max Occurs</td>
<td>Maximum number of occurrences of the element</td>
<td>A numeric positive value (default value is 1)</td>
<td>Only for references/local elements</td>
</tr>
<tr>
<td>Substitution Group</td>
<td>Qualified name of the head of the substitution group that this element belongs to</td>
<td>All declared elements. For XML Schema 1.1 this property supports multiple values.</td>
<td>For global and reference elements</td>
</tr>
<tr>
<td>Abstract</td>
<td>Controls whether or not the element may be used directly in instance XML documents. When set to true, the element may still be used to define content models, but it must be substituted through a substitution group in the instance document.</td>
<td>true/false</td>
<td>For global elements and element references</td>
</tr>
<tr>
<td>Form</td>
<td>Defines if the element is &quot;qualified&quot; (belongs to the target namespace) or &quot;unqualified&quot; (doesn't belong to any namespace)</td>
<td>unqualified/qualified</td>
<td>Only for local elements</td>
</tr>
<tr>
<td>Nullable</td>
<td>When this attribute is set to true, the element can be declared as nil using an xsi:nil attribute in the instance documents</td>
<td>true/false</td>
<td>For global elements and element references</td>
</tr>
<tr>
<td>Target Namespace</td>
<td>Specifies the target namespace for local element and attribute declarations. The namespace URI may be different from the schema target</td>
<td>Not editable property</td>
<td>For all elements</td>
</tr>
</tbody>
</table>
## Property Name

<table>
<thead>
<tr>
<th>Property Name</th>
<th>Description</th>
<th>Possible Values</th>
<th>Mentions</th>
</tr>
</thead>
<tbody>
<tr>
<td>namespace. This property is available for local elements only.</td>
<td>#all, restriction, extension, substitution, restriction substitution, extension restriction, restriction extension substitution</td>
<td>For global elements and element references</td>
<td></td>
</tr>
<tr>
<td>Block</td>
<td>Controls if the element can be subject to a type or substitution group substitution. ‘#all’ blocks any substitution, ‘substitution’ blocks any substitution through substitution groups and ‘extension’/’restriction’ block any substitution (both through xsi:type and substitution groups) by elements or types, derived respectively by extension or restriction from the type of the element. Its default value is defined by the blockDefault attribute of the parent xs:schema.</td>
<td>#all, restriction, extension, substitution, restriction substitution, extension restriction, restriction extension substitution</td>
<td></td>
</tr>
<tr>
<td>Final</td>
<td>Controls whether the element can be used as the head of a substitution group for elements whose types are derived by extension or restriction from the type of the element. Its default value is defined by the finalDefault attribute of the parent xs:schema.</td>
<td>#all, restriction, extension, restriction extension, [Empty]</td>
<td></td>
</tr>
<tr>
<td>ID</td>
<td>The component ID</td>
<td>Any ID</td>
<td>For all elements</td>
</tr>
<tr>
<td>Component</td>
<td>The edited component name</td>
<td>Not editable property</td>
<td>For all elements</td>
</tr>
<tr>
<td>Namespace</td>
<td>The component namespace</td>
<td>Not editable property</td>
<td>For all elements</td>
</tr>
<tr>
<td>System ID</td>
<td>The component system ID</td>
<td>Not editable property</td>
<td>For all elements</td>
</tr>
</tbody>
</table>

### xs:attribute

Figure 469. The xs:attribute Component

Defines an attribute. See more info at [http://www.w3.org/TR/xmlschema11-1/#element-attribute](http://www.w3.org/TR/xmlschema11-1/#element-attribute).

An attribute by default displays the following properties when rendered in the diagram: default, fixed, use and type. Connectors to the attribute are drawn using dotted lines if the attribute use is optional. The attribute name is stroked out if prohibited.
### Table 41. xs:attribute Properties

<table>
<thead>
<tr>
<th>Property Name</th>
<th>Description</th>
<th>Possible Value</th>
<th>Mentions</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Name</strong></td>
<td>Attribute name (always required)</td>
<td>Any NCName for global/local attributes, all declared attributes' QName (on page 3286) for references</td>
<td>For all local or global attributes. If missing, will be displayed as '[attribute]' in the diagram.</td>
</tr>
<tr>
<td><strong>Is Reference</strong></td>
<td>When set, the local attribute is a reference</td>
<td>true/false</td>
<td>For local attributes</td>
</tr>
<tr>
<td><strong>Type</strong></td>
<td>Qualified name of a simple type All global simple types and built-in simple types. In addition another 3 proposals are present: [anonymous restriction], [anonymous list], [anonymous union] for creating anonymous simple types more easily.</td>
<td>Any string</td>
<td>For all attributes. For references, the type is set to the referenced attribute.</td>
</tr>
<tr>
<td><strong>Default</strong></td>
<td>Default value. When specified, an attribute is added by the schema processor (if it is missing from the instance XML document) and it is given this value. The default and fixed attributes are mutually exclusive.</td>
<td>Any string</td>
<td>For all local or global attributes. For references the value is from the referenced attribute.</td>
</tr>
<tr>
<td><strong>Fixed</strong></td>
<td>When specified, the value of the attribute is fixed and must be equal to this value. The default and fixed attributes are mutually exclusive.</td>
<td>Any string</td>
<td>For all local or global attributes. For references the value is from the referenced attribute.</td>
</tr>
<tr>
<td><strong>Use</strong></td>
<td>Possible usage of the attribute. Marking an attribute &quot;prohibited&quot; is useful to exclude attributes during derivations by restriction.</td>
<td>optional, required, prohibited</td>
<td>For local attributes</td>
</tr>
<tr>
<td><strong>Form</strong></td>
<td>Specifies whether or not the attribute is qualified (must have a namespace prefix in the instance XML document).</td>
<td>unqualified/qualified</td>
<td>For local attributes</td>
</tr>
<tr>
<td>Property Name</td>
<td>Description</td>
<td>Possible Value</td>
<td>Mentions</td>
</tr>
<tr>
<td>--------------</td>
<td>-------------</td>
<td>----------------</td>
<td>----------</td>
</tr>
<tr>
<td>Property Name</td>
<td>Description</td>
<td>Possible Value</td>
<td>Mentions</td>
</tr>
<tr>
<td>Name</td>
<td>Attribute group name (always required)</td>
<td>Any NCName for global attribute name</td>
<td>For all global or referenced attribute groups, all declared attribute groups for reference</td>
</tr>
</tbody>
</table>

**xs:attributeGroup**

Figure 470. The xs:attributeGroup Component

Defines an attribute group to be used in complex type definitions. See more info at [http://www.w3.org/TR/xmlschema11-1/#element-attributeGroup](http://www.w3.org/TR/xmlschema11-1/#element-attributeGroup).

**Table 42. xs:attributeGroup Properties**
Figure 471. The *xs:complexType* Component

Defines a top-level complex type. Complex Type Definitions provide for: See more data at [http://www.w3.org/TR/xmlschema11-1/#element-complexType](http://www.w3.org/TR/xmlschema11-1/#element-complexType).

- Constraining element information items by providing Attribute Declarations governing the appearance and content of attributes.
- Constraining element information item children to be empty, or to conform to a specified element-only or mixed content model, or else constraining the character information item children to conform to a specified simple type definition.
- Using the mechanisms of Type Definition Hierarchy to derive a complex type from another simple or complex type.
- Specifying post-schema-validation infoset contributions for elements.
- Limiting the ability to derive additional types from a given complex type.
- Controlling the permission to substitute, in an instance, elements of a derived type for elements declared in a content model to be of a given complex type.

**Tip:** A complex type that is a base type to another type will be rendered with yellow background.

### Table 43. **xs:complexType** Properties

<table>
<thead>
<tr>
<th>Property Name</th>
<th>Description</th>
<th>Possible Values</th>
<th>Mentions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>The name of the complex type (always required)</td>
<td>Any NCName</td>
<td>Only for global complex types.</td>
</tr>
<tr>
<td>Property Name</td>
<td>Description</td>
<td>Possible Values</td>
<td>Mentions</td>
</tr>
<tr>
<td>---------------</td>
<td>-------------</td>
<td>-----------------</td>
<td>---------</td>
</tr>
<tr>
<td>Base Type Definition</td>
<td>The name of the extended/restricted types</td>
<td>Any from the declared simple or complex types</td>
<td>For complex types with simple or complex content</td>
</tr>
<tr>
<td>Derivation Method</td>
<td>The derivation method</td>
<td>restriction/extension</td>
<td>Only when base type is set. If the base type is a simple type, the derivation method is always extension.</td>
</tr>
<tr>
<td>Content</td>
<td>The content of the complex type</td>
<td>simple/complex</td>
<td>For complex types that extend/restrict a base type. It is automatically detected.</td>
</tr>
<tr>
<td>Content Mixed</td>
<td>Specifies if the complex content model will be mixed</td>
<td>true/false</td>
<td>For complex contents</td>
</tr>
<tr>
<td>Mixed</td>
<td>Specifies if the complex type content model will be mixed</td>
<td>true/false</td>
<td>For global and anonymous complex types</td>
</tr>
<tr>
<td>Abstract</td>
<td>When set to true, this complex type cannot be used directly in the instance documents and needs to be substituted using an xsi:type attribute</td>
<td>true/false</td>
<td>For global and anonymous complex types</td>
</tr>
<tr>
<td>Block</td>
<td>Controls if a substitution (either through a xsi:type or substitution groups) can be performed for a complex type, which is an extension or a restriction of the current complex type. This attribute can only block such substitutions (it cannot &quot;unblock&quot; them), which can also be blocked in the all, extension, restriction, extension restriction, [Empty]</td>
<td>For global complex types</td>
<td></td>
</tr>
<tr>
<td>Property Name</td>
<td>Description</td>
<td>Possible Values</td>
<td>Mentions</td>
</tr>
<tr>
<td>------------------</td>
<td>------------------------------------------------------------------------------</td>
<td>-----------------</td>
<td>-------------------------------</td>
</tr>
<tr>
<td>Final</td>
<td>Controls whether the complex type can be further derived by extension or restriction to create new complex types</td>
<td>all, extension, restriction, extension restriction, [Empty]</td>
<td>For global complex types</td>
</tr>
<tr>
<td>Default Attributes Apply</td>
<td>The schema element can carry a defaultAttributes attribute, which identifies an attribute group. Each complexType defined in the schema document then automatically includes that attribute group, unless this is overridden by the defaultAttributesApply attribute on the complexType element.</td>
<td>true/false</td>
<td>This property is available only for XML Schema 1.1</td>
</tr>
<tr>
<td>ID</td>
<td>The component ID</td>
<td>Any ID</td>
<td>For all complex types</td>
</tr>
<tr>
<td>Component</td>
<td>The edited component name</td>
<td>Not editable property</td>
<td>For all complex types</td>
</tr>
<tr>
<td>Namespace</td>
<td>The component namespace</td>
<td>Not editable property</td>
<td>For all complex types</td>
</tr>
<tr>
<td>System ID</td>
<td>The component system ID</td>
<td>Not editable property</td>
<td>For all complex types</td>
</tr>
</tbody>
</table>

**xs:simpleType**

Figure 472. The *xs:simpleType* Component

Defines a simple type. A simple type definition is a set of constraints on strings and information about the values they encode, applicable to the normalized value of an attribute information item or of an element information item with no element children. Informally, it applies to the values of attributes and the text-only content of elements. See more info at [http://www.w3.org/TR/xmlschema11-1/#element-simpleType](http://www.w3.org/TR/xmlschema11-1/#element-simpleType).

**Tip:** A simple type that is a base type to another type will be rendered with yellow background.
<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
<th>Possible Values</th>
<th>Scope</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>Simple type name. Always required.</td>
<td>Any NCName</td>
<td>Only for global simple types. If missing, will be displayed as '[simpleType]' in diagram.</td>
</tr>
<tr>
<td>Derivation</td>
<td>A simple type category</td>
<td>restriction, list, or union</td>
<td>For all simple types</td>
</tr>
<tr>
<td>Base Type</td>
<td>A simple type definition component.</td>
<td>All global simple types and built-in simple types.</td>
<td>For global and anonymous simple types with the derivation method set to restriction</td>
</tr>
<tr>
<td></td>
<td></td>
<td>In addition another 3 proposals are present:</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>[anonymous restriction], [anonymous list], [anonymous union] for easily create anonymous simple types.</td>
<td></td>
</tr>
<tr>
<td>Item Type</td>
<td>A simple type definition component.</td>
<td>All global simple types and built-in simple types(from schema for schema).</td>
<td>For global and anonymous simple types with the derivation method set to list. Derivation by list is the process of transforming a simple datatype (named the item type) into a whitespace-separated list of values from this datatype.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>In addition another 3 proposals are present:</td>
<td>The item type can be defined inline by adding a simpleType definition as a child element of the list element, or by reference, using the itemType attribute (it is an error to use both).</td>
</tr>
<tr>
<td></td>
<td></td>
<td>[anonymous restriction], [anonymous list], [anonymous union] for easily create anonymous simple types.</td>
<td></td>
</tr>
<tr>
<td>Member Types</td>
<td>Category for grouping union members</td>
<td>Not editable property</td>
<td>For global and anonymous simple types with the derivation method set to union</td>
</tr>
<tr>
<td>Member</td>
<td>A simple type definition component.</td>
<td>All global simple types and built-in simple types(from schema for schema).</td>
<td>For global and anonymous simple types with the derivation method set to union. Deriving a simple datatype by union merges the lexical spaces of several simple datatypes (called member types) to create a new simple datatype. The member types can be defined either by reference (through the memberTypes attribute) or embedded as</td>
</tr>
<tr>
<td>Name</td>
<td>Description</td>
<td>Possible Values</td>
<td>Scope</td>
</tr>
<tr>
<td>-----------</td>
<td>-----------------------------------------------------------------------------</td>
<td>---------------------------------------------------------------------------------</td>
<td>--------------------------------------------</td>
</tr>
<tr>
<td>Final</td>
<td>Blocks any further derivations of this datatype (by list, union, derivation or all)</td>
<td>#all, list, restriction, union, list restriction, list union, restriction union. In addition, [Empty] proposal is present for set empty string as value.</td>
<td>Only for global simple types</td>
</tr>
<tr>
<td>ID</td>
<td>The component ID</td>
<td>Any ID</td>
<td>For all simple types</td>
</tr>
<tr>
<td>Component</td>
<td>The name of the edited component</td>
<td>Not editable property</td>
<td>Only for global and local simple types</td>
</tr>
<tr>
<td>Namespace</td>
<td>The component namespace</td>
<td>Not editable property</td>
<td>For global simple types</td>
</tr>
<tr>
<td>System ID</td>
<td>The component system ID</td>
<td>Not editable property</td>
<td>Not present for built-in simple types</td>
</tr>
</tbody>
</table>

*xs:alternative*

The type alternatives mechanism allows you to specify type substitutions on an element declaration.

**Note:** xs:alternative is available for XML Schema 1.1.

Figure 473. The xs:alternative Component

---

**Table 45. xs:alternative Properties**

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
<th>Possible Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type</td>
<td>Specifies type substitutions for an element, depending on the value of the attributes</td>
<td>All declared or built-in types. In addition, the following anonymous types are</td>
</tr>
</tbody>
</table>
### xs:group

Figure 474. The `xs:group` Component

Defines a group of elements to be used in complex type definitions. See more info at [http://www.w3.org/TR/xmlschema11-1/#element-group](http://www.w3.org/TR/xmlschema11-1/#element-group).

When referenced, the graphical representation also contains the value for the `minOccurs` and `maxOccurs` properties (for 0..1 and 1..1 occurs the values are implied by the connector style) and the connectors to the group are drawn using dotted lines if the group is optional.

#### Table 46. `xs:group` Properties

<table>
<thead>
<tr>
<th>Property Name</th>
<th>Description</th>
<th>Possible Values</th>
<th>Mentions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>The group name (always required)</td>
<td>Any NCName for global groups, all declared groups for reference</td>
<td>If missing, will be displayed as '[group]' in diagram</td>
</tr>
<tr>
<td>Min Occurs</td>
<td>Minimum number of occurrences of the group</td>
<td>A numeric positive value. Default value is 1</td>
<td>Appears only for reference groups</td>
</tr>
<tr>
<td>Property Name</td>
<td>Description</td>
<td>Possible Values</td>
<td>Mentions</td>
</tr>
<tr>
<td>---------------</td>
<td>-------------</td>
<td>-----------------</td>
<td>----------</td>
</tr>
<tr>
<td>Max Occurs</td>
<td>Maximum number of occurrences of the group</td>
<td>A numeric positive value. Default value is 1</td>
<td>Appears only for reference groups</td>
</tr>
<tr>
<td>ID</td>
<td>The component ID</td>
<td>Any ID</td>
<td>For all groups</td>
</tr>
<tr>
<td>Component</td>
<td>The edited component name</td>
<td>Not editable property</td>
<td>For all groups</td>
</tr>
<tr>
<td>Namespace</td>
<td>The component namespace</td>
<td>Not editable property</td>
<td>For all groups</td>
</tr>
<tr>
<td>System ID</td>
<td>The component system ID</td>
<td>Not editable property</td>
<td>For all groups</td>
</tr>
</tbody>
</table>

**xs:include**

Figure 475. The *xs:include* Component

Adds multiple schemas with the same target namespace to a document. See more info at [http://www.w3.org/TR/xmlschema11-1/#element-include](http://www.w3.org/TR/xmlschema11-1/#element-include).

Table 47. *xs:include* properties

<table>
<thead>
<tr>
<th>Property Name</th>
<th>Description</th>
<th>Possible Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Schema Location</td>
<td>Included schema location</td>
<td>Any URI</td>
</tr>
<tr>
<td>ID</td>
<td>Include ID</td>
<td>Any ID</td>
</tr>
<tr>
<td>Component</td>
<td>The component name</td>
<td>Not editable property</td>
</tr>
</tbody>
</table>

**xs:import**

Figure 476. The *xs:import* Component

Adds multiple schemas with a different target namespace to a document. See more info at [http://www.w3.org/TR/xmlschema11-1/#element-import](http://www.w3.org/TR/xmlschema11-1/#element-import).

Table 48. *xs:import* Properties

<table>
<thead>
<tr>
<th>Property Name</th>
<th>Description</th>
<th>Possible Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Schema Location</td>
<td>Imported schema location</td>
<td>Any URI</td>
</tr>
<tr>
<td>Namespace</td>
<td>Imported schema namespace</td>
<td>Any URI</td>
</tr>
<tr>
<td>ID</td>
<td>Import ID</td>
<td>Any ID</td>
</tr>
<tr>
<td>Component</td>
<td>The component name</td>
<td>Not editable property</td>
</tr>
</tbody>
</table>
**xs:redefine**

Figure 477. The xs:redefine Component

Redefines simple and complex types, groups, and attribute groups from an external schema. See more info at [http://www.w3.org/TR/xmlschema11-1/#element-redefine](http://www.w3.org/TR/xmlschema11-1/#element-redefine).

<table>
<thead>
<tr>
<th>Property Name</th>
<th>Description</th>
<th>Possible Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Schema Location</td>
<td>Redefine schema location</td>
<td>Any URI</td>
</tr>
<tr>
<td>ID</td>
<td>Redefine ID</td>
<td>Any ID</td>
</tr>
<tr>
<td>Component</td>
<td>The component name</td>
<td>Not editable property</td>
</tr>
</tbody>
</table>

**xs:override**

Figure 478. The xs:override Component

The override construct allows replacements of old components with new ones without any constraint. See more info at [http://www.w3.org/TR/xmlschema11-1/#element-override](http://www.w3.org/TR/xmlschema11-1/#element-override).

<table>
<thead>
<tr>
<th>Property Name</th>
<th>Description</th>
<th>Possible Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Schema Location</td>
<td>Redefine schema location</td>
<td>Any URI</td>
</tr>
<tr>
<td>ID</td>
<td>Redefine ID</td>
<td>Any ID</td>
</tr>
</tbody>
</table>

**xs:notation**

Figure 479. The xs:notation Component

Describes the format of non-XML data within an XML document. See more info at [http://www.w3.org/TR/xmlschema11-1/#element-notation](http://www.w3.org/TR/xmlschema11-1/#element-notation).

<table>
<thead>
<tr>
<th>Property Name</th>
<th>Description</th>
<th>Possible values</th>
<th>Mentions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>The notation name (always required)</td>
<td>Any NCName</td>
<td>If missing, will be displayed as '[notation]' in diagram</td>
</tr>
<tr>
<td>System Identifier</td>
<td>The notation system identifier</td>
<td>Any URI</td>
<td>Required if public identifier is absent (otherwise, optional)</td>
</tr>
<tr>
<td>Property Name</td>
<td>Description</td>
<td>Possible values</td>
<td>Mentions</td>
</tr>
<tr>
<td>----------------</td>
<td>------------------------------</td>
<td>-----------------</td>
<td>-----------------------------------------------</td>
</tr>
<tr>
<td>Public Identifier</td>
<td>The notation public identifier</td>
<td>A Public ID value</td>
<td>Required if system identifier is absent (otherwise, optional)</td>
</tr>
<tr>
<td>ID</td>
<td>The component ID</td>
<td>Any ID</td>
<td>For all notations</td>
</tr>
<tr>
<td>Component Name</td>
<td>The edited component name</td>
<td>Not editable property</td>
<td>For all notations</td>
</tr>
<tr>
<td>Namespace</td>
<td>The component namespace</td>
<td>Not editable property</td>
<td>For all notations</td>
</tr>
<tr>
<td>System ID</td>
<td>The component system ID</td>
<td>Not editable property</td>
<td>For all notations</td>
</tr>
</tbody>
</table>

`xs:sequence / xs:choice / xs:all`

Figure 480. `xs:sequence`

`xs:sequence` specifies that the child elements must appear in a sequence. Each child element can occur from 0 to any number of times. See more info at [http://www.w3.org/TR/xmlschema11-1/#element-sequence](http://www.w3.org/TR/xmlschema11-1/#element-sequence).

Figure 481. `xs:choice`

`xs:choice` allows only one of the elements contained in the declaration to be present within the containing element. See more info at [http://www.w3.org/TR/xmlschema11-1/#element-choice](http://www.w3.org/TR/xmlschema11-1/#element-choice).

Figure 482. `xs:all`

`xs:all` specifies that the child elements can appear in any order. See more info at [http://www.w3.org/TR/xmlschema11-1/#element-all](http://www.w3.org/TR/xmlschema11-1/#element-all).

The compositor graphical representation also contains the value for the `minOccurs` and `maxOccurs` properties (for 0..1 and 1..1 occurs the values are implied by the connector style) and the connectors to the compositor are drawn using dotted lines if the compositor is optional.
Table 52. \textit{xs:sequence, xs:choice, xs:all} Properties

<table>
<thead>
<tr>
<th>Property Name</th>
<th>Description</th>
<th>Possible Values</th>
<th>Mentions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compositor</td>
<td>Compositor type</td>
<td>sequence, choice, all</td>
<td>’all’ is only available as a child of a group or complex type</td>
</tr>
<tr>
<td>Min Occurs</td>
<td>Minimum occurrences of compositor</td>
<td>A numeric positive value. Default is 1</td>
<td>The property is not present if compositor is ’all’ and is child of a group</td>
</tr>
<tr>
<td>Max Occurs</td>
<td>Maximum occurrences of compositor</td>
<td>A numeric positive value. Default is 1</td>
<td>The property is not present if compositor is ’all’ and is child of a group</td>
</tr>
<tr>
<td>ID</td>
<td>The component ID</td>
<td>Any ID</td>
<td>For all compositors</td>
</tr>
<tr>
<td>Component</td>
<td>The edited component name</td>
<td>Not editable property</td>
<td>For all compositors</td>
</tr>
<tr>
<td>System ID</td>
<td>The component system ID</td>
<td>Not editable property</td>
<td>For all compositors</td>
</tr>
</tbody>
</table>

\textit{xs:any}

Figure 483. The \textit{xs:any} Component

Enables the author to extend the XML document with elements not specified by the schema. See more info at \url{http://www.w3.org/TR/xmlschema11-1/#element-any}.

The graphical representation also contains the value for the \textit{minOccurs} and \textit{maxOccurs} properties (for 0..1 and 1..1 occurs the values are implied by the connector style) and the connectors to the wildcard are drawn using dotted lines if the wildcard is optional.

Table 53. \textit{xs:any} Properties

<table>
<thead>
<tr>
<th>Property Name</th>
<th>Description</th>
<th>Possible Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Namespace</td>
<td>The list of allowed namespaces. The namespace attribute expects a list of namespace URIs. In this list, two values have a specific meaning: ’##targetNamespace’ stands for the target namespace, and ’##local’ stands for local attributes (without namespaces).</td>
<td>##any, ##other, ##targetNamespace, ##local or anyURI</td>
</tr>
<tr>
<td>notNamespace</td>
<td>Specifies the namespace that extension elements or attributes cannot come from</td>
<td>##local, ##targetNamespace</td>
</tr>
<tr>
<td>notQName</td>
<td>Specifies an element or attribute that is not allowed</td>
<td>##defined</td>
</tr>
<tr>
<td>Process Contents</td>
<td>Type of validation required on the elements allowed for this wildcard</td>
<td>skip, lax, strict</td>
</tr>
<tr>
<td>Min Occurs</td>
<td>Minimum occurrences of any</td>
<td>A numeric positive value. Default is 1</td>
</tr>
<tr>
<td>Property Name</td>
<td>Description</td>
<td>Possible Values</td>
</tr>
<tr>
<td>---------------</td>
<td>-------------</td>
<td>-----------------</td>
</tr>
<tr>
<td>Max Occurs</td>
<td>Maximum occurrences of any</td>
<td>A numeric positive value. Default is 1</td>
</tr>
<tr>
<td>ID</td>
<td>The component ID</td>
<td>Any ID</td>
</tr>
<tr>
<td>Component</td>
<td>The name of the edited component</td>
<td>Not editable property</td>
</tr>
<tr>
<td>System ID</td>
<td>The component system ID</td>
<td>Not editable property</td>
</tr>
</tbody>
</table>

**xs:anyAttribute**

Figure 484. The `xs:anyAttribute` Component

Enables the author to extend the XML document with attributes not specified by the schema. See more info at [http://www.w3.org/TR/xmlschema11-1/#element-anyAttribute](http://www.w3.org/TR/xmlschema11-1/#element-anyAttribute).

**Table 54. xs:anyAttribute Properties**

<table>
<thead>
<tr>
<th>Property Name</th>
<th>Description</th>
<th>Possible Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Namespace</td>
<td>The list of allowed namespaces. The namespace attribute expects a list of namespace URIs. In this list, two values have a specific meaning: '##targetNamespace' stands for the target namespace, and '##local' stands for local attributes (without namespaces).</td>
<td>##any, ##other, ##targetNamespace, ##local or anyURI</td>
</tr>
<tr>
<td>Process Contents</td>
<td>Type of validation required on the elements allowed for this wildcard</td>
<td>skip, lax, strict</td>
</tr>
<tr>
<td>ID</td>
<td>The component ID</td>
<td>Any ID</td>
</tr>
<tr>
<td>Component</td>
<td>The name of the edited component</td>
<td>Not editable property</td>
</tr>
<tr>
<td>System ID</td>
<td>The component system ID</td>
<td>Not editable property</td>
</tr>
</tbody>
</table>

**xs:unique**

Figure 485. The `xs:unique` Component

Defines that an element or an attribute value must be unique within the scope. See more info at [http://www.w3.org/TR/xmlschema11-1/#element-unique](http://www.w3.org/TR/xmlschema11-1/#element-unique).
Table 55. xs:unique Properties

<table>
<thead>
<tr>
<th>Property Name</th>
<th>Description</th>
<th>Possible Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>The unique name (always required)</td>
<td>Any NCName</td>
</tr>
<tr>
<td>ID</td>
<td>The component ID</td>
<td>Any ID</td>
</tr>
<tr>
<td>Component</td>
<td>The edited component name</td>
<td>Not editable property</td>
</tr>
<tr>
<td>Namespace</td>
<td>The component namespace</td>
<td>Not editable property</td>
</tr>
<tr>
<td>System ID</td>
<td>The component system ID</td>
<td>Not editable property</td>
</tr>
</tbody>
</table>

**xs:key**

Figure 486. The xs:key Component

Specifies an attribute or element value as a key (unique, non-nullable and always present) within the containing element in an instance document. See more info at http://www.w3.org/TR/xmlschema11-1/#element-key.

Table 56. xs:key Properties

<table>
<thead>
<tr>
<th>Property Name</th>
<th>Description</th>
<th>Possible Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>The key name (always required)</td>
<td>Any NCName</td>
</tr>
<tr>
<td>ID</td>
<td>The component ID</td>
<td>Any ID</td>
</tr>
<tr>
<td>Component</td>
<td>The edited component name</td>
<td>Not editable property</td>
</tr>
<tr>
<td>Namespace</td>
<td>The component namespace</td>
<td>Not editable property</td>
</tr>
<tr>
<td>System ID</td>
<td>The component system ID</td>
<td>Not editable property</td>
</tr>
</tbody>
</table>

**xs:keyRef**

Figure 487. The xs:keyRef Component

Specifies that an attribute or element value corresponds to that of the specified key or unique element. See more info at http://www.w3.org/TR/xmlschema11-1/#element-keyref.

A keyref by default displays the Referenced Key property when rendered.
Table 57. \textit{xs:keyRef} Properties

<table>
<thead>
<tr>
<th>Property Name</th>
<th>Description</th>
<th>Possible Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>The keyref name (always required)</td>
<td>Any NCName</td>
</tr>
<tr>
<td>Referenced Key</td>
<td>The name of referenced key</td>
<td>Any declared element constraints</td>
</tr>
<tr>
<td>ID</td>
<td>The component ID</td>
<td>Any ID</td>
</tr>
<tr>
<td>Component</td>
<td>The edited component name</td>
<td>Not editable property</td>
</tr>
<tr>
<td>Namespace</td>
<td>The component namespace</td>
<td>Not editable property</td>
</tr>
<tr>
<td>System ID</td>
<td>The component system ID</td>
<td>Not editable property</td>
</tr>
</tbody>
</table>

\textit{xs:selector}

Figure 488. The \textit{xs:selector} Component

Specifies an XPath expression that selects a set of elements for an identity constraint. See more info at \url{http://www.w3.org/TR/xmlschema11-1/#element-selector}.

Table 58. \textit{xs:selector} Properties

<table>
<thead>
<tr>
<th>Property Name</th>
<th>Description</th>
<th>Possible Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>XPath</td>
<td>Relative XPath expression identifying the element that the constraint applies to</td>
<td>An XPath expression</td>
</tr>
<tr>
<td>ID</td>
<td>The component ID</td>
<td>Any ID</td>
</tr>
<tr>
<td>Component</td>
<td>The edited component name</td>
<td>Not editable property</td>
</tr>
<tr>
<td>System ID</td>
<td>The component system ID</td>
<td>Not editable property</td>
</tr>
</tbody>
</table>

\textit{xs:field}

Figure 489. The \textit{xs:field} Component

Specifies an XPath expression that specifies the value used to define an identity constraint. See more info at \url{http://www.w3.org/TR/xmlschema11-1/#element-field}.

Table 59. \textit{xs:field} Properties

<table>
<thead>
<tr>
<th>Property Name</th>
<th>Description</th>
<th>Possible Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>XPath</td>
<td>Relative XPath expression identifying the field(s) composing the key, key reference, or unique constraint</td>
<td>An XPath expression</td>
</tr>
<tr>
<td>ID</td>
<td>The component ID</td>
<td>Any ID</td>
</tr>
</tbody>
</table>
### xs:assert

Assertions provide a flexible way to control the occurrence and values of elements and attributes available in an XML Schema.

**Note:** `xs:assert` is available for XML Schema 1.1.

Figure 490. The `xs:assert` Component

```
<arb @maxPrice='@maxPrice
```

<table>
<thead>
<tr>
<th>Property Name</th>
<th>Description</th>
<th>Possible Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Component</td>
<td>The edited component name</td>
<td>Not editable property</td>
</tr>
<tr>
<td>System ID</td>
<td>The component system ID</td>
<td>Not editable property</td>
</tr>
</tbody>
</table>

### Table 60. `xs:assert` Properties

<table>
<thead>
<tr>
<th>Property Name</th>
<th>Description</th>
<th>Possible Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Test</td>
<td>Specifies an XPath expression. If the XPath condition is valid, the specified type is selected as the element type. The expressions allowed are limited to a subset of XPath 2.0. Only the attributes of the current element and inheritable attributes from ancestor elements are accessible in the XPath expression. When you edit this property, the content completion list of proposals offers XPath expressions.</td>
<td>An XPath expression</td>
</tr>
<tr>
<td>XPath</td>
<td>The default namespace used when the XPath expression is evaluated</td>
<td>##defaultNamespace, ##targetNamespace, ##local</td>
</tr>
<tr>
<td>Default Namespace</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ID</td>
<td>Specifies the component ID</td>
<td>Any ID</td>
</tr>
<tr>
<td>Component</td>
<td>The edited component name</td>
<td></td>
</tr>
<tr>
<td>System ID</td>
<td>The component system ID</td>
<td>Not editable property</td>
</tr>
</tbody>
</table>

### xs:openContent

Figure 491. The `xs:openContent` Component

```
<arb ##targetNamespace
```

The `openContent` element enables instance documents to contain extension elements to be inserted amongst the elements declared by the schema. You can declare open content for your elements at one place (within the `complexType` definition) or at the schema level.
For further details about the `openContent` component, go to http://www.w3.org/TR/xmlschema11-1/#element-openContent.

### Table 61. `xs:openContent` Properties

<table>
<thead>
<tr>
<th>Property Name</th>
<th>Description</th>
<th>Possible Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mode</td>
<td>Specifies where the extension elements can be inserted</td>
<td>The value can be: &quot;interleave&quot;, &quot;suffix&quot; or &quot;none&quot;. The default value is &quot;interleave&quot;.</td>
</tr>
<tr>
<td>ID</td>
<td>The component ID</td>
<td>Any ID</td>
</tr>
<tr>
<td>Component</td>
<td>The edited component name</td>
<td>Not editable property</td>
</tr>
<tr>
<td>System ID</td>
<td>The component system ID</td>
<td>Not editable property</td>
</tr>
</tbody>
</table>

**Note:** This component is available for XML Schema 1.1 only. To change the version of the XML Schema, open the Preferences dialog box (Options > Preferences) (on page 79) and go to XML > XML Parser > XML Schema.

### Constructs Used to Group Schema Components

This section explains the components that can be used for grouping other schema components.

#### Attributes

Figure 492. Attributes Construct

Groups all attributes and attribute groups belonging to a complex type.

### Table 62. `attributes` Properties

<table>
<thead>
<tr>
<th>Property Name</th>
<th>Description</th>
<th>Possible Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Component</td>
<td>The element for which the attributes are displayed</td>
<td>Not editable property</td>
</tr>
<tr>
<td>System ID</td>
<td>The component system ID</td>
<td>Not editable property</td>
</tr>
</tbody>
</table>

#### Constraints

Figure 493. Constraints Construct
Groups all constraints (xs:key (on page 1280), xs:keyRef (on page 1280), or xs:unique (on page 1279)) belonging to an element.

Table 63. constraints Properties

<table>
<thead>
<tr>
<th>Property Name</th>
<th>Description</th>
<th>Possible Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Component</td>
<td>The element for which the constraints are displayed</td>
<td>Not editable property</td>
</tr>
<tr>
<td>System ID</td>
<td>The component system ID</td>
<td>Not editable property</td>
</tr>
</tbody>
</table>

Substitutions

Groups all elements that can substitute the current element.

Table 64. substitutions Properties

<table>
<thead>
<tr>
<th>Property Name</th>
<th>Description</th>
<th>Possible Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Component</td>
<td>The element for which the substitutions are displayed</td>
<td>Not editable property</td>
</tr>
<tr>
<td>System ID</td>
<td>The component system ID</td>
<td>Not editable property</td>
</tr>
</tbody>
</table>

Schema Validation

Validation for the Design mode is seamlessly integrated in the Oxygen XML Editor. XML documents validation (on page 1079) capability.
A schema validation error is presented by highlighting the invalid component:

- In the **Attributes View (on page 628)**.
- In the diagram by surrounding the component that has the error with a red border.
- A marker on the errors stripe at the right of the diagram view.
- A status label with a red icon (⌘) below the diagram view.

Invalid facets for a component are highlighted in the **Facets View (on page 630)**.

Components with invalid properties are rendered with a red border. This is a default color, but you can customize it in the **Document checking user preferences (on page 180)**. When hovering an invalid component, the tooltip will present the validation errors associated with that component.

When editing a value that is supposed to be a qualified or unqualified XML name, the application provides automatic validation of the entered value. This proves to be very useful in avoiding setting invalid XML names for the given property.

If you validate the entire schema using the **Validate** action from the **Document > Validate** menu or from the **Validation** toolbar drop-down menu, all validation errors will be presented in the **Errors** tab. To resolve an error, just click it (or double-click for errors located in other schemas) and the corresponding schema component will be displayed as the diagram root so that you can easily correct the error.

**Important:** If the schema imports only the namespace of other schema without specifying the schema location and a **catalog is set up (on page 1123)** that maps the namespace to a certain location both the validation and the diagram will correctly identify the imported schema.
Tip: If the validation action finds that the schema contains unresolved references, the application will suggest the use of validation scenarios, but only if the current edited schema is an XML Schema module.

Edit Schema Namespaces

You can use the **XML Schema Namespaces** dialog box to easily set a target namespace and define namespace mappings for a newly created XML Schema. In the **Design** mode these namespaces can be modified anytime by choosing **Edit Schema Namespaces** from the contextual menu. You can also do this by double-clicking the schema root in the diagram.

The **XML Schema Namespaces** dialog box allows you to edit the following information:

- **Target namespace** - The target namespace of the schema.
- **Prefixes** - The dialog box displays a table with namespaces and the mapped prefixes. You can add a new prefix mapping or remove an already existing one.

Editing XML Schema in Text Editing Mode

The Oxygen XML Editor **Text** editing mode can be used for editing XML Schema in a source editing mode. It offers powerful content completion support, a synchronized Outline view, and multiple refactoring actions (on page 1302). The Outline view has two display modes: the standard outline (on page 347) mode and the components (on page 625) mode.

A diagram of the XML Schema can be presented side by side with the text. To activate the diagram presentation, select the **Show Full Model XML Schema diagram** option (on page 129) in the **Diagram preferences page** (on page 129).

Editing XML Schema in the Master Files Context

Smaller interrelated modules that define a complex XML Schema cannot be correctly edited or validated individually, due to their interdependency with other modules. For example, an element defined in a main schema document is not visible when you edit an included module. Oxygen XML Editor provides the support for defining the main module (or modules), thus allowing you to edit any of the imported/included schema files in the context of the larger schema structure.

You can set a main XML document either using the **master files support from the Project view** (on page 726), or using a validation scenario.

To set a **master file** using a validation scenario, add validation units that point to the main schemas. Oxygen XML Editor warns you if the current module is not part of the dependencies graph computed for the main schema. In this case, it considers the current module as the main schema.
The advantages of editing in the context of a master file (on page 3284) include:

- Correct validation of a module in the context of a larger schema structure.
- Content Completion Assistant (on page 3280) displays all the referable components valid in the current context. This include components defined in modules other than the currently edited one.
- The Outline view (on page 625) displays the components collected from the entire schema structure.

Validating XML Schema Documents

By default, XML Schema files are validated as you type. To change this, open the Preferences dialog box (Options > Preferences) (on page 79), go to Editor > Document Checking, and deselect the Enable automatic validation option (on page 181).

To validate an XML Schema document manually, select the Validate action from the Validation toolbar drop-down menu or the Document > Validate menu. When Oxygen XML Editor validates an XML Schema file, it expands all the included modules so the entire schema hierarchy is validated. The validation problems are highlighted directly in the editor, making it easy to locate and fix any issues.

Validation of an XML Schema containing a type definition with a minOccurs or maxOccurs attribute having a value larger than 256 limits the value to 256 and issues a warning about this restriction in the Message panel at the bottom of the Oxygen XML Editor window. Otherwise, for large values of the minOccurs and maxOccurs attributes, the validator fails with an OutOfMemory error that might make Oxygen XML Editor unusable without restarting the entire application.

⚠️ Important: If the schema imports only a namespace without specifying the schema location and a catalog is set up (on page 1123) to map the namespace to a certain location, both validation and the schema components will correctly identify the imported schema.

Related Information:

- Validating XML Documents Against a Schema (on page 1081)
- Embedding Schematron Rules in XML Schema or RELAX NG (on page 1469)
- Validation Scenario (on page 1093)
- Associating a Schema to XML Documents (on page 1112)
- Presenting Validation Errors in Author Mode (on page 445)
Quick Fixes for DTD, XSD, and Relax NG Errors

Oxygen XML Editor offers Quick Fixes (on page 3287) for common errors that appear in XML documents that are validated against DTD, XSD, or Relax NG schemas.

**Note:** For XML documents validated against XSD schemas, the Quick Fixes are only available if you use the default Xerces validation engine.

Quick Fixes are available in Text mode and Author mode.

Oxygen XML Editor provides Quick Fixes for numerous types of problems, including the following:

<table>
<thead>
<tr>
<th>Problem Type</th>
<th>Available Quick Fixes</th>
</tr>
</thead>
<tbody>
<tr>
<td>A specific element is required in the current context</td>
<td>Insert the required element</td>
</tr>
<tr>
<td>An element is invalid in the current context</td>
<td>Remove the invalid element</td>
</tr>
<tr>
<td>The content of the element should be empty</td>
<td>Remove the element content</td>
</tr>
<tr>
<td>An element is not allowed to have child elements</td>
<td>Remove all child elements</td>
</tr>
<tr>
<td>Text is not allowed in the current element</td>
<td>Remove the text content</td>
</tr>
<tr>
<td>A required attribute is missing</td>
<td>Insert the required attribute</td>
</tr>
<tr>
<td>An attribute is not allowed to be set for the current element</td>
<td>Remove the attribute</td>
</tr>
<tr>
<td>The attribute value is invalid</td>
<td>Propose the correct attribute values</td>
</tr>
<tr>
<td>ID value is already defined</td>
<td>Generate a unique ID value</td>
</tr>
<tr>
<td>References to an invalid ID</td>
<td>Change the reference to an already defined ID</td>
</tr>
</tbody>
</table>

Related Information:

- Schematron Quick Fixes (SQF) (on page 1111)

Content Completion in XML Schema

The intelligent Content Completion Assistant (on page 3280) allows you to quickly identify and insert elements, attributes, and attribute values that are valid in the current editing context. All available proposals are listed in a pop-up menu displayed at the current cursor position.
The Content Completion Assistant is enabled by default. To disable it, open the Preferences dialog box (Options > Preferences) (on page 79), go to Editor > Content Completion, and deselect the Enable content completion option (on page 167).

When active, the Content Completion Assistant displays a list of context-sensitive proposals valid at the current cursor position. It can be manually activated with the Ctrl + Space (Command + Space on OS X) shortcut. You can navigate through the list of proposals by using the Up and Down keys on your keyboard. For each selected item in the list, the Content Completion Assistant displays a documentation window. You can customize the size of the documentation window by dragging its top, right, and bottom borders.

To insert the selected proposal in Text mode, do one of the following:

- Press Enter or Tab to insert both the start and end tags and position the cursor inside the start tag in a position suitable for inserting attributes.
- Press Ctrl + Enter (Command + Enter on OS X) to insert both the start and end tags and positions the cursor between the tags in a position where you can start typing content.

Depending on the selected schema version (on page 1335), Oxygen XML Editor populates the proposals list with information taken either from XML Schema 1.0 or 1.1.

Oxygen XML Editor helps you to easily reference a component by providing the list of proposals (complex types, simple types, elements, attributes, groups, attribute groups, or notations) valid in the current context. The components are collected from the current file or from the imported/included schemas.

When editing xs:annotation/xs:appinfo elements of an XML Schema, the Content Completion Assistant proposes elements and attributes from a custom schema (by default ISO Schematron). This feature can be configured from the XSD Content Completion (on page 170) preferences page.

Syntax Highlighting in XML Schema

Oxygen XML Editor supports syntax highlighting in Text mode to make it easier to read the semantics of the structured content by displaying each type of code in different colors and fonts.

To customize the colors or styles used for the syntax highlighting colors for XML Schema files, follow these steps:

1. Open the Preferences dialog box (Options > Preferences) (on page 79).
2. Go to Editor > Syntax Highlight (on page 178).
3. Select and expand the XML section in the top pane.
4. Select the component you want to change and customize the colors or styles using the selectors to the right of the pane.
5. Select the **XSD** tab in the **Preview** pane to see the effects of your changes.

**Tip:** Oxygen XML Editor also allows you to specify syntax highlighting colors for specific XML elements and attributes with specific namespace prefixes. This can be done in the **Editor > Syntax Highlight > Elements/Attributes by Prefix** preferences page (on page 179).

### Related Information:

- Customize Syntax Highlight colors (on page 178)

### XML Schema Outline View

The **Outline** view for XML Schemas presents all the global components grouped by their location, namespace, or type. By default, it is displayed on the left side of the editor. If the view is not displayed, it can be opened by selecting it from the **Window > Show View** menu.

![Outline View for XML Schema](image)

The **Outline** view provides the following options in the **Settings** menu on the **Outline** view toolbar:

- **Filter returns exact matches**
The text filter of the Outline view returns only exact matches;

**Selection update on cursor move**

Allows a synchronization between Outline view and schema diagram. The selected view from the diagram is also selected in the Outline view.

**Sort**

Allows you to sort alphabetically the schema components.

**Show all components**

Displays all components that were collected starting from the master files (on page 3284). Components that are not referable from the current file are marked with an orange underline. To reference them, add an import directive with the componentNS namespace.

**Show referable components**

Displays all components (collected starting from the master files (on page 3284)) that can be referenced from the current file. This option is set by default.

**Show only local components**

Displays the components defined in the current file only.

**Group by location/namespace/type**

These three operations allow you to group the components by location, namespace, or type. When grouping by namespace, the main schema target namespace is the first presented in the Outline view.

The following contextual menu actions are available in the Outline view:

**Remove (Delete)**

Removes the selected item from the diagram.

**Search References (Ctrl (Meta on Mac OS)+Shift+R)**

Searches all references of the item found at current cursor position in the defined scope, if any.

**Search References in**

Searches all references of the item found at current cursor position in the specified scope.

**Component Dependencies (Ctrl (Meta on Mac OS)+Shift+F4)**

Opens the Component Dependencies view (on page 1300) that allows you to see the dependencies for the current selected component.

**Resource Hierarchy (F4)**
Opens the **Resource Hierarchy / Dependencies view (on page 1130)** that allows you to see the hierarchy for the current selected resource.

**Resource Dependencies (Shift + F4)**

Opens the **Resource Hierarchy / Dependencies view (on page 1130)** that allows you to see the dependencies for the current selected resource.

**Renew Component in**

Renames the selected component.

**Generate Sample XML Files**

Generate XML files using the current opened schema. The selected component is the XML document root.

The upper part of the **Outline** view contains a filter box that allows you to focus on the relevant components. Type a text fragment in the filter box and only the components that match it are presented. For advanced usage you can use wildcard characters (such as `*`, `?`) and separate multiple patterns with commas.

**Tip:** The search filter is case insensitive. The following wildcards are accepted:

- `*` - any string
- `?` - any character
- `,` - patterns separator

If no wildcards are specified, the string to search will be searched as a partial match.

The content of the **Outline** view and the editing area are synchronized. When you select a component in the **Outline** view, its definition is highlighted in the editing area.

**Related Information:**

- [Searching and Refactoring Actions in XML Schemas (on page 1302)]
- [XML Schema Component Dependencies View (on page 1300)]
- [XML Schema Resource Hierarchy / Dependencies View (on page 1297)]
- [Generating Sample XML Files (on page 1306)]
- [Editing Relax NG Schema in the Master Files Context (on page 1389)]
XML Schema Attributes View

The Attributes view for XML Schemas presents the properties for the selected component in the schema diagram. By default, it is displayed on the right side of the editor. If the view is not displayed, it can be opened by selecting it from the Window > Show View menu.

Properties for components that do not belong to the current edited schema are read-only but if you double-click them you can choose to open the corresponding schema and edit them.

You can edit a property by double-clicking by pressing Enter. For most properties you can choose valid values from a list or you can specify another value. If a property has an invalid value or a warning, it will be highlighted in the table with the corresponding foreground color. By default, properties with errors are highlighted with red and the properties with warnings are highlighted with yellow. You can customize these colors from the Document checking user preferences (on page 180).

For imports, includes and redefines, the properties are not edited directly in the Attributes view. A dialog box will open that allows you to specify properties for them.

The schema namespace mappings are not presented in Attributes view. You can view/edit these by choosing Edit Schema Namespaces from the contextual menu on the schema root. See more in the Edit Schema Namespaces (on page 1286) section.

The Attributes view has five actions available on the toolbar and also on the contextual menu:
+ Add

Allows you to add a new member type to an union's member types category.

× Remove

Allows you to remove the value of a property.

▲ Move Up

Allows you to move up the current member to an union's member types category.

▼ Move Down

Allows you to move down the current member to an union's member types category.

COPY

Copy the attribute value.

Go to Definition

Shows the definition for the selected type.

Show Facets

Allows you to edit the facets for a simple type.

XML Schema Palette View

The Palette view is designed to offer quick access to XML Schema components and to improve the usability of the XML Schema diagram builder. You can use the Palette to drag and drop components in the Design mode. The components offered in the Palette view depend on the XML schema version set in the XML Schema preferences page (on page 192). If the view is not displayed, it can be opened by selecting it from the Window > Show View menu.

Figure 498. Palette View

Components are organized functionally into 4 collapsible categories:
• Basic components: elements, group, attribute, attribute group, complex type, simple type, type alternative.
• Compositors and Wildcards: sequence, choice, all, any, any attribute, open content.
• Directives: import, include, redefine, override.
• Identity constraints: key, keyref, unique, selector, field, assert.

Note: The type alternative, open content, override, and assert components are available for XML Schema 1.1.

To add a component to the edited schema:

• Click and hold a graphic symbol from the Palette view, then drag the component into the Design view.
• A line dynamically connects the component with the XML schema structure.
• Release the component into a valid position.

Note: You cannot drop a component into an invalid position. When you hover the component into an invalid position, the mouse cursor changes its shape into . Also, the connector line changes its color from the usual dark gray to the color defined in the Validation error highlight color option (on page 180) (default color is red).

For more information about the Schema palette, watch our video demonstration:

https://www.youtube.com/embed/KalHUXmpuAA

XML Schema Facets View

The Facets view for XML Schemas presents the facets for the selected component, if available. If the view is not displayed, it can be opened by selecting it from the Window > Show View menu.

Figure 499. Facets View
The default value of a facet is rendered in the **Facets** view with a blue color. The facets that cannot be edited are rendered with a gray color. The grouping categories (for example: **Enumerations** and **Patterns**) are not editable. If these categories contain at least one child they are rendered with bold. Bold facets are facets with values set explicitly to them.

⚠️ **Important:** Usually inherited facets are presented as default in the **Facets** view but if patterns are inherited from a base type and also specified in the current simple type only the current specified patterns will be presented. You can see the effective pattern value obtained by combining the inherited and the specified patterns as a tooltip on the **Patterns** category.

Facets for components that do not belong to the current edited schema are read-only but if you double-click them you can choose to open the corresponding schema and edit them.

You can edit a facet by double-clicking it or by pressing Enter, when that facet is selected. For some facets you can choose valid values from a list or you can specify another value. If a facet has an invalid value or a warning, it will be highlighted in the table with the corresponding foreground color. By default, facets with errors are presented with red and the facets with warnings with yellow. You can customize the error colors from the **Document Checking user preferences** *(on page 180)*.

The **Facets** view provides the following actions in its toolbar and contextual menu:

- **Add**
  - Allows you to add a new enumeration or a new pattern.

- **Remove**
  - Allows you to remove the value of a facet.

- **Edit Annotations**
  - Allows you to edit an annotation for the selected facet.

- **Move Up**
  - Allows you to move up the current enumeration/pattern in **Enumerations/Patterns** category.

- **Move Down**
  - Allows you to move down the current enumeration/pattern in **Enumerations/Patterns** category.

- **Copy**
  - Copy the attribute value.

**Open in Regular Expressions Builder**
Rather than editing regular expressions manually, this action allows you to open the pattern in the XML Schema Regular Expressions Builder (on page 1332) that guides you through the process of testing and constructing the pattern.

Facets can be fixed to prevent a derivation from modifying its value. To fix a facet value just press the Pin button.

XML Schema Resource Hierarchy / Dependencies View

The Resource Hierarchy / Dependencies view displays the hierarchy or dependencies for an XML Schema. If the view is not displayed, it can be opened by selecting it from the Window > Show View menu.

The Resource Hierarchy / Dependencies is useful when you want to start from an XML Schema (XSD) file and build and review the hierarchy of all the other XSD files that are imported, included or redefined in the given XSD file. The view is also able to build the tree structure, that is the structure of all other XSD files that import, include or redefine the given XSD file. The scope of the search is configurable (the current project, a set of local folders, etc.)

If you want to see the hierarchy or dependencies of an XML schema, select the desired schema in the Project view (on page 333) and choose Resource Hierarchy or Resource Dependencies from the contextual menu.

Figure 500. Resource Hierarchy/Dependencies View

The following actions are available on the toolbar of the Resource Hierarchy/Dependencies view:

- **Refresh**
  Refreshes the Hierarchy/Dependencies structure.
Stop

Stops the hierarchy/dependencies computing.

Show Hierarchy

Allows you to choose a resource to compute the hierarchy structure.

Show Dependencies

Allows you to choose a resource to compute the dependencies structure.

Configure dependencies search scope

Allows you to configure a scope to compute the dependencies structure. There is also an option for automatically using the defined scope for future operations.

History

Provides access to the list of previously computed dependencies. Use the 🗑️ Clear history button to remove all items from this list.

The contextual menu for a resource listed in the Resource Hierarchy/Dependencies view contains the following actions:

Open

Opens the resource. You can also double-click a resource in the Hierarchy/Dependencies structure to open it.

Go to reference

Opens the source document where the resource is referenced.

Copy location

Copies the location of the resource.

Move resource

Moves the selected resource.

Rename resource

Renames the selected resource.

Show Resource Hierarchy

Shows the hierarchy for the selected resource.

Show Resource Dependencies

Shows the dependencies for the selected resource.

Add to Master Files

Adds the currently selected resource in the Master Files directory (on page 726).
Expand All

Expands all the children of the selected resource from the Hierarchy/Dependencies structure.

Collapse All

Collapses all children of the selected resource from the Hierarchy/Dependencies structure.

Tip: When a recursive reference is encountered in the Hierarchy view, the reference is marked with a special icon.

Note: The Move resource or Rename resource actions give you the option to update the references to the resource (on page 1299).

Related Information:

- Working with Modular XML Files in the Master Files Context (on page 1126)
- Search and Refactor Operations Scope (on page 1129)

Moving/Renaming XML Schema Resources

You can move and rename a resource presented in the Resource/Hierarchy Dependencies view, using the Rename resource and Move resource refactoring actions from the contextual menu.

When you select the Rename action in the contextual menu of the Resource/Hierarchy Dependencies view, the Rename resource dialog box is displayed. The following fields are available:

- New name - Presents the current name of the edited resource and allows you to modify it.
- Update references of the renamed resource(s) - Select this option to update the references to the resource you are renaming. A Preview option is available that allows you to see what will be updated before selecting Rename to process the operation.

When you select the Move action from the contextual menu of the Resource/Hierarchy Dependencies view, the Move resource dialog box is displayed. The following fields are available:

- Destination - Presents the path to the current location of the resource you want to move and gives you the option to introduce a new location.
- New name - Presents the current name of the moved resource and gives you the option to change it.
• **Update references of the moved resource(s)** - Select this option to update the references to the resource you are moving, in accordance with the new location and name. A **Preview** option is available that allows you to see what will be updated before selecting **Move** to process the operation.

**XML Schema Component Dependencies View**

The **Component Dependencies** view allows you to see the dependencies for a selected component. This is helpful if you want to see where components are used in the entire hierarchy. For example, if you want to find all the references where a given component is used.

If the view is not displayed, it can be opened by selecting it from the **Window > Show View** menu.

To see the dependencies of an XML Schema component:

1. Right-click the desired component in the editor or **Outline** view.
2. Select the **Component Dependencies** action from the contextual menu.

The action is available for all named components (for example, elements or attributes).

If a component contains multiple references, a small table is displayed at the bottom of the view that contains all the references. When a recursive reference is encountered, it is marked with a special icon.

Figure 501. Component Dependencies View - Hierarchy for **xhtml11.xsd**
The **Component Dependencies** view includes the following toolbar actions:

- **Refresh**
  
  Refreshes the dependencies structure.

- **Stop**
  
  Stops the dependency computation.

- **Configure**
  
  Allows you to choose the search scope for computing the dependencies structure. This is helpful for making sure all imported/included resources are computed.

- **History**
  
  Allows you to select from a list of the most recently used dependency computations.

In addition, the following actions are available in the contextual menu:

- **Go to First Reference**
  
  Selects the first reference of the currently selected component in the dependencies tree.

- **Go to Component**
  
  Shows the definition of the currently selected component in the dependencies tree.
For more information, see the Maintain Complex XML Schemas section of our Developing XML Schemas video demonstration:

https://www.youtube.com/embed/vz1eIZELQgc

Related Information:

- Search and Refactor Operations Scope (on page 1129)

Highlight Component Occurrences

When a component (for example types, elements, attributes) is found at current cursor position, Oxygen XML Editor performs a search over the entire document to find the component declaration and all its references. When found, they are highlighted both in the document and in the stripe bar, at the right side of the document. Customizable colors are used: one for the component definition and another one for component references. Occurrences are displayed until another component is selected and a new search is performed. All occurrences are removed when you start to edit the document.

This feature is on by default. To configured it, open the Preferences dialog box (Options > Preferences) (on page 79) and go to Editor > Mark Occurrences. A search can also be triggered with the Search > Search Occurrences in File () contextual menu action. All matches are displayed in a separate tab of the Results view (on page 357).

Searching and Refactoring Actions in XML Schemas

Search Actions

The following search actions can be applied on attribute, attributeGroup, element, group, key, unique, keyref, notation, simple, or complex types and are available from the Search submenu in the contextual menu of the current editor or from the Document > References menu:

- Search References
  
  Searches all references of the item found at current cursor position in the defined scope, if any. If a scope is defined, but the current edited resource is not part of the range of resources determined by this, a warning dialog box is displayed and you have the possibility to define another search scope.

- Search References in
Searches all references of the item found at current cursor position in the file or files that you specify when define a scope in the Search References dialog box.

**Search Declarations**

Searches all declarations of the item found at current cursor position in the defined scope if any. If a scope is defined, but the current edited resource is not part of the range of resources determined by this, a warning dialog box will be displayed and you have the possibility to define another search scope.

**Search Declarations in**

Searches all declarations of the item found at current cursor position in the file or files that you specify when you define a scope for the search operation.

**Search Occurrences in File**

Searches all occurrences of the item at the cursor position in the currently edited file.

The following action is available from the contextual menu and the Document > Schema menu:

**Go to Definition**

Moves the cursor to the definition of the referenced XML Schema item.

**Note:** You can also use the **Ctrl + Single-Click (Command + Single-Click on OS X)** shortcut on a reference to display its definition.

**Refactoring Actions**

The following refactoring actions can be applied on attribute, attributeGroup, element, group, key, unique, keyref, notation, simple, or complex types and are available from the Refactoring submenu in the contextual menu of the current editor or from the Document > Refactoring menu:

**Rename Component**

Allows you to rename the current component (in-place). The component and all its references in the document are highlighted with a thin border and the changes you make to the component at the cursor position are updated in real time to all occurrences of the component. To exit the in-place editing, press the Esc or Enter key on your keyboard.

**Rename Component in**

Opens a dialog box that allows you to rename the selected component by specifying the new component name and the files to be affected by the modification. If you click the Preview button, you can view the files to be affected by the action.

Figure 502. Rename Identity Constraint Dialog Box
Related Information:

- Search and Refactor Operations Scope (on page 1129)

XML Schema Quick Assist Support

The **Quick Assist support** (on page 3286) improves the development workflow, offering fast access to the most commonly used actions when you edit schema documents.

The **Quick Assist feature** (on page 3286) is activated automatically when the cursor is positioned over the name of a component. It is accessible via a yellow bulb icon (💡) placed at the current line in the stripe on the left side of the editor. Also, you can invoke the quick assist menu by using the **Alt + 1** (Meta + Alt + 1 on Mac OS X) keyboard shortcuts.

Figure 503. Quick Assist Support
The *Quick Assist* support offers direct access to the following actions:

- **Rename Component in**
  Renames the component and all its dependencies.

- **Search Declarations**
  Searches the declaration of the component in a predefined scope. It is available only when the context represents a component name reference.

- **Search References**
  Searches all references of the component in a predefined scope.

- **Component Dependencies**
  Searches the component dependencies in a predefined scope.

- **Change Scope**
  Configures the scope that will be used for future search or refactor operations.

- **Rename Component**
  Allows you to rename the current component in-place.

- **Search Occurrences**
  Searches all occurrences of the component within the current file.

For more information about improving schema development using the *Quick Assist* action set, watch our video demonstration:

https://www.youtube.com/embed/X-2-gkrFSGU

Related Information:

- Resource Hierarchy / Dependencies View (*on page 1297*)
- Component Dependencies View (*on page 1300*)
Generating Sample XML Files

Oxygen XML Editor offers support to generate sample XML files both from XML schema 1.0 and XML schema 1.1, depending on the XML schema version set in XML Schema preferences page (on page 193).

To generate sample XML files from an XML Schema, use the Generate Sample XML Files action from the Tools menu. This action is also available in the contextual menu of the schema Design mode (on page 1252). The action opens the Generate Sample XML Files dialog box that allows you to configure a variety of options for generating the files.

The Generate Sample XML Files dialog box contains three tabs with various configurable options. Default values for these options can be set in the Sample XML Files Generator preferences page (on page 196). You can also run the tool from the command line using exported options.

Schema Tab (Generate Sample XML Files Tool)

The Generate Sample XML Files tool includes a dialog box that allows you to configure a variety of options for generating the XML files. The first set of options are found in the Schema tab.

This tab includes the following options:
URL

Specifies the URL of the Schema location. You can specify the path by using the text field, the history drop-down menu, or the browsing actions in the Browse drop-down list.

Namespace

Displays the namespace of the selected schema.

Root Element

After the schema is selected, this drop-down menu is populated with all root candidates gathered from the schema. Choose the root of the output XML documents.

Output folder

Path to the folder where the generated XML instances will be saved.

Filename prefix and Extension

You can specify the prefix and extension for the file name that will be generated. Generated file names have the following format: prefix\textit{N}\.extension, where \textit{N} represents an incremental number from 0 up to the specified Number of instances (on page 1307).

Number of instances

The number of XML files to be generated.

Open first instance in editor

When selected, the first generated XML file is opened in the editor.

Namespaces section

You can specify the Default Namespace, as well as the prefixes for the namespaces.

Export settings

Use this button to save the current settings for future use.

Import settings

Use this button to load previously exported settings.

You can click OK at any point to generate the sample XML files.

Options Tab (Generate Sample XML Files Tool)

The Generate Sample XML Files tool includes a dialog box that allows you to configure a variety of options for generating the XML files. The Options tab allows you to set specific options for namespaces and elements.

Figure 505. Generate Sample XML Files Dialog Box (Options Tab)
This tab includes the following options:

**Namespace / Element table**

Allows you to set a namespace for each element name that appears in an XML document instance. The following prefix-to-namespace associations are available:

- All elements from all namespaces (<ANY> - <ANY>). This is the default setting.
- All elements from a specific namespace.
- A specific element from a specific namespace.

**Settings subtab**

**Namespace**

Displays the namespace specified in the table at the top of the dialog box.

**Element**

Displays the element specified in the table at the top of the dialog box.

**Generate optional elements**

When selected, all elements are generated, including the optional ones (having the \texttt{minOccurs} attribute set to 0 in the schema).
Generate optional attributes

When selected, all attributes are generated, including the optional ones (having the `use` attribute set to `optional` in the schema).

Values of elements and attributes

Controls the content of generated attribute and element values. The following choices are available:

- **None** - No content is inserted.
- **Default** - Inserts a default value depending on the data type descriptor of the particular element or attribute. The default value can be either the data type name or an incremental name of the attribute or element (according to the global option from the Sample XML Files Generator preferences page). Note that type restrictions are ignored when this option is selected. For example, if an element is of a type that restricts an `xs:string` with the `xs:maxLength` facet to allow strings with a maximum length of 3, the XML instance generator tool may generate string element values longer than 3 characters.
- **Random** - Inserts a random value depending on the data type descriptor of the particular element or attribute.

⚠️ **Important:** If all of the following are true, the Generate Sample XML Files tool outputs invalid values:
- At least one of the restrictions is a `regexp`.
- The value generated after applying the `regexp` does not match the restrictions imposed by one of the facets.

Preferred number of repetitions

Allows you to set the preferred number of repeating elements related to `minOccurs` and `maxOccurs` facets defined in the XML Schema.

- If the value set here is between `minOccurs` and `maxOccurs`, then that value is used.
- If the value set here is less than `minOccurs`, then the `minOccurs` value is used.
- If the value set here is greater than `maxOccurs`, then `maxOccurs` is used.

Maximum recursion level

If a recursion is found, this option controls the maximum allowed depth of the same element.
**Type alternative strategy**

Used for the `xs:alternative` element from XML Schema 1.1. The possible strategies are:

- **First** - The first valid alternative type is always used.
- **Random** - A random alternative type is used.

**Choice strategy**

Used for `xs:choice` or `substitutionGroup` elements. The possible strategies are:

- **First** - The first branch of `xs:choice` or the head element of `substitutionGroup` is always used.
- **Random** - A random branch of `xs:choice` or a substitute element or the head element of a `substitutionGroup` is used.

**Generate the other options as comments**

If selected, generates the other possible choices or substitutions (for `xs:choice` and `substitutionGroup`). These alternatives are generated inside comments groups so you can uncomment and use them later. Use this option with care (for example, on a restricted namespace and element) as it may generate large result files.

**Element values subtab**

Allows you to add values that are used to generate the content of elements. If there are multiple values, then the values are used in a random order.

**Attribute values subtab**

Allows you to add values that are used to generate the content of attributes. If there are multiple values, then the values are used in a random order.

**Export settings**

Use this button to save the current settings for future use.

**Import settings**

Use this button to load previously exported settings.

You can click **OK** at any point to generate the sample XML files.
Advanced Tab (Generate Sample XML Files Tool)

The Generate Sample XML Files tool includes a dialog box that allows you to configure a variety of options for generating the XML files. The Advanced tab allows you to set some options regarding output values and performance.

Figure 506. Generate Sample XML Files Dialog Box (Advanced Tab)

This tab includes the following options:

**Use incremental attribute / element names as default**

If selected, the value of an element or attribute starts with the name of that element or attribute. For example, for an `a` element the generated values are: `a1`, `a2`, `a3`, and so on. If not selected, the value is the name of the type of that element / attribute (for example: `string`, `decimal`, etc.)

**Maximum length**

The maximum length of string values generated for elements and attributes.

**Discard optional elements after nested level**

The optional elements that exceed the specified nested level are discarded. This option is useful for limiting deeply nested element definitions that can quickly result in very large XML documents.

**Export settings**

Use this button to save the current settings for future use.

**Import settings**

Use this button to load previously exported settings.

Running the Generate Sample XML Files Tool from the Command Line

The Generate Sample XML Files tool can be also used from command line by running the script called `xmlGenerator.bat` (on Windows) / `xmlGenerator.sh` (on Mac OS X / Unix / Linux) located in the Oxygen XML Editor installation folder. The parameters can be set in the dialog box, exported to an XML file on disk with the Export settings button, and then reused from command line. With the
exported settings file, you can generate the same XML instances from the command line as from the dialog box. For example:

```
xmlGenerator.bat path_of_CFG_file
```

The script can be integrated in an external batch process launched from the command line. The command-line parameter of the script is the relative path to the exported XML settings file. The files specified with relative paths in the exported XML settings will be made absolute relative to the folder where the script is run.

The following example shows such an XML configuration file:

```xml
<settings>
  <schemaSystemId>http://www.w3.org/2001/XMLSchema.xsd</schemaSystemId>
  <documentRoot>schema</documentRoot>
  <outputFolder>D:\projects\output</outputFolder>
  <filenamePrefix>instance</filenamePrefix>
  <filenameExtension>xml</filenameExtension>
  <noOfInstances>1</noOfInstances>
  <openFirstInstance>true</openFirstInstance>
  <defaultNamespace>&lt;NO_NAMESPACE&gt;</defaultNamespace>
  <element namespace="&lt;ANY&gt;" name="&lt;ANY&gt;">
    <generateOptionalElements>false</generateOptionalElements>
    <generateOptionalAttributes>false</generateOptionalAttributes>
    <valuesForContentType>DEFAULT</valuesForContentType>
    <preferredNumberOfRepetitions>2</preferredNumberOfRepetitions>
    <maximumRecursivityLevel>1</maximumRecursivityLevel>
    <choicesAndSubstitutions strategy="RANDOM">
      <generateOthersAsComments>false</generateOthersAsComments>
      <attribute namespace="&lt;ANY&gt;" name="&lt;ANY&gt;">
        <attributeValue>attrValue1</attributeValue>
        <attributeValue>attrValue2</attributeValue>
      </attribute>
    </choicesAndSubstitutions>
  </element>
  <element namespace="&lt;NO_NAMESPACE&gt;">
    <generateOptionalElements>true</generateOptionalElements>
    <generateOptionalAttributes>true</generateOptionalAttributes>
    <valuesForContentType>DEFAULT</valuesForContentType>
    <preferredNumberOfRepetitions>2</preferredNumberOfRepetitions>
    <maximumRecursivityLevel>1</maximumRecursivityLevel>
  </element>
</settings>
```
Generating Documentation for an XML Schema

Oxygen XML Editor can generate detailed documentation for the components of an XML Schema in HTML, PDF, DocBook, or other custom formats. You can select the components and the level of detail. The components are hyperlinked in both HTML and DocBook documents.

Note: You can generate documentation for both XML Schema version 1.0 and 1.1.

To generate documentation for an XML Schema document, select XML Schema Documentation from the Tools > Generate Documentation menu or from the Generate Documentation submenu in the contextual menu of the Project view (on page 333).

Figure 507. XML Schema Documentation Dialog Box
The **Schema URL** field of the dialog box must contain the full path to the XML Schema (XSD) file for which you want to generate documentation. The schema may be a local or a remote file. You can specify the path to the schema by entering it in the text field, or by using the **Insert Editor Variables** button or the options in the **Browse** drop-down menu.

### Output Tab

The following options are available in the **Output** tab:

- **Format** - Allows you to choose between the following formats:
  - **HTML** - The documentation is generated in [HTML output format](on page 1318).
  - **PDF** - The documentation is generated in [PDF output format](on page 1321).
  - **DocBook** - The documentation is generated in [DocBook output format](on page 1321).
  - **DITA** - The documentation is generated in [DITA output format](on page 1321).
  - **Custom** - The documentation is generated in a [custom output format](on page 1321), allowing you to control the output. Click the **Options** button to open a **Custom format options** dialog box where you can specify a custom stylesheet for creating the output. There is also an option to **Copy additional resources to the output folder** and you can select the path to the additional **Resources** that you want to copy. You can also choose to keep the
intermediate XML files created during the documentation process by deselecting the **Delete intermediate XML file** option.

- **Output file** - You can specify the path of the output file by entering it in the text field, or by using the `Insert Editor Variables` button or the options in the `Browse` drop-down menu.

- **Split output into multiple files** - Instructs the application to split the output into multiple files. You can choose to split them by namespace, location, or component name.

- **Open in Browser/System Application** - Opens the result in the system application associated with the output file type. For DITA and DocBook documents, this option appears as **Open in Editor** and the result will be opened in Oxygen XML Editor (in the current editor).

**Note:** To set the browser or system application that will be used, open the **Preferences** dialog box (Options > Preferences) (on page 79), go to **Global**, and set it in the **Default Internet browser** field. This will take precedence over the default system application settings.

- **Keep only the annotations with xml:lang set to** - The generated output will contain only the annotations with the `xml:lang` attribute set to the selected language. If you choose a primary language code (for example, `en` for English), this includes all its possible variations (`en-us`, `en-uk`, etc.).

**Settings Tab**

When you generate documentation for an XML schema you can choose what components to include in the output and the details to be included in the documentation.

Figure 508. Settings Tab of the XML Schema Documentation Dialog Box
The **Settings** tab allows you to choose whether or not to include the following components: **Global elements**, **Global attributes**, **Local elements**, **Local attributes**, **Simple Types**, **Complex Types**, **Groups**, **Attribute Groups**, **Redefines**, **Referenced schemas**, **Include notations**.

You can choose whether or not to include the following other details:

- **Diagram** - Displays the diagram for each component. You can choose the image format (JPEG, PNG, GIF, SVG) to use for the diagram section. The generated diagrams are dependent on the options from the **Schema Design Properties** (on page 154) page.
- **Diagram annotations** - This option controls whether or not the annotations of the components presented in the diagram sections are included.
- **Namespace** - Displays the namespace for each component.
- **Location** - Displays the schema location for each component.
- **Type** - Displays the component type if it is not an anonymous one.
- **Type hierarchy** - Displays the types hierarchy.
- **Model** - Displays the model (sequence, choice, all) presented in BNF form. The separator characters that are used depend upon the information item used:
  - **xs:all** - Its children will be separated by space characters.
  - **xs:sequence** - Its children will be separated by comma characters.
  - **xs:choice** - Its children will be separated by / characters.
• **Children** - Displays the list of component’s children.

• **Instance** - Displays an XML instance generated based on each schema element.

• **Used by** - Displays the list of all the components that reference the current one. The list is sorted by component type and name.

• **Properties** - Displays some of the component’s properties.

• **Facets** - Displays the facets for each simple type

• **Identity constraints** - Displays the identity constraints for each element. For each constraint there are presented the name, type (unique, key, keyref), reference attribute, selector and field(s).

• **Attributes** - Displays the attributes for the component. For each attribute there are presented the name, type, fixed or default value, usage and annotation.

• **Asserts** - Displays the `assert` elements defined in a complex type. The test, XPath default namespace, and annotation are presented for each assert.

• **Annotations** - Displays the annotations for the component. If you choose **Escape XML Content**, the XML tags are present in the annotations.

• **Source** - Displays the text schema source for each component.

• **Generate index** - Displays an index with the components included in the documentation.
  - **Include local elements and attributes** - If selected, local elements and attributes are included in the documentation index.
  - **Include resource hierarchy** - Specifies whether or not the resource hierarchy for an XML Schema documentation is generated. It is deselected by default.

**Export settings** - Save the current settings in a settings file for further use (for example, with the exported settings file you can generate the same documentation from the command line interface (on page 1323).)

**Import settings** - Reloads the settings from the exported file.

**Generate** - Use this button to generate the XML Schema documentation.

**Related Information:**

- Customizing PDF or DocBook Output of Generated XML Schema Documentation (on page 1322)

**Output Formats for Generating XML Schema Documentation**

XML Schema documentation can be generated in HTML, PDF, DocBook, or a custom format. You can choose the format from the **Schema Documentation** (on page 1313) dialog box. For the PDF and DocBook formats, the option to split the output in multiple files is not available.
**HTML Output Format**

The XML Schema documentation generated in HTML format contains images corresponding to the same schema definitions as the ones displayed by the schema diagram editor. (on page 623) These images are divided in clickable areas that are linked to the definitions of the names of types or elements. The documentation of a definition includes a **Used By** section with links to the other definitions that reference it. If the **Escape XML Content** option is unchecked, the HTML or XHTML tags used inside the `xs:documentation` elements of the input XML Schema for formatting the documentation text (for example, `<b>`, `<i>`, `<u>`, `<ul>`, `<li>`, etc.) are rendered in the generated HTML documentation.

The generated images format is **PNG**. The image of an XML Schema component contains the graphical representation of that component as it is rendered in the schema diagram panel of the Oxygen XML Editor XSD editor panel. (on page 623)

Figure 509. XML Schema Documentation Example

The generated documentation includes a table of contents. You can group the contents by namespace, location, or component type. After the table of contents there is some information about the main, imported, included, and redefined schemas. This information contains the schema target
namespace, schema properties (attribute form default, element form default, version), and schema location.

Figure 510. Information About a Schema

<table>
<thead>
<tr>
<th>Namespace Properties</th>
<th>Schema Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>No namespace</td>
<td>file:D/personalized.xsd</td>
</tr>
<tr>
<td>attribute form default: unqualified</td>
<td></td>
</tr>
<tr>
<td>element form default: unqualified</td>
<td></td>
</tr>
</tbody>
</table>

If you choose to split the output into multiple files, the table of contents is displayed in the left frame. The contents are grouped in the same mode. If you split the output by location, each file contains a schema description and the components that you have chosen to include. If you split the output by namespace, each file contains information about schemas from that namespace and the list with all included components. If you choose to split the output by component, each file contains information about a schema component.

After the documentation is generated, you can collapse or expand details for some schema components by using the Showing options or the Collapse or Expand buttons.

Figure 511. Showing Options

For each component included in the documentation, the section presents the component type follow by the component name. For local elements and attributes, the name of the component is specified as parent name/component name. You can easily go to the parent documentation by clicking the parent name.

Figure 512. Documentation for a Schema Component
If the schema contains imported or included modules, their dependencies tree is generated in the documentation.

Figure 513. Example: Generated Documentation
PDF Output Format

For the PDF output format, the documentation is generated in DocBook format and a transformation using the FOP processor is applied to obtain the PDF file. To configure the FOP processor, see the FO Processors (on page 216) preferences page.

For information about customizing the PDF output, see Customizing PDF or DocBook Output of Generated XML Schema Documentation (on page 1322).

DocBook Output Format

If you generate the documentation in DocBook output format, the documentation is generated as a DocBook XML file. You can then apply a built-in DocBook transformation scenario (on page 1667) (such as, DocBook PDF or DocBook HTML) on the output file, or configure your own transformation scenario (on page 1674) to convert it into whatever format you desire.

For information about customizing the DocBook output, see Customizing PDF or DocBook Output of Generated XML Schema Documentation (on page 1322).

DITA Output Format

If you generate the documentation in DITA output format, each element of the schema is converted to a DITA Topic and all the generated topics are referenced in a DITA map (on page 3281) file. You can then apply a built-in DITA transformation scenario (on page 1642) (such as, DITA Map PDF or DITA Map XHTML), or configure your own DITA OT transformation scenario (on page 1702) to convert it into whatever format you desire.

For information about customizing the DITA output, see Customizing DITA Output of Generated XML Schema (on page 1323).

Custom Output Format

For the custom format, you can specify a stylesheet to transform the intermediary XML file generated in the documentation process. You have to edit your stylesheet based on the schema xsdDocSchema.xsd from [OXYGEN_INSTALL_DIR]/frameworks/schema_documentation.

You can create a custom format starting from one of the stylesheets used in the built-in HTML, PDF, DocBook, and DITA formats. These stylesheets are available in [OXYGEN_INSTALL_DIR]/frameworks/schema_documentation/xsl.

When using a custom format you can also copy additional resources into the output folder and choose to keep the intermediate XML files created during the documentation process.
Important: If you create a custom format for DITA, you must select the Split output into multiple files option in the Output tab (on page 1315) and choose Split by component.

Customizing PDF or DocBook Output of Generated XML Schema Documentation

To customize the PDF or DocBook output of the generated XML Schema documentation, use the following procedure:

1. Customize the [OXYGEN_INSTALL_DIR]/frameworks/schema_documentation/xsl/xsdDocDocbook.xsl stylesheet to include the content that you want to add in the PDF or DocBook output. Add the content in the XSLT template with the match="schemaDoc" attribute between the info and xsl:apply-templates elements, as commented in the following example:

   ```xml
   <info>
     <pubdate><xsl:value-of select="format-date(current-date(),'[Mn] [D], [Y]', 'en', (), ())"/></pubdate>
   </info>
   <!-- Add the XSLT template content with match="schemaDoc" attribute here -->
   <xsl:apply-templates select="schemaHierarchy"/>
   ```

2. Create an intermediary file that holds the content of your XML Schema documentation by following these steps:
   a. Go to Tools > Generate Documentation > XML Schema Documentation.
   b. Select Custom for the output format and click the Options button.
   c. In the Custom format options dialog box, do the following:
      i. Enter the customized stylesheet in the Custom XSL field ([OXYGEN_INSTALL_DIR]/frameworks/schema_documentation/xsl/xsdDocDocbook.xsl).
      ii. Select the Copy additional resources to the output folder option and leave the default selection in the Resources field.
      iii. Click OK.
   d. When you return to the XML Schema Documentation dialog box, just press the Generate button to generate a DocBook XML file with an intermediary form of the Schema documentation.

3. If you want the DocBook file to be transformed into a PDF document, follow these steps:
   a. Use the Configure Transformation Scenario(s) action from the toolbar or the Document > Transformation menu, click New, and select XML transformation with XSLT.
   b. In the New Scenario dialog box, go to the XSL URL field and choose the [OXYGEN_INSTALL_DIR]/frameworks/docbook/oxygen/xsdDocDocbookCustomizationFO.xsl file.
c. Go to the **FO Processor** tab and select the **Perform FO Processing** and **XSLT result as input** options.

d. Go to the **Output** tab and select the directory where you want to store the XML Schema documentation output and click **OK**.

e. Click **Apply Associated**.

**Tip:** If you want your modifications to be permanent so that you can simply select the PDF output format in the **XML Schema Documentation** dialog box, rather than configuring a custom format each time you generate this documentation, follow this procedure:

1. Create a JAR (on page 3283) or ZIP file that includes the modified stylesheet (customized in step 1 above), placed in the following directory structure: `builtin/documentation/schema_documentation/xsdDocDocbook.xsl`.
2. Create a new directory named **endorsed** inside the `[OXYGEN_INSTALL_DIR]/lib` directory and place the created JAR or ZIP file inside it.
3. Restart Oxygen XML Editor and the PDF output format will now use your customized stylesheet.

**Customizing DITA Output of Generated XML Schema**

To customize the DITA output of the generated XML Schema documentation, use the following procedure:

1. Customize the `[OXYGEN_INSTALL_DIR]/frameworks/schema_documentation/xsl/xsdDocDita.xsl` stylesheet to incorporate your desired changes.
2. Create an intermediary file that holds the content of your XML Schema documentation by following these steps:
   a. Go to **Tools > Generate Documentation > XML Schema Documentation**.
   b. Select **Custom** for the output format and click the **Options** button.
   c. In the **Custom format options** dialog box, do the following:
      i. Enter the customized stylesheet in the **Custom XSL** field (`[OXYGEN_INSTALL_DIR]/frameworks/schema_documentation/xsl/xsdDocDita.xsl`).
      ii. Select the **Copy additional resources to the output folder** option and leave the default selection in the **Resources** field.
      iii. Click **OK**.
   d. Make sure the **Split output into multiple files option (on page 1315)** is selected and choose **Split by component**.
   e. When you return to the **XML Schema Documentation** dialog box, just press the **Generate** button to generate a DITA map file that contains the XML Schema documentation.
Generating XML Schema Documentation From the Command-Line Interface

You can export the settings of the XML Schema Documentation dialog box (on page 1313) to an XML file by pressing the Export settings button. With the exported configuration file, you can generate the same documentation from the command-line interface by running the following script:

- `schemaDocumentation.bat` on Windows.
- `schemaDocumentation.sh` on OS X / Linux.

The script is located in the Oxygen XML Editor installation folder. The script can be integrated in an external batch process launched from the command-line interface. The script accepts a variety of command-line arguments that allow you to configure the documentation.

The accepted syntax and arguments are as follows:

```
```

- `schemaFile`
  The XML Schema file.

- `cfg:configfile`
  The exported configuration file. It contains the output file, output format options, split method, and some advanced options regarding the included components and components details. If an external configuration file is specified, all other supplied arguments except for the XML Schema file will be ignored.

- `out:outputFile`
  The file where the generated documentation will be saved. By default, it is the name of the schema file with an html extension.

- `format:<value>`
  The output format type used when generating the documentation. Possible values are as follows:

  - `html` - To generate documentation in HTML format.
  - `pdf` - To generate documentation in PDF format.
  - `docbook` - To generate documentation in DocBook format.
  - `custom` - To generate documentation in a custom format.

- `xsl:<xslFile>`
  The XSL file to be applied on the intermediate XML format. If there is no XSL file provided, the result will be in the HTML format.
The split method used when generating the documentation. Splitting is recommended for large schemas. Possible values are as follows:

- none (default value) - To generate one single output file.
- namespace - To generate an output file for every namespace in the schema.
- component - To generate an output file for every component in the schema.
- location - To generate an output file for every schema location.

Opens the result of the transformation in a browser or system application. Possible values are true or false (default value).

Displays the available options.

Example:

Example of the script in a Windows command line:

```
schemaDocumentation example.xsd -out:schemaDocumentation.html
-format:custom -xsl:example.xsl -split:namespace
```

Converting Schema to Another Schema Language

The Generate/Convert Schema tool allows you to convert a DTD or Relax NG (full or compact syntax) schema or a set of XML files to an equivalent XML Schema, DTD or Relax NG (full or compact syntax) schema. Where perfect equivalence is not possible due to limitations of the target language, Oxygen XML Editor generates an approximation of the source schema. Oxygen XML Editor uses Trang multiple format converter to perform the actual schema conversions.

To use this tool, select the Generate/Convert Schema (Alt + Shift + C (Command + Alt + C on OS X)) action from the Tools menu or from the Open with submenu when invoking the contextual menu in the Project view (on page 333). This action opens the Generate/Convert Schema dialog box that allows you to configure various options for conversion.

Figure 514. Generate/Convert Schema Dialog Box
The **Generate/Convert Schema** dialog box includes the following options:

**Input section**

Allows you to select the language of the source schema. If the conversion is based on a set of XML files, rather than just a single XML file, select the **XML Documents** option and use the file selector to add the XML files involved in the conversion.

**Output section**

Allows you to select the language of the target schema.

**Options**

You can choose the **Encoding**, the maximum **Line width**, and the **Indent size** (in number of spaces) for one level of indentation.

**Output file**

Specifies the path for the output file that will be generated.

**Close dialog when finished**

If you deselect this option, the dialog box will remain opened after the conversion so that you can easily continue to convert more files.

**Advanced options**

If you select **XML 1.0 DTD** for the input, you can click this button to access more advance options to further fine-tune the conversion. The following advanced options are available:
XML 1.0 DTD Input section

These options apply to the source DTD:

- **xmlns** - Specifies the default namespace, that is the namespace used for unqualified element names.
- **attlist-define** - Specifies how to construct the name of the definition representing an attribute list declaration from the name of the element. The specified value must contain exactly one percent character. This percent character is replaced by the name of element (after colon replacement) and the result is used as the name of the definition.
- **colon-replacement** - Replaces colons in element names with the specified chars when constructing the names of definitions used to represent the element declarations and attribute list declarations in the DTD.
- **any-name** - Specifies the name of the definition generated for the content of elements declared in the DTD as having a content model of ANY.
- **element-define** - Specifies how to construct the name of the definition representing an element declaration from the name of the element. The specified value must contain exactly one percent character. This percent character is replaced by the name of element (after colon replacement) and the result is used as the name of the definition.
- **annotation-prefix** - Default values are represented using an annotation attribute prefix:defaultValue where prefix is the specified value and is bound to http://relaxng.org/ns/compatibility/annotations/1.0 as defined by the RELAX NG DTD Compatibility Committee Specification. By default, the conversion engine will use a for prefix unless that conflicts with a prefix used in the DTD.
- **inline-attlist** - Instructs the application not to generate definitions for attribute list declarations, but instead move attributes declared in attribute list declarations into the definitions generated for element declarations. This is the default behavior when the output language is XSD.
- **strict-any** - Preserves the exact semantics of ANY content models by using an explicit choice of references to all declared elements. By default, the conversion engine uses a wildcard that allows any element
- **generate-start** - Specifies whether or not the conversion engine should generate a start element. DTD’s do not indicate what elements
are allowed as document elements. The conversion engine assumes that all elements that are defined but never referenced are allowed as document elements.

• **xmlns mappings** table - Each row specifies the prefix used for a namespace in the input schema.

**W3C XML Schema Output section**

This section is available if you select **W3C XML Schema** for the output.

• **disable-abstract-elements** - Disables the use of abstract elements and substitution groups in the generated XML Schema. This can also be controlled using an annotation attribute.

• **any-process-contents** - One of the values: strict, lax, skip. Specifies the value for the `processContents` attribute of any elements. The default is skip (corresponding to RELAX NG semantics) unless the input format is DTD, in which case the default is strict (corresponding to DTD semantics).

• **any-attribute-process-contents** - Specifies the value for the `processContents` attribute of `anyAttribute` elements. The default is skip (corresponding to RELAX NG semantics).

**Converting Database to XML Schema**

Oxygen XML Editor includes a tool that allows you to create an XML Schema from the structure of a database.

To convert a database structure to an XML Schema, use the following procedure:

1. Select the **Convert DB Structure to XML Schema** action from the **Tools** menu.

   **Result:** The **Convert DB Structure to XML Schema** dialog box is opened and your current database connections are displayed in the **Connections** section.

2. If the database source is not listed, click the **Configure Database Sources** button to open the **Data Sources preferences page** (on page 229) where you can configure data sources and connections.

3. In the **Format for generated schema** section, select one of the following formats:

   • **Flat schema** - A flat structure that resembles a tree-like view of the database without references to elements.

   • **Hierarchical schema** - Display the table dependencies visually, in a type of tree view where dependent tables are shown as indented child elements in the content model. Select this option if you want to configure the database columns of the tables to be converted.

4. Click **Connect**.
5. Select the database tables that you want to be included in the XML Schema.

6. If you selected Hierarchical schema for the format, you can configure the database columns.
   a. Select the database column you want to configure.
   b. In the Criterion section you can choose to convert the selected database column as an Element, Attribute, or to be Skipped in the resulting XML Schema.
   c. You can also change the name of the selected database column by changing it in the Name text field.

7. Click Generate XML Schema.

   Result: The database structure is converted to an XML Schema and it is opened for viewing and editing.

Flatten an XML Schema

You can organize an XML schema linked by `xs:include` and `xs:import` statements on several levels. In some cases, working on such a schema as if it were a single file is more convenient than working on multiple files separately. The Flatten Schema operation allows you to flatten an entire hierarchy of XML schemas. Starting with the main XML schema, Oxygen XML Editor calculates its hierarchy by processing the `xs:include` and `xs:import` statements.

The Flatten Schema action is available from the Tools menu or the contextual menu in Text mode. The action opens the Flatten Schema dialog box that allows you to configure the operation.

Figure 515. Flatten Schema Dialog Box
For the main schema file and for each imported schema, a new flattened schema is generated in the specified output folder. These schemas have the same name as the original ones.

**Note:** If necessary, the operation renames the resulted schemas to avoid duplicated file names.

A flattened XML schema is obtained by recursively adding the components of the included schemas into the main one. This means Oxygen XML Editor replaces the `xs:include`, `xs:redefine`, and `xs:override` elements with the ones coming from the included files.

### Options in the Flatten Schema Dialog Box

The following options are available in the **Flatten Schema** dialog box:

**File name**

The name of the output file.

**Output directory**

The path of the output directory where the flattened schema file will be saved.

**Open the flattened XML Schema file in editor**

Opens the main flattened schema in the editing area after the operation completes.

**Use the XML Catalogs when collecting the referenced XML Schemas**
Enables the imported and included schemas to be resolved through the available XML Catalogs (on page 3289).

**Note:** Changing this option triggers the recalculation of the dependencies graph for the main schema.

**Process the imported XML Schemas resolved through the XML Catalogs**

Specifies whether or not the imported schemas that were resolved through an XML Catalog (on page 3289) are also processed.

**Flatten the imported XML Schema(s)**

Specifies whether or not the imported schemas are flattened.

**Note:** For the schemas skipped by the flatten operation, no files are created in the output folder and the corresponding import statements remain unchanged.

**Flatten Schema from the Command Line**

The Flatten Schema tool can be also ran from command line by using the following command:

- `flattenSchema.bat` on Windows
- `sh flattenSchema.sh` on OS X and Linux

The command line accepts the following parameters:

- `-in:inputSchemaURL` - The input schema URL.
- `-outDir:outputDirectory` - The directory where the flattened schemas should be saved.
- `-flattenImports:<boolean_value>` - Controls whether or not the imported XML Schemas should be flattened. The default value `true`.
- `-useCatalogs:<boolean_value>` - Controls if the references to other XML Schemas should be resolved through the available XML Catalogs (on page 3289). The default value `false`.
- `-flattenCatalogResolvedImports:<boolean_value>` - Controls whether or not the imported schemas that were resolved through the XML Catalogs (on page 3289) should be flattened. The default value is `true`.

**Note:** This option is used only when `-useCatalogs` is set to `true`.

- `-verbose` - Provides information about the current flatten XML Schema operation.
- `--help | -help | --h | -h` - Prints the available parameters for the operation.

**Example: Command-Line Example for Windows**

```bash
flattenSchema.bat -in:http://www.w3.org/MarkUp/SCHEMA/xhtml11.xsd
-outDir:mySchemas/flattened/xhtml -flattenImports:true -useCatalogs:true
```
Example: Command-Line Example for OS X

```
sh flattenSchema.sh -in:http://www.w3.org/MarkUp/SCHEMA/xhtml11.xsd
-outDir:mySchemas/flattened/xhtml -flattenImports:true -useCatalogs:true
-flattenCatalogResolvedImports:true -verbose
```

Example: Command-Line Example for Unix/Linux

```
sh flattenSchema.sh -in:http://www.w3.org/MarkUp/SCHEMA/xhtml11.xsd
-outDir:mySchemas/flattened/xhtml -flattenImports:true -useCatalogs:true
-flattenCatalogResolvedImports:true -verbose
```

XML Schema Regular Expressions Builder

The XML Schema regular expressions builder allows you to test regular expressions on a fragment of text as they are applied to an XML instance document. Start the tool by selecting XML Schema Regular Expressions Builder from the Tools menu.

Figure 516. XML Schema Regular Expressions Builder Dialog Box

The dialog box contains the following:
Regular expressions editor

Allows you to edit the regular expression to be tested and used. Content completion is available and presents a list with all the predefined expressions. It is triggered by pressing \texttt{Ctrl + Space (Command + Space on OS X)}.

Error display area

If the edited regular expression is incorrect, an error message will be displayed here. The message contains the description and the exact location of the error. Also, clicking the quick navigation button (↩) highlights the error inside the regular expression.

Category

You can choose from several categories of predefined expressions. The selected category influences the displayed expressions in the Available expressions table.

Available expressions

This table includes the available regular expressions and a short description for each of them. The set of expressions depends on the category selected in the previous Category combo box. You can add an expression in the Regular expressions editor by double-clicking the expression row in the table. You will notice that in the case of Character categories and Block names, the expressions are also listed in complementary format.

Evaluate expression on

You can choose between two options:

- Evaluate expression on each line - The edited expression will be applied on each line in the Test area.
- Evaluate expression on all text - The edited expression will be applied on the whole text.

Test

A text editor that allows you to enter a text sample for which the regular expression will be applied. All matches of the edited regular expression will be highlighted.

After editing and testing your regular expression you can insert it in the current editor. The Insert button will become active when an editor is opened in the background and there is an expression in the Regular expressions editor.

The regular expression builder cannot be used to insert regular expressions in the Grid mode (on page 392) or schema Design mode (on page 623). Accordingly, the Insert button will be not available if the current document is edited in these modes.
Note: Some regular expressions may indefinitely block the Java Regular Expressions engine. If the execution of the regular expression does not end in about five seconds, the application displays a dialog box that allows you to interrupt the operation.

XML Schema 1.1

Oxygen XML Editor offers full support for XML Schema 1.1, including:

- XML Documents Validation (on page 1079) and Content Completion (on page 844) based on XML Schema 1.1.
- XML Schema 1.1 Validation (on page 1287) and Content Completion (on page 1288).
- Editing XML Schema 1.1 files in the Schema Design mode (on page 623).
- The Flatten Schema (on page 1329) action.
- Resource Hierarchy/Dependencies (on page 1297) and Refactoring Actions (on page 1302).
- Master files (on page 3284).
- Support for generating XML instances based on XML Schema.
- Support for validating XML documents with an NVDL schema that contains an XML Schema 1.1 validation step.

Note: To enable XML Schema 1.1 validation in NVDL, you need to pass the following option to the validation engine to specify the schema version: http://www.thaiopensource.com/validate/xsd-version (the possible values are 1.0 or 1.1).

Tip: To enable the full XPath expression in assertions and type alternatives, you need to set the http://www.thaiopensource.com/validate/full-xpath option.

XML Schema 1.1 is a superset of XML Schema 1.0, that offers lots of new powerful capabilities.

Figure 517. XML Schema 1.1

The significant new features in XSD 1.1 are:
- **Assertions** - Support to define assertions against the document content using XPath 2.0 expressions (an idea borrowed from Schematron).

- **Conditional type assignment** - The ability to select the type of schema an element is validated against, based on the values of the attribute of the element.

- **Open content** - Content models can use the `openContent` element to specify content models with `open content`. These content models allow elements not explicitly mentioned in the content model to appear in the document instance. It is as if wildcards were automatically inserted at appropriate points within the content model. A default may be set that causes all content models to be open unless specified otherwise.

To see the complete list with changes since version 1.0, go to [http://www.w3.org/TR/xmlschema11-1/#ch_specs](http://www.w3.org/TR/xmlschema11-1/#ch_specs).

XML Schema 1.1 is intended to be mostly compatible with XML Schema 1.0 and to have approximately the same scope. It also addresses bug fixes and brings improvements that are consistent with the constraints on scope and compatibility.

**Note:** An XML document conforming to a 1.0 schema can be validated using a 1.1 validator, but an XML document conforming to a 1.1 schema may not validate using a 1.0 validator.

If you are constrained to use XML Schema 1.0 (for example, if you develop schemas for a server that uses an XML Schema 1.0 validator that cannot be updated), change the default XML Schema version to 1.0. If you keep the default XML Schema version set to 1.1, the Content Completion Assistant ([on page 3280](#)) presents XML Schema 1.1 elements that you can insert accidentally in an 1.0 XML Schema. So even if you make a document invalid conforming with XML Schema 1.0, the validation process does not signal any issues.

To change the default XML Schema version, open the Preferences dialog box (Options > Preferences) ([on page 79](#)) and go to XML > XML Parser > XML Schema.

For more information about the XML Schema 1.1 support, watch our video demonstration:

[https://www.youtube.com/embed/DAkrubQNm0w](https://www.youtube.com/embed/DAkrubQNm0w)

**Related Information:**

- Setting the XML Schema Version ([on page 1335](#))

Setting the XML Schema Version

Oxygen XML Editor lets you set the version of the XML Schema you are editing either in the XML Schema preferences page, or through the versioning attributes. If you want to use the versioning
attributes, set the \textit{minVersion} and \textit{maxVersion} attributes, from the http://www.w3.org/2007/XMLSchema-versioning namespace, on the \textit{schema} root element.

\textbf{Note:} The versioning attributes take priority over the XML Schema version defined in the preferences page.

| Table 65. Using the \textit{minVersion} and \textit{maxVersion} Attributes to Set the XML Schema Version |
|-----------------|-----------------|
| Versioning Attributes | XML Schema Version |
| \textit{minVersion} = "1.0" \textit{maxVersion} = "1.1" | 1.0 |
| \textit{minVersion} = "1.1" | 1.1 |
| \textit{minVersion} = "1.0" \textit{maxVersion} = greater than "1.1" | The XML Schema version defined in the XML Schema preferences page (on page 192) |
| Not set in the XML Schema document | The XML Schema version defined in the XML Schema preferences page (on page 192) |

To change the XML Schema version of the current document, use the \textbf{Change XML Schema version} action from the contextual menu. This is available both in the \textbf{Text} mode, and in the \textbf{Design} mode and opens the \textbf{Change XML Schema version} dialog box. The following options are available:

- **XML Schema 1.0** - Inserts the \textit{minVersion} and \textit{maxVersion} attributes on the \textit{schema} element and gives them the values "1.0" and "1.1" respectively. Also, the namespace declaration (xmlns:vc=http://www.w3.org/2007/XMLSchema-versioning) is inserted automatically if it does not exist.

- **XML Schema 1.1** - Inserts the \textit{minVersion} attribute on the \textit{schema} element and gives it the value "1.1". Also, removes the \textit{maxVersion} attribute if it exists and adds the versioning namespace (xmlns:vc=http://www.w3.org/2007/XMLSchema-versioning) if it is not declared.

- **Default XML Schema version** - Removes the \textit{minVersion} and \textit{maxVersion} attributes from the \textit{schema} element. The default schema version, defined in the XML Schema preferences page, is used.

\textbf{Note:} The \textbf{Change XML Schema version} action is also available in the informative panel presented at the top of the edited XML Schema. If you close this panel, it will no longer appear until you restore Oxygen XML Editor to its default options.

Oxygen XML Editor automatically uses the version set through the versioning attributes, or the default version if the versioning attributes are not declared, when proposing content completion elements and validating an XML Schema. Also, the XML instance validation against an XML Schema is aware of the versioning attributes defined in the XML Schema.

When you generate sample XML files from an XML Schema, Oxygen XML Editor takes into account the \textit{minVersion} and \textit{maxVersion} attributes defined in the XML Schema.

\textbf{Related Information:}
Editing XQuery Documents

XQuery is the query language for XML and is officially defined by a W3C Recommendation document. Oxygen XML Editor provides support for XQuery 3.1, which is also backwards compatible with XQuery 3.0 and 1.0.

The many benefits of XQuery include:

- XQuery allows you to work in one common model no matter what type of data you are working with: relational, XML, or object data.
- XQuery is ideal for queries that must represent results as XML, to query XML stored inside or outside the database, and to span relational and XML sources.
- XQuery allows you to create many different types of XML representations of the same data.
- XQuery allows you to query both relational sources and XML sources, and create one XML result.

Related Information:

- XQuery and Databases (on page 2260)

XQuery Validation

With Oxygen XML Editor, you can validate your documents before using them in your transformation scenarios. The validation uses the Saxon 9.8.0.12 PE, EE, or HE processor, or you can use some database engines (such as MarkLogic or eXist) if you installed them. Any other XQuery processor that offers an XQJ API implementation (on page 2253) can also be used. This is in conformance with the XQuery Working Draft. The processor is used in two cases: validation of the expression and execution. Although the execution implies a validation, it is faster to check the expression syntactically, without executing it. The errors that occurred in the document are presented in the messages view at the bottom of editor window, with a full description message. As with all error messages, if you click an entry, the line where the error appeared is highlighted.

Figure 518. XQuery Validation
Note: If you choose a processor that does not support XQuery validation, Oxygen XML Editor displays a warning when trying to validate.

The Validation options button, available in the Document > Validate menu, allows quick access to the XQuery options (on page 208) in the Oxygen XML Editor preferences.

When you open an XQuery document from a connection that supports validation (for example, MarkLogic, or eXist), by default Oxygen XML Editor uses this connection for validation. If you open an XQuery file using a MarkLogic connection, the validation resolves imports better.

Content Completion in XQuery

Oxygen XML Editor provides content completion for keywords and all known XQuery functions and operators. The Content Completion Assistant (on page 3280) can be manually activated with the (Ctrl (Meta on Mac OS)+Space) shortcut. The functions and operators are presented together with a description of the parameters and functionality, depending on the validation or transformation engine.

For some supported database engines such as MarkLogic, eXist, and Berkeley DB, the content completion list offers the specific XQuery functions implemented by that engine. This feature is available when the XQuery file has an associated transformation scenario that uses one of these database engines or the XQuery validation engine is set to one of them via a validation scenario or in the XQuery Preferences (on page 208) page. For more information about the support for working with XQuery with regard to databases, see XQuery and Databases (on page 2260).

The extension functions included in the Saxon engine are available on content completion if one of the following conditions are true:

- The edited file has a transformation scenario associated that uses as transformation engine Saxon 9.8.0.12 PE or Saxon 9.8.0.12 EE.
• The edited file has a validation scenario associated that use as validation engine Saxon 9.8.0.12 PE or Saxon 9.8.0.12 EE.
• The validation engine specified in Preferences (on page 208) is Saxon 9.8.0.12 PE or Saxon 9.8.0.12 EE.

If the Saxon namespace (http://saxon.sf.net) is mapped to a prefix, the functions are presented using this prefix. Otherwise, the default prefix for the Saxon namespace (saxon) is used.

If you want to use a function from a namespace mapped to a prefix, just type that prefix and the content completion displays all the XQuery functions from that namespace. When the default namespace is mapped to a prefix, the XQuery functions from this namespace offered by content completion are also prefixed. Otherwise, only the function name being used.

The content completion pop-up window presents all the variables and functions from both the edited XQuery file and its imports.

Figure 519. XQuery Content Completion

Syntax Highlighting in XQuery

Oxygen XML Editor supports syntax highlighting in Text mode to make it easier to read the semantics of the structured content by displaying each type of code in different colors and fonts.

To customize the colors or styles used for the syntax highlighting colors for XQuery files, follow these steps:

1. Open the Preferences dialog box (Options > Preferences) (on page 79).
2. Go to Editor > Syntax Highlight (on page 178).
3. Select and expand the XQuery/XPath section in the top pane.
4. Select the component you want to change and customize the colors or styles using the selectors to the right of the pane.

You can see the effects of your changes in the Preview pane.

Related Information:
Editing XQuery documents may lead to large chunks of content that are not easily readable by human audience. Also, each developer may have a particular way of writing XQuery code. Oxygen XML Editor assists you in maintaining a consistent code writing style with the Format and Indent action that is available in the Document > Source menu and also on the toolbar.

The Format and Indent action achieves this by performing the following steps:

- Manages whitespaces, by collapsing or inserting space characters where needed.
- Formats complex expressions on multiple, more readable lines by properly indenting each of them. The amount of whitespaces that form an indent unit is controlled through one of the Indent with tabs and Indent size options from the Format Preferences page (on page 157).

**Note:** These operations can be performed only if your XQuery document conforms with XQuery 1.0, 3.0, 3.1, or XQuery Update Facility 1.0 specifications. If the Format and Indent operation fails, the document is left unaltered and an error message is presented in the Results view (on page 357).

Folding in XQuery Documents

In a large XQuery document, the instructions enclosed in the '{' and '}' characters can be collapsed so that only the needed instructions remain in focus. The same folding features available for XML documents (on page 840) are also available in XQuery documents.

Figure 520. Folding in XQuery Documents
There is available the action **Go to Matching Bracket Ctrl + Shift + G** on contextual menu of XQuery editor for going to matching character when cursor is located at '{' character or '}' character. It helps for finding quickly matching character of current folding element (on page 3282).

**XQuery Outline View**

The XQuery document structure is presented in the **Outline** view. The outline tree presents the list of all the components (namespaces, imports, variables, and functions) from both the edited XQuery file and its imports and it allows quick access to components. By default, it is displayed on the left side of the editor. If the view is not displayed, it can be opened by selecting it from the **Window > Show View** menu.

Figure 521. XQuery Outline View
The following actions are available in the Settings menu on the Outline view toolbar:

**Selection update on cursor move**

Controls the synchronization between Outline view and source document. The selection in the Outline view can be synchronized with the cursor moves or the changes performed in the XQuery editor. Selecting one of the components from the Outline view also selects the corresponding item in the source document.

**Sort**

Allows you to alphabetically sort the XQuery components.

**Show all components**

Displays all collected components starting from the current file. This option is set by default.

**Show only local components**

Displays the components defined in the current file only.

**Group by location/namespace/type**

Allows you to group the components by location, namespace, and type. When grouping by namespace, the main XQuery module namespace is presented first in the Outline view.

If you know the component name, you can search it in the Outline view by typing its name in the filter text field from the top of the view or directly on the tree structure. When you type the component
name in the filter text field you can switch to the tree structure using the arrow keys of the keyboard, (Enter), (Tab), (Shift-Tab). To switch from tree structure to the filter text field, you can use (Tab), (Shift-Tab).

**Tip:** The search filter is case insensitive. The following wildcards are accepted:

- `*` - any string
- `?` - any character
- `,` - patterns separator

If no wildcards are specified, the string to search is used as a partial match.

The upper part of the **Outline** view contains a filter box that allows you to focus on the relevant components. Type a text fragment in the filter box and only the components that match it are presented. For advanced usage you can use wildcard characters (such as `*`, `?`) and separate multiple patterns with commas.

**XQuery Builder View**

The **XPath/XQuery Builder** view allows you to compose complex XQuery expressions and execute them over the currently edited XML document. You can use the `doc()` function to specify the source file for which the expressions are executed. When you connect to a database, the expressions are executed over that database. If you are using the **XPath/XQuery Builder** view and the current file is an XSLT document, Oxygen XML Editor executes the expressions over the XML document in the associated scenario.

If the view is not displayed, it can be opened by selecting it from the **Window > Show View** menu.

The upper part of the view contains the following actions:

**XPath version chooser drop-down menu**

A drop-down menu that allows you to select the type of the expression you want to execute. You can choose between:

- XPath 1.0 (Xerces-driven)
- XPath 2.0, XPath 2.0 SA, XPath 3.1, XPath 3.1 SA, Saxon-HE XQuery, Saxon-PE XQuery, or Saxon-EE XQuery (all of them are Saxon-driven)
- Custom connection to XML databases that can execute XQuery expressions

**Note:** The results returned by XPath 2.0 SA and XPath 3.1 SA have a location limited to the line number of the start element (there are no column information and no end specified).
Note: Oxygen XML Editor uses Saxon to execute XPath 3.1 expressions. Since Saxon implements a part of the 3.1 functions, when using a function that is not implemented, Oxygen XML Editor returns a compilation error.

Execute XPath button

Use this button to start the execution of the XPath or XQuery expression you are editing. The result of the execution is displayed in the Results view (on page 357).

Favorites button

Allows you to save certain expressions that you can later reuse. To add an expression as a favorite, press the star button and enter a name for it. The star turns yellow to confirm that the expression was saved. Expand the drop-down menu next to the star button to see all your favorites. Oxygen XML Editor automatically groups favorites in folders named after the method of execution.

History drop-down menu

Keeps a list of the last 15 executed XPath or XQuery expressions. Use the ★ Clear history action from the bottom of the list to remove them.

Settings drop-down menu

Contains the following three options:

- Update on cursor move

  When selected and you navigate through a document, the XPath expression corresponding to the XML node at the current cursor position is displayed. For JSON documents, it displays the XPath expression for the current property.

- Evaluate as you type

  When you select this option, the XPath expression you are composing is evaluated in real time.

  Note: This option and the automatic validation are disabled when you edit huge documents (on page 781) or when the scope is other than Current file.

- Options

  Opens the Preferences page of the currently selected processing engine.

XPath scope menu
Oxygen XML Editor allows you to define a scope for which the XPath operation will be executed. You can choose where the XPath expression will be executed:

- **Current file** - Current selected file only.
- **Project** - All the files in the project.
- **Selected project resources** - The files selected in the project.
- **All opened files** - All files opened in the application.
- **Current DITA Map hierarchy** - All resources referenced in the currently selected DITA map, opened in the DITA Maps Manager view (on page 2990).
- **Opened archive** - Files open in the Archive Browser view (on page 2191).
- **Working sets** - The selected working sets (on page 3288).

At the bottom of the scope menu the following scope configuration actions are available:

- **Configure XPath working sets** - Allows you to configure and manage collections of files and folders, encapsulated in logical containers called working sets (on page 3288).
- **XPath file filter** - You can filter the files from the selected scope for which the XPath expression will be executed. By default, the XPath expression will be executed only on XML or JSON files, but you can also define a set of patterns that will filter out files from the current scope. If you select the **Include archive** option, the XPath expression will be also executed on the files in any archive (including EPUB and DocX) found at the current scope.

Figure 522. XPath/XQuery Builder View
While you edit an XPath or XQuery expression, Oxygen XML Editor assists you with the following features:

- **Content Completion Assistant (on page 3280)** - It offers context-dependent proposals and takes into account the cursor position in the document you are editing. The set of functions proposed by the **Content Completion Assistant** also depends on the engine version. Select the engine version from the drop-down menu available in the toolbar.

- Syntax Highlighting - Allows you to identify the components of an expression. To customize the colors of the components of the expression, open the Preferences dialog box (Options > Preferences) (on page 79) and go to **Editor > Syntax Highlight** (on page 178).

- Automatic validation of the expression as you type.

  **Note:** When you type invalid syntax, a red serrated line underlines the invalid fragments.

- Function signature and documentation balloon, when the cursor is located inside a function.

The usual edit actions (Cut, Copy, Paste, Select All, Undo, Redo) are available in the contextual menu of the top editable part of the view.
XQuery Input View

The structure of the source documents of an edited XQuery is displayed in a tree form in a view called the **XQuery Input** view. If the view is not displayed, it can be opened by selecting it from the **Window > Show View** menu. The tree nodes represent the elements of the documents.

You can use the **XQuery Input** view to drag and drop a node into the editing area to quickly insert XQuery expressions.

**Figure 523. XQuery Input View**

![XQuery Input View]

**Example:**

For the following XML documents:

```xml
<movies>
  <movie id="1">
    <title>The Green Mile</title>
    <year>1999</year>
  </movie>
  <movie id="2">
    <title>Taxi Driver</title>
    <year>1976</year>
  </movie>
</movies>

<reviews>
  <review id="100" movie-id="1">
    <rating>5</rating>
    <comment>It is made after a great Stephen King book.</comment>
  </review>
</reviews>
```
and the following XQuery:

```xml
let $review := doc("reviews.xml")
for $movie in doc("movies.xml")/movies/movie
let $movie-id := $movie/@id
return
<movie id="{$movie/@id}">
  {$movie/title}
  {$movie/year}
  <maxRating>
    {}
  </maxRating>
</movie>
```

If you drag the `review` element and drop it between the braces, the following pop-up menu is displayed:

Select **FLWOR review**, the resulting document will look like this:
Generating HTML Documentation for an XQuery Document

To generate HTML documentation for an XQuery document, use the XQuery Documentation dialog box. It is opened with the XQuery Documentation action that is available from the Tools > Generate Documentation menu or from the Generate Documentation submenu in the contextual menu of the Project view (on page 333).

The dialog box allows you to configure a set of parameters for the process of generating the HTML documentation.

Figure 524. XQuery Documentation Dialog Box

The following options are available:

- **Input** - The full path to the XQuery file must be specified in one of the two fields in this section:
  - **URL** - The URL of the file in which you want to generate the documentation.
  - **Folder** - The directory that contains the files for which you want to generate the documentation. You can also specify the XQuery file extensions to be searched for in the specified directory.

- **Default function namespace** - Optional URI for the default namespace for the submitted XQuery.

```xml
for $review in doc("reviews.xml")/reviews/review
return
  where (1=1
      and ($review/xmivis-id = $xmivis/id)
  )
return $review/author
```
• **Predefined function namespaces** - Optional, engine-dependent, predefined namespaces that the submitted XQuery refers to. They allow the conversion to generate annotation information to support the presentation component hypertext linking (only if the predefined modules have been loaded into the local xqDoc XML repository).

• **Open in Browser/System Application** - Select this option if you want the result to be opened in the system application associated with that file type.

[Note: To set the browser or system application that will be used, open the Preferences dialog box ([Options > Preferences](on page 79)), go to **Global**, and set it in the **Default Internet browser** field. This will take precedence over the default system application settings.]

• **Output** - Allows you to specify where the generated documentation is saved on disk.

### Transforming XML Documents Using XQuery

XQuery is similar to XSL stylesheets, both being capable of transforming an XML input into another format. You specify the input URL when you define the transformation scenario ([on page 1674]). The result can be saved and opened in the associated application. You can even run a FO processor ([on page 1738]) on the output of an XQuery. The transformation scenarios may be shared between many XQuery files, are exported ([on page 276]) together with the XSLT scenarios and can be managed in the **Configure Transformation Scenario** dialog box ([on page 1762]), or in the **Scenarios** view ([on page 1768]). The transformation can be performed on the XML document specified in the **XML URL** field, or, if this field is empty, the documents referenced from the query expression. The parameters of XQuery transforms must be set in the **Parameters** dialog box ([on page 1674]). Parameters that are in a namespace must be specified using the qualified name (for example, a `param` parameter in the `http://www.oxygenxml.com/ns` namespace must be set with the name `{http://www.oxygenxml.com/ns}param`).

The transformation uses one of the Saxon 9.8.0.12 HE, Saxon 9.8.0.12 PE, Saxon 9.8.0.12 EE processors, a database connection ([details can be found in the **Working with Databases** ([on page 2198]) chapter - in the **XQuery transformation** ([on page 2261]) section]) or any XQuery processor that provides an XQJ API implementation.

The Saxon 9.8.0.12 EE processor also supports XQuery 3.1 transformations.

**Related Information:**

• **XQuery and Databases** ([on page 2260])
Display XQuery Result in Sequence View

The result of an XQuery executed on a database can be very large and sometimes only a part of the full result is needed. To avoid the long time necessary for fetching the full result, select the Present as a sequence option (on page 1697) in the Output tab of the Edit scenario dialog box. This option fetches only the first chunk of the result. Clicking the More results available label that is displayed at the bottom of the Sequence view fetches the next chunk of results.

The size of a chunk can be set with the Size limit of Sequence view option (on page 209). The XQuery options button from the More results available label provides a quick access to this option by opening the XQuery preferences page (on page 208) where the option can be modified.

Figure 525. XQuery transformation result displayed in Sequence view

A chunk of the XQuery transformation result is displayed in the Sequence view.

Figure 526. XQuery transformation result displayed in Sequence view
Tip: You can right-click the results in the Sequence view and if the item is an XML element, the Go to definition action will open the XML file from where the queried node was obtained.

Advanced Saxon HE/PE/EE XQuery Transformation Options

The XQuery transformation scenario allows you to configure advanced options that are specific for the Saxon HE (Home Edition), PE (Professional Edition), and EE (Enterprise Edition) engines. They are the same options as those in the Saxon HE/PE/EE preferences page (on page 209) but they are configured as a specific set of transformation options for each transformation scenario, while the values set in the preferences page apply as global options. The advanced options configured in a transformation scenario override the global options (on page 3283) defined in the preferences page.

Saxon-HE/PE/EE Options

The advanced options for Saxon 9.8.0.12 Home Edition (HE), Professional Edition (PE), and Enterprise Edition (EE) are as follows:

Use a configuration file ("-config")

Sets a Saxon 9.8.0.12 configuration file that is used for XQuery transformation and validation scenarios.

Enable Optimizations ("-opt")

This option is selected by default, which means that optimization is enabled. If not selected, the optimization is suppressed, which is helpful when reducing the compiling time is important, optimization conflicts with debugging, or optimization causes extension functions with side-effects to behave unpredictably.

Use linked tree model ("-tree:linked")

This option activates the linked tree model.

Recoverable errors ("-warnings")

Specifies how dynamic errors are handled. The following options can be selected:

- Recover silently ("silent") - Continues processing without reporting the error.
- Recover with warnings ("recover") - Issues a warning but continues processing.
- Signal the error and do not attempt recovery ("fatal") - Issues an error and stops processing.

Strip whitespaces ("-strip")

Specifies how the strip whitespaces operation is handled. You can choose one of the following values:
• **All** (*"all"*) - Strips all whitespace text nodes from source documents before any further processing, regardless of any `xml:space` attributes in the source document.

• **Ignore** (*"ignorable"*) - Strips all ignorable whitespace text nodes from source documents before any further processing, regardless of any `xml:space` attributes in the source document. Whitespace text nodes are ignorable if they appear in elements defined in the DTD or schema as having element-only content.

• **None** (*"none"*) - Strips no whitespace before further processing.

### Saxon-PE/EE Options

The following advanced options are specific for Saxon 9.8.0.12 Professional Edition (PE) and Enterprise Edition (EE) only:

**Allow calls on extension functions** (*"-ext"*)

If selected, calls on external functions are allowed. Selecting this option is recommended in an environment where untrusted stylesheets may be executed. It also disables user-defined extension elements and the writing of multiple output files, both of which carry similar security risks.

### Saxon-EE Options

The advanced options that are specific for Saxon 9.8.0.12 Enterprise Edition (EE) are as follows:

**Validation of the source file** (*"-val"*)

Requests schema-based validation of the source file and of any files read using `document()` or similar functions. It can have the following values:

• **Schema validation** (*"strict"*) - This mode requires an XML Schema and allows for parsing the source documents with strict schema-validation enabled.

• **Lax schema validation** (*"lax"*) - If an XML Schema is provided, this mode allows for parsing the source documents with schema-validation enabled but the validation will not fail if, for example, element declarations are not found.

• **Disable schema validation** - This specifies that the source documents should be parsed with schema-validation disabled.

**Validation errors in the result tree treated as warnings** (*"-outval"*)

Normally, if validation of result documents is requested, a validation error is fatal. Selecting this option causes such validation failures to be treated as warnings.

**Write comments for non-fatal validation errors of the result document**
The validation messages for non-fatal errors are written (wherever possible) as a comment in the result document itself.

**Enable XQuery update (**"-update:(on|off)"**)**

This option controls whether or not XQuery update syntax is accepted. The default value is off.

**Backup files updated by XQuery (**"-backup:(on|off)"**)**

If selected, backup versions for any XML files updated with an XQuery Update are generated. This option is available when the **Enable XQuery update** option is selected.

**Other Options**

**Initializer class**

Equivalent to the **-init** Saxon command-line argument. The value is the name of a user-supplied class that implements the **net.sf.saxon.lib.Initializer** interface. This initializer is called during the initialization process, and may be used to set any options required on the configuration programmatically. It is particularly useful for tasks such as registering extension functions, collations, or external object models, especially in Saxon-HE where the option cannot be set via a configuration file. Saxon only calls the initializer when running from the command line, but the same code may be invoked to perform initialization when running user application code.

**Updating XML Documents using XQuery Update 1.0**

Using the bundled Saxon 9.8.0.12 EE XQuery processor Oxygen XML Editor offers support for XQuery Update 1.0. The XQuery Update Facility provides expressions that can be used to make persistent changes to instances of the XQuery 1.0 and XPath 2.0 Data Model. Thus, besides querying XML documents, you can modify them using the various insert/delete/modify/create methods available in the **XQuery Update 1.0** standard.

Choose Saxon 9.8.0.12 EE as a transformer in the scenario associated with the XQuery files containing update statements and Oxygen XML Editor will notify you if the update was successful.

**Example: Using XQuery Update to modify a tag name in an XML file**

```
rename node doc("books.xml")//publisher[1]/book[1] as "firstBook"
```
Editing WSDL Documents

WSDL is an XML format for describing network services as a set of endpoints operating on messages containing either document-oriented or procedure-oriented information. The operations and messages are described abstractly, and then bound to a concrete network protocol and message format to define an endpoint. Related concrete endpoints are combined into abstract endpoints (services).

Oxygen XML Editor provides a special type of editor dedicated to WSDL documents. The WSDL editor offers support for validation, a specialized Content Completion Assistant (on page 3280), a component oriented Outline view (on page 1358), searching and refactoring operations, and support to generate documentation.

Both WSDL version 1.1 and 2.0 are supported and SOAP versions 1.1 and 1.2. That means that in the location where a SOAP extension can be inserted the Content Completion Assistant offers elements from both SOAP 1.1 and SOAP 1.2. Validation of SOAP requests is executed first against a SOAP 1.1 schema and then against a SOAP 1.2 schema. In addition to validation against the XSD schemas, Oxygen XML Editor also checks if the WSDL file conforms with the WSDL specification (available only for WSDL 1.1 and SOAP 1.1).

In the following example you can see how the errors are reported.

Figure 527. Validating a WSDL file

For more information about the WSDL editing support in Oxygen XML Editor, watch our video demonstration:

https://www.youtube.com/embed/OS5Ucm9b8sY

Related Information:

- Editing XML Documents in Text Mode (on page 828)
Editing WSDL Documents in the Master Files Context

Smaller interrelated modules that define a complex WSDL structure cannot be correctly edited or validated individually, due to their interdependency with other modules. Oxygen XML Editor provides the support for defining the main module (or modules), allowing you to edit any of the imported/included files in the context of the larger WSDL structure.

You can set a main WSDL document either using the master files support from the Project view (on page 726), or using a validation scenario.

To set a master file using a validation scenario, add validation units that point to the main modules. Oxygen XML Editor warns you if the current module is not part of the dependencies graph computed for the main WSDL document. In this case, it considers the current module as the main WSDL document.

The advantages of editing in the context of a master file (on page 3284) include:

- Correct validation of a module in the context of a larger WSDL structure.
- Content Completion Assistant (on page 3280) displays all components valid in the current context.
- The Outline view (on page 1358) displays the components collected from the entire WSDL structure.

Note: When you edit an XML schema document that has a WSDL document set as master, the validation operation is performed over the master WSDL document.

For more information about editing WSDL documents in the master files context, watch our video demonstration:

https://www.youtube.com/embed/gn_YPD5xDCo

Validating WSDL Documents

By default, WSDL files are validated as you type. To change this, open the Preferences dialog box (Options > Preferences) (on page 79), go to Editor > Document Checking, and deselect the Enable automatic validation option (on page 181).

To validate a WSDL document manually, select the Validate action from the Validation toolbar drop-down menu or the Document > Validate menu. The validation problems are highlighted directly in the editor, making it easy to locate and fix any issues.
Content Completion Assistance in WSDL Documents

The Content Completion Assistant (on page 3280) is a powerful feature that enhances the editing of WSDL documents. It helps you define WSDL components by proposing context-sensitive element names. It can be manually activated with the Ctrl + Space (Command + Space on OS X) shortcut.

Another important capability of the Content Completion Assistant is to propose references to the defined components when you edit attribute values. For example, when you edit the type attribute of a binding element, the Content Completion Assistant proposes all the defined port types. Each proposal that the Content Completion Assistant offers is accompanied by a documentation hint.

❗ Note: XML schema specific elements and attributes are offered when the current editing context is the internal XML schema of a WSDL document.

Figure 528. WSDL Content Completion Assistant

❗ Note: If you are using the concept of master files (on page 3284) to import/include modules, the Content Completion Assistant collects its components starting from the master files. The master files can be defined in the project or in the associated validation scenario. For more information about the Master Files support in Oxygen XML Editor, see Defining Master Files at Project Level (on page 726).

Namespace prefixes in the scope of the current context are presented at the top of the content completion assistance window to speed up the insertion into the document of prefixed elements.

Figure 529. Namespace Prefixes in the Content Completion Assistant
For the common namespaces, such as XML Schema namespace (http://www.w3.org/2001/XMLSchema) or SOAP namespace (http://schemas.xmlsoap.org/wsdl/soap/), Oxygen XML Editor provides an easy mode to declare them by proposing a prefix for these namespaces.

WSDL Syntax Highlighting

Oxygen XML Editor supports syntax highlighting in Text mode to make it easier to read the semantics of the structured content by displaying each type of code in different colors and fonts.

To customize the colors or styles used for the syntax highlighting colors for WSDL files, follow these steps:

1. Open the Preferences dialog box (Options > Preferences) (on page 79).
2. Go to Editor > Syntax Highlight (on page 178).
3. Select and expand the XML section in the top pane.
4. Select the component you want to change and customize the colors or styles using the selectors to the right of the pane.
5. Select the XML tab in the Preview pane to see the effects of your changes.

Tip: Oxygen XML Editor also allows you to specify syntax highlighting colors for specific XML elements and attributes with specific namespace prefixes. This can be done in the Editor > Syntax Highlight > Elements/Attributes by Prefix preferences page (on page 179).

Related Information:

• Customize Syntax Highlight colors (on page 178)

WSDL Outline View

The Outline view for WSDL documents displays the list of all the components (services, bindings, port types and so on) of the currently open WSDL document along with the components of its imports.

If you use the Master Files support (on page 726), the Outline view collects the components of a WSDL document starting from the master files of the current document.

By default, it is displayed on the left side of the editor. If the view is not displayed, it can be opened by selecting it from the Window > Show View menu.

Figure 530. WSDL Outline View
The **Outline** view can display both the components of the current document and its XML structure, organized in a tree-like fashion. You can switch between the display modes by using the **Show XML structure** and **Show components** actions in the **Settings** menu on the **Outline** view toolbar. The following actions are available:

**Filter returns exact matches**

The text filter of the **Outline** view returns only exact matches.

**Selection update on cursor move**

Controls the synchronization between the **Outline** view and the current document. The selection in the **Outline** view can be synchronized with the cursor moves or the changes in the WSDL editor. Selecting one of the components from the **Outline** view also selects the corresponding item in the current document.

When the **Show components** option is selected, the following actions are available:

- **Show XML structure**
  Displays the XML structure of the current document in a tree-like manner.

- **Sort**
  Sorts the components in the **Outline** view alphabetically.

**Show all components**

Displays all the components that were collected starting from current document or from the main document, if it is defined.
**Show referable components**
Displays all the components that you can reference from the current document.

**Show only local components**
Displays the components defined in the current file only.

**Group by location**
Groups the WSDL components by their location.

**Group by type**
Groups the WSDL components by their type.

**Group by namespace**
Groups the WSDL components by their namespace.

**Note:** By default, all the three grouping criteria are active.

When the **Show XML structure** option is selected, the following actions are available:

**Show components**
Switches the Outline view to the components display mode.

**Flat presentation mode of the filtered results**
When active, the application flattens the filtered result elements to a single level.

**Show comments and processing instructions**
Show/hide comments and processing instructions in the Outline view.

**Show element name**
Show/hide element name.

**Show text**
Show/hide additional text content for the displayed elements.

**Show attributes**
Show/hide attribute values for the displayed elements. The displayed attribute values can be changed from the Outline preferences panel (on page 259).

**Configure displayed attributes**
Displays the XML Structured Outline preferences page (on page 259).

The following contextual menu actions are available in the Outline view when the **Show components** option is selected in the **Settings** menu:

**Edit Attributes**
Opens a dialog box that allows you to edit the attributes of the currently selected component.

Cut
Cuts the currently selected component.

Copy
Copies the currently selected component.

Delete
Deletes the currently selected component.

Search references
Searches for the references of the currently selected component.

Search references in
Searches for the references of the currently selected component in the context of a scope that you define.

Component dependencies
Opens the Component Dependencies view (on page 1365) that displays the dependencies of the currently selected component.

Resource Hierarchy
Opens the Resource Hierarchy/Dependencies view (on page 1363) that displays the hierarchy for the currently selected resource.

Resource Dependencies
Opens the Resource Hierarchy/Dependencies view (on page 1363) that displays the dependencies of the currently selected resource.

Rename Component in
Renames the currently selected component in the context of a scope that you define.

The following contextual menu actions are available in the Outline view when the Show XML structure option is selected in the Settings menu:

Append Child
Displays a list of elements that you can insert as children of the current element.

Insert Before
Displays a list of elements that you can insert as siblings of the current element, before the current element.

Insert After
Displays a list of elements that you can insert as siblings of the current element, after the current element.

**Edit Attributes**

Opens a dialog box that allows you to edit the attributes of the currently selected component.

**Toggle Comment**

Comments/uncomments the currently selected element.

**Search references**

Searches for the references of the currently selected component.

**Search references in**

Searches for the references of the currently selected component in the context of a scope that you define.

**Component dependencies**

Opens the Component Dependencies view (on page 1365) that displays the dependencies of the currently selected component.

**Rename Component in**

Renames the currently selected component in the context of a scope that you define.

**Cut**

Cuts the currently selected component.

**Copy**

Copies the currently selected component.

**Delete**

Deletes the currently selected component.

**Expand More**

Expands the structure of a component in the Outline view.

**Collapse All**

Collapses the structure of all the component in the Outline view.

To switch from the tree structure to the text filter, use Tab and Shift-Tab.

**Tip:** The search filter is case insensitive. The following wildcards are accepted:

- `*` - any string
- `?` - any character
• , - patterns separator

If no wildcards are specified, the string to search is used as a partial match.

The content of the Outline view and the editing area are synchronized. When you select a component in the Outline view, its definition is highlighted in the editing area.

**WSDL Resource Hierarchy/Dependencies View in WSDL Documents**

The Resource Hierarchy/Dependencies view displays the hierarchy or dependencies for a WSDL resource. If the view is not displayed, it can be opened by selecting it from the Window > Show View menu.

**Note:** The hierarchy of a WSDL resource includes the hierarchy of imported XML Schema resources. The dependencies of an XML Schema resource present the WSDL documents that import the schema.

To view the hierarchy or dependencies of a WSDL document, select the document in the Project view (on page 333) and choose Resource Hierarchy or Resource Dependencies from the contextual menu.

![Figure 531. Resource Hierarchy/Dependencies View](image)

The following actions are available on the toolbar of the Resource Hierarchy/Dependencies view:

- **Refresh**
  Refreshes the Hierarchy/Dependencies structure.

- **Stop**
  Stops the hierarchy/dependencies computing.
Show Hierarchy

Allows you to choose a resource to compute the hierarchy structure.

Show Dependencies

Allows you to choose a resource to compute the dependencies structure.

Configure dependencies search scope

Allows you to configure a scope to compute the dependencies structure. There is also an option for automatically using the defined scope for future operations.

History

Provides access to the list of previously computed dependencies. Use the Clear history button to remove all items from this list.

The contextual menu for a resource listed in the Resource Hierarchy/Dependencies view contains the following actions:

Open

Opens the resource. You can also double-click a resource in the Hierarchy/Dependencies structure to open it.

Go to reference

Opens the source document where the resource is referenced.

Copy location

Copies the location of the resource.

Move resource

Moves the selected resource.

Rename resource

 Renames the selected resource.

Show Resource Hierarchy

 Shows the hierarchy for the selected resource.

Show Resource Dependencies

 Shows the dependencies for the selected resource.

Add to Master Files

 Adds the currently selected resource in the Master Files directory (on page 726).

Expand All

Expands all the children of the selected resource from the Hierarchy/Dependencies structure.
Collapse All

Collapses all children of the selected resource from the Hierarchy/Dependencies structure.

Tip: When a recursive reference is encountered in the Hierarchy view, the reference is marked with a special icon.

Note: The Move resource or Rename resource actions give you the option to update the references to the resource (on page 1365).

Related Information:

- Working with Modular XML Files in the Master Files Context (on page 1126)
- Search and Refactor Operations Scope (on page 1129)

Moving/Renaming WSDL Resources

You can move and rename a resource presented in the Resource/Hierarchy Dependencies view, using the Rename resource and Move resource refactoring actions from the contextual menu.

When you select the Rename action in the contextual menu of the Resource/Hierarchy Dependencies view, the Rename resource dialog box is displayed. The following fields are available:

- New name - Presents the current name of the edited resource and allows you to modify it.
- Update references of the renamed resource(s) - Select this option to update the references to the resource you are renaming. A Preview option is available that allows you to see what will be updated before selecting Rename to process the operation.

When you select the Move action from the contextual menu of the Resource/Hierarchy Dependencies view, the Move resource dialog box is displayed. The following fields are available:

- Destination - Presents the path to the current location of the resource you want to move and gives you the option to introduce a new location.
- New name - Presents the current name of the moved resource and gives you the option to change it.
- Update references of the moved resource(s) - Select this option to update the references to the resource you are moving, in accordance with the new location and name. A Preview option is available that allows you to see what will be updated before selecting Move to process the operation.
WSDL Component Dependencies View

The Component Dependencies view allows you to see the dependencies for a selected component. This is helpful if you want to see where components are used in the entire hierarchy. For example, if you want to find all the references where a given component is used.

If the view is not displayed, it can be opened by selecting it from the Window > Show View menu.

To see the dependencies of a WSDL component:

1. Right-click the desired component in the editor or Outline view.
2. Select the Component Dependencies action from the contextual menu.

This action is available for all WSDL components (messages, port types, operations, bindings, and so on).

If a component contains multiple references, a small table is displayed at the bottom of the view that contains all the references. When a recursive reference is encountered, it is marked with a special icon.

Figure 532. Component Dependencies View

The Component Dependencies view includes the following toolbar actions:

- **Refresh**
  
  Refreshes the dependencies structure.

- **Stop**
  
  Stops the dependency computation.

- **Configure**
  
  Allows you to choose the search scope for computing the dependencies structure. This is helpful for making sure all imported/included resources are computed.

- **History**
Allows you to select from a list of the most recently used dependency computations.

In addition, the following actions are available in the contextual menu:

**Go to First Reference**

Selects the first reference of the currently selected component in the dependencies tree.

**Go to Component**

Shows the definition of the currently selected component in the dependencies tree.

Related Information:

- Searching and Refactoring Operations Scope in WSDL Documents *(on page 1369)*

---

### Highlight Component Occurrences in WSDL Documents

When you position your mouse cursor over a component in a WSDL document, Oxygen XML Editor searches for the component declaration and all its references and highlights them automatically.

Customizable colors are used: one for the component definition and another one for component references. Occurrences are displayed until another component is selected.

To change the default behavior of Highlight Component Occurrences, open the Preferences dialog box *(Options > Preferences)* *(on page 79)* and go to Editor > Mark Occurrences. You can also trigger a search using the Search > Search Occurrences in File () action from contextual menu. Matches are displayed in separate tabs of the Results view *(on page 357)*.

### Searching and Refactoring Operations in WSDL Documents

#### Search Actions

The following search actions are available from the Search submenu in the contextual menu of the current editor or from the Document > References menu:

- **Search References**

  Searches all references of the item found at current cursor position in the defined scope, if any. If a scope is defined, but the current edited resource is not part of the range of resources determined by this, a warning dialog box is displayed and you have the possibility to define another search scope.
Searches all references of the item found at current cursor position in the file or files that you specify when define a scope in the **Search References** dialog box.

**Search Declarations**

Searches all declarations of the item found at current cursor position in the defined scope if any. If a scope is defined, but the current edited resource is not part of the range of resources determined by this, a warning dialog box will be displayed and you have the possibility to define another search scope.

**Search Declarations in**

Searches all declarations of the item found at current cursor position in the file or files that you specify when you define a scope for the search operation.

**Search Occurrences in File**

Searches all occurrences of the item at the cursor position in the currently edited file.

The following action is available from the **Document > Schema** menu:

**Go to Definition**

Takes you to the location of the definition of the current item.

**Note:** You can also use the **Ctrl + Single-Click** (**Command + Single-Click on OS X**) shortcut on a reference to display its definition.

**Refactoring Actions**

The following refactoring actions are available from the **Refactoring** submenu from the **Document > Refactoring** menu or in the contextual menu of the current editor:

**Rename Component**

Allows you to rename the current component (in-place). The component and all its references in the document are highlighted with a thin border and the changes you make to the component at the cursor position are updated in real time to all occurrences of the component. To exit the in-place editing, press the **Esc** or **Enter** key on your keyboard.

**Rename Component in**

Opens a dialog box that allows you to rename the selected component by specifying the new component name and the files to be affected by the modification. If you click the **Preview** button, you can view the files to be affected by the action.

Figure 533. Rename Identity Constraint Dialog Box
Searching and Refactoring Operations Scope in WSDL Documents

The scope is a collection of documents that define the context of a search and refactor operation. To control it you can use the Change scope operation, available in the Quick Assist action set or on the Resource Hierarchy/Dependency View toolbar. You can restrict the scope to the current project or to one or multiple working sets (on page 3288). The Use only Master Files, if enabled checkbox allows you to restrict the scope of the search and refactor operations to the resources from the Master Files directory. Click read more for details about the Master Files support (on page 726).

Figure 534. Change Scope Dialog Box
The scope you define is applied to all future search and refactor operations until you modify it. Contextual menu actions allow you to add or delete files, folders, and other resources to the working set (on page 3288) structure.

Quick Assist Support in WSDL Documents

The Quick Assist feature (on page 3286) is activated automatically when the cursor is positioned over the name of a component. It is accessible via a yellow bulb icon (💡) placed at the current line in the stripe on the left side of the editor. Also, you can invoke the quick assist menu by using the Alt + 1 (Meta + Alt + 1 on Mac OS X) keyboard shortcuts.

Figure 535. WSDL Quick Assist Support

The Quick Assist support offers direct access to the following actions:

- Rename Component in
Renames the component and all its dependencies.

**Search Declarations**
Searches the declaration of the component in a predefined scope. It is available only when the context represents a component name reference.

**Search References**
Searches all references of the component in a predefined scope.

**Component Dependencies**
Searches the component dependencies in a predefined scope.

**Change Scope**
Configures the scope that will be used for future search or refactor operations.

**Rename Component**
Allows you to rename the current component in-place.

**Search Occurrences**
Searches all occurrences of the component within the current file.

---

### Generating Documentation for WSDL Documents

You can use Oxygen XML Editor to generate detailed documentation for the components of a WSDL document in HTML format. You can select the WSDL components to include in your output and the level of details to present for each of them. Also, the components are hyperlinked. You can also generate the documentation in a custom output format (on page 1375) by using a custom stylesheet.

**Note:** The WSDL documentation includes the XML Schema components that belong to the internal or imported XML schemas.

To generate documentation for a WSDL document, select **WSDL Documentation** from the **Tools > Generate Documentation** menu or from the **Generate Documentation** submenu in the contextual menu of the **Project view** (on page 333).

Figure 536. WSDL Documentation Dialog Box
The **Input URL** field of the dialog box must contain the full path to the WSDL document that you want to generate documentation for. The WSDL document may be a local or a remote file. You can specify the path to the WSDL file by entering it in the text field, or by using the **Insert Editor Variables** button or the options in the **Browse** drop-down menu.

### Output Tab

The following options are available in the **Output** tab:

- **Format** - Allows you to choose between the following formats:
  - **HTML** - The documentation is generated in [HTML output format](on page 1374).
  - **Custom** - The documentation is generated in a custom output format (on page 1375), allowing you to control the output. Click the **Options** button to open a **Custom format options** dialog box where you can specify a custom stylesheet for creating the output. There is also an option to **Copy additional resources to the output folder** and you can select the path to the additional **Resources** that you want to copy. You can also choose to keep the intermediate XML files created during the documentation process by deselecting the **Delete intermediate XML file** option.

- **Output file** - You can specify the path of the output file by entering it in the text field, or by using the **Insert Editor Variables** button or the options in the **Browse** drop-down menu.

- **Split output into multiple files** - Instructs the application to split the output into multiple files. For large WSDL documents, choosing a different split criterion may generate smaller output files providing a faster documentation browsing. You can choose to split them by namespace, location, or component name.
• **Open in Browser/System Application** - Opens the result in the system application associated with the output file type.

**Note:** To set the browser or system application that will be used, open the **Preferences** dialog box (Options > Preferences) (on page 79), go to **Global**, and set it in the **Default Internet browser** field. This will take precedence over the default system application settings.

• **Keep only the annotations with xml:lang set to** - The generated output will contain only the annotations with the `xml:lang` attribute set to the selected language. If you choose a primary language code (for example, `en` for English), this includes all its possible variations (en-us, en-uk, etc.).

**Setting Tab**

When you generate documentation for a WSDL document, you can choose what components to include in the output and the details to be included in the documentation.

**Figure 537. Settings Tab of the WSDL Documentation Dialog Box**

The **Settings** tab allows you to choose whether or not to include the following:

• **Components**
  - **Services** - Specifies whether or not the generated documentation includes the WSDL services.
  - **Bindings** - Specifies whether or not the generated documentation includes the WSDL bindings.
- **Port Types** - Specifies whether or not the generated documentation includes the WSDL port types.
- **Messages** - Specifies whether or not the generated documentation includes the WSDL messages.
- **XML Schema Components** - Specifies whether or not the generated documentation includes the XML Schema components.
- **Only global elements and types** - Specifies whether or not the generated documentation includes only global elements and types.

**Component Details**
- **Namespace** - Presents the namespace information for WSDL or XML Schema components.
- **Location** - Presents the location information for each WSDL or XML Schema component.
- **Used by** - Presents the list of components that reference the current one.
- **Documentation** - Presents the component documentation. If you choose *Escape XML Content*, the XML tags are presented in the documentation.
- **Source** - Presents the XML fragment that defines the current component.
- **Instance** - Generates a sample XML instance for the current component.

**Note:** This option applies to the XML Schema components only.
- **XML Schema Diagram** - Displays the diagram for each XML Schema component. You can choose the image format (JPEG, PNG, GIF, SVG) to use for the diagram section.
- **Diagram annotations** - Specifies whether or not the annotations of the components presented in the diagram sections are included.

**Generate index** - Displays an index with the components included in the documentation.
- **Include local elements and attributes** - If selected, local elements and attributes are included in the documentation index.
- **Include resource hierarchy** - Specifies whether or not the resource hierarchy for an XML Schema documentation is generated. It is deselected by default.

**Export settings** - Save the current settings in a settings file for further use (for example, with the exported settings file you can generate the same documentation from the command-line interface). (on page 1376)

**Import settings** - Reloads the settings from the exported file.

**Generate** - Use this button to generate the WSDL documentation.

Generating WSDL Documentation in HTML Format

The WSDL documentation generated in HTML format is presented in a visual diagram style with various sections, hyperlinks, and options.

Figure 538. WSDL Documentation in HTML Format
The documentation of each component is presented in a separate section. The title of the section is composed of the component type and the component name. The component information (namespace, documentation, etc.) is presented in a tabular form.

If you choose to split the output into multiple files, the table of contents is displayed in the left frame and is divided in two tabs: **Components** and **Resource Hierarchy**.

The **Components** tab allows you to group the contents by namespace, location, or component type. The WSDL components from each group are sorted alphabetically. The **Resource Hierarchy** tab displays the dependencies between WSDL and XML Schema modules in a tree-like fashion. The root of the tree is the WSDL document that you generate documentation for.

After the documentation is generated, you can collapse or expand details for some WSDL components by using the **Showing** options or the **Collapse** or **Expand** buttons.

Figure 539. Showing Options
Generating WSDL Documentation in a Custom Format

To obtain the default HTML documentation output from a WSDL document, Oxygen XML Editor uses an intermediary XML document to which it applies an XSLT stylesheet. To create a custom output from your WSDL document, edit the wsdlDocHtml.xsl XSLT stylesheet or create your own.

**Note:** The wsdlDocHtml.xsl stylesheet that is used to obtain the HTML documentation is located in the `[OXYGEN_INSTALL_DIR]/frameworks/wsdl_documentation/xsl` folder.

**Note:** The intermediary XML document complies with the wsdlDocSchema.xsd XML Schema. This schema is located in the `[OXYGEN_INSTALL_DIR]/frameworks/wsdl_documentation` folder.

Figure 540. Custom Format Options Dialog Box

When using a custom format, you can also copy additional resources into the output folder or choose to keep the intermediate XML files created during the documentation process.

Generating WSDL Documentation from the Command-Line Interface

To generate documentation for a WSDL document from the command line, open the **WSDL Documentation** dialog box and click **Export settings**. Using the exported settings file you can generate the same documentation from the command line by running the following scripts:

- `wsdlDocumentation.bat` on Windows.
- `wsdlDocumentation.sh` on Mac OS X and Linux.

The scripts are located in the installation folder of Oxygen XML Editor. You can integrate the scripts in an external batch process launched from the command-line interface.

WSDL SOAP Analyzer

**WSDL SOAP Analyzer** is a tool that helps you test if the messages defined in a Web Service Descriptor (WSDL) are accepted by a Web Services server.
After you edit and validate your Web service descriptor against a mix of the XML Schemas for WSDL and SOAP, it is easy to check if the defined SOAP messages are accepted by the remote Web Services server by using the integrated WSDL SOAP Analyzer tool (available from the toolbar or Tools menu).

Oxygen XML Editor provides two ways of testing, one for the currently edited WSDL document and another for the remote WSDL documents that are published on a web server. To open the WSDL SOAP Analyzer tool for the currently edited WSDL document do one of the following:

- Click the 🔄 WSDL SOAP Analyzer toolbar button.
- Use the 🔄 WSDL SOAP Analyzer action from the Tools menu.
- Go to Open with > 🔄 WSDL SOAP Analyzer in the contextual menu of the Project (on page 333) view.

Figure 541. WSDL SOAP Analyzer Dialog Box
This tool contains a SOAP analyzer and sender for Web Services Description Language file types. The analyzer fields are as follows:

- **Services** - The list of services defined by the WSDL file.
- **Ports** - The ports for the selected service.
- **Operations** - The list of available operations for the selected service.
- **Action URL** - The script that serves the operation.
- **SOAP Action** - Identifies the action performed by the script.
- **Version** - Choose between 1.1 and 1.2. The SOAP version is selected automatically depending on the selected port.
- **Request Editor** - It allows you to compose the web service request. When an action is selected, Oxygen XML Editor tries to generate as much content as possible for the SOAP request. The envelope of the SOAP request has the correct namespace for the selected SOAP version, that is http://schemas.xmlsoap.org/soap/envelope/ for SOAP 1.1 or http://www.w3.org/2003/05/soap-envelope for SOAP 1.2. Usually you just have to change a few values for the request to be valid. The **Content Completion Assistant (on page 3280)** is available for this editor and is driven by the schema that defines the type of the current message. While selecting various operations, Oxygen XML Editor remembers the modified request for each one. You can press the **Regenerate** button to overwrite your modifications for the current request with the initial generated content.
- **Attachments List** - You can define a list of file URLs to be attached to the request.
- **Response Area** - Initially it displays an auto generated server sample response so you can have an idea about how the response looks like. After pressing the **Send** button, it presents the message received from the server in response to the Web Service request. It may show also error messages. If the response message contains attachments, Oxygen XML Editor prompts you to save them, then tries to open them with the associated system application.
- **Errors List** - There may be situations where the WSDL file is respecting the WSDL XML Schema, but it fails to be valid (for example, in the case of a message that is defined by means of an element that is not found in the types section of the WSDL). In such a case, the errors are listed here. This list is presented only when there are errors.
- **Send Button** - Executes the request. A status dialog box is displayed when Oxygen XML Editor is connecting to the server.

The testing of a WSDL file is straight-forward: click the WSDL analysis button, then select the service, the port, and the operation. The editor generates the skeleton for the SOAP request. You can edit the request, eventually attach files to it and send it to the server. Watch the server response in the response area. You can find more details in the **Testing Remote WSDL Files (on page 1379)** section.

**Note:** SOAP requests and responses are automatically validated in the **WSDL SOAP Analyzer** using the XML Schemas specified in the WSDL file.
Once defined, a request derived from a Web Service descriptor can be saved with the Save button to a Web Service SOAP Call (WSSC) file for later reuse. In this way, you save time in configuring the URLs and parameters.

You can open the result of a Web Service call in an editor panel using the Open button.

Testing Remote WSDL Files

To open and test a remote WSDL file the steps are the following:

1. Go to Tools > WSDL SOAP Analyzer.

2. On the WSDL File tab enter the URL of the remote WSDL file.
   You enter the URL:
   • by typing
   • by browsing the local file system
   • by browsing a remote file system
   • by browsing a UDDI Registry (on page 1379)

3. Press the OK button.
   This will open the WSDL SOAP Analyzer tool (on page 1376). In the Saved SOAP Request tab you can open directly a previously saved Web Service SOAP Call (WSSC) file, thus skipping the analysis phase.

UDDI Registry Browser

Pressing the button in the WSDL File Opener dialog box (menu Tools > WSDL SOAP Analyzer) opens the UDDI Registry Browser dialog box.

Figure 542. UDDI Registry Browser Dialog Box
The fields of the dialog box are as follows:

- **URL** - Type the URL of an UDDI registry or choose one from the default list.
- **Keywords** - Enter the string you want to be used when searching the selected UDDI registry for available Web services.
- **Rows to fetch** - The maximum number of rows to be displayed in the result list.
- **Search by** - You can choose to search either by company or by provided service.
- **Case sensitive** - When selected, the search takes into account the keyword case.
- **Search** - The WSDL files that matched the search criteria are added in the result list.

When you select a WSDL from the list and click the **OK** button, the **UDDI Registry Browser** dialog box is closed and you are returned to the **WSDL File Opener** dialog box.

**Editing CSS Stylesheets**

Oxygen XML Editor includes a built-in editor for CSS stylesheets. This section presents the features of the CSS editor and how these features should be used. The features of the CSS editor include:

- **Create new CSS files and templates** - You can use the built-in new file wizards to create new CSS documents or templates *(on page 676).*
- **Open and Edit CSS files** - CSS files can be opened and edited in a source editing mode.
• **Validation** - Presents validation errors in CSS files.

• **Content completion** - Offers proposals for properties and the values that are available for each property.

• **Syntax highlighting** - The syntax highlighting in Oxygen XML Editor makes CSS files more readable.

• **Shortcut to open resources** - You can use Ctrl + Single-Click (Command + Single-Click on OS X) to open imported stylesheets or other resources (such as images) in the default system application for the particular type of resource.

---

**Related Information:**

- Customizing Author Mode Through CSS *(on page 2477)*

- Supported CSS Selectors *(on page 2483)*

- Supported CSS Properties *(on page 2491)*

- Oxygen CSS Extensions *(on page 2501)*

---

**Validating CSS Stylesheets**

Oxygen XML Editor includes a built-in CSS Validator, integrated with general validation support. This makes the usual validation features *(on page 1081)* for presenting errors also available for CSS stylesheets.

When you edit a CSS document, you can access the CSS validator options *(on page 188)* by selecting **Validation options** from the **Document > Validate** menu.

The CSS properties accepted by the validator are those included in the current CSS profile that is selected in the CSS validation preferences *(on page 188)*. The CSS 3 with Oxygen extensions profile includes all the CSS 3 standard properties plus the CSS extensions specific for Oxygen *(on page 2501)* that can be used in Author mode *(on page 402)*. That means all Oxygen-specific extensions are accepted in a CSS stylesheet by the built-in CSS validator *(on page 1381)* when this profile is selected.

---

**Specify Custom CSS Properties**

To specify custom CSS properties, follow these steps:
1. Create a file named CustomProperties.xml that has the following structure:

```xml
<?xml version="1.0" encoding="UTF-8"?>
<css_keywords
    xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
    xsi:schemaLocation="http://www.oxygenxml.com/ns/css
    http://www.oxygenxml.com/ns/css/CssProperties.xsd"
    xmlns="http://www.oxygenxml.com/ns/css">
    <property name="custom">
        <summary>Description for custom property.</summary>
        <value name="customValue"/>
        <value name="anotherCustomValue"/>
    </property>
</css_keywords>
```

2. Go to your desktop and create the builtin/css-validator/ folder structure.

3. Press and hold Shift and right-click anywhere on your desktop. From the contextual menu, select Open Command Window Here.

4. In the command line, run the `jar cvf custom_props.jar builtin/` command.
   The custom_props.jar file is created.

5. Go to `[OXYGEN_INSTALL_DIR]/lib` and create the endorsed folder. Copy the custom_props.jar file to `[OXYGEN_INSTALL_DIR]/lib/endorsed`.

### Content Completion in CSS Stylesheets

A Content Completion Assistant (on page 3280), similar to the one available for XML documents (on page 844) offers the CSS properties and the values available for each property. It can be manually activated with the Ctrl + Space (Command + Space on OS X) shortcut and is context-sensitive when invoked for the value of a property. The Content Completion Assistant also includes code templates that can be used to quickly insert code fragments (on page 855) into CSS stylesheets. The code templates that are proposed include form controls, actions, and Author mode operations.

Figure 543. Content Completion in CSS Stylesheets
The properties and values available are dependent on the CSS Profile selected in the CSS preferences (on page 188). The CSS 2.1 set of properties and property values is used for most of the profiles. However, with CSS 1 and CSS 3 specific proposal sets are used.

The profile CSS 3 with Oxygen extensions includes all the CSS 3 standard properties plus the CSS extensions specific for Oxygen XML Editor (on page 2501) that can be used in Author mode (on page 402).

**Proposals for CSS Selectors** - After inserting a CSS selector, the content completion assistance will propose a list of pseudo-elements and pseudo-classes that are available for the selected CSS profile.

**Proposals for @media and @import Rules** - After inserting @media or @import <url> rules, the content completion assistance will propose a list of supported media types.

---

### Related Information:

- Specify Custom CSS Properties (on page 1381)

---

### Syntax Highlighting in CSS Files

Oxygen XML Editor supports syntax highlighting in **Text** mode to make it easier to read the semantics of the structured content by displaying each type of code in different colors and fonts.

To customize the colors or styles used for the syntax highlighting colors for CSS files, follow these steps:

1. Open the **Preferences** dialog box (Options > Preferences) (on page 79).
2. Go to **Editor > Syntax Highlight** (on page 178).
3. Select and expand the **CSS** section in the top pane.
4. Select the component you want to change and customize the colors or styles using the selectors to the right of the pane.

You can see the effects of your changes in the **Preview** pane.

---

### Related Information:

- Syntax Highlight Preferences (on page 178)
CSS Outline View

The Outline view for CSS stylesheets presents the import declarations for other CSS stylesheet files and all the selectors defined in the current CSS document. The selector entries can be presented as follows:

- In the order they appear in the document.
- Sorted by the element name used in the selector.
- Sorted by the entire selector string representation.

You can synchronize the selection in the Outline view with the cursor moves or changes you make in the stylesheet document. When you select an entry from the Outline view, Oxygen XML Editor highlights the corresponding import or selector in the CSS editor.

By default, it is displayed on the left side of the editor. If the view is not displayed, it can be opened by selecting it from the Window > Show View menu.

Figure 544. CSS Outline View

The selectors presented in this view can be found quickly using the key search field. When you press a sequence of character keys while the focus is in the view, the first selector that starts with that sequence is selected automatically.

Folding in CSS Stylesheets

In a large CSS stylesheet document, some styles can be collapsed so that only the styles that are needed remain in focus. The same folding features available for XML documents (on page 840) are also available in CSS stylesheets.
**Editor's Note:** To enhance your editing experience, you can select entire blocks (parts of text delimited by brackets) by double-clicking somewhere inside the brackets.

### Formatting and Indenting CSS Stylesheets (Pretty Print)

If the edited CSS stylesheet becomes unreadable because of the bad alignment of the text lines, the format and indent operation available for XML documents ([on page 863](#)) is also available for CSS stylesheets. It works in the same way as for XML documents and is available as the same menu and toolbar action.

### Minifying CSS Stylesheets

*Minification* (or compression) of a CSS document is the practice of removing unnecessary code without affecting the functionality of the stylesheet.

To minify a CSS, invoke the contextual menu anywhere in the edited document and choose the `Minify CSS` action. Oxygen XML Editor opens a dialog box that allows you to:

- Set the location of the resulting CSS.
- Place each style rule on a new line.

After pressing **OK**, Oxygen XML Editor performs the following actions:

- All spaces are normalized (all leading and trailing spaces are removed, while sequences of white spaces are replaced with single space characters).
- All comments are removed.

**Editor’s Note:** The CSS minifier relies heavily upon the W3C CSS specification. If the content of the CSS file you are trying to minify does not conform with the specifications, an error dialog box will be displayed, listing all errors encountered during the processing.

The resulting CSS stylesheet gains a lot in terms of execution performance, but loses in terms of readability. The source CSS document is left unaffected.

**Editor’s Note:** To restore the readability of a minified CSS, invoke the `Format and Indent` action from the `Document > Source` menu, the `Source` submenu from the contextual menu, or `Source` toolbar. However, this action will not recover any of the deleted comments.
Editing LESS Stylesheets

Oxygen XML Editor provides support for stylesheets coded with the LESS dynamic stylesheet language. LESS extends the CSS language by adding features that allow mechanisms such as variables, nesting, mixins, operators, and functions. Oxygen XML Editor offers additional LESS-editing features that include:

- **Create new LESS files and templates** - You can use the built-in new file wizards to create new LESS documents or templates (on page 676).
- **Open and Edit LESS files** - LESS files can be opened and edited in a source editing mode.
- **Validation** - Presents validation errors in LESS files.
- **Content completion** - Offers proposals for properties and the values that are available for each property.
- **Compile to CSS** - Options are available to compile LESS files to CSS.
- **Syntax highlighting** - Oxygen XML Editor supports syntax highlighting in LESS files, although there may be some limitations in supporting all the LESS constructs.
- **Shortcut to open resources** - While editing LESS files, you can use Ctrl + Single-Click (Command + Single-Click on OS X) to open imported stylesheets or other resources (such as images) in the default system application for the particular type of resource.

For more information about LESS go to: [http://lesscss.org/](http://lesscss.org/).

Related Information:

- Customizing Author Mode Through CSS (on page 2477)
- Supported CSS Selectors (on page 2483)
- Supported CSS Properties (on page 2491)
- Oxygen CSS Extensions (on page 2501)

Validating LESS Stylesheets

Oxygen XML Editor includes a built-in LESS CSS Validator, integrated with general validation support. The usual validation features (on page 1081) for presenting errors also available for LESS stylesheets.

Oxygen XML Editor provides three validation methods:
• Automatic validation as you type - marks validation errors in the document as you are editing.
• Validation upon request, by pressing the Validate button from the Validation toolbar drop-down menu. An error list is presented in the message panel at the bottom of the editor.
• Validation scenarios, by selecting Configure Validation Scenario(s) from the Validation toolbar drop-down menu. Errors are presented in the message panel at the bottom of the editor. This is useful when you need to validate the current file as part of a larger LESS import hierarchy (for instance, you may change the URL of the file to validate to the root of the hierarchy).

Content Completion in LESS Stylesheets

A Content Completion Assistant offers the LESS properties and the values available for each property. It can be manually activated with the Ctrl + Space (Command + Space on OS X) shortcut and is context-sensitive when invoked for the value of a property in a LESS file. The Content Completion Assistant also includes code templates that can be used to quickly insert code fragments into LESS stylesheets. The code templates that are proposed include form controls, actions, and Author mode operations.

Figure 545. Content Completion in LESS Stylesheets

The properties and values available are dependent on the CSS Profile selected in the CSS preferences.

Syntax Highlighting in LESS Files

Oxygen XML Editor supports syntax highlighting in Text mode to make it easier to read the semantics of the structured content by displaying each type of code in different colors and fonts.

To customize the colors or styles used for the syntax highlighting colors for LESS files, follow these steps:

1. Open the Preferences dialog box (Options > Preferences) (on page 79).
2. Go to Editor > Syntax Highlight (on page 178).
3. Select and expand the LESS section in the top pane.
4. Select the component you want to change and customize the colors or styles using the selectors to the right of the pane.

You can see the effects of your changes in the **Preview** pane.

Related Information:

- Syntax Highlight Preferences *(on page 178)*

---

**Compiling LESS Stylesheets to CSS**

When editing LESS files, you can compile the files into CSS. Oxygen XML Editor provides both manual and automatic options to compile LESS stylesheets into CSS.

⚠️ **Important:** The LESS processor works well only with files having the *UTF-8* encoding. Thus, it is highly recommended that you always use the *utf-8* encoding when working with LESS files or the files they import (other LESS or CSS files). You can use the following directive at the beginning of your files:

```
@charset "utf-8";
```

You have two options for compiling LESS files to CSS:

1. Use the contextual menu in a LESS file and select **Compile to CSS** *(Ctrl + Shift + C (Command + Shift + C on OS X))*.
2. Select the **Automatically compile LESS to CSS when saving** option *(on page 157)* (in the **Save** preferences page). If selected, when you save a LESS file it will automatically be compiled to CSS (this option is deselected by default).

⚠️ **Important:** If this option is selected, when you save a LESS file, the CSS file that has the same name as the LESS file is overwritten without warning. Make sure all your changes are made in the LESS file. Do not edit the CSS file directly, as your changes might be lost.

---

**Editing Relax NG Schemas**

An XML Schema describes the structure of an XML document and is used to validate XML document instances against it, to check that the XML instances conform to the specified requirements. If an XML instance conforms to the schema then it is said to be valid. Otherwise, it is invalid.

Oxygen XML Editor offers support for editing Relax NG schema files in the following editing modes:
- **Text editing mode (on page 1286)** - Allows you to edit Relax NG schema files in a source editing mode, along with a schema design pane with two tabs that offer a [Full Model View (on page 1390)](on_page) and [Logical Model View (on page 1391)](on_page).

- **Grid editing mode (on page 392)** - Displays Relax NG schema files in a structured spreadsheet-like grid.

- **Author editing mode (on page 893)** - The visual Author mode is also available for Relax NG schema files, presenting the schema similar to the Relax NG compact syntax. It links to imported schemas and external references. Embedded Schematron is also supported in Relax NG schemas with XML syntax.

For information about applying and detecting schemas, see [Associating a Schema to XML Documents (on page 1112)](on_page).

---

Related Information:

- [Associating a Schema to XML Documents (on page 1112)](on_page)

---

### Editing Relax NG Schema in the Master Files Context

Smaller interrelated modules that define a complex Relax NG Schema cannot be correctly edited or validated individually, due to their interdependency with other modules. For example, an element defined in a main schema document is not visible when you edit an included module. Oxygen XML Editor provides the support for defining the main module (or modules), thus allowing you to edit any of the imported/included schema files in the context of the larger schema structure.

You can set a main Relax NG document either using the [master files support from the Project view (on page 726)](on_page), or using a validation scenario.

To set a master file using a validation scenario, add validation units that point to the main schemas. Oxygen XML Editor warns you if the current module is not part of the dependencies graph computed for the main schema. In this case, it considers the current module as the main schema.

The main advantage of editing in the context of a [master file (on page 3284)](on_page) is that it provides correct validation of a module in the context of a larger schema structure.

---

Related Information:

- [Creating a New Validation Scenario (on page 1094)](on_page)
Relax NG Schema Diagram Editor

This section explains how to use the graphical diagram editor for Relax NG schemas.

Introduction to Relax NG Schema Diagram Editor

Oxygen XML Editor provides a simple, expressive, and easy-to-read schema diagram editor for Relax NG schemas.

With this new feature you can easily develop complex schemas, print them on multiple pages or save them as JPEG, PNG, or BMP images. It helps both schema authors in developing the schema and content authors who are using the schema to understand it.

Oxygen XML Editor is the only XML editor to provide a side by side source and diagram presentation and have them real-time synchronized:

- The changes you make in the Editor are immediately visible in the Diagram (no background parsing).
- Changing the selected element in the diagram selects the underlying code in the source editor.

Full Model View

When you create a new schema document or open an existing one, the editor panel is divided in two sections: one containing the schema diagram and the second the source code. The schema diagram editor has two tabs that offer a Full Model View and Logical Model View (on page 1391).

Figure 546. Relax NG Schema Editor - Full Model View
The following references can be expanded in place: patterns, includes, and external references. This expansion mechanism, coupled with the synchronization support, makes the schema navigation easy.

All the element and attribute names are editable by double-clicking the names.

Logical Model View

The **Logical Model View** presents the compiled schema in the form of a single pattern. The patterns that form the element content are defined as top level patterns with generated names. These names are generated depending of the elements name class.

Figure 547. Logical Model View for a Relax NG Schema
Symbols Used in the Schema Diagram

The views in the schema diagram editor renders all the Relax NG schema patterns with the following intuitive symbols:

- **• - define pattern with the name attribute set to the value shown inside the rectangle (in this example name ).**
- **• - define pattern with the combine attribute set to interleave and the name attribute set to the value shown inside the rectangle (in this example attlist.person ).**
- **• - define pattern with the combine attribute set to choice and the name attribute set to the value shown inside the rectangle (in this example attlist.person ).**
- **• - element pattern with the name attribute set to the value shown inside the rectangle (in this example name ).**
- **• - attribute pattern with the name attribute set to the value shown inside de rectangle (in this case note ).**
- ref pattern with the name attribute set to the value shown inside the rectangle (in this case family).

- oneOrMore pattern.

- zeroOrMore pattern.

- optional pattern.

- choice pattern.

- value pattern (for example, used inside a choice pattern).

- group pattern.

- A pattern from the Relax NG Annotations namespace (http://relaxng.org/ns/compatibility/annotations/1.0) that is treated as a documentation element in a Relax NG schema.

- text pattern.

- empty pattern.

Actions Available in the Schema Diagram Editor

When editing Relax NG schemas in Full Model View (on page 1390), the contextual menu offers the following actions:

Go to definition (Available for imported components)

This action is available for imported components from other RNG files, and it shows where that component is defined.

Append child

Appends a child to the selected component.

Insert Before

Inserts a component before the selected component.

Insert After

Inserts a component after the selected component.

Edit attributes

Edits the attributes of the selected component.
Remove

Removes the selected component.

Show only the selected component

Depending on its state (selected/not selected), either the selected component or all the diagram components are shown.

Show Annotations

Depending on its state (selected/not selected), the documentation nodes are shown or hidden.

Auto expand to references

This option controls how the schema diagram is automatically expanded. If you select it and then edit a top-level element or you make a refresh, the diagram is expanded until it reaches referenced components. If this option is left unchecked, only the first level of the diagram is expanded, showing the top-level elements. For large schemas, the editor disables this option automatically.

Collapse Children

Collapses the children of the selected view.

Expand Children

Expands the children of the selected view.

Print Selection

Prints the selected view.

Save as Image

Saves the current selection as JPEG, BMP, SVG or PNG image.

Refresh

Refreshes the schema diagram according to the changes in your code. They represent changes in your imported documents or changes that are not reflected automatically in the compiled schema).

If the schema is not valid, you see only an error message in the Logical Model View (on page 1391) instead of the diagram.

Validating Relax NG Schema Documents

By default, Relax NG schema files are validated as you type. To change this, open the Preferences dialog box (Options > Preferences) (on page 79), go to Editor > Document Checking, and deselect the Enable automatic validation option (on page 181).
To validate a Relax NG schema document manually, select the **Validate** action from the **Validation** toolbar drop-down menu or the **Document > Validate** menu. When Oxygen XML Editor validates a Relax NG schema file, it expands all the included modules so the entire schema hierarchy is validated. The validation problems are highlighted directly in the editor, making it easy to locate and fix any issues.

### Related Information:

- Validating XML Documents Against a Schema *(on page 1081)*
- Embedding Schematron Rules in XML Schema or RELAX NG *(on page 1469)*
- Validation Scenario *(on page 1093)*
- Associating a Schema to XML Documents *(on page 1112)*
- Presenting Validation Errors in Author Mode *(on page 445)*
- Presenting Validation Errors in Text Mode *(on page 364)*

## Content Completion in Relax NG Schemas

The intelligent **Content Completion Assistant** *(on page 3280)* allows you to quickly identify and insert elements, attributes, and attribute values that are valid in the current editing context. All available proposals are listed in a pop-up menu displayed at the current cursor position.

The **Content Completion Assistant** is enabled by default. To disable it, open the **Preferences** dialog box *(Options > Preferences)* *(on page 79)*, go to **Editor > Content Completion**, and deselect the Enable content completion option *(on page 167)*.

When active, the **Content Completion Assistant** displays a list of context-sensitive proposals valid at the current cursor position. It can be manually activated with the **Ctrl + Space** *(Command + Space on OS X)* shortcut. You can navigate through the list of proposals by using the **Up** and **Down** keys on your keyboard. For each selected item in the list, the **Content Completion Assistant** displays a documentation window. You can customize the size of the documentation window by dragging its top, right, and bottom borders.

To insert the selected proposal in **Text** mode, do one of the following:
- Press **Enter** or **Tab** to insert both the start and end tags and position the cursor inside the start tag in a position suitable for inserting attributes.

- Press **Ctrl + Enter (Command + Enter on OS X)** to insert both the start and end tags and positions the cursor between the tags in a position where you can start typing content.

If you are using the concept of *master files (on page 3284)* to import/include modules, the **Content Completion Assistant** collects its components starting from the *master files*. The *master files* can be defined in the project or in the associated validation scenario. For more information about the *Master Files* support in Oxygen XML Editor, see **Defining Master Files at Project Level (on page 726)**.

The **Content Completion Assistant** also offers additional information for the element and attribute proposals in the form of schema annotations that is displayed in a tooltip.

Figure 548. Relax NG Content Completion Assistant

Syntax Highlighting in Relax NG Schemas

Oxygen XML Editor supports syntax highlighting in **Text** mode to make it easier to read the semantics of the structured content by displaying each type of code in different colors and fonts.

To customize the colors or styles used for the syntax highlighting colors for Relax NG schemas, follow these steps:

1. Open the **Preferences** dialog box (**Options > Preferences**) (on page 79).
2. Go to **Editor > Syntax Highlight** (on page 178).
3. Select and expand the **XML** section in the top pane (for RELAX NG Compact Syntax schemas, select and expand the **RNC** section).
4. Select the component you want to change and customize the colors or styles using the selectors to the right of the pane.
5. Select the **XML** tab in the **Preview** pane to see the effects of your changes (for RELAX NG Compact Syntax schemas, the tab is **RNC**).
Tip: Oxygen XML Editor also allows you to specify syntax highlighting colors for specific XML elements and attributes with specific namespace prefixes. This can be done in the Editor > Syntax Highlight > Elements/Attributes by Prefix preferences page (on page 179).

Related Information:

• Syntax Highlight Preferences (on page 178)

Quick Fixes for DTD, XSD, and Relax NG Errors

Oxygen XML Editor offers Quick Fixes (on page 3287) for common errors that appear in XML documents that are validated against DTD, XSD, or Relax NG schemas.

Note: For XML documents validated against XSD schemas, the Quick Fixes are only available if you use the default Xerces validation engine.

Quick Fixes are available in Text mode and Author mode.

Oxygen XML Editor provides Quick Fixes for numerous types of problems, including the following:

<table>
<thead>
<tr>
<th>Problem Type</th>
<th>Available Quick Fixes</th>
</tr>
</thead>
<tbody>
<tr>
<td>A specific element is required in the current context</td>
<td>Insert the required element</td>
</tr>
<tr>
<td>An element is invalid in the current context</td>
<td>Remove the invalid element</td>
</tr>
<tr>
<td>The content of the element should be empty</td>
<td>Remove the element content</td>
</tr>
<tr>
<td>An element is not allowed to have child elements</td>
<td>Remove all child elements</td>
</tr>
<tr>
<td>Text is not allowed in the current element</td>
<td>Remove the text content</td>
</tr>
<tr>
<td>A required attribute is missing</td>
<td>Insert the required attribute</td>
</tr>
<tr>
<td>An attribute is not allowed to be set for the current element</td>
<td>Remove the attribute</td>
</tr>
<tr>
<td>The attribute value is invalid</td>
<td>Propose the correct attribute values</td>
</tr>
<tr>
<td>ID value is already defined</td>
<td>Generate a unique ID value</td>
</tr>
<tr>
<td>References to an invalid ID</td>
<td>Change the reference to an already defined ID</td>
</tr>
</tbody>
</table>

Related Information:

• Schematron Quick Fixes (SQF) (on page 1111)
Relax NG Outline View

The Outline view for Relax NG schemas presents a list with the patterns that appear in the diagram in both the Full Model View (on page 1390) and Logical Model View (on page 1391) cases and it allows for quick access to a component by name. By default, it is displayed on the left side of the editor. If the view is not displayed, it can be opened by selecting it from the Window > Show View menu.

Figure 549. Relax NG Outline View

This view has two modes, with the tree showing either the XML structure or the defined pattern (components) collected from the current document. By default, the Outline view presents the components.

When the Show components option is selected in the Settings menu on the Outline view toolbar, the following option is available:

Show XML structure

Shows the XML structure of the current document in a tree-like manner.

The following actions are available in the Settings menu on the Outline view toolbar when the Show XML structure option is selected:

Filter returns exact matches
The text filter of the Outline view returns only exact matches.

Selection update on cursor move
Allows a synchronization between Outline view and schema diagram. The selected view from the diagram will be also selected in the Outline view.

Show components
Shows the defined pattern collected from the current document.

Flat presentation mode of the filtered results
When active, the application flattens the filtered result elements to a single level.

Show comments and processing instructions
Show/hide comments and processing instructions in the Outline view.

Show element name
Show/hide element name.

Show text
Show/hide additional text content for the displayed elements.

Show attributes
Show/hide attribute values for the displayed elements. The displayed attribute values can be changed from the Outline preferences panel (on page 259).

Configure displayed attributes
Displays the XML Structured Outline preferences page (on page 259).

The following contextual menu actions are also available in the Outline view when the Show XML structure option is selected in the Settings menu:

Append Child
Displays a list of elements that you can insert as children of the current element.

Insert Before
Displays a list of elements that you can insert as siblings of the current element, before the current element.

Insert After
Displays a list of elements that you can insert as siblings of the current element, after the current element.

Edit Attributes
Opens a dialog box that allows you to edit the attributes of the currently selected component.

**Toggle Comment**

Comments/uncomments the currently selected element.

**Search references**

Searches for the references of the currently selected component.

**Search references in**

Searches for the references of the currently selected component in the context of a scope that you define.

**Component dependencies**

Opens the Component Dependencies view (on page 1403) that displays the dependencies of the currently selected component.

**Rename Component in**

Renames the currently selected component in the context of a scope that you define.

**Cut**

Cuts the currently selected component.

**Copy**

Copies the currently selected component.

**Delete**

Deletes the currently selected component.

**Expand More**

Expands the structure of a component in the Outline view.

**Collapse All**

Collapses the structure of all the component in the Outline view.

The upper part of the Outline view contains a filter box that allows you to focus on the relevant components. Type a text fragment in the filter box and only the components that match it are presented. For advanced usage you can use wildcard characters (such as *, ?) and separate multiple patterns with commas.
RNG Resource Hierarchy/Dependencies View

The Resource Hierarchy/Dependencies view displays the hierarchy or dependencies for an RNG schema. If the view is not displayed, it can be opened by selecting it from the Window > Show View menu.

If you want to see the hierarchy or dependencies of an RNG schema, select the desired schema in the Project view (on page 333) and choose Resource Hierarchy or Resource Dependencies from the contextual menu.

Figure 550. Resource Hierarchy/Dependencies View

The following actions are available on the toolbar of the Resource Hierarchy/Dependencies view:

- **Refresh**
  Refreshes the Hierarchy/Dependencies structure.

- **Stop**
  Stops the hierarchy/dependencies computing.

- **Show Hierarchy**
  Allows you to choose a resource to compute the hierarchy structure.

- **Show Dependencies**
  Allows you to choose a resource to compute the dependencies structure.

- **Configure dependencies search scope**
  Allows you to configure a scope to compute the dependencies structure. There is also an option for automatically using the defined scope for future operations.

- **History**
Provides access to the list of previously computed dependencies. Use the Clear history button to remove all items from this list.

The contextual menu for a resource listed in the Resource Hierarchy/Dependencies view contains the following actions:

**Open**

Opens the resource. You can also double-click a resource in the Hierarchy/Dependencies structure to open it.

**Go to reference**

Opens the source document where the resource is referenced.

**Copy location**

Copies the location of the resource.

**Move resource**

Moves the selected resource.

**Rename resource**

Renames the selected resource.

**Show Resource Hierarchy**

Shows the hierarchy for the selected resource.

**Show Resource Dependencies**

Shows the dependencies for the selected resource.

**Add to Master Files**

Adds the currently selected resource in the Master Files directory (on page 726).

**Expand All**

Expands all the children of the selected resource from the Hierarchy/Dependencies structure.

**Collapse All**

Collapses all children of the selected resource from the Hierarchy/Dependencies structure.

**Tip:** When a recursive reference is encountered in the Hierarchy view, the reference is marked with a special icon.

**Note:** The Move resource or Rename resource actions give you the option to update the references to the resource (on page 1365).
Moving/Renaming RNG Resources

You can move and rename a resource presented in the Resource/Hierarchy Dependencies view, using the Rename resource and Move resource refactoring actions from the contextual menu.

When you select the Rename action in the contextual menu of the Resource/Hierarchy Dependencies view, the Rename resource dialog box is displayed. The following fields are available:

- **New name** - Presents the current name of the edited resource and allows you to modify it.
- **Update references of the renamed resource(s)** - Select this option to update the references to the resource you are renaming. A Preview option is available that allows you to see what will be updated before selecting Rename to process the operation.

When you select the Move action from the contextual menu of the Resource/Hierarchy Dependencies view, the Move resource dialog box is displayed. The following fields are available:

- **Destination** - Presents the path to the current location of the resource you want to move and gives you the option to introduce a new location.
- **New name** - Presents the current name of the moved resource and gives you the option to change it.
- **Update references of the moved resource(s)** - Select this option to update the references to the resource you are moving, in accordance with the new location and name. A Preview option is available that allows you to see what will be updated before selecting Move to process the operation.

**Note:** Updating the references of a resource that is resolved through a catalog is not supported. Also, the update references operation is not supported if the path to the renamed or moved resource contains entities.

Relax NG Schema Component Dependencies View

The Component Dependencies view allows you to see the dependencies for a selected component. This is helpful if you want to see where components are used in the entire hierarchy. For example, if you want to find all the references where a given component is used.
If the view is not displayed, it can be opened by selecting it from the **Window > Show View** menu.

To see the dependencies of a RelaxNG component:

1. Right-click the desired component in the editor or **Outline** view.
2. Select the **Component Dependencies** action from the contextual menu.

The action is available for all named defines.

If a component contains multiple references, a small table is displayed at the bottom of the view that contains all the references. When a recursive reference is encountered, it is marked with a special icon.

**Figure 551. Component Dependencies View - Hierarchy for base.rng**

The **Component Dependencies** view includes the following toolbar actions:

- **Refresh**
  
  Refreshes the dependencies structure.

- **Stop**
  
  Stops the dependency computation.

- **Configure**
  
  Allows you to choose the search scope for computing the dependencies structure. This is helpful for making sure all imported/included resources are computed.

- **History**
  
  Allows you to select from a list of the most recently used dependency computations.

In addition, the following actions are available in the contextual menu:

- **Go to First Reference**
  
  Selects the first reference of the currently selected component in the dependencies tree.

- **Go to Component**
Shows the definition of the currently selected component in the dependencies tree.

Related Information:

- Search and Refactor Operations Scope (on page 1129)

Searching and Refactoring Actions in RNG Schemas

Search Actions

The following search actions can be applied on named defines and are available from the Search submenu in the contextual menu of the current editor or from the Document > References menu:

- **Search References**
  
  Searches all references of the item found at current cursor position in the defined scope, if any. If a scope is defined, but the current edited resource is not part of the range of resources determined by this, a warning dialog box is displayed and you have the possibility to define another search scope.

- **Search References in**
  
  Searches all references of the item found at current cursor position in the file or files that you specify when define a scope in the Search References dialog box.

- **Search Declarations**
  
  Searches all declarations of the item found at current cursor position in the defined scope if any. If a scope is defined, but the current edited resource is not part of the range of resources determined by this, a warning dialog box will be displayed and you have the possibility to define another search scope.

- **Search Declarations in**
  
  Searches all declarations of the item found at current cursor position in the file or files that you specify when you define a scope for the search operation.

- **Search Occurrences in File**
  
  Searches all occurrences of the item at the cursor position in the currently edited file.

The following action is available from the contextual menu and the Document > Schema menu:

- **Go to Definition**
Moves the cursor to the definition of the current element in the Relax NG (full syntax) schema.

Note: You can also use the **Ctrl + Single-Click (Command + Single-Click on OS X)** shortcut on a reference to display its definition.

**Refactoring Actions**

The following refactoring actions can be applied on named *defines* and are available from the **Refactoring** submenu in the contextual menu of the current editor or from the **Document > Refactoring** menu:

**Rename Component**

Allows you to rename the current component (in-place). The component and all its references in the document are highlighted with a thin border and the changes you make to the component at the cursor position are updated in real time to all occurrences of the component. To exit the in-place editing, press the **Esc** or **Enter** key on your keyboard.

**Rename Component in**

Opens a dialog box that allows you to rename the selected component by specifying the new component name and the files to be affected by the modification. If you click the **Preview** button, you can view the files to be affected by the action.

Figure 552. Rename Identity Constraint Dialog Box
RNG Quick Assist Support

The Quick Assist support (on page 3286) improves the development workflow, offering fast access to the most commonly used actions when you edit schema documents.

The Quick Assist feature (on page 3286) is activated automatically when the cursor is positioned over the name of a component. It is accessible via a yellow bulb icon (💡) placed at the current line in the stripe on the left side of the editor. Also, you can invoke the quick assist menu by using the Alt + 1 (Meta + Alt + 1 on Mac OS X) keyboard shortcuts.

Figure 553. RNG Quick Assist Support

The Quick Assist support offers direct access to the following actions:

- Rename Component in
  Renames the component and all its dependencies.

- Search Declarations
  Searches the declaration of the component in a predefined scope. It is available only when the context represents a component name reference.

- Search References
  Searches all references of the component in a predefined scope.

- Component Dependencies
  Searches the component dependencies in a predefined scope.

- Change Scope
  Configures the scope that will be used for future search or refactor operations.

- Rename Component
  Allows you to rename the current component in-place.

- Search Occurrences
Searches all occurrences of the component within the current file.

Related Information:

- Component Dependencies View (on page 1403)
- Resource Hierarchy/Dependencies View (on page 1400)
- Searching and Refactoring Actions (on page 1405)
- Search and Refactor Operations Scope (on page 1129)

Configuring a Custom Datatype Library for a RELAX NG Schema

A RELAX NG schema can declare a custom datatype library for the values of elements found in XML document instances. The datatype library must be developed in Java and it must implement the interface specified on the www.thaiopensource.com website.

The JAR (on page 3283) file containing the custom library and any other dependent JAR file must be added to the classpath of the application, that is the JAR files must be added to the folder [OXYGEN_INSTALL_DIR]/lib.

To load the custom library, restart Oxygen XML Editor.

Editing NVDL Schemas

Some complex XML documents are composed by combining elements and attributes from namespaces. Furthermore, the schemas that define these namespaces are not even developed in the same schema language. In such cases, it is difficult to specify in the document all the schemas that must be taken into account for validation of the XML document or for content completion. An NVDL (Namespace Validation Definition Language) schema can be used. This schema allows the application to combine and interleave multiple schemas of different types (W3C XML Schema, RELAX NG schema, Schematron schema) in the same XML document.

Oxygen XML Editor offers support for editing NVDL schema files in the following editing modes:

- **Text editing mode (on page 1286)** - Allows you to edit NVDL schema files in a source editing mode, along with a schema design pane with two tabs that offer a Full Model View (on page 1409) and Logical Model View (on page 1410).
• **Grid editing mode** *(on page 392)* - Displays NVDL schema files in a structured spreadsheet-like grid.

• **Author editing mode** - The visual **Author** mode is also available for Relax NG schema files, presenting them in a compact and easy to understand representation.

For information about applying and detecting schemas, see **Associating a Schema to XML Documents** *(on page 1112)*.

**Related Information:**

• **Associating a Schema to XML Documents** *(on page 1112)*

---

**NVDL Schema Diagram**

This section explains how to use the graphical diagram of a NVDL schema.

**Introduction to NVDL Schema Diagram Editor**

Oxygen XML Editor provides a simple, expressive, and easy-to-read schema diagram editor for NVDL schemas.

With this new feature you can easily develop complex schemas, print them on multiple pages or save them as JPEG, PNG, and BMP images. It helps both schema authors in developing the schema and content authors that are using the schema to understand it.

Oxygen XML Editor is the only XML Editor to provide a side by side source and diagram presentation and have them real-time synchronized:

• The changes you make in the Editor are immediately visible in the Diagram (no background parsing).
• Changing the selected element in the diagram, selects the underlying code in the source editor.

**Full Model View**

When you create a schema document or open an existing one, the editor panel is divided in two sections: one containing the schema diagram and the second the source code. The diagram view has two tabbed panes offering a **Full Model View** and a **Logical Model View** *(on page 1410)*.

Figure 554. NVDL Schema Editor - Full Model View
The **Full Model View** renders all the NVDL elements with intuitive icons. This representation coupled with the synchronization support makes the schema navigation easy.

Double-click any diagram component to edit its properties.

**Logical Model View**

The **Logical Model View** presents the compiled schema in the form of a single pattern. The patterns that form the element content are defined as top level patterns with generated names. These names are generated depending of the elements name class.

Figure 555. Logical Model View for an NVDL Schema
Actions Available in the Diagram Editor

The contextual menu offers the following actions:

**Show only the selected component**

Depending on its state (selected/not selected), either the selected component or all the diagram components are shown.

**Show Annotations**

Depending on its state (selected/not selected), the documentation nodes are shown or hidden.

**Auto expand to references**

This option controls how the schema diagram is automatically expanded. For instance, if you select it and then edit a top-level element or you trigger a diagram refresh, the diagram will be expanded until it reaches the referenced components. If this option is left unchecked, only the first level of the diagram is expanded, showing the top-level elements. For large schemas, the editor disables this option automatically.

**Collapse Children**

Collapses the children of the selected view.

**Expand Children**

Expands the children of the selected view.

**Print Selection**

Prints the selected view.

**Save as Image**

Saves the current selection as image, in JPEG, BMP, SVG or PNG format.

**Refresh**
Refreshes the schema diagram according to the changes in your code (changes in your imported documents or those that are not reflected automatically in the compiled schema).

If the schema is not valid, you see only an error message in the Logical Model View (on page 1410) instead of the diagram.

Validating NVDL Schema Documents

By default, NVDL schema files are validated as you type. To change this, open the Preferences dialog box (Options > Preferences) (on page 79), go to Editor > Document Checking, and deselect the Enable automatic validation option (on page 181).

To validate an NVDL schema document manually, select the Validate action from the Validation toolbar drop-down menu or the Document > Validate menu. When Oxygen XML Editor validates an NVDL schema file, it expands all the included modules so the entire schema hierarchy is validated. The validation problems are highlighted directly in the editor, making it easy to locate and fix any issues.

Related Information:

- Validating XML Documents Against a Schema (on page 1081)

Content Completion in NVDL Schemas

The intelligent Content Completion Assistant (on page 3280) allows you to quickly identify and insert elements, attributes, and attribute values that are valid in the current editing context. All available proposals are listed in a pop-up menu displayed at the current cursor position.

The Content Completion Assistant is enabled by default. To disable it, open the Preferences dialog box (Options > Preferences) (on page 79), go to Editor > Content Completion, and deselect the Enable content completion option (on page 167).

When active, the Content Completion Assistant displays a list of context-sensitive proposals valid at the current cursor position. It can be manually activated with the Ctrl + Space (Command + Space on OS X) shortcut. You can navigate through the list of proposals by using the Up and Down keys on your keyboard. For each selected item in the list, the Content Completion Assistant displays a documentation window. You can customize the size of the documentation window by dragging its top, right, and bottom borders.

To insert the selected proposal in Text mode, do one of the following:
• Press **Enter** or **Tab** to insert both the start and end tags and position the cursor inside the start tag in a position suitable for inserting attributes.

• Press **Ctrl + Enter (Command + Enter on OS X)** to insert both the start and end tags and positions the cursor between the tags in a position where you can start typing content.

If you are using the concept of master files (on page 3284) to import/include modules, the Content Completion Assistant collects its components starting from the master files. The master files can be defined in the project or in the associated validation scenario. For more information about the Master Files support in Oxygen XML Editor, see Defining Master Files at Project Level (on page 726).

The Content Completion Assistant also offers additional information for the element and attribute proposals in the form of schema annotations that is displayed in a tooltip.

Figure 556. NVDL Content Completion Assistant

Syntax Highlighting in NVDL Schemas

Oxygen XML Editor supports syntax highlighting in Text mode to make it easier to read the semantics of the structured content by displaying each type of code in different colors and fonts.

To customize the colors or styles used for the syntax highlighting colors for NVDL schemas, follow these steps:

1. Open the **Preferences** dialog box (Options > Preferences) (on page 79).
2. Go to **Editor > Syntax Highlight** (on page 178).
3. Select and expand the **XML** section in the top pane.
4. Select the component you want to change and customize the colors or styles using the selectors to the right of the pane.
5. Select the **XML** tab in the Preview pane to see the effects of your changes.

**Tip:** Oxygen XML Editor also allows you to specify syntax highlighting colors for specific XML elements and attributes with specific namespace prefixes. This can be done in the Editor > Syntax Highlight > Elements/Attributes by Prefix preferences page (on page 179).

**Related Information:**
NVDL Outline View

The Outline view for NVDL schemas presents a list with the named or anonymous rules that appear in the diagram and it allows for quick access to a rule by name. By default, it is displayed on the left side of the editor. If the view is not displayed, it can be opened by selecting it from the Window > Show View menu.

NVDL Schema Component Dependencies View

The Component Dependencies view allows you to see the dependencies for a selected component. This is helpful if you want to see where components are used in the entire hierarchy. For example, if you want to find all the references where a given component is used.

If the view is not displayed, it can be opened by selecting it from the Window > Show View menu.

To see the dependencies of an NVDL component:

1. Right-click the desired component in the editor or Outline view.
2. Select the Component Dependencies action from the contextual menu.

The action is available for all named modes.

If a component contains multiple references, a small table is displayed at the bottom of the view that contains all the references. When a recursive reference is encountered, it is marked with a special icon.

Figure 557. Component Dependencies View - Hierarchy for test.nvdl

The Component Dependencies view includes the following toolbar actions:

- Refresh
  Refreshes the dependencies structure.
Stop

Stops the dependency computation.

Configure

Allows you to choose the search scope for computing the dependencies structure. This is helpful for making sure all imported/included resources are computed.

History

Allows you to select from a list of the most recently used dependency computations.

In addition, the following actions are available in the contextual menu:

Go to First Reference
Selects the first reference of the currently selected component in the dependencies tree.

Go to Component
Shows the definition of the currently selected component in the dependencies tree.

Searching and Refactoring Actions in NVDL Schemas

Search Actions

The following search actions can be applied on name, useMode, and startMode attributes and are available from the Search submenu in the contextual menu of the current editor or from the Document > References menu:

Search References

Searches all references of the item found at current cursor position in the defined scope, if any. If a scope is defined, but the current edited resource is not part of the range of resources determined by this, a warning dialog box is displayed and you have the possibility to define another search scope.

Search References in

Searches all references of the item found at current cursor position in the file or files that you specify when define a scope in the Search References dialog box.

Search Declarations

Searches all declarations of the item found at current cursor position in the defined scope if any. If a scope is defined, but the current edited resource is not part of the range of resources determined by this, a warning dialog box will be displayed and you have the possibility to define another search scope.

Search Declarations in
Searches all declarations of the item found at current cursor position in the file or files that you specify when you define a scope for the search operation.

**Search Occurrences in File**

Searches all occurrences of the item at the cursor position in the currently edited file.

The following action is available from the contextual menu and the Document > Schema menu:

**Go to Definition**

Moves the cursor to its definition in the schema used by the NVDL to validate it.

**Note:** You can also use the **Ctrl + Single-Click (Command + Single-Click on OS X)** shortcut on a reference to display its definition.

**Refactoring Actions**

The following refactoring actions can be applied on `name`, `useMode`, and `startMode` attributes and are available from the Refactoring submenu in the contextual menu of the current editor or from the Document > Refactoring menu:

**Rename Component**

Allows you to rename the current component (in-place). The component and all its references in the document are highlighted with a thin border and the changes you make to the component at the cursor position are updated in real time to all occurrences of the component. To exit the in-place editing, press the **Esc** or **Enter** key on your keyboard.

**Rename Component in**

Opens a dialog box that allows you to rename the selected component by specifying the new component name and the files to be affected by the modification. If you click the **Preview** button, you can view the files to be affected by the action.

Figure 558. Rename Identity Constraint Dialog Box
Editing JSON Documents

Oxygen XML Editor includes a document template to help you get started with JSON documents. The template is called JSON and it can be found in the New Document folder in the New document wizard (on page 676).

This section explains the features of the Oxygen XML Editor JSON Editor and how to use them.

For more information about JSON editing support, watch our video demonstration:

https://www.youtube.com/embed/wglkagwSDrU

Editing JSON Documents in Text Mode

When editing JSON documents in the Text editing mode, the usual text editing actions (on page 832) are available, along with other editor-specific actions, including:

- Find/Replace (on page 740)
- Drag and Drop (on page 841)
- Validation (on page 1420)
- Format and Indent (Pretty Print) (on page 863)
Note: You can run XPath expressions on opened JSON documents, but in Text mode the XPath results cannot be mapped in the document. However, they can be mapped in the Grid editing mode. You can use the Grid button at the bottom of the editor panel to switch to that editing mode.

Navigating References in JSON Documents

When editing JSON documents (or JSON Schema), you can easily navigate JSON Pointer references and hyperlinks by using the Ctrl + Click shortcut. Holding the Ctrl key while hovering over a JSON Pointer references or hyperlink will change the reference to a clickable link.

Related Information:

- Text Preferences (on page 127)
- Editing JSON Documents in Grid Mode (on page 1418)

Editing JSON Documents in Grid Mode

Oxygen XML Editor allows you to view and edit the JSON documents in the Grid mode (on page 392). The JSON is represented in Grid mode as a compound layout of nested tables in which the JSON data and structure can be easily manipulated with table-specific operations or drag and drop operations on the grid components.

Figure 559. JSON Editor Grid Mode
You can also use the following JSON-specific contextual actions:

**Array**

Useful when you want to convert a JSON value to array.

**Insert value before**

Inserts a value before the currently selected one.

**Insert value after**

Inserts a value after the currently selected one.

**Append value as child**

Appends a value as a child of the currently selected value.

You can **customize the JSON grid appearance (on page 130)** according to your needs. For instance, you can change the font, the cell background, foreground, or even the colors from the table header gradients. The default width of the columns can also be changed.

**Related Information:**

- Grid Editing Mode (on page 392)
Validating JSON Documents

Oxygen XML Editor includes a built-in JSON validator that is used to validate JSON documents against JSON Schemas, as well as a built-in JSON Well-Formedness validator (based on the free JAVA source code available on www.json.org).

For more information, see the following video demonstration:

https://www.youtube.com/embed/3JEL6nFUozQ

Checking Well-Formedness in JSON Documents

A Well-formed JSON document is a sequence of Unicode code points that strictly conforms to the JSON grammar defined by the JSON Data Interchange Syntax specification. By default, Oxygen XML Editor automatically checks the document for Well-formedness as you type.

Check for Well-Formedness Manually

To manually check documents for Well-formedness:

- Select the Check Well-Formedness (Ctrl + Shift + W (Command + Shift + W on OS X)) action from the Validation drop-down menu on the toolbar or from the Document > Validate menu.
- A selection of files can be checked for well-formedness by selecting the Check Well-Formedness action from the Validate submenu when invoking the contextual menu in the Project view (on page 333).

Result: If any errors are found, the result is displayed in the message panel at the bottom of the editor. Each error is displayed as one record in the result list and is accompanied by an error message. Clicking the record will open the document containing the error and highlight its approximate location.

Example: A non Well-formed JSON Document

```
{"person": { "name": "John Doe" }
```

This would result in the following error:

```
Expected a '},' or ')'
```
To resolve the error, click the record in the result list and it will locate and highlight the approximate position of the error. In this case, you would need to identify where the missing end bracket needs to be placed.

Validating JSON Documents Against JSON Schema

A Valid JSON document is a Well-Formed document that also conforms to the rules of a JSON Schema that defines the legal syntax of a JSON document. The purpose of the JSON schema is to define the legal properties and values of a JSON document.

This section contains topics that explain the automatic and manual validation possibilities in Oxygen XML Editor, how validation errors are presented, and information about built-in validation scenarios.

For information about how to associate a JSON schema for the purposes of validation, see Associating a JSON Schema Through a Validation Scenario (on page 1428).

Automatic Validation

By default, Oxygen XML Editor is configured to automatically mark validation errors in the JSON document as you are editing. The Enable automatic validation option (on page 181) in the Document Checking preferences page (on page 180) controls whether or not all validation errors and warnings will automatically be highlighted in the editor panel.

The automatic validation starts parsing the document and marking the errors after a configurable delay (on page 181) from the last key typed. Errors are highlighted with underline markers in the main editor panel and small rectangles on the right side ruler of the editor panel. Hovering over a validation error presents a tooltip message with more details about the error.

If the error message is long and it is not displayed completely in the error line at the bottom of the editing area, double-clicking the error icon at the left of the error line or on the error line displays an information dialog box with the full error message. You can use the arrow buttons in this dialog box to navigate through the errors issued by the Automatic Validation feature.

Related Information:

- Manual Validation Actions (on page 1421)
- Presenting Validation Errors in JSON Documents (on page 1423)
Manual Validation Actions

You can choose to validate JSON documents at any time by using the manual validation actions that are available in Oxygen XML Editor.

Manual Validation Actions

To manually validate the currently edited document, use one of the following actions:

☑ Validate (Ctrl + Shift + V (Command + Shift + V on OS X))

Available from the ☑ Validation drop-down menu on the toolbar, the Document > Validate menu, or from the Validate submenu when invoking the contextual menu in the Project view (on page 333).

Validate with

Available from the ☑ Validation drop-down menu on the toolbar or the Document > Validate menu.

This action opens a dialog box that allows you to specify a schema for validating the current document (on page 1429).

Note: The Validate with action does not work for files loaded through an Oxygen XML Editor custom protocol plugin (on page 2595) developed independently and added to Oxygen XML Editor after installation.

Validate with Schema

Available from the Validate submenu when invoking the contextual menu in the Project view (on page 333).

This action opens a dialog box that allows you to specify a schema for validating the current document (on page 1429).

Other Validation Options

Tip: If a large number of validation errors are detected and the validation process takes too long, you can limit the maximum number of reported errors in the Document Checking preferences page (on page 180).

Related Information:

• Automatic Validation (on page 1421)
Presenting Validation Errors in JSON Documents

Validation errors and warnings in JSON documents are presented in various locations within the interface.

Validation Marker Locations

Validation issues are marked in the following locations:

- In the main editing pane, with the issue underlined in a color according to the type of issue.
- In the right-side vertical stripe, with a marker that is colored according to the type of issue.
- In the Outline view, with an icon that is colored according to the type of issue.

Validation Marker Colors

The colors for each type of issue are as follows:

- **Validation Errors** [Red] - By default, the underline in the editing pane, the marker in the right vertical stripe, and the foreground color of the attribute in the Attributes view are colored in red.
- **Validation Warnings** [Yellow] - By default, the underline in the editing pane, the marker in the right vertical stripe, and the foreground color of the attribute in the Attributes view are colored in yellow.
- **Validation Info** [Blue] - By default, the underline in the editing pane, the marker in the right vertical stripe, and the foreground color of the attribute in the Attributes view are colored in blue.

You can configure the color for each type in the Document Checking preferences page (on page 180).

Validation Markers in the Right-Side Stripe

Also, the stripe on the right side of the editor panel is designed to display the issues found during the validation process and to help you locate them in the document. The stripe contains the following:

**Upper Part of the Stripe**

A success indicator square will turn green if the validation is successful or only info messages are found, red if validation errors are found, or yellow if only validation warnings are found. More details about the issues are displayed in a tool tip when you hover over indicator square. If there are numerous problems, only the first three are presented in the tool tip.
Middle Part of the Stripe

Errors are presented with red markers, warnings with yellow markers, and info message with blue markers. If you want to limit the number of markers that are displayed, open the Preferences dialog box (Options > Preferences) (on page 79), go to Editor > Document checking, and specify the desired limit in the Maximum number of validation highlights option (on page 180).

Clicking a marker will highlight the corresponding text area in the editor. The validation message is also displayed both in a tool tip (when hovering over the marker) and in the message area on the bottom of the editor panel (clicking the Document checking options button opens the Document Checking preferences page (on page 180).

Bottom Part of the Stripe

Two navigation arrows (⇒) allow you to jump to the next or previous issue. The same actions can be triggered from Document > Automatic validation > Next error (Ctrl + Period (Command + Period on OS X)) and Document > Automatic validation > Previous error (Ctrl + Comma (Command + Comma on OS X)). Also, the Remove All button can be used to clear all the validation markers.

Hovering Over Validation Issues

Hovering over a validation issue presents a tooltip message with more details about the problem. Also, when hovering over an issue, pressing F2 will change the focus to the tooltip.

Details About Validation Issues

- Information about the issue is also displayed in the message area on the bottom of the editor panel (clicking the Document checking options button opens the Document Checking preferences page (on page 180) where you can configure some validation options (such as the colors used to present the validation issues).
- Status messages from every validation action are also logged in the Information view (on page 822).
- If you want to see all the validation messages grouped in the Results panel (on page 357), you should use the Validate action from the toolbar or Document > Validate menu..

Creating a JSON Validation Scenario

Validation scenarios can be used to associate one or more JSON Schemas with a JSON document (on page 1428).
Creating a JSON Validation Scenario

To create a validation scenario, follow these steps:

1. Select the Configure Validation Scenario(s) action in one of the following ways:
   - From the Validation toolbar drop-down menu.
   - From the Document > Validate menu.
   - From the Validate submenu, when invoking the contextual menu on a file in the Project view (on page 333).

   **Step Result:** The Configure Validation Scenario(s) dialog box is displayed.

2. Click the New button.

   **Step Result:** A validation scenario configuration dialog box is displayed.

   Figure 560. Validation Scenario Configuration Dialog Box

   This scenario configuration dialog box allows you to configure the following information and options:

   **Name**
   
   The name of the validation scenario.

   **Storage**
   
   You can choose between storing the scenario in the Project Options (on page 3286) or Global Options (on page 3283).

   **URL of the file to validate**
   
   The URL of the main module that includes the current module. It is also the entry module of the validation process when the current one is validated. To edit the URL,
double-click its cell and specify the URL of the main module by doing one of the following:

- Enter the URL in the text field or select it from the drop-down list.
- Use the Browse drop-down button to browse for a local, remote, or archived file.
- Use the Insert Editor Variable button to insert an editor variable (on page 276) or a custom editor variable (on page 284).

Figure 561. Insert an Editor Variable

<table>
<thead>
<tr>
<th>Variable</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>$(Desktop)</td>
<td>My Desktop</td>
</tr>
<tr>
<td>$(start-dir)</td>
<td>Start directory of custom validator</td>
</tr>
<tr>
<td>$(standard-params)</td>
<td>List of standard parameters for command line</td>
</tr>
<tr>
<td>$(fn)</td>
<td>The current file name without extension</td>
</tr>
<tr>
<td>$(currentFileURL)</td>
<td>The path of the currently edited file (URL)</td>
</tr>
<tr>
<td>$(cdui)</td>
<td>The path of current file directory (URL)</td>
</tr>
<tr>
<td>$(frameworks)</td>
<td>Oxygen frameworks directory (URL)</td>
</tr>
<tr>
<td>$(pbd)</td>
<td>Project directory (URL)</td>
</tr>
<tr>
<td>$(oxygenHome)</td>
<td>Oxygen installation directory (URL)</td>
</tr>
<tr>
<td>$(home)</td>
<td>The path to user home directory (URL)</td>
</tr>
<tr>
<td>$(proj)</td>
<td>Project name</td>
</tr>
<tr>
<td>$(env( VAR_NAME ))</td>
<td>Value of environment variable VAR_NAME</td>
</tr>
<tr>
<td>$(system(VAR_NAME))</td>
<td>Value of system variable VAR_NAME</td>
</tr>
</tbody>
</table>

**File type**

The type of the document that is validated in the current validation unit. Oxygen XML Editor automatically selects the file type depending on the value of the URL of the file to validate field.

**Validation engine**

For normal JSON documents, the Default engine should be used. For JSON Schemas, you could use the Default engine (if they have a schema version specified) or the JSON Schema Validator. The latter does not require a schema version to be specified. If the version is missing, JSON Schema draft-04 will be used as a default.

**Automatic validation**

If this option is selected, the validation operation defined by this row is also applied by the automatic validation feature (on page 1082). If the Automatic validation feature is disabled in the Document Checking preferences page (on page 180), then this option is ignored, as the preference setting has a higher priority.

**Schema**

Displays the specified schema.
Specify Schema

Opens the Specify Schema dialog box that allows you to set a schema to be used for validating JSON documents.

Move Up

Moves the selected scenario up one spot in the list.

Move Down

Moves the selected scenario down one spot in the list.

Add

Adds a new validation unit to the list.

Remove

Removes an existing validation unit from the list.

3. Configure any of the existing validation units according to the information above. You can use the buttons at the bottom of the table to add, remove, or move validation units.

4. Press OK.

Result: The newly created validation scenario will now be included in the list of scenarios in the Configure Validation Scenario(s) dialog box. You can select the scenario in this dialog box to associate it with the current document and press the Apply associated button to run the validation scenario.

Sharing JSON Validation Scenarios

The validation scenarios and their settings can be shared with other users by saving them at project level (on page 3286) or by exporting them to a specialized scenarios file (on page 276) that can then be imported. When you create a new validation scenario or edit an existing one, there is a Storage option to control whether the scenarios are stored in Project Options (on page 3286) or Global Options (on page 3283).

Selecting Project Options (on page 3286) stores the scenario in the project file and can be shared with other users that have access to the project. If your project is saved on a source versioning/sharing system (CVS, SVN, Source Safe, etc.) then your team will have access to the scenarios that you define. When you create a scenario at the project level, the URLs from the scenario become relative to the project URL.

Selecting Global Options (on page 3283) stores the scenario in the global options that are stored in the user home directory.
You can also change the storage options of existing validation scenarios by using the **Change storage** action from the contextual menu of the list of scenarios in the **Configure Validation Scenario(s)** dialog box.

**Resolving References with an XML Catalog**

If a reference to a remote JSON schema must be used but a local copy of the schema should actually be preferred for performance reasons, the reference can be resolved to the local copy with an **XML Catalog (on page 3289)**.

For example, if the JSON schema contains a reference to a remote schema such as:

```json
{"$ref": "http://json-schema.org/example/geo.json"}
```

the reference can be resolved to a local copy of the schema by inserting the following catalog entry:

```xml
<uri name="http://json-schema.org/example/geo.json" url="schemas/geo.json"/>
```

**Related Information:**

- Working with XML Catalogs (on page 1123)

**Associating a Schema to JSON Documents**

To provide as-you-type validation and to compute valid proposals for the **Content Completion Assistant (on page 3280)**, Oxygen XML Editor requires a schema to be associated with the JSON document. The schema specifies how the internal structure is defined.

**Detecting the Schema(s) for Validation and Content Completion**

For validation, Oxygen XML Editor tries to detect the JSON Schema by searching in the following order:

1. The schema referenced in validation stages from the validation scenario(s) (on page 1428) associated with the current JSON document.
2. If a schema is not detected, then it falls back to the schema associated directly in the JSON document (on page 1431).

**Tip:** To quickly open the schema used for validating the current document, select the **Open Associated Schema** action from the toolbar (or **Document > Schema** menu).
Associating a JSON Schema Through a Validation Scenario

Oxygen XML Editor uses the rules defined in the detected JSON schema to report errors and warnings during automatic and manual validations that help maintain the structural integrity of your JSON documents. There are several methods that can be used to validate with a JSON schema.

Configure a Validation Scenario and Specify the JSON Schema

You can specify the schema to be used for validation directly in the JSON validation scenario (on page 1424). To associate a JSON schema to a validation scenario to be used whenever the scenario is invoked, follow these steps:

1. Select the Configure Validation Scenario(s) from the Validation toolbar drop-down menu, from the Document > Validate menu, or from the Validate submenu when invoking the contextual menu on a file in the Project view (on page 333).
2. Press the New button to create a new validation scenario (on page 1424) or the Edit button to modify an existing one.
3. Add or configure validation units according to your needs and click the Specify Schema button.
4. Select the schema to be associated with the validation unit.
5. Click OK on both dialog boxes.

Result: The JSON schema is now associated with that validation scenario whenever it is invoked.

Use the Validate with Action to Specify a JSON Schema for Validating the Current Document

To validate the current document using a specified schema, follow these steps:

1. Select the Validation with action from the Validation drop-down menu on the toolbar (or Document > Validate menu).

Step Result: The Validate with dialog box is displayed:

Figure 562. Validate with Dialog Box
This dialog box contains the following options:

- **URL** - Allows you to specify or select a URL for the schema. It also keeps a history of the last used schemas. The URL must point to the schema file that can be loaded from the local disk or from a remote server through HTTP(S), FTP(S) or a custom protocol (on page 2610). You can specify the URL by using the text field, the history drop-down, the Insert Editor Variables (on page 276) button, or the browsing actions in the Browse drop-down list.
- **Schema type** - Select JSON for the schema type (other types of schema will not work with JSON documents).

2. Select the schema to be associated with the manual validation.
3. Click **OK**.

**Result:** The current document is validated using the JSON schema you specified.

**Use the Validate with Schema Action to Specify a JSON Schema for Validating all Selected JSON Documents**

To validate multiple JSON documents using a specified JSON schema, follow these steps:

1. Select all the JSON documents you want to validate in the Project view.
2. Invoke the contextual menu (right-click) and select the Validate with Schema action from the Validate submenu.

**Step Result:** The Validate with dialog box is displayed:

Figure 563. Validate with Dialog Box
This dialog box contains the following options:

- **URL** - Allows you to specify or select a URL for the schema. It also keeps a history of the last used schemas. The URL must point to the schema file that can be loaded from the local disk or from a remote server through HTTP(S), FTP(S) or a custom protocol (on page 2610). You can specify the URL by using the text field, the history drop-down, the Insert Editor Variables (on page 276) button, or the browsing actions in the Browse drop-down list.

- **Schema type** - Select JSON for the schema type (other types of schema will not work with JSON documents).

3. Select the JSON schema that you want to use to validate all selected JSON documents.

4. Click OK.

**Result:** The selected JSON documents are validated using the JSON schema you specified.

### Associating a Schema Directly in JSON Documents

**Associate Schema Action**

The schema used by the Content Completion Assistant (on page 3280) and document validation engine can be associated with the current document by using the Associate Schema action. The association can specify a relative file path or a URL of the schema.

To associate a JSON Schema to the current JSON document, follow these steps:

1. Select the Associate Schema action from the toolbar (or Document > Schema menu).

**Step Result:** The Associate Schema dialog box is displayed:

![Associate Schema Dialog Box](image)
This dialog box contains the following options for JSON documents:

- **URL** - Allows you to specify or select a URL for the schema. It also keeps a history of the last used schemas. The URL must point to the schema file that can be loaded from the local disk or from a remote server through HTTP(S), FTP(S) or a custom protocol (on page 2610).

- **Use path relative to file location** - Select this option if the JSON instance document and the associated schema contain relative paths. The location of the schema file is inserted in the JSON instance document as a relative file path. This practice allows you, for example, to share these documents with other users without running into problems caused by multiple project locations on physical disk.

2. Select the JSON Schema that will be associated with the JSON document.
3. Click **OK**.

**Result:** A `$schema` property is added at the beginning of the document with its value set to the specified URL. If the document already contained a schema association, the old association will be replaced with the new one.

**Tip:** To quickly open the schema used for validating the current document, select the **Open Associated Schema** action from the toolbar (or Document > Schema menu).

### Content Completion Assistant in JSON

Oxygen XML Editor includes an intelligent *Content Completion Assistant* (on page 3280) that offers proposals for inserting JSON structures that are valid at the current editing location.

The *Content Completion Assistant* is enabled by default. To disable it, open the **Preferences** dialog box (Options > Preferences) (on page 79), go to Editor > Content Completion, and deselect the **Enable content completion** option (on page 167).

**Figure 565. Content Completion Assistant in JSON**

### Content Completion and the Associated Schema

The *Content Completion Assistant* feature is schema-driven and the list of proposals in the *Content Completion Assistant* (on page 3280) depend on the associated JSON Schema. For information about ways to associate a schema to a JSON document, see the **Associating a Schema to JSON Documents** (on page 1428) section.
Using the Content Completion Assistant in JSON

The feature is activated in Text mode for JSON documents by:

- Typing a quote symbol (" ) to insert a property or value.
- Pressing Ctrl + Space (Command + Space on OS X) or Alt + ForwardSlash (Command + Alt + ForwardSlash on OS X).

You can navigate through the list of proposals by using the Up and Down keys on your keyboard. In some cases, the Content Completion Assistant displays a documentation window with information about the particular proposal (on page 1433). You can also change the size of the documentation window by dragging its top, right, and bottom borders.

To insert the selected proposal, press Enter or Tab.

Types of Proposals Listed in the Content Completion Assistant for JSON

The proposals that populate the Content Completion Assistant for JSON documents depend on the structure defined in the associated JSON Schema. The types of structure proposed in the content completion window include:

- JSON properties
- JSON values
- JSON arrays
- JSON objects

The number and type of proposals displayed by the Content Completion Assistant is dependent on the cursor’s current position in the JSON document and the child items displayed within a given context are defined by the structure of the specified JSON Schema.

Code Templates in the Content Completion

Oxygen XML Editor includes a set of built-in code templates for JSON documents that can be selected from the Content Completion Assistant. The code templates are displayed with a .tm symbol in the content completion list. You can also define your own code templates and share them with others. For more information, see Code Templates (on page 855).

Schema Annotations in JSON Content Completion

A schema annotation is a documentation snippet that appears in the Content Completion Assistant (on page 3280) offering more information about the current proposal.
This feature is enabled by default, but you can disable it by deselecting the Show annotations in Content Completion Assistant (on page 171) option in the Annotations preferences page.

Collecting Annotations from the JSON Schema

In a JSON Schema, the annotations are specified in the value of the title and description properties like this:

```
"idType": {
  "title": "The 'id' property",
  "description": "Specifies a required ID for this person.",
  "type": "string",
  "maxLength": 20
}
```

Syntax Highlighting in JSON Documents

Oxygen XML Editor supports syntax highlighting in Text mode to make it easier to read the semantics of the structured content by displaying each type of code in different colors and fonts.

To customize the colors or styles used for the syntax highlighting colors for JSON files, follow these steps:

1. Open the Preferences dialog box (Options > Preferences) (on page 79).
2. Go to Editor > Syntax Highlight (on page 178).
3. Select and expand the JSON section in the top pane.
4. Select the component you want to change and customize the colors or styles using the selectors to the right of the pane.

You can see the effects of your changes in the Preview pane.

Related Information:

- Syntax Highlight Preferences (on page 178)

Folding in JSON

In a large JSON document, the data enclosed in the curly bracket characters {} can be collapsed so that only the needed data remains in focus. The folding features available for XML documents (on page 840) are also available in JSON documents.
JSON Outline View

The **Outline** view for JSON documents displays the list of all the components of the JSON document you are editing. By default, it is displayed on the left side of the editor. If the view is not displayed, it can be opened by selecting it from the **Window > Show View** menu.

Figure 566. JSON Outline View

Outline View Features

The **Outline** view allows you to:

- Quickly navigate through the document by selecting nodes in the **Outline** tree.
- Move elements by dragging them to a new position in the tree structure.
- Highlight elements in the editor area. It is synchronized with the editor area, so when you make a selection in the editor area, the corresponding nodes are highlighted in the **Outline** view, and vice versa.
- View document errors, as they are highlighted in the **Outline** view. A tooltip also provides more information about the nature of the error when you hover over the faulted element.

Outline View Interface

By default, it is displayed on the left side of the editor. If the view is not displayed, it can be opened by selecting it from the **Window > Show View** menu.

The upper part of the **Outline** view contains a filter box that allows you to focus on the relevant components. Type a text fragment in the filter box and only the components that match it are
presented. For advanced usage you can use wildcard characters (such as *, ?) and separate multiple patterns with commas.

It also includes a Settings menu in the top-right corner that presents the following options to help you filter the view even further.

**Filter returns exact matches**

The text filter of the Outline view returns only exact matches.

**Selection update on cursor move**

Controls the synchronization between Outline view and source document. The selection in the Outline view can be synchronized with the cursor moves or the changes in the editor. Selecting one of the components from the Outline view also selects the corresponding item in the source document.

**Flat presentation mode of the filtered results**

When active, the application flattens the filtered result elements to a single level.

**Drop and Drop Actions in the Outline View**

Entire JSON properties, objects, and arrays can be moved or copied in the edited document using only the mouse in the Outline view with drag-and-drop operations. Several drag and drop actions are possible:

- If you drag a JSON node in the Outline view and drop it on another node, then the dragged node will be moved after the drop target.
- If you hold the mouse pointer over the drop target for a short time before the drop then the drop target node will be expanded first and the dragged node will be moved inside the drop target.
- You can also drop a node before or after another node if you hold the mouse pointer towards the upper or lower part of the target. A marker will indicate whether the drop will be performed before or after the target node.
- If you hold down the (Ctrl (Command on OS X)) key after dragging, a copy operation will be performed instead of a move.

**Contextual Menu Actions**

The following actions are available in the contextual menu of the JSON Outline view:

**Cut**

Cuts the currently selected component.

**Copy**
Copies the currently selected component.

Paste

Pastes the copied component.

Delete

Deletes the currently selected component.

Expand More

Expands the structure of a component in the Outline view.

Collapse All

Collapses the structure of all the component in the Outline view.

JSON to XML Converter

Oxygen XML Editor includes a useful and simple tool for converting JSON files to XML. It can be found in the Tools menu.

To convert a JSON document to XML, follow these steps:

1. Select the JSON to XML action from the Tools menu. The JSON to XML dialog box is displayed:

   Figure 567. JSON to XML Dialog Box

2. Choose or enter the Input URL of the JSON document.
3. Choose the path of the Output file that will contain the resulting XML document.
4. Select the Open in Editor option to open the resulting XML document in the main editing pane.
5. Click the Convert button.

The original JSON document is now converted to an XML document.

Figure 568. Example: XML to JSON Operation Result
Conversion Details

- If the JSON document has more than one property on the first level, the converted XML document will have an additional root element called `<JSON>`.

For example, the following JSON document:

```json
{
  "personnel": {
    "person": [
      {
        "name": "Boss"
      },
      {
        "name": "Worker"
      }
    ],
    "id": "personnel-id"
  }
}
```

it is converted to:

```xml
<?xml version="1.0" encoding="UTF-8"?>
<JSON>
  <personnel>
```

```xml
```
• If the JSON document is an array, the converted XML document will have a root element called <array> and for each item within the array, another <array> is created.

```json
[
  {
    "name": "Boss",
  },
  {
    "name": "Worker"
  }
]
```

it is converted to:

```xml
<?xml version="1.0" encoding="UTF-8"?>
<array>
  <array>
    <name>Boss</name>
  </array>
  <array>
    <name>Worker</name>
  </array>
</array>
```

• If the name of a JSON property contains characters that are not valid in XML element names (for example, $), then the invalid characters will be escaped as its hexadecimal equivalent in the converted XML.

```json
{"$id": "personnel-id"}
```

is converted to:

```xml
<_X24_id>personnel-id</_X24_id>
```

**Online JSON to XML Converter**

For a simple ONLINE tool for converting a single JSON file to XML, or vice versa, go to: https://www.oxygenxml.com/xml_json_converter.html.
XML to JSON Converter

Oxygen XML Editor includes a useful and simple tool for converting XML files to JSON. It can be found in the Tools menu.

To convert an XML document to JSON, follow these steps:

1. Select the XML to JSON action from the Tools menu. The XML to JSON dialog box is displayed:

   ![XML to JSON Dialog Box]

2. Choose or enter the Input URL of the XML document.
3. Choose the path of the Output file that will contain the resulting JSON document.
4. Select the Open in Editor option to open the resulting JSON document in the main editing pane.
5. Click the Convert button.

The original XML document is now converted to a JSON document.

![Example: XML to JSON Operation Result]
Conversion Details

- If any elements contain attributes in the XML document, the attributes are converted to properties in the converted JSON document. If the XML document contains more than one element with the same name, they will be converted into an array of object in the converted JSON document.

For example, the following XML document:

```xml
<personnel>
  <person id="person.one">
    <name>Boss</name>
  </person>
  <person id="person.two">
    <name>Worker</name>
  </person>
</personnel>
```

It is converted to:

```json
{
    "personnel": {},
    "person": [
        {
            "id": "person.one",
            "name": "Boss"
        },
        {
            "id": "person.two",
            "name": "Worker"
        }
    ]
}
```
{  
  "id": "person.one",
  "name": "Boss"
}
{
  "id": "person.two",
  "name": "Worker"
}

• If the XML document contains elements with mixed content (text plus elements), the converted JSON document will contain a `content` property with its value set as the text content.

```xml
<person>
  <name>Boss <i>One</i></name>
</person>
```

is converted to:

```json
{
  "person": {
    "name": {
      "content": "Boss",
      "i": "One"
    }
  }
}
```

• If the XML document contains element names that contains hexadecimal codes (for example, if they were escaped during a JSON to XML conversion (on page 1438)), it will be converted to the normal character value in the converted JSON document.

```xml
<_X24_id>personnel-id</_X24_id>
```

is converted to:

```json
{"$id": "personnel-id"}
```

**Online XML to JSON Converter**

For a simple ONLINE tool for converting a single XML file to JSON, or vice versa, go to: [https://www.oxygenxml.com/xml_json_converter.html](https://www.oxygenxml.com/xml_json_converter.html).
Contextual Menu Actions in JSON Documents

When editing JSON documents, Oxygen XML Editor provides the following actions in the contextual menu:

- **Cut, Copy, Paste**
  
  Executes the typical editing actions on the currently selected content.

- **Copy JSON Pointer**
  
  Creates a JSON Pointer at the current cursor location and copies the expression that denotes the JSON pointer to the system clipboard.

- **Copy XPath**
  
  Copies the XPath expression of the current property from the current editor to the clipboard.

- **Go to Matching Bracket (Ctrl + Shift + G)**
  
  Moves the cursor to the end bracket that matches the start bracket, or vice versa.

**Source submenu**

This submenu includes the following actions:

- **To Lower Case**
  
  Converts the content selection to lower case characters. This works with contiguous and multiple selections.

- **To Upper Case**
  
  Converts the selected content to upper case characters. This works with contiguous and multiple selections.

- **Capitalize Lines**
  
  It capitalizes the first letter found on every new line that is selected. Only the first letter is affected, the rest of the line remains the same. If the first character on the new line is not a letter then no changes are made.

- **Convert Hexadecimal Sequence to Character (Ctrl + Shift + X (Command + Shift + X on OS X))**
Converts a sequence of hexadecimal characters to the corresponding Unicode character (on page 770). The action can be invoked if there is a selection containing a valid hexadecimal sequence or if the cursor is placed at the right side of a valid hexadecimal sequence. A valid hexadecimal sequence can be composed of 2 to 4 hexadecimal characters and may or may not be preceded by the \texttt{0x} or \texttt{0X} prefix. Examples of valid sequences and the characters they will be converted to:

- \texttt{0x0045} will be converted to \texttt{E}
- \texttt{0X0125} to \texttt{#}
- \texttt{265} to \texttt{#}
- \texttt{2190} to \texttt{#}

\textbf{Note:} For more information about finding the hexadecimal value of a character, see Finding the Decimal, Hexadecimal, or Character Entity Equivalent (on page 779).

**Base64 Encode/Decode submenu**

This submenu include the following actions for encoding or decoding base 64 schemes:

**Import File to Encode and Insert**

Encodes a file and then inserts the encoded content into the current document at the cursor position.

**Decode Selection and Export to File**

Decodes a selection of text from the current document and then exports (saves) the result to another file.

**Encode Selection**

Replaces a selection of text with the result of encoding that selection. By default, a dialog box is displayed that allows you to select the encoding to use. There is an option to choose to not show this dialog box in the future. In this case, the encoding that is specified in the Encoding for Base64, Base32, Hex conversions option in the Encoding preferences page (on page 125) will be used. Likewise, the same is true if the Show the dialog box for choosing the encoding for Base64, Base 32, Hex conversions option is not selected in the Messages preference page (on page 261).
**Decode Selection**

Replaces a selection of text with the result of decoding that selection. By default, a dialog box is displayed that allows you to select the encoding to use. There is an option to choose to not show this dialog box in the future. In this case, the encoding that is specified in the *Encoding for Base64, Base32, Hex conversions* option in the *Encoding* preferences page (on page 125) will be used. Likewise, the same is true if the *Show the dialog box for choosing the encoding for Base64, Base 32, Hex conversions* option is not selected in the *Messages* preference page (on page 261).

**Modify All Matches**

Use this option to modify (in-place) all the occurrences of the selected content (or the contiguous fragment where the cursor is located). When you use this option, a thin rectangle replaces the highlights and allows you to start editing. If matches with different letter cases are found, a dialog box is displayed that allows you select whether you want to modify only matches with the same letter case or all matches.

**Base32 Encode/Decode submenu**

This submenu include the following actions for encoding or decoding base32 schemes:

- **Import File to Encode and Insert**

  Encodes a file and then inserts the encoded content into the current document at the cursor position.

- **Decode Selection and Export to File**

  Decodes a selection of text from the current document and then exports (saves) the result to another file.

- **Encode Selection**

  Replaces a selection of text with the result of encoding that selection. By default, a dialog box is displayed that allows you to select the encoding to use. There is an option to choose to not show this dialog box in the future. In this case, the encoding that is specified in the *Encoding for Base64, Base32, Hex conversions* option in the *Encoding* preferences page (on page 125) will be used. Likewise, the same is true...
if the Show the dialog box for choosing the encoding for Base64, Base 32, Hex conversions option is not selected in the Messages preference page (on page 261).

**Decode Selection**

Replaces a selection of text with the result of decoding that selection. By default, a dialog box is displayed that allows you to select the encoding to use. There is an option to choose to not show this dialog box in the future. In this case, the encoding that is specified in the Encoding for Base64, Base32, Hex conversions option in the Encoding preferences page (on page 125) will be used. Likewise, the same is true if the Show the dialog box for choosing the encoding for Base64, Base 32, Hex conversions option is not selected in the Messages preference page (on page 261).

**Modify All Matches**

Use this option to modify (in-place) all the occurrences of the selected content (or the contiguous fragment where the cursor is located). When you use this option, a thin rectangle replaces the highlights and allows you to start editing. If matches with different letter cases are found, a dialog box is displayed that allows you select whether you want to modify only matches with the same letter case or all matches.

**Hex Encode/Decode submenu**

This submenu include the following actions for encoding or decoding hex schemes:

**Import File to Encode and Insert**

Encodes a file and then inserts the encoded content into the current document at the cursor position.

**Decode Selection and Export to File**

Decodes a selection of text from the current document and then exports (saves) the result to another file.

**Encode Selection**

Replaces a selection of text with the result of encoding that selection. By default, a dialog box is displayed that allows you to select the encoding to use. There is an option to
choose to not show this dialog box in the future. In this case, the encoding that is specified in the Encoding for Base64, Base32, Hex conversions option in the Encoding preferences page (on page 125) will be used. Likewise, the same is true if the Show the dialog box for choosing the encoding for Base64, Base32, Hex conversions option is not selected in the Messages preference page (on page 261).

**Decode Selection**

Replaces a selection of text with the result of decoding that selection. By default, a dialog box is displayed that allows you to select the encoding to use. There is an option to choose to not show this dialog box in the future. In this case, the encoding that is specified in the Encoding for Base64, Base32, Hex conversions option in the Encoding preferences page (on page 125) will be used. Likewise, the same is true if the Show the dialog box for choosing the encoding for Base64, Base32, Hex conversions option is not selected in the Messages preference page (on page 261).

**Modify All Matches**

Use this option to modify (in-place) all the occurrences of the selected content (or the contiguous fragment where the cursor is located). When you use this option, a thin rectangle replaces the highlights and allows you to start editing. If matches with different letter cases are found, a dialog box is displayed that allows you select whether you want to modify only matches with the same letter case or all matches.

**Join and Normalize Lines (Ctrl + J (Command + J on OS X))**

For the current selection, this action joins the lines by replacing the line separator with a single space character. It also normalizes the whitespaces by replacing a sequence of such characters with a single space.

**Insert new line after (Ctrl + Alt + Enter (Command + Alt + Enter on OS X))**

This action has the same result as moving the cursor to the end of the current line and pressing the ENTER key.

**Modify All Matches**

Use this option to modify (in-place) all the occurrences of the selected content (or the contiguous fragment where the cursor is located). When you use this option, a
thin rectangle replaces the highlights and allows you to start editing. If matches with different letter cases are found, a dialog box is displayed that allows you select whether you want to modify only matches with the same letter case or all matches.

**Open submenu**

The following actions are available in this submenu:

**Open File at Cursor**

Opens the file at the cursor position in a new panel. If the file path represents a directory path, it will be opened in system file browser. If the file at the specified location does not exist, an error dialog box is displayed and it includes a Create new file button that starts the New document wizard. This allows you to choose the type or the template for the file. If the action succeeds, the file is created with the referenced location and name and is opened in a new editor panel.

**Open File at Cursor in System Application**

Opens the file (identified by its link) or web page (identified by a web link) found at cursor position. The target is opened in the default system application associated with that file type.

**Compare**

Opens the current file in the Compare Files tool (on page 2770).

Transforming and Querying JSON Documents

Oxygen XML Editor provides the ability to transform JSON documents to XML or HTML through XSLT or XQuery processing. You also have access to some powerful tools for querying JSON through XPath expressions or XQuery.

For more information about transforming and querying in JSON, watch our video demonstration:

https://www.youtube.com/embed/1LHoMhEFagA

Transforming JSON Documents with XSLT

It is possible to transform JSON documents through XSLT processing. To do so, follow these steps:

1. Create an XSLT 3.0 stylesheet that has the xsl:initial-template. You can use one of the following two templates available in the New Document Wizard.
   - **XSLT Stylesheet for JSON** - Processes a JSON document by using a json-doc() function and matches the JSON properties from the JSON map.
• **XSLT Stylesheet for JSON to XML** - Processes a JSON document by using a `json-to-xml()` function and matches the converted XML content.

2. Create a new **XSLT transformation** scenario for your stylesheet.

3. Reference the JSON document that you want to transform using one of these two methods:
   - In the transformation scenario, click the **Parameters** button in the **XSLT** tab and add a parameter that specifies the URL to your JSON document in its value. For example, if you are transforming one of the built-in templates mentioned above, the `input` parameter is added by default and you could specify the URL in its value.
   - Specify the URL to your JSON document in the stylesheet you created. For example, if you use one of the built-in templates mentioned above, you would specify the URL in the value of the `input` parameter (in the `xsl:param` element).

4. Run the transformation.

ℹ️ **Tip:** There are some sample files in the `[OXYGEN_INSTALL_DIR]/samples/json/transform` folder that can be used to transform a JSON document to XML or HTML.

---

### Related Information:

- Blog: Transforming JSON
- XSLT Functions on JSON Data

---

### Transforming JSON Documents with XQuery

It is possible to transform JSON documents through XQuery processing. To do so, follow these steps:

2. Create a new **XQuery transformation** scenario for your XQuery file.
3. Reference the JSON document that you want to transform using one of these two methods:
   - In the transformation scenario, click the **Parameters** button in the **XQuery** tab and add a parameter that specifies the URL to your JSON document in its value.
   - Specify the URL to your JSON document in the XQuery file you created.
4. Run the transformation.

ℹ️ **Tip:** There is a sample XQuery file in the `[OXYGEN_INSTALL_DIR]/samples/json/transform` folder that can be used to transform a JSON document.
Querying JSON Documents with XPath or XQuery

Oxygen XML Editor provides an XPath toolbar that makes it easy to quickly query JSON documents using XPath expressions. You can also use the dedicated XPath/XQuery Builder view that allows you to compose more complex XPath or XQuery expressions and execute them over JSON documents.

**XPath Toolbar**

When an XPath expression is run over a JSON document, the document is converted to XML and the XPath is executed over the converted XML document. For more information about this toolbar, see [XPath Toolbar](on page 2182).

![Figure 571. XPath Toolbar for JSON](image)

**XPath/XQuery Builder View**

You can also use the XPath/XQuery view to run XPath and XQuery expressions over a JSON document. For XQuery, you need to reference the JSON document in your XQuery content. For more information about this view, see [XPath Builder View](on page 2185).

![Figure 572. XPath/XQuery Builder View for JSON](image)
Details About Querying JSON Documents Using XPath Expressions

To execute XPath expressions over a JSON document, the document is converted to XML and the XPath is executed over the converted XML document. For this conversion, Oxygen XML Editor uses the built-in JSON to XML Converter tool (on page 1437). The results are mapped back to the original JSON document.

For example, if you have the following JSON document:

```json
{
    "personnel": {
        "person": [
            {
                "name": "Boss"
            },
            {
                "name": "Worker"
            }
        ],
        "id": "personnel-id"
    }
}
```

and you want to match the name of the second person, the XPath expression would look like this:

```
/JSON/personnel/person[2]/name
```

The reason why the first element is JSON is because if the JSON document contains more than one property on the first level, the converted XML document will have an additional root element called <JSON> . For more information, see JSON to XML Conversion Details (on page 1438).

The [2] in the expression represents the index of the person in the array and in this case, it matches the second person because the index counting starts with 1.
Editing JSON Schema Documents

The purpose of the JSON schema is to define the legal properties and values of a JSON document to keep it valid and well formed. When editing JSON Schema, all of the same features in the JSON editor (on page 1417) are available.

Oxygen XML Editor includes a new document template to help you get started creating a JSON Schema document. The template is called JSON Schema and it can be found in the New Document folder in the New document wizard (on page 676). You can also customize your own JSON Schema templates (on page 685) and specify other versions (draft 04, 06, or 07).

For information about using a JSON Schema to validate documents, see Validating JSON Documents Against JSON Schema (on page 1421)

For information about how to associate a JSON schema for the purposes of validation, see Associating a JSON Schema Through a Validation Scenario (on page 1428).

Validating JSON Schema Documents

A Valid JSON Schema document is a Well-Formed document that also conforms to the JSON meta-schema rules that defines the legal syntax of a JSON Schema document.

If a JSON document includes a meta-schema URL in the document root with the "$schema" key, the file will be validated as a JSON Schema against the specified meta-schema.

Quick Reference

- If there is a "$schema": "http://json-schema.org/draft-04/schema" property in the schema root, then Draft 4 will be used.
- If there is a "$schema": "http://json-schema.org/draft-06/schema" property in the schema root, then Draft 6 will be used.
- If there is a "$schema": "http://json-schema.org/draft-07/schema" property in the schema root, then Draft 7 will be used.
- If there is a "$schema" property in the schema root, but with a different draft value, then an error will be displayed ("no meta-schema is known with URI").
- If none of these are found, then it is validated as a simple JSON instance.
- You could also select the JSON Schema Validator in a JSON validation scenario (on page 1424) and it will use the version specified in the JSON Schema, or if a version is not specified, the JSON Schema draft-04 will be used.

For information about how to associate a JSON schema for the purposes of validation, see Associating a JSON Schema Through a Validation Scenario (on page 1428).
Editing StratML Documents

Strategy Markup Language (StratML) is an XML vocabulary and schema for strategic plans. Oxygen XML Editor supports StratML Part 1 (Strategic Plan) and StratML Part 2 (Performance Plans and Reports) and provides templates for the following documents:

- **Strategic Plan** (StratML Part 1)
- **Performance Plan** (StratML Part 2)
- **Performance Report** - (StratML Part 2)
- **Strategic Plan** - (StratML Part 2)

You can view the components of a StratML document in the Outline view (on page 347). Oxygen XML Editor implements a default XML with XSLT transformation scenario for this document type, called StratML to HTML.

Editing XLIFF Documents

XLIFF (XML Localization Interchange File Format) is an XML-based format that was designed to standardize the way multilingual data is passed between tools during a localization process. Oxygen XML Editor provides the following support for editing XLIFF documents:

**XLIFF Version 1.2, 2.0, and 2.1 Support:**

- New document templates for XLIFF documents.
- A default CSS file (xliff.css) used for rendering XLIFF content in Author mode is stored in `/[OXYGEN_INSTALL_DIR]/frameworks/xliff/css/`
- Validation and content completion support using local catalogs.
  The default catalog (catalog.xml) for version 1.2 is stored in `/[OXYGEN_INSTALL_DIR]/frameworks/xliff/schemas/1.2`, for version 2.0 in `/[OXYGEN_INSTALL_DIR]/frameworks/xliff/schemas/2.0`, and for version 2.1 in `/[OXYGEN_INSTALL_DIR]/frameworks/xliff/schemas/2.1`.

**XLIFF Version 2.0 and 2.1 Enhanced Support:**

Support for validating XLIFF 2.0 and 2.1 documents using modules. For version 2.0, the default modules are stored in `/[OXYGEN_INSTALL_DIR]/frameworks/xliff/schemas/2.0/modules` and for version 2.1, they are stored in `/[OXYGEN_INSTALL_DIR]/frameworks/xliff/schemas/2.1`. 
Editing XLIFF Documents in Author Mode

By default, when you create a new XLIFF document from a template (on page 676), Oxygen XML Editor opens it in **Text** mode. Aside from the normal editing features found in **Text** mode, you can also switch to **Author** mode where Oxygen XML Editor offers some special form controls specifically for XLIFF documents. These form controls simply allow you to add or edit XLIFF attribute values and content in a visual mode.

For XLIFF version 2.0 and 2.1 documents, you can also change the style of the visual editing mode. The **Styles** drop-down menu on the toolbar offers the following styles that are specifically designed to render XLIFF 2.0 and 2.1 documents in **Author** mode:

- Default
- Classic
- Translate

Editing JavaScript Documents

This section explains the features of the Oxygen XML Editor JavaScript Editor and how you can use them.

JavaScript Editing Actions

Oxygen XML Editor allows you to create and edit JavaScript files and assists you with useful features such as syntax highlight, content completion, and outline view. To enhance your editing experience, you can select entire blocks (parts of text delimited by brackets) by double-clicking somewhere inside the brackets.

Figure 573. JavaScript Editor Text Mode

```javascript
function change_sides(front) {
  switch($(#
```
The contextual menu of the **JavaScript** editor offers the following actions:

- **Cut**
  
  Allows you to cut fragments of text from the editing area.

- **Copy**
  
  Allows you to copy fragments of text from the editing area.

- **Paste**
  
  Allows you to paste fragments of text in the editing area.

- **Toggle Comment**
  
  Allows you to comment a line or a fragment of the JavaScript document you are editing. This option inserts a single comment for the entire fragment you want to comment.

- **Toggle Line Comment**
  
  Allows you to comment a line or a fragment of the JavaScript document you are editing. This option inserts a comment for each line of the fragment you want to comment.

- **Go to Matching Bracket**
  
  Use this option to find the closing, or opening bracket, matching the bracket at the cursor position. When you select this option, Oxygen XML Editor moves the cursor to the matching bracket, highlights its row, and decorates the initial bracket with a rectangle.

  **Note:** A rectangle decorates the opening or closing bracket that matches the current one, at all times.

- **Source**
  
  Allows you to select one of the following actions:

  - **To Lower Case**
    
    Converts the selection content to lower case characters.

  - **To Upper Case**
    
    Converts the selection content to upper case characters.

  - **Capitalize Lines**
    
    Converts to upper case the first character of every selected line.

  - **Join and Normalize Lines**
    
    Joins all the rows you select to one row and normalizes the content.

  - **Insert new line after**
    
    Inserts a new line after the line at the cursor position.
Modify all matches

Use this option to modify (in-place) all the occurrences of the selected content. When you use this option, a thin rectangle replaces the highlights and allows you to start editing. If matches with different letter cases are found, a dialog box is displayed that allows you select whether you want to modify only matches with the same letter case or all matches.

Open

Allows you to select one of the following actions:

- **Open File at Cursor** - select this action to open the source of the file located at the cursor position
- **Open File at Cursor in System Application** - select this action to open the source of the file located at the cursor position with the application that the system associates with the file

Compare

Select this option to open the **Compare Files** tool to compare the file you are editing with a file you choose in the dialog box.

Folding

When you invoke the contextual menu from the folding (on page 3282) triangles in the stripe on the left side of the editor, the following actions are available:

- **Collapse Other Folds** *(Ctrl + NumPad/ (Command + NumPad/ on OS X))*
  
  Folds all the elements except the current element.

- **Collapse Child Folds** *(Ctrl + NumPad. (Command + NumPad. on OS X))*
  
  Folds the elements indented with one level inside the current element.

- **Expand Child Folds**
  
  Unfolds all child elements of the currently selected element.

- **Expand All** *(Ctrl + NumPad* (Command + NumPad* on OS X))*
  
  Unfolds all elements in the current document.

Validating JavaScript Files

You have the possibility to validate the JavaScript document you are editing. Oxygen XML Editor uses the Mozilla Rhino library for validation. For more information about this library, go to [http://www.mozilla.org/rhino/doc.html](http://www.mozilla.org/rhino/doc.html). The JavaScript validation process checks for errors in the syntax. Calling a function that is not defined is not treated as an error by the validation process. The
interpreter discovers this error when executing the faulted line. Oxygen XML Editor can validate a JavaScript document both on-request and automatically.

Content Completion in JavaScript Documents

When you edit a JavaScript document, the Content Completion Assistant (on page 3280) presents you a list of the elements you can insert at the cursor position. It can be manually activated with the Ctrl + Space (Command + Space on OS X) shortcut.

For an enhanced assistance, JQuery methods are also presented. The following icons decorate the elements in the content completion list of proposals depending on their type:

- • - function
- • v - variable
- • □ - object
- • e - property
- • . - method

Note: These icons decorate both the elements from the content completion list of proposals and from the Outline view (on page 1458).

Figure 574. JavaScript Content Completion Assistant

The Content Completion Assistant collects:
• Method names from the current file and from the library files.
• Functions and variables defined in the current file.

If you edit the content of a function, the content completion list of proposals contains all the local variables defined in the current function, or in the functions that contain the current one.

Syntax Highlighting in JavaScript Documents

Oxygen XML Editor supports syntax highlighting in Text mode to make it easier to read the semantics of the structured content by displaying each type of code in different colors and fonts.

To customize the colors or styles used for the syntax highlighting colors for JavaScript files, follow these steps:

1. Open the Preferences dialog box (Options > Preferences) (on page 79).
2. Go to Editor > Syntax Highlight (on page 178).
3. Select and expand the JavaScript section in the top pane.
4. Select the component you want to change and customize the colors or styles using the selectors to the right of the pane.

You can see the effects of your changes in the Preview pane.

Related Information:

• Syntax Highlight Preferences (on page 178)

JavaScript Outline View

Oxygen XML Editor present a list of all the components of the JavaScript document you are editing in the Outline view. By default, it is displayed on the left side of the editor. If the view is not displayed, it can be opened by selecting it from the Window > Show View menu.

Figure 575. JavaScript Outline View
The following icons decorate the elements in the **Outline** view depending on their type:

- 🛡 - function
- 📜 - variable
- 🏡 - object
- 🏁 - property
- 🛠 - method

The contextual menu of the JavaScript **Outline** view contains the usual Cut, Copy, Paste, and Delete actions. From the 🗿, Settings menu, you can select the Update selection on cursor move option to synchronize the **Outline** view with the editing area.

## Editing XProc Scripts

XProc is an XML pipeline language that can be used to script transformations. An XProc script is edited as an XML document that is validated against a RELAX NG schema, or if the script has an associated transformation scenario, then the XProc engine selected in the scenario is used as the validating engine (if the XProc engine supports validation). The default engine for XProc scenarios is a version of the Calabash engine that comes bundled with Oxygen XML Editor version 21.1.

### XProc Content Completion

Oxygen XML Editor helps you edit a XProc scripts through the Content Completion Assistant (on page 3280), offering proposals that are valid at the cursor position. It can be manually activated with the Ctrl + Space (Command + Space on OS X) shortcut.
The content completion inside the element `input/inline` from the XProc namespace `http://www.w3.org/ns/xproc` offers elements from the following schemas depending both on the `port` attribute and the parent of the `input` element. When invoking the content completion inside the XProc element `inline`, the list of content completion proposals is populated as follows:

- If the value of the `port` attribute is `stylesheet` and the `xslt` element is the parent of the `input` elements, the `Content Completion Assistant` offers XSLT elements.
- If the value of the `port` attribute is `schema` and the `validate-with-relax-ng` element is the parent of the `input` element, the `Content Completion Assistant` offers RELAX NG schema elements.
- If the value of the `port` attribute is `schema` and the `validate-with-xml-schema` element is the parent of the `input` element, the `Content Completion Assistant` offers XML Schema schema elements.
- If the value of the `port` attribute is `schema` and the `validate-with-schematron` element is the parent of the `input` element, the `Content Completion Assistant` offers either ISO Schematron elements or Schematron 1.5 schema elements.
- If the above cases do not apply, then the `Content Completion Assistant` offers elements from all the schemas from the above cases.

Figure 576. XProc Content Completion

```
<p:choose>
  <p:when test="not(contains(/item[1]/title, 'mysql'))">
    <p:xslt>
      <p:input port="source"/>
      <p:input port="stylesheet">
        <p:inline>
          <xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform" version="2.0">
            <xsl:import href="/">
            <xsl:include href="/"/>
          </xsl:stylesheet>
        </p:inline>
        ...
      </p:stylesheet>
      <p:input port="empty"/>
      <p:input port="empty"/>
    </p:xslt>
  </p:when>
</p:choose>
```

XProc Syntax Highlighting

The XProc editor assists you in writing XPath expressions by offering dedicated coloring schemes for syntax highlighting.

To customize the colors or styles used for the syntax highlighting colors for XProc, follow these steps:
1. Open the Preferences dialog box (Options > Preferences) (on page 79).
2. Go to Editor > Syntax Highlight (on page 178).
3. Select and expand the XML section in the top pane.
4. Select the component you want to change and customize the colors or styles using the selectors to the right of the pane.
5. Select the XML tab in the Preview pane to see the effects of your changes.

**Enabling Extensions in Calabash**

If you are using the default Calabash engine, it is possible to configure extensions (for a list of the valid extensions, see http://xmlcalabash.com/docs/reference/cfg.extension.html).

To configure an extension:

1. Edit the following file: OXYGEN_INSTALL_DIR/lib/xproc/calabash/engine.xml.
2. Add the extension and its value as a system-property, as in the following example:

   ```xml
   <system-property name="com.xmlcalabash.allow-text-results" value="true"/>
   ```

**Related Information:**

- Creating an XProc Transformation Scenario (on page 1742)
- Integrating an External XProc Engine (on page 1747)
- XProc Preferences (on page 198)

**Editing Schematron Schemas**

Schematron is a simple and powerful Structural Schema Language for making assertions about patterns found in XML documents. It relies almost entirely on XPath query patterns for defining rules and checks. Schematron validation rules allow you to specify a meaningful error message. This error message is provided to you if an error is encountered during the validation stage.

There are numerous online resources out there to help you get started with writing Schematron rules. Here are just a few that might help you:

- Guide to Schema Writing with Schematron
- Presentation: Schematron Development with Oxygen
Oxygen XML Editor assists you in editing Schematron documents with schema-based content completion, syntax highlight, search and refactor actions, and dedicated icons for the Outline view (on page 1470). You can create a new Schematron schema using one of the Schematron templates available in the New document wizard (on page 676).

For information about applying and detecting Schematron schemas, see Associating a Schema to XML Documents (on page 1112).

Validating XML Documents Against Schematron

The Skeleton XSLT processor is used for validation and conforms with ISO Schematron or Schematron 1.5. It allows you to validate XML documents against Schematron schemas (on page 1464) or against combined RELAX NG / W3C XML Schema and Schematron.

How to Specify the Query Language Binding

You can specify the query language binding to be used in the Schematron schema by doing the following:

• For embedded ISO Schematron, open the Preferences dialog box (Options > Preferences) (on page 79), go to XML > XML Parser > Schematron, and select it in the Embedded rules query language binding option (on page 195).

• For standalone ISO Schematron, specify the version by setting the query language to be used in a queryBinding attribute on the schema root element. For more information, see the Query Language Binding section of the Schematron specifications.

• For Schematron 1.5 (standalone and embedded), open the Preferences dialog box (Options > Preferences) (on page 79), go to XML > XML Parser > Schematron, and select the version in the XPath Version option (on page 196).

Multi-Lingual Support in Schematron Messages

You can specify the desired language for the validation messages in the Schematron Preferences page (on page 194). The Schematron validation messages can be presented in multiple languages by defining the language for each message using the Schematron diagnostics. For more information, see the Use of Schematron for Multi-Lingual Schemas specification.

How to Customize Color Schemes in Schematron

The Schematron editor renders the XPath expressions with dedicated color schemes. To customize the coloring schemes, open the Preferences dialog box (Options > Preferences) (on page 79) and go to Editor > Syntax Highlight.
Schematron Transformation Scenario

When you create a Schematron document, Oxygen XML Editor provides a built-in transformation scenario. You can use this scenario to obtain the XSLT style-sheet corresponding to the Schematron schema. You can apply this XSLT stylesheet to XML documents to obtain the Schematron validation results.

For more information about the Schematron support in Oxygen XML Editor, watch our video demonstrations:

https://www.youtube.com/embed/HdcZA3DJi7E

https://www.youtube.com/embed/y3u3wlO92e4

https://www.youtube.com/embed/FQNSsg57S4E

Related Information:

• Editing XML Documents in Text Mode (on page 828)

• Associating a Schema to XML Documents (on page 1112)

Editing Schematron Schema in the Master Files Context

Smaller interrelated modules that define a complex Schematron cannot be correctly edited or validated individually, due to their interdependency with other modules. For example, a diagnostic defined in a main schema document is not visible when you edit an included module. Oxygen XML Editor provides the support for defining the main module (or modules), thus allowing you to edit any of the imported/included schema files in the context of the larger schema structure.

You can set a main Schematron document either using the master files support from the Project view (on page 726), or using a validation scenario.

To set a main file using a validation scenario, add validation units that point to the main schemas. Oxygen XML Editor warns you if the current module is not part of the dependencies graph computed for the main schema. In this case, it considers the current module as the main schema.

The advantages of editing in the context of main file include:

• Correct validation of a module in the context of a larger schema structure.
• Content Completion Assistant (on page 3280) displays all the referable components valid in the current context. This include components defined in modules other than the currently edited one.

Presenting Schematron Validation Issues

The possible issues that might occur during the validation process when validating XML documents against Schematron are presented with colored underlines in the editing pane, colored markers in the right vertical stripe, and details about the issues are presented in the Errors panel at the bottom area of the Oxygen XML Editor window. Each error is flagged with a severity level that can be: warning, error, fatal or info.

To set a severity level, Oxygen XML Editor looks for the following information:

• The role attribute, which can have one of the following values:
  - warn or warning - Sets the severity level to warning. By default, underlined with a yellow squiggly line in the editing pane and a yellow marker in the right vertical stripe.
  - error - Sets the severity level to error. By default, underlined with a red squiggly line in the editing pane and a red marker in the right vertical stripe.
  - fatal - Sets the severity level to fatal. By default, underlined with a red squiggly line in the editing pane and a red marker in the right vertical stripe.
  - info or information - Sets the severity level to information. By default, underlined with a blue squiggly line in the editing pane and a blue marker in the right vertical stripe.

• The start of the message, after trimming leading white-spaces. Oxygen XML Editor looks to match the following exact string of characters (case-sensitive):
  - Warning: - Sets the severity level to warning. By default, underlined with a yellow squiggly line in the editing pane and a yellow marker in the right vertical stripe.
  - Error: - Sets the severity level to error. By default, underlined with a red squiggly line in the editing pane and a red marker in the right vertical stripe.
  - Fatal: - Sets the severity level to fatal. By default, underlined with a red squiggly line in the editing pane and a red marker in the right vertical stripe.
  - Info: - Sets the severity level to info. By default, underlined with a blue squiggly line in the editing pane and a blue marker in the right vertical stripe.

• If none of the previous rules match, Oxygen XML Editor sets the severity level to error. By default, underlined with a red squiggly line in the editing pane and a red marker in the right vertical stripe.

Tip: You can configure the color for each type in the Document Checking preferences page (on page 180).
Integrating Schematron Rules in a Framework and Sharing Them

Custom **Schematron** rules are a great way to ensure consistency for XML authoring, especially when there is a large team working on the same set of documents. You can use **Schematron** for numerous use cases. For example, to restrict certain elements from being used, to impose restrictions on the amount of text for an element, or to impose restrictions on certain elements based on various attribute values or text content set in other elements. Furthermore, you can define quick fixes for each **Schematron** rule (on page 1482) to offer technical writers proposed solutions for reported problems.

Once you define the **Schematron** rules, they can be shared with the other members of your team by integrating them in a **framework** (on page 3282) (document type) configuration.

**How to Integrate Schematron Rules in a Framework**

To integrate a Schematron rule in an existing framework bundled with the application, follow these steps:

1. Create a folder structure for an extended framework and save it somewhere on disk where you have full write access (for example, `custom_frameworks/dita-extension`).
2. In that new folder structure, create another folder that will contain all of your custom Schematron files (for example, `custom_frameworks/dita-extension/rules`).
3. Define the Schematron rules in an existing or new Schematron file and save it in the folder you created in step 2. There are numerous online resources out there to help you get started with writing Schematron rules. Here are just a few that might help you:
   - **Guide to Schema Writing with Schematron**
   - **Presentation: Schematron Development with Oxygen**
4. Open the **Preferences** dialog box (Options > Preferences) (on page 79) and go to **Document Type Association > Locations** (on page 94). In this preferences page, add the path to your
custom_frameworks folder in the Additional frameworks directories list, then click OK or Apply to save your changes.

5. Go to the Document Type Association preferences page (on page 92) and select a framework configuration (for example, DITA) and use the Extend button to create an extension for it.

6. Give the extension an appropriate name (for example, DITA - Custom), select External for the Storage option, and specify an appropriate path to your framework configuration file (for example, path/to/.../custom_frameworks/dita-extension/dita-extension.framework).

7. Make whatever changes you desire to the extension, then go to the Validation tab, edit the default validation scenario (select the scenario and click the Edit button), and add an extra validation unit to it (one that uses your custom Schematron file). For more details about editing validation scenarios, see Configuring Validation Scenarios for a Framework (on page 2339).

8. Click OK to close the dialog box and then OK or Apply to save the changes to the Document Type Association preferences page (on page 92).

9. Open an XML document that matches your framework configuration and test the new rule.

10. You can continue to refine the Schematron and develop additional rules as needed.

Sharing Schematron Rules

To share Schematron rules with other members of your team, you simply need to share the framework where you integrated the Schematron rules. There are several methods for sharing frameworks and you can find details here: Sharing a Custom Framework (on page 2371).

Related Information:

- Defining Schematron Quick Fixes (on page 1482)

  Associating a Schema in Validation Scenarios Defined in the Document Type (on page 1118)

- Sharing a Custom Framework (on page 2371)

Validating Schematron Documents

By default, a Schematron schema is validated as you type. To change this, open the Preferences dialog box (Options > Preferences) (on page 79), go to Editor > Document Checking, and deselect the Enable automatic validation option (on page 181).
To validate a Schematron document manually, select the Validate action from the Validation toolbar drop-down menu or the Document > Validate menu. When Oxygen XML Editor validates a Schematron schema, it expands all the included modules so the entire schema hierarchy is validated. The validation problems are highlighted directly in the editor, making it easy to locate and fix any issues.

Oxygen XML Editor offers an error management mechanism capable of pinpointing errors in XPath expressions and in the included schema modules.

Related Information:
- Presenting Schematron Validation Issues (on page 1464)

Content Completion in Schematron Documents

Oxygen XML Editor helps you edit a Schematron schema through the Content Completion Assistant (on page 3280), offering proposals that are valid at the cursor position. It can be manually activated with the Ctrl + Space (Command + Space on OS X) shortcut.

When you edit the value of an attribute that refers a component, the proposed components are collected from the entire schema hierarchy. For example, if the editing context is phase/active/@pattern, the Content Completion Assistant proposes all the defined patterns.

Note: For Schematron resources, the Content Completion Assistant collects its components starting from the master files (on page 3284). The master files can be defined in the project or in the associated validation scenario. For further details about the Master Files support go to Defining Master Files at Project Level (on page 726).

If the editing context is an attribute value that is an XPath expression (such as assert/@test or report/@test), the Content Completion Assistant offers the names of XPath functions, the XPath axes, and user-defined variables.

The Content Completion Assistant displays XSLT 1.0 functions and optionally XSLT 2.0 / 3.0 functions in the attributes path, select, context, subject, test depending on the Schematron options (on page 194) that are set in Preferences pages. If the Saxon 6.5.5 namespace (xmlns:saxon="http://icl.com/saxon") or the Saxon 9.8.0.12 namespace is declared in the Schematron schema (xmlns:saxon="http://saxon.sf.net/") the content completion also displays the XSLT Saxon extension functions as in the following figure:

Figure 577. XSLT Extension Functions in Schematron Schema Content Completion
The Content Completion Assistant also includes code templates that can be used to quickly insert code fragments (on page 855) into Schematron documents.

Syntax Highlighting in Schematron

Oxygen XML Editor supports syntax highlighting in Text mode to make it easier to read the semantics of the structured content by displaying each type of code in different colors and fonts.

To customize the colors or styles used for the syntax highlighting colors for Schematron schemas, follow these steps:

1. Open the Preferences dialog box (Options > Preferences) (on page 79).
2. Go to Editor > Syntax Highlight (on page 178).
3. Select and expand the XML section in the top pane.
4. Select the component you want to change and customize the colors or styles using the selectors to the right of the pane.
5. Select the XML tab in the Preview pane to see the effects of your changes.

Tip: Oxygen XML Editor also allows you to specify syntax highlighting colors for specific XML elements and attributes with specific namespace prefixes. This can be done in the Editor > Syntax Highlight > Elements/Attributes by Prefix preferences page (on page 179).

Related Information:
Embedding Schematron Rules in XML Schema or RELAX NG

Schematron rules can be embedded into an XML Schema through annotations (using the `appinfo` element), or in any element on any level of a RELAX NG Schema (taking into account that the RELAX NG validator ignores all elements that are not in the RELAX NG namespace).

Oxygen XML Editor accepts such documents as Schematron validation schemas and it is able to extract and use the embedded rules.

Validating XML Documents with XML Schema and Embedded Schematron

To validate an XML document with XML Schema and its embedded Schematron, you can associate the document like this:

```xml
<?xml-model href="percent.xsd" type="application/xml"
         schematypens="http://purl.oclc.org/dsdl/schematron"?>
```

Validating XML Documents with Relax NG and Embedded Schematron

To validate an XML document with RELAX NG schema and its embedded Schematron rules, you need to associate the document with both schemas like this:

```xml
<?xml-model href="percent.rng" type="application/xml"
         schematypens="http://relaxng.org/ns/structure/1.0"?>
<?xml-model href="percent.rng" type="application/xml"
         schematypens="http://purl.oclc.org/dsdl/schematron"?>
```

The second association validates your document with Schematron rules extracted from the RELAX NG Schema.

Note: When you work with XML Schema or Relax NG documents that have embedded Schematron rules Oxygen XML Editor provides two built-in validation scenarios: Validate XML Schema with embedded Schematron for XML schema, and Validate Relax NG with embedded Schematron for Relax NG. You can use one of these scenarios to validate the embedded Schematron rules.

Example: Embedded Schematron in XML Schema

```xml
<xsd:appinfo>
  <sch:pattern>
```
Example: Embedded Schematron in Relax NG Schema

```xml
<grammar
    xmlns="http://relaxng.org/ns/structure/1.0"
    xmlns:sch="http://purl.oclc.org/dsdl/schematron">
  <sch:pattern>
    <sch:rule context="...">
      <sch:assert test="...">Message.</sch:assert>
    </sch:rule>
  </sch:pattern>
  <start>..............</start>
</grammar>
```

Related Information:

- Embedding Schematron Quick Fixes in Relax NG or XML Schema (on page 1498)

Schematron Outline View

The **Outline** view for Schematron schemas presents a list of components in a tree-like structure and it allows for quick access to a component by name. By default, it is displayed on the left side of the editor. If the view is not displayed, it can be opened by selecting it from the **Window > Show View** menu.

Figure 578. Schematron Outline View
The following actions are available in the Settings menu on the Outline view toolbar:

**Filter returns exact matches**

The text filter of the Outline view returns only exact matches.

**Selection update on cursor move**

Controls the synchronization between Outline view and source document. The selection in the Outline view can be synchronized with the cursor moves or the changes in the editor. Selecting one of the components from the Outline view also selects the corresponding item in the source document.

**Flat presentation mode of the filtered results**

When active, the application flattens the filtered result elements to a single level.

**Show comments and processing instructions**

Show/hide comments and processing instructions in the Outline view.

**Show element name**

Show/hide element name.

**Show text**

Show/hide additional text content for the displayed elements.

**Show attributes**

Show/hide attribute values for the displayed elements. The displayed attribute values can be changed from the Outline preferences panel (on page 259).

**Configure displayed attributes**

Displays the XML Structured Outline preferences page (on page 259).

The following contextual menu actions are also available in the Outline view:
Append Child
Displays a list of elements that you can insert as children of the current element.

Insert Before
Displays a list of elements that you can insert as siblings of the current element, before the current element.

Insert After
Displays a list of elements that you can insert as siblings of the current element, after the current element.

Edit Attributes
Opens a dialog box that allows you to edit the attributes of the currently selected component.

Toggle Comment
Comments/uncomments the currently selected element.

Cut
Cuts the currently selected component.

Copy
Copies the currently selected component.

Delete
Deletes the currently selected component.

Expand More
Expands the structure of a component in the Outline view.

Collapse All
Collapses the structure of all the component in the Outline view.

The upper part of the Outline view contains a filter box that allows you to focus on the relevant components. Type a text fragment in the filter box and only the components that match it are presented. For advanced usage you can use wildcard characters (such as *, ?) and separate multiple patterns with commas.

Schematron Resource Hierarchy/Dependencies View
The Resource Hierarchy/Dependencies view displays the hierarchy/dependencies for a Schematron schema. If the view is not displayed, it can be opened by selecting it from the Window > Show View menu.
If you want to see the hierarchy of a schema, select the desired schema in the Project view (on page 333) and choose Resource Hierarchy from the contextual menu.

Figure 579. Resource Hierarchy

If you want to see the dependencies of a schema, select the desired schema in the Project view (on page 333) and choose Resource Dependencies from the contextual menu.

Figure 580. Resource Dependencies

The following actions are available on the toolbar of the Resource Hierarchy/Dependencies view:

- **Refresh**
  Refreshes the Hierarchy/Dependencies structure.

- **Stop**
  Stops the hierarchy/dependencies computing.

- **Show Hierarchy**
  Allows you to choose a resource to compute the hierarchy structure.

- **Show Dependencies**
  Allows you to choose a resource to compute the dependencies structure.

- **Configure dependencies search scope**
  Allows you to configure a scope to compute the dependencies structure. There is also an option for automatically using the defined scope for future operations.

- **History**
Provides access to the list of previously computed dependencies. Use the Clear history button to remove all items from this list.

The contextual menu for a resource listed in the Resource Hierarchy/Dependencies view contains the following actions:

**Open**

Opens the resource. You can also double-click a resource in the Hierarchy/Dependencies structure to open it.

**Go to reference**

Opens the source document where the resource is referenced.

**Copy location**

Copies the location of the resource.

**Move resource**

Moves the selected resource.

**Rename resource**

Renames the selected resource.

**Show Resource Hierarchy**

Shows the hierarchy for the selected resource.

**Show Resource Dependencies**

Shows the dependencies for the selected resource.

**Add to Master Files**

Adds the currently selected resource in the Master Files directory (on page 726).

**Expand All**

Expands all the children of the selected resource from the Hierarchy/Dependencies structure.

**Collapse All**

Collapses all children of the selected resource from the Hierarchy/Dependencies structure.

**Tip:** When a recursive reference is encountered in the Hierarchy view, the reference is marked with a special icon.

**Note:** The Move resource or Rename resource actions give you the option to update the references to the resource (on page 1474).
Moving/Renaming Schematron Resources

You can move and rename a resource presented in the Resource/Hierarchy Dependencies view, using the Rename resource and Move resource refactoring actions from the contextual menu.

When you select the Rename action in the contextual menu of the Resource/Hierarchy Dependencies view, the Rename resource dialog box is displayed. The following fields are available:

- **New name** - Presents the current name of the edited resource and allows you to modify it.
- **Update references of the renamed resource(s)** - Select this option to update the references to the resource you are renaming. A Preview option is available that allows you to see what will be updated before selecting Rename to process the operation.

When you select the Move action from the contextual menu of the Resource/Hierarchy Dependencies view, the Move resource dialog box is displayed. The following fields are available:

- **Destination** - Presents the path to the current location of the resource you want to move and gives you the option to introduce a new location.
- **New name** - Presents the current name of the moved resource and gives you the option to change it.
- **Update references of the moved resource(s)** - Select this option to update the references to the resource you are moving, in accordance with the new location and name. A Preview option is available that allows you to see what will be updated before selecting Move to process the operation.

Highlight Component Occurrences in Schematron Documents

When you position your mouse cursor over a component in a Schematron document, Oxygen XML Editor searches for the component declaration and all its references and highlights them automatically.

Customizable colors are used: one for the component definition and another one for component references. Occurrences are displayed until another component is selected.

To change the default behavior of Highlight Component Occurrences, open the Preferences dialog box (Options > Preferences) (on page 79) and go to Editor > Mark Occurrences. You can also trigger a search using the Search > Search Occurrences in File Ctrl + Shift + U (Command + Shift + U on OS X) action from contextual menu. Matches are displayed in separate tabs of the Results view (on page 357).
Searching and Refactoring Operations in Schematron Documents

Search Actions

The following search actions can be applied on pattern, phase, or diagnostic types and are available from the Search submenu in the contextual menu of the current editor or from the Document menu:

- **Search References**
  Searches all references of the item found at current cursor position in the defined scope, if any. If a scope is defined, but the current edited resource is not part of the range of resources determined by this, a warning dialog box is displayed and you have the possibility to define another search scope.

- **Search References in**
  Searches all references of the item found at current cursor position in the file or files that you specify when define a scope in the Search References dialog box.

- **Search Declarations**
  Searches all declarations of the item found at current cursor position in the defined scope if any. If a scope is defined, but the current edited resource is not part of the range of resources determined by this, a warning dialog box will be displayed and you have the possibility to define another search scope.

- **Search Declarations in**
  Searches all declarations of the item found at current cursor position in the file or files that you specify when you define a scope for the search operation.

- **Search Occurrences in File**
  Searches all occurrences of the item at the cursor position in the currently edited file.

Refactoring Actions

The following refactoring actions can be applied on pattern, phase, or diagnostic types and are available from the Refactoring submenu in the contextual menu of the current editor or from the Document > Refactoring menu:

- **Rename Component**
  Allows you to rename the current component (in-place). The component and all its references in the document are highlighted with a thin border and the changes you make to the component at the cursor position are updated in real time to all occurrences of the component. To exit the in-place editing, press the Esc or Enter key on your keyboard.
**Rename Component in**

Opens a dialog box that allows you to rename the selected component by specifying the new component name and the files to be affected by the modification. If you click the **Preview** button, you can view the files to be affected by the action.

Figure 581. Rename Identity Constraint Dialog Box

![Rename Identity Constraint Dialog Box](image)

---

**Searching and Refactoring Operations Scope in Schematron Documents**

The **scope** is a collection of documents that define the context of a search and refactor operation. To control it you can use the **Change scope** operation, available in the **Quick Assist** action set or on the **Resource Hierarchy/Dependency View** toolbar. You can restrict the scope to the current project or to one or multiple **working sets (on page 3288)**. The **Use only Master Files, if enabled** checkbox allows you to restrict the scope of the search and refactor operations to the resources from the **Master Files** directory. Click **read more** for details about the **Master Files support (on page 726)**.

Figure 582. Change Scope Dialog Box
The scope you define is applied to all future search and refactor operations until you modify it. Contextual menu actions allow you to add or delete files, folders, and other resources to the working set (on page 3288) structure.

Quick Assist Support in Schematron Documents

The Quick Assist support (on page 3286) improves the development work flow, offering fast access to the most commonly used actions when you edit schema documents.

The Quick Assist feature (on page 3286) is activated automatically when the cursor is positioned over the name of a component. It is accessible via a yellow bulb icon ((Roles) placed at the current line in the stripe on the left side of the editor. Also, you can invoke the quick assist menu by using the Alt + 1 (Meta + Alt + 1 on Mac OS X) keyboard shortcuts.

Figure 583. Schematron Quick Assist Support

The Quick Assist support offers direct access to the following actions:

- Rename Component in
Renames the component and all its dependencies.

- **Search Declarations**
  Searches the declaration of the component in a predefined scope. It is available only when the context represents a component name reference.

- **Search References**
  Searches all references of the component in a predefined scope.

- **Component Dependencies**
  Searches the component dependencies in a predefined scope.

- **Change Scope**
  Configures the scope that will be used for future search or refactor operations.

- **Rename Component**
  Allows you to rename the current component in-place.

- **Search Occurrences**
  Searches all occurrences of the component within the current file.

### Schematron Unit Test (XSpec)

XSpec is a behavior driven development (BDD) framework for XSLT, XQuery, and Schematron. XSpec consists of syntax for describing the behavior of your XSLT, XQuery, or Schematron code, and some code that enables you to test your code against those descriptions.

#### Creating a Schematron Unit Test

To create a Schematron Unit Test, go to File > New > Schematron Unit Test. This is simple document template to help you get started.

#### Running a Schematron Unit Test

To run a Unit Test, open the XSpec file in an editor and click **Apply Transformation Scenario(s)** on the main toolbar. This will run the built-in **Run XSpec Test** transformation scenario that is defined in the XSpec framework (on page 3282).

#### Testing a Stylesheet

An XSpec file contains one or more test scenarios.

**Example**
Suppose you have this Schematron rule that says sections should have a title:

```
<sch:pattern>
  <sch:rule context="section">
    <sch:assert test="title" id="a002">
      section should have a title
    </sch:assert>
  </sch:rule>
</sch:pattern>
```

The XSpec test could look like this:

```
<x:description xmlns:x="http://www.jenitennison.com/xslt/xspec" schematron="demo-01.sch">
  <x:scenario label="section should have a title">
    <x:context>
      <article>
        <section>
          <title>Introduction</title>
          <p>This is an example.</p>
        </section>
        <section>
          <p>This is an example.</p>
        </section>
      </article>
    </x:context>
    <x:expect-not-assert id="a002" location="/article[1]/section[1]"/>
    <x:expect-assert id="a002" location="/article[1]/section[2]"/>
  </x:scenario>
</x:description>
```

The `sch:assert` with the `id="a002"` is not expected to be triggered on the first section since it includes a title. This requirement is expressed with the `x:expect-not-assert` element.

Since the second section does not have a title, you would expect the Schematron rule to be triggered and this requirement is expressed with the `x:expect-assert` element.

For more details about how to write Schematron tests and various samples, see [https://github.com/xspec/xspec/wiki/Writing-Scenarios-for-Schematron#writing-tests](https://github.com/xspec/xspec/wiki/Writing-Scenarios-for-Schematron#writing-tests).
Adding a Catalog to an XSpec Transformation

If your Schematron needs a catalog, you can add one to the XSpec transformation by doing one of the following:

- If you are using a project (on page 707) in Oxygen XML Editor, create a catalog.xml file in the project directory. This catalog will then be loaded automatically.
- Edit (on page 1758) the Run XSpec Test transformation scenario, go to the Parameters tab (on page 1720), and set the value of the catalog parameter to the location of your catalog file.

Editing Schematron Quick Fixes

Oxygen XML Editor provides support for editing the Schematron Quick Fixes (on page 1111). You can define a library of Quick Fixes by editing them directly in the current Schematron file or in a separate file. Oxygen XML Editor assists you in editing Schematron Quick Fixes with schema-based content completion, syntax highlighting, and validation as you type.

For information about applying and detecting the Schematron schemas that include SQF, see Associating a Schema to XML Documents (on page 1112).

### Related Information:

- Oxygen XML Blog: Schematron Checks to Help Technical Writing

### Schematron Quick Fixes (SQF)

Oxygen XML Editor provides support for Schematron Quick Fixes (on page 3287) (SQF). They help you resolve issues that appear in XML documents that are validated against Schematron schemas by offering you solution proposals. The Schematron Quick Fixes are an extension of the Schematron language and they allow you to define fixes for Schematron validation messages. Specifically, they are associated with assert or report messages.

A typical use case is using Schematron Quick Fixes to assist content authors with common editing tasks. For example, you can use Schematron rules to automatically report certain validation warnings (or errors) when performing regular editing tasks, such as inserting specific elements or changing IDs to match specific naming conventions. For more details and examples, see the following blog post: [http://blog.oxygenxml.com/2015/05/schematron-checks-to-help-technical.html](http://blog.oxygenxml.com/2015/05/schematron-checks-to-help-technical.html).
Displaying the Schematron Quick Fix Proposals

The defined Schematron Quick Fixes are displayed on validation errors in Text mode and Author mode.

Figure 584. Example of a Schematron Quick Fix

Related Information:

- Editing Schematron Quick Fixes (on page 1481)
- Schematron Quick Fix Specifications
- Presenting Schematron Validation Issues (on page 1464)

Defining Schematron Quick Fixes

You can define and customize Schematron Quick Fixes (on page 3287) directly in the current Schematron file or in a separate Schematron file. The Schematron Quick Fixes are an extension of the Schematron language and they allow you to define fixes for Schematron error messages. You can refer the Quick Fixes from the assert or report elements in the values of the sqf:fix attributes.

Defining a Schematron Quick Fix

The basics of a Schematron Quick Fix is defined by an ID, name, description, and the operations to be executed.

- **ID** - Defined by the id attribute from the fix element and must be unique in the current context. It is used to refer the Quick Fix from a report or assert element.
- **Name** - The name of the Quick Fix is defined by the title element.
- **Description** - Defined by the text in the paragraphs (p) of the description element.
- **Operations** - The following basic types of operations (elements) (on page 1484) are supported:
  - `<sqf:add>` Element - To add a new node or fragment in the document.
  - `<sqf:delete>` Element - To remove a node from the document.
Figure 585. Schematron Quick Fix Components

The assertion message that generates the Quick Fix is added as the description of the problem to be fixed. The title is presented as the name of the Quick Fix. The content of the paragraphs (p) within the description element are presented in the tooltip message when the Quick Fix is selected.

Additional Elements Supported in the Schematron Quick Fixes

<sqf:user-entry>

This element defines a value that must be set manually by the user. For more information, see User Entry SQF Operation (on page 1488).

</sqf:user-entry>

<sqf:call-fix>

This element calls another Quick Fix within a Quick Fix. The called Quick Fix must be defined globally or in the same Schematron rule as the calling Quick Fix. A calling Quick Fix adopts the activity elements of the called Quick Fix and should not include other activity elements. You can also specify which parameters are sent by using the <sqf:with-param> child element.

</sqf:call-fix>

<sqf:group>

Allows you to group multiple Quick Fixes and refer them from an assert or report element.

</sqf:group>

<sqf:fixes>

Is defined globally and contains global fixes and groups of fixes.

</sqf:fixes>
Used to copy the selected nodes that are specified by the `select` attribute. The element with its attribute is treated as an `xsl:copy-of` with a `select` attribute, as defined in the XSLT specification.

```
<sqf:param>
  Defines a parameter for a Quick Fix. If the parameter is defined as `abstract` then the `type` and default value should not be specified and the fix can be called from an abstract pattern that defines this parameter.
```

Other SQF Notes

Note: The `sqf:default-fix` attribute is ignored in Oxygen XML Editor.

For more details on editing Schematron Quick Fixes, go to: Schematron Quick Fix Specifications

Basic Schematron Quick Fix Operations

There are four basic operations that can be executed in a Schematron Quick Fix (on page 3287): **Add**, **Delete**, **Replace**, and **String Replace**.

**Add**

The `<sqf:add>` element allows you to add a node to the instance. An `anchor` node is required to select the position for the new node. The `anchor` node can be selected by the `match` attribute. Otherwise, it is selected by the `context` attribute of the rule.

The `target` attribute defines the name of the node to be added. It is required if the value of the `node-type` attribute is set to anything other than "comment".

The `<sqf:add>` element has a `position` attribute and it determines the position relative to the `anchor` node. The new node could be specified as the first child of the `anchor` node, the last child of the `anchor` node, before the `anchor` node, or after the `anchor` node (`first-child` is the default value). If you want to add an attribute to the `anchor` node, do not use the `position` attribute.

Note: If you insert an element and its content is empty, Oxygen XML Editor will insert the required element content.

**An Example of the `<sqf:add>` Element:**

```
<schema xmlns="http://purl.oclc.org/dsdl/schematron"
  xmlns:sqf="http://www.schematron-quickfix.com/validator/process"
  queryBinding="xslt2">
  <pattern>
    <rule context="head">
```

Specific Add Operations:

- **Insert Element** - To insert an element, use the `<sqf:add>` element, set the value of the `node-type` to "element", and specify the element `QName (on page 3286)` with the `target` attribute. If the element has a prefix, it must be defined in the Schematron using a namespace declaration (`<ns uri="namespace" prefix="prefix"/>`).

- **Insert Attribute** - To insert an attribute, use the `<sqf:add>` element, set the value of the `node-type` to "attribute", and specify the attribute `QName (on page 3286)` with the `target` attribute. If the attribute has a prefix, it must be defined in the Schematron using a namespace declaration (`<ns uri="namespace" prefix="prefix"/>`).

- **Insert Fragment** - If the `node-type` is not specified, the `<sqf:add>` element will insert an XML fragment. The XML fragment must be well formed. You can specify the fragment in the `add` element or by using the `select` attribute.

- **Insert Comment** - To insert a comment, use the `<sqf:add>` element and set the value of the `node-type` to "comment".

- **Insert Processing Instruction** - To insert a processing instruction, use the `<sqf:add>` element, set the value of the `node-type` to "pi" or "processing-instruction", and specify the name of the processing instruction in the `target` attribute.

**Delete**

The `<sqf:delete>` element allows you to remove any type of node (such as elements, attributes, text, comments, or processing instructions). To specify nodes for deletion the `<sqf:delete>` element can include a `match` attribute that is an XPath expression (the default value is `.`). If the `match` attribute is not included, it deletes the context node of the Schematron rule.
An Example of the `<sqf:delete>` Element:

```xml
<schema xmlns="http://purl.oclc.org/dsdl/schematron" queryBinding="xslt2"
       xmlns:sqf="http://www.schematron-quickfix.com/validator/process">
    <pattern>
        <rule context="*[@xml:lang]">
            <report test="@xml:lang" sqf:fix="remove_lang">
                The attribute "xml:lang" is forbidden.</report>
            <sqf:fix id="remove_lang">
                <sqf:description>
                    <sqf:title>Remove "xml:lang" attribute</sqf:title>
                </sqf:description>
                <sqf:delete match="@xml:lang"/>
            </sqf:fix>
        </rule>
    </pattern>
</schema>
```

Replace

The `<sqf:replace>` element allows you to replace nodes. Similar to the `<sqf:delete>` element, it can include a `match` attribute. Otherwise, it replaces the context node of the rule. The `<sqf:replace>` element has three tasks. It identifies the nodes to be replaced, defines the replacing nodes, and defines their content.

An Example of the `<sqf:replace>` Element:

```xml
<schema xmlns="http://purl.oclc.org/dsdl/schematron"
        xmlns:sqf="http://www.schematron-quickfix.com/validator/process"
        queryBinding="xslt2">
    <pattern>
        <rule context="title">
            <report test="exists(ph)" sqf:fix="resolvePh" role="warn">
                ph element is not allowed in title.</report>
            <sqf:fix id="resolvePh">
                <sqf:description>
                    <sqf:title>Change the ph element into text</sqf:title>
                </sqf:description>
                <sqf:replace match="ph">
                    <value-of select="."/>
                </sqf:replace>
            </sqf:fix>
        </rule>
    </pattern>
</schema>
```
Other Attributes for Replace Operations:

- **node-type** - Determines the type of the replacing node. The permitted values include:
  - keep - Keeps the node type of the node to be replaced.
  - element - Replaces the node with an element.
  - attribute - Replaces the node with an attribute.
  - pi - Replaces the node with a processing instruction.
  - comment - Replaces the node with a comment.

- **target** - By using a QName (on page 3286) it gives the replacing node a name. This is necessary when the value of the node-type attribute is anything other than "comment".

- **select** - Allows you to choose the content of the replacing nodes. You can use XPath expressions with the select attribute. If the select attribute is not specified then the content of the <sqf:replace> element is used instead.

**String Replace**

The <sqf:stringReplace> element is different from the others. It can be used to find a sub-string of text content and replace it with nodes or other strings.

**Attributes for the String Replace Operation:**

- **match** - Allows you to select text nodes that contain the sub-strings you want to replace.
- **select** - Allows you to select the replacing fragment, in case you do not want to set it in the content of the stringReplace element.
- **regex** - Matches the sub-strings using a regular expression.

**Note:** Consider the following information about using regular expressions in the stringReplace element:

- The regular expressions from this operation are compiled as Java regular expressions. For more information, see [https://docs.oracle.com/javase/7/docs/api/java/util/regex/Pattern.html](https://docs.oracle.com/javase/7/docs/api/java/util/regex/Pattern.html).
- The j flag allows you to use the standard Java regular expression engine, which allows native Java regular expression syntax. This allows, for example, the use of \b in a regular expression to match word boundaries. For more information, see [http://www.saxonica.com/html/documentation/functions/fn/matches.html](http://www.saxonica.com/html/documentation/functions/fn/matches.html).
Regular expressions in the `<sqf:stringReplace>` element always have the `dot matches all` flag set to "true". Therefore, the line terminator will also be matched by the regular expression.

- **flags** - Specifies flags to control the interpretation of the regular expression (given in the `regex` attribute).

⚠️ **Attention:** The context of the content within the `<sqf:stringReplace>` element is set to the whole text node, rather than the current sub-string.

**An Example of the `<sqf:stringReplace>` Element:**

```xml
<?xml version="1.0" encoding="UTF-8"?>
<sch:schema xmlns:sch="http://purl.oclc.org/dsdl/schematron"
            xmlns:sqf="http://www.schematron-quickfix.com/validator/process"
            queryBinding="xslt2">
    <sch:pattern>
        <sch:rule context="text()">
            <sch:report test="matches(., 'Oxygen', 'i')">
                The oXygen word is not allowed</sch:report>
            <sqf:fix id="changeWord">
                <sqf:description>
                    <sqf:title>Replace word with product</sqf:title>
                </sqf:description>
                <sqf:stringReplace regex="Oxygen" flags="i">
                    <ph keyref="product"/>
                </sqf:stringReplace>
            </sqf:fix>
        </sch:rule>
    </sch:pattern>
</sch:schema>
```

**Related Information:**

- User Entry SQF Operation (on page 1488)
- Restricting Quick Fix Operations (on page 1489)
User Entry SQF Operation

The `<sqf:user-entry>` element defines a value that must be set manually by the user. If multiple `<user-entry>` elements are defined, Oxygen XML Editor will display a dialog box for each one, in which the user can specify values. Also, the `<user-entry>` element can be used as an XPath variable where the XPath variable is the name of the `<user-entry>`. Note that the `default` attribute defines a default value for the operation by using an XPath expression (as in the example below) and its value will be presented in the user entry dialog box.

**An Example of the `<sqf:user-entry>` Element:**

```xml
<sqf:fix id="editTitle">
  <sqf:description>
    <sqf:title>Edit the journal title</sqf:title>
  </sqf:description>
  <sqf:user-entry name="newTitle" default="@title">
    <sqf:description>
      <sqf:title>Edit the title:</sqf:title>
    </sqf:description>
  </sqf:user-entry>
  <sqf:replace match="@title" target="title" node-type="keep" select="$newTitle"/>
</sqf:fix>
```

**Related Information:**

- Basic Schematron Quick Fix Operations *(on page 1484)*

Restricting Quick Fix Operations

To restrict a *Quick Fix *(on page 3287) or a specific operation to only be available if certain conditions are met, the `use-when` attribute can be included in the `<sqf:fix>` element or any of the SQF operation elements. The condition of the `use-when` attribute is an XPath expression and the fix or operation will be performed only if the condition is satisfied. In the following example, the `use-when` condition is applied to the `<sqf:fix>` element:

```xml
<sqf:fix id="last" use-when="$colWidthSummarized - 100 lt $lastWidth" role="replace">
  <sqf:description>
    <sqf:title>Subtract excessive width from the last element.</sqf:title>
  </sqf:description>
  <let name="delta" value="$colWidthSummarized - 100"/>
</sqf:fix>
```
Related Information:

- Basic Schematron Quick Fix Operations *(on page 1484)*

Formatting/Indenting Content Inserted by SQF Operations

Content that is inserted by the **Add**, **Replace**, or **String Replace** Schematron Quick Fix *(on page 3287)* operations is automatically indented unless you set the value of the `xml:space` attribute to `preserve` on the operation element. There are several methods available to format the content that is inserted:

- **xsl:text** - You can use an `xsl:text` element to format the inserted content and keep the automatic indentation, as in the following example:

```
<sqf:add position="last-child">
    <row><xsl:text>
        <entry>First column</entry><xsl:text>
        <entry>Second column</entry><xsl:text>
    </row><xsl:text>
</sqf:add>
```

- **xml:space** - Use the `xml:space` attribute and set its value to `preserve` to format the content and specify the spacing between elements, as in the following example:

```
<sqf:add node-type="element" target="codeblock" xml:space="preserve">
    /* a long sample program */
    Do forever
    Say "Hello, World"
    End</sqf:add>
```
Executing Schematron Quick Fixes in Other Documents

You can apply Schematron Quick Fixes (on page 3287) over nodes from referenced documents (using XInclude or external entities), and you can access them as nodes in your current document.

Also, you can apply the Quick Fixes over other documents using the doc() function in the value of the match attribute. For example, you can add a new key in the keylist.xml file using the following operation:

```xml
<sqf:add match="doc('keylist.xml')/KeyList" target="Key"
node-type="element" select="Key2">
</sqf:add>
```

Generate Multiple Similar Quick Fixes

You can generate the same Schematron Quick Fix (on page 3287) for multiple matches. To do this, you can add the use-for-each attribute inside the sqf:fix element and for each match of the XPath expression in the value of the use-for-each attribute, a Quick Fix will be presented to the user. The XPath expression does not change the context of the Quick Fix. If you want to access the current match from the XPath expression, you can use the $sqf:current variable.

**Example:**

Suppose you want to restrict the user from entering more than 4 list items in a list. The following example presents an error on any list that has more than 4 list items and offers a Quick Fix with multiple proposals where the user would specify which list item to remove.

```xml
<sch:rule context="ul">
  <sch:report test="count(li) gt 4" sqf:fix="removeAnyItem">
    The list cannot contain more than 4 entries.
  </sch:report>
  <sqf:fix id="removeAnyItem" use-for-each="1 to count(li)">
    <sqf:description>
      <sqf:title>Remove item #<sch:value-of select="$sqf:current"/></sch:title>
    </sqf:description>
    <sqf:delete match="li[$sqf:current]"/>
  </sqf:fix>
</sch:rule>
```
Localizing SQF Messages

Oxygen XML Editor provides support for presenting Schematron Quick Fix messages in multiple languages. The language used for the SQF messages is the language specified in the `Message Language` option in the Schematron preferences page (on page 195). If you want to provide an alternative message for a specific language, you can reference IDs or key values for the specific alternate text phrase. In Oxygen XML Editor, the alternate text phrase is defined in a `sch:diagnostic` element and it can be used in conjunction with `sch:assert` or `sch:report` elements.

**Example:**

The following example presents a quick fix with a different message depending on whether the user's language is English or German.

```xml
<sch:rule context="dog">
  <sch:assert test="bone" diagnostics="d_en d_de" sqf:fix="addBone">
    A dog should have a bone. </sch:assert>

  <sqf:fix id="addBone">
    <sqf:description>
      <sqf:title ref="fix_en fix_de" xml:lang="en">Add a bone</sqf:title>
      <sqf:p ref="fix_desc_en fix_desc_de" xml:lang="en">Add bone element as child</sqf:p>
    </sqf:description>
    <sqf:add node-type="element" target="bone"/>
  </sqf:fix>
</sch:rule>

....

<sch:diagnostics xml:lang="en">
  <sch:diagnostic id="d_en"> A dog should have a bone. </sch:diagnostic>
  <sch:diagnostic id="fix_en"> Add a bone </sch:diagnostic>
  <sch:diagnostic id="fix_desc_en">Add a bone element as child</sch:diagnostic>
</sch:diagnostics>

<sch:diagnostics xml:lang="de">
  <sch:diagnostic id="d_de"> Ein Hund sollte ein Bein haben. </sch:diagnostic>
  <sch:diagnostic id="fix_de"> Fugen Sie einen Knochen hinzu </sch:diagnostic>
  <sch:diagnostic id="fix_desc_de">Fugen Sie ein Knochenelement als untergeordnetes Element hinzu</sch:diagnostic>
</sch:diagnostics>
```
Integrating SQF in a Framework and Sharing Them

You can use Schematron Quick Fixes (on page 3287) to assist your content authors by imposing rules for an entire framework (on page 3282) (document type) and offering fixes when a rule violation is detected.

For example, if you are using DITA, you may want your contributors to avoid inserting a figure (fig element) inside a paragraph (p element) that contains other content since it may result in undesirable placement or spacing in the output. The Schematron rule and its Quick Fix for this particular use-case could look like this:

```xml
<schema xmlns="http://purl.oclc.org/dsdl/schematron"
    xmlns:sqf="http://www.schematron-quickfix.com/validator/process"
    queryBinding="xslt2">
  <pattern id="check.figure.location">
    <rule context="p/fig">
      <report test="true()" role="warn" sqf:fix="moveAfter">
        A figure inside a paragraph doesn't transform well into PDF. </report>
      <sqf:fix id="moveAfter">
        <sqf:description>
          <sqf:title>Move after the paragraph.</sqf:title>
        </sqf:description>
        <let name="figToMove" value="."/>
        <sqf:add match="parent::p" select="$figToMove" position="after"/>
        <sqf:delete match="."/>
      </sqf:fix>
    </rule>
  </pattern>
</schema>
```

The result of this example would be that the user will see a warning if they insert a fig element inside a p element and they are presented with the option of selecting the Quick Fix that would move the figure outside the paragraph.

How to Integrate SQF in a Framework

To integrate a Schematron Quick Fix in a framework (on page 3282), follow these steps:

1. Create a folder structure for an extended framework and save it somewhere on disk where you have full write access (for example, custom_frameworks/dita-extension).
2. In that new folder structure, create another folder that will contain all of your custom Schematron files (for example, custom_frameworks/dita-extension/rules).
3. Define the Schematron *Quick Fix for a rule* (on page 1482) in an existing or new Schematron file and save it in the folder you created in step 2.

4. Open the Preferences dialog box (Options > Preferences) (on page 79) and go to Document Type Association > Locations (on page 94). In this preferences page, add the path to your customFrameworks folder in the Additional frameworks directories list, then click OK or Apply to save your changes.

5. Go to the Document Type Association preferences page (on page 92) and select a framework configuration (for example, DITA) and use the Extend button to create an extension for it.

6. Give the extension an appropriate name (for example, DITA - Custom), select External for the Storage option, and specify an appropriate path to your framework configuration file (for example, path/to/.../custom_frameworks/dita-extension/dita-extension.framework).

7. Make whatever changes you desire to the extension, then go to the Validation tab, edit the default validation scenario (select the scenario and click the Edit button), and add an extra validation unit to it (one that uses your custom Schematron file that includes the SQF). For more details about editing validation scenarios, see Configuring Validation Scenarios for a Framework (on page 2339).

8. Click OK to close the dialog box and then OK or Apply to save the changes to the Document Type Association preferences page (on page 92).

9. Add a reference to the Schematron file that includes the SQF in your framework by following the procedure in Associating a Schema in Validation Scenarios Defined in the Document Type (on page 1118).

10. Open a document in your framework and test the new rule and Quick Fix.

11. You can continue to refine the Schematron and develop additional rules as needed.

**Sharing Schematron Quick Fixes**

To share Schematron Quick Fixes with other members of your team, you simply need to share the framework where you integrated the SQF. There are several methods for sharing frameworks and you can find details here: Sharing a Custom Framework (on page 2371).

**Related Information:**

- Defining Schematron Quick Fixes (on page 1482)
- Basic Schematron Quick Fix Operations (on page 1484)

  Associating a Schema in Validation Scenarios Defined in the Document Type (on page 1118)
Validating Schematron Quick Fixes

By default, Schematron Quick Fixes are validated as you edit them within the Schematron file or while editing them in a separate file. To change this, open the Preferences dialog box (Options > Preferences) (on page 79), go to Editor > Document Checking, and deselect the Enable automatic validation option (on page 181).

To validate Schematron Quick Fixes manually, select the Validate action from the Validation toolbar drop-down menu or the Document > Validate menu. The validation problems are highlighted directly in the editor, making it easy to locate and fix any issues.

Related Information:

• Validating XML Documents Against a Schema (on page 1081)

• Validation Scenario (on page 1093)

• Presenting Validation Errors in Author Mode (on page 445)

• Presenting Validation Errors in Text Mode (on page 364)

Content Completion in SQF

Oxygen XML Editor helps you edit Schematron Quick Fixes embedded in a Schematron document by offering proposals that are valid at the cursor position in a Content Completion Assistant (on page 3280). It can be manually activated with the Ctrl + Space (Command + Space on OS X) shortcut.

When you edit the value of an attribute that references a Quick Fix ID, the ids are collected from the entire definition scope. For example, if the editing context is assert/@sqf:fix, the Content Completion Assistant proposes all fixes defined locally and globally.

If the editing context is an attribute value that is an XPath expression (such as sqf:add/@match or replace/@select), the Content Completion Assistant offers the names of XPath functions, the XPath axes, and user-defined variables and parameters.
The *Content Completion Assistant* displays XSLT 1.0 functions (and optionally XSLT 2.0 / 3.0 functions) in the attributes *path*, *select*, *context*, *subject*, and *test*, depending on the Schematron options *(on page 194)* that are set in Preferences pages. If the Saxon 6.5.5 namespace *(xmlns:saxon="http://icl.com/saxon")* or the Saxon 9.8.0.12 namespace is declared in the Schematron schema *(xmlns:saxon="http://saxon.sf.net/")* the content completion also displays the XSLT Saxon extension functions.

**Highlight Quick Fix Occurrences in SQF**

When you position your mouse cursor over a *Quick Fix (on page 3287)* ID in a Schematron document, Oxygen XML Editor searches for the *Quick Fix* declaration and all its references and highlights them automatically.

Customizable colors are used: one for the *Quick Fix* definition and another one for its references. Occurrences are displayed until another *Quick Fix* is selected.

To change the default behavior of **Highlight Component Occurrences**, open the *Preferences* dialog box *(Options > Preferences) (on page 79)* and go to Editor > Mark Occurrences. You can also trigger a search using the *Search > Search Occurrences in File (Ctrl + Shift + U (Command + Shift + U on OS X))* action from contextual menu. Matches are displayed in separate tabs of the *Results view (on page 357)*.

**Searching and Refactoring Operations in SQF**

**Search Actions**

The following search actions can be applied on *Quick Fix (on page 3287)* IDs and are available from the *Search* submenu in the contextual menu of the current editor or from the *Document > References* menu:

- **Search References**
  
  Searches all references of the item found at current cursor position in the defined scope, if any. If a scope is defined, but the current edited resource is not part of the range of resources determined by this, a warning dialog box is displayed and you have the possibility to define another search scope.

- **Search References in**
  
  Searches all references of the item found at current cursor position in the file or files that you specify when define a scope in the *Search References* dialog box.

- **Search Declarations**
Searches all declarations of the item found at current cursor position in the defined scope if any. If a scope is defined, but the current edited resource is not part of the range of resources determined by this, a warning dialog box will be displayed and you have the possibility to define another search scope.

Search Declarations in

Searches all declarations of the item found at current cursor position in the file or files that you specify when you define a scope for the search operation.

Search Occurrences in File

Searches all occurrences of the item at the cursor position in the currently edited file.

Refactoring Actions

The following refactoring actions can be applied on Quick Fix IDs and are available from the Refactoring submenu in the contextual menu of the current editor or from the Document > Refactoring menu:

Rename Component

Allows you to rename the current component (in-place). The component and all its references in the document are highlighted with a thin border and the changes you make to the component at the cursor position are updated in real time to all occurrences of the component. To exit the in-place editing, press the Esc or Enter key on your keyboard.

Rename Component in

Opens a dialog box that allows you to rename the selected component by specifying the new component name and the files to be affected by the modification. If you click the Preview button, you can view the files to be affected by the action.

Figure 586. Rename Identity Constraint Dialog Box
Embedding Schematron Quick Fixes in Relax NG or XML Schema

Schematron Quick Fixes (on page 3287) can be embedded into an XML Schema through annotations (using the appinfo element), or in a Schematron rule embedded in the RELAX NG Schema. For more information about embedding Schematron in XML Schema or Relax NG, see Embedding Schematron Rules in XML Schema or RELAX NG (on page 1469).

Oxygen XML Editor is able to extract and use the embedded Schematron Quick Fixes. To make the embedded Schematron Quick Fixes available, follow these steps:

1. Define a validation against a schema (on page 1081).
2. For the Schema type, choose XML Schema or Relax NG.
3. Select the Embedded Schematron rules option.

Example: Embedded Schematron Quick Fix in XML Schema

```xml
<xsd:appinfo>
  <sch:pattern>
    <sch:rule context="...">
      <sch:assert test="..." sqf:fix="fixId">Message.</sch:assert>
      <sqf:fix id="fixId">
        ........
      </sqf:fix>
    </sch:rule>
  </sch:pattern>
</xsd:appinfo>
```
Example: Embedded Schematron Quick Fix in Relax NG

```xml
<grammar
    xmlns="http://relaxng.org/ns/structure/1.0"
    xmlns:sch="http://purl.oclc.org/dsdl/schematron">
    <sch:pattern>
        <sch:rule context="...">
            <sch:assert test="..." sqf:fix="fixId">Message.</sch:assert>
            <sqf:fix id="fixId">
                ......
            </sqf:fix>
        </sch:rule>
    </sch:pattern>
</grammar>
```

**Tip:** For more extensive examples, see the samples in the [OXYGEN_INSTALL_DIR]/samples/schematron folder.

Related Information:

- Embedding Schematron Rules in XML Schema or RELAX NG *(on page 1469)*
- Defining Schematron Quick Fixes *(on page 1482)*

Editing SVG Files

SVG (Scalable Vector Graphics) is a platform for two-dimensional graphics. It has two parts: an XML-based file format and a programming API for graphical applications. Some of the key features include support for shapes, text, and embedded raster graphics with many painting styles, scripting through languages such as ECMAScript, and support for animation.

SVG is a vendor-neutral, open standard that has important industry support. Companies such as Adobe, Apple, and IBM have contributed to its W3C specifications. Many documentation frameworks...
(on page 3282) (including DocBook) have support for SVG by defining the graphics directly in the document.

Oxygen XML Editor adds SVG support by using the Batik distribution package (an open source project developed by the Apache Software Foundation) and the default XML Catalog (on page 1123) resolves the SVG DTD.

**Note:** Batik partially supports SVG 1.1. For a detailed list of supported elements, attributes, and properties, see the Batik Implementation Status page.

**How to Render SVG Images that Use Java Scripting**

1. Copy the js.jar library from the Batik distribution into the Oxygen XML Editor lib folder.
2. Restart the application.

**SVG 1.2 Rendering Issues**

Oxygen XML Editor uses the Apache Batik open source library to render SVG images and it only has partial support for SVG 1.2. For more information, see http://xmlgraphics.apache.org/batik/dev/svg12.html.

This partial support could lead to some rendering issues in Oxygen XML Editor. For example, if you are using the Inkscape SVG editor, it is possible for it to save the SVG as 1.1, while using SVG 1.2 elements (such as flowRoot) inside it. This means that the image will not be properly rendered inside the application.

**Note:** SVG images shown in the Author visual editing mode are rendered as static images, without support for animations and JavaScript.

**Standalone SVG Viewer**

Oxygen XML Editor includes a simple SVG Viewer that allows you to work with SVG images.

To open the viewer, select SVG Viewer from the Tools menu.

Figure 587. SVG Viewer
You can browse for and open any SVG file that has the .svg or .svgz extension.

If the file is included in the current project, you can open it in the viewer by right-clicking the image file in the Project view (on page 333) and selecting Open with > SVG Viewer.

**Actions Available in the SVG Viewer**

The following actions are available in the SVG Viewer:

**Zoom in**

To zoom in on an image, use any of the following methods:

- Scroll forward with the mouse wheel.
- Select Zoom in from the contextual menu.
- Use the Ctrl + I (Command + I on OS X) keyboard shortcut.

**Zoom out**

To zoom in on an image, use any of the following methods:

- Scroll backward with the mouse wheel.
- Use the Ctrl + O (Command + O on OS X) keyboard shortcut.
- Select Zoom out from the contextual menu.

**Rotate**

To rotate an image, use either of the following methods:

- Use the Ctrl + Right-Click + Drag (Command + Right-Click + Drag on OS X) shortcut.
- Select Rotate from the contextual menu. This rotates the image exactly 90 degrees clockwise.
Refresh

To refresh (or reset) an image, use either of the following methods:

• Use the **Ctrl + T (Command + T on OS X)** keyboard shortcut.
• Select **Refresh** from the contextual menu.

Move

To move an image, use either of the following methods:

• Use the **Arrow Keys** on your keyboard.
• Use the **Shift + Left-Click + Drag** shortcut.

Pan

To pan an image, **click and drag** the image with your mouse.

Related Information:

• **Editing SVG Files (on page 1499)**

Integrated SVG Viewer in the Results Panel

Oxygen XML Editor includes an integrated **SVG Viewer** that can render the results of an XSLT transformation scenario that generates SVG images in the **Results panel (on page 357)** at the bottom of the editor. This is useful for developing XSL stylesheets with the capability of producing SVG graphics.

To enable this feature, select **Show in results view as > SVG** in the **Output tab of the XSLT transformation scenario configuration dialog box (on page 1685)**. When you run the transformation, the SVG result is then rendered in an integrated SVG viewer in the **Results panel (on page 357)**.

Example of a Use-Case

Suppose you have an XML document that describes the evolution of your sales over a time period and you want to create a graphic for it. You could use the following steps to accomplish this task:

1. Start with a static SVG image, written directly in Oxygen XML Editor or exported from a external graphics tool.
2. Extract the parts that are dependent upon the data from the XML document and create an XSL template to produce the image.
3. Create an **XML transformation with XSLT scenario (on page 1674)**.
4. While configuring the transformation scenario, select **Show in results view as > SVG in the Output tab (on page 1685)** of the configuration dialog box.

5. Run the transformation.

The SVG image is rendered in an integrated SVG viewer in the **Results panel (on page 357)** at the bottom of the editor.

**Figure 588. Integrated SVG Viewer**

---

**Editing HTML Documents**

Oxygen XML Editor provides a special framework for editing HTML files (`html` or `htm` file extensions) with a variety of specialized editing features, including validation, content completion, syntax highlighting, HTML-specific actions, and more.

Oxygen XML Editor also includes a **built-in XHTML framework (on page 1604)** (files with the `http://www.w3.org/1999/xhtml` namespace or with the `xhtml` or `xht` file extension) that has a full set of features (full editing support, document templates, enhanced CSS rendering, specific actions, validation, content completion, transformation scenarios, and more). Oxygen XML Editor also includes support for importing HTML files as an XML document (on page 2285).

**Related Information:**

- XHTML Document Type (Framework) (on page 1604)
HTML Editor

Oxygen XML Editor includes a specialized HTML editor and various editing features for files that have the `html` or `htm` file extensions. The encoding is detected automatically based on the value specified in the `charset` attribute of the `meta` element.

New Document Template

Oxygen XML Editor includes a new document template to help you get started creating HTML content. It is available when creating new documents from templates (on page 676) and can be found in the New Document folder or by typing `html` in the search field.

Text Mode Editor

You can edit HTML files in the Text editing mode (on page 828) using all of its useful features (on page 828). It includes content completion (on page 1505) based on a special HTML schema, syntax highlighting (on page 1505), a specialized Outline view (on page 1506) that presents the structure, and folding support (on page 1506).

In addition, there is a View in Browser/System Application action available when you right-click anywhere in an HTML document opened in Text mode and it opens the document in your default browser.

Grid Mode

You can use the Grid mode (on page 886) where the document is displayed as a structured grid of nested tables where the text content can be modified without directly interacting with the markup, but the documents must be XML well-formed.

Author Visual Editor

You can edit HTML files in the visual Author editing mode (on page 893) but in this mode, the documents must be XML well-formed because this editor uses the XHTML authoring features and actions (on page 1605).

HTML Validation

Oxygen XML Editor includes a built-in validator used for validating HTML documents. It is based upon the W3C HTML Validator and the HTML documents are validated against the W3C HTML5 specification. The validator in Oxygen XML Editor only supports HTML5 structure. It presents the
errors in the editor similar to XML documents (on page 364). It also checks the embedded CSS content and the warnings and errors are presented similar to the CSS editor (on page 1381).

By default, HTML documents are validated using the W3C HTML Validator engine, but you can create or edit a validation scenario (on page 1093) to specify that they are validated using the default engine that validates against the Relax NG-Compact Schema specified in the HTML framework.

**HTML Content Completion Assistant**

Oxygen XML Editor includes an intelligent Content Completion Assistant (on page 3280) that offers proposals for inserting HTML structures that are valid at the current editing location.

The Content Completion Assistant is enabled by default. To disable it, open the Preferences dialog box (Options > Preferences) (on page 79), go to Editor > Content Completion, and deselect the Enable content completion option (on page 167).

Figure 589. Content Completion Assistant in HTML

Using the Content Completion in HTML

For HTML documents, the Content Completion Assistant uses a built-in schema and the list of proposals depend on the RELAX NG schema specified in the HTML framework. Using the content completion feature is the same as with any other XML document. For more details, see:

- Using the Content Completion Assistant in Text Mode (on page 844)
- Using the Content Completion Assistant in Author Mode (on page 922)

**Syntax Highlighting in HTML Documents**

Oxygen XML Editor supports syntax highlighting in Text mode to make it easier to read the semantics of the structured content by displaying each type of code in different colors and fonts.

For HTML documents, it handles attributes without quotes, unclosed or void elements, and it also offers highlighting for embedded CSS or JavaScript content.

To customize the colors or styles used for the syntax highlighting colors for HTML files, follow these steps:
1. Open the Preferences dialog box (Options > Preferences) (on page 79).
2. Go to Editor > Syntax Highlight (on page 178).
3. Select and expand the XHTML section in the top pane.
4. Select the component you want to change and customize the colors or styles using the selectors to the right of the pane.

You can see the effects of your changes in the Preview pane.

Related Information:

- Syntax Highlight Preferences (on page 178)

Folding in HTML

In a large HTML document, elements can be collapsed so that only the needed data remains in focus. The folding features available for XML documents (on page 840) are also available in HTML documents, but it also provides folding for nested elements that are not closed.

HTML Outline View

The Outline view for HTML documents displays the structure of the HTML document you are editing. By default, it is displayed on the left side of the editor. In addition to the normal features available in the Outline view for XML documents (on page 347), the HTML Outline view also handles void elements, elements that are not closed, or attributes without quotes, and presents the tree structure of the HTML document correctly.

Figure 590. HTML Outline View
Editing Markdown Documents

Markdown was created as a lightweight markup language with plain text formatting syntax designed to provide syntax that is very easy to read and write, and to convert it to HTML and other formats. It is often used by content contributors who want a quick and easy way to write content without having to take their fingers off the keyboard and without having to learn numerous codes or shortcuts, and it can easily be shared interchangeably between virtually any types of contributor and system.

Oxygen XML Editor provides a built-in Markdown editor that allows you to convert Markdown syntax to HTML or DITA and it includes a preview panel to help you visualize the final output. Aside from the plain text syntax that is common among most Markdown applications, the editor in Oxygen XML Editor also integrates many other powerful features that content authors are accustomed to using for other types of documents. Some of these additional unique features include:

- Additional toolbar and contextual menu actions.
- Automatic validation to help keep the syntax valid.
- Dedicated syntax highlighting to make Markdown documents even easier to read and write.
- Unique features for creating Markdown documents directly in DITA maps (on page 3281) and converting Markdown documents to DITA topics.
- Specialized syntax rules to combine popular syntax features from several specifications.

Markdown Editor

Oxygen XML Editor provides an intuitive, dynamic, and easy-to-use Markdown editor for writing and converting Markdown documents. It is a split-screen editor with two panels that are synchronized in
real-time. The left side is a simple text editor that is specially designed for writing Markdown syntax. The right side is a WYSIWYG style preview of how changes will look in the output.

**Markdown Text Editor Pane (Left Side)**

The left pane is a simple text editor that is refined to accept Markdown syntax. At the same time, you still have many of the actions, options, and features that you are used to when editing any other type of document in Oxygen XML Editor.

The features of this special editor that are unique for Markdown documents include:

- **Unique Markdown Syntax Rules** - The Markdown editor in Oxygen XML Editor uses an integration of rules (on page 1522) that combine rules from common default Markdown syntax along with many of the rules used in the GitHub Flavored Markdown syntax.
- **Syntax Highlighting** - The Oxygen XML Editor syntax highlighting feature is integrated into the Markdown text editor to make it easier to read and write Markdown syntax. You can even customize the colors and styles for the syntax highlighting (on page 1519).
- **Automatic Spell Checking** - The Markdown editor supports the Oxygen XML Editor automatic spell checking feature (on page 764) that reports possible misspelled words as you type. You simply need to select the Automatic spell check option in the Spell Check preferences page (on page 184), then click the Select editors button and select Markdown Editor.
- **Helpful Toolbar and Contextual Menu Actions** - A variety of unique actions (on page 1510) are available from the toolbar to help you insert proper Markdown syntax. The contextual menu also includes some common editing actions, as well as unique actions to export (convert) Markdown documents to HTML or DITA.
- **Shortcut Keys** - Many of the shortcut keys that are most commonly used (on page 27) in Oxygen XML Editor also work in the Markdown editor.

**WYSIWYG Preview Pane (Right Side)**

The right pane is a WYSIWYG Preview pane that shows a visual representation of how changes made in the left-side text editor will be converted to HTML or DITA output. The changes you make in the text editor are parsed continually and they are immediately visible in the Preview pane. There are two tabs available in the Preview pane, one for visualizing DITA output and one for visualizing HTML output. You can switch between the two tabs at the bottom of the pane.

The Preview pane includes the following unique features:

- **WYSIWYG Visualization** - This pane presents the Markdown syntax from the left-side text editor in a visual WYSIWYG style interface that is automatically synchronized as you type.
• **Export Options** - The DITA tab includes a contextual menu action to export (convert) the current Markdown document to a DITA topic (on page 1518). Similarly, the HTML tab includes a contextual menu action to export (convert) it to an XHTML document (on page 1518).

• **Automatic Validation** - As you edit Markdown documents, they are validated automatically (on page 1519). The conversion engine constantly tries to parse your changes and if a change results in an error that prevents the parser from converting the syntax, an error message will be displayed in the **Preview pane or Results view (on page 357)** at the bottom of the editor.

• **Print Feature** - The Markdown editor includes a **Print** action that is available in the contextual menu and it allows you to configure options for printing the current document as you see it in the **Preview pane**.

• **Preview Markup** - The Markdown editor includes a **Tags Display Mode** drop-down menu (on page 1512) that is available on the toolbar and it allows you to control the amount of markup that is displayed in the **Preview pane**.

• **Specialized DITA Features** - The Markdown editor includes some unique, specialized features to integrate it with the powerful DITA support (on page 1520) in Oxygen XML Editor.

Figure 591. Markdown Editor in Oxygen XML Editor

Related Information:

• **Markdown Editor Syntax Rules and Specifications (on page 1522)**
Creating New Markdown Documents

To create a new Markdown document in Oxygen XML Editor, follow these steps:

1. Click the New button on the toolbar or select File > New.
3. Click the Create button.

Result: A new Markdown document is created and it is opened in the specialized Markdown Editor (on page 1507).

Related Information:

- Markdown Editor (on page 1507)

Actions Available in the Markdown Editor

Aside from the actions that are available in Oxygen XML Editor for any type of document (such as the actions in the various menus and the common sections of the toolbar), a variety of unique actions are also available in the Markdown editor, from the toolbar and contextual menu.

**Toolbar Actions**

The following default actions are readily available on the toolbar when editing Markdown documents:

- **Header (1st Level)**
  
  Inserts an *atx-style first level header (on page 1523)* at the cursor position.

- **Header (2st Level)**
  
  Inserts an *atx-style second level header (on page 1523)* at the cursor position.

- **Header (3rd Level)**
Inserts an *atx-style third level header (on page 1523)* at the cursor position.

---

**Horizontal Rule**

Inserts a *horizontal rule (on page 1523)* at the cursor position.

**Bold (Strong)**

Marks the selected text with *bold (on page 1524)*.

**Italic (Emphasis)**

Marks the selected text with *italics (on page 1524)*.

**Strikethrough**

Marks the selected text with a *strikethrough (on page 1524)*.

**Code Block**

Inserts (or surrounds selected text in) a *codeblock (on page 1529)*.

**Blockquote**

Inserts a *blockquote (on page 1528)* at the cursor position.

**Insert Link**

Opens the *Insert Link* dialog box that allows you to define a *link (on page 1525)* to insert at the cursor position.

Figure 592. Insert Link Dialog Box

![Insert Link Dialog Box](image)

**Insert Image**

Opens the *Insert Image* dialog box that allows you to define an *image (on page 1527)* to insert at the cursor position. You can type the URL of the image you want to insert or use browsing actions in the *Browse drop-down menu.*

Figure 593. Insert Link Dialog Box
Insert Ordered List

Inserts an ordered list (on page 1530) at the cursor position. Three child list items are also automatically inserted by default. You can also use this action to convert selected content to an ordered list.

Insert Unordered List

Inserts an unordered list (on page 1530) at the cursor position. Three child list items are also automatically inserted by default. You can also use this action to convert selected content to an unordered list.

Insert Task List

Inserts a task list (on page 1532) at the cursor position. Three child list items are also automatically inserted by default. You can also use this action to convert selected content to a task list.

Insert Table

Inserts a table (on page 1533) at the cursor position.

Tags Display Mode drop-down menu

Allows you to control the amount of markup that is displayed in the Preview pane and offers the following choices:

- **Full Tags with Attributes**
  
  Displays full tag names with attributes for both block and inline elements.

- **Full Tags**
  
  Displays full tag names without attributes for both block and inline elements.

- **Block Tags**
  
  Displays full tag names for block elements and simple tags without names for inline elements.

- **Inline Tags**
Displays full tag names for *inline elements*, while *block elements* are not displayed.

**Partial Tags**

Displays simple tags without names for *inline elements*, while *block elements* are not displayed.

**No Tags**

No tags are displayed. This is the most compact mode and is as close as possible to a word-processor view.

**Configure Tags Display Mode**

Opens the Author preferences page (on page 131) where you can configure options regarding *tags*, such as the default *Tags Display Mode*, *Tags Background Color*, *Tags Foreground Color*, and *Tags Font*.

**Contextual Menu Actions**

The following default actions are available in the contextual menu when editing Markdown documents:

- **Cut, Copy, Paste**

  Use these actions to execute the typical editing actions on the currently selected content.

- **Source submenu**

  This submenu includes the following actions:

  - **To Upper Case**

    Converts the content selection to upper case characters.

  - **To Lower Case**

    Converts the content selection to lower case characters.

  - **Capitalize Lines**

    It capitalizes the first letter found on every new line that is selected. Only the first letter is affected, the rest of the line remains the same. If the first character on the new line is not a letter then no changes are made.

  - **Convert Hexadecimal Sequence to Character** (*Ctrl + Shift + X* (Command + Shift + X on OS X))

    Converts a sequence of hexadecimal characters to the corresponding Unicode character (on page 770). The action can be invoked if there
is a selection containing a valid hexadecimal sequence or if the cursor is placed at the right side of a valid hexadecimal sequence. A valid hexadecimal sequence can be composed of 2 to 4 hexadecimal characters and may or may not be preceded by the \texttt{0x} or \texttt{0X} prefix. Examples of valid sequences and the characters they will be converted to:

- \texttt{0x0045} will be converted to \texttt{E}
- \texttt{0X0125} to \texttt{#}
- \texttt{265} to \texttt{#}
- \texttt{2190} to \texttt{#}

\textbf{Note:} For more information about finding the hexadecimal value of a character, see \textit{Finding the Decimal, Hexadecimal, or Character Entity Equivalent (on page 779)}.

**Base64 Encode/Decode submenu**

This submenu includes the following actions for encoding or decoding base 64 schemes:

**Import File to Encode and Insert**

Encodes a file and then inserts the encoded content into the current document at the cursor position.

**Decode Selection and Export to File**

Decodes a selection of text from the current document and then exports (saves) the result to another file.

**Encode Selection**

Replaces a selection of text with the result of encoding that selection. By default, a dialog box is displayed that allows you to select the encoding to use. There is an option to choose to not show this dialog box in the future. In this case, the encoding that is specified in the \textit{Encoding for Base64, Base32, Hex conversions} option in the \textit{Encoding preferences page (on page 125)} will be used. Likewise, the same is true if the \textit{Show the dialog box for choosing the encoding for Base64, Base 32, Hex conversions} option is not selected in the \textit{Messages preference page (on page 261)}.

**Decode Selection**
Replaces a selection of text with the result of decoding that selection. By default, a dialog box is displayed that allows you to select the encoding to use. There is an option to choose to not show this dialog box in the future. In this case, the encoding that is specified in the Encoding for Base64, Base32, Hex conversions option in the Encoding preferences page (on page 125) will be used. Likewise, the same is true if the Show the dialog box for choosing the encoding for Base64, Base 32, Hex conversions option is not selected in the Messages preference page (on page 261).

Modify All Matches

Use this option to modify (in-place) all the occurrences of the selected content (or the contiguous fragment where the cursor is located). When you use this option, a thin rectangle replaces the highlights and allows you to start editing. If matches with different letter cases are found, a dialog box is displayed that allows you select whether you want to modify only matches with the same letter case or all matches.

Base32 Encode/Decode submenu

This submenu includes the following actions for encoding or decoding base32 schemes:

Import File to Encode and Insert

Encodes a file and then inserts the encoded content into the current document at the cursor position.

Decode Selection and Export to File

Decodes a selection of text from the current document and then exports (saves) the result to another file.

Encode Selection

Replaces a selection of text with the result of encoding that selection. By default, a dialog box is displayed that allows you to select the encoding to use. There is an option to choose to not show this dialog box in the future. In this case, the encoding that is specified in the Encoding for Base64, Base32, Hex conversions option in the Encoding preferences page (on page 125) will be used. Likewise, the same is true if the Show the dialog box for choosing the encoding for Base64, Base 32, Hex conversions option is not selected in the Messages preference page (on page 261).
Base64, Base 32, Hex conversions option is not selected in the Messages preference page (on page 261).

Decode Selection

Replaces a selection of text with the result of decoding that selection. By default, a dialog box is displayed that allows you to select the encoding to use. There is an option to choose to not show this dialog box in the future. In this case, the encoding that is specified in the Encoding for Base64, Base32, Hex conversions option in the Encoding preferences page (on page 125) will be used. Likewise, the same is true if the Show the dialog box for choosing the encoding for Base64, Base 32, Hex conversions option is not selected in the Messages preference page (on page 261).

Modify All Matches

Use this option to modify (in-place) all the occurrences of the selected content (or the contiguous fragment where the cursor is located). When you use this option, a thin rectangle replaces the highlights and allows you to start editing. If matches with different letter cases are found, a dialog box is displayed that allows you select whether you want to modify only matches with the same letter case or all matches.

Hex Encode/Decode submenu

This submenu includes the following actions for encoding or decoding hex schemes:

Import File to Encode and Insert

Encodes a file and then inserts the encoded content into the current document at the cursor position.

Decode Selection and Export to File

Decodes a selection of text from the current document and then exports (saves) the result to another file.

Encode Selection

Replaces a selection of text with the result of encoding that selection. By default, a dialog box is displayed that allows you to select the encoding to use. There is an option to choose to not show this dialog box in the future. In this case,
the encoding that is specified in the **Encoding for Base64, Base32, Hex conversions** option in the **Encoding** preferences page (on page 125) will be used. Likewise, the same is true if the **Show the dialog box for choosing the encoding for Base64, Base 32, Hex conversions** option is not selected in the **Messages** preference page (on page 261).

**Decode Selection**

Replaces a selection of text with the result of decoding that selection. By default, a dialog box is displayed that allows you to select the encoding to use. There is an option to choose to not show this dialog box in the future. In this case, the encoding that is specified in the **Encoding for Base64, Base32, Hex conversions** option in the **Encoding** preferences page (on page 125) will be used. Likewise, the same is true if the **Show the dialog box for choosing the encoding for Base64, Base 32, Hex conversions** option is not selected in the **Messages** preference page (on page 261).

**Modify All Matches**

Use this option to modify (in-place) all the occurrences of the selected content (or the contiguous fragment where the cursor is located). When you use this option, a thin rectangle replaces the highlights and allows you to start editing. If matches with different letter cases are found, a dialog box is displayed that allows you select whether you want to modify only matches with the same letter case or all matches.

**Join and Normalize Lines** (**Ctrl + J** (**Command + J** on OS X))

For the current selection, this action joins the lines by replacing the *line separator* with a single space character. It also normalizes the whitespaces by replacing a sequence of such characters with a single space.

**Insert new line after** (**Ctrl + Alt + Enter** (**Command + Alt + Enter** on OS X))

This action has the same result as moving the cursor to the end of the current line and pressing the **ENTER** key.

**Modify All Matches**

Use this option to modify (in-place) all the occurrences of the selected content (or the contiguous fragment where the cursor is located). When you use this option, a thin rectangle replaces the highlights and allows you to start editing. If matches with
different letter cases are found, a dialog box is displayed that allows you select whether you want to modify only matches with the same letter case or all matches.

**Open submenu**

The following actions are available in this submenu:

**Open File at Cursor**

Opens the file at the cursor position in a new panel. If the file path represents a directory path, it will be opened in system file browser. If the file at the specified location does not exist, an error dialog box is displayed and it includes a **Create new file** button that starts the **New document** wizard. This allows you to choose the type or the template for the file. If the action succeeds, the file is created with the referenced location and name and is opened in a new editor panel.

**Open File at Cursor in System Application**

Opens the file (identified by its link) or web page (identified by a web link) found at cursor position. The target is opened in the default system application associated with that file type.

**Compare**

Opens the current file in the **Compare Files tool (on page 2770)**.

**Show/Hide Preview**

A toggle action that shows or hides the **Preview** pane.

**Export as DITA Topic**

Converts the current Markdown document into a DITA topic.

**Export as HTML**

Converts the current Markdown document into an XHTML document.

**Print (Available in the Preview pane)**

Opens a page setup dialog box that allows you to configure printing options for the current document.

**Related Information:**

- Markdown Editor *(on page 1507)*
- Working with Markdown Documents in DITA *(on page 1520)*
Syntax Highlighting in the Markdown Editor

Oxygen XML Editor supports syntax highlighting in the Markdown editor to make it easier to read the semantics of the structured content by displaying each type of XML code in different colors and fonts.

To customize the colors or styles used for the syntax highlighting colors for Markdown documents, follow these steps:

1. Open the Preferences dialog box (Options > Preferences) (on page 79).
2. Go to Editor > Syntax Highlight (on page 178).
3. Select and expand the Markdown section in the top pane.
4. Select the component you want to change and customize the colors or styles using the selectors to the right of the pane.

You can see the effects of your changes in the Preview pane.

Related Information:

- Syntax Highlight Preferences (on page 178)
- Markdown Editor (on page 1507)

Automatic Validation in Markdown Documents

Markdown documents are validated automatically as you type. The conversion engine constantly tries to parse your changes to display the results in the Preview pane. If a change results in an error that prevents the parser from converting the syntax, an error message will be displayed in the DITA tab or in the Results view (on page 357) at the bottom of the editor.

The types of errors that will be reported include the following:

- Improper order of headers.
- The syntax in a documents begins with something other than a 1st level header.
- Tags are not closed properly if XHTML markup is used in the document.
- Invalid tag names if XHTML markup is used in the document.
- Markup is not well formed if XHTML markup is used in the document.
Working with Markdown Documents in DITA

Oxygen XML Editor includes some unique features that allow you to easily integrate Markdown documents in a DITA project. This is especially helpful for teams that have contributors who are familiar with the Markdown syntax, but they want their output to be generated from DITA projects. The integration between the Markdown editor and DITA includes actions to export or convert Markdown documents to DITA topics and the DITA tab in the Preview pane provides a visualization of how the topic will look after conversion.

**Export Markdown as a DITA Topic**

The Markdown editor includes an option to quickly convert the current Markdown document into a DITA topic. The Export as DITA Topic action is available in the contextual menu.

The conversion creates a new XML file that is defined as a DITA topic and opens it in the Text editing mode. You can then work with the document as you would with any other DITA topic, although you may need to manually correct some issues where the parser could not properly map Markdown syntax to DITA markup.

**Working with Markdown Documents in the DITA Maps Manager**

Oxygen XML Editor has some specialized features that allow you to integrate Markdown documents directly into your DITA project using the DITA Maps Manager. The following features are available for Markdown documents in the DITA Maps Manager view:

- **Insert Reference to Markdown Document** - You can use the New, Reference, and Reference to the currently edited file actions from the Append Child, Insert Before, or Insert After submenu when invoking the contextual menu in the DITA Maps Manager to insert a reference to a Markdown document at the selected location in the map. Markdown documents will be inserted as a topic reference (topicref element) with the format attribute set to markdown.

- **Validate Markdown Documents in DITA Maps** - When you use the Validate and Check for Completeness action from the DITA Maps Manager toolbar to check the integrity of the structure of a DITA map, Markdown documents that are referenced in the DITA map will be converted to DITA topics in the background and validated the same as any other DITA topic.
- **Transforming DITA Maps with Markdown Documents** - When transforming *DITA maps* that have Markdown documents referenced, the transformation will convert the Markdown documents to normal DITA output without you needing to manually convert the Markdown documents to DITA topics.

- **Manually Convert Markdown Documents to DITA Topics** - If you need to use DITA semantics that are not possible in Markdown syntax (such as content references, related links, and other DITA-specific syntax), you can manually convert the Markdown document into a DITA topic. To do so, right-click the Markdown document in the DITA Maps Manager and select **Refactoring > Convert Markdown to DITA Topic.** This will open a dialog box that allows you to configure options for converting the document to an XML file that is defined as a DITA topic.

![Figure 594. Convert Markdown to DITA Topic Dialog Box](image)

This dialog box includes the following options:

**Destination**

The destination path for the new DITA topic.

**File Name**

Presents the current name and allows you to change it.

**Update references**

Select this option to update all references of the file in the *DITA map* and in the files referenced from the *DITA map.*

**Delete Markdown file**

If selected, the Markdown version of the file is deleted when the document is converted into a DITA file. If deselected (default value), when the document is converted into a DITA file, the original Markdown file is also preserved in its current location.

**Preview**

Select this button to display a preview of the changes Oxygen XML Editor is about to make.
Convert

Select this button to perform the conversion. If the Markdown file has `format="markdown"`, it will be converted to a DITA topic. If it has `format="mdita"`, it will be converted to a LightWeight DITA topic.

Tip: Oxygen XML Editor comes with a sample ditamap project for converting Markdown to DITA. Go to the Project view (on page 333), open the sample.xpr project, and navigate to the dita/markdown-dita folder.

Converting Multiple Markdown Documents to DITA

Oxygen XML Editor offers an add-on that contributes actions in the Tools menu and contextual menu to enable batch conversion between various formats, including Markdown to DITA. For more information and instructions for installing the add-on, see Batch Converter Add-on (on page 2677).

Related Information:

- Markdown Editor (on page 1507)
- Actions Available in the Markdown Editor (on page 1510)
- Markdown Editor Syntax Rules and Specifications (on page 1522)
- Automatic Validation in Markdown Documents (on page 1519)
- Markdown DITA Syntax Reference

Markdown Editor Syntax Rules and Specifications

The Markdown editor in Oxygen XML Editor uses rules that were integrated from the most common set of default Markdown syntax rules along with many of the GitHub Flavored Markdown rules.

This topic lists the Oxygen XML Editor implementation of the most commonly used syntax rules.

Headers

The Markdown editor supports two styles of headers, Setext and Atx.

- Setext Style
Setext-style headers are underlined using equal signs (for first-level headers) and dashes (for second-level headers). Any number of equal signs or dashes will result in the same output.

**Example: Setext Style Headers**

```
First-Level Header (H1)
--------

Second-Level Header (H2)
-------------
```

- **Atx Style**

Atx-style headers use 1-6 hash characters at the start of the line, corresponding to header levels 1-6. Optionally, you may close atx-style headers. This is purely cosmetic and the closing hashes do not need to match the number of hashes used to open the header. It is the number of opening hashes that determines the header level.

**Example: Atx Style Headers**

```
# H1 text #
## H2 text
### H3 text ######
#### H4 text
##### H5 text ####
###### H6 text
```

**Horizontal Rules (for HTML output only)**

You can produce a horizontal rule tag (`<hr />`) by placing three or more hyphens, asterisks, or underscores on a line by themselves (they also need to be preceded and followed by a blank line). Optionally, they can be separated by spaces.

**Example: Horizontal Rules**

```
* * *
*****
--------------------------
_ _ _ _
```
Paragraphs and Line Breaks

A paragraph is simply one or more consecutive lines of text, separated by one or more blank lines. The text at the beginning of a paragraph should not be indented with spaces or tabs. To create a new paragraph, simply insert a blank line in between them.

⚠️ Important: When converting to HTML, if you break a paragraph on multiple lines (without a blank line in between them), it will create a break tag (`<br />`). When converting to DITA, the text is kept in a single paragraph in this case and a blank line is required to break a paragraph. This behavior differs slightly from the default Markdown rules.

Example: Paragraphs

```
This is a paragraph that contains
two lines of text. (In HTML, a break tag is created in between the two lines)

This is a new paragraph.
```

Styling Text

The Markdown editor supports some syntax rules for styling text (such as bold, italic, or strikethrough).

- **Italic (Emphasis)** - Text wrapped with one asterisk or underscore produces an italic (emphasis) tag.
  
  `*italic*`
  `_italic_`

- **Bold (Strong)** - Text wrapped with two asterisks or underscores produces a bold (strong) tag.
  
  `**bold**`
  `__bold__`

- **Strikethrough** - In HTML only, text wrapped with two tildes (`~~`) produces a strikethrough tag.

  `~~strikethrough~~`

Tip: You can also combine these styling rules. For example, `**BoldText _ItalicText_` would produce italicized text within bold text. Also, if you surround an asterisk or underscore with spaces, it will be treated as a literal asterisk or underscore. To produce a literal asterisk or underscore at a position where it would otherwise be used as a styling delimiter, you can escape it with a backslash (for example, `\*literal asterisks\*`).
Links

The Markdown editor supports two types of links, *inline* and *reference*. In both cases, it begins with link text that is delimited by [square brackets].

- **Inline Links**

  To create an inline link, use a set of regular parentheses immediately after the closing square bracket for the link text. Inside the parentheses, put the URL where you want the link to point, and optionally a title surrounded in quotes. Also, if you reference a local resource on the same server, you can use relative paths.

  **Examples: Inline Link**

  With a title:

  ```markdown
  Text with [example link text](http://www.example.com/path "Title") inline link and title.
  ```

  Without a title:

  ```markdown
  Text with [example link text](http://www.example.com/path) inline link without a title.
  ```

  Relative path:

  ```markdown
  Text with [example link text](/relative_path/) inline link with relative path.
  ```

- **Reference Links**

  Reference-type links use a second set of square brackets that include a label (link identifier) to identify the link (it may consist of letters, numbers, spaces, and punctuation and it is not case-sensitive). You can optionally use a space to separate the sets of brackets. The labels (link identifiers) are only used for creating the links and do not appear in the output.

  ```markdown
  Text with [link text1][id 1] a reference-type link and [link text2][id_2] another one.
  ```

  Then, somewhere in the document, you need to define your link label on a line by itself. The link identifier must be within square brackets followed by a colon, then after one or more spaces the URL for the link. Optionally this can be followed by a title enclosed in single quotes, double quotes, or parentheses. Also, the link may optionally be enclosed in angle brackets (< >).

  ```markdown
  [id 1]: http://example1.com/ "Optional Title"
  [id_2]: <http://example2.com/> "Optional Title2"
  ```
Other notes about Reference Links:

- You can put the title on a second line and use extra spaces or tabs for padding. This is useful for aesthetics when the URL is long.

  ```
  [id]: http://example.com/long/path/to/resource/here
  "Optional Title Here"
  ```

- The label (link identifier) can be missing, in which case the link text (in square brackets) is used as the name.

  ```
  [My Link][]
  ```

  and then defined as:

  ```
  [My Link]: http://example.com/
  ```

**Automatic Links**

The Markdown editor supports a shortcut style for creating automatic links for URLs and email addresses. You simply surround the URL or email address with angle brackets.

**Note:** These automatic links only work properly in HTML conversions. The *Preview* pane may display them properly in the DITA tab, but the DITA output will not properly recognize the format.

- **URLs**

  By surrounding a URL with angle brackets, you can show the actual text of the URL while also making it clickable in the output.

  ```
  <http://example.com/>
  ```

  For example, in HTML it is converted to:

  ```
  <a href="http://example.com">http://example.com</a>
  ```

- **Email Addresses**

  Automatic links for email addresses work similarly, except that Markdown will also perform a bit of randomized decimal and hex entity-encoding to help obscure your address from address-harvesting *spambots*.

  ```
  <address@example.com>
  ```

  In HTML, it is converted to something like:

  ```
  <a href="&#x6D;&#x61;l&amp;x6C;&#x74;&amp;x6F;&#x61;64;&#x672;&amp;x65;">
  ```
Images

The Markdown editor uses an image syntax that is intended to resemble the syntax for links, allowing for the same two types: inline and reference. In both cases, the syntax for images begins with an exclamation mark, followed by alt attribute text surrounded by square brackets, and then followed by a set of parentheses that contain the URL or path to the image.

**Inline Images**

For inline images, use a set of regular parentheses immediately after the closing square bracket for the alt attribute text. Inside the parentheses, put the URL or path of the image, and optionally a title surrounded in quotes.

**Examples: Inline Images**

With a title:

Text with ![Alt text](/path/to/img.jpg "Optional title") inline image and a title.

Without a title:

Text with ![Alt text](/path/to/img.jpg) inline link without a title.

**Reference Images**

For reference-type images, use a second set of square brackets that include a label (image identifier) to identify the image (it may consist of letters, numbers, spaces, and punctuation and it is not case-sensitive). You can optionally use a space to separate the sets of brackets. The labels (image identifiers) do not appear in the output.

Text with ![Alt text1][id] a reference-type image.

Then, somewhere in the document, you need to define your image label on a line by itself. The image identifier must be within square brackets followed by a colon, then after one or more spaces the URL or path of the image. Optionally this can be followed by a title enclosed in single quotes, double quotes, or parentheses.

[id]: url/to/image "Optional Title"
Blockquotes

The Markdown editor uses email-style greater than characters (>) for blockquotes. You only need to put the > before the first line of a hard-wrapped paragraph, but it looks better (and is clearer) if you put a > before every line.

- **Example: Blockquotes**
  
  ```
  > This is a blockquote with two paragraphs. Lorem ipsum dolor sit amet,
  > consectetur adipiscing elit. Aliquam hendrerit mi posuere lectus.
  > Vestibulum enim wisi, viverra nec, fringilla in, laoreet vitae, risus.
  >
  > Donec sit amet nisl. Aliquam semper ipsum sit amet velit. Suspendisse
  > id sem consectetur libero luctus adipiscing.
  ```

- **Blockquotes** can be nested by adding additional levels of > characters.

  **Example: Nested Blockquotes**
  
  ```
  > This is the first level of quoting.
  >
  > > This is nested blockquote.
  >
  > Back to the first level.
  ```

- **Blockquotes** can also contain other Markdown elements (such as headers, lists, and code blocks).

  **Example: Blockquotes with Other Markdown Elements**
  
  ```
  > ## This is a header.
  >
  > 1. This is the first list item.
  > 2. This is the second list item.
  >
  > Here's some example code:
  >
  > return shell_exec("echo \$input | \$markdown_script")
  ```

Quoting Code (Inline and Code Blocks)

The Markdown editor supports quoting code or commands inline within a sentence or in distinct blocks.
• Inline

You can quote or emphasize code within a sentence (inline) with single backticks (`). The text within the backticks will not be formatted.

**Example: Inline Code Emphasis**

```
This is a normal sentence with a `code` in the middle.
```

• Code Blocks

You can format code or text into its own distinct block by inserting a blank line before and after the content and using at least 4 spaces (or 1 tab), or by using opening and closing triple backticks (```) on separate lines.

**Example: Code Block**

```
This is a normal paragraph:

    This is a code block

This is a normal paragraph:

    ... 

This is a code block

    ...
```

One level of indentation is removed from each line of a codeblock and it continues until it reaches a line that is not indented (or until the closing backticks).

**Example: Code Block with Indentation**

```
tell application "something"
    beep
end tell
```

For example, in HTML the result would look like this:

```
<pre><code>tell application "Foo"
    beep
end tell</code></pre>
```

You can also add an optional language identifier to enable syntax highlighting in your code blocks. The Oxygen XML Editor Markdown editor supports the following languages: Java, JavaScript, CSS, and Python.
Example: Syntax Highlighting in Code Block

```
```
```css
input[type="submit"] {
  color: white;
  font-weight: bold;
...```

Inline XHTML (for HTML output only)

The Markdown editor supports writing inline XHTML. Since Markdown is just a writing format, it requires a conversion for publishing purposes. If you are using the HTML conversion, for any markup that is not covered by Markdown syntax, you can simply use XHTML syntax.

Example: Inline XHTML

This is a regular paragraph.

```xml
<table>
  <tr>
    <td>Col 1</td>
    <td>Col 2</td>
  </tr>
</table>
```

This is another regular paragraph.

Lists

The Markdown editor supports ordered and unordered lists. You can also insert blockquotes (on page 1528) and code blocks (on page 1528) inside list items. List markers typically start at the left margin, but may be indented by up to three spaces.

- Unordered Lists

For unordered lists, you can use asterisks (*), plus signs (+), and hyphens (-) interchangeably.

* List item 1
+ List item 2
- List item 3

- Ordered Lists
For ordered lists, use numbers followed by periods. The actual numbers you use have no effect on the output. It simply converts them to list items within an ordered list and the actual number of list items will determine the numbers in the output.

1. List item 1
2. List item 2
3. List item 3

• **Nested Lists**

You can create nested lists by indenting lines by two spaces.

1. Ordered list item 1
   1. Nested ordered list item 1
   2. Nested ordered list item 2
      * 2nd level nested unordered list item 1
      * 2nd level nested unordered list item 2
      * 3rd level nested unordered list item 1
   2. Ordered list item 2

• **Paragraphs Inside Lists**

If list items are separated by blank lines, Markdown will wrap the items in a paragraph in the output.

* List item 1
* List item 2

For both DITA and HTML output, this would result in:

```html
<ul>
  <li><p>List item 1</p></li>
  <li><p>List item 2</p></li>
</ul>
```

• **Multiple Paragraphs Inside Lists**

List items may consist of multiple paragraphs. Each subsequent paragraph in a list item must be indented by either 4 spaces or one tab. Optionally, you can also indent each line of a paragraph to make it look nicer.

1. This is a list item with two paragraphs. Lorem ipsum dolor sit amet, consectetur adipiscing elit. Aliquam hendrerit mi posuere lectus.
Vestibulum enim wisi, viverra nec, fringilla in, laoreet vitae, risus. Donec sit amet nisl. Aliquam semper ipsum sit amet velit.

2. Suspendisse id sem consectetuer libero luctus adipiscing.

• Blockquotes Inside Lists

To put a *blockquote* within a list item, the blockquote delimiters (`>`) need to be indented so that it is under the first letter of the text after the list item marker.

* A list item with a blockquote:
  > This is a blockquote
  > inside a list item.

• Code Blocks Inside Lists

To put a code block within a list item, insert an empty line in between the list item and the code block, and the code block needs to be indented twice (with 8 spaces or 2 tabs), or if you are using the triple backticks method, the opening triple backtick needs to be indented with 4 spaces or 1 tab.

* A list item with a code block:

```
This is a code block inside a list item
```

...  

```
This is a code block inside a list item using the backticks method
```

**Task Lists**

You can create task lists by prefacing list items with a hyphen followed by a space followed by square brackets (`- [ ]`). To mark a task as complete, use `- [x].`

**Example: Task Lists**

- [ ] Unfinished task 1
- [x] Finished task 2

**Definition Lists**

You can create definition lists by using a colon plus a space for each list item.

**Example: Definition Lists**
Tables

You can create tables in the Markdown editor by using pipes (|) and hyphens (-).

- **Creating a Table**

  Pipes are used to separate each column, while hyphens are used to create column headers. The pipes on either end of the table are optional. Cells can vary in width and do not need to be perfectly aligned within columns, but there must be at least three hyphens in each column of the header row.

<table>
<thead>
<tr>
<th>First Header</th>
<th>Second Header</th>
</tr>
</thead>
<tbody>
<tr>
<td>Column 1 Row 1 Cell</td>
<td>Column 2 Row 1 Cell</td>
</tr>
<tr>
<td>Column 1 Row 2 Cell</td>
<td>Column 2 Row 2 Cell</td>
</tr>
</tbody>
</table>

- **Formatting Rules in Table Cells**

  You can use formatting rules inside the cells of the table (such as links, inline code blocks, and text styling).

<table>
<thead>
<tr>
<th>First Header</th>
<th>Second Header</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>inline code</code></td>
<td>Content with <strong>bold text</strong> inside cell</td>
</tr>
</tbody>
</table>

- **Aligning Text in Tables**

  You can align text to the left, right, or center of a column by including colons (:) to the left, right, or on both sides of the hyphens within the header row.

<table>
<thead>
<tr>
<th align="left">Left-aligned</th>
<th align="center">Center-aligned</th>
<th align="right">Right-aligned</th>
</tr>
</thead>
<tbody>
<tr>
<td align="left">Content Cell</td>
<td align="center">Content Cell</td>
<td align="right">Content Cell</td>
</tr>
</tbody>
</table>

- **Joining Cells (Span a Cell Over Multiple Columns)**

  You can join cells horizontally (span a cell over multiple columns) by using multiple consecutive pipe characters (|) to the right of the particular cell. The number of consecutive pipes indicate the number of columns the cell will span (|| for two, ||| for three, and so on).

<table>
<thead>
<tr>
<th>First Header</th>
<th>Second Header</th>
<th>Third Header</th>
<th>Fourth Header</th>
</tr>
</thead>
</table>
Emoji

You can add *emoji* in the Markdown editor by surrounding the EMOJICODE with colons (`:EMOJICODE:`).

**Example: Emoji**

```markdown
:smile:
:laughing:
```

The resulting emoticons will appear in the output, but they are not displayed in the *Preview* pane.

For a full list of available emoji codes, see [Emoji Cheat Sheet](#).

Backslash Escapes

You can ignore Markdown formatting by using backslash escapes (\) to generate literal characters that would otherwise have special meaning in the Markdown syntax. For example, if you want to surround a word with literal asterisks (instead of an italic or emphasis tag), you can use backslashes to escape the asterisks.

```
\ literal asterisks\`
```

The Markdown editor provides backslash escapes for the following characters:

- \  backslash
- `  backtick
- *  asterisk
- _  underscore
- {}  curly braces
- []  square brackets
- ()  parentheses
- #  hash mark
- +  plus sign
- -  minus sign (hyphen)
- .  dot
- !  exclamation mark

Automatic Escaping for Special Characters

The Markdown editor includes support for automatically escaping special characters such as angle brackets (< >) and ampersands (&). If you want to use them as literal characters, you must
escape them as entities, as in the table below. The exception to this is in HTML output, if the special characters for a valid tag (for example, `<b>`), they are treated as literal characters and escaping is not necessary.

<table>
<thead>
<tr>
<th>Literal Character</th>
<th>Escaping Code</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>&lt;</code></td>
<td><code>&amp;lt;</code></td>
</tr>
<tr>
<td><code>&gt;</code></td>
<td><code>&amp;gt;</code></td>
</tr>
<tr>
<td><code>&amp;</code></td>
<td><code>&amp;amp;</code></td>
</tr>
</tbody>
</table>

Footnotes

The Markdown editor in Oxygen XML Editor supports normal and inline footnotes. The following examples show the required syntax.

• **Example: Normal Footnote**

Here is a footnote reference,[^1]

[^1]: Here is the footnote.

• **Example: Normal Footnote with Multiple Blocks**

Here is a footnote reference,[^longnote]

[^longnote]: Here is the footnote with multiple blocks.

Subsequent paragraphs are indented with 4 spaces or 1 tab to show that they belong to the previous footnote.

• **Example: Inline Footnote**

Here is an inline note.[^Inlines notes are easier to write, since you don’t have to pick an identifier and move down to type the note.]

Related Information:

• Default Markdown Syntax

• GitHub Flavored Markdown Rules

• Markdown Editor (on page 1507)
• Actions Available in the Markdown Editor (on page 1510)
Oxygen XML Editor includes a variety of specialized editors, views, and features that are dynamic according to the type of document that you open or create. Oxygen XML Editor includes fully supported built-in frameworks for the most popular XML document types (DITA, DocBook, TEI, XHTML, JATS) with a full set of features, as well as support for other document types with more generic features.

The built-in frameworks are defined according to a set of rules and a variety of settings that improve editing capabilities for its particular file type. These settings include:

- A default grammar used for validation and content completion in both Author mode and Text mode.
- CSS stylesheets for rendering XML documents in Author mode.
- User actions invoked from toolbars or menus in Author mode.
- Built-in transformation scenarios used for publishing XML documents.
- XML Catalogs used for mapping resources.
- New document templates to make it easy to create XML documents.
- User-defined extensions for customizing the interaction with the content author in Author mode.

It is also possible to create and configure your own custom frameworks (document types). For more information, see the Creating and Configuring Custom Frameworks section.

For extensive details about the DITA editing features included in Oxygen XML Editor, see the DITA Authoring chapter.

**DocBook 4 Document Type (Framework)**

DocBook is a very popular set of tags for describing books, articles, and other prose documents, particularly technical documentation. DocBook provides a vast number of semantic element tags, divided into three broad categories: structural, block-level, and inline. DocBook content can then be published in a variety of formats, including HTML, PDF, WebHelp, and EPUB.

**File Definition**

A file is considered to be a DocBook 4 document when one of the following conditions are true:
• The root element name is `book` or `article`.
• The PUBLIC ID of the document contains the string `-//OASIS//DTD DocBook XML`.

**Default Document Templates**

There are a variety of default DocBook 4 templates available when creating new documents from templates *(on page 676)* and they can be found in: Framework Templates > DocBook 4.

The default templates for DocBook 4 documents are located in the `{OXYGEN_INSTALL_DIR}/frameworks/docbook/templates/Docbook 4` folder.

**Default Schema for Validation and Content Completion**

The default schema that is used if one is not detected in the DocBook 4 file is `docbookxi.dtd` and it is stored in `{OXYGEN_INSTALL_DIR}/frameworks/docbook/4.5/dtd/`.

**Default CSS**

The default CSS files used for rendering DocBook content in Author mode are stored in `{OXYGEN_INSTALL_DIR}/frameworks/docbook/css/`.

By default, these default CSS files are merged with any that are specified in the document. For more information, see Configuring and Managing Multiple CSS Styles for a Framework *(on page 2348)*.

**Default XML Catalog**

The default XML Catalog *(on page 3289)*, `catalog.xml`, is stored in `{OXYGEN_INSTALL_DIR}/frameworks/docbook/`.

**Transformation Scenarios**

Oxygen XML Editor includes numerous built-in DocBook transformation scenarios that allow you to transform DocBook 4 documents to a variety of outputs, such as WebHelp, PDF, HTML, HTML Chunk, XHTML, XHTML Chunk, and EPUB. All of them are listed in the DocBook 4 section in the Configure Transformation Scenario(s) dialog box *(on page 1762)*.

For more information, see the DocBook Transformation Scenarios *(on page 1667)* section.

**Resources**

• Oxygen Video Tutorial: Editing DocBook Documents in Author Mode
• DocBook Specifications
DocBook 4 Author Mode Actions

A variety of actions are available in the DocBook 4 framework that can be added to the DocBook4 menu, the Author Custom Actions toolbar, the contextual menu, and the Content Completion Assistant.

DocBook 4 Toolbar Actions

The following default actions are readily available on the DocBook (Author Custom Actions) toolbar when editing in Author mode (by default, most of them are also available in the DocBook4 menu and in various submenus of the contextual menu):

- **Bold**
  Emphasizes the selected text by surrounding it with `<emphasis role="bold">` tag. You can use this action on multiple non-contiguous selections.

- **Italic**
  Emphasizes the selected text by surrounding it with `<emphasis role="italic">` tag. You can use this action on multiple non-contiguous selections.

- **Underline**
  Emphasizes the selected text by surrounding it with `<emphasis role="underline">` tag. You can use this action on multiple non-contiguous selections.

- **Link Actions Drop-Down Menu**
  The following link actions are available from this menu:
  
  - **Cross reference (link)**
    Opens a dialog box that allows you to select a target to insert as a hypertext link.
  
  - **Cross reference (xref)**
Inserts a cross reference to other parts of the document.

Web Link (ulink)

Inserts a link that addresses its target with a URL (Universal Resource Locator).

Insert OLink

Opens an OLink dialog box that allows you to insert a link that addresses its target indirectly, using the `targetdoc` and `targetptr` values that are present in a Targetset (on page 1572) file.

Figure 595. Insert OLink Dialog Box

After you choose the Targetset URL, the structure of the target documents is presented. For each target document (targetdoc), its content is displayed allowing you to easily identify the `targetptr` for the `olink` element that will be inserted. You can also use the search fields to quickly identify a target. If you already know the values for `targetdoc` and `targetptr`, you can insert them directly in the corresponding fields. You can also edit an `olink` using the Edit OLink action that is available on the contextual menu. The last used Targetset URL will be used to identify the edited target.
To insert XREF text into the olink, enter the text in the xreftext field and make sure the Insert xreftext in the OLink option is selected.

**Insert URI**

Inserts a URI element. The URI identifies a Uniform Resource Identifier (URI) in content.

![Insert Image](image)

Opens a dialog box that allows you to select the path of an image to insert at the cursor position (on page 1021). Depending on the current location, an image-type element is inserted. If the action is invoked between two block elements (such as paragraphs), the dialog box also allows you to provide a title.

![Insert Media Resource](image)

Opens a Choose Media dialog box (on page 1055) that allows you to select the URL of a media object to be inserted into a document at the cursor position. The result will be that a reference to the specified video, audio, or embedded HTML frame is inserted and rendered in Author mode so that it can be played directly from there.

![Insert XInclude](image)

Opens a dialog box that allows you to browse and select content to be included and automatically generates the corresponding XInclude instruction.

### Section Drop-Down Menu

The following actions are available from this menu:

- **Insert Section**

  Inserts a new section or subsection in the document, depending on the current context. For example, if the current context is sect1, then a sect2 is inserted. By default, this action also inserts a para element as a child node. The para element can be deleted if it is not needed.

- **Promote Section (Ctrl + Alt + LeftArrow (Command + Alt + LeftArrow on OS X))**

  Promotes the current node as a sibling of the parent node.

- **Demote Section (Ctrl + Alt + RightArrow (Command + Alt + RightArrow on OS X))**

  Demotes the current node a child of the previous node.

- **Insert Paragraph**

  Insert a new paragraph element at current cursor position.

- **Insert Equation**
Opens the **XML Fragment Editor** that allows you to insert and edit MathML notations *(on page 1057)*.

**Insert List Item**

Inserts a list item in the current list type.

**Insert Ordered List**

Inserts an ordered list at the cursor position. A child list item is also automatically inserted by default. You can also use this action to convert selected paragraphs or other types of lists to an ordered list.

**Insert Itemized List**

Inserts an itemized list at the cursor position. A child list item is also automatically inserted by default. You can also use this action to convert selected paragraphs or other types of lists to an itemized list.

**Insert Variable List**

Inserts a DocBook variable list. A child list item is also inserted automatically by default. You can also use this action to convert selected paragraphs or other types of lists to a variable list.

**Insert Procedure List**

Inserts a DocBook procedure element. A step child item is also inserted automatically. You can also use this action to convert selected paragraphs or other types of lists to a procedure list.

**Sort**

 Sorts cells or list items in a table.

**Insert Table**

Opens a dialog box that allows you to configure and insert a table. You can generate a header and footer, set the number of rows and columns of the table and decide how the table is framed. You can also use this action to convert selected paragraphs, lists, and inline content (mixed content, text plus markup, that is rendered inside a block element *(on page 3280)*) into a table, with the selected content inserted in the first column, starting from the first row after the header (if a header is inserted).

**Note:** If the selection contains a mixture of elements that cannot be converted, you will receive an error message saying that **Only lists, paragraphs, or inline content can be converted to tables**.

**Insert Row Below**
Inserts a new table row with empty cells below the current row. This action is available when the cursor is positioned inside a table.

Delete Row(s)
Deletes the table row located at cursor position or multiple rows in a selection.

Insert Column After
Inserts a new table column with empty cells after the current column. This action is available when the cursor is positioned inside a table.

Delete Column(s)
Deletes the table column located at cursor position or multiple columns in a selection.

Table Properties
Opens the Table properties dialog box that allows you to configure properties of a table (such as frame borders).

Join Cells
Joins the content of the selected cells (both horizontally and vertically).

Split Cell
Splits the cell at the cursor location. If Oxygen XML Editor detects more than one option to split the cell, a dialog box will be displayed that allows you to select the number of rows or columns to split the cell into.

DocBook4 Menu Actions
The following additional actions can be found in the DocBook4 menu when editing in Author mode:

Paste special submenu
This submenu includes the following special paste actions that are specific to the DocBook 4 framework:

Paste As XInclude
Allows you to create an xi:include element that references a DocBook element copied from Author mode. The operation fails if the copied element does not have a declared ID.

Paste as link
Allows you to create a link element that references a DocBook element copied from Author mode. The operation fails if the copied element does not have a declared ID.
Paste as xref

Allows you to create an `<xref>` element that references a DocBook element copied from Author mode. The operation fails if the copied element does not have a declared ID.

Subscript

Surrounds the selected text with a `<subscript>` tag, used for inserting a character (number, letter, or symbol) that will appear slightly below the baseline and slightly smaller than the rest of the text.

Superscript

Surrounds the selected text with a `<superscript>` tag, used for inserting a character (number, letter, or symbol) that will appear slightly above the baseline and slightly smaller than the rest of the text.

Table submenu

In addition to the table actions available on the toolbar, the following actions are available in this submenu:

- **Insert Row Above**
  
  Inserts a new table row with empty cells above the current row. This action is available when the cursor is positioned inside a table.

- **Insert Rows**
  
  Opens a dialog box that allows you to insert any number of rows and specify the position where they will be inserted (Above or Below the current row).

- **Insert Column Before**
  
  Inserts a column before the current one.

- **Insert Columns**
  
  Opens a dialog box that allows you to insert any number of columns and specify the position where they will be inserted (Above or Below the current column).

- **Insert Cell**
  
  Inserts a new empty cell depending on the current context. If the cursor is positioned between two cells, Oxygen XML Editor inserts a new cell at cursor position. If the cursor is inside a cell, the new cell is created after the current cell.

ID Options
Opens the **ID Options** dialog box that allows you to configure options for generating IDs in **Author** mode. The dialog box includes the following:

**ID Pattern**

The pattern for the ID values that will be generated. This text field can be customized using constant strings or any of the Oxygen XML Editor Editor Variables *(on page 276)*.

**Element name or class value to generate ID for**

The elements for which ID values will be generated, specified using class attribute values. To customize the list, use the **Add**, **Edit**, or **Remove** buttons.

**Auto generate IDs for elements**

If selected, Oxygen XML Editor will automatically generate unique IDs for the elements listed in this dialog box when they are created in **Author** mode.

**Remove IDs when copying content**

This option allows you to control whether or not pasted elements that are listed in this dialog box should retain their existing IDs. If this option is not selected, IDs are always retained when you copy or cut content and paste it in the same document or other documents. If this option is selected, IDs are never retained for copied content, but if you cut the content, they are preserved for the first paste action (and not retained for any subsequent paste actions).

**Generate IDs**

Oxygen XML Editor generates unique IDs for the current element (or elements), depending on how the action is invoked:

- When invoked on a single selection, an ID is generated for the selected element at the cursor position.
- When invoked on a block of selected content, IDs are generated for all top-level elements and elements from the list in the **ID Options** dialog box that are found in the current selection.

**Note:** The **Generate IDs** action does not overwrite existing ID values. It only affects elements that do not already have an `id` attribute.

**Refresh References**
You can use this action to manually trigger a refresh and update of all referenced resources.

**Tags display mode Submenu**

- **Full Tags with Attributes**
  Displays full tag names with attributes for both block (on page 3280) and inline elements (on page 3283). Oxygen XML Editor

- **Full Tags**
  Displays full tag names without attributes for both block and inline elements.

- **Block Tags**
  Displays full tag names for block elements and simple tags without names for inline elements.

- **Inline Tags**
  Displays full tag names for inline elements, while block elements are not displayed.

- **Partial Tags**
  Displays simple tags without names for inline elements, while block elements are not displayed.

- **No Tags**
  No tags are displayed. This is the most compact mode and is as close as possible to a word-processor view.

**Configure Tags Display Mode**

Use this option to go to the Author preferences page (on page 131) where you can configure the Tags Display Mode options.

**Profiling/Conditional Text Submenu**

- **Edit Profiling Attributes**
  Allows you to configure the profiling attributes (on page 969) and their values.

- **Show Profiling Colors and Styles**
  Select this option to turn on conditional styling.

- **Show Profiling Attributes**
Select this option to turn on conditional text markers. They are displayed at the end of conditional text blocks, as a list of attribute name and their currently set values.

**Show Excluded Content**

When this option is selected, the content filtered by the currently applied condition set is grayed-out. To show only the content that matches the currently applied condition set, deselect this option.

**List of all profiling condition sets that match the current document type**

You can click a listed *condition set* *(on page 975)* to activate it.

**= Profiling Settings**

Opens the *profiling options preferences page* *(on page 144)*, where you can manage profiling attributes and profiling conditions sets. You can also configure the profiling styles and colors options from the *colors/styles preferences page* *(on page 146)* and the *attributes rendering preferences page* *(on page 148)*.

**DocBook 4 Contextual Menu Actions**

In addition to many of the *DocBook 4 toolbar actions* *(on page 1539)* and the *general Author mode contextual menu actions* *(on page 1065)*, the following DocBook 4 framework-specific actions are also available in the contextual menu when editing in *Author* mode:

**Paste special submenu**

This submenu includes the following special paste actions that are specific to the DocBook 4 framework:

**Paste As XInclude**

Allows you to create an `xi:include` element that references a DocBook element copied from *Author* mode. The operation fails if the copied element does not have a declared ID.

**Paste as link**

Allows you to create a `link` element that references a DocBook element copied from *Author* mode. The operation fails if the copied element does not have a declared ID.

**Paste as xref**
Allows you to create an `<xref>` element that references a DocBook element copied from Author mode. The operation fails if the copied element does not have a declared ID.

**Image Map Editor**

This action is available in the contextual menu when it is invoked on an image. This action applies an image map to the current image (if one does not already exist) and opens the Image Map Editor dialog box. This feature allows you to create hyperlinks in specific areas of an image that will link to various destinations.

**Table Actions**

The following table editing actions are available in the contextual menu when it is invoked on a table:

- **Insert Rows**
  
  Opens a dialog box that allows you to insert any number of rows and specify the position where they will be inserted (Above or Below the current row).

- **Delete Row(s)**
  
  Deletes the table row located at cursor position or multiple rows in a selection.

- **Insert Columns**
  
  Opens a dialog box that allows you to insert any number of columns and specify the position where they will be inserted (Above or Below the current column).

- **Delete Column(s)**
  
  Deletes the table column located at cursor position or multiple columns in a selection.

- **Join Cells**
  
  Joins the content of the selected cells (both horizontally and vertically).

- **Split Cell**
  
  Splits the cell at the cursor location. If Oxygen XML Editor detects more than one option to split the cell, a dialog box will be displayed that allows you to select the number of rows or columns to split the cell into.

- **Sort**
  
  Sorts cells or list items in a table.

- **Table Properties**
Opens the **Table properties** dialog box that allows you to configure properties of a table (such as frame borders).

### Other Actions submenu

This submenu gives you access to all the usual contextual menu actions.

**Link > Edit OLink**

Opens a dialog box that allows you to edit an existing OLink. See the **Insert OLink** action for more information.

**Generate IDs**

Oxygen XML Editor generates unique IDs for the current element (or elements), depending on how the action is invoked:

- When invoked on a single selection, an ID is generated for the selected element at the cursor position.
- When invoked on a block of selected content, IDs are generated for all top-level elements and elements from the list in the **ID Options** dialog box that are found in the current selection.

**Note:** The **Generate IDs** action does not overwrite existing ID values. It only affects elements that do not already have an `id` attribute.

### DocBook 4 Drag/Drop (or Copy/Paste) Actions

Dragging a file from the **Project view (on page 333)** or **DITA Maps Manager view (on page 2990)** and dropping it into a DocBook 4 document that is edited in **Author** mode, creates a link to the dragged file (the `ulink` DocBook element) at the drop location. Copy and paste actions work the same.

You can also drag images or media files from your system explorer or the **Project view (on page 333)** and drop them into a DocBook 4 document (or copy and paste). This will insert the appropriate element at the drop or paste location (for example, dropping/pasting an image will insert the `inlinegraphic` DocBook element with a `fileref` attribute).

**Tip:** For information about customizing **Author** mode actions for a particular framework (on page 3282) (document type), see the Configuring Actions, Menus, Toolbars, Content Completion for a Framework (on page 2323) section.

### Related Information:

- Configuring Actions, Menus, Toolbars, Content Completion for a Framework (on page 2323)
Inserting an Olink in DocBook Documents

The `olink` element is used for linking to resources outside the current DocBook document. The `targetdoc` attribute is used for the document ID that contains the target element and the `targetptr` attribute for the ID of the target element (the value of an `id` or `xml:id` attribute). The combination of those two attributes provides a unique identifier to locate cross references.

For example, a *Mail Administrator Guide* with the document ID `MailAdminGuide` might contain a chapter about user accounts, like this:

```xml
<chapter id="user_accounts">
  <title>Administering User Accounts</title>
  <para>blah blah</para>
</chapter>
```

You can form a cross reference to that chapter by adding an `olink`, as in the following example:

```xml
<olink targetdoc="MailAdminGuide" targetptr="user_accounts">user accounts</olink>
```

You may need to update your when you get a new machine.

To use an `olink` to create links between documents, follow these steps:

1. Decide which documents are to be included in the domain for cross referencing. A unique ID must be assigned to each document that will be referenced with an `olink`. It is usually added as an `id` (or `xml:id` for DocBook5) attribute to the root element of the document.

2. Decide on your output hierarchy. For creating links between documents, the relative locations of the output documents must be known. Before going further you must decide the names and locations of the output directories for all the documents from the domain. Each directory will be represented by an element: `<dir name="directory_name">`, in the target database document.

3. Create the target database document. Each collection of documents has a master target database document that is used to resolve all `olinks` from that collection. The target database document is an XML file that is created once. It provides a means for pulling in the target data for each document. The database document is static and all the document data is pulled in dynamically.

   **Tip:** Oxygen XML Editor includes a built-in new document template called *DocBook Targetset Map* available in the New document wizard (on page 676) that will help you get started.

   **Example:** The following is an example of a target database document. It structures a collection of documents in a `sitemap` element that provides the relative locations of the outputs (HTML in
this example). Then it pulls in the individual target data using system entity references to target data files that will be created in the next step.

```xml
<?xml version="1.0" encoding="utf-8"?>
<!DOCTYPE targetset [ 
 <!ENTITY ugtargets SYSTEM "file:///doc/userguide/target.db">  
 <!ENTITY agtargets SYSTEM "file:///doc/adminguide/target.db">  
 <!ENTITY reftargets SYSTEM "file:///doc/man/target.db"> ]>
<targetset>
  <targetsetinfo>
    Description of this target database document, which is for the examples in olink doc.
  </targetsetinfo>

<!-- Site map for generating relative paths between documents -->
<sitemap>
  <dir name="documentation">
    <dir name="guides">
      <dir name="mailuser">
        <document targetdoc="MailUserGuide" baseuri="userguide.html">
          &ugtargets;
        </document>
      </dir>
    </dir>
  </dir>
  <dir name="mailadmin">
    <document targetdoc="MailAdminGuide">
      &agtargets;
    </document>
  </dir>
  <dir name="reference">
    <dir name="mailref">
      <document targetdoc="MailReference">
        &reftargets;
      </document>
    </dir>
  </dir>
</sitemap>
</targetset>
```
4. Generate the target data files by executing a DocBook transformation scenario. Before applying the transformation, you need to edit the transformation scenario, go to the Parameters tab, and make sure the value of the collect.xref.targets parameter is set to yes. The default name of a target data file is target.db, but it can be changed by setting an absolute file path in the targets.filename parameter.

Example: An example of a target.db file:

```xml
<div element="book" href="#MailAdminGuide" number="1" targetptr="user_accounts">
  <ttl>Administering User Accounts</ttl>
  <xreftext>How to administer user accounts</xreftext>
  <div element="part" href="#d5e4" number="I">
    <ttl>First Part</ttl>
    <xreftext>Part I, "First Part"</xreftext>
    <div element="chapter" href="#d5e6" number="I">
      <ttl>Chapter Title</ttl>
      <xreftext>Chapter 1, Chapter Title</xreftext>
      <div element="sect1" href="#src_chapter" number="1" targetptr="src_chapter">
        <ttl>Section1 Title</ttl>
        <xreftext>xreflabel_here</xreftext>
      </div>
    </div>
  </div>
</div>
```


When editing a DocBook XML document in Author mode, the Insert OLink action is available in the Link drop-down menu from the toolbar. This action opens the Insert OLink dialog box that allows you to select the target of an olink from the list of all possible targets from a specified target database document (specified in the Targetset URL field). Once a Targetset URL is selected, the structure of the target documents is presented. For each target document (targetdoc), its content is displayed, allowing you to easily identify the appropriate targetptr. You can also use the search fields to quickly identify a target. If you already know the values for the targetdoc and targetptr attributes, you can insert them directly in the corresponding fields.

Example: In the following image, the target database document is called target.xml, dbadmin is selected for the target document (targetdoc), and bldinit is selected as the value for the targetptr attribute. Notice that you can also add XREF text into the olink by using the xreftext field.

Figure 596. Insert OLink Dialog Box
6. Process a DocBook transformation for each document to generate the output.
   a. Edit the transformation scenario and set the value of the `target.database.document` parameter to be the URL of the target database document.
   b. Apply the transformation scenario.

DocBook 5 Document Type (Framework)

DocBook is a very popular set of tags for describing books, articles, and other prose documents, particularly technical documentation. DocBook provides a vast number of semantic element tags, divided into three broad categories: structural, block-level, and inline. DocBook content can then be published in a variety of formats, including HTML, PDF, WebHelp, and EPUB.

File Definition

A file is considered to be a DocBook 5 document when the namespace is `http://docbook.org/ns/docbook`.
Default Document Templates

There are a variety of default DocBook 5 templates available when creating new documents from templates (on page 676) and they can be found in: Framework Templates > DocBook 5 > DocBook 5.0 and Framework Templates > DocBook 5 > DocBook 5.1.

New document templates for both DocBook 5 documents are located in the
\[OXYGEN_INSTALL_DIR\]/frameworks/docbook/templates/Docbook5.0 folder.

New document templates for both DocBook 5.1 documents are located in the
\[OXYGEN_INSTALL_DIR\]/frameworks/docbook/templates/Docbook5.1 folder.

Default Schema for Validation and Content Completion

The default schema that is used if one is not detected is docbookxi.rng and it is stored in \[OXYGEN_INSTALL_DIR\]/frameworks/docbook/5.0/rng/ (or for DocBook 5.1 in \[OXYGEN_INSTALL_DIR\]/frameworks/docbook/5.1/rng/). Other types of schemas for various DocBook versions are also located in various folders inside the \[OXYGEN_INSTALL_DIR\]/frameworks/docbook/ directory.

Default CSS

The default CSS files used for rendering DocBook content in Author mode is stored in \[OXYGEN_INSTALL_DIR\]/frameworks/docbook/css/.

By default, these default CSS files are merged with any that are specified in the document. For more information, see Configuring and Managing Multiple CSS Styles for a Framework (on page 2348).

Transformation Scenarios

Oxygen XML Editor includes numerous built-in DocBook transformation scenarios that allow you to transform DocBook 5 documents to a variety of outputs, such as WebHelp, PDF, HTML, HTML Chunk, XHTML, XHTML Chunk, and EPUB. Oxygen XML Editor also includes a DocBook 5.1 transformation scenario for Assembly documents (on page 1569). All of them are listed in the DocBook 5 section in the Configure Transformation Scenario(s) dialog box (on page 1762).

For more information, see the DocBook Transformation Scenarios (on page 1667) section.

Resources

- Oxygen Video Tutorial: Editing DocBook Documents in Author Mode
- DocBook 5.0 (and older) Specifications
DocBook 5 Author Mode Actions

A variety of actions are available in the DocBook 5 framework (on page 3282) that can be added to the DocBook5 menu, the Author Custom Actions toolbar, the contextual menu, and the Content Completion Assistant (on page 3280).

DocBook 5 Toolbar Actions

The following default actions are readily available on the DocBook (Author Custom Actions) toolbar when editing in Author mode (by default, most of them are also available in the DocBook5 menu and in various submenus of the contextual menu):

- **Bold**
  Emphasizes the selected text by surrounding it with `<emphasis role="bold">` tag. You can use this action on multiple non-contiguous selections.

- **Italic**
  Emphasizes the selected text by surrounding it with `<emphasis role="italic">` tag. You can use this action on multiple non-contiguous selections.

- **Underline**
  Emphasizes the selected text by surrounding it with `<emphasis role="underline">` tag. You can use this action on multiple non-contiguous selections.
- **Link Actions Drop-Down Menu**

The following link actions are available from this menu:

- **Cross reference (link)**
  
  Opens a dialog box that allows you to select a target to insert as a hypertext link.

- **Cross reference (xref)**
  
  Inserts a cross reference to other parts of the document.

- **Web Link (ulink)**
  
  Inserts a link that addresses its target with a URL (Universal Resource Locator).

- **Insert OLink**
  
  Opens an OLink dialog box that allows you to insert a link that addresses its target indirectly, using the `targetdoc` and `targetptr` values that are present in a Targetset. (on page 1572) file.

Figure 597. Insert OLink Dialog Box

After you choose the Targetset URL, the structure of the target documents is presented. For each target document (`targetdoc`), its content is displayed allowing you to easily identify the `targetptr` for the `olink`
element that will be inserted. You can also use the search fields to quickly identify a target. If you already know the values for \texttt{targetdoc} and \texttt{targetptr}, you can insert them directly in the corresponding fields. You can also edit an \texttt{olink} using the \texttt{Edit OLink} action that is available on the contextual menu. The last used \texttt{Targetset} URL will be used to identify the edited target.

To insert XREF text into the \texttt{olink}, enter the text in the \texttt{xreftext} field and make sure the \texttt{Insert xreftext in the OLink} option is selected.

\textbf{Insert URI}

Inserts a URI element. The URI identifies a Uniform Resource Identifier (URI) in content.

\textbf{Insert Image}

Opens a dialog box that allows you to select the path of an image to insert at the cursor position (on page \pageref{page-1021}). Depending on the current location, an image-type element is inserted. If the action is invoked between two block elements (such as paragraphs), the dialog box also allows you to provide a title.

\textbf{Insert Media Resource}

Opens a \texttt{Choose Media} dialog box (on page \pageref{page-1055}) that allows you to select the URL of a media object to be inserted into a document at the cursor position. The result will be that a reference to the specified video, audio, or embedded HTML frame is inserted and rendered in \texttt{Author} mode so that it can be played directly from there.

\textbf{Insert XInclude}

Opens a dialog box that allows you to browse and select content to be included and automatically generates the corresponding XInclude instruction.

\section*{Section Drop-Down Menu}

The following actions are available from this menu:

\subsection*{Insert Section}

Inserts a new section or subsection in the document, depending on the current context. For example, if the current context is \texttt{sect1}, then a \texttt{sect2} is inserted. By default, this action also inserts a \texttt{para} element as a child node. The \texttt{para} element can be deleted if it is not needed.

\textbf{Promote Section (Ctrl + Alt + LeftArrow (Command + Alt + LeftArrow on OS X))}

Promotes the current node as a sibling of the parent node.
Demote Section (Ctrl + Alt + RightArrow (Command + Alt + RightArrow on OS X))

Demotes the current node a child of the previous node.

Insert Paragraph

Insert a new paragraph element at current cursor position.

Insert Equation

Opens the XML Fragment Editor that allows you to insert and edit MathML notations (on page 1057).

Insert List Item

Inserts a list item in the current list type.

Insert Ordered List

Inserts an ordered list at the cursor position. A child list item is also automatically inserted by default. You can also use this action to convert selected paragraphs or other types of lists to an ordered list.

Insert Itemized List

Inserts an itemized list at the cursor position. A child list item is also automatically inserted by default. You can also use this action to convert selected paragraphs or other types of lists to an itemized list.

Insert Variable List

Inserts a DocBook variable list. A child list item is also inserted automatically by default. You can also use this action to convert selected paragraphs or other types of lists to a variable list.

Insert Procedure List

Inserts a DocBook procedure element. A step child item is also inserted automatically. You can also use this action to convert selected paragraphs or other types of lists to a procedure list.

Sort

Sorts cells or list items in a table.

Insert Table

Opens a dialog box that allows you to configure and insert a table. You can generate a header and footer, set the number of rows and columns of the table and decide how the table is framed. You can also use this action to convert selected paragraphs, lists, and inline content (mixed content, text plus markup, that is rendered inside a block element.
(on page 3280) into a table, with the selected content inserted in the first column, starting from the first row after the header (if a header is inserted).

**Note:** If the selection contains a mixture of elements that cannot be converted, you will receive an error message saying that *Only lists, paragraphs, or inline content can be converted to tables.*

- **Insert Row Below**
  Inserts a new table row with empty cells below the current row. This action is available when the cursor is positioned inside a table.

- **Delete Row(s)**
  Deletes the table row located at cursor position or multiple rows in a selection.

- **Insert Column After**
  Inserts a new table column with empty cells after the current column. This action is available when the cursor is positioned inside a table.

- **Delete Column(s)**
  Deletes the table column located at cursor position or multiple columns in a selection.

- **Table Properties**
  Opens the Table properties dialog box that allows you to configure properties of a table (such as frame borders).

- **Join Cells**
  Joins the content of the selected cells (both horizontally and vertically).

- **Split Cell**
  Splits the cell at the cursor location. If Oxygen XML Editor detects more than one option to split the cell, a dialog box will be displayed that allows you to select the number of rows or columns to split the cell into.

**DocBook5 Menu Actions**

The following additional actions can be found in the DocBook5 menu when editing in Author mode:

- **Paste special submenu**
  This submenu includes the following special paste actions that are specific to the DocBook 5 framework:

  - Paste As XInclude
Allows you to create an `xi:include` element that references a DocBook element copied from **Author** mode. The operation fails if the copied element does not have a declared ID.

**Paste as link**

Allows you to create a `link` element that references a DocBook element copied from **Author** mode. The operation fails if the copied element does not have a declared ID.

**Paste as xref**

Allows you to create an `xref` element that references a DocBook element copied from **Author** mode. The operation fails if the copied element does not have a declared ID.

**T₂ Subscript**

Surrounds the selected text with a `subscript` tag, used for inserting a character (number, letter, or symbol) that will appear slightly below the baseline and slightly smaller than the rest of the text.

**T₆ Superscript**

Surrounds the selected text with a `superscript` tag, used for inserting a character (number, letter, or symbol) that will appear slightly above the baseline and slightly smaller than the rest of the text.

**Table submenu**

In addition to the table actions available on the toolbar, the following actions are available in this submenu:

- **Insert Row Above**
  
  Inserts a new table row with empty cells above the current row. This action is available when the cursor is positioned inside a table.

- **Insert Rows**
  
  Opens a dialog box that allows you to insert any number of rows and specify the position where they will be inserted (**Above** or **Below** the current row).

- **Insert Column Before**
  
  Inserts a column before the current one.
Opens a dialog box that allows you to insert any number of columns and specify the position where they will be inserted (Above or Below the current column).

**Insert Cell**

Inserts a new empty cell depending on the current context. If the cursor is positioned between two cells, Oxygen XML Editor a new cell at cursor position. If the cursor is inside a cell, the new cell is created after the current cell.

**ID Options**

Opens the **ID Options** dialog box that allows you to configure options for generating IDs in **Author** mode. The dialog box includes the following:

**ID Pattern**

The pattern for the ID values that will be generated. This text field can be customized using constant strings or any of the Oxygen XML Editor **Editor Variables** *(on page 276)*.

**Element name or class value to generate ID for**

The elements for which ID values will be generated, specified using class attribute values. To customize the list, use the **Add**, **Edit**, or **Remove** buttons.

**Auto generate IDs for elements**

If selected, Oxygen XML Editor will automatically generate unique IDs for the elements listed in this dialog box when they are created in **Author** mode.

**Remove IDs when copying content**

This option allows you to control whether or not pasted elements that are listed in this dialog box should retain their existing IDs. If this option is not selected, IDs are always retained when you copy or cut content and paste it in the same document or other documents. If this option is selected, IDs are never retained for copied content, but if you cut the content, they are preserved for the first paste action (and not retained for any subsequent paste actions).

**Generate IDs**

Oxygen XML Editor generates unique IDs for the current element (or elements), depending on how the action is invoked:
• When invoked on a single selection, an ID is generated for the selected element at the cursor position.
• When invoked on a block of selected content, IDs are generated for all top-level elements and elements from the list in the ID Options dialog box that are found in the current selection.

Note: The Generate IDs action does not overwrite existing ID values. It only affects elements that do not already have an id attribute.

Refresh References
You can use this action to manually trigger a refresh and update of all referenced resources.

Tags display mode Submenu

- Full Tags with Attributes
  
  Displays full tag names with attributes for both block (on page 3280) and inline elements (on page 3283).

- Full Tags
  
  Displays full tag names without attributes for both block and inline elements.

- Block Tags
  
  Displays full tag names for block elements and simple tags without names for inline elements.

- Inline Tags
  
  Displays full tag names for inline elements, while block elements are not displayed.

- Partial Tags
  
  Displays simple tags without names for inline elements, while block elements are not displayed.

- No Tags
  
  No tags are displayed. This is the most compact mode and is as close as possible to a word-processor view.

Configure Tags Display Mode

Use this option to go to the Author preferences page (on page 131) where you can configure the Tags Display Mode options.
Profiling/Conditional Text Submenu

Edit Profiling Attributes

Allows you to configure the profiling attributes (on page 969) and their values.

Show Profiling Colors and Styles

Select this option to turn on conditional styling.

Show Profiling Attributes

Select this option to turn on conditional text markers. They are displayed at the end of conditional text blocks, as a list of attribute name and their currently set values.

Show Excluded Content

When this option is selected, the content filtered by the currently applied condition set is grayed-out. To show only the content that matches the currently applied condition set, deselect this option.

List of all profiling condition sets that match the current document type

You can click a listed condition set (on page 975) to activate it.

Profiling Settings

Opens the profiling options preferences page (on page 144), where you can manage profiling attributes and profiling conditions sets. You can also configure the profiling styles and colors options from the colors/styles preferences page (on page 146) and the attributes rendering preferences page (on page 148).

DocBook 5 Contextual Menu Actions

In addition to many of the DocBook 5 toolbar actions (on page 1555) and the general Author mode contextual menu actions (on page 1065), the following DocBook 5 framework-specific actions are also available in the contextual menu when editing in Author mode:

Paste special submenu

This submenu includes the following special paste actions that are specific to the DocBook 5 framework:

Paste As XInclude

Allows you to create an \texttt{xinclude} element that references a DocBook element copied from Author mode. The operation fails if the copied element does not have a declared ID.
**Paste as link**

Allows you to create a `link` element that references a DocBook element copied from **Author** mode. The operation fails if the copied element does not have a declared ID.

**Paste as xref**

Allows you to create an `xref` element that references a DocBook element copied from **Author** mode. The operation fails if the copied element does not have a declared ID.

**Image Map Editor**

This action is available in the contextual menu when it is invoked on an image. This action applies an *image map* to the current image (if one does not already exist) and opens the **Image Map Editor** dialog box. This feature allows you to create hyperlinks in specific areas of an image that will link to various destinations.

**Table Actions**

The following table editing actions are available in the contextual menu when it is invoked on a table:

**Insert Rows**

Opens a dialog box that allows you to insert any number of rows and specify the position where they will be inserted (**Above** or **Below** the current row).

**Delete Row(s)**

Deletes the table row located at cursor position or multiple rows in a selection.

**Insert Columns**

Opens a dialog box that allows you to insert any number of columns and specify the position where they will be inserted (**Above** or **Below** the current column).

**Delete Column(s)**

Deletes the table column located at cursor position or multiple columns in a selection.

**Join Cells**

Joins the content of the selected cells (both horizontally and vertically).

**Split Cell**
Splits the cell at the cursor location. If Oxygen XML Editor detects more than one option to split the cell, a dialog box will be displayed that allows you to select the number of rows or columns to split the cell into.

Sort
Sorts cells or list items in a table.

Table Properties
Opens the Table properties dialog box that allows you to configure properties of a table (such as frame borders).

Other Actions submenu
This submenu give you access to all the usual contextual menu actions.

Link > Edit OLink
Opens a dialog box that allows you edit an existing OLink. See the Insert OLink action for more information.

Generate IDs
Oxygen XML Editor generates unique IDs for the current element (or elements), depending on how the action is invoked:

- When invoked on a single selection, an ID is generated for the selected element at the cursor position.
- When invoked on a block of selected content, IDs are generated for all top-level elements and elements from the list in the ID Options dialog box that are found in the current selection.

Note: The Generate IDs action does not overwrite existing ID values. It only affects elements that do not already have an id attribute.

DocBook 5 Drag/Drop (or Copy/Paste) Actions
Dragging a file from the Project view (on page 333) or DITA Maps Manager view (on page 2990) and dropping it into a DocBook 5 document that is edited in Author mode, creates a link to the dragged file (the link DocBook element) at the drop location. Copy and paste actions work the same.

You can also drag images or media files from your system explorer or the Project view (on page 333) and drop them into a DocBook 5 document (or copy and paste). This will insert the appropriate element at the drop or paste location (for example, dropping/pasting an image will insert the imageobject DocBook element with an imagedata child element and a fileref attribute).
Tip: For information about customizing Author mode actions for a particular framework (on page 3282) (document type), see the Configuring Actions, Menus, Toolbars, Content Completion for a Framework (on page 2323) section.

Related Information:

- Configuring Actions, Menus, Toolbars, Content Completion for a Framework (on page 2323)

Inserting an Olink in DocBook Documents

The `olink` element is used for linking to resources outside the current DocBook document. The `targetdoc` attribute is used for the document ID that contains the target element and the `targetptr` attribute for the ID of the target element (the value of an `id` or `xml:id` attribute). The combination of those two attributes provides a unique identifier to locate cross references.

For example, a Mail Administrator Guide with the document ID `MailAdminGuide` might contain a chapter about user accounts, like this:

```xml
<chapter id="user_accounts">
  <title>Administering User Accounts</title>
  <para>blah blah</para>
</chapter>
```

You can form a cross reference to that chapter by adding an `olink`, as in the following example:

```xml
<olink targetdoc="MailAdminGuide" targetptr="user_accounts">user accounts</olink>
```

You may need to update your

To use an `olink` to create links between documents, follow these steps:

1. Decide which documents are to be included in the domain for cross referencing.
   A unique ID must be assigned to each document that will be referenced with an `olink`. It is usually added as an `id` (or `xml:id` for DocBook5) attribute to the root element of the document.

2. Decide on your output hierarchy.
   For creating links between documents, the relative locations of the output documents must be known. Before going further you must decide the names and locations of the output directories for all the documents from the domain. Each directory will be represented by an element: `<dir name="directory_name">`, in the target database document.

3. Create the target database document.
Each collection of documents has a master target database document that is used to resolve all olinks from that collection. The target database document is an XML file that is created once. It provides a means for pulling in the target data for each document. The database document is static and all the document data is pulled in dynamically.

**Tip:** Oxygen XML Editor includes a built-in new document template called **DocBook Targetset Map** available in the **New document wizard** *(on page 676)* that will help you get started.

**Example:** The following is an example of a target database document. It structures a collection of documents in a sitemap element that provides the relative locations of the outputs (HTML in this example). Then it pulls in the individual target data using system entity references to target data files that will be created in the next step.

```xml
<?xml version="1.0" encoding="utf-8"?>
<!DOCTYPE targetset [  
<!ENTITY ugtargets SYSTEM "file:///doc/userguide/target.db">  
<!ENTITY agtargets SYSTEM "file:///doc/adminguide/target.db">  
<!ENTITY reftargets SYSTEM "file:///doc/man/target.db">  
]>
<targetset>
  <targetsetinfo>
    Description of this target database document, which is for the examples in olink doc.
  </targetsetinfo>

  <!-- Site map for generating relative paths between documents -->
  <sitemap>
    <dir name="documentation">
      <dir name="guides">
        <dir name="mailuser">
          <document targetdoc="MailUserGuide" baseuri="userguide.html">
            &ugtargets;
          </document>
        </dir>
        <dir name="mailadmin">
          <document targetdoc="MailAdminGuide">
            &agtargets;
          </document>
        </dir>
      </dir>
    </dir>
  </sitemap>
</targetset>
```
4. Generate the target data files by executing a DocBook transformation scenario.
   Before applying the transformation, you need to edit the transformation scenario, go to the
   Parameters tab, and make sure the value of the collect.xref.targets parameter is set to yes.
   The default name of a target data file is target.db, but it can be changed by setting an absolute
   file path in the targets.filename parameter.

   **Example:** An example of a target.db file:

   ```xml
   <dir name="mailref">
     <document targetdoc="MailReference">
       &reftargets;
     </document>
   </dir>
   
   4. Generate the target data files by executing a DocBook transformation scenario.
   Before applying the transformation, you need to edit the transformation scenario, go to the
   Parameters tab, and make sure the value of the collect.xref.targets parameter is set to yes.
   The default name of a target data file is target.db, but it can be changed by setting an absolute
   file path in the targets.filename parameter.

   **Example:** An example of a target.db file:

   ```xml
   <dir name="mailref">
     <document targetdoc="MailReference">
       &reftargets;
     </document>
   </dir>
   
   4. Generate the target data files by executing a DocBook transformation scenario.
   Before applying the transformation, you need to edit the transformation scenario, go to the
   Parameters tab, and make sure the value of the collect.xref.targets parameter is set to yes.
   The default name of a target data file is target.db, but it can be changed by setting an absolute
   file path in the targets.filename parameter.

   **Example:** An example of a target.db file:

   ```xml
   <dir name="mailref">
     <document targetdoc="MailReference">
       &reftargets;
     </document>
   </dir>
   
   4. Generate the target data files by executing a DocBook transformation scenario.
   Before applying the transformation, you need to edit the transformation scenario, go to the
   Parameters tab, and make sure the value of the collect.xref.targets parameter is set to yes.
   The default name of a target data file is target.db, but it can be changed by setting an absolute
   file path in the targets.filename parameter.

   **Example:** An example of a target.db file:

   ```xml
   <dir name="mailref">
     <document targetdoc="MailReference">
       &reftargets;
     </document>
   </dir>
   
   4. Generate the target data files by executing a DocBook transformation scenario.
   Before applying the transformation, you need to edit the transformation scenario, go to the
   Parameters tab, and make sure the value of the collect.xref.targets parameter is set to yes.
   The default name of a target data file is target.db, but it can be changed by setting an absolute
   file path in the targets.filename parameter.

   **Example:** An example of a target.db file:

   ```xml
   <dir name="mailref">
     <document targetdoc="MailReference">
       &reftargets;
     </document>
   </dir>
   
   4. Generate the target data files by executing a DocBook transformation scenario.
   Before applying the transformation, you need to edit the transformation scenario, go to the
   Parameters tab, and make sure the value of the collect.xref.targets parameter is set to yes.
   The default name of a target data file is target.db, but it can be changed by setting an absolute
   file path in the targets.filename parameter.

   **Example:** An example of a target.db file:

   ```xml
   <dir name="mailref">
     <document targetdoc="MailReference">
       &reftargets;
     </document>
   </dir>
   
   4. Generate the target data files by executing a DocBook transformation scenario.
   Before applying the transformation, you need to edit the transformation scenario, go to the
   Parameters tab, and make sure the value of the collect.xref.targets parameter is set to yes.
   The default name of a target data file is target.db, but it can be changed by setting an absolute
   file path in the targets.filename parameter.

   **Example:** An example of a target.db file:

   ```xml
   <dir name="mailref">
     <document targetdoc="MailReference">
       &reftargets;
     </document>
   </dir>
   
   4. Generate the target data files by executing a DocBook transformation scenario.
   Before applying the transformation, you need to edit the transformation scenario, go to the
   Parameters tab, and make sure the value of the collect.xref.targets parameter is set to yes.
   The default name of a target data file is target.db, but it can be changed by setting an absolute
   file path in the targets.filename parameter.

   **Example:** An example of a target.db file:

   ```xml
   <dir name="mailref">
     <document targetdoc="MailReference">
       &reftargets;
     </document>
   </dir>
   
   4. Generate the target data files by executing a DocBook transformation scenario.
   Before applying the transformation, you need to edit the transformation scenario, go to the
   Parameters tab, and make sure the value of the collect.xref.targets parameter is set to yes.
   The default name of a target data file is target.db, but it can be changed by setting an absolute
   file path in the targets.filename parameter.

   **Example:** An example of a target.db file:

   ```xml
   <dir name="mailref">
     <document targetdoc="MailReference">
       &reftargets;
     </document>
   </dir>
   
   4. Generate the target data files by executing a DocBook transformation scenario.
   Before applying the transformation, you need to edit the transformation scenario, go to the
   Parameters tab, and make sure the value of the collect.xref.targets parameter is set to yes.
   The default name of a target data file is target.db, but it can be changed by setting an absolute
   file path in the targets.filename parameter.

   **Example:** An example of a target.db file:

   ```xml
   <dir name="mailref">
     <document targetdoc="MailReference">
       &reftargets;
     </document>
   </dir>
   
   4. Generate the target data files by executing a DocBook transformation scenario.
   Before applying the transformation, you need to edit the transformation scenario, go to the
   Parameters tab, and make sure the value of the collect.xref.targets parameter is set to yes.
   The default name of a target data file is target.db, but it can be changed by setting an absolute
   file path in the targets.filename parameter.

   **Example:** An example of a target.db file:

   ```xml
   <dir name="mailref">
     <document targetdoc="MailReference">
       &reftargets;
     </document>
   </dir>
   
   4. Generate the target data files by executing a DocBook transformation scenario.
   Before applying the transformation, you need to edit the transformation scenario, go to the
   Parameters tab, and make sure the value of the collect.xref.targets parameter is set to yes.
   The default name of a target data file is target.db, but it can be changed by setting an absolute
   file path in the targets.filename parameter.

   **Example:** An example of a target.db file:

   ```xml
   <dir name="mailref">
     <document targetdoc="MailReference">
       &reftargets;
     </document>
   </dir>
   
   4. Generate the target data files by executing a DocBook transformation scenario.
   Before applying the transformation, you need to edit the transformation scenario, go to the
   Parameters tab, and make sure the value of the collect.xref.targets parameter is set to yes.
   The default name of a target data file is target.db, but it can be changed by setting an absolute
   file path in the targets.filename parameter.

   **Example:** An example of a target.db file:

   ```xml
   <dir name="mailref">
     <document targetdoc="MailReference">
       &reftargets;
     </document>
   </dir>
   
   4. Generate the target data files by executing a DocBook transformation scenario.
   Before applying the transformation, you need to edit the transformation scenario, go to the
   Parameters tab, and make sure the value of the collect.xref.targets parameter is set to yes.
   The default name of a target data file is target.db, but it can be changed by setting an absolute
   file path in the targets.filename parameter.

   **Example:** An example of a target.db file:

   ```xml
   <dir name="mailref">
     <document targetdoc="MailReference">
       &reftargets;
     </document>
   </dir>
   
   4. Generate the target data files by executing a DocBook transformation scenario.
   Before applying the transformation, you need to edit the transformation scenario, go to the
   Parameters tab, and make sure the value of the collect.xref.targets parameter is set to yes.
   The default name of a target data file is target.db, but it can be changed by setting an absolute
   file path in the targets.filename parameter.

   **Example:** An example of a target.db file:

   ```xml
   <dir name="mailref">
     <document targetdoc="MailReference">
       &reftargets;
     </document>
   </dir>
You can also use the search fields to quickly identify a target. If you already know the values for the `targetdoc` and `targetptr` attributes, you can insert them directly in the corresponding fields.

**Example:** In the following image, the target database document is called `target.xml`, `dbadmin` is selected for the target document (`targetdoc`), and `bldinit` is selected as the value for the `targetptr` attribute. Notice that you can also add XREF text into the `olink` by using the `xreftext` field.

Figure 598. Insert OLink Dialog Box

6. Process a DocBook transformation for each document to generate the output.
   a. Edit the transformation scenario and set the value of the `target.database.document` parameter to be the URL of the target database document.
   b. Apply the transformation scenario.
DocBook 5.1 Assembly

The DocBook Assembly document type was introduced with DocBook 5.1 and it is used to define the hierarchy and relationships for a collection of resources. It is especially helpful for topic-oriented authoring scenarios since it assembles a set of resources (such as DocBook 5.1 topics) to form a hierarchical structure for a larger publication.

An Assembly document usually has four major parts:

- **Resources** - Identifies a collection of resources (such as topics). An Assembly may identify one or more collections.
- **Structure** - Identifies an artifact to be assembled. A document in this case is the particular collection of resources (such as topics) that forms the documentation. Within the structure element, an output element can be used to identify the type of output to be generated and module elements can be used to identify the resources to be included. An Assembly may identify one or more structures.
- **Relationships** - Identifies relationships between resources. These relationships may be manifested in any number of structures during assembly. An Assembly may identify any number of relationships.
- **Transformations** - Identifies transformations that can be applied during assembly. An Assembly may identify any number of transformations.

For detailed information about the DocBook Assembly document type, see DocBook 5.1: The Definitive Guide - DocBook Assemblies.

File Definition

A file is considered to be an Assembly when the root name is assembly.

Default Document Templates

A default Assembly document template is available when creating new documents from templates (on page 676) and it can be found in: Framework Templates > DocBook 5 > DocBook 5.1.

The default template for DocBook Assembly documents is located in the [OXYGEN_INSTALL_DIR]/frameworks/docbook/templates/Docbook5.1 folder.

Default Schema for Validation and Content Completion

The default schema that is used if one is not detected is docbookxi.rng and it is stored in [OXYGEN_INSTALL_DIR]/frameworks/docbook/5.1/rng/.
Transformation Scenarios

Oxygen XML Editor includes a built-in transformation scenario that can be applied on an Assembly file to generate an assembled (merged) DocBook file. The scenario is called DocBook Assembly and is found in the DocBook 5 section in the Configure Transformation Scenario(s) dialog box (on page 1762).

Resources

- DocBook 5.1: The Definitive Guide - DocBook Assemblies
- DocBook 5.1 Specifications
- Sample files: \[OXYGEN_INSTALL_DIR]/samples/docbook/v5/assembly/

DocBook 5.1 Topic

The DocBook Topic document type was introduced with DocBook 5.1 and it is used as a modular unit of documentation. It is similar to the concept of the DITA Topic and can be used as modular resources in conjunction with DocBook 5.1 Assembly (on page 1569) documents.


File Definition

A DocBook file is considered to be a Topic when the root name is topic.

Default Document Templates

A default Topic document template is available when creating new documents from templates (on page 676) and it can be found in: Framework Templates > DocBook 5 > DocBook 5.1.

The default template for DocBook Assembly documents is located in the [OXYGEN_INSTALL_DIR]/frameworks/docbook/templates/Docbook5.1 folder.

Default Schema for Validation and Content Completion

The default schema that is used if one is not detected is docbookxi.rng and it is stored in [OXYGEN_INSTALL_DIR]/frameworks/docbook/5.1/rng/.
**Transformation Scenarios**

Since DocBook *Topics* are modular resources, they are *assembled* and transformed in the *DocBook Assembly* transformation process *(on page 1571)*. You can also use any of the built-in DocBook transformation scenarios to transform individual DocBook Topics to a variety of outputs, such as PDF, HTML, EPUB, and more. They are found in the *DocBook 5* section in the *Configure Transformation Scenario(s)* dialog box *(on page 1762)*.

**Resources**

- DocBook 5.1: The Definitive Guide - Topic
- DocBook 5.1 Specifications
- Sample files: `[OXYGEN_INSTALL_DIR]/samples/docbook/v5/assembly/

**Related Information:**

- DocBook 5.1 Assembly *(on page 1569)*

**DocBook Targetset Document Type (Framework)**

DocBook *Targetset* documents are used to resolve cross references with the DocBook *olink*.

**File Definition**

A file is considered to be a *Targetset* when the root name is `targetset`.

**Default Document Templates**

A default *DocBook Targetset Map* document template is available when creating new documents from templates *(on page 676)* and it can be found in: Framework Templates > DocBook Targetset.

The default template for DocBook Targetset documents is located in the `[OXYGEN_INSTALL_DIR]/frameworks/docbook/templates/Targetset` folder.

**Default Schema for Validation and Content Completion**

The default schema, `targetdatabase.dtd`, for this type of document is stored in `[OXYGEN_INSTALL_DIR]/frameworks/docbook/xsl/common/`. 
DITA Topics Document Type (Framework)

The Darwin Information Typing Architecture (DITA) is an XML-based architecture for authoring, producing, and delivering technical information. It divides content into small, self-contained topics that you can reuse in various deliverables. The extensibility of DITA permits organizations to define specific information structures while still using standard tools to work with them. DITA content is created as topics, each an individual XML file. Typically, each topic has a defined primary objective and structure, and DITA also includes several specialized topic types (task, concept, reference, glossary entry).

For much more detailed information, resources, and instructions, see the DITA Authoring (on page 2981) chapter.

File Definition

A file is considered to be a DITA topic document when one of the following conditions are true:

- The root element name is one of the following: concept, task, reference, dita, or topic.
- The PUBLIC ID of the document is a PUBLIC ID for the elements listed above.
- The root element of the file has an attribute named DITAArchVersion for the "http://dita.oasis-open.org/architecture/2005/" namespace. This enhanced case of matching is only applied when the Enable DTD/XML Schema processing in document type detection option (on page 94) is selected from the Document Type Association preferences page (on page 92).

Default Document Templates

There are a variety of default DITA topic templates available when creating new documents from templates (on page 676) and they can be found in various folders inside: Framework Templates > DITA.

The default templates for DITA topic documents are located in the [OXYGEN_INSTALL_DIR]/frameworks/dita/templates/topic folder.
Default Schema for Validation and Content Completion

Default schemas that are used if one is not detected in the DITA documents are stored in the various folders inside `DITA-OT-DIR/dtd/` or `DITA-OT-DIR/schema/`.

Default CSS

The default CSS files used for rendering DITA content in Author mode are stored in the various folders inside: `OXYGEN_INSTALL_DIR/frameworks/dita/css/`. By default, these default CSS files are merged with any that are specified in the document. For more information, see Configuring and Managing Multiple CSS Styles for a Framework (on page 2348).

Default XML Catalogs

The default XML Catalogs (on page 3289) for the DITA topic document type are as follows:

- `DITA-OT-DIR/catalog-dita.xml`
- `OXYGEN_INSTALL_DIR/frameworks/dita/catalog.xml`
- `OXYGEN_INSTALL_DIR/frameworks/dita/plugin/catalog.xml`
- `OXYGEN_INSTALL_DIR/frameworks/dita/styleguide/catalog.xml`

Transformation Scenarios

Oxygen XML Editor includes built-in transformation scenarios that allow you to transform individual DITA Topics to a XHTML or PDF output. They can be found in the DITA section in the Configure Transformation Scenario(s) dialog box (on page 1762).

Resources

- DITA Specifications
- DITA Style Guide Best Practices for Authors
- Oxygen Video Tutorial: DITA Editing

Related Information:

- DITA Authoring (on page 2981)
- Getting Started with DITA (on page 13)
DITA Topic Author Mode Actions

A variety of actions are available for the DITA framework that can be found on the toolbar, the contextual menu, or the DITA menu.

**DITA Toolbar Actions**

The following default actions are readily available on the DITA (Author Custom Actions) toolbar when editing in Author mode (by default, most of them are also available in the DITA menu and in various submenus of the contextual menu):

- **Bold**
  Surrounds the selected text with a `b` tag. You can use this action on multiple non-contiguous selections.

- **Italic**
  Surrounds the selected text with an `i` tag. You can use this action on multiple non-contiguous selections.

- **Underline**
  Surrounds the selected text with a `u` tag. You can use this action on multiple non-contiguous selections.

- **Link Actions Drop-Down Menu**

  The following link actions are available from this menu:

  - **Cross Reference**
    Opens the Cross Reference (xref) dialog box that allows you to insert a link to a target DITA resource at the current location within a document. The target resource can be the location of a file or a key that is already defined in your DITA map structure. Once the target resource has been selected, you can also target specific elements within that resource. For more information, see Linking in DITA Topics.

  - **File Reference**
Opens the **File Reference** dialog box *(on page 3164)* that allows you to insert a link to a target non-DITA file resource at the current location within a document. The target resource can be the location of a file or a key that is already defined in your *DITA map* structure. For more information, see **Linking in DITA Topics** *(on page 3163)*.

**Web Link**

Opens the **Web Link** dialog box *(on page 3164)* that allows you to insert a link to a target web-related resource at the current location within a document. The target resource can be a URL or a key that is already defined in your *DITA map* structure. For more information, see **Linking in DITA Topics** *(on page 3163)*.

**Related Link to Topic**

Opens the **Cross Reference (xref)** dialog box *(on page 3165)* that allows you to insert a link to a target DITA resource in a related links section at the bottom of the current document. The target resource can be the location of a file or a key that is already defined in your *DITA map* structure. Once the target resource has been selected, you can also target specific elements within that resource. If a related links section does not already exist, this action creates one. For more information, see **Linking in DITA Topics** *(on page 3163)*.

**Tip:** You can use the **Find Similar Topics** action that available in the *DITA* menu to quickly find related topics that can be added as related links. It opens the **Open/Find Resource** view and performs a search using text content from the `<title>`, `<shortdesc>`, `<keyword>`, and `<indexterm>` elements.

**Related Link to File**

Opens the **File Reference** dialog box *(on page 3165)* that allows you to insert a link to a target non-DITA file resource in a related links section at the bottom of the current document. The target resource can be the location of a file or a key that is already defined in your *DITA map* structure. If a related links section does not already exist, this action creates one. For more information, see **Linking in DITA Topics** *(on page 3163)*.

**Related Link to Web Page**

Opens the **Web Link** dialog box *(on page 3165)* that allows you to insert a link to a target web-related resource in a related links section at the bottom of the current document. The target resource can be a URL or a key that
is already defined in your DITA map structure. If a related links section does not already exist, this action creates one. For more information, see Linking in DITA Topics (on page 3163).

**Insert Image**

Opens the Insert Image dialog box (on page 3062) that allows you to configure the properties of an image to be inserted into a DITA document at the cursor position.

**Insert Media Resource**

Opens the Insert Media dialog box (on page 3066) that allows you to select and configure the properties of a media object to be inserted into a DITA document at the cursor position. The result will be that a reference to the specified video, audio, or embedded HTML frame is inserted in an object element and it is rendered in Author mode so that it can be played directly from there.

### § • Insert Section Drop-Down Menu

The following insert actions are available from this menu:

- **Insert Section**
  
  Inserts a new section element in the document, depending on the current context.

- **Insert Concept**
  
  Inserts a new concept element, depending on the current context. Concepts provide background information that users must know before they can successfully work with a product or interface.

- **Insert Task**
  
  Inserts a new task element, depending on the current context. Tasks are the main building blocks for task-oriented user assistance. They generally provide step-by-step instructions that will help a user to perform a task.

- **Insert Topic**
  
  Inserts a new topic element, depending on the current context. Topics are the basic units of DITA content and are usually organized around a single subject.

- **Insert Reference**
  
  Inserts a new reference element, depending on the current context. A reference is a top-level container for a reference topic.

- **Insert Paragraph**
  
  Inserts a new paragraph at current cursor position.
Reuse Content

This action provides a mechanism for reusing content fragments. It opens the **Reuse Content** dialog box (on page 3135) that allows you to insert several types of references to reusable content at the cursor position. The types of references that you can insert using this dialog box include content references (conref (on page 3136)), content key references (conkeyref (on page 3137)), or key references to metadata (keyref (on page 3141)).

Insert step or list item

Inserts a new list or step item in the current list type.

Insert Unordered List

Inserts an unordered list at the cursor position. A child list item is also automatically inserted by default. You can also use this action to convert selected paragraphs or other types of lists to an unordered list.

Insert Ordered List

Inserts an ordered list at the cursor position. A child list item is also automatically inserted by default. You can also use this action to convert selected paragraphs or other types of lists to an ordered list.

Sort

Sorts cells or list items in a table.

Insert Table

Opens a dialog box that allows you to configure and insert a table. You can generate a header and footer, set the number of rows and columns of the table and decide how the table is framed. You can also use this action to convert selected paragraphs, lists, and inline content (mixed content, text plus markup, that is rendered inside a block element (on page 3280)) into a table, with the selected content inserted in the first column, starting from the first row after the header (if a header is inserted).

**Note:** If the selection contains a mixture of elements that cannot be converted, you will receive an error message saying that Only lists, paragraphs, or inline content can be converted to tables.

Insert Row Below

Inserts a new table row with empty cells below the current row. This action is available when the cursor is positioned inside a table.

Delete Row(s)

Deletes the table row located at cursor position or multiple rows in a selection.
**Insert Column After**

Inserts a new table column with empty cells after the current column. This action is available when the cursor is positioned inside a table.

**Delete Column(s)**

Deletes the table column located at cursor position or multiple columns in a selection.

**Table Properties**

Opens the Table properties dialog box that allows you to configure properties of a table (such as frame borders).

**Join Cells**

Joins the content of the selected cells (both horizontally and vertically).

**Split Cell**

Splits the cell at the cursor location. If Oxygen XML Editor detects more than one option to split the cell, a dialog box will be displayed that allows you to select the number of rows or columns to split the cell into.

### DITA Contextual Menu Actions

In addition to many of the DITA toolbar actions (on page 1575) and the general Author mode contextual menu actions (on page 1065), there are numerous DITA-specific actions that are available in the contextual menu when editing DITA documents in Author mode (most of them are also available in the DITA menu at the top of the interface):

**Add File to Review Task**

This action can be used to add the current document to a task in the Content Fusion Tasks Manager view. Oxygen Content Fusion is a flexible, intuitive collaboration platform designed to adapt to any type of documentation review workflow. This functionality is available through a pre-installed connector add-on (on page 2679). To fully take advantage of all of the benefits and features of Content Fusion, your organization will need an Oxygen Content Fusion Enterprise Server. For more information, see the Oxygen Content Fusion website.

**Edit Attributes**

Displays an in-place attributes editor (on page 429) that allows you to manage the attributes of an element.

**Edit Profiling Attributes**

Allows you to change the profiling attributes (on page 969) defined on all selected elements.
Cut (Ctrl + X (Command + X on OS X))
Removes the current selected content from the document and places it in the clipboard.

Copy (Ctrl + C (Command + C on OS X))
Places a copy of the current selected content in the clipboard.

Paste (Ctrl + V (Command + V on OS X))
Inserts the current clipboard content into the document at the cursor position.

Paste special submenu
This submenu includes the following special paste actions that are specific to the DITA framework:

Paste as content reference
Inserts a content reference (a DITA element with a conref attribute) to the DITA XML element from the clipboard. An entire DITA XML element with an ID attribute must be present in the clipboard when the action is invoked. The conref attribute will point to this ID value.

Paste as content key reference
Allows you to indirectly reference content using the conkeyref attribute. When the DITA content is processed, the key references are resolved using key definitions from DITA maps (on page 3281). To use this action, you must first do the following:

1. Make sure the DITA element that contains the copied content has an ID attribute assigned to it.
2. In the DITA Maps Manager view, make sure that the Root map combo box (on page 2995) points to the correct map that stores the keys.
3. Make sure the topic that contains the content you want to reference has a key assigned to it. To assign a key, right-click the topic with its parent map opened in the DITA Maps Manager, select Edit Properties, and enter a value in the Keys field.

Paste as link
Looks for the first element with an ID value in the clipboard and inserts an xref that points to that element. If no elements with an ID value are found, a message will appear that informs you that to use this action, the clipboard contents must include at least one element with a declared ID.

Paste as link (keyref)
Inserts a link to the element that you want to reference. To use this action, you must first do the following:

1. Make sure the DITA element that contains the copied content has an ID attribute assigned to it.
2. In the DITA Maps Manager view, make sure that the Root map combo box (on page 2995) points to the correct map that stores the keys.
3. Make sure the topic that contains the content you want to reference has a key assigned to it. To assign a key, right-click the topic with its parent map opened in the DITA Maps Manager, select Edit Properties, and enter a value in the Keys field.

**Insert submenu**

This submenu includes the following insert actions that are specific to the DITA framework:

- **Insert Table**
  
  Opens a dialog box that allows you to configure and insert a table. You can generate a header and footer, set the number of rows and columns of the table and decide how the table is framed. You can also use this action to convert selected paragraphs, lists, and inline content (mixed content, text plus markup, that is rendered inside a block element (on page 3280)) into a table, with the selected content inserted in the first column, starting from the first row after the header (if a header is inserted).

  **Note:** If the selection contains a mixture of elements that cannot be converted, you will receive an error message saying that Only lists, paragraphs, or inline content can be converted to tables.

- **Insert Image**
  
  Inserts an image reference (on page 1021) at the cursor position. Depending on the current location, an image-type element is inserted.

- **Insert Media Resource**
  
  Opens a Choose Media dialog box (on page 1055) that allows you to select the URL of a media object to be inserted into a document at the cursor position. The result will be that a reference to the specified video, audio, or embedded HTML frame is inserted and rendered in Author mode so that it can be played directly from there.

- **Insert Equation**
Opens the XML Fragment Editor that allows you to insert and edit MathML notations (on page 1057).

**Insert Paragraph**

Inserts a new paragraph at current cursor position.

**Insert Section**

Inserts a new `section` element in the document, depending on the current context.

**Insert Topic**

Inserts a new `topic` element, depending on the current context. Topics are the basic units of DITA content and are usually organized around a single subject.

**Insert Entity**

Allows you to insert a predefined entity or character entity. Surrogate character entities (range #x10000 to #x10FFFF) are also accepted. Character entities can be entered in one of the following forms:

- `#<decimal value>` - e. g. #65
- `&#<decimal value>;` - e. g. &#65
- `#x<hexadecimal value>` - e. g. #x41
- `&#x<hexadecimal value>;` - e. g. &#x41

**Image Map Editor**

This action is available in the contextual menu when it is invoked on an image. This action applies an image map to the current image (if one does not already exist) and opens the Image Map Editor dialog box. This feature allows you to create hyperlinks in specific areas of an image that will link to various destinations.

**Table Actions**

The following table editing actions are available in the contextual menu when it is invoked on a table:

**Insert Rows**

Opens a dialog box that allows you to insert any number of rows and specify the position where they will be inserted (Above or Below the current row).

**Delete Row(s)**
Deletes the table row located at cursor position or multiple rows in a selection.

**Insert Columns**

Opens a dialog box that allows you to insert any number of columns and specify the position where they will be inserted (Above or Below the current column).

**Delete Column(s)***

Deletes the table column located at cursor position or multiple columns in a selection.

**Join Cells***

Joins the content of the selected cells (both horizontally and vertically).

**Split Cell***

Splits the cell at the cursor location. If Oxygen XML Editor detects more than one option to split the cell, a dialog box will be displayed that allows you to select the number of rows or columns to split the cell into.

**Sort***

Sorts cells or list items in a table.

**Table Properties***

Opens the *Table properties* dialog box that allows you to configure properties of a table (such as frame borders).

**Other Actions submenu***

This submenu gives you access to all the usual contextual menu actions.

**Link submenu***

The following link actions are available from this submenu:

**Cross Reference***

Opens the *Cross Reference (xref)* dialog box (on page 3164) that allows you to insert a link to a target DITA resource at the current location within a document. The target resource can be the location of a file or a key that is already defined in your *DITA map (on page 3281)* structure. Once the target resource has been selected, you can also target specific elements within that resource. For more information, see Linking in DITA Topics (on page 3163).

**File Reference***
Opens the **File Reference** dialog box ([on page 3164](#)) that allows you to insert a link to a target non-DITA file resource at the current location within a document. The target resource can be the location of a file or a key that is already defined in your **DITA map** structure. For more information, see [Linking in DITA Topics](#).

**Web Link**

Opens the **Web Link** dialog box ([on page 3164](#)) that allows you to insert a link to a target web-related resource at the current location within a document. The target resource can be a URL or a key that is already defined in your **DITA map** structure. For more information, see [Linking in DITA Topics](#).

**Related Link to Topic**

Opens the **Cross Reference (xref)** dialog box ([on page 3165](#)) that allows you to insert a link to a target DITA resource in a related links section at the bottom of the current document. The target resource can be the location of a file or a key that is already defined in your **DITA map** structure. Once the target resource has been selected, you can also target specific elements within that resource. If a related links section does not already exist, this action creates one. For more information, see [Linking in DITA Topics](#).

**Tip:** You can use the **Find Similar Topics** action that available in the **DITA** menu to quickly find related topics that can be added as related links. It opens the **Open/Find Resource** view and performs a search using text content from the `<title>`, `<shortdesc>`, `<keyword>`, and `<indexterm>` elements.

**Related Link to File**

Opens the **File Reference** dialog box ([on page 3165](#)) that allows you to insert a link to a target non-DITA file resource in a related links section at the bottom of the current document. The target resource can be the location of a file or a key that is already defined in your **DITA map** structure. If a related links section does not already exist, this action creates one. For more information, see [Linking in DITA Topics](#).

**Related Link to Web Page**

Opens the **Web Link** dialog box ([on page 3165](#)) that allows you to insert a link to a target web-related resource in a related links section at the bottom of the current document. The target resource can be a URL or a key that
is already defined in your DITA map structure. If a related links section does not already exist, this action creates one. For more information, see Linking in DITA Topics (on page 3163).

Sort

Available when invoked on a list, it opens a dialog box where you can configure a sorting operation for an entire list or a selection of list items.

Generate IDs

Oxygen XML Editor generates unique IDs for the current element (or elements), depending on how the action is invoked:

- When invoked on a single selection, an ID is generated for the selected element at the cursor position.
- When invoked on a block of selected content, IDs are generated for all top-level elements and elements from the list in the ID Options dialog box that are found in the current selection.

**Note:** The Generate IDs action does not overwrite existing ID values. It only affects elements that do not already have an id attribute.

Reuse submenu

This submenu includes the following actions regarding reusing content in DITA:

- **Reuse Content**
  
  This action provides a mechanism for reusing content fragments. It opens the Reuse Content dialog box (on page 3135) that allows you to insert several types of references to reusable content at the cursor position. The types of references that you can insert using this dialog box include content references (conref) (on page 3136), content key references (conkeyref) (on page 3137), or key references to metadata (keyref) (on page 3141).

- **Push Current Element**
  
  Opens the Push current element dialog box (on page 3144) that allows content from a source topic to be inserted into another topic without any special coding in the topic where the content will be re-used.

- **Edit Content Reference**
  
  This action is available for elements with a conref or conkeyref attribute. It opens the Edit Content Reference dialog box that allows you to edit the source location (or key) and source element of a content reference.
(or content key reference), and the reference details (conref / conkeyref
and conrefend attributes). For more information, see Reuse Content
Dialog Box (on page 3135).

Replace Reference with Content

Replaces the referenced fragment (conref or conkeyref) at the cursor
position with its content from it source. This action is useful if you
want to make changes to the content in the currently edited document
without changing the referenced fragment in its source location. If the
source content includes references to other topics/resources (hrefs),
the operation also resolves those references relative to the new location.
Attributes are preserved according to the following priority:

1. Attributes from the elements in the current document that reference
   other content are preserved except for attributes with a -dita-use-
   conref-target value.
2. Attributes from the referenced content are brought into the replaced
   elements in the current document except for id attributes.

Replace All References with Content

Replaces all referenced fragments (keyref, conref, or conkeyref) in the
current document with the content. Attributes are preserved according to
the following priority:

1. Attributes from the elements in the current document that reference
   other content are preserved except for attributes with a -dita-use-
   conref-target value.
2. Attributes from the referenced content are brought into the replaced
   elements in the current document except for id attributes.

For keyrefs inside xref or link elements, the keyref attribute is
changed to an href attribute, while the rest of the content for the keyref is
replaced with its source content.

If the source content includes references to other topics/resources (hrefs),
the operation also resolves those references relative to the new location.

Remove Content Reference

Removes the content reference (conref or conkeyref) inside the
element at the cursor position.

Create Reusable Component
Creates a reusable component from the selected fragment of text. For more information, see Creating a Reusable Content Component (on page 3147).

**Insert Reusable Component**

Inserts a reusable component at cursor location. For more information, see Inserting a Reusable Content Component (on page 3148).

**Search References (Ctrl + Shift + G)**

Finds the references to the `id` attribute value for the element at the current cursor position, in all the topics contained in the current DITA map (on page 3281) (opened in the [DITA Maps Manager view](on page 2990)). If no references are found for the current element, a dialog box will be displayed that offers you the option of searching for references to its ancestor elements.

**Figure 599. Search References to Ancestors Dialog Box**

![Search References to Ancestors Dialog Box](image)

**Tip:** If you are invoking the action on an image, see Searching for References to Images (on page 3065) for details about what will be reported.

**Show Key Definition**

Available for elements that have a `conkeyref` or `keyref` attribute set (or elements with an ancestor element that has a `conkeyref` or `keyref` attribute). It computes the key name and opens the DITA map (on page 3281) that contains the definition of the key with the element that defines that key selected.

**About Element submenu**

This submenu includes the following actions:

**Style Guide**

Opens the DITA Style Guide Best Practices for Authors in your browser and displays a topic that is relevant to the element at the cursor position. When editing DITA documents, this action is available in the contextual menu of the editing area (under the About Element sub-menu), in the DITA menu, and in some of the documentation tips that are displayed by the Content Completion Assistant (on page 3280).
Browse reference manual

Opens a reference to the documentation of the XML element closest to the cursor position in a web browser.

Go to Definition

Moves the cursor to the definition of the current element.

Select submenu

This submenu allows you to select the following:

Element

Selects the entire element at the current cursor position.

Content

Selects the entire content of the element at the current cursor position, excluding the start and end tag. Performing this action repeatedly will result in the selection of the content of the ancestor of the currently selected element content.

Parent

Selects the entire parent element at the current cursor position.

Text submenu

This submenu contains the following actions:

To Lower Case

Converts the selected content to lower case characters.

To Upper Case

Converts the selected content to upper case characters.

Capitalize Sentences

Converts to upper case the first character of every selected sentence.

Capitalize Words

Converts to upper case the first character of every selected word.

Count Words

Counts the number of words and characters (no spaces) in the entire document or in the selection for regular content and read-only content.

Note: The content marked as deleted with change tracking (on page 3288) is ignored when counting words.
Convert Hexadecimal Sequence to Character (**Ctrl + Shift + X (Command + Shift + X on OS X)**)

Converts a sequence of hexadecimal characters to the corresponding Unicode character *(on page 770)*. The action can be invoked if there is a selection containing a valid hexadecimal sequence or if the cursor is placed at the right side of a valid hexadecimal sequence. A valid hexadecimal sequence can be composed of 2 to 4 hexadecimal characters and may or may not be preceded by the **0x** or **0X** prefix. Examples of valid sequences and the characters they will be converted to:

- **0x0045** will be converted to **E**
- **0X0125** to **#**
- **265** to **#**
- **2190** to **#**

**Note:** For more information about finding the hexadecimal value of a character, see **Finding the Decimal, Hexadecimal, or Character Entity Equivalent (on page 779)**.

Refactoring submenu

Contains a series of actions designed to alter the XML structure of the document:

**Toggle Comment**

Encloses the currently selected text in an XML comment, or removes the comment if it is commented.

**Move Up (Alt + UpArrow)**

Moves the current node or selected nodes in front of the previous node.

**Move Down (Alt + DownArrow)**

Moves the current node or selected nodes after the subsequent node.

**Split Element (Alt + Shift + D (Ctrl + Alt + D on OS X))**

Splits the content of the closest element that contains the position of the cursor. Thus, if the cursor is positioned at the beginning or at the end of the element, the newly created sibling will be empty.

**Join Elements**

Joins two adjacent **block elements (on page 3280)** that have the same name. The action is available only when the cursor position is between the two adjacent block elements. Also, joining two block elements can be done
by pressing the **Delete** or **Backspace** keys and the cursor is positioned between the boundaries of these two elements.

**Surround with Tags (Ctrl + E (Command + E on OS X))**

Allows you to choose a tag to enclose a selected portion of content. If there is no selection, the start and end tags are inserted at the cursor position.

- If the **Position cursor between tags** option (on page 167) is selected in the **Content Completion** preferences page, the cursor is placed between the start and end tag.
- If the **Position cursor between tags** option (on page 167) is not selected in the **Content Completion** preferences page, the cursor is placed at the end of the start tag, in an insert-attribute position.

**Surround with '[tag]' (Ctrl + ForwardSlash (Command + ForwardSlash on OS X))**

Surround the selected content with the last tag used.

**Rename Element**

The element from the cursor position, and any elements with the same name, can be renamed according with the options from the **Rename** dialog box.

**Delete Element Tags**

Deletes the tags of the closest element that contains the position of the cursor. This operation is also executed if the start or end tags of an element are deleted by pressing the **Delete** or **Backspace** keys.

**Remove All Markup**

Removes all the XML markup inside the selected block of content and keeps only the text content.

**Remove Text**

Removes the text content of the selected block of content and keeps the markup intact with empty elements.

**DITA Refactoring Actions**

A variety of built-in XML refactoring operations that pertain to DITA documents with some of the information preconfigured based upon the current context.

**Change Topic ID to File Name**
Use this operation to change the ID of a topic to be the same as its file name.

**Convert CALS Tables to Simple Tables**

Use this operation to convert DITA CALS tables to simple tables. If you invoke this operation from a nested table (a table inside a table), only the nested table will be affected. If it is invoked on a parent table that contains nested tables, all of the contained tables will be converted.

**Convert conrefs to conkeyrefs**

Use this operation to convert conref attributes to conkeyref attributes.

**Convert Simple Tables to CALS Tables**

Use this operation to convert DITA simple tables to CALS tables. If you invoke this operation from a nested table (a table inside a table), only the nested table will be affected. If it is invoked on a parent table that contains nested tables, all of the contained tables will be converted.

**Convert to Concept**

Use this operation to convert a DITA topic (of any type) to a DITA Concept topic type (for example, Topic to Concept).

**Convert to General Task**

Use this operation to convert a DITA topic (of any type) to a DITA General Task topic type (for example, Task to General Task). A DITA General Task is a less restrictive alternative to the Strict Task information type.

**Convert to Reference**

Use this operation to convert a DITA topic (of any type) to a DITA Reference topic type (for example, Topic to Reference).

**Convert to Task**

Use this operation to convert a DITA topic (of any type) to a DITA Task topic type (for example, Topic to Task).

**Convert to Topic**

Use this operation to convert a DITA topic (of any type) to a DITA Topic (for example, Task to Topic).

**Convert to Troubleshooting**
Use this operation to convert a DITA topic (of any type) to a DITA Troubleshooting topic type (for example, Topic to Troubleshooting).

**Rename Key**

Available when invoked on a key, and can be used to quickly rename a key. It also updates all references to it. Note that it does not work on DITA 1.3 key scopes.

**Attributes Refactoring Actions**

Contains built-in XML refactoring operations that pertain to attributes with some of the information preconfigured based upon the current context.

**Add/Change attribute**

Allows you to change the value of an attribute or insert a new one.

**Convert attribute to element**

Allows you to change an attribute into an element.

**Delete attribute**

Allows you to remove one or more attributes.

**Rename attribute**

Allows you to rename an attribute.

**Replace in attribute value**

Allows you to search for a text fragment inside an attribute value and change the fragment to a new value.

**Comments Refactoring Actions**

Contains built-in XML refactoring operations that pertain to comments with some of the information preconfigured based upon the current context.

**Delete comments**

Allows you to delete comments found inside one or more elements.

**Elements Refactoring Actions**

Contains built-in XML refactoring operations that pertain to elements with some of the information preconfigured based upon the current context.

**Delete element**
Allows you to delete elements.

Delete element content
 Allows you to delete the content of elements.

Insert element
 Allows you to insert new elements.

Rename element
 Allows you to rename elements.

Unwrap element
 Allows you to remove the surrounding tags of elements, while keeping the content unchanged.

Wrap element
 Allows you to surround elements with element tags.

Wrap element content
 Allows you to surround the content of elements with element tags.

Fragments Refactoring Actions
 Contains built-in XML refactoring operations that pertain to XML fragments with some of the information preconfigured based upon the current context.

Insert XML fragment
 Allows you to insert an XML fragment.

Replace element content with XML fragment
 Allows you to replace the content of elements with an XML fragment.

Replace element with XML fragment
 Allows you to replace elements with an XML fragment.

Review submenu
 This submenu includes the following actions:

Track Changes
 Enables or disables the Track Changes (on page 3288) support for the current document.

Accept Change(s) and Move to Next
Accepts the *Tracked Change* (on page 3288) located at the cursor position or all of the changes in a selection and then moves to the next change. If you select a part of a deletion or insertion change, only the selected content is accepted.

**Accept All Changes**

Accepts all *Tracked Changes* (on page 3288) in the current document.

**Reject Change(s) and Move to Next**

Rejects the *Tracked Change* (on page 3288) located at the cursor position or all of the changes in a selection and then moves to the next change. If you select a part of a deletion or insertion change, only the selected content is rejected.

**Reject All Changes**

Rejects all *Tracked Changes* (on page 3288) in the current document.

**Comment Change**

Opens a dialog box that allows you to add a comment to an existing *Tracked Change* (on page 3288). The comment will appear in a callout and a tooltip when hovering over the change. If the action is selected on an existing commented change, the dialog box will allow you to edit the comment.

**Highlight**

Enables the highlighting tool that allows you to mark text in your document.

**Colors**

Allows you to select the color for highlighting text.

**Stop highlighting**

Use this action to deactivate the highlighting tool.

**Remove highlight(s)**

Use this action to remove highlighting from the document.

**Add Comment**

Inserts a comment at the cursor position. The comment appears in a callout box and a tooltip (when hovering over the change).

**Show/Edit Comment**

Opens a dialog box that displays the discussion thread and allows the current user to edit comments that do not have replies. If you are not the
author who inserted the original comment, the dialog box just displays the comment without the possibility of editing it.

_remove_comment

Remove Comment

Removes a selected comment. If you remove a comment that contains replies, all of the replies will also be removed.

manage_reviews

Manage Reviews

Opens the Review view (on page 964).

Folding submenu

This submenu includes the following actions:

_remove_comment_toggle_fold

Toggle Fold

Toggles the state of the current fold.

_remove_comment_collapse_other_folds

Collapse Other Folds (Ctrl + NumPad/ (Command + NumPad/ on OS X))

Folds all the elements except the current element.

_remove_comment_collapse_child_folds

Collapse Child Folds (Ctrl + NumPad. (Command + NumPad. on OS X))

Folds the elements indented with one level inside the current element.

_remove_comment_expand_child_folds

Expand Child Folds

Unfolds all child elements of the currently selected element.

_remove_comment_expand_all

Expand All (Ctrl + NumPad* (Command + NumPad* on OS X))

Unfolds all elements in the current document.

inspect_styles

Inspect Styles

Opens the CSS Inspector view (on page 439) that allows you to examine the CSS rules that match the currently selected element.

options

Options

Opens the Author mode preferences page (on page 131) where you can configure various options in regards to the Author editing mode.

DITA Drag/Drop (or Copy/Paste) Actions

Dragging a file from the Project view (on page 333) or DITA Maps Manager view (on page 2990) and dropping it into a DITA document that is edited in Author mode, creates a link to the dragged file (the xref DITA element with the href attribute) at the drop location. Copy and paste actions work the same.
You can also drag images or media files from your system explorer or the Project view (on page 333) and drop them into a DITA document (or copy and paste). This will insert the appropriate element at the drop or paste location (for example, dropping/pasting an image will insert the DITA image element with an href attribute).

Tip: For information about customizing Author mode actions for a particular framework (on page 3282) (document type), see the Configuring Actions, Menus, Toolbars, Content Completion for a Framework (on page 2323) section.

Related Information:

- Configuring Actions, Menus, Toolbars, Content Completion for a Framework (on page 2323)

DITA Map Document Type (Framework)

DITA maps (on page 3281) are documents that collect and organize references to DITA topics to indicate the relationships between the topics. They can be used as a container for topics used to transform a collection of content into a publication and they offer a sequence and structure to the topics. They can also serve as outlines or tables of contents for DITA deliverables and as build manifests for DITA projects. DITA maps allow scalable reuse of content across multiple contexts. Maps can reference topics or other maps, and can contain a variety of content types and metadata.

For much more detailed information, resources, and instructions, see the DITA Authoring (on page 2981) chapter.

File Definition

A file is considered to be a DITA map document when one of the following conditions are true:

- The root element name is one of the following: map, bookmap.
- The public ID of the document is -//OASIS//DTD DITA Map or -//OASIS//DTD DITA BookMap.
- The root element of the file has an attribute named class that contains the value map and a DITAArchVersion attribute from the http://dita.oasis-open.org/architecture/2005/namespace. This enhanced case of matching is only applied when the Enable DTD/XML Schema processing in document type detection option (on page 94) from the Document Type Association preferences page (on page 92) is selected.
Default Document Templates

There are a variety of default DITA map templates available when creating new documents from templates (on page 676) and they can be found in various folders inside: Framework Templates > DITA Map.

The default templates for DITA map documents are located in the \[OXYGEN_INSTALL_DIR]/frameworks/sita/templates/map folder.

Default Schema for Validation and Content Completion

Default schemas that are used if one is not detected in the DITA map document are stored in the various folders inside: \[DITA-OT-DIR]/dtd/ or \[DITA-OT-DIR]/schema/.

Default CSS

The default CSS files used for rendering DITA content in Author mode are stored in the various folders inside: \[OXYGEN_INSTALL_DIR]/frameworks/dita/css/.

By default, these default CSS files are merged with any that are specified in the document. For more information, see Configuring and Managing Multiple CSS Styles for a Framework (on page 2348).

Default XML Catalogs

The default XML Catalogs (on page 3289) for the DITA map document type are as follows:

- \[OXYGEN_INSTALL_DIR]/frameworks/dita/catalog.xml
- \[DITA-OT-DIR]/catalog-dita.xml

Transformation Scenarios

Oxygen XML Editor includes numerous built-in transformation scenarios that allow you to transform DITA maps to a variety of outputs, such as WebHelp, PDF, ODF, XHTML, EPUB, and CHM. All of them are listed in the DITA Map section in the Configure Transformation Scenario(s) dialog box (on page 1762).

For more information, see the DITA Map Transformation Scenarios (on page 1642) section.

Resources

- DITA Specifications
- DITA Style Guide Best Practices for Authors
DITA Map Author Mode Actions

A variety of actions are available in the DITA map (on page 3281) framework (on page 3282) that can be added to the DITA menu, the Author Custom Actions toolbar, the contextual menu, and the Content Completion Assistant (on page 3280).

DITA Map Toolbar and Menu Actions

When a DITA map is opened in Author mode, the following default actions are available on the DITA Map Author Custom Actions toolbar (by default, they are also available in the DITA menu and in various submenus of the contextual menu):

- **Insert New DITA Resource**
  
  Opens a New DITA file dialog box (on page 3050) where you can choose the type of DITA document to create and inserts a reference to it at the current position within the map.

- **Insert Topic Reference**
  
  Opens the Insert Reference dialog box (on page 3017) where you can configure a topic reference and inserts it at the current position within the map.

- **Reuse Content**

Related Information:

- Selecting a Root Map (on page 3007)
- DITA Authoring (on page 2981)
- Getting Started with DITA (on page 13)
- Editing XML Documents in Author Mode (on page 893)
- Editing XML Documents in Text Mode (on page 828)
Opens the **Reuse Content** dialog box *(on page 3135)* that allows you to insert and configure a content reference (`conref`), or a content key reference (`conkeyref`) at the cursor position.

**Insert Topic Heading**

Opens the **Insert Reference** dialog box *(on page 3017)* that allows you to insert a topic heading at the cursor position.

**Insert Topic Group**

Opens the **Insert Reference** dialog box *(on page 3017)* that allows you to insert a topic group at the cursor position.

**Insert Relationship Table**

Opens a dialog box that allows you to configure the relationship table to be inserted. The dialog box allows you to configure the number of rows and columns of the relationship table, if the header will be generated and if the title will be added.

**Relationship Table Properties**

Allows you to change the properties of rows in relationship tables.

**Insert Relationship Row**

Inserts a new table row with empty cells. The action is available when the cursor position is inside a table.

**Insert Relationship Column**

Inserts a new table column with empty cells after the current column. The action is available when the cursor position is inside a table.

**Delete Relationship Column**

Deletes the table column where the cursor is located.

**Delete Relationship Row**

Deletes the table row where the cursor is located.

**Move Up**

Moves the selected node up one position on its same level.

**Move Down**

Moves the selected node down one position on its same level.

**Promote** *(Alt + LeftArrow)*

Moves the selected node up one position to the level of its parent node.

**Demote** *(Alt + RightArrow)*
Moves the selected node down one level to the level of its child nodes.

**DITA Menu Actions**

The following additional actions can be found in the DITA menu when editing a *DITA map* in **Author** mode:

- **Refresh References**
  You can use this action to manually trigger a refresh and update of all referenced resources.

**Tags display mode Submenu**

- **Full Tags with Attributes**
  Displays full tag names with attributes for both *block* (on page 3280) and *inline elements* (on page 3283).

- **Full Tags**
  Displays full tag names without attributes for both *block* and *inline elements*.

- **Block Tags**
  Displays full tag names for *block elements* and simple tags without names for *inline elements*.

- **Inline Tags**
  Displays full tag names for *inline elements*, while *block elements* are not displayed.

- **Partial Tags**
  Displays simple tags without names for *inline elements*, while *block elements* are not displayed.

- **No Tags**
  No tags are displayed. This is the most compact mode and is as close as possible to a word-processor view.

**Configure Tags Display Mode**

Use this option to go to the **Author preferences page** (on page 131) where you can configure the **Tags Display Mode** options.

**Profiling/Conditional Text Submenu**

- **Edit Profiling Attributes**
Allows you to configure the profiling attributes (on page 969) and their values.

**Show Profiling Colors and Styles**

Select this option to turn on conditional styling.

**Show Profiling Attributes**

Select this option to turn on conditional text markers. They are displayed at the end of conditional text blocks, as a list of attribute name and their currently set values.

**Show Excluded Content**

When this option is selected, the content filtered by the currently applied condition set is grayed-out. To show only the content that matches the currently applied condition set, deselect this option.

**List of all profiling condition sets that match the current document type**

You can click a listed condition set (on page 975) to activate it.

**Profiling Settings**

Opens the profiling options preferences page (on page 144), where you can manage profiling attributes and profiling conditions sets. You can also configure the profiling styles and colors options from the colors/styles preferences page (on page 146) and the attributes rendering preferences page (on page 148).

**ID Options**

Opens the ID Options dialog box that allows you to configure options for generating IDs in Author mode. The dialog box includes the following:

**ID Pattern**

The pattern for the ID values that will be generated. This text field can be customized using constant strings or any of the Oxygen XML Editor Editor Variables (on page 276).

**Element name or class value to generate ID for**

The elements for which ID values will be generated, specified using class attribute values. To customize the list, use the Add, Edit, or Remove buttons.

**Auto generate IDs for elements**

If selected, Oxygen XML Editor will automatically generate unique IDs for the elements listed in this dialog box when they are created in Author mode.
Remove IDs when copying content in the same document

When copying and pasting content in the same document, this option allows you to control whether or not pasted elements that are listed in this dialog box should retain their existing IDs. To retain the element IDs, deselect this option.

Note: This option does not have an effect on content that is cut and pasted.

Generate IDs

Oxygen XML Editor generates unique IDs for the current element (or elements), depending on how the action is invoked:

- When invoked on a single selection, an ID is generated for the selected element at the cursor position.
- When invoked on a block of selected content, IDs are generated for all top-level elements and elements from the list in the ID Options dialog box that are found in the current selection.

Note: The Generate IDs action does not overwrite existing ID values. It only affects elements that do not already have an id attribute.

DITA Map Contextual Menu Actions

In addition to many of the DITA Map toolbar actions (on page 1598) and the general Author mode contextual menu actions (on page 1065), the following DITA map framework-specific actions are also available in the contextual menu when editing in Author mode:

Add File to Review Task

This action can be used to add the current document to a task in the Content Fusion Tasks Manager view. Oxygen Content Fusion is a flexible, intuitive collaboration platform designed to adapt to any type of documentation review workflow. This functionality is available through a pre-installed connector add-on (on page 2679). To fully take advantage of all of the benefits and features of Content Fusion, your organization will need an Oxygen Content Fusion Enterprise Server. For more information, see the Oxygen Content Fusion website.

Edit Properties

Opens the Edit Properties dialog box that allows you to configure the properties of a selected node. For more details about this dialog box, see Edit Properties Dialog Box (on page 3027).
Generate IDs

Oxygen XML Editor generates unique IDs for the current element (or elements), depending on how the action is invoked:

- When invoked on a single selection, an ID is generated for the selected element at the cursor position.
- When invoked on a block of selected content, IDs are generated for all top-level elements and elements from the list in the ID Options dialog box that are found in the current selection.

Note: The Generate IDs action does not overwrite existing ID values. It only affects elements that do not already have an id attribute.

Search References

Finds the references to the href or keys attribute value of the topic/map reference element at the current cursor position, in all the topics from the current DITA map (opened in the DITA Maps Manager view (on page 2990)). The current topic/map reference element must have an href or keys attribute defined to complete the search.

Show Key Definition

Available for elements that have a conkeyref or keyref attribute set (or elements with an ancestor element that has a conkeyref or keyref attribute). It computes the key name and opens the DITA map (on page 3281) that contains the definition of the key with the element that defines that key selected.

DITA Map Drag/Drop Actions

Dragging a file from the Project view (on page 333) or DITA Maps Manager view (on page 2990) and dropping it into a DITA map document that is edited in Author mode creates a link to the dragged file (a topicref element, chapter, part, etc.) at the drop location.

Open Topic from DITA Map in Author Mode

When a DITA map is opened in Author mode, you can click the icon to the left of a topic to open that particular topic in the editor.

Tip: For information about customizing Author mode actions for a particular framework (on page 3282) (document type), see the Configuring Actions, Menus, Toolbars, Content Completion for a Framework (on page 2323) section.
XHTML Document Type (Framework)

The Extensible HyperText Markup Language (XHTML), is a markup language that has the same depth of expression as HTML, but also conforms to XML syntax.

**File Definition**

A file is considered to be an XHTML document when the root element name is `html`.

**Default Document Templates**

There are a variety of default XHTML templates available when creating new documents from templates (on page 676) and they can be found in: Framework Templates > XHTML.

The default templates for XHTML documents are located in the `/OXYGEN_INSTALL_DIR/frameworks/xhtml/templates/` folder.

**Default Schema for Validation and Content Completion**

Default schemas that are used if one is not detected in the XHTML file are stored in the following locations:

- XHTML 1.0 - `/OXYGEN_INSTALL_DIR/frameworks/xhtml/dtd/` or `/OXYGEN_INSTALL_DIR/frameworks/xhtml/nvdl/`.
- XHTML 1.1 - `/OXYGEN_INSTALL_DIR/frameworks/xhtml11/dtd/` or `/OXYGEN_INSTALL_DIR/frameworks/xhtml11/schema/`.
- XHTML 5 - `/OXYGEN_INSTALL_DIR/frameworks/xhtml/xhtml5 (epub3)/`.

**Default CSS**

The default CSS files used for rendering XHTML content in Author mode are stored in `/OXYGEN_INSTALL_DIR/frameworks/xhtml/css/`.

By default, these default CSS files are merged with any that are specified in the document. For more information, see Configuring and Managing Multiple CSS Styles for a Framework (on page 2348).
Default XML Catalogs

The default XML Catalogs (on page 3289) for the XHTML document type are as follows:

- \[OXYGEN_INSTALL_DIR\]/frameworks/xhtml/dtd/xhtmlcatalog.xml
- \[OXYGEN_INSTALL_DIR\]/frameworks/relaxng/catalog.xml
- \[OXYGEN_INSTALL_DIR\]/frameworks/nvdl/catalog.xml
- \[OXYGEN_INSTALL_DIR\]/frameworks/xhtml11/dtd/xhtmlcatalog.xml
- \[OXYGEN_INSTALL_DIR\]/frameworks/xhtml11/schema/xhtmlcatalog.xml
- \[OXYGEN_INSTALL_DIR\]/xhtml5 (epub3)/catalog-compat.xml

Transformation Scenarios

Oxygen XML Editor includes built-in transformation scenarios that allow you to transform XHTML documents to several types of DITA document types (topic, task, concept, reference). They can be found in the XHTML section in the Configure Transformation Scenario(s) dialog box (on page 1762).

Related Information:

- Editing HTML Documents (on page 1503)
- Editing XML Documents in Text Mode (on page 828)
- Editing XML Documents in Author Mode (on page 893)
- Adding Tables in XHTML Documents (on page 1013)
- XHTML Specifications

XHTML Author Mode Actions

A variety of actions are available in the XHTML framework (on page 3282) that can be added to the XHTML menu, the Author Custom Actions toolbar, the contextual menu, and the Content Completion Assistant (on page 3280).
XHTML Toolbar Actions

The following default actions are readily available on the XHTML (Author Custom Actions) toolbar when editing in Author mode (by default, they are also available in the XHTML menu and some of them are in various submenus of the contextual menu):

- **Bold**
  Changes the style of the selected text to *bold* by surrounding it with `b` tag. You can use this action on multiple non-contiguous selections.

- **Italic**
  Changes the style of the selected text to *italic* by surrounding it with `i` tag. You can use this action on multiple non-contiguous selections.

- **Underline**
  Changes the style of the selected text to *underline* by surrounding it with `u` tag. You can use this action on multiple non-contiguous selections.

- **Link**
  Inserts an `a` element with an `href` attribute at the cursor position. You can type the URL of the reference you want to insert or use the browsing actions in the `Browse` drop-down menu.

- **Insert Image**
  Inserts a graphic object at the cursor position. This is done by inserting an `img` element regardless of the current context. The following graphical formats are supported: GIF, JPG, JPEG, BMP, PNG, SVG.

- **Insert Media Resource**
  Opens a Choose Media dialog box (on page 1055) that allows you to select the URL of a media object to be inserted into a document at the cursor position. The result will be that a reference to the specified video, audio, or embedded HTML frame is inserted and rendered in Author mode so that it can be played directly from there.

- **Headings Drop-down Menu**
  A drop-down menu that includes actions for inserting `h1`, `h2`, `h3`, `h4`, `h5`, `h6` elements.

- **Insert Paragraph**
  Insert a new paragraph element at current cursor position.

- **Insert Equation**
Opens the XML Fragment Editor that allows you to insert and edit MathML notations (on page 1057).

Insert List Item

Inserts a list item in the current list type.

Insert Unordered List

Inserts an unordered list at the cursor position. A child list item is also automatically inserted by default. You can also use this action to convert selected paragraphs or other types of lists to an unordered list.

Insert Ordered List

Inserts an ordered list at the cursor position. A child list item is also automatically inserted by default. You can also use this action to convert selected paragraphs or other types of lists to an ordered list.

Insert a definition list at the cursor position

Inserts a definition list (\texttt{dl} element) with one list item (a \texttt{dt} child element and a \texttt{dd} child element). You can also use this action to convert selected paragraphs or other types of lists to a definition list.

Sort

Sorts cells or list items in a table.

Insert Table

Opens a dialog box that allows you to configure and insert a table. You can generate a header and footer, set the number of rows and columns of the table and decide how the table is framed. You can also use this action to convert selected paragraphs, lists, and inline content (mixed content, text plus markup, that is rendered inside a block element (on page 3280)) into a table, with the selected content inserted in the first column, starting from the first row after the header (if a header is inserted).

Note: If the selection contains a mixture of elements that cannot be converted, you will receive an error message saying that Only lists, paragraphs, or inline content can be converted to tables.

Insert Row Below

Inserts a new table row with empty cells below the current row. This action is available when the cursor is positioned inside a table.

Insert Row Above

Inserts a new table row with empty cells above the current row. This action is available when the cursor is positioned inside a table.
**Insert Column After**

Inserts a new table column with empty cells after the current column. This action is available when the cursor is positioned inside a table.

**Insert Cell**

Inserts a new empty cell depending on the current context. If the cursor is positioned between two cells, Oxygen XML Editor a new cell at cursor position. If the cursor is inside a cell, the new cell is created after the current cell.

**Delete Column(s)**

Deletes the table column located at cursor position or multiple columns in a selection.

**Delete Row(s)**

Deletes the table row located at cursor position or multiple rows in a selection.

**Join Cells**

Joins the content of the selected cells (both horizontally and vertically).

**Split Cell**

Splits the cell at the cursor location. If Oxygen XML Editor detects more than one option to split the cell, a dialog box will be displayed that allows you to select the number of rows or columns to split the cell into.

**XHTML Menu Actions**

The following additional actions can be found in the XHTML menu when editing in Author mode (some of them are also available in the contextual menu):

**Table submenu**

In addition to the table actions available on the toolbar, the following actions are available in this submenu:

**Insert Rows**

Opens a dialog box that allows you to insert any number of rows and specify the position where they will be inserted (Above or Below the current row).

**Insert Column Before**

Inserts a column before the current one.

**Insert Columns**
Opens a dialog box that allows you to insert any number of columns and specify the position where they will be inserted (Above or Below the current column).

Refresh References

You can use this action to manually trigger a refresh and update of all referenced resources.

Tags display mode Submenu

Full Tags with Attributes

Displays full tag names with attributes for both block (on page 3280) and inline elements (on page 3283).

Full Tags

Displays full tag names without attributes for both block and inline elements.

Block Tags

Displays full tag names for block elements and simple tags without names for inline elements.

Inline Tags

Displays full tag names for inline elements, while block elements are not displayed.

Partial Tags

Displays simple tags without names for inline elements, while block elements are not displayed.

No Tags

No tags are displayed. This is the most compact mode and is as close as possible to a word-processor view.

Configure Tags Display Mode

Use this option to go to the Author preferences page (on page 131) where you can configure the Tags Display Mode options.

Profiling/Conditional Text Submenu

Edit Profiling Attributes

Allows you to configure the profiling attributes (on page 969) and their values.

Show Profiling Colors and Styles
Select this option to turn on conditional styling.

**Show Profiling Attributes**

Select this option to turn on conditional text markers. They are displayed at the end of conditional text blocks, as a list of attribute name and their currently set values.

**Show Excluded Content**

When this option is selected, the content filtered by the currently applied condition set is grayed-out. To show only the content that matches the currently applied condition set, deselect this option.

**List of all profiling condition sets that match the current document type**

You can click a listed condition set *(on page 975)* to activate it.

**Profiling Settings**

Opens the profiling options preferences page *(on page 144)*, where you can manage profiling attributes and profiling conditions sets. You can also configure the profiling styles and colors options from the colors/styles preferences page *(on page 146)* and the attributes rendering preferences page *(on page 148)*.

**XHTML Contextual Menu Actions**

In addition to many of the XHTML toolbar actions *(on page 1606)* and the **general Author mode contextual menu actions** *(on page 1065)*, the following XHTML framework-specific actions are also available in the contextual menu when editing in **Author mode**:

**Image Map Editor**

This action is available in the contextual menu when it is invoked on an image. This action applies an image map to the current image (if one does not already exist) and opens the Image Map Editor dialog box. This feature allows you to create hyperlinks in specific areas of an image that will link to various destinations.

**Table Actions**

The following table editing actions are available in the contextual menu when it is invoked on a table:

**Insert Rows**

Opens a dialog box that allows you to insert any number of rows and specify the position where they will be inserted *(Above or Below the current row)*.
Delete Row(s)

Deletes the table row located at cursor position or multiple rows in a selection.

Insert Columns

Opens a dialog box that allows you to insert any number of columns and specify the position where they will be inserted (Above or Below the current column).

Delete Column(s)

Deletes the table column located at cursor position or multiple columns in a selection.

Join Cells

Joins the content of the selected cells (both horizontally and vertically).

Split Cell

Splits the cell at the cursor location. If Oxygen XML Editor detects more than one option to split the cell, a dialog box will be displayed that allows you to select the number of rows or columns to split the cell into.

Sort

Sorts cells or list items in a table.

Table Properties

Opens the Table properties dialog box that allows you to configure properties of a table (such as frame borders).

Other Actions submenu

This submenu gives you access to all the usual contextual menu actions.

XHTML Drag/Drop (or Copy/Paste) Actions

Dragging a file from the Project view (on page 333) or DITA Maps Manager view (on page 2990) and dropping it into an XHTML document that is edited in Author mode, creates a link to the dragged file (the a element with the href attribute) at the drop location. Copy and paste actions work the same.

You can also drag images or media files from your system explorer or the Project view (on page 333) and drop them into an XHTML document (or copy and paste). This will insert the appropriate element at the drop or paste location (for example, dropping/pasting an image will insert the img element with the src attribute).
Tip: For information about customizing Author mode actions for a particular framework (on page 3282) (document type), see the Configuring Actions, Menus, Toolbars, Content Completion for a Framework (on page 2323) section.

Related Information:

- Configuring Actions, Menus, Toolbars, Content Completion for a Framework (on page 2323)

### TEI P5 Document Type (Framework)

The TEI (Text Encoding Initiative) document type is an international and interdisciplinary standard that enables libraries, museums, publishers, and individual scholars to represent a variety of literary and linguistic texts for online research, teaching, and preservation.

#### File Definition

A file is considered to be a TEI P5 document when one of the following conditions are true:

- The document namespace is http://www.tei-c.org/ns/1.0.
- The public ID of the document is -//TEI P5.

#### Default Document Templates

There are a variety of default TEI P5 templates available when creating new documents from templates (on page 676) and they can be found in: Framework Templates > TEI P5.

The default templates for TEI P5 documents are located in the \[OXYGEN_INSTALL_DIR\]/frameworks/tei/templates/TEI P5 folder.

#### Default Schema for Validation and Content Completion

The default schema that is used if one is not detected in the TEI P5 document is tei_all.rng and it is stored in \[OXYGEN_INSTALL_DIR\]/frameworks/tei/xml/tei/custom/schema/relaxng/.

#### Default CSS

The default CSS files used for rendering TEI content in Author mode are stored in \[OXYGEN_INSTALL_DIR\]/frameworks/tei/xml/tei/css/.
By default, these default CSS files are merged with any that are specified in the document. For more information, see Configuring and Managing Multiple CSS Styles for a Framework (on page 2348).

Default XML Catalogs

The default XML Catalogs (on page 3289) for the TEI P5 document type are as follows:

- `{OXYGEN_INSTALL_DIR}/frameworks/tei/xml/tei/schema/dtd/catalog.xml`
- `{OXYGEN_INSTALL_DIR}/frameworks/tei/xml/tei/custom/schema/dtd/catalog.xml`
- `{OXYGEN_INSTALL_DIR}/frameworks/tei/xml/tei/stylesheet/catalog.xml`

Transformation Scenarios

Oxygen XML Editor includes built-in transformation scenarios that allow you to transform TEI P5 documents to a variety of outputs, such as PDF, XHTML, EPUB, DOCX, and ODT. They can be found in the TEI P5 section in the Configure Transformation Scenario(s) dialog box (on page 1762).

Resources

- Oxygen Video Tutorial: Editing TEI Documents in Author Mode
- TEI: P5 Guidelines

Related Information:

- Editing XML Documents in Author Mode (on page 893)
- Editing XML Documents in Text Mode (on page 828)
- Adding Tables in TEI Documents (on page 1016)

TEI P5 Author Mode Actions

A variety of actions are available in the TEI P5 framework (on page 3282) that can be added to the TEI P5 menu, the Author Custom Actions toolbar, the contextual menu, and the Content Completion Assistant (on page 3280).
TEI P5 Toolbar Actions

The following default actions are readily available on the TEI P5 (Author Custom Actions) toolbar when editing in Author mode (by default, they are also available in the TEI P5 menu and some of them are in various submenus of the contextual menu):

**Bold**
Changes the style of the selected text to **bold** by surrounding it with `hi` tag and setting the `rend` attribute to `bold`. You can use this action on multiple non-contiguous selections.

**Italic**
Changes the style of the selected text to *italic* by surrounding it with `hi` tag and setting the `rend` attribute to `italic`. You can use this action on multiple non-contiguous selections.

**Underline**
Changes the style of the selected text to *underline* by surrounding it with `hi` tag and setting the `rend` attribute to `ul`. You can use this action on multiple non-contiguous selections.

**Insert Section**
Inserts a new section or subsection, depending on the current context. For example, if the current context is `div1`, then a `div2` is inserted. By default, this action also inserts a paragraph element as a child node.

**Insert Paragraph**
Insert a new paragraph element at current cursor position.

**Insert Image**
Inserts an image reference (on page 1021) at the cursor position. Depending on the current location, an image-type element is inserted.

**Insert List Item**
Inserts a list item in the current list type.

**Insert Ordered List**
Inserts an ordered list at the cursor position. A child list item is also automatically inserted by default. You can also use this action to convert selected paragraphs or other types of lists to an ordered list.

**Insert Itemized List**
Inserts an itemized list at the cursor position. A child list item is also automatically inserted by default. You can also use this action to convert selected paragraphs or other types of lists to an itemized list.

**Sort**

Sorts cells or list items in a table.

**Insert Table**

Opens a dialog box that allows you to configure and insert a table. You can generate a header and footer, set the number of rows and columns of the table and decide how the table is framed. You can also use this action to convert selected paragraphs, lists, and inline content (mixed content, text plus markup, that is rendered inside a block element (on page 3280)) into a table, with the selected content inserted in the first column, starting from the first row after the header (if a header is inserted).

*Note:* If the selection contains a mixture of elements that cannot be converted, you will receive an error message saying that **Only lists, paragraphs, or inline content can be converted to tables.**

**Insert Row Below**

Inserts a new table row with empty cells below the current row. This action is available when the cursor is positioned inside a table.

**Insert Column After**

Inserts a new table column with empty cells after the current column. This action is available when the cursor is positioned inside a table.

**Insert Cell**

Inserts a new empty cell depending on the current context. If the cursor is positioned between two cells, Oxygen XML Editor a new cell at cursor position. If the cursor is inside a cell, the new cell is created after the current cell.

**Delete Column(s)**

Deletes the table column located at cursor position or multiple columns in a selection.

**Delete Row(s)**

Deletes the table row located at cursor position or multiple rows in a selection.

**Join Cells**

Joins the content of the selected cells (both horizontally and vertically).

**Split Cell**
Splits the cell at the cursor location. If Oxygen XML Editor detects more than one option to split the cell, a dialog box will be displayed that allows you to select the number of rows or columns to split the cell into.

**TEI P5 Menu Actions**

The following additional actions can be found in the **TEI P5** menu when editing in **Author** mode (some of them are also available in the contextual menu):

**Table submenu**

In addition to the table actions available on the toolbar, the following actions are available in this submenu:

- **Insert Row Above**
  
  Inserts a new table row with empty cells above the current row. This action is available when the cursor is positioned inside a table.

- **Insert Rows**
  
  Opens a dialog box that allows you to insert any number of rows and specify the position where they will be inserted (**Above** or **Below** the current row).

- **Insert Column Before**
  
  Inserts a column before the current one.

- **Insert Columns**
  
  Opens a dialog box that allows you to insert any number of columns and specify the position where they will be inserted (**Above** or **Below** the current column).

**ID Options**

Opens the **ID Options** dialog box that allows you to configure options for generating IDs in **Author** mode. The dialog box includes the following:

- **ID Pattern**
  
  The pattern for the ID values that will be generated. This text field can be customized using constant strings or any of the Oxygen XML Editor Editor Variables (on page 276).

- **Element name or class value to generate ID for**
  
  The elements for which ID values will be generated, specified using class attribute values. To customize the list, use the **Add**, **Edit**, or **Remove** buttons.
Auto generate IDs for elements

If selected, Oxygen XML Editor will automatically generate unique IDs for the elements listed in this dialog box when they are created in Author mode.

Remove IDs when copying content in the same document

When copying and pasting content in the same document, this option allows you to control whether or not pasted elements that are listed in this dialog box should retain their existing IDs. To retain the element IDs, deselect this option.

Note: This option does not have an effect on content that is cut and pasted.

Generate IDs

Oxygen XML Editor generates unique IDs for the current element (or elements), depending on how the action is invoked:

- When invoked on a single selection, an ID is generated for the selected element at the cursor position.
- When invoked on a block of selected content, IDs are generated for all top-level elements and elements from the list in the ID Options dialog box that are found in the current selection.

Note: The Generate IDs action does not overwrite existing ID values. It only affects elements that do not already have an id attribute.

Refresh References

You can use this action to manually trigger a refresh and update of all referenced resources.

Tags display mode Submenu

Full Tags with Attributes

Displays full tag names with attributes for both block (on page 3280) and inline elements (on page 3283). Oxygen XML Editor

Full Tags

Displays full tag names without attributes for both block and inline elements.

Block Tags
Displays full tag names for block elements and simple tags without names for inline elements.

**Inline Tags**
Displays full tag names for inline elements, while block elements are not displayed.

**Partial Tags**
Displays simple tags without names for inline elements, while block elements are not displayed.

**No Tags**
No tags are displayed. This is the most compact mode and is as close as possible to a word-processor view.

**Configure Tags Display Mode**
Use this option to go to the Author preferences page (on page 131) where you can configure the Tags Display Mode options.

**Profiling/Conditional Text Submenu**

**Edit Profiling Attributes**
Allows you to configure the profiling attributes (on page 969) and their values.

**Show Profiling Colors and Styles**
Select this option to turn on conditional styling.

**Show Profiling Attributes**
Select this option to turn on conditional text markers. They are displayed at the end of conditional text blocks, as a list of attribute name and their currently set values.

**Show Excluded Content**
When this option is selected, the content filtered by the currently applied condition set is grayed-out. To show only the content that matches the currently applied condition set, deselect this option.

**List of all profiling condition sets that match the current document type**
You can click a listed condition set (on page 975) to activate it.

**Profiling Settings**
Opens the profiling options preferences page (on page 144), where you can manage profiling attributes and profiling conditions sets. You can also
configure the profiling styles and colors options from the colors/styles preferences page (on page 146) and the attributes rendering preferences page (on page 148).

TEI Contextual Menu Actions

In addition to many of the TEI toolbar actions (on page 1614) and the general Author mode contextual menu actions (on page 1065), the following TEI framework-specific actions are also available in the contextual menu when editing in Author mode:

Image Map Editor

This action is available in the contextual menu when it is invoked on an image. This action applies an image map to the current image (if one does not already exist) and opens the Image Map Editor dialog box. This feature allows you to create hyperlinks in specific areas of an image that will link to various destinations.

Table Actions

The following table editing actions are available in the contextual menu when it is invoked on a table:

Insert Rows

Opens a dialog box that allows you to insert any number of rows and specify the position where they will be inserted (Above or Below the current row).

Delete Row(s)

Deletes the table row located at cursor position or multiple rows in a selection.

Insert Columns

Opens a dialog box that allows you to insert any number of columns and specify the position where they will be inserted (Above or Below the current column).

Delete Column(s)

Deletes the table column located at cursor position or multiple columns in a selection.

Join Cells

Joins the content of the selected cells (both horizontally and vertically).

Split Cell
Splits the cell at the cursor location. If Oxygen XML Editor detects more than one option to split the cell, a dialog box will be displayed that allows you to select the number of rows or columns to split the cell into.

Sort

Sorts cells or list items in a table.

Table Properties

Opens the Table properties dialog box that allows you to configure properties of a table (such as frame borders).

Other Actions submenu

This submenu gives you access to all the usual contextual menu actions.

TEI P5 Drag/Drop Actions

Dragging a file from the Project view (on page 333) or DITA Maps Manager view (on page 2990) and dropping it into a TEI P5 document that is edited in Author mode, creates a link to the dragged file (the ptr element with the target attribute) at the drop location. Dragging an image file from the default file system application (Windows Explorer on Windows or Finder on Mac OS X, for example) and dropping it into a TEI P5 document inserts a graphic element (the graphic element with the url attribute) at the drop location, similar to the Insert Image toolbar action.

Tip: For information about customizing Author mode actions for a particular framework (on page 3282) (document type), see the Configuring Actions, Menus, Toolbars, Content Completion for a Framework (on page 2323) section.

Related Information:

- Configuring Actions, Menus, Toolbars, Content Completion for a Framework (on page 2323)

Customization of TEI Frameworks Using the Latest Sources

The TEI P5 (on page 1612) framework (on page 3282) is available as a public project at the following SVN repository: https://github.com/TEIC/oxygen-tei. This project is the base for customizing a TEI framework.

To customize a TEI framework, follow this procedure:

1. Check out the project on a local computer from the SVN repository.
This action is done with an SVN client application that creates a working copy of the SVN repository on a local computer.

2. Customize the TEI framework in Oxygen XML Editor.

   a. Set the Oxygen XML Editor frameworks folder to the oxygen/frameworks subfolder of the folder of the SVN working copy.  
      
      Open the Preferences dialog box (Options > Preferences) (on page 79), go to Global, and set the path of the SVN working copy in the Use custom frameworks option.

   b. Open the Preferences dialog box (Options > Preferences) (on page 79), go to Document Type Association > Locations, and select Custom.

3. Build a JAR (on page 3283) file with the TEI framework.

   The SVN project includes a build.xml file that can be used for building a JAR file using the Ant tool. The command that should be used:

   ```
   ant -f build.xml
   ```

4. Distribute the JAR file to the users that need the customized TEI framework.

   The command from the above step creates a file tei.zip in the dist subfolder of the SVN project. Each user that needs the customized TEI framework will receive the tei.zip file and will unzip it in the frameworks folder of the Oxygen XML Editor install folder.

Customization of TEI Frameworks Using the Compiled Sources

The following procedure describes how to update to the latest stable version of TEI Schema and TEI XSL, already integrated in the TEI framework (on page 3282) for Oxygen XML Editor.

1. Go to https://code.google.com/p/oxygen-tei/;
2. Go to Downloads;
3. Download the latest uploaded .zip file;
4. Unpack the .zip file and copy its content in the Oxygen XML Editor frameworks folder.

TEI ODD Document Type (Framework)

The TEI ODD (Text Encoding Initiative - One Document Does it all) document type is a TEI XML-conformant specification format that allows you to create a custom TEI P5 schema in a literate programming fashion. A system of XSLT stylesheets called Roma was created by the TEI Consortium for manipulating the ODD files.
File Definition

A file is considered to be a TEI ODD document when the following conditions are true:

- The file extension is .odd.
- The document namespace is http://www.tei-c.org/ns/1.0.

Default Document Templates

There is a default TEI ODD document template available when creating new documents from templates (on page 676) and they can be found in: Framework Templates > TEI ODD.

The default template is located in the [OXYGEN_INSTALL_DIR]/frameworks/tei/templates/TEI ODD folder.

Default Schema for Validation and Content Completion

The default schema that is used if one is not detected in the TEI ODD document is tei_odds.rng and it is stored in [OXYGEN_INSTALL_DIR]/frameworks/tei/xml/tei/custom/schema/relaxng/.

Default CSS

The default CSS files used for rendering TEI ODD content in Author mode are stored in [OXYGEN_INSTALL_DIR]/frameworks/tei/xml/tei/css/.

By default, these default CSS files are merged with any that are specified in the document. For more information, see Configuring and Managing Multiple CSS Styles for a Framework (on page 2348).

Default XML Catalogs

The default XML Catalogs (on page 3289) for the TEI ODD document type are as follows:

- [OXYGEN_INSTALL_DIR]/frameworks/tei/xml/tei/custom/schema/catalog.xml
- [OXYGEN_INSTALL_DIR]/frameworks/tei/xml/tei/schema/catalog.xml

Transformation Scenarios

Oxygen XML Editor includes built-in transformation scenarios that allow you to transform TEI ODD documents to a variety of outputs, such as PDF, XHTML, EPUB, DOCX, ODT, RNG, DTD, and XML Schema. They can be found in the TEI ODD section in the Configure Transformation Scenario(s) dialog box (on page 1762).
Resources

- Oxygen Video Tutorial: Editing TEI Documents in Author Mode
- TEI: Getting Started with ODD

Related Information:

- Editing XML Documents in Author Mode (on page 893)
- Editing XML Documents in Text Mode (on page 828)

TEI ODD Author Mode Actions

A variety of actions are available in the TEI ODD framework (on page 3282) that can be added to the TEI ODD menu, the Author Custom Actions toolbar, the contextual menu, and the Content Completion Assistant (on page 3280).

TEI ODD Toolbar Actions

The following default actions are readily available on the TEI ODD (Author Custom Actions) toolbar when editing in Author mode (by default, they are also available in the TEI ODD menu and some of them are in various submenus of the contextual menu):

**Bold**

Changes the style of the selected text to `bold` by surrounding it with `hi` tag and setting the `rend` attribute to `bold`. You can use this action on multiple non-contiguous selections.

**Italic**

Changes the style of the selected text to `italic` by surrounding it with `hi` tag and setting the `rend` attribute to `italic`. You can use this action on multiple non-contiguous selections.

**Underline**

Changes the style of the selected text to `underline` by surrounding it with `hi` tag and setting the `rend` attribute to `ul`. You can use this action on multiple non-contiguous selections.

**Insert Section**
Inserts a new section or subsection, depending on the current context. For example, if the current context is `div1`, then a `div2` is inserted. By default, this action also inserts a paragraph element as a child node.

**Insert Paragraph**

Insert a new paragraph element at current cursor position.

**Insert Image**

Inserts an image reference (on page 1021) at the cursor position. Depending on the current location, an image-type element is inserted.

**Insert List Item**

Inserts a list item in the current list type.

**Insert Ordered List**

Inserts an ordered list at the cursor position. A child list item is also automatically inserted by default. You can also use this action to convert selected paragraphs or other types of lists to an ordered list.

**Insert Itemized List**

Inserts an itemized list at the cursor position. A child list item is also automatically inserted by default. You can also use this action to convert selected paragraphs or other types of lists to an itemized list.

**Insert Table**

Opens a dialog box that allows you to configure and insert a table. You can generate a header and footer, set the number of rows and columns of the table and decide how the table is framed. You can also use this action to convert selected paragraphs, lists, and inline content (mixed content, text plus markup, that is rendered inside a block element (on page 3280)) into a table, with the selected content inserted in the first column, starting from the first row after the header (if a header is inserted).

**Note:** If the selection contains a mixture of elements that cannot be converted, you will receive an error message saying that Only lists, paragraphs, or inline content can be converted to tables.

**Insert Row Below**

Inserts a new table row with empty cells below the current row. This action is available when the cursor is positioned inside a table.

**Insert Column After**

Inserts a new table column with empty cells after the current column. This action is available when the cursor is positioned inside a table.
Insert Cell

Inserts a new empty cell depending on the current context. If the cursor is positioned between two cells, Oxygen XML Editor a new cell at cursor position. If the cursor is inside a cell, the new cell is created after the current cell.

Delete Column(s)

Deletes the table column located at cursor position or multiple columns in a selection.

Delete Row(s)

Deletes the table row located at cursor position or multiple rows in a selection.

Join Cells

Joins the content of the selected cells (both horizontally and vertically).

Split Cell

Splits the cell at the cursor location. If Oxygen XML Editor detects more than one option to split the cell, a dialog box will be displayed that allows you to select the number of rows or columns to split the cell into.

TEI ODD Menu Actions

The following additional actions can be found in the TEI ODD menu when editing in Author mode (some of them are also available in the contextual menu):

Table submenu

In addition to the table actions available on the toolbar, the following actions are available in this submenu:

Insert Row Above

Inserts a new table row with empty cells above the current row. This action is available when the cursor is positioned inside a table.

Insert Rows

Opens a dialog box that allows you to insert any number of rows and specify the position where they will be inserted (Above or Below the current row).

Insert Column Before

Inserts a column before the current one.

Insert Columns
Opens a dialog box that allows you to insert any number of columns and specify the position where they will be inserted (Above or Below the current column).

**ID Options**

Opens the **ID Options** dialog box that allows you to configure options for generating IDs in **Author** mode. The dialog box includes the following:

**ID Pattern**

The pattern for the ID values that will be generated. This text field can be customized using constant strings or any of the Oxygen XML Editor Editor Variables (on page 276).

**Element name or class value to generate ID for**

The elements for which ID values will be generated, specified using class attribute values. To customize the list, use the **Add, Edit, or Remove** buttons.

**Auto generate IDs for elements**

If selected, Oxygen XML Editor will automatically generate unique IDs for the elements listed in this dialog box when they are created in **Author** mode.

**Remove IDs when copying content in the same document**

When copying and pasting content in the same document, this option allows you to control whether or not pasted elements that are listed in this dialog box should retain their existing IDs. To retain the element IDs, deselect this option.

**Note:** This option does not have an effect on content that is cut and pasted.

**Generate IDs**

Oxygen XML Editor generates unique IDs for the current element (or elements), depending on how the action is invoked:

- When invoked on a single selection, an ID is generated for the selected element at the cursor position.
- When invoked on a block of selected content, IDs are generated for all top-level elements and elements from the list in the **ID Options** dialog box that are found in the current selection.
Note: The Generate IDs action does not overwrite existing ID values. It only affects elements that do not already have an id attribute.

Refresh References

You can use this action to manually trigger a refresh and update of all referenced resources.

Tags display mode Submenu

- Full Tags with Attributes
  Displays full tag names with attributes for both block (on page 3280) and inline elements (on page 3283). Oxygen XML Editor

- Full Tags
  Displays full tag names without attributes for both block and inline elements.

- Block Tags
  Displays full tag names for block elements and simple tags without names for inline elements.

- Inline Tags
  Displays full tag names for inline elements, while block elements are not displayed.

- Partial Tags
  Displays simple tags without names for inline elements, while block elements are not displayed.

- No Tags
  No tags are displayed. This is the most compact mode and is as close as possible to a word-processor view.

Configure Tags Display Mode

Use this option to go to the Author preferences page (on page 131) where you can configure the Tags Display Mode options.

Profiling/Conditional Text Submenu

- Edit Profiling Attributes
  Allows you to configure the profiling attributes (on page 969) and their values.

- Show Profiling Colors and Styles
Select this option to turn on conditional styling.

**Show Profiling Attributes**

Select this option to turn on conditional text markers. They are displayed at the end of conditional text blocks, as a list of attribute name and their currently set values.

**Show Excluded Content**

When this option is selected, the content filtered by the currently applied condition set is grayed-out. To show only the content that matches the currently applied condition set, deselect this option.

**List of all profiling condition sets that match the current document type**

You can click a listed condition set *(on page 975)* to activate it.

**Profiling Settings**

Opens the profiling options preferences page *(on page 144)*, where you can manage profiling attributes and profiling conditions sets. You can also configure the profiling styles and colors options from the colors/styles preferences page *(on page 146)* and the attributes rendering preferences page *(on page 148)*.

**TEI Contextual Menu Actions**

In addition to many of the TEI toolbar actions *(on page 1623)* and the general Author mode contextual menu actions *(on page 1065)*, the following TEI framework-specific actions are also available in the contextual menu when editing in Author mode:

**Table Actions**

The following table editing actions are available in the contextual menu when it is invoked on a table:

**Insert Rows**

Opens a dialog box that allows you to insert any number of rows and specify the position where they will be inserted *(Above or Below the current row)*.

**Delete Row(s)**

Deletes the table row located at cursor position or multiple rows in a selection.

**Insert Columns**
Opens a dialog box that allows you to insert any number of columns and specify the position where they will be inserted (Above or Below the current column).

Delete Column(s)

Deletes the table column located at cursor position or multiple columns in a selection.

Join Cells

Joins the content of the selected cells (both horizontally and vertically).

Split Cell

Splits the cell at the cursor location. If Oxygen XML Editor detects more than one option to split the cell, a dialog box will be displayed that allows you to select the number of rows or columns to split the cell into.

Sort

Sorts cells or list items in a table.

Table Properties

Opens the Table properties dialog box that allows you to configure properties of a table (such as frame borders).

Other Actions submenu

This submenu gives you access to all the usual contextual menu actions.

TEI ODD Drag/Drop Actions

Dragging a file from the Project view (on page 333) or DITA Maps Manager view (on page 2990) and dropping it into a TEI ODD document that is edited in Author mode, creates a link to the dragged file (the ptr element with the target attribute) at the drop location.

Tip: For information about customizing Author mode actions for a particular framework (on page 3282) (document type), see the Configuring Actions, Menus, Toolbars, Content Completion for a Framework (on page 2323) section.

Related Information:

- Configuring Actions, Menus, Toolbars, Content Completion for a Framework (on page 2323)
jTEI Document Type (Framework)

The jTEI (Journal of the Text Encoding Initiative) document type is a highly restrictive customization (only about 80 elements are included) of the TEI P5 framework.

File Definition

A file is considered to be a jTEI document when the root element is named TEI, it is in the namespace http://www.tei-c.org/ns/1.0, and the @rend attribute is set to "jTEI".

Default Document Templates

There is a default jTEI Article template available when creating new documents from templates (on page 676) and they can be found in: Framework Templates > TEI JTEI.

The default template is located in the [OXYGEN_INSTALL_DIR]/frameworks/tei/templates/TEI jTEI folder.

Default Schema for Validation and Content Completion

The default schema that is used if one is not detected is tei_jtei.rng and it is stored in [OXYGEN_INSTALL_DIR]/frameworks/tei/xml/tei/custom/schema/relaxng/.

Default CSS

The default CSS file (jtei.css) that is used for rendering jTEI in Author mode is stored in [OXYGEN_INSTALL_DIR]/frameworks/tei/xml/tei/css/.

By default, these default CSS files are merged with any that are specified in the document. For more information, see Configuring and Managing Multiple CSS Styles for a Framework (on page 2348).

Default XML Catalogs

The default XML Catalogs (on page 3289) for jTEI are as follows:

- [OXYGEN_INSTALL_DIR]/frameworks/tei/xml/tei/schema/dtd/catalog.xml
- [OXYGEN_INSTALL_DIR]/frameworks/tei/xml/tei/custom/schema/dtd/catalog.xml
- [OXYGEN_INSTALL_DIR]/frameworks/tei/xml/tei/stylesheet/catalog.xml
Transformation Scenarios

Oxygen XML Editor includes built-in transformation scenarios that allow you to transform jTEI documents to PDF and ODT. They can be found in the TEI JTEI section in the Configure Transformation Scenario(s) dialog box (on page 1762).

Resources

- Oxygen Video Tutorial: Editing TEI Documents in Author Mode
- jTEI Article Guidelines

Related Information:

- Editing XML Documents in Author Mode (on page 893)
- Editing XML Documents in Text Mode (on page 828)
- Adding Tables in TEI Documents (on page 1016)

JATS Document Type (Framework)

The JATS (NISO Journal Article Tag Suite) document type is a technical standard that defines an XML format for scientific literature.

File Definition

A file is considered to be a JATS document when the PUBLIC ID of the document contains the string -//NLM//DTD.

Default Document Templates

There are some default JATS templates available when creating new documents from templates (on page 676) and they can be found in: Framework Templates > JATSKit - NISO JATS and NLM BITS

The default templates for JATS documents are located in the [OXYGEN_INSTALL_DIR]/frameworks/jats/templates/ folder.
Default Schema for Validation and Content Completion

Default schemas that are used if one is not detected in the JATS document are stored in

\[OXYGEN\_INSTALL\_DIR]/frameworks/jats/lib/schemas/.

Default CSS

The default CSS files used for rendering JATS content in Author mode are stored in

\[OXYGEN\_INSTALL\_DIR]/frameworks/jats/lib/author-css/.

By default, these default CSS files are merged with any that are specified in the document. For more information, see Configuring and Managing Multiple CSS Styles for a Framework (on page 2348).

Default XML Catalog

The default XML Catalog (on page 3289), jatskit-catalog.xml, is stored in

\[OXYGEN\_INSTALL\_DIR]/frameworks/jats/lib/schemas/.

Transformation Scenarios

Oxygen XML Editor includes built-in transformation scenarios that allow you to transform JATS documents to a variety of outputs, such as PDF, HTML, and EPUB. They can be found in the JATSKit section in the Configure Transformation Scenario(s) dialog box (on page 1762).

Resources

- Oxygen Video Tutorial: Configuring a JATS Framework
- NLM Journal Archiving and Interchange Tag Suite

Related Information:

- Editing XML Documents in Author Mode (on page 893)
- Editing XML Documents in Text Mode (on page 828)
JATS Author Mode Actions

A variety of actions are available in the JATS framework (on page 3282) that can be added to the JATS menu, the Author Custom Actions toolbar, the contextual menu, and the Content Completion Assistant (on page 3280).

JATS Toolbar Actions

The following default actions are readily available on the JATS (Author Custom Actions) toolbar when editing in Author mode (by default, they are also available in the JATS menu and in various submenus of the contextual menu):

Paragraph Level Drop-Down Menu

- **Insert Paragraph**
  Insert a new paragraph element at current cursor position.

- **Insert Unordered List**
  Inserts an unordered list at the cursor position. A child list item is also automatically inserted by default. You can also use this action to convert selected paragraphs or other types of lists to an unordered list.

- **Insert Ordered List**
  Inserts an ordered list at the cursor position. A child list item is also automatically inserted by default. You can also use this action to convert selected paragraphs or other types of lists to an ordered list.

- **Boxed Text**
  Inserts or wraps content in a box with a shaded background.

- **Code**
  Inserts or wraps content in a code element.

- **Display Quote**
  Inserts or wraps content in a disp-quote element.

- **Figure**
  Inserts a fig element with a title (inside a caption element). This action opens a dialog box that allows you to enter the text for the title for the figure.

Graphic Figure
Inserts a `fig` element with a `title` (inside a `caption` element), and a `graphic` element. A dialog box is displayed that allows you to enter the title for the figure, followed by a dialog box that allows you to select the URL of the graphic to be inserted.

**Bold**

Surrounds the selected text with a `bold` tag. You can use this action on multiple non-contiguous selections.

**Italic**

Surrounds the selected text with an `italic` tag. You can use this action on multiple non-contiguous selections.

**Underline**

Surrounds the selected text with an `underline` tag. You can use this action on multiple non-contiguous selections.

**Monospace**

Inserts or wraps content with a `monospace` element.

**Insert Image**

Inserts an image reference (on page 1021) at the cursor position. Depending on the current location, an image-type element is inserted.

**Insert List Item**

Inserts a list item in the current list type.

**Insert MathML**

Opens the XML Fragment Editor that allows you to insert and edit MathML notations (on page 1057).

**Subscript**

Surrounds the selected text with a `subscript` tag, used for inserting a character (number, letter, or symbol) that will appear slightly below the baseline and slightly smaller than the rest of the text.

**Superscript**

Surrounds the selected text with a `superscript` tag, used for inserting a character (number, letter, or symbol) that will appear slightly above the baseline and slightly smaller than the rest of the text.
JATS Menu Actions

The following additional actions can be found in the JATS menu when editing in Author mode:

- **Refresh References**
  
  You can use this action to manually trigger a refresh and update of all referenced resources.

**Tags display mode Submenu**

- **Full Tags with Attributes**
  
  Displays full tag names with attributes for both block (on page 3280) and inline elements (on page 3283). Oxygen XML Editor

- **Full Tags**
  
  Displays full tag names without attributes for both block and inline elements.

- **Block Tags**
  
  Displays full tag names for block elements and simple tags without names for inline elements.

- **Inline Tags**
  
  Displays full tag names for inline elements, while block elements are not displayed.

- **Partial Tags**
  
  Displays simple tags without names for inline elements, while block elements are not displayed.

- **No Tags**
  
  No tags are displayed. This is the most compact mode and is as close as possible to a word-processor view.

**Configure Tags Display Mode**

Use this option to go to the Author preferences page (on page 131) where you can configure the Tags Display Mode options.

**Profiling/Conditional Text Submenu**

**Edit Profiling Attributes**

Allows you to configure the profiling attributes (on page 969) and their values.
Show Profiling Colors and Styles
Select this option to turn on conditional styling.

Show Profiling Attributes
Select this option to turn on conditional text markers. They are displayed at the end of conditional text blocks, as a list of attribute name and their currently set values.

Show Excluded Content
When this option is selected, the content filtered by the currently applied condition set is grayed-out. To show only the content that matches the currently applied condition set, deselect this option.

List of all profiling condition sets that match the current document type
You can click a listed condition set (on page 975) to activate it.

Profiling Settings
Opens the profiling options preferences page (on page 144), where you can manage profiling attributes and profiling conditions sets. You can also configure the profiling styles and colors options from the colors/styles preferences page (on page 146) and the attributes rendering preferences page (on page 148).

JATS Drag/Drop Actions
Dragging a file from the Project view (on page 333) or DITA Maps Manager view (on page 2990) and dropping it into a JATS document that is edited in Author mode, creates a link to the dragged file (the ext-link element with the xlink:href attribute) at the drop location. Dragging an image file from the default file system application (Windows Explorer on Windows or Finder on Mac OS X, for example) and dropping it into a JATS document inserts an image element (the inline-graphic element with the xlink:href attribute) at the drop location, similar to the Insert Image toolbar action.

Tip: For information about customizing Author mode actions for a particular framework (on page 3282) (document type), see the Configuring Actions, Menus, Toolbars, Content Completion for a Framework (on page 2323) section.

Related Information:
- Configuring Actions, Menus, Toolbars, Content Completion for a Framework (on page 2323)
EPUB Document Type (Framework)

EPUB is an e-book file format that is a ZIP archive and can be downloaded and read on devices such as phones, tablets, computers, or e-readers. Oxygen XML Editor includes an Archive Browser view (on page 2191) that allows you to view the contents and structure of this type of file.

Three distinct frameworks (on page 3282) are supported for the EPUB document type:

- **NCX** - A declarative global navigation definition.
- **OCF** - The Open Container Format (OCF) defines a mechanism by which all components of an Open Publication Structure (OPS) can be combined into a single file system entity.
- **OPF** - The Open Packaging Format (OPF) defines the mechanism by which all components of a published work that conforms to the Open Publication Structure (OPS) standard (including metadata, reading order, and navigational information) are packaged in an OPS Publication.

Note: Oxygen XML Editor supports OPF 2.0, OPF 3.0, and OPF 3.1.

File Definition

A file is considered to be an EPUB document if it has a file extension of .epub.

Default Document Templates

There are a variety of default EPUB templates available when creating new documents from templates (on page 676) and they can be found the following folders in Framework Templates: NCX, OCF, OPF 2.0, OPF 3.0, and OPF 3.1.

- The default templates for the NCX document types are located in the `\[OXYGEN_INSTALL_DIR\]/frameworks/ncx/templates` folder.
- The default templates for the OCF document types are located in the `\[OXYGEN_INSTALL_DIR\]/frameworks/ocf/templates` folder.
- The default template for the OPF 2.0 document type is located in the `\[OXYGEN_INSTALL_DIR\]/frameworks/opf/templates/2.0` folder.
- The default template for the OPF 3.0 document type is located in the `\[OXYGEN_INSTALL_DIR\]/frameworks/opf/templates/3.0` folder.
- The default template for the OPF 3.1 document type is located in the `\[OXYGEN_INSTALL_DIR\]/frameworks/opf/templates/3.1` folder.

Default Schema

The default schema files for the various types of EPUB document types are located in the following directories:
• The default schema files for the **NCX** document types are located in the 
  \[OXYGEN_INSTALL_DIR\]/frameworks/ncx/schemas folder.
• The default schema files for the **OCF** document types are located in the 
  \[OXYGEN_INSTALL_DIR\]/frameworks/ocf/schemas folder.
• The default schema files for the **OPF 2.0** document type is located in the 
  \[OXYGEN_INSTALL_DIR\]/frameworks/opf/schemas/2.0 folder.
• The default schema files for the **OPF 3.0** document type is located in the 
  \[OXYGEN_INSTALL_DIR\]/frameworks/opf/schemas/3.0 folder.
• The default schema files for the **OPF 3.1** document type is located in the 
  \[OXYGEN_INSTALL_DIR\]/frameworks/opf/schemas/3.1 folder.

Related Information:

• Working with Archive Files (on page 2194)

### Other Supported Document Types

Along with the fully supported built-in frameworks (document types) (on page 1537), Oxygen XML Editor also provides limited support (including document templates) for editing a variety of other document types. All the specialized views, editors, actions, and options are dynamic according to the type of file that is opened or created. Other document types that are supported in Oxygen XML Editor include:

• **EPUB (NCX, OCF, OPF 2.0, 3.0, & 3.1) (on page 1636)** - A standard for e-book files.
• **OOXML (on page 2194)** - An XML-based file format for representing spreadsheets, charts, presentations, and word processing documents.
• **ODF (on page 2194)** - An free and open-source XML-based file format for electronic office documents, such as spreadsheets, charts, presentations, and word processing documents.
• **DocBook Targetset (on page 1572)** - For resolving cross-references when using olinks.
• **Ant Build Scripts (on page 1235)** - A tool for automating software build processes, written in Java and primarily intended for use with Java.
• **XSLT Stylesheets (on page 1183)** - A document type that provides a visual mode for editing XSLT stylesheets.
• **WSDL (on page 1354)** - Web Services Description Language is an XML language for describing the functionality offered by a web service.
• **Schematron (on page 1461)** - For making assertions about the presence or absence of patterns in XML documents. This document type applies to the ISO Schematron version.
• **Schematron Quick Fixes (SQF)** *(on page 1111)* - An extension of the ISO standard Schematron, allows developers to define **Quick Fixes** *(on page 3287)* for Schematron errors.


• **XProc** *(on page 1459)* - A document type for processing XProc script files.

• **XML Schema** *(on page 1249)* - Documents that provide support for editing annotations.

• **SVG** *(on page 1499)* - Scalable Vector Graphics is a language for describing two-dimensional graphics in XML.

• **MathML** *(on page 1057)* - Mathematical Markup Language (2.0 and 3.0) is an application of XML for describing mathematical notations.

• **XLIFF (1.2, 2.0, 2.1)** *(on page 1453)* - XML Localization Interchange File Format is a standard for passing data between tools during a localization process.

• **XQuery** *(on page 1337)* - The common query language for XML.

• **CSS** *(on page 1380)* - Cascading Style Sheets is a language used for describing the look and formatting of a document.

• **LESS** *(on page 1385)* - A dynamic style sheet language that can be compiled into CSS.

• **Relax NG Schema** *(on page 1388)* - A schema language that specifies a pattern for the structure and content of an XML document.

• **NVDL Schema** *(on page 1408)* - Namespace Validation Dispatching Language allows you to specify sections of XML documents to be validated against various schemas.

• **JSON** *(on page 1417)* - JavaScript Object Notation is a lightweight data-interchange format.

• **Markdown** *(on page 1507)* - A lightweight markup language with plain text formatting syntax that can be converted to HTML or DITA.

• **JavaScript** *(on page 1454)* - Programming language of HTML and the Web.

• **XMLSpec** - A markup language for W3C specifications and other technical reports.

• **DITAVAL** - DITA conditional processing profile to identify the values you want to conditionally process for a particular output, build, or other purpose.

• **Daisy** - A technical standard for digital audio books, periodicals, and computerized text. It is designed to be an audio substitute for print material.

• **EAD** - Encoded Archival Description is an XML standard for encoding archival finding aids.

• **KML** - Keyhole Markup Language is an XML notation for expressing geographic visualization in maps and browsers.

• **Maven Project & Settings** - Project or settings file for Maven build automation tool that is primarily used for Java projects.

• **Oasis XML Catalog** - An **XML Catalog** *(on page 3289)* document that describes a mapping between external entity references and locally-cached equivalents.

• **Other Non-XML Files** *(on page 706)* - Oxygen XML Editor also includes a simple text editor and a variety of helpful features for creating and editing non-XML files.
XML documents can be transformed into a variety of user-friendly output formats that can be viewed by end users. This process is known as a **transformation**.

Oxygen XML Editor includes numerous built-in transformation possibilities to publish XML content in various output formats (such as WebHelp, PDF, CHM, EPUB, JavaHelp, Eclipse Help, XHTML, etc.)

For transformations that are not included in your installed version of Oxygen XML Editor, simply install the tool chain required to perform the specific transformation and process the files in accordance with the processor instructions. A multitude of target formats are possible. The basic condition for a transformation to any format is that your source document is well-formed.

**Transformation Scenarios**

A transformation scenario is a set of complex operations and settings that gives you the possibility to obtain outputs of multiple types (XML, HTML, PDF, EPUB, etc.) from the same source of XML files and stylesheets.

**Note:** You need to use the appropriate stylesheet according to the source definition and the desired output. For example, if you want to transform into an HTML format using a DocBook stylesheet, your source XML document should conform with the DocBook DTD.

Executing a transformation scenario implies multiple actions, such as:

- Validating the input file.
- Obtaining intermediate output files (for example, formatting objects for the XML to PDF transformation).
- Using transformation engines to produce the output.

Before transforming an XML document in Oxygen XML Editor, you need to define a transformation scenario to apply to that document. A scenario is a set of values for various parameters that define a transformation. It is not related to a particular document, but rather to a document type. Oxygen XML Editor included preconfigured built-in transformation scenarios (on page 1641), but you can also create new transformation scenarios (on page 1674).

When creating new transformation scenarios, the types that are available include:
Scenarios that Apply to XML Files - This type of scenario contains the location of an XSLT stylesheet that is applied on the edited XML document, as well as other transformation parameters. For more information, see XML Transformation with XSLT (on page 1674) and XML Transformation with XQuery (on page 1690).

Scenarios that Apply to XSLT Files - This type of scenario contains the location of an XML document that the edited XSLT stylesheet is applied to, as well as other transform parameters. For more information, see XSLT Transformation (on page 1722).

Scenarios that Apply to XQuery Files - This type of scenario contains the location of an XML source, that the edited XQuery file is applied to, as well as other transform parameters. When the XML source is a native XML database, the XML source field of the scenario is empty because the XML data is read with XQuery-specific functions, such as document(). When the XML source is a local XML file, the URL of the file is specified in the XML input field of the scenario. For more information, see XQuery Transformation (on page 1749).

Scenarios that Apply to SQL Files - This type of scenario specifies a database connection for the database server that runs the SQL file that is associated with the scenario. The data processed by the SQL script is located in the database.

Scenarios that Apply to XProc Files - This type of scenario contains the location of an XProc script, as well as other transform parameters. For more information, see SQL Transformation (on page 1757).

DITA-OT Scenarios - This type of scenario provides the parameters for an Ant transformation that executes a DITA-OT build script. Oxygen XML Editor includes a built-in version of Ant and a built-in version of DITA-OT, although you can also set other versions in the scenario. For more information, see DITA OT Transformation (on page 1702).

ANT Scenarios - This type of scenario contains the location of an Ant build script, as well as other transform parameters. For more information, see Ant Transformation (on page 1718).

Note:

Status messages generated during the transformation process are displayed in the Information view (on page 822).

Built-in Transformation Scenarios

Oxygen XML Editor includes preconfigured built-in transformation scenarios that are used for common transformations. They can be found in the various sections in the Configure Transformation Scenario(s) dialog box (on page 1762) or Transformation Scenarios view (on page 1768). All the built-in document types (frameworks) (on page 3282) that are included in Oxygen XML Editor have various transformation scenarios in their specific sections, including the most popular frameworks, such as DITA, DocBook, TEI, XHTML, JATS, OOXML, and more.
To obtain the desired output, use one of the following actions from the toolbar or Transform submenu in the contextual menu of the Project view (on page 333):

- **Apply Transformation Scenario(s) (Ctrl + Shift + T (Command + Shift + T on OS X))** - If you have associated transformation scenarios for the current document, this action will simply apply the association (on page 1761) and begin the transformation process. If an association is not detected, this action will open the Configure Transformation Scenario(s) dialog box (on page 1762) where you can choose the scenarios you want to apply.

- **Configure Transformation Scenario(s) (Ctrl + Shift + C (Command + Shift + C on OS X))** - This action will open the Configure Transformation Scenario(s) dialog box (on page 1762) where you can choose the scenarios you want to apply.

**Note:**

- You can apply a transformation even if the current document is not associated with a transformation scenario.
- If the document contains an xml-stylesheet processing instruction that references an XSLT stylesheet (commonly used to display the document in web browsers), Oxygen XML Editor prompts you to associate the document with a built-in transformation scenario.
- The default transformation scenario is suggested based on the processing instruction from the edited document.

**Related Information:**

- Creating New Transformation Scenarios (on page 1674)
- Editing a Transformation Scenario (on page 1758)
- Configure Transformation Scenario(s) Dialog Box (on page 1762)
- Applying Associated Transformation Scenarios (on page 1761)
- Transformation Scenarios View (on page 1768)

**DITA Map Transformation Scenarios**

Built-in transformation scenarios allow you to transform DITA maps (on page 3281) to a variety of outputs, such as WebHelp, PDF, ODF, XHTML, EPUB, CHM, Kindle, and MS Word. Oxygen XML Editor also includes a special Run DITA-OT Integrator (on page 1665) that can be used to integrate a DITA-
OT plugin and a **DITA Map Metrics Report** transformation that generates a statistics report for your DITA map. All of them are listed in the **DITA Map** section in the **Configure Transformation Scenario(s)** dialog box (on page 1762).

A variety of transformations scenarios are available for **DITA maps** (on page 3281):

- **Built-in transformation scenarios** allow you to transform a **DITA map** to a variety of outputs, such as WebHelp, PDF, ODF, XHTML, EPUB, CHM, Kindle, and MS Word.

- **Run DITA-OT Integrator** (on page 1665) - Use this transformation scenario if you want to integrate a DITA-OT plugin (on page 3256). This scenario runs an Ant task that integrates all the plugins from the DITA-OT/plugins directory.

- **DITA Map Metrics Report** - Use this type of transformation scenario if you want to generate a **DITA map** statistics report. It contains information such as:
  - The number of processed maps and topics.
  - Content reuse percentage.
  - Number of elements, attributes, words, and characters used in the entire **DITA map** structure.
  - DITA conditional processing attributes used in the **DITA maps**.
  - Processing instructions.
  - External links.
  - All **@outputclass** attribute values gathered from the DITA project.

⚠️ **Important**: If you have cross references that point to content outside the scope of the DITA map, that referenced content will not be counted. For example, if you have links to topics that are not included in the DITA map hierarchy, the content in those topics is ignored when generating the statistics.

---

**Related Information:**

- **Editing a Transformation Scenario** (on page 1758)

- **Configure Transformation Scenario(s) Dialog Box** (on page 1762)

- **Applying Associated Transformation Scenarios** (on page 1761)

---

**DITA Map to WebHelp Responsive Transformation**

DITA content can be transformed into several types of WebHelp Responsive systems (with or without a feedback section). The **WebHelp Responsive layout and features** (on page 1858) are designed to adapt to any device and screen size to provide an optimal viewing and interaction experience. Oxygen
XML Editor also provides numerous possibilities for customizing the WebHelp Responsive output (on page 1935).

WebHelp Responsive Transformation Scenario

To publish a DITA map (on page 3281) as WebHelp Responsive output, follow these steps:

1. Select the Configure Transformation Scenario(s) action from the DITA Maps Manager (on page 2990) toolbar.
2. Select the DITA Map WebHelp Responsive scenario from the DITA Map section.
3. If you want to configure the transformation, click the Edit button.

**Step Result:** This opens an Edit scenario configuration dialog box that allows you to configure various options in the following tabs:

- **Templates Tab (on page 3199)** - This tab contains a set of built-in publishing templates (on page 1892) that you can use for the layout of your WebHelp system output. You can also create your own publishing templates or edit existing ones (on page 1935).
- **Parameters Tab (on page 3205)** - This tab includes numerous parameters that can be set to customize your WebHelp system output. See the Parameters section (on page 1645) below for details about the most commonly used parameters for WebHelp Responsive transformations.
- **Filters Tab (on page 3207)** - This tab allows you to filter certain content elements from the generated output.
- **Advanced Tab (on page 3208)** - This tab allows you to specify some advanced options for the transformation scenario.
- **Output Tab (on page 3210)** - This tab allows you to configure options that are related to the location where the output is generated.
4. Click **Apply associated** to process the transformation.

When the DITA Map WebHelp Responsive transformation is complete, the output is automatically opened in your default browser.

WebHelp Responsive with Feedback Transformation Scenario

To publish a DITA map (on page 3281) as a WebHelp Responsive with Feedback system, follow these steps:

1. Select the Configure Transformation Scenario(s) action from the DITA Maps Manager (on page 2990) toolbar.
2. Select the DITA Map WebHelp Responsive with Feedback scenario from the DITA Map section.
3. If you want to configure the transformation, click the Edit button.
Step Result: This opens an Edit scenario configuration dialog box that allows you to configure various options in the following tabs:

- Templates Tab (on page 3199) - This tab contains a set of built-in publishing templates (on page 1892) that you can use for the layout of your WebHelp system output. You can also create your own publishing templates or edit existing ones (on page 1935).
- Parameters Tab (on page 3205) - This tab includes numerous parameters that can be set to customize your WebHelp system output. See the Parameters section (on page 1645) below for details about the most commonly used parameters for WebHelp Responsive transformations.
- Filters Tab (on page 3207) - This tab allows you to filter certain content elements from the generated output.
- Advanced Tab (on page 3208) - This tab allows you to specify some advanced options for the transformation scenario.
- Output Tab (on page 3210) - This tab allows you to configure options that are related to the location where the output is generated.

4. Click Apply associated to begin the transformation.
5. Enter the documentation product ID (value for the webhelp.product.id parameter) and the documentation version (value for the webhelp.product.version parameter).

When the DITA Map WebHelp Responsive with Feedback transformation is complete, your default browser opens the installation.html file. This file contains information about the output location, system requirements, installation instructions, and deployment of the output. Follow the instructions to complete the system deployment (on page 1873).

Parameters for Customizing WebHelp Responsive Output

To customize a transformation scenario, you can edit various parameters, including the following most commonly used ones:

**default.language**

This parameter is used if the language is not detected in the DITA map. The default value is en-us.

**clean.output**

Deletes all files from the output folder before the transformation is performed (only no and yes values are valid and the default value is no).

**editlink.remote.ditamap.url**

Use this parameter in conjunction with editlink.web.author.url to add an Edit link next to the topic title in the WebHelp output. When a user clicks the link, the topic is opened in Oxygen XML Web Author where they can make changes that can be saved
to a file server. The value should be set as the custom URL of the *main DITA map*. For example, a GitHub custom URL might look like this: `https://getFileContent/ oxyengxml/userguide/master/UserGuide.ditamap`.

**editlink.web.author.url**

This parameter needs to be used in conjunction with `editlink.remote.ditamap.url` to add an *Edit* link next to the topic title in the WebHelp output. When a user clicks the link, the topic is opened in Oxygen XML Web Author where they can make changes that can be saved to a file server. The value should be set as the URL of the Web Author installation. For example: `https://www.oxygenxml.com/oxygen-xml-web-author/`.

**editlink.present.only.path.to.topic**

When this parameter is set to "true", the DITA topic path is displayed to the right of each topic title in the WebHelp Responsive output. Also, when this parameter is used, the `editlink.remote.ditamap.url` and `editlink.web.author.url` parameters are ignored.

**fix.external.refs.com.oxygenxml** (Only supported when the DITA OT transformation process is started from Oxygen XML Editor)

The DITA Open Toolkit usually has problems processing references that point to locations outside of the directory of the processed *DITA map*. This parameter is used to specify whether or not the application should try to fix such references in a temporary files folder before the DITA Open Toolkit is invoked on the fixed references. The fix has no impact on your edited DITA content. Allowed values: `true` or `false` (default).

**force.unique**

When set to `true` (default value), the transformation will be forced to create unique output files for each instance of a resource when a map contains multiple references to a single topic.

**use.stemming**

Controls whether or not you want to include stemming search algorithms into the published output (default setting is `false`).

**webhelp.custom.resources**

The file path to a directory that contains resources files. All files from this directory will be copied to the root of the WebHelp output.

**webhelp.favicon**

The file path that points to an image to be used as a *favicon* in the WebHelp output.

**webhelp.reload.stylesheet**
Set this parameter to `true` if you have out of memory problems when generating WebHelp. It will increase processing time but decrease the memory footprint. The default value is `false`.

**webhelp.search.custom.excludes.file**

The path of the file that contains name patterns for HTML files that should not be indexed by the WebHelp search engine. Each exclude pattern must be on a new line. The patterns are considered to be relative to the output directory, and they accept wildcards such as ‘*’ (matches zero or more characters) or ‘?’ (matches one character). For more information about the patterns, see [https://ant.apache.org/manual/dirtasks.html#patterns](https://ant.apache.org/manual/dirtasks.html#patterns).

**webhelp.search.japanese.dictionary**

The file path of the dictionary that will be used by the *Kuromoji* morphological engine for indexing Japanese content in the WebHelp pages. The encoding for the dictionary must be UTF8.

**webhelp.search.enable.pagination**

Specifies whether or not search results will be displayed on multiple pages. Allowed values are `yes` or `no`.

**webhelp.search.page.numberOfItems**

Specifies the number of search results items displayed on each page. This parameter is only used when the `webhelp.search.enable.pagination` parameter is enabled.

**webhelp.search.ranking**

If this parameter is set to `false` then the 5-star rating mechanism is no longer included in the search results that are displayed on the Search tab (default setting is `true`).

**webhelp.show.changes.and.comments**

When set to `yes`, user comments, replies to comments, and tracked changes are published in the WebHelp output. The default value is `no`.

**webhelp.sitemap.base.url**

Base URL for all the `loc` elements in the generated `sitemap.xml` file. The value of a `loc` element is computed as the relative file path from the `href` attribute of a `topicref` element from the DITA map, appended to this base URL value. The `loc` element is mandatory in `sitemap.xml`. If you leave this parameter set to its default empty value, then the `sitemap.xml` file is not generated.

**webhelp.sitemap.change.frequency**

The value of the `changefreq` element in the generated `sitemap.xml` file. The `changefreq` element is optional in `sitemap.xml`. If you leave this parameter set to its default empty value, then the `changefreq` element is not added in `sitemap.xml`.
Allowed values: <empty string> (default), always, hourly, daily, weekly, monthly, yearly, never.

**webhelp.sitemap.priority**

The value of the priority element in the generated sitemap.xml file. It can be set to any fractional number between 0.0 (least important priority) and 1.0 (most important priority). For example, 0.3, 0.5, or 0.8. The priority element is optional in sitemap.xml. If you leave this parameter set to its default empty value, then the priority element is not added in sitemap.xml.

**Parameters Specific to WebHelp Responsive Output**

**webhelp.default.collection.type.sequence**

Specifies if the sequence value will be used by default when the collection-type attribute is not specified. This option is helpful if you want to have Next and Previous navigational buttons generated for all HTML pages. Allowed values are no (default) and yes.

**webhelp.enable.search.autocomplete**

Specifies if the Autocomplete feature is enabled in the WebHelp search text field. The default value is yes.

**webhelp.fragment.after.body**

In the generated output it displays a given XHTML fragment after the page body. The value of the parameter can be either a well-formed XHTML fragment or a path to a file that contains a well-formed XHTML fragment.

**webhelp.fragment.after.logo_and_title**

In the generated output it displays a given XHTML fragment after the logo and title. The value of the parameter can be either a well-formed XHTML fragment or a path to a file that contains a well-formed XHTML fragment.

**webhelp.fragment.after.main.page.search**

In the generated output it displays a given XHTML fragment after the search field. The value of the parameter can be either a well-formed XHTML fragment or a path to a file that contains a well-formed XHTML fragment.

**webhelp.fragment.after.toc_or_tiles**

In the generated output it displays a given XHTML fragment after the table of contents or tiles in the main page. The value of the parameter can be either a well-formed XHTML fragment or a path to a file that contains a well-formed XHTML fragment.

**webhelp.fragment.after.top_menu**
In the generated output it displays a given XHTML fragment after the top menu. The value of the parameter can be either a well-formed XHTML fragment or a path to a file that contains a well-formed XHTML fragment.

webhelp.fragment.before.body

In the generated output it displays a given XHTML fragment before the page body. The value of the parameter can be either a well-formed XHTML fragment or a path to a file that contains a well-formed XHTML fragment.

webhelp.fragment.before.logo_and_title

In the generated output it displays a given XHTML fragment before the logo and title. The value of the parameter can be either a well-formed XHTML fragment or a path to a file that contains a well-formed XHTML fragment.

webhelp.fragment.before.main.page.search

In the generated output it displays a given XHTML fragment before the search field. The value of the parameter can be either a well-formed XHTML fragment or a path to a file that contains a well-formed XHTML fragment.

webhelp.fragment.before.toc_or_tiles

In the generated output it displays a given XHTML fragment before the table of contents or tiles in the main page. The value of the parameter can be either a well-formed XHTML fragment or a path to a file that contains a well-formed XHTML fragment.

webhelp.fragment.before.top_menu

In the generated output it displays a given XHTML fragment before the top menu. The value of the parameter can be either a well-formed XHTML fragment or a path to a file that contains a well-formed XHTML fragment.

webhelp.fragment.footer

In the generated output it displays a given XHTML fragment as the page footer. The value of the parameter can be either a well-formed XHTML fragment or a path to a file that contains a well-formed XHTML fragment.

webhelp.fragment.head

In the generated output it inserts a given XHTML fragment in the <head> element. The value of the parameter can be either a well-formed XHTML fragment or a path to a file that contains a well-formed XHTML fragment.

webhelp.fragment.welcome

In the generated output it displays a given XHTML fragment as a welcome message (or title). The value of the parameter can be either a well-formed XHTML fragment or a path to a file that contains a well-formed XHTML fragment.
webhelp.merge.nested.topics.related.links

Specifies if the related links from nested topics will be merged with the links in the parent topic. Thus the links will be moved from the topic content to the related links component and all of the links from the same group (for example, Related Tasks, Related References, Related Information) are merged into a single group. The default value is yes.

webhelp.search.stop.words.exclude

Specifies a list of words that will be excluded from the default list of stop words that are filtered out before the search processing. Use comma separators to specify more than one word (for example: if, for, is).

webhelp.show.breadcrumb

Specifies if the breadcrumb component will be presented in the output. The default value is yes.

webhelp.show.child.links

Specifies if child links will be generated in the output for all topics that have subtopics. The default value is no.

webhelp.show.indexterms.link

Specifies if an icon that links to the index will be presented in the output. The default value is yes.

webhelp.show.main.page.tiles

Specifies if the tiles component will be presented in the main page of the output. For a tree style layout, this parameter should be set to no.

webhelp.show.main.page.toc

Specifies if the table of contents will be presented in the main page of the output. The default value is yes.

webhelp.show.navigation.links

Specifies if navigation links will be presented in the output. The default value is yes.

webhelp.show.print.link

Specifies if a print link or icon will be presented within each topic in the output. The default value is yes.

webhelp.show.related.links

Specifies if the related links component will be presented in the WebHelp Responsive output. The default value is yes. The webhelp.merge.nested.topics.related.links parameter can be used in conjunction with this one to merge the related links from nested topics into the links in the parent topic.
**webhelp.show.publication.toc**

Specifies if a table of contents will be presented on the left side of each topic in the output. The default value is `yes`.

**webhelp.show.topic.toc**

Specifies if a topic table of contents will be presented on the right side of each topic in the output. This table of contents contains links to each `<section>` within the current topic that contains an `@id` attribute and the section corresponding to the current scroll position is highlighted. The default value is `yes`.

**webhelp.show.top.menu**

Specifies if a menu will be presented at the topic of the main page in the output. The default value is `yes`.

**webhelp.publication.toc.hide.chunked.topics**

Specifies if the table of contents will contain links for chunked topics. The default value is `yes`.

**webhelp.publication.toc.links**

Specifies which links will be included in the table of contents. The possible values are:

- **chapter** (default) - The TOC will include links for the current topic, its children, its siblings, and its direct ancestor (including the direct ancestor's siblings), and the parent chapter.
- **topic** - The TOC will only include links for the current topic and its direct children.
- **all** - The TOC will include all links.

**webhelp.publication.toc.tooltip.position**

By default, if a topic contains a `shortdesc` element, its content is displayed in a tooltip when the user hovers over its link in the table of contents. This parameter controls whether or not this tooltip is displayed and its position relative to the link. The possible values are:

- **left** (default)
- **right**
- **top**
- **bottom**
- **hidden** - The tooltip will not be displayed.

**webhelp.top.menu.depth**

Specifies the maximum depth level of the topics that will be included in the top menu. The default value is `3`. A value of `0` means that the menu has unlimited depth.
**webhelp.topic.collapsible.elements.initial.state**

Specifies the initial state of collapsible elements (tables with titles, nested topics with titles, sections with titles, index term groups). The possible values are `collapsed` or `expanded` (default value).

**Related Information:**

- Customizing the WebHelp Responsive Output *(on page 1935)*
- WebHelp Responsive Output Layout and Features *(on page 1858)*

**DITA Map to WebHelp Classic Transformation**

DITA content can be transformed into several types of WebHelp Classic systems (with or without a feedback section). The [WebHelp Classic layout and features (on page 1773)](onpage1773) are designed for desktop systems and include a familiar classical style. Oxygen XML Editor also provides numerous possibilities for customizing the [WebHelp Classic output (on page 1806)](onpage1806).

**WebHelp Classic Transformation Scenario**

To publish a [DITA map (on page 3281)](onpage3281) as a [WebHelp Classic](onpage1230) system, follow these steps:

1. Select the `Configure Transformation Scenario(s)` action from the [DITA Maps Manager (on page 2990)](onpage2990) toolbar.
2. Select the DITA Map WebHelp Classic scenario from the DITA Map section.
3. If you want to configure the transformation, click the Edit button.

**Step Result:** This opens an Edit scenario configuration dialog box that allows you to configure various options in the following tabs:

- [Skins Tab (on page 3197)](onpage3197) - This tab contains a set of built-in skins that you can use for the layout of your WebHelp system output.
- [Parameters Tab (on page 3205)](onpage3205) - This tab includes numerous parameters that can be set to customize your WebHelp system output. See the Parameters section *(on page 1654)* below for details about the most commonly used parameters for WebHelp Responsive transformations.
- [Filters Tab (on page 3207)](onpage3207) - This tab allows you to filter certain content elements from the generated output.
- [Advanced Tab (on page 3208)](onpage3208) - This tab allows you to specify some advanced options for the transformation scenario.
4. Click **Apply associated** to process the transformation.

When the **DITA Map WebHelp Classic** transformation is complete, the output is automatically opened in your default browser.

### WebHelp Classic with Feedback Transformation Scenario

To publish a **DITA map (on page 3281)** as a **WebHelp Classic with Feedback** system, follow these steps:

1. Select the **Configure Transformation Scenario(s)** action from the **DITA Maps Manager (on page 2990)** toolbar.
2. Select the **DITA Map WebHelp Classic with Feedback** scenario from the **DITA Map** section.
3. If you want to configure the transformation, click the **Edit** button.

**Step Result:** This opens an **Edit scenario** configuration dialog box that allows you to configure various options in the following tabs:

- **Skins Tab (on page 3197)** - This tab contains a set of built-in skins that you can use for the layout of your WebHelp system output.
- **Parameters Tab (on page 3205)** - This tab includes numerous parameters that can be set to customize your WebHelp system output. See the **Parameters section (on page 1654)** below for details about the most commonly used parameters for WebHelp Responsive transformations.
- **Filters Tab (on page 3207)** - This tab allows you to filter certain content elements from the generated output.
- **Advanced Tab (on page 3208)** - This tab allows you to specify some advanced options for the transformation scenario.
- **Output Tab (on page 3210)** - This tab allows you to configure options that are related to the location where the output is generated.

4. Click **Apply associated** to begin the transformation.

5. Enter the documentation product ID (value for the `webhelp.product.id` parameter) and the documentation version (value for the `webhelp.product.version` parameter).

When the **DITA Map WebHelp Classic with Feedback** transformation is complete, your default browser opens the **installation.html** file. This file contains information about the output location, system requirements, installation instructions, and deployment of the output. Follow the instructions to complete the system deployment (on page 1873).

For more information about the feedback-enabled WebHelp system, watch our video demonstration:
Parameters for Customizing WebHelp Classic Output

To customize a transformation scenario, you can edit various parameters, including the following most commonly used ones:

**default.language**

This parameter is used if the language is not detected in the DITA map. The default value is `en-us`.

**clean.output**

Deletes all files from the output folder before the transformation is performed (only `no` and `yes` values are valid and the default value is `no`).

**fix.external.refs.com.oxygenxml (Only supported when the DITA OT transformation process is started from Oxygen XML Editor)**

The DITA Open Toolkit usually has problems processing references that point to locations outside of the directory of the processed DITA map. This parameter is used to specify whether or not the application should try to fix such references in a temporary files folder before the DITA Open Toolkit is invoked on the fixed references. The fix has no impact on your edited DITA content. Allowed values: `true` or `false` (default).

**force.unique**

When set to `true` (default value), the transformation will be forced to create unique output files for each instance of a resource when a map contains multiple references to a single topic.

**use.stemming**

Controls whether or not you want to include stemming search algorithms into the published output (default setting is `false`).

**webhelp.body.script**

URL value that specifies the location of a well-formed XHTML file containing the custom script that will be copied in the `<body>` section of every WebHelp page.

**webhelp.copyright**

Adds a small copyright text that appears at the end of the Table of Contents pane.

**webhelp.custom.resources**

The file path to a directory that contains resources files. All files from this directory will be copied to the root of the WebHelp output.

**webhelp.favicon**
The file path that points to an image to be used as a *favicon* in the WebHelp output.

**webhelp.footer.file**

Path to an XML file that includes the footer content for your WebHelp output pages. You can use this parameter to integrate social media features (such as widgets for Facebook™, Twitter™, Google Analytics, or Google+™). The file must be well-formed, each widget must be in separate div or span element, and the code for each script element is included in an XML comment (also, the start and end tags for the XML comment must be on a separate line). The following code exert is an example for adding a Facebook™ widget:

```xml
<div id="facebook">
  <div id="fb-root"/>
  <script>
    <!-- (function(d, s, id) { var js, fjs = d.getElementsByTagName(s)[0];
      if (d.getElementById(id)) return;
      js = d.createElement(s); js.id = id;
      js.src = "//connect.facebook.net/en_US/sdk.js#xfbml=1&version=v2.0";
      fjs.parentNode.insertBefore(js, fjs); }
    (document, 'script', 'facebook-jssdk')); -->
  </script>
  <div data-share="true" data-show-faces="true" data-action="like"
    data-layout="standard" class="fb-like"/>
</div>
```

**webhelp.footer.include**

Specifies whether or not to include footer in each WebHelp page. Possible values: yes, no. If set to no, no footer is added to the WebHelp pages. If set to yes and the webhelp.footer.file parameter has a value, then the content of that file is used as footer. If the webhelp.footer.file has no value then a default Oxygen footer is inserted in each WebHelp page.

**webhelp.google.search.results**

A file path that specifies the location of a well-formed XHTML file containing the Google Custom Search Engine element gcse:searchresults-only. You can use all supported attributes for this element. It is recommend to set the linkTarget attribute to _frm for frameless (iframe) version of WebHelp or to _contentWin for the frameset version of WebHelp. The default value for this attribute is _blank and the search results will be loaded in a new window. If this parameter is not specified, the following code will be used:

```xml
<gcse:searchresults-only linkTarget="frm"></gcse:searchresults-only>
```

**webhelp.google.search.script**
A file path that specifies the location of a well-formed XHTML file containing the Custom Search Engine script from Google.

**webhelp.head.script**

URL value that specifies the location of a well-formed XHTML file containing the custom script that will be copied in the `<head>` section of every WebHelp page.

**webhelp.logo.image.target.url**

Specifies a target URL that is set on the logo image. When you click the logo image, you will be redirected to this address.

**webhelp.logo.image**

Specifies a path to an image displayed as a logo in the left side of the output header.

**webhelp.reload.stylesheet**

Set this parameter to `true` if you have out of memory problems when generating WebHelp. It will increase processing time but decrease the memory footprint. The default value is `false`.

**webhelp.search.custom.excludes.file**

The path of the file that contains name patterns for HTML files that should not be indexed by the WebHelp search engine. Each exclude pattern must be on a new line. The patterns are considered to be relative to the output directory, and they accept wildcards such as `*` (matches zero or more characters) or `?` (matches one character). For more information about the patterns, see [https://ant.apache.org/manual/dirtasks.html#patterns](https://ant.apache.org/manual/dirtasks.html#patterns).

**webhelp.search.japanese.dictionary**

The file path of the dictionary that will be used by the *Kuromoji* morphological engine for indexing Japanese content in the WebHelp pages. The encoding for the dictionary must be UTF8.

**webhelp.search.ranking**

If this parameter is set to `false` then the 5-star rating mechanism is no longer included in the search results that are displayed on the *Search* tab (default setting is `true`).

**webhelp.show.changes.and.comments**

When set to `yes`, user comments, replies to comments, and tracked changes are published in the WebHelp output. The default value is `no`.

**webhelp.sitemap.base.url**

Base URL for all the `loc` elements in the generated `sitemap.xml` file. The value of a `loc` element is computed as the relative file path from the `href` attribute of a `topicref` element from the *DITA map*, appended to this base URL value. The `loc`
element is mandatory in sitemap.xml. If you leave this parameter set to its default empty value, then the sitemap.xml file is not generated.

**webhelp.sitemap.change.frequency**

The value of the changefreq element in the generated sitemap.xml file. The changefreq element is optional in sitemap.xml. If you leave this parameter set to its default empty value, then the changefreq element is not added in sitemap.xml. Allowed values: <empty string> (default), always, hourly, daily, weekly, monthly, yearly, never.

**webhelp.sitemap.priority**

The value of the priority element in the generated sitemap.xml file. It can be set to any fractional number between 0.0 (least important priority) and 1.0 (most important priority). For example, 0.3, 0.5, or 0.8. The priority element is optional in sitemap.xml. If you leave this parameter set to its default empty value, then the priority element is not added in sitemap.xml.

---

### Related Information:

- Customizing WebHelp Classic Output *(on page 1806)*
- WebHelp Classic Output Layout and Features *(on page 1773)*

---

**DITA Map to PDF - based on HTML5 and CSS Transformation**

Oxygen XML Editor includes a built-in **DITA Map PDF - based on HTML5 & CSS** transformation scenario based on a **DITA-OT CSS-based PDF Publishing plugin** that converts DITA maps to PDF using a CSS-based processing engine and an HTML5 intermediate format. Oxygen XML Editor comes bundled with a built-in CSS-based PDF processing engine called **Oxygen PDF Chemistry**. Oxygen XML Editor also supports some third-party processors.

For those who are familiar with CSS, this makes it very easy to style and customize the PDF output of your DITA projects without having to work with xsl:fo customizations. This transformation also includes some built-in publishing templates that you can use for the layout of your PDF output and you can create your own templates or edit existing ones.

The following CSS-based PDF processors can be used:

- **Oxygen PDF Chemistry** - A built-in processor that is bundled with Oxygen XML Editor. For more information, see the **Oxygen PDF Chemistry User Guide**. This is the supported processor.
• **Prince Print with CSS** (not included in the Oxygen XML Editor installation kit) - A third-party component that needs to be purchased from [http://www.princexml.com](http://www.princexml.com).

• **Antenna House Formatter** (not included in the Oxygen XML Editor installation kit) - A third-party component that needs to be purchased from [http://www.antennahouse.com/antenna1/formatter/](http://www.antennahouse.com/antenna1/formatter/).

**How to Create the Transformation Scenario**

To create a **DITA Map PDF - based on HTML5 & CSS** transformation scenario, follow these steps:

1. Click the ✉️ Configure Transformation Scenario(s) button from the DITA Maps Manager (on page 2990) toolbar.
2. Select **DITA Map PDF - based on HTML5 & CSS**.
3. If you want to configure the transformation, click the **Edit** button.

**Step Result:** This opens an **Edit scenario** configuration dialog box that allows you to configure various options in the following tabs:

- **Templates Tab** (on page 3199) - This tab contains a set of built-in publishing templates that you can use for the layout of your WebHelp system output. You can also create your own publishing templates by saving one from the gallery and changing it.

- **CSS Processor** Tab - This is where you choose the processor type. You can select between Oxygen PDF Chemistry, Prince XML, or Antenna House.

- **Parameters Tab** (on page 3205) - This tab includes numerous parameters that can be set to customize your WebHelp system output.

- **Filters Tab** (on page 3207) - This tab allows you to filter certain content elements from the generated output.

- **Advanced Tab** (on page 3208) - This tab allows you to specify some advanced options for the transformation scenario.

- **Output Tab** (on page 3210) - This tab allows you to configure options that are related to the location where the output is generated.

4. In the **Parameters** tab, configure any of the following parameters (if applicable):

- **args.css** - Specifies a path to a custom CSS to be used in addition to those specified in the publishing template. The files must have URL syntax and be separated using semicolons. Also, the **dita.css.list** parameter must be left empty to use these files in addition to the selection in the **Styles** drop-down menu.

- **css.processor.path.chemistry** (if you are using the **Oxygen PDF Chemistry** processor) - Specifies the path to the **Oxygen PDF Chemistry** executable file that will be run to generate the PDF. If this parameter is not set, the transformation will use the processor specified in the **CSS-based Processors preferences page** (on page 220).
• **css.processor.path.prince** (if you are using the **Prince Print with CSS** processor) - Specifies the path to the Prince executable file that will be run to produce the PDF. If you installed Prince using its default settings, you can leave this blank.

• **css.processor.path.antenna-house** (if you are using the **Antenna House Formatter** processor) - Specifies the path to the Antenna House executable file that will be run to produce the PDF. If you installed Antenna House using its default settings, you can leave this blank.

• **show.changes.and.comments** - When set to **yes**, user comments, replies to comments, and tracked changes are published in the PDF output. The default value is **no**.

• **figure.title.placement** - Controls the position of the figure title relative to the image. Allowed values are "top" and "bottom", "top" is the default

5. Click **OK** and run the transformation scenario.

### Customizing the Output

For information about customizing the output, see **CSS-based DITA to PDF Customization** *(on page 2013)*.

**Related Information:**

- **Editing a Transformation Scenario** *(on page 1758)*

- **Configure Transformation Scenario(s) Dialog Box** *(on page 1762)*

- **Oxygen PDF Chemistry User Guide**

- **CSS-based DITA to PDF Customization** *(on page 2013)*

### DITA Map to PDF - based on DITA and CSS (WYSIWYG) (Deprecated)

⚠️ **Attention**: This transformation scenario was deprecated starting with version 21.0. If you have configured scenarios associated to your project based on this transformation scenario, you will still be able to use them, but for new transformations, it is recommended to use the **DITA Map PDF - based on HTML5 & CSS** transformation scenario *(on page 1657)* instead.

Oxygen XML Editor includes a built-in **DITA Map to PDF - based on DITA & CSS (WYSIWYG)** transformation scenario based on a **DITA-OT CSS-based PDF Publishing plugin** that convert DITA maps to PDF using a CSS-based processing engine. Oxygen XML Editor also comes bundled with a built-in CSS-based PDF processing engine called **Oxygen PDF Chemistry**. For those who are
familiar with CSS, this makes it very easy to style and customize the PDF output of your DITA projects without having to work with xsi:fo customizations. Oxygen XML Editor also supports some third-party processors.

The following processors are supported:

- **Oxygen PDF Chemistry** - A built-in processor that is bundled with Oxygen XML Editor. For more information, see the [Oxygen PDF Chemistry User Guide](#).

- **Prince XML** (not included in the Oxygen XML Editor installation kit) - A third-party component that needs to be purchased from [http://www.princexml.com](http://www.princexml.com).

- **Antenna House Formatter** (not included in the Oxygen XML Editor installation kit) - A third-party component that needs to be purchased from [http://www.antennahouse.com/antenna1/formatter/](http://www.antennahouse.com/antenna1/formatter/).

### DITA Map to PDF - based on DITA and CSS (WYSIWYG) Transformation Scenario

To create a DITA Map to PDF - based on DITA & CSS (WYSIWYG) transformation scenario, follow these steps:

1. Click the Configure Transformation Scenario(s) button from the DITA Maps Manager ([on page 2990](#)) toolbar.
2. Select DITA Map to PDF - based on DITA & CSS (WYSIWYG).
3. If you want to configure the transformation, click the Edit button.

**Step Result:** This opens an Edit scenario configuration dialog box that allows you to configure various options in the following tabs:

- **CSS Processor Tab** - This is where you choose the processor type. You can select between Oxygen PDF Chemistry, Prince XML, or Antenna House.

- **Parameters Tab** ([on page 3205](#)) - This tab includes numerous parameters that can be set to customize your WebHelp system output.

- **Filters Tab** ([on page 3207](#)) - This tab allows you to filter certain content elements from the generated output.

- **Advanced Tab** ([on page 3208](#)) - This tab allows you to specify some advanced options for the transformation scenario.

- **Output Tab** ([on page 3210](#)) - This tab allows you to configure options that are related to the location where the output is generated.

4. In the Parameters tab, configure any of the following parameters (if applicable):

- **args.css** - Specifies a path to a custom CSS ([on page 2041](#)) to be used in addition to those specified in the dita.css.list parameter OR in addition to the CSS that is currently selected in the Styles drop-down menu. The files must have URL syntax and be separated
using semicolons. Also, the `dita.css.list` parameter must be left empty to use these files in addition to the selection in the Styles drop-down menu.

- **dita.css.list** - Specifies a list of CSS URLs to be used by the PDF processor (instead of the default CSS files). The files must have URL syntax and be separated using semicolons. If the value is empty, the CSS associated with the current selection from the Styles drop-down menu is used.

- **css.processor.path.chemistry** (if you are using the Oxygen PDF Chemistry processor) - Specifies the path to the Oxygen PDF Chemistry executable file that will be run to generate the PDF. If this parameter is not set, the transformation will use the processor specified in the CSS-based Processors preferences page (on page 220).

- **css.processor.path.prince** (if you are using the Prince Print with CSS processor) - Specifies the path to the Prince executable file that will be run to produce the PDF. If you installed Prince using its default settings, you can leave this blank.

- **css.processor.path.antenna-house** (if you are using the Antenna House Formatter processor) - Specifies the path to the Antenna House executable file that will be run to produce the PDF. If you installed Antenna House using its default settings, you can leave this blank.

- **show.changes.and.comments** - When set to `yes`, user comments, replies to comments, and tracked changes are published in the PDF output. The default value is `no`.

- **figure.title.placement** - Controls the position of the figure title relative to the image. Allowed values are "top" and "bottom", "top" is the default

5. Click OK and run the transformation scenario.

### Customizing the Output

The **DITA-OT CSS-based PDF Publishing plugin** makes it very easy to style and customize the PDF output of your DITA projects without having to work with `xsl:fo` customizations. You can style the PDF output by simply using a custom CSS to change the styling and then re-running the transformation scenario until you get the desired result.

For more information about customizing the output, see: [CSS-based DITA to PDF Customization (on page 2013)](on page 2013).

### Changing the Style of an Element

To change the style of a particular element, you need to create an additional CSS file that will store the customization rules. Once you have created this file, you need to instruct the editor how to use this additional CSS. This can be done in two ways:

- Specify the path to your custom CSS using the `args.css` parameter:
  1. Edit a **DITA Map to PDF - based on DITA & CSS (WYSIWYG)** transformation scenario.
2. In the **Parameters** tab, specify the path to your custom CSS files in the `args.css` parameter.
3. Click **OK** and run the transformation scenario.

This method is appropriate if you just want to apply the styling customization to the output.

- Create an alternate CSS for the DITA document type:
  1. Follow the procedure for adding an alternate CSS file in [Customizing Author Mode Using CSS Files Associated with a Framework](on page 2346).
  2. Once you have configured your CSS as an additional layer, you can **select it from the Styles drop-down menu (on the toolbar)** (on page 2348).
  3. Run the **DITA Map to PDF - based on DITA & CSS (WYSIWYG)** transformation scenario and the customization rules from the additional CSS will be visible in the produced PDF.

This method allows you to have many customization CSS files and simply select the one that you need at any time for both the output and the rendering in **Author** mode.

**Related Information:**

- [Editing a Transformation Scenario](on page 1758)
- [Configure Transformation Scenario(s) Dialog Box](on page 1762)
- [Configuring and Managing Multiple CSS Styles for a Framework](on page 2348)
- [CSS Inspector View](on page 439)
- [Oxygen PDF Chemistry User Guide](on page 439)
- [CSS-based DITA to PDF Customization](on page 2013)

**DITA Map to PDF - based on XSL-FO Transformation**

Oxygen XML Editor comes bundled with the DITA Open Toolkit that provides a mechanism for converting **DITA maps** (on page 3281) to PDF output.

**Creating a DITA Map to PDF - based on XSL-FO Transformation Scenario**

To create a **DITA Map to PDF - based on XSL-FO** transformation scenario, follow these steps:
1. Click the Configure Transformation Scenario(s) button from the DITA Maps Manager (on page 2990) toolbar.
2. Select DITA Map PDF - based on XSL-FO and click the Edit button (or use the Duplicate button if your framework (on page 3282) is read-only).
3. Use the various tabs to configure the transformation scenario. In the Parameters tab, you can use a variety of parameters to customize the output. For example, the following parameters are just a few of the most commonly used ones:
   - show.changes.and.comments - If set to yes, user comments, replies to comments, and tracked changes are published in the PDF output.
   - customization.dir - Specifies the path to a customization directory.
   - editlink.remote.ditamap.url - When this parameter is set to “true”, the DITA topic path is displayed to the right of each topic title in the PDF output.
4. Click OK and then the Apply Associated button to run the transformation scenario.

Related Information:
- XSL FO-based DITA to PDF Customization (on page 2167)

### DITA Map to MS Office Word Transformation

Oxygen XML Editor comes bundled with a transformation scenario that allows you to convert DITA maps (on page 3281) to Microsoft Office Word documents. It utilizes the DITA to Word plugin created by Jarno Elovirta. This plugin contains a Word document named Normal.docx (located in: \[OXYGEN_INSTALL_DIR\]/frameworks/dita/DITA-OT3.x/plugins/com.elovirta.ooxml/resources) that is used by the transformation scenario as a template to generate the final Word document.

Tip: You can make general modifications to the Normal.docx template file to alter the published output.

### Configuring the Transformation Scenario

To configure an DITA Map to MS Office Word transformation scenario, follow these steps:

1. Open the DITA map in the DITA Maps Manager (on page 2990).
2. Click the Configure Transformation Scenario(s) button from the DITA Maps Manager (on page 2990) toolbar.
3. Select DITA Map MS Office Word.
4. For advanced customizations, in the **Parameters** tab you can use any of the following parameters that are unique to this transformation scenario to specify paths to files that affect the output in various ways:

- **.dotx.file** - Specifies the path to a Word template file (.docx) that will be used in the transformation to generate the final Word document. Set this parameter if you want to use a different template file other than the **Normal.docx** file that is used by default.
- **.document.flat.xsl** - Specifies the path to a pre-process clean-up stylesheet.
- **.core.xsl** - Specifies the path to a core metadata stylesheet.
- **.custom.xsl** - Specifies the path to a custom metadata stylesheet.
- **.document.xsl** - Specifies the path to a main document stylesheet.
- **.comments.xsl** - Specifies the path to a comments stylesheet.
- **.numbering.xsl** - Specifies the path to a list and title numbering stylesheet.
- **.footnotes.xsl** - Specifies the path to a footnote stylesheet.
- **.document.xml.xsl** - Specifies the path to a document relations metadata stylesheet.
- **.inkscape.exec** - Specifies the path to an Inkscape (open-source vector graphics editor) executable file.

5. Click **OK** and run the transformation scenario.

**Result:** The result of the transformation will automatically be opened in your system's default word processing application (such as Microsoft Word).

**Related Information:**

- Editing a Transformation Scenario ([on page 1758](#))
- Configure Transformation Scenario(s) Dialog Box ([on page 1762](#))
- Migrating MS Office Documents to DITA ([on page 3271](#))

**DITA Map to CHM (Compiled HTML Help) Transformation**

To perform a **Compiled HTML Help (CHM)** transformation, Oxygen XML Editor needs [Microsoft HTML Help Workshop](#) to be installed on your computer. Oxygen XML Editor automatically detects HTML Help Workshop and uses it.

**Note:** HTML Help Workshop might fail if the files used for transformation contain accents in their names, due to different encodings used when writing the .hhp and .hhc files. If the transformation fails to produce the CHM output but the .hhp (HTML Help Project) file is already generated, you can manually try to build the CHM output using HTML Help Workshop.
Changing the Output Encoding

Oxygen XML Editor uses the `htmlhelp.locale` parameter to correctly display specific characters of different languages in the output of the Compiled HTML Help (CHM) transformation. By default, the DITA Map CHM transformation scenario that comes bundled with Oxygen XML Editor has the `htmlhelp.locale` parameter set to `en-US`.

To customize this parameter, follow this procedure:

1. Use the `Configure Transformation Scenario(s)` (Ctrl + Shift + C (Command + Shift + C on OS X)) action from the toolbar or the Document > Transformation menu.
2. Select the DITA Map CHM transformation scenario and click the Edit button.
3. In the Parameter tab, search for the `htmlhelp.locale` parameter and change its value to the desired language tag.

**Note:** The format of the `htmlhelp.locale` parameter is `LL-CC`, where `LL` represents the language code (e.g., `en` for English) and `CC` represents the country code (e.g., `US` for the USA). The language codes are contained in the ISO 639-1 standard and the country codes are contained in the ISO 3166-1 standard. For further details about language tags, go to [http://www.rfc-editor.org/rfc/rfc5646.txt](http://www.rfc-editor.org/rfc/rfc5646.txt).

DITA Map to Kindle Transformation

Oxygen XML Editor requires KindleGen to generate Kindle output from DITA maps (on page 3281).

To install KindleGen for use by Oxygen XML Editor, follow these steps:

1. Go to [www.amazon.com/kindleformat/kindlegen](http://www.amazon.com/kindleformat/kindlegen) and download the zip file that matches your operating system.
2. Unzip the file on your local disk.
3. Start Oxygen XML Editor and open a DITA map in the DITA Maps Manager view (on page 2990).
4. Click the `Configure Transformation Scenario(s)` button.
5. Select the DITA Map Kindle transformation and press the Edit button to edit it.
6. Go to Parameters tab and set the `kindlegen.executable` parameter as the path to the KindleGen directory.
7. Accept the changes.

Run DITA OT Integrator Transformation

Oxygen XML Editor comes bundled with a transformation scenario designed to integrate DITA-OT plugins (on page 3285). These DITA-OT plugins are used for various customizations. It is called
Run DITA-OT Integrator and is found in the DITA Map section of the Configure Transformation Scenario(s) dialog box (on page 1762).

⚠️ Attention: The integration will be performed on the DITA-OT version specified in the DITA Open Toolkit section of the DITA preferences page (on page 225).

Running the Transformation Scenario

To integrate a DITA OT plugin, follow these steps:

1. If Oxygen XML Editor was installed in the default location, you may need to restart and run it as an administrator.
2. Select the Apply Transformation Scenario(s) or Configure Transformation Scenario(s) (on page 1762) action from the DITA Maps Manager toolbar (you could also use the same action on the main toolbar or open the Transformation Scenarios view (on page 1768)).
3. Select the Run DITA-OT Integrator transformation scenario. If the integrator is not visible, select the Show all scenarios action that is available in the Settings drop-down menu.
4. Apply the scenario (on page 1761).
5. Check the Results panel at the bottom of the application to make sure the build was successful.
6. Restart Oxygen XML Editor with your normal permissions.

Related Information:

- Configure Transformation Scenario(s) Dialog Box (on page 1762)
- Installing a DITA-OT Plugin (on page 3256)
- Integrating a DITA Specialization (on page 3261)
- How to Localize the Interface of DITA Map to WebHelp Classic Output (on page 1832)

Solving DITA Transformation Errors

If a DITA transformation results in errors or warnings, the information is displayed in the message panel at the bottom of the editor. The information includes the severity, description of the problem, the name of the resource, and the path of the resource.

To help prevent and solve DITA transformation problems, follow these steps:
1. Validate the DITA map (on page 3036) by using the Validate and Check for Completeness action that is available on the DITA Maps Manager (on page 2990) toolbar and in the DITA Maps menu.

2. If this action results in validation errors, solve them prior to executing the transformation. Also, you should pay attention to the warning messages because they may identify problems in the transformation.

3. Run the DITA transformation scenario (on page 1702).

4. If the transformation results in errors or warnings, they are displayed in the Results panel (on page 357) at the bottom of the editor. The following information is presented to help you troubleshoot the problems:
   - **Severity** - The first column displays the following icons that indicate the severity of the problem:
     - Informational - The transformation encountered a condition of which you should be aware.
     - Warning - The transformation encountered a problem that should be corrected.
     - Error - The transformation encountered a more severe problem, and the output is affected or cannot be generated.
   - **Info** - You can click the See More icon to open a web page that contains details about DITA-OT error messages.
   - **Description** - A description of the problem.
   - **Resource** - The name of the transformation resource.
   - **System ID** - The path of the transformation resource.

5. Use this information or other resources from the online DITA-OT community to solve the transformation problems before re-executing the transformation scenario.

6. If you need to contact the Oxygen technical support team, they will need you to send the entire transformation scenario execution log. To obtain it:
   a. Go to the Options > Preferences > DITA preferences page and set the Show console output option to Always.
   b. Execute the transformation scenario again. The console output messages are displayed in the DITA OT view.
   c. Copy the entire log, save it in a text file, then send it to the Oxygen technical support team.
   d. After your issue has been solved, go back to the Options > Preferences > DITA preferences page and set the Show console output option to When build fails.

Related Information:

- Troubleshooting DITA Transformation Problems (on page 3217)
DocBook Transformation Scenarios

Built-in transformation scenarios allow you to transform DocBook documents to a variety of outputs, such as WebHelp, PDF, HTML, HTML Chunk, XHTML, XHTML Chunk, and EPUB. Oxygen XML Editor also includes a DocBook 5.1 transformation scenario for Assembly documents. All of them are listed in the DocBook 4 and DocBook 5 sections in the Configure Transformation Scenario(s) dialog box (on page 1762).

Related Information:

- Editing a Transformation Scenario (on page 1758)
- Configure Transformation Scenario(s) Dialog Box (on page 1762)
- Applying Associated Transformation Scenarios (on page 1761)

DocBook to WebHelp Classic Transformation

DocBook documents can be transformed into several types of WebHelp systems (with or without a feedback section). The WebHelp Classic layout and features (on page 1773) are designed for desktop systems and include a familiar classical style. Oxygen XML Editor also provides numerous possibilities for customizing the WebHelp Classic output (on page 1806).

WebHelp Classic Transformation Scenario

To publish a DocBook document as a WebHelp Classic system, follow these steps:

1. Click the Configure Transformation Scenario(s) action from the toolbar (or the Document > Transformation menu).
2. Select the DocBook WebHelp Classic scenario from the DocBook 4 or DocBook 5 section.
3. Click Apply associated.

When the DocBook WebHelp Classic transformation is complete, the output is automatically opened in your default browser.

WebHelp Classic with Feedback Transformation Scenario

To publish a DocBook document as a WebHelp Classic with Feedback system, follow these steps:

1. Click Configure Transformation Scenarios.
2. Select the **DocBook WebHelp Classic with Feedback** scenario from the **DocBook 4** or **DocBook 5** section.

3. Click **Apply associated**.

4. Enter the documentation product ID and the documentation version.

When the **DocBook WebHelp Classic with Feedback** transformation is complete, your default browser opens the **installation.html** file. This file contains information about the output location, system requirements, installation instructions, and deployment of the output. Follow the instructions to complete the system deployment. For more information, see **Deploying a Feedback-Enabled System (on page 1873)**.

For more information about the feedback-enabled WebHelp system, watch our video demonstration:

https://www.youtube.com/embed/eoQ2uxHvppE

**Customizing DocBook WebHelp Transformation Scenarios**

To customize a DocBook WebHelp transformation scenario, you can edit various parameters, including the following most commonly used ones:

- **default.language**
  
  This parameter is used if the language is not detected in the **DITA map**. The default value is **en-us**.

- **clean.output**
  
  Deletes all files from the output folder before the transformation is performed (only **no** and **yes** values are valid and the default value is **no**).

- **l10n.gentext.default.language**
  
  This parameter is used to identify the correct stemmer that differs from language to language. For example, for English the value of this parameter is **en** or for French it is **fr**, and so on.

- **use.stemming**
  
  Controls whether or not you want to include stemming search algorithms into the published output (default setting is **false**).

- **webhelp.copyright**
  
  Adds a small copyright text that appears at the end of the **Table of Contents** pane.

- **webhelp.custom.resources**
  
  The file path to a directory that contains resources files. All files from this directory will be copied to the root of the WebHelp output.
webhelp.favicon

The file path that points to an image to be used as a favicon in the WebHelp output.

webhelp.footer.file

Path to an XML file that includes the footer content for your WebHelp output pages. You can use this parameter to integrate social media features (such as widgets for Facebook™, Twitter™, Google Analytics, or Google+™). The file must be well-formed, each widget must be in separate `div` or `span` element, and the code for each `script` element is included in an XML comment (also, the start and end tags for the XML comment must be on a separate line). The following code excerpt is an example for adding a Facebook™ widget:

```xml
<?xml version="1.0" encoding="UTF-8"?>
<div id="facebook">
  <div id="fb-root"/>
  <script>
    //<![CDATA[
    (function(d, s, id) {
      var js, fjs = d.getElementsByTagName(s)[0];
      if (d.getElementById(id)) return;
      js = d.createElement(s); js.id = id;
      js.src = "//connect.facebook.net/en_US/sdk.js#xfbml=1&version=v2.0";
      fjs.parentNode.insertBefore(js, fjs);
    }(document, 'script', 'facebook-jssdk'));
    //]]>

    <div data-share="true" data-show-faces="true" data-action="like"
      data-layout="standard" class="fb-like">
    </div>
  </script>
</div>
```

webhelp.footer.include

Specifies whether or not to include footer in each WebHelp page. Possible values: yes, no. If set to no, no footer is added to the WebHelp pages. If set to yes and the `webhelp.footer.file` parameter has a value, then the content of that file is used as footer. If the `webhelp.footer.file` has no value then a default Oxygen footer is inserted in each WebHelp page.

webhelp.logo.image.target.url

Specifies a target URL that is set on the logo image. When you click the logo image, you will be redirected to this address.

webhelp.logo.image

Specifies a path to an image displayed as a logo in the left side of the output header.

webhelp.product.id (available only for Feedback-enabled systems)
This parameter specifies a short name for the documentation target, or product (for example, mobile-phone-user-guide, hvac-installation-guide).

**Note:** You can deploy documentation for multiple products on the same server.

**Restriction:** The following characters are not allowed in the value of this parameter:

< > / \ ' ( ) { } = ; * % + &

**webhelp.product.version (available only for Feedback-enabled systems)**

Specifies the documentation version number (for example, 1.0, 2.5, etc.). New user comments are bound to this version.

**Note:** Multiple documentation versions can be deployed on the same server.

**Restriction:** The following characters are not allowed in the value of this parameter:

< > / \ ' ( ) { } = ; * % + &

**webhelp.search.ranking**

If this parameter is set to `false` then the 5-star rating mechanism is no longer included in the search results that are displayed on the Search tab (default setting is `true`).

**webhelp.skin.css**

Path to a CSS file that sets the style theme in the WebHelp Classic output. It can be one of the built-in skin CSS from the OXYGEN_INSTALL_DIR\frameworks\docbook\xsl\com.oxygenxml.webhelp.classic\predefined-skins directory, or it can be a custom skin CSS generated with the Oxygen Skin Builder web application.


**Related Information:**

- DITA Map to WebHelp Classic Transformation *(on page 1652)*
- Customizing WebHelp Classic Output *(on page 1806)*

**DocBook to DITA Transformation**

Oxygen XML Editor includes a built-in transformation scenario that is designed to convert DocBook content to DITA. This transformation scenario is based upon a DITA Open Toolkit plugin that is available at sourceforge.net.
To convert a DocBook document to DITA, follow these steps:

1. Use one of the following two methods to begin the transformation process:
   • To apply the transformation scenario to a newly opened file, use the ☰️ *Apply Transformation Scenario(s) (Ctrl + Shift + T (Command + Shift + T on OS X))* action from the toolbar or the **Document > Transformation** menu.
   • To customize the transformation or change the scenario that is associated with the document, use the ⚙️ *Configure Transformation Scenario(s) (Ctrl + Shift + C (Command + Shift + C on OS X))* action from the toolbar or the **Document > Transformation** menu.

2. Select the **DocBook to DITA** transformation scenario in the **DocBook 4** or **DocBook 5** section.
3. Click the **Apply associated** button to run the transformation.

   **Step Result:** The transformation will convert as many of the DocBook elements into equivalent DITA elements as it can recognize in its mapping process. For elements that cannot be mapped, the transformation will insert XML comments so that you can see which elements could not be converted.
4. Adjust the resulting DITA composite to suit your needs. You may have to remove comments, fix validation errors, adjust certain attributes, or split the content into individual topics.

**Related Information:**

- *Editing a Transformation Scenario (on page 1758)*
- *Configure Transformation Scenario(s) Dialog Box (on page 1762)*

**DocBook to PDF Transformation**

Oxygen XML Editor includes a built-in transformation scenario that is designed to convert DocBook content to PDF.

To convert a DocBook document to PDF, follow these steps:

1. Use one of the following two methods to begin the transformation process:
   • To apply the transformation scenario to a newly opened file, use the ☰️ *Apply Transformation Scenario(s) (Ctrl + Shift + T (Command + Shift + T on OS X))* action from the toolbar or the **Document > Transformation** menu.
   • To customize the transformation or change the scenario that is associated with the document, use the ⚙️ *Configure Transformation Scenario(s) (Ctrl + Shift + C (Command + Shift + C on OS X))* action from the toolbar or the **Document > Transformation** menu.

2. Select the **DocBook PDF** transformation scenario in the **DocBook 4** or **DocBook 5** section.
3. Click the **Apply associated** button to run the transformation.

For information about customizing the PDF output for DocBook content, see *DocBook to PDF Output Customization* (on page 2180).

**Related Information:**

- Editing a Transformation Scenario (on page 1758)
- Configure Transformation Scenario(s) Dialog Box (on page 1762)
- DocBook to PDF Output Customization (on page 2180)

### DocBook to EPUB Transformation

Oxygen XML Editor includes a built-in transformation scenario that is designed to convert DocBook content to EPUB. The EPUB specification recommends the use of *OpenType* fonts (recognized by their `.otf` file extension) whenever possible. To use a specific font, follow these steps:

1. Declare it in your CSS file, as in the following example:

   ```
   @font-face {
     font-family: "MyFont";
     font-weight: bold;
     font-style: normal;
     src: url(fonts/MyFont.otf);
   }
   ```

2. In the CSS, specify where this font is used. To set it as default for `h1` elements, use the `font-family` rule, as in the following example:

   ```
   h1 {
     font-size: 20pt;
     margin-bottom: 20px;
     font-weight: bold;
     font-family: "MyFont";
     text-align: center;
   }
   ```

3. Open the **Configure Transformation Scenario(s) dialog box** (on page 1762), select the DocBook **EPUB** transformation scenario in the DocBook 4 or DocBook 5 section, and click **Edit**.
4. In the Parameters tab, set the `epub.embedded.fonts` parameter to `fonts/MyFont.otf`. If you need to provide more files, use commas to separate their file paths.

   **Note:** The `html.stylesheet` parameter allows you to include a custom CSS in the output EPUB.

5. Run the transformation scenario.

### DocBook PDF (Show Change Tracking and Comments)

Oxygen XML Editor includes a built-in transformation scenario that is designed to show tracked changes and comment in DocBook to PDF output.

To include comments and tracked changes (stored within your DocBook 5 documents) in the PDF output, follow these steps:

1. Click the **Configure Transformation Scenario(s)** button.
2. Select **DocBook PDF (Show Change Tracking and Comments)** in the DocBook 5 section.
3. If you need to configure the transformation, click the **Edit** (on page 1758) or **Duplicate** (on page 1760) button, make your changes to the scenario, and click **OK**.
4. Click the **Apply Associated** button to run the transformation scenario.

   **Result:** Comment threads and tracked changes will now appear in the PDF output. Details about each comment or change will be available in the footer section for each page.

### Creating New Transformation Scenarios

Defining a transformation scenario is the first step in the process of transforming a document. This section includes information on the types of new scenarios that are available in Oxygen XML Editor and how to create each type of transformation.

### XML Transformation with XSLT

This type of transformation specifies the transformation parameters and location of an XSLT stylesheet that is applied to the edited XML document. This scenario is useful when you develop an XML document and the XSLT document is in its final form.

To create an **XML transformation with XSLT** scenario, use one of the following methods:

- Use the **Configure Transformation Scenario(s)** (Ctrl + Shift + C (Command + Shift + C on OS X)) action from the toolbar or the **Document > Transformation** menu. Then click the **New** button and select **XML transformation with XSLT**.
Go to Window > Show View and select Transformation Scenarios to display this view (on page 1768). Click the New Scenario drop-down menu button and select XML transformation with XSLT.

Both methods open the New Scenario dialog box.

The upper part of the dialog box allows you to specify the Name of the transformation scenario and the following Storage options:

- **Project Options (on page 3286)** - The scenario is stored in the project file and can be shared with other users. For example, if your project is saved on a source versioning/sharing system (CVS, SVN, Source Safe, etc.) or a shared folder, your team can use the scenarios that you store in the project file.
- **Global Options (on page 3283)** - The scenario is saved in the global options that are stored in the user home directory and is not accessible to other users.

The lower part of the dialog box contains several tabs that allow you to configure the options that control the transformation.

**XSLT Tab**

When you create a new transformation scenario (on page 1674) or edit an existing one (on page 1758), a configuration dialog box allows you to customize the transformation with various options in several tabs.

The XSLT tab contains the following options:

**XML URL**

Specifies the source XML file. You can specify the path by using the text field, its history drop-down, the Insert Editor Variables (on page 276) button, or the browsing actions in the Browse drop-down list. You can also use the Open in editor button to open the specified file in the editor panel. This URL is resolved through the catalog resolver. If the catalog does not have a mapping for the URL, then the file is used directly from its remote location.

**Note:** If the transformer engine is Saxon 9.x and a custom URI resolver is configured in the advanced Saxon preferences page (on page 204), the XML input of the transformation is passed to that URI resolver. If the transformer engine is one of the built-in XSLT 2.0 / 3.0 engines and the name of an initial template (on page 1676) is specified in the scenario, the XML URL field can be empty. The XML URL field can also be empty if you use external XSLT processors (on page 1689). Otherwise, a value is mandatory in this field.

**XSL URL**
Specifies the source XSL file that the transformation will use. You can specify the path by using the text field, its history drop-down, the Insert Editor Variables button, or the browsing actions in the Browse drop-down list. You can also use the Open in editor button to open the specified file in the editor panel. This URL is resolved through the catalog resolver. If the catalog does not have a mapping for the URL, the file is used directly from its remote location.

**Use "xml-stylesheet" declaration**

If selected, the scenario applies the stylesheet specified explicitly in the XML document with the xml-stylesheet processing instruction. By default, this option is deselected and the transformation applies the XSLT stylesheet that is specified in the XSL URL field.

**Transformer**

This drop-down menu presents all the transformation engines available to Oxygen XML Editor for performing a transformation. These include the built-in engines and the external engines defined in the Custom Engines preferences page (on page 215). The engine you choose is used as the default transformation engine. Also, if an XSLT or XQuery document does not have an associated validation scenario, this transformation engine is used in the validation process (if it provides validation support).

**Advanced options**

Allows you to configure the advanced options of the Saxon HE/PE/EE engine (on page 1679) for the current transformation scenario. To configure the same options globally, go to the Saxon-HE/PE/EE preferences page (on page 201). For the current transformation scenario, these Advanced options override the options configured in that preferences page.

**Parameters**

Opens a Configure parameters dialog box (on page 1677) that allows you to configure the XSLT parameters used in the current transformation. In this dialog box, you can also configure the parameters for additional XSLT stylesheets (on page 1676). If the XSLT transformation engine is custom-defined, you can not use this dialog box to configure the parameters sent to the custom engine. Instead, you can copy all parameters from the dialog box using contextual menu actions and edit the custom XSLT engine to include the necessary parameters in the command line that starts the transformation process.

**Extensions**

Opens a dialog box for configuring the XSLT extension JARS or classes (on page 1678) that define extension Java functions or extension XSLT elements used in the transformation.

**Additional XSLT stylesheets**
Opens a dialog box for adding XSLT stylesheets (on page 1678) that are applied on the main stylesheet specified in the XSL URL field. This is useful when a chain of XSLT stylesheets must be applied to the input XML document.

**XSLT Parameters**

The global parameters of the XSLT stylesheet used in a transformation scenario can be configured by using the Parameters button in the XSLT tab of a new or edited transformation scenario dialog box.

The resulting dialog box includes a table that displays all the parameters of the current XSLT stylesheet, all imported and included stylesheets, and all additional stylesheets (on page 1678), along with their descriptions and current values. You can also add, edit, and remove parameters, and you can use the Filter text box to search for a specific term in the entire parameters collection. Note that edited parameters are displayed with their name in bold.

If the XPath column is selected, the parameter value is evaluated as an XPath expression before starting the XSLT transformation.

**Example:**

For example, you can use expressions such as:

```xml
doc('test.xml')//entry
//person[@atr='val']
```

**Note:**

1. The `doc` function solves the argument relative to the XSL stylesheet location. You can use full paths or editor variables (on page 276) (such as `$(cfdu)` [current file directory]) to specify other locations: `doc('$(cfdu)/test.xml')/*`
2. You cannot use XSLT Functions. Only XPath functions are allowed.

Below the table, the following actions are available for managing the parameters:

**New**

Opens the Add Parameter dialog box that allows you to add a new parameter to the list. An editor variable (on page 276) can be inserted in the text box using the Insert Editor Variables button. If the Evaluate as XPath option is selected, the parameter will be evaluated as an XPath expression.

**Edit**

Opens the Edit Parameter dialog box that allows you to edit the selected parameter. An editor variable (on page 276) can be inserted in the text box using the Insert Editor Variables button.
Variables button. If the **Evaluate as XPath** option is selected, the parameter will be evaluated as an XPath expression.

**Unset**

Resets the selected parameter to its default value. Available only for edited parameters with set values.

**Delete**

Removes the selected parameter from the list. It is available only for new parameters that have been added to the list.

The bottom panel presents the following:

- The default value of the parameter selected in the table.
- A description of the parameter, if available.
- The system ID of the stylesheet that declares it.

### Related Information:

- Editor Variables *(on page 276)*

### XSLT Extensions

The **Extensions** button opens a dialog box that allows you to specify the [JARS *(on page 3283)*] and classes that contain extension functions called from the XSLT file of the current transformation scenario. You can use the **Add**, **Edit**, and **Remove** buttons to configure the extensions.

⚠ **Tip:** You can specify the path to the resources using wildcards (for example, `${oxygenHome}/lib/*.jar`).

An extension function called from the XSLT file of the current transformation scenario will be searched, in the specified extensions, in the order displayed in this dialog box. To change the order of the items, select the item to be moved and press the ↑ Move up or ↓ Move down buttons.

### Additional XSLT Stylesheets

Use the **Additional XSLT Stylesheets** button in the XSLT tab to display a list of additional XSLT stylesheets to be used in the transformation and you can add files to the list or edit existing entries. The following actions are available:

**Add**
Adds a stylesheet in the Additional XSLT stylesheets list using a file browser dialog box. You can type an editor variable (on page 276) in the file name field of the browser dialog box. The name of the stylesheet will be added in the list after the current selection.

Remove

Deletes the selected stylesheet from the Additional XSLT stylesheets list.

Open

Opens the selected stylesheet in a separate view.

Up

Moves the selected stylesheet up in the list.

Down

Moves the selected stylesheet down in the list.

Advanced Saxon HE/PE/EE XSLT Transformation Options

The XSLT transformation scenario allows you to configure advanced options that are specific for the Saxon HE (Home Edition), PE (Professional Edition), and EE (Enterprise Edition) engines. They are the same options as those in the Saxon HE/PE/EE preferences page (on page 201) but they are configured as a specific set of transformation options for each transformation scenario, while the values set in the preferences page apply as global options. The advanced options configured in a transformation scenario override the global options (on page 3283) defined in the preferences page.

Saxon-HE/PE/EE Options

The advanced options for Saxon 9.8.0.12 Home Edition (HE), Professional Edition (PE), and Enterprise Edition (EE) are as follows:

Mode ("-im")

A Saxon-specific option that sets the initial mode for the transformation. If this value is also specified in a configuration file (on page 1679), the value in this option takes precedence.

Template ("-it")

A Saxon-specific option that sets the name of the initial XSLT template to be executed. If this value is also specified in a configuration file (on page 1679), the value in this option takes precedence.

Use a configuration file ("-config")

Select this option if you want to use a Saxon 9.8.0.12 configuration file that will be executed for the XSLT transformation and validation processes. You can specify the
path to the configuration file by entering it in the URL field, or by using the Insert Editor Variables button, or using the browsing actions in the Browse drop-down list.

**Debugger trace into XPath expressions (applies to debugging sessions)**

Instructs the XSLT Debugger (on page 2309) to step into XPath expressions.

**Enable Optimizations ("-opt")**

This option is selected by default, which means that optimization is enabled. If not selected, the optimization is suppressed, which is helpful when reducing the compiling time is important, optimization conflicts with debugging, or optimization causes extension functions with side-effects to behave unpredictably.

**Line numbering ("-l")**

Line numbers where errors occur are included in the output messages.

**Expand attributes defaults ("-expand")**

Specifies whether or not the attributes defined in the associated DTD or XML Schema are expanded in the output of the transformation you are executing.

**DTD validation of the source ("-dtd")**

Specifies whether or not the source document will be validated against their associated DTD. You can choose from the following:

- **On** - Requests DTD validation of the source file and of any files read using the document() function.
- **Off** - (default setting) Suppresses DTD validation.
- **Recover** - Performs DTD validation but treats the errors as non-fatal.

**Note:** Any external DTD is likely to be read even if not used for validation, since DTDs can contain definitions of entities.

**Recoverable errors ("-warnings")**

Specifies how dynamic errors are handled. The following options can be selected:

- **Recover silently ("silent")** - Continues processing without reporting the error.
- **Recover with warnings ("recover")** - Issues a warning but continues processing.
- **Signal the error and do not attempt recovery ("fatal")** - Issues an error and stops processing.

**Strip whitespaces ("-strip")**

Specifies how the strip whitespaces operation is handled. You can choose one of the following values:
• **All ("all")** - Strips all whitespace text nodes from source documents before any further processing, regardless of any `xml:space` attributes in the source document.

• **Ignore ("ignorable")** - Strips all ignorable whitespace text nodes from source documents before any further processing, regardless of any `xml:space` attributes in the source document. Whitespace text nodes are ignorable if they appear in elements defined in the DTD or schema as having element-only content.

• **None ("none")** - Strips no whitespace before further processing.

### Saxon-PE/EE Options

The following advanced options are specific for Saxon 9.8.0.12 Professional Edition (PE) and Enterprise Edition (EE) only:

**Register Saxon-JS extension functions and instructions**

Registers the Saxon-CE extension functions and instructions when compiling a stylesheet using the Saxon 9.8.0.12 processors.

**Note:** Saxon-CE, being JavaScript-based, was designed to run inside a web browser. This means that you will use Oxygen XML Editor only for developing the Saxon-CE stylesheet, leaving the execution part to a web browser. See more details about executing such a stylesheet on Saxonica’s website.

**Allow calls on extension functions ("-ext")**

If selected, the stylesheet is allowed to call external Java functions. This does not affect calls on integrated extension functions, including Saxon and EXSLT extension functions. This option is useful when loading an untrusted stylesheet (such as from a remote site using `http://[URL]`). It ensures that the stylesheet cannot call arbitrary Java methods and thus gain privileged access to resources on your machine.

**Enable assertions ("-ea")**

In XSLT 3.0, you can use the `xsl:assert` element to make assertions in the form of XPath expressions, causing a dynamic error if the assertion turns out to be false. If this option is selected, XSLT 3.0 `xsl:assert` instructions are enabled. If it is not selected (default), the assertions are ignored.

### Saxon-EE Options

The advanced options that are specific for Saxon 9.8.0.12 Enterprise Edition (EE) are as follows:

**XML Schema version**

Use this option to change the default XML Schema version for this transformation. To change the default XML Schema version globally, open the Preferences dialog box.
(Options > Preferences) (on page 79) and go to XML > XML Parser > XML Schema and use the Default XML Schema version option (on page 193).

Validation of the source file ("-val")

Requests schema-based validation of the source file and of any files read using document() or similar functions. It can have the following values:

- **Schema validation ("strict")** - This mode requires an XML Schema and allows for parsing the source documents with strict schema-validation enabled.
- **Lax schema validation ("lax")** - If an XML Schema is provided, this mode allows for parsing the source documents with schema-validation enabled but the validation will not fail if, for example, element declarations are not found.
- **Disable schema validation** - This specifies that the source documents should be parsed with schema-validation disabled.

Validation errors in the result tree treated as warnings ("-outval")

Normally, if validation of result documents is requested, a validation error is fatal. Selecting this option causes such validation failures to be treated as warnings.

Write comments for non-fatal validation errors of the result document

The validation messages for non-fatal errors are written (wherever possible) as a comment in the result document itself.

Enable streaming mode

Selecting this option will allow an XSLT to run in streaming mode. It is not selected by default.

Other Options

**Initializer class**

Equivalent to the -init Saxon command-line argument. The value is the name of a user-supplied class that implements the net.sf.saxon.lib.Initializer interface. This initializer is called during the initialization process, and may be used to set any options required on the configuration programmatically. It is particularly useful for tasks such as registering extension functions, collations, or external object models, especially in Saxon-HE where the option cannot be set via a configuration file. Saxon only calls the initializer when running from the command line, but the same code may be invoked to perform initialization when running user application code.
Using Saxon Integrated Extension Functions

Saxon, the transformation and validation engine used by Oxygen XML Editor, can be customized by adding custom functions (called Integrated Extension Functions) that can be called from XPath.

To define such a function, follow these steps:

1. Create a file with a Java class that extends net.sf.saxon.lib.ExtensionFunctionDefinition. Here is an example:

```java
private static class ShiftLeft extends ExtensionFunctionDefinition {
    @Override
    public StructuredQName getFunctionQName() {
        return new StructuredQName("eg", "http://example.com/saxon-extension", "shift-left");
    }
}

@override
public SequenceType[] getArgumentTypes() {
    return new SequenceType[] {SequenceType.SINGLE_INTEGER, SequenceType.SINGLE_INTEGER};
}

@Override
public SequenceType getResultType(SequenceType[] suppliedArgumentTypes) {
    return SequenceType.SINGLE_INTEGER;
}

@Override
public ExtensionFunctionCall makeCallExpression() {
    return new ExtensionFunctionCall() {
        public SequenceIterator call(SequenceIterator[] arguments, XPathContext context) throws XPathException {
            long v0 = ((IntegerValue)arguments[0].next()).longValue();
            long v1 = ((IntegerValue)arguments[1].next()).longValue();
            long result = v0<<v1;
            return Value.asIterator(Int64Value.makeIntegerValue(result));
        }
    };
}
```
2. Compile the class and add it to a JAR file.

3. Add a file called net.sf.saxon.lib.ExtensionFunctionDefinition that contains the fully qualified name of the Java class in the META-INF/services/ folder of the JAR file.

**Note:** To add more function definitions in the same JAR file, you need to add their fully qualified names on different lines.

To enable Oxygen XML Editor to pick up your custom function definition, the JAR file should be added to the classpath of the transformer. Here are some possibilities:

- If you develop a framework, you just need to link the JAR file in the Classpath tab (on page 99).
- In a validation scenario (on page 1094), you can use the Extensions button to open a dialog box where you can add libraries.
- In a transformation scenario, you can use the Extensions button in the XSLT tab (on page 1676) to open a dialog box where you can add libraries.
- You can also create a plugin that contributes such a JAR file in the classpath (on page 2580).

**FO Processor Tab (XSLT Transformations)**

When you create a new transformation scenario (on page 1674) or edit an existing one (on page 1758), a configuration dialog box allows you to customize the transformation with various options in several tabs.

The FO Processor tab contains the following options:

**Perform FO Processing**

Specifies whether or not an FO processor is applied (either the built-in Apache FOP engine or an external engine defined in Preferences) during the transformation.

**Input**

Choose between the following options to specify which input file to use:

- **XSLT result as input** - The FO processor is applied to the result of the XSLT transformation that is defined in the XSLT tab.
- **XML URL as input** - The FO processor is applied to the input XML file.

**Method**

The output format of the FO processing. The available options depend on the selected processor type.
Processor

Specifies the FO processor to be used for the transformation. It can be the built-in Apache FOP processor or an external processor (on page 216).

Output Tab (XSLT Transformations)

When you create a new transformation scenario (on page 1674) or edit an existing one (on page 1758), a configuration dialog box allows you to customize the transformation with various options in several tabs.

The Output tab contains the following options:

Prompt for file

At the end of the transformation, a file browser dialog box is displayed for specifying the path and name of the file that stores the transformation result.

Save As

The path of the file where the result of the transformation is stored. You can specify the path by using the text field, the Insert Editor Variables (on page 276) button, or the Browse button.

Open in Browser/System Application

If selected, Oxygen XML Editor automatically opens the result of the transformation in a system application associated with the file type of the result (for example, in Windows PDF files are often opened in Acrobat Reader).

Note: To set the web browser that is used for displaying HTML/XHTML pages, go to Options > Preferences > Global, and set it in the Default Internet browser field.

- **Output file** - When Open in Browser/System Application is selected, you can use this button to automatically open the default output file at the end of the transformation.
- **Other location** - When Open in Browser/System Application is selected, you can use this option to open the file specified in this field at the end of the transformation.
  
  You can specify the path by using the text field, the Insert Editor Variables (on page 276) button, or the Browse button.

Open in editor

When this option is selected, at the end of the transformation, the default output file is opened in a new editor panel with the appropriate built-in editor type (for example, if the result is an XML file it is opened in the built-in XML editor, or if it is an XSL-FO file it is opened with the built-in FO editor).
Show in results view as

You can choose to view the results in one of the following:

- **XML** - If this is selected, Oxygen XML Editor displays the transformation result in an XML viewer panel at the bottom of the application window with syntax highlighting (on page 178).

- **SVG** - If this is selected, Oxygen XML Editor displays the transformation result in an integrated SVG viewer in the Results panel (on page 1502) at the bottom of the application window and renders the result as an SVG image.

- **XHTML** - This option is only available if **Open in Browser/System Application** is not selected. If selected, Oxygen XML Editor displays the transformation result in a built-in XHTML browser panel at the bottom of the application window.

⚠️ **Important:** When transforming very large documents, you should be aware that selecting this option may result in very long processing times. This drawback is due to the built-in Java XHTML browser implementation. To avoid delays for large documents, if you want to see the XHTML result of the transformation, you should use an external browser by selecting the **Open in Browser/System Application** option instead.

- **Image URLs are relative to** - If **Show in results view as XHTML** is selected, this option specifies the path used to resolve image paths contained in the transformation result. You can specify the path by using the text field, the ⌘ Insert Editor Variables (on page 276) button, or the ⚪ Browse button.

⚠️ **Attention:** If your input XSLT contains `<xsl:result-document>` elements, then the secondary results will be saved to the specified URLs while the principal result is specified in this Output tab. For more information, see: https://www.w3.org/TR/xslt-30/#element-result-document.

Configuring an XSLT Processor for Generating Output

This section explains how to configure an XSLT processor and extensions for such a processor in Oxygen XML Editor.

**Supported XSLT Processors**

Oxygen XML Editor includes the following XSLT processors:

- **Xalan 2.7.2** - Xalan-Java is an XSLT processor for transforming XML documents into HTML, text, or other XML document types. It implements XSL Transformations (XSLT) Version 1.0 and XML Path Language (XPath) Version 1.0.
• **Saxon 6.5.5** - Saxon 6.5.5 is an XSLT processor that implements the Version 1.0 XSLT and XPath with a number of powerful extensions. This version of Saxon also includes many of the new features that were first defined in the XSLT 1.1 working draft, but for conformance and portability reasons these are not available if the stylesheet header specifies `version="1.0"`.

• **Saxon 9.8.0.12 Home Edition (HE), Professional Edition (PE)** - Saxon-HE/PE implements the basic conformance level for XSLT 2.0 / 3.0 and XQuery 1.0. The term *basic XSLT 2.0 / 3.0 processor* is defined in the draft XSLT 2.0 / 3.0 specifications. It is a conformance level that requires support for all features of the language other than those that involve schema processing. The HE product remains open source, but removes some of the more advanced features that are present in Saxon-PE.

• **Saxon 9.8.0.12 Enterprise Edition (EE)** - Saxon EE is the schema-aware edition of Saxon and it is one of the built-in processors included in Oxygen XML Editor. Saxon EE includes an XML Schema processor, and schema-aware XSLT, XQuery, and XPath processors.

The validation in schema aware transformations is done according to the XML Schema 1.0 or 1.1. This can be configured in Preferences (on page 192).

**Note:** Oxygen XML Editor implements a Saxon framework that allows you to create Saxon configuration files. Two templates are available: Saxon collection catalog and Saxon configuration. Both of these templates support content completion, element annotation, and attribute annotation.

**Note:** Saxon can use the *ICU-J localization library* (`saxon9-icu.jar`) to add support for sorting and date/number formatting in a wide variety of languages. This library is not included in the Oxygen XML Editor installation kit. However, Saxon will use the default collation and localization support available in the currently used JRE. To enable this capability, follow these steps:

2. Unpack the downloaded archive.
3. Create a new XSLT transformation scenario (or edit an existing one). In the XSLT tab, click the Extensions button to open the list of additional libraries used by the transformation process.
4. Click Add and browse to the folder where you unpacked the downloaded archive and choose the `saxon9-icu.jar` file.

Note that the `saxon9-icu.jar` should NOT be added to the application library folder because it will conflict with another version of the ICU-J library that comes bundled with Oxygen XML Editor.

• **Saxon-CE (Client Edition)** is Saxonica's implementation of XSLT 2.0 for use on web browsers.

Oxygen XML Editor provides support for editing stylesheets that contain Saxon-CE extension functions and instructions. This support improves the validation, content completion, and syntax highlighting.
**Note:** Saxon-CE, being JavaScript-based, was designed to run inside a web browser. This means that you will use Oxygen XML Editor only for developing the Saxon-CE stylesheet, leaving the execution part to a web browser. See more details about executing such a stylesheet on Saxonica’s website.

**Note:** A specific template, named Saxon-CE stylesheet, is available in the New document wizard (on page 676).

- **Xsltproc (libxslt)** - Libxslt is the XSLT library developed for the Gnome project. Libxslt is based on libxml2, the XML C library developed for the Gnome project. It also implements most of the EXSLT set of processor-portable extensions, functions, and some of Saxon's evaluate and expression extensions.

Oxygen XML Editor uses Libxslt through its command-line tool (Xsltproc). Depending on your operating system, you must download the Libxslt libraries on your machine from http://xmlsoft.org/XSLT/downloads.html and place them in a local folder. Then you need to update the PATH environmental variable to contain the parent folder where the xsltproc executable is located.

**Tip:** As an example, a Windows installation of the Xsltproc engine would follow these steps:

2. Unzip all of them into the same folder of your choice.
3. Edit the PATH environment variable and add the bin folder for all four archives:

   ![Edit environment variable](image)

4. Restart Oxygen XML Editor.

**Result:** You can now use the xsltproc processor as an XSLT engine in the XSLT transformation scenario.

**Note:** The Xsltproc processor can be configured from the XSLTPROC options page (on page 204).

**CAUTION:** There is a known problem where file paths that contain spaces are not handled correctly in the LIBXML processor. For example, the built-in XML Catalog (on page 3289) files
of the built-in document types (DocBook, TEI, DITA, etc.) are not handled properly by LIBXML if Oxygen XML Editor is installed in the default location on Windows (C:\Program Files). This is because the built-in XML catalog files are stored in the \OXYGEN_INSTALL_DIR\frameworks subdirectory of the installation directory, and in this case it contains a space character.

• **MSXML 4.0** - MSXML 4.0 is available only on Windows platforms. It can be used for transformation (on page 1674) and validation of XSLT stylesheets (on page 1186).

Oxygen XML Editor uses the Microsoft XML parser through its command-line tool `msxsl.exe`.

Since `msxsl.exe` is only a wrapper, Microsoft Core XML Services (MSXML) must be installed on the computer. Otherwise, you will get a corresponding warning. You can get the latest Microsoft XML parser from Microsoft web-site.

• **MSXML .NET** - MSXML .NET is available only on Windows platforms. It can be used for transformation (on page 1674) and validation of XSLT stylesheets (on page 1186).

Oxygen XML Editor performs XSLT transformations and validations using the .NET Framework XSLT implementation (`System.Xml.Xsl.XslTransform` class) through the `nxslt` command-line utility. The `nxslt` version included in Oxygen XML Editor is 1.6.

You should have the .NET Framework version 1.0 already installed on your system. Otherwise, you will get the following warning: MSXML.NET requires .NET Framework version 1.0 to be installed. Exit code: 128.

You can get the .NET Framework version 1.0 from the Microsoft website.

• **.NET 1.0** - A transformer based on the `System.Xml` 1.0 library available in the .NET 1.0 and .NET 1.1 frameworks from Microsoft (http://msdn.microsoft.com/xml/). It is available only on Windows.

You should have the .NET Framework version 1.0 or 1.1 already installed on your system. Otherwise, you will get the following warning: MSXML.NET requires .NET Framework version 1.0 to be installed. Exit code: 128.

You can get the .NET Framework version 1.0 from the Microsoft website.

• **.NET 2.0** - A transformer based on the `System.Xml` 2.0 library available in the .NET 2.0 Framework from Microsoft. It is available only on Windows.

You should have the .NET Framework version 2.0 already installed on your system. Otherwise, you will get the following warning: MSXML.NET requires .NET Framework version 2.0 to be installed. Exit code: 128.

You can get the .NET Framework version 2.0 from the Microsoft website.

For information about configuring the XSLT preferences, see the XSLT options (on page 200) section.
Configuring Custom XSLT Processors

Oxygen XML Editor allows you to configure custom processors to be used for running XSLT and XQuery transformations.

To add a new custom processor, follow these steps:

1. Open the Preferences dialog box (Options > Preferences) (on page 79) and go to XML > XSLT-FO-XQuery > Custom Engines.
2. Click the New button at the bottom of the dialog box.
3. Configure the parameters for the custom engine (on page 215).
4. Click OK.

Note: You can not use these custom engines in the Debugger perspective (on page 2290).

The output messages of a custom processor are displayed in an output view at the bottom of the application window. If an output message follows the format of an Oxygen XML Editor linked message (on page 1091), clicking it highlights the location of the message in an editor panel containing the file referenced in the message.

Related Information:

- Custom Engines Preferences (on page 215)

Configuring the XSLT Processor Extensions Paths

The Xalan and Saxon processors support the use of extension elements and extension functions. Unlike a literal result element, which the stylesheet simply transfers to the result tree, an extension element performs an action. The extension is usually used because the XSLT stylesheet fails in providing adequate functions for accomplishing a more complex task.

For more information about how to use extensions, see the following links:

- Saxon 6.5.5 - http://saxon.sourceforge.net/saxon6.5.5/extensions.html

To set an XSLT processor extension (a directory or a jar file), use the Extensions button (on page 1676) in the Edit scenario dialog box.
XML Transformation with XQuery

This type of transformation specifies the transform parameters and location of an XQuery file that is applied to the edited XML document.

Use the **XML transformation with XQuery** scenario to apply a transformation in which an XQuery file queries an XML file for the output results.

To create an **XML transformation with XQuery** scenario, use one of the following methods:

- Use the **Configure Transformation Scenario(s)** (Ctrl + Shift + C (Command + Shift + C on OS X)) action from the toolbar or the **Document > Transformation** menu. Then click the **New** button and select **XML transformation with XQuery**.
- Go to **Window > Show View** and select **Transformation Scenarios** to display this view (on page 1768). Click the **+ New Scenario** drop-down menu button and select **XML transformation with XQuery**.

Both methods open the **New Scenario** dialog box.

The upper part of the dialog box allows you to specify the **Name** of the transformation scenario and the following **Storage** options:

- **Project Options** (on page 3286) - The scenario is stored in the project file and can be shared with other users. For example, if your project is saved on a source versioning/sharing system (CVS, SVN, Source Safe, etc.) or a shared folder, your team can use the scenarios that you store in the project file.
- **Global Options** (on page 3283) - The scenario is saved in the global options that are stored in the user home directory and is not accessible to other users.

The lower part of the dialog box contains several tabs that allow you to configure the options that control the transformation.

**XQuery Tab**

When you create a new transformation scenario (on page 1674) or edit an existing one (on page 1758), a configuration dialog box allows you to customize the transformation with various options in several tabs.

The **XQuery** tab contains the following options:

**XML URL**

Specifies the source XML file. You can specify the path by using the text field, its history drop-down, the **Insert Editor Variables** (on page 276) button, or the browsing actions in the **Browse** drop-down list. You can also use the **Open in editor** button to open
the specified file in the editor panel. This URL is resolved through the catalog resolver.
If the catalog does not have a mapping for the URL, then the file is used directly from its
remote location.

**Note:** If the transformer engine is Saxon 9.x and a custom URI resolver is configured in the
advanced Saxon preferences page (on page 204), the XML input of the transformation is passed to
that URI resolver.

XQuery URL

Specifies the source XQuery file to be used for the transformation. You can specify the
path by using the text field, its history drop-down, the 🔄 Insert Editor Variables (on page
276) button, or the browsing actions in the 🕵️‍♂️ Browse drop-down list. You can also
use the 🖨️ Open in editor button to open the specified file in the editor panel. This URL
is resolved through the catalog resolver. If the catalog does not have a mapping for the
URL, the file is used directly from its remote location.

Transformer

This drop-down menu presents all the transformation engines available to Oxygen
XML Editor for performing a transformation. These include the built-in engines and the
external engines defined in the Custom Engines preferences page (on page 215). The
engine you choose is used as the default transformation engine. Also, if an XSLT or
XQuery document does not have an associated validation scenario, this transformation
engine is used in the validation process (if it provides validation support).

⌥ Advanced options

Allows you to configure the advanced options of the Saxon HE/PE/EE engine (on
page 1694) for the current transformation scenario. To configure the same options
globally, go to the Saxon-HE/PE/EE preferences page (on page 201). For the current
transformation scenario, these Advanced options override the options configured in that
preferences page.

Parameters

Opens the Configure parameters dialog box (on page 1693) for configuring the
XQuery parameters. You can use the buttons in this dialog box to add, edit, or remove
parameters. If the XQuery transformation engine is custom-defined, you cannot use
this dialog box to set parameters. Instead, you can copy all parameters from the dialog
box using contextual menu actions and edit the custom XQuery engine to include the
necessary parameters in the command line that starts the transformation process.

Extensions
Opens a dialog box for configuring the XQuery extension JARS or classes (on page 1694) that define extension Java functions or extension XSLT elements used in the transformation.

XQuery Parameters

The global parameters of the XQuery file used in a transformation scenario can be configured by using the Parameters button in the XQuery tab.

The resulting dialog box includes a table that displays all the parameters of the current XQuery file, along with their descriptions and current values. You can also add, edit, and remove parameters, and use the Filter text box to search for a specific term in the entire parameters collection. Note that edited parameters are displayed with their name in bold.

If the XPath column is selected, the parameter value is evaluated as an XPath expression before starting the XQuery transformation.

Example:

For example, you can use expressions such as:

```
doc('test.xml')//entry
//person[@atr='val']
```

**Note:**

1. The doc function solves the argument relative to the XQuery file location. You can use full paths or editor variables (on page 276) (such as $cfdu [current file directory]) to specify other locations: `doc($cfdu/test.xml')/*`
2. Only XPath functions are allowed.

Below the table, the following actions are available for managing the parameters:

**New**

Opens the Add Parameter dialog box that allows you to add a new parameter to the list. An editor variable (on page 276) can be inserted in the text box using the Insert Editor Variables button. If the Evaluate as XPath option is selected, the parameter will be evaluated as an XPath expression.

**Edit**

Opens the Edit Parameter dialog box that allows you to edit the selected parameter. An editor variable (on page 276) can be inserted in the text box using the Insert Editor Variables button.
Variables button. If the Evaluate as XPath option is selected, the parameter will be evaluated as an XPath expression.

Unset

Resets the selected parameter to its default value. Available only for edited parameters with set values.

Delete

Removes the selected parameter from the list. It is available only for new parameters that have been added to the list.

The bottom panel presents the following:

- The default value of the parameter selected in the table.
- A description of the parameter, if available.
- The system ID of the stylesheet that declares it.

Related Information:

- Editor Variables (on page 276)

XQuery Extensions

The Extensions button is used to specify the JAR (on page 3283) and classes that contain extension functions called from the XQuery file of the current transformation scenario. You can use the Add, Edit, and Remove buttons to configure the extensions.

An extension function called from the XQuery file of the current transformation scenario will be searched, in the specified extensions, in the order displayed in this dialog box. To change the order of the items, select the item to be moved and press the ↑ Move up or ↓ Move down buttons.

Advanced Saxon HE/PE/EE XQuery Transformation Options

The XQuery transformation scenario allows you to configure advanced options that are specific for the Saxon HE (Home Edition), PE (Professional Edition), and EE (Enterprise Edition) engines. They are the same options as those in the Saxon HE/PE/EE preferences page (on page 209) but they are configured as a specific set of transformation options for each transformation scenario, while the values set in the preferences page apply as global options. The advanced options configured in a transformation scenario override the global options (on page 3283) defined in the preferences page.
Saxon-HE/PE/EE Options

The advanced options for Saxon 9.8.0.12 Home Edition (HE), Professional Edition (PE), and Enterprise Edition (EE) are as follows:

Use a configuration file ("-config")

Sets a Saxon 9.8.0.12 configuration file that is used for XQuery transformation and validation scenarios.

Enable Optimizations ("-opt")

This option is selected by default, which means that optimization is enabled. If not selected, the optimization is suppressed, which is helpful when reducing the compiling time is important, optimization conflicts with debugging, or optimization causes extension functions with side-effects to behave unpredictably.

Use linked tree model ("-tree:linked")

This option activates the linked tree model.

Recoverable errors ("-warnings")

Specifies how dynamic errors are handled. The following options can be selected:

- Recover silently ("silent") - Continues processing without reporting the error.
- Recover with warnings ("recover") - Issues a warning but continues processing.
- Signal the error and do not attempt recovery ("fatal") - Issues an error and stops processing.

Strip whitespaces ("-strip")

Specifies how the strip whitespaces operation is handled. You can choose one of the following values:

- All ("all") - Strips all whitespace text nodes from source documents before any further processing, regardless of any xml:space attributes in the source document.
- Ignore ("ignorable") - Strips all ignorable whitespace text nodes from source documents before any further processing, regardless of any xml:space attributes in the source document. Whitespace text nodes are ignorable if they appear in elements defined in the DTD or schema as having element-only content.
- None ("none") - Strips no whitespace before further processing.

Saxon-PE/EE Options

The following advanced options are specific for Saxon 9.8.0.12 Professional Edition (PE) and Enterprise Edition (EE) only:
Allow calls on extension functions ("-ext")

If selected, calls on external functions are allowed. Selecting this option is recommended in an environment where untrusted stylesheets may be executed. It also disables user-defined extension elements and the writing of multiple output files, both of which carry similar security risks.

Saxon-EE Options

The advanced options that are specific for Saxon 9.8.0.12 Enterprise Edition (EE) are as follows:

Validation of the source file ("-val")

Requests schema-based validation of the source file and of any files read using document() or similar functions. It can have the following values:

- Schema validation ("strict") - This mode requires an XML Schema and allows for parsing the source documents with strict schema-validation enabled.
- Lax schema validation ("lax") - If an XML Schema is provided, this mode allows for parsing the source documents with schema-validation enabled but the validation will not fail if, for example, element declarations are not found.
- Disable schema validation - This specifies that the source documents should be parsed with schema-validation disabled.

Validation errors in the result tree treated as warnings ("-outval")

Normally, if validation of result documents is requested, a validation error is fatal. Selecting this option causes such validation failures to be treated as warnings.

Write comments for non-fatal validation errors of the result document

The validation messages for non-fatal errors are written (wherever possible) as a comment in the result document itself.

Enable XQuery update ("-update:(on|off)")

This option controls whether or not XQuery update syntax is accepted. The default value is off.

Backup files updated by XQuery ("-backup:(on|off)")

If selected, backup versions for any XML files updated with an XQuery Update are generated. This option is available when the Enable XQuery update option is selected.
Other Options

Initializer class

Equivalent to the --init Saxon command-line argument. The value is the name of a user-supplied class that implements the net.sf.saxon.lib.Initializer interface. This initializer is called during the initialization process, and may be used to set any options required on the configuration programmatically. It is particularly useful for tasks such as registering extension functions, collations, or external object models, especially in Saxon-HE where the option cannot be set via a configuration file. Saxon only calls the initializer when running from the command line, but the same code may be invoked to perform initialization when running user application code.

FO Processor Tab (XQuery Transformations)

When you create a new transformation scenario (on page 1674) or edit an existing one (on page 1758), a configuration dialog box allows you to customize the transformation with various options in several tabs.

The FO Processor tab contains the following options:

Perform FO Processing

Specifies whether or not an FO processor is applied (either the built-in Apache FOP engine or an external engine defined in Preferences) during the transformation.

Input

Choose between the following options to specify which input file to use:

- **XQuery result as input** - The FO processor is applied to the result of the XQuery transformation that is defined in the XQuery tab.
- **XML URL as input** - The FO processor is applied to the input XML file.

Method

The output format of the FO processing. The available options depend on the selected processor type.

Processor

Specifies the FO processor to be used for the transformation. It can be the built-in Apache FOP processor or an external processor (on page 216).
Output Tab (XQuery Transformations)

When you create a new transformation scenario (on page 1674) or edit an existing one (on page 1758), a configuration dialog box allows you to customize the transformation with various options in several tabs.

The **Output** tab contains the following options:

**Present as a sequence**

Selecting this option will reduce the time necessary to fetch the full results, as it will only fetch the first chunk of the results.

**Prompt for file**

At the end of the transformation, a file browser dialog box is displayed for specifying the path and name of the file that stores the transformation result.

**Save As**

The path of the file where the result of the transformation is stored. You can specify the path by using the text field, the ![Insert Editor Variables](on page 276) button, or the ![Browse](button).

**Open in Browser/System Application**

If selected, Oxygen XML Editor automatically opens the result of the transformation in a system application associated with the file type of the result (for example, in Windows PDF files are often opened in Acrobat Reader).

**Note:** To set the web browser that is used for displaying HTML/XHTML pages, go to **Options > Preferences > Global**, and set it in the **Default Internet browser** field.

- **Output file** - When **Open in Browser/System Application** is selected, you can use this button to automatically open the default output file at the end of the transformation.
- **Other location** - When **Open in Browser/System Application** is selected, you can use this option to open the file specified in this field at the end of the transformation. You can specify the path by using the text field, the ![Insert Editor Variables](on page 276) button, or the ![Browse](button).

**Open in editor**

When this is option is selected, at the end of the transformation, the default output file is opened in a new editor panel with the appropriate built-in editor type (for example, if the result is an XML file it is opened in the built-in XML editor, or if it is an XSL-FO file it is opened with the built-in FO editor).
Show in results view as

You can choose to view the results in one of the following:

- **XML** - If this is selected, Oxygen XML Editor displays the transformation result in an XML viewer panel at the bottom of the application window with syntax highlighting (on page 178).

- **SVG** - If this is selected, Oxygen XML Editor displays the transformation result in an integrated SVG viewer in the Results panel (on page 1502) at the bottom of the application window and renders the result as an SVG image.

- **XHTML** - This option is only available if Open in Browser/System Application is not selected. If selected, Oxygen XML Editor displays the transformation result in a built-in XHTML browser panel at the bottom of the application window.

⚠️ Important: When transforming very large documents, you should be aware that selecting this option may result in very long processing times. This drawback is due to the built-in Java XHTML browser implementation. To avoid delays for large documents, if you want to see the XHTML result of the transformation, you should use an external browser by selecting the Open in Browser/System Application option instead.

- **Image URLs are relative to** - If Show in results view as XHTML is selected, this option specifies the path used to resolve image paths contained in the transformation result. You can specify the path by using the text field, the Insert Editor Variables (on page 276) button, or the Browse button.

XML to PDF Transformation with CSS

This type of transformation uses the Oxygen PDF Chemistry processing engine to obtain PDF output by applying CSS styling to the edited XML document. This scenario is useful for those who are familiar with CSS and want to obtain PDF output as its final form.

To create an XML to PDF transformation with CSS scenario, use one of the following methods:

- Use the Configure Transformation Scenario(s) (Ctrl + Shift + C (Command + Shift + C on OS X)) action from the toolbar or the Document > Transformation menu. Then click the New button and select XML to PDF transformation with CSS.

- Go to Window > Show View and select Transformation Scenarios to display this view (on page 1768). Click the New Scenario drop-down menu button and select XML to PDF transformation with CSS.

Both methods open the New Scenario dialog box.
The upper part of the dialog box allows you to specify the **Name** of the transformation scenario and the following **Storage** options:

- **Project Options** *(on page 3286)* - The scenario is stored in the project file and can be shared with other users. For example, if your project is saved on a source versioning/sharing system (CVS, SVN, Source Safe, etc.) or a shared folder, your team can use the scenarios that you store in the project file.
- **Global Options** *(on page 3283)* - The scenario is saved in the global options that are stored in the user home directory and is not accessible to other users.

The lower part of the dialog box contains several tabs that allow you to configure the options that control the transformation.

For more information about the **Oxygen PDF Chemistry** processing engine and numerous tips for customizing the output, see the **Oxygen Chemistry User Guide**.

**CSS Tab (XML to PDF Transformation with CSS)**

When you create a new transformation scenario *(on page 1674)* or edit an existing one *(on page 1758)*, a configuration dialog box allows you to customize the transformation with various options in several tabs.

The **CSS** tab contains the following options:

**XML URL**

Specifies the source XML file. You can specify the path by using the text field, its history drop-down, the **Insert Editor Variables** *(on page 276)* button, or the browsing actions in the **Browse** drop-down list. You can also use the **Open in editor** button to open the specified file in the editor panel. This URL is resolved through the catalog resolver. If the catalog does not have a mapping for the URL, then the file is used directly from its remote location.

**CSS URL**

Optionally, you can use this option to specify the location of a custom CSS file to be applied to the transformation. If this option is left blank, only the CSS referenced directly from the document will be applied. You can specify the path by using the text field, its history drop-down, the **Insert Editor Variables** *(on page 276)* button, or the browsing actions in the **Browse** drop-down list. You can also use the **Open in editor** button to open the specified file in the editor panel.

**Apply CSS stylesheets set in the current framework**
If selected, CSS stylesheets that are specified in the framework (in the Document Type configuration CSS subtab (on page 101)) are applied to the transformation in addition to any CSS referenced directly in the document or specified in the CSS URL field (on page 1700).

**Note:** If CSS files are specified in multiple ways, the transformation applies the CSS in the following order (from lowest priority to highest):

- CSS files that are specified in the framework (in the Document Type configuration CSS subtab (on page 101)).
- CSS files referenced directly in the document.
- CSS files specified in the CSS URL field (on page 1700).

**Processor options link**

Opens the CSS-based Processors preferences page (on page 220) where you can configure some options for generating PDF output.

**Output Tab (XML to PDF Transformation with CSS)**

When you create a new transformation scenario (on page 1674) or edit an existing one (on page 1758), a configuration dialog box allows you to customize the transformation with various options in several tabs.

The **Output tab** contains the following options:

**Output File section**

**Save As**

The path of the file where the result of the transformation is stored. You can specify the path by using the text field, the Insert Editor Variables (on page 276) button, or the Browse button.

**Open in Browser/System Application**

If selected, Oxygen XML Editor automatically opens the result of the transformation in a system application associated with the PDF file type (for example, in Windows PDF files are often opened in Acrobat Reader).

**Debugging section**

**Dump the intermediate annotated XML**

Select this option to include (dump) the intermediate, annotated XML file in the same location as the output file. This can be used for debugging purposes.
Dump the FO file

Select this option to include (dump) the FO file (before it is converted to PDF) in the same location as the output file. This can be used for debugging purposes.

Console options link

Opens the CSS-based Processors preferences page (on page 220) where you can configure some options for generating PDF output.

DITA OT Transformation

This type of transformation specifies the parameters for an Ant transformation that executes a DITA-OT build script. Oxygen XML Editor includes a built-in version of Ant and a built-in version of DITA-OT, but other versions can be set in the scenario.

To create a DITA OT Transformation scenario, use one of the following methods:

- Use the Configure Transformation Scenario(s) (Ctrl + Shift + C (Command + Shift + C on OS X)) action from the DITA Maps Manager toolbar, main toolbar, or the Document > Transformation menu. Then click the New button and select DITA OT Transformation.
- Go to Window > Show View and select Transformation Scenarios to display this view (on page 1768). Click the New Scenario drop-down menu button and select DITA OT Transformation.

Both methods open the DITA Transformation Type dialog box that presents the list of possible outputs.

Figure 600. DITA Transformation Type Dialog Box
Select the desired type of output and click **OK**. This opens the **New Scenario** dialog box.

The upper part of the dialog box allows you to specify the **Name** of the transformation scenario and the following **Storage** options:

- **Project Options** *(on page 3286)* - The scenario is stored in the project file and can be shared with other users. For example, if your project is saved on a source versioning/sharing system (CVS, SVN, Source Safe, etc.) or a shared folder, your team can use the scenarios that you store in the project file.
- **Global Options** *(on page 3283)* - The scenario is saved in the global options that are stored in the user home directory and is not accessible to other users.

The lower part of the dialog box contains several tabs that allow you to configure the options that control the transformation. Some of these tabs are only available for certain output types (for example, a **Skins** tab is only available for **WebHelp Classic** and **WebHelp Classic with Feedback** output types, a **Templates** tab is available only for **WebHelp Responsive** and **WebHelp Responsive with Feedback**, and a **FO Processor** tab is available for PDF output).

**Skins Tab (DITA OT Transformations)**

When you create a new transformation scenario *(on page 1674)* or edit an existing one *(on page 1758)*, a configuration dialog box allows you to customize the transformation with various options in several tabs.
The **Skins** tab is available for DITA OT transformations with WebHelp Classic or WebHelp Classic with Feedback output types and it provides a set of built-in skins that you can use as a base for your WebHelp system output.

A **skin** is a collection of CSS properties that can alter the look of the output by changing colors, font types, borders, margins, and paddings. This allows you to rapidly adapt the look and feel of your output.

Figure 601. Skins Tab

The **Skins** tab includes the following sections:

- **Built-in Skins**
  
  This sections presents the built-in skins that are included in Oxygen XML Editor. The built-in skins cover a wide range of chromatic themes, ranging from a very light one to a high-contrast variant. To see how the skin looks when applied on a sample documentation project that is stored on the Oxygen XML Editor website, press the **Online preview** link.

- **Custom Skins**

  You can use this section to customize the look of the output.

  **CSS File**

  You can set this field to point to a custom CSS stylesheet or customized skin. A custom CSS file will overwrite a skin selection.
**Note:** The output can also be styled by setting the `args.css` parameter in the **Parameters tab**. The properties taken from the stylesheet referenced in this parameter take precedence over the properties declared in the **Skins tab**.

Create custom skin

Use this link to open the **WebHelp Skin Builder** (on page 1806) tool.

**Templates Tab (DITA OT Transformations)**

When you create a new transformation scenario (on page 1674) or edit an existing one (on page 1758), a configuration dialog box allows you to customize the transformation with various options in several tabs.

The **Templates** tab is available for DITA OT transformations with **WebHelp Responsive**, **WebHelp Responsive with Feedback**, or **PDF - based on HTML5 & CSS** output types and it provides a set of built-in publishing templates (on page 1892). You can use one of them to publish your documentation or as a starting point for a new publishing template.

**Figure 602. Templates Tab**

**Filtering and Previewing Templates**

You can click on the tags at the top of the pane to filter the templates and narrow your search. Each built-in template also includes an **Online preview** icon in the bottom-right corner that opens
a webpage in your default browser providing a sample of how the main page will look when that particular template is used to generate the output.

**Built-in Templates Locations**

Oxygen XML Editor scans the following locations to find the built-in templates to display in the dialog box:

- **WebHelp Responsive Templates** - All built-in WebHelp Responsive publishing templates are stored in the following directory: `DITA-OT-DIR/plugins/com.oxygenxml.webhelp.responsive/templates`.
- **PDF - based on HTML5 & CSS** - All built-in PDF publishing templates are stored in the following directories:
  - `DITA-OT-DIR/plugins/com.oxygenxml.pdf.css/templates`
  - `DITA-OT-DIR/plugins/com.oxygenxml.webhelp.responsive/templates`

**Custom Templates Locations**

Oxygen XML Editor scans the locations specified in the [DITA > Publishing preferences page](on page 228) to find custom templates to display in the dialog box. You can access that preferences page directly from the Template tab by clicking on the Configure Publishing Templates Gallery link.

**Selecting Custom Templates**

Once you are finished configuring your template, you can click the Choose Custom Publishing Template link to select your template. You can also add your custom templates (on page 1938) to the list of templates displayed in the Templates tab. To do this, store them in a directory, then click the Configure Publishing Templates Gallery link to open the [DITA > Publishing preferences page](on page 228) where you can add that directory to the list. All the templates contained in your template directory will be displayed in the preview pane along with all the built-in templates.

**Save Template As Button**

You can use the Save template as button (at the bottom-left of the transformation dialog box) to export the currently selected template into a new template package that can be used as a starting point to create your own custom template (on page 2029). Clicking this button will open a template package configuration dialog box (on page 1707) that contains some options and displays the parameters that will be exported to your template package.
Template Errors

When the **Templates** tab is opened, all templates (built-in and custom) are loaded and validated. Specifically, certain elements in the template descriptor file are checked for validity. If errors are encountered that prevents the template from loading, the following message will be displayed toward the bottom of the dialog box:

![Some templates could not be loaded. More details](image)

If you click the **More details** link, a window will open with more information about the encountered error. For example, it might offer a hint for which element is missing from the expected descriptor file structure.

Also, if a template could be loaded, but certain elements could not be found in the descriptor file, a warning icon (⚠️) will be displayed on the template's image (in the **Templates** tab of the transformation dialog box). For example, this happens if a valid preview-image element cannot be found.

Sharing Publishing Template

To share a publishing template with others, following these steps:

1. Copy your template in a new folder.
2. Go to **Options > Preferences > DITA > Publishing (on page 228)** and add that new folder to the list.
3. Switch the option as the bottom of that preferences page to **Project Options**.
4. Share your project file (.xpr).

For more information about customizing publishing templates, watch our video demonstration:

[https://www.youtube.com/embed/zNmXfKWXwO8](https://www.youtube.com/embed/zNmXfKWXwO8)

Related Information:

- [Publishing Templates (on page 1892)]()
- [Publishing Template Package Contents for PDF Customizations (on page 2023)]()
- [Publishing Template Package Contents for WebHelp Responsive Customizations (on page 1895)]()
Template Package Configuration Dialog Box

The **Save template as** button (at the bottom-left of the transformation dialog box for **WebHelp Responsive** or **PDF - based on HTML5 & CSS** transformations) can be used to export the currently selected template into a new template package that can be used as a starting point to **create your own custom template** *(on page 2029)*. The result will be a ZIP archive that contains a template descriptor file and other resources (such as CSS files) that were attached to the selected template.

Clicking the **Save template as** button opens a template package configuration dialog box contains the following options and components:

**Name**

Required field used to specify the name for the new template. This will become the text value of the `<name>` element in the template descriptor file. This information is displayed as the name of the template in the transformation scenario dialog box.

**Description**

Optional field used to specify a template description. This will become the text value of the `<description>` element in the template descriptor file. This information is displayed when the user hovers over the template in the transformation scenario dialog box.

**Parameter Table**

This table displays the parameters that will be exported. Only relevant parameters are exported. The parameters and their values will be inserted in the `<parameters>` section of the template descriptor file. If any of the parameter values point to a file path that references a template resource (such as CSS files, custom HTML fragments, images), those resources will automatically be copied to the new template package and their references will be changed accordingly.

**Note:** Additional resources that are referenced in CSS files or other resources will not be copied to the new template package, so you will need to copy them manually and update their references in the template descriptor file.

**Include WebHelp Customization**

The same publishing template package can contain both a WebHelp Responsive and PDF customization and you can use the same template in both types of transformations (**DITA Map WebHelp Responsive** *(on page 1643)* or **DITA Map to PDF - based on HTML5 & CSS** *(on page 1657)*). This option specifies that the custom template will include a WebHelp Responsive customization.

**Include HTML Page Layout Files**

For **WebHelp Responsive** customizations, select this option if you want to copy the default **HTML Page Layout Files** *(on page 1909)* into your
template package. They are helpful if you want to change the structure of
the generated HTML pages.

**Include PDF Customization**

The same publishing template package can contain both a WebHelp Responsive and
PDF customization and you can use the same template in both types of transformations
(See [DITA Map WebHelp Responsive](on page 1643) or [DITA Map to PDF - based on
HTML5 & CSS](on page 1657)). This option specifies that the custom template will
include a PDF customization.

**Save as**

Use this field to specify the name and path of the ZIP file where the template will be
saved.

Figure 603. Template Package Configuration Dialog Box

![Save Template As dialog box]

Read more about Oxygen Publishing Templates.

Related Information:

- Publishing Templates *(on page 1892)*

- Publishing Template Package Contents for PDF Customizations *(on page 2023)*

- Publishing Template Package Contents for WebHelp Responsive Customizations *(on page 1895)*
FO Processor Tab (DITA OT Transformations)

When you create a new transformation scenario (on page 1674) or edit an existing one (on page 1758), a configuration dialog box allows you to customize the transformation with various options in several tabs.

The FO Processor tab is available for DITA OT transformations with a PDF output type.

This tab allows you to select an FO Processor to be used for the transformation.

Figure 604. FO Processor Configuration Tab

You can choose one of the following processors:

**Apache FOP**

The default processor that comes bundled with Oxygen XML Editor.

**XEP**

The RenderX XEP processor. If XEP is already installed, Oxygen XML Editor displays the detected installation path under the drop-down menu. XEP is considered installed if it was detected in one of the following sources:

- XEP was configured as an external FO Processor in the FO Processors option page (on page 216).
- The system property `com.oxygenxml.xep.location` was set to point to the XEP executable file for the platform (for example: `xep.bat` on Windows).
- XEP was installed in the `DITA-OT-DIR/plugins/org.dita.pdf2/lib` directory of the Oxygen XML Editor installation directory.

**Antenna House**
The Antenna House (AH Formatter) processor. If Antenna House is already installed, Oxygen XML Editor displays the detected installation path under the drop-down menu. Antenna House is considered installed if it was detected in one of the following sources:

- Environment variable set by Antenna House installation (the newest installation version will be used).
- Antenna House was added as an external FO Processor in the Oxygen XML Editor preferences pages.

To further customize the PDF output obtained from the Antenna House processor, follow these steps:

1. **Edit** the transformation scenario.
2. Open the **Parameters tab** *(on page 3205)*.
3. Add the `env.AXF_OPT` parameter and point to the Antenna House configuration file.

**Related Information:**

- [FO Processors Preferences *(on page 216)*](#)
- [XSL-FO (Apache FOP) Processor for Generating PDF Output *(on page 1738)*](#)

**Parameters Tab (DITA OT Transformations)**

When you **create a new transformation scenario** *(on page 1674)* or **edit an existing one** *(on page 1758)*, a configuration dialog box allows you to customize the transformation with various options in several tabs.

The **Parameters** tab allows you to configure the parameters sent to the DITA-OT build file.

The table in this tab displays all the parameters that the DITA-OT documentation specifies as available for each chosen type of transformation (for example, XHTML or PDF), along with their description and current values. You can find more information about each parameter in the **DITA OT Documentation**.

You can also add, edit, and remove parameters, and you can use the text box to filter or search for a specific term in the entire parameters collection. Note that edited parameters are displayed with their name in bold.

Depending on the type of a parameter, its value can be one of the following:

- A simple text field for simple parameter values.
- A combo box with some predefined values.
A file chooser and an editor variable (on page 276) selector to simplify setting a file path as the value of a parameter.

**Note:** To input parameter values at runtime, use the ask editor variable (on page 277) in the Value column.

Below the table, the following actions are available for managing parameters:

**New**

Opens the Add Parameter dialog box that allows you to add a new parameter to the list. You can specify the Value of the parameter by using the Insert Editor Variables (on page 276) button or the Browse button.

**Unset**

Resets the selected parameter to its default value. Available only for edited parameters with set values.

**Edit**

Opens the Edit Parameter dialog box that allows you to change the value of the selected parameter or its description.

**Delete**

Removes the selected parameter from the list. It is available only for new parameters that have been added to the list.

### Parameters Contributed by an Oxygen Publishing Template

Transformation parameters that are defined in an Oxygen Publishing Template (on page 2021) descriptor file are displayed in italics. After creating a publishing template (on page 2029) and adding it to the templates gallery (on page 1938), when you select the template in the Templates tab (on page 3199), the Parameters tab will automatically be updated to include the parameters defined in the template descriptor file.

**Related Information:**

- DITA Open Toolkit Documentation
Feedback Tab (DITA OT Transformations)

When you create a new transformation scenario (on page 1674) or edit an existing one (on page 1758), a configuration dialog box allows you to customize the transformation with various options in several tabs.

⚠️ Attention: This tab is for a feature that has not yet been implemented. To check the progress of the feature, see https://feedback.oxygenxml.com/.

The Feedback tab is available for the WebHelp Responsive transformation type and can be used to connect the published WebHelp Responsive output to an Oxygen Feedback server to provide a comment section in the output where users can offer feedback and ask questions.

When you configure the Oxygen Feedback server, you will retrieve an HTML fragment during site creation procedure. Click the Edit button at the bottom-right of this tab to open a dialog box where you will paste the HTML fragment (using keyboard shortcut keys or contextual menu actions).

Filters Tab (DITA Transformations)

When you create a new transformation scenario (on page 1674) or edit an existing one (on page 1758), a configuration dialog box allows you to customize the transformation with various options in several tabs.

The Filters tab allows you to add filters to remove certain content elements from the generated output.

Figure 605. Edit Filters Tab
You can choose one of the following options to define filters:

**Use DITAVAL file**

If you already have a DITAVAL file associated with the DITA map (on page 3281), you can specify the file to be used when filtering content. You can specify the path by using the text field, its history drop-down, the Insert Editor Variables (on page 276) button, or the browsing actions in the Browse drop-down list. You can find out more about constructing a DITAVAL file in the DITA Documentation.

⚠️ **Attention:** If a filter file is specified in the args.filter parameter (in the Parameters tab (on page 3205)), that file takes precedence over a DITAVAL file specified here.

**Use profiling condition set**

Sets the profiling condition set (on page 3234) that will be applied to your transformation.

**Exclude from output all elements with any of the following attributes**

By using the New, Edit, or Delete buttons at the bottom of the pane, you can configure a list of attributes (name and value) to exclude all elements that contain any of these attributes from the output.

**Advanced Tab (DITA OT Transformations)**

When you create a new transformation scenario (on page 1674) or edit an existing one (on page 1758), a configuration dialog box allows you to customize the transformation with various options in several tabs.

The Advanced tab allows you to specify advanced options for the transformation scenario.

Figure 606. Advanced Settings Tab
You can specify the following parameters:

**Custom build file**

If you use a custom DITA-OT build file, you can specify the path to the customized build file. If empty, the `build.xml` file from the `dita.dir` parameter that is configured in the **Parameters** tab (on page 3205) is used. You can specify the path by using the text field, the **Insert Editor Variables** (on page 276) button, or the **Browse** button.

**Build target**

Optionally, you can specify a build target for the build file. If no target is specified, the default `init` target is used.

**Additional arguments**

You can specify additional command-line arguments to be passed to the transformation (such as `-verbose`).

**Ant Home**

You can choose between the default or custom Ant installation to run the transformation. The default path can be configured in the **Ant preferences page** (on page 221).

**Java Home**
You can choose between the default or custom Java installation to run the transformation. The default path is the Java installation that is used by Oxygen XML Editor.

![Note:](image) It may be possible that the used Java version is incompatible with the DITA Open Toolkit engine. For example, DITA-OT 2.0 and newer requires Java 1.7 or newer. Thus, if you encounter related errors running the transformation, consider installing a Java VM that is supported by the DITA OT publishing engine and using it in the Java Home text field.

**JVM Arguments**

This parameter allows you to set specific parameters for the Java Virtual Machine used by Ant. For example, if it is set to `-Xmx384m`, the transformation process is allowed to use 384 megabytes of memory. When performing a large transformation, you may want to increase the memory allocated to the Java Virtual Machine. This will help avoid Out of Memory error messages (OutOfMemoryError).

**Libraries**

By default, Oxygen XML Editor adds libraries (as high priority) that are not transformation-dependent and also patches for certain DITA Open Toolkit bugs. You can use this button to specify additional libraries (JAR files or additional class paths) to be used by the transformer.

![Tip:](image) You can specify the path to the additional libraries using wildcards (for example, `${oxygenHome}/lib/*.jar`).

**Output Tab (DITA OT Transformations)**

When you create a new transformation scenario (on page 1674) or edit an existing one (on page 1758), a configuration dialog box allows you to customize the transformation with various options in several tabs.

The **Output** tab allows you to configure options that are related to the location where the output is generated.

Figure 607. Output Settings Tab
You can specify the following parameters:

**Base directory**

All the relative paths that appear as values in parameters are considered relative to the base directory. The default value is the directory where the transformed map is located. You can specify the path by using the text field, the Insert Editor Variables button, or the Browse button.

**Temporary files directory**

This directory is used to store pre-processed temporary files until the final output is obtained. You can specify the path by using the text field, the Insert Editor Variables button, or the Browse button.

**Output directory**

The folder where the content of the final output is stored. You can specify the path by using the text field, the Insert Editor Variables button, or the Browse button.

**Note:** If the DITA map or topic is opened from a remote location or a ZIP file, the parameters must specify absolute paths.

**Open in Browser/System Application**
If selected, Oxygen XML Editor automatically opens the result of the transformation in a system application associated with the file type of the result (for example, in Windows PDF files are often opened in Acrobat Reader).

**Note:** To set the web browser that is used for displaying HTML/XHTML pages, go to Options > Preferences > Global, and set it in the Default Internet browser field.

- **Output file** - When Open in Browser/System Application is selected, you can use this button to automatically open the default output file at the end of the transformation.
- **Other location** - When Open in Browser/System Application is selected, you can use this option to open the file specified in this field at the end of the transformation. You can specify the path by using the text field, the ![Insert Editor Variables](on page 276) button, or the ![Browse](button).

**Open in editor**

When this option is selected, at the end of the transformation, the default output file is opened in a new editor panel with the appropriate built-in editor type (for example, if the result is an XML file it is opened in the built-in XML editor, or if it is an XSL-FO file it is opened with the built-in FO editor).

At the bottom of the pane there is a link to the Console options (on page 228) preferences page that contains options to control the display of the console output received from the publishing engine.

**Ant Transformation**

This type of transformation allows you to configure the options and parameters of an Ant build script.

An Ant transformation scenario is usually associated with an Ant build script. Oxygen XML Editor runs an Ant transformation scenario as an external process that executes the Ant build script with the built-in Ant distribution (Apache Ant (on page 3279) version 1.9.8) that is included with the application, or optionally with a custom Ant distribution configured in the scenario.

**Tip:** Certain Ant tasks require additional JAR libraries (for example, Ant mail tasks). The additional libraries can be added by editing the Ant transformation scenario, and in the Output tab, click the Libraries button (on page 1719) in the bottom right corner. This opens a dialog box where you can add JAR libraries. For a list of library dependencies, see [https://ant.apache.org/manual/install.html#librarydependencies](https://ant.apache.org/manual/install.html#librarydependencies).

To create an Ant transformation scenario, use one of the following methods:
• Use the Configure Transformation Scenario(s) (Ctrl + Shift + C (Command + Shift + C on OS X)) action from the toolbar or the Document > Transformation menu. Then click the New button and select ANT transformation.

• Go to Window > Show View and select Transformation Scenarios to display this view (on page 1768). Click the New Scenario drop-down menu button and select ANT transformation.

Both methods open the transformation configuration dialog box.

The upper part of the dialog box allows you to specify the Name of the transformation scenario and the following Storage options:

• Project Options (on page 3286) - The scenario is stored in the project file and can be shared with other users. For example, if your project is saved on a source versioning/sharing system (CVS, SVN, Source Safe, etc.) or a shared folder, your team can use the scenarios that you store in the project file.

• Global Options (on page 3283) - The scenario is saved in the global options that are stored in the user home directory and is not accessible to other users.

The lower part of the dialog box contains several tabs that allow you to configure the options that control the transformation.

Related Information:

• Transforming Ant Build Files (on page 1237)

Options Tab (Ant Transformations)

When you create a new transformation scenario (on page 1674) or edit an existing one (on page 1758), a configuration dialog box allows you to customize the transformation with various options in several tabs.

The Options tab allows you to specify the following options:

Working directory

The path of the current directory of the Ant external process. You can specify the path by using the text field, the Insert Editor Variables (on page 276) button, or the Browse button.

Build file
The Ant script file that is the input of the Ant external process. You can specify the path by using the text field, the ✉ Insert Editor Variables (on page 276) button, or the 🗂 Browse button.

**Build target**

Optionally, you can specify a build target for the Ant script file. If no target is specified, the Ant target that is specified as the default in the Ant script file is used.

**Additional arguments**

You can specify additional command-line arguments to be passed to the transformation (such as `-verbose`).

**Ant Home**

You can choose between the default or custom Ant installation to run the transformation. The default path can be configured in the Ant preferences page (on page 221).

**Java Home**

You can choose between the default or custom Java installation to run the transformation. The default path is the Java installation that is used by Oxygen XML Editor.

**JVM Arguments**

This parameter allows you to set specific parameters for the Java Virtual Machine used by Ant. For example, if it is set to `-Xmx384m`, the transformation process is allowed to use 384 megabytes of memory. When performing a large transformation, you may want to increase the memory allocated to the Java Virtual Machine. This will help avoid Out of Memory error messages (OutOfMemoryError).

**Libraries**

By default, Oxygen XML Editor adds libraries (as high priority) that are not transformation-dependent and also patches for certain DITA Open Toolkit bugs. You can use this button to specify additional libraries (JAR (on page 3283) files or additional class paths) to be used by the transformer.

**Tip:** You can specify the path to the additional libraries using wildcards (for example, `${oxygenHome}/lib/*.*.jar`).

**Parameters Tab (Ant Transformations)**

When you create a new transformation scenario (on page 1674) or edit an existing one (on page 1758), a configuration dialog box allows you to customize the transformation with various options in several tabs.
The **Parameters** tab allows you to configure the parameters that are accessible as Ant properties in the Ant build script.

The table displays all the parameters that are available in the Ant build script, along with their description and current values. You can also add, edit, and remove parameters, and use the **Filter** text box to search for a specific term in the entire parameters collection. Note that edited parameters are displayed with their name in bold.

Depending on the type of a parameter, its value can be one of the following:

- A simple text field for simple parameter values.
- A combo box with some predefined values.
- A file chooser and an **editor variable** *(on page 276)* selector to simplify setting a file path as the value of a parameter.

**Note:** To input parameter values at runtime, use the **ask editor variable** *(on page 277)* in the **Value** column.

Below the table, the following actions are available for managing parameters:

**New**

Opens the **Add Parameter** dialog box that allows you to add a new parameter to the list. You can specify the **Value** of the parameter by using the **Insert Editor Variables** *(on page 276)* button or the **Browse** button.

**Edit**

Opens the **Edit Parameter** dialog box that allows you to change the value of the selected parameter or its description.

**Delete**

Removes the selected parameter from the list. It is available only for new parameters that have been added to the list.

These parameters are also available for the built-in validation processor and the **Content Completion Assistant** *(on page 3280)*.

**Related Information:**

- Content Completion in Ant Build Files *(on page 1238)*
Output Tab (Ant Transformations)

When you create a new transformation scenario (on page 1674) or edit an existing one (on page 1758), a configuration dialog box allows you to customize the transformation with various options in several tabs.

The **Output** tab contains the following options:

- **Open**
  Allows you to specify the file to open automatically when the transformation is finished. This is usually the output file of the Ant process. You can specify the path by using the text field, the [Insert Editor Variables](on page 276) button, or the [Browse](on page 1722) button.

  - **In System Application** - The file specified in the **Open** text box is opened in the system application that is set in the operating system as the default application for that type of file (for example, in Windows PDF files are often opened in Acrobat Reader).
  - **In Editor** - The file specified in the **Open** text box is opened in a new editor panel with the appropriate built-in editor type (for example, if the result is an XML file it is opened in the built-in XML editor).

- **Show console output**
  Allows you to specify when to display the console output log in the message panel at the bottom of the editor. The following options are available:

  - **When build fails** - Displays the console output log only if the build fails.
  - **Always** - Displays the console output log, regardless of whether or not the build fails.

XSLT Transformation

This type of transformation specifies the parameters and location of an XML document that the edited XSLT stylesheet is applied on. This scenario is useful when you develop an XSLT document and the XML document is in its final form.

To create an **XSLT transformation** scenario, use one of the following methods:

- **Use the [Configure Transformation Scenario(s)](on page 1722) (or [Command + Shift + C](on page 1722) on OS X) action from the toolbar or the **Document > Transformation** menu. Then click the **New** button and select **XSLT transformation**.
- **Go to** **Window > Show View** and select [Transformation Scenarios](on page 1768) to display this view (on page 1768). Click the [New Scenario](on page 1722) drop-down menu button and select **XSLT transformation**.
Both methods open the **New Scenario** dialog box.

The upper part of the dialog box allows you to specify the **Name** of the transformation scenario and the following **Storage** options:

- **Project Options** *(on page 3286)* - The scenario is stored in the project file and can be shared with other users. For example, if your project is saved on a source versioning/sharing system (CVS, SVN, Source Safe, etc.) or a shared folder, your team can use the scenarios that you store in the project file.
- **Global Options** *(on page 3283)* - The scenario is saved in the global options that are stored in the user home directory and is not accessible to other users.

The lower part of the dialog box contains several tabs that allow you to configure the options that control the transformation.

**XSLT Tab**

When you create a new transformation scenario *(on page 1674)* or edit an existing one *(on page 1758)*, a configuration dialog box allows you to customize the transformation with various options in several tabs.

The **XSLT** tab contains the following options:

**XML URL**

Specifies the source XML file. You can specify the path by using the text field, its history drop-down, the **Insert Editor Variables** *(on page 276)* button, or the browsing actions in the **Browse** drop-down list. You can also use the **Open in editor** button to open the specified file in the editor panel. This URL is resolved through the catalog resolver. If the catalog does not have a mapping for the URL, then the file is used directly from its remote location.

**Note:** If the transformer engine is Saxon 9.x and a custom URI resolver is configured in the advanced Saxon preferences page *(on page 204)*, the XML input of the transformation is passed to that URI resolver. If the transformer engine is one of the built-in XSLT 2.0 / 3.0 engines and the name of an initial template *(on page 1676)* is specified in the scenario, the **XML URL** field can be empty. The **XML URL** field can also be empty if you use external XSLT processors *(on page 1689)*. Otherwise, a value is mandatory in this field.

**XSL URL**

Specifies the source XSL file that the transformation will use. You can specify the path by using the text field, its history drop-down, the **Insert Editor Variables** *(on page 276)* button, or the browsing actions in the **Browse** drop-down list. You can also
use the **Open in editor** button to open the specified file in the editor panel. This URL is resolved through the catalog resolver. If the catalog does not have a mapping for the URL, the file is used directly from its remote location.

**Use "xml-stylesheet" declaration**

If selected, the scenario applies the stylesheet specified explicitly in the XML document with the `xml-stylesheet` processing instruction. By default, this option is deselected and the transformation applies the XSLT stylesheet that is specified in the **XSL URL** field.

**Transformer**

This drop-down menu presents all the transformation engines available to Oxygen XML Editor for performing a transformation. These include the built-in engines and the external engines defined in the Custom Engines preferences page *(on page 215)*. The engine you choose is used as the default transformation engine. Also, if an XSLT or XQuery document does not have an associated validation scenario, this transformation engine is used in the validation process (if it provides validation support).

**Advanced options**

Allows you to configure the advanced options of the Saxon HE/PE/EE engine *(on page 1679)* for the current transformation scenario. To configure the same options globally, go to the Saxon-HE/PE/EE preferences page *(on page 201)*. For the current transformation scenario, these **Advanced options** override the options configured in that preferences page.

**Parameters**

Opens a **Configure parameters** dialog box *(on page 1677)* that allows you to configure the XSLT parameters used in the current transformation. In this dialog box, you can also configure the parameters for additional XSLT stylesheets *(on page 1676)*. If the XSLT transformation engine is custom-defined, you cannot use this dialog box to configure the parameters sent to the custom engine. Instead, you can copy all parameters from the dialog box using contextual menu actions and edit the custom XSLT engine to include the necessary parameters in the command line that starts the transformation process.

**Extensions**

Opens a dialog box for configuring the XSLT extension JARS or classes *(on page 1678)* that define extension Java functions or extension XSLT elements used in the transformation.

**Additional XSLT stylesheets**
Opens a dialog box for adding XSLT stylesheets (on page 1678) that are applied on the main stylesheet specified in the XSL URL field. This is useful when a chain of XSLT stylesheets must be applied to the input XML document.

XSLT Parameters

The global parameters of the XSLT stylesheet used in a transformation scenario can be configured by using the Parameters button in the XSLT tab of a new or edited transformation scenario dialog box.

The resulting dialog box includes a table that displays all the parameters of the current XSLT stylesheet, all imported and included stylesheets, and all additional stylesheets (on page 1678), along with their descriptions and current values. You can also add, edit, and remove parameters, and you can use the Filter text box to search for a specific term in the entire parameters collection. Note that edited parameters are displayed with their name in bold.

If the XPath column is selected, the parameter value is evaluated as an XPath expression before starting the XSLT transformation.

Example:

For example, you can use expressions such as:

```xml
<doc('test.xml')//entry
//person[@atr='val']
```

Note:

1. The `doc` function solves the argument relative to the XSL stylesheet location. You can use full paths or editor variables (on page 276) (such as `${cfdu} [current file directory]`) to specify other locations: `doc('${cfdu}/test.xml')//*`.
2. You cannot use XSLT Functions. Only XPath functions are allowed.

Below the table, the following actions are available for managing the parameters:

New

Opens the Add Parameter dialog box that allows you to add a new parameter to the list. An editor variable (on page 276) can be inserted in the text box using the Insert Editor Variables button. If the Evaluate as XPath option is selected, the parameter will be evaluated as an XPath expression.

Edit

Opens the Edit Parameter dialog box that allows you to edit the selected parameter. An editor variable (on page 276) can be inserted in the text box using the Insert Editor Variables button.
Variables button. If the Evaluate as XPath option is selected, the parameter will be evaluated as an XPath expression.

Unset

Resets the selected parameter to its default value. Available only for edited parameters with set values.

Delete

Removes the selected parameter from the list. It is available only for new parameters that have been added to the list.

The bottom panel presents the following:

• The default value of the parameter selected in the table.
• A description of the parameter, if available.
• The system ID of the stylesheet that declares it.

Related Information:

• Editor Variables (on page 276)

XSLT Extensions

The Extensions button opens a dialog box that allows you to specify the JARS (on page 3283) and classes that contain extension functions called from the XSLT file of the current transformation scenario. You can use the Add, Edit, and Remove buttons to configure the extensions.

Tip: You can specify the path to the resources using wildcards (for example, ${oxygenHome}/lib/*.jar).

An extension function called from the XSLT file of the current transformation scenario will be searched, in the specified extensions, in the order displayed in this dialog box. To change the order of the items, select the item to be moved and press the Move up or Move down buttons.

Additional XSLT Stylesheets

Use the Additional XSLT Stylesheets button in the XSLT tab to display a list of additional XSLT stylesheets to be used in the transformation and you can add files to the list or edit existing entries.

The following actions are available:

Add
Adds a stylesheet in the **Additional XSLT stylesheets** list using a file browser dialog box. You can type an editor variable ([on page 276](#)) in the file name field of the browser dialog box. The name of the stylesheet will be added in the list after the current selection.

### Remove

Deletes the selected stylesheet from the **Additional XSLT stylesheets** list.

### Open

Opens the selected stylesheet in a separate view.

### Up

Moves the selected stylesheet up in the list.

### Down

Moves the selected stylesheet down in the list.

---

**Advanced Saxon HE/PE/EE XSLT Transformation Options**

The XSLT transformation scenario allows you to configure advanced options that are specific for the Saxon HE (Home Edition), PE (Professional Edition), and EE (Enterprise Edition) engines. They are the same options as those in the **Saxon HE/PE/EE preferences page ([on page 201](#))** but they are configured as a specific set of transformation options for each transformation scenario, while the values set in the preferences page apply as global options. The advanced options configured in a transformation scenario override the **global options ([on page 3283](#))** defined in the preferences page.

**Saxon-HE/PE/EE Options**

The advanced options for Saxon 9.8.0.12 Home Edition (HE), Professional Edition (PE), and Enterprise Edition (EE) are as follows:

#### Mode ("-im")

A Saxon-specific option that sets the initial mode for the transformation. If this value is also specified in a [configuration file ([on page 1679](#))](#), the value in this option takes precedence.

#### Template ("-it")

A Saxon-specific option that sets the name of the initial XSLT template to be executed. If this value is also specified in a [configuration file ([on page 1679](#))](#), the value in this option takes precedence.

#### Use a configuration file ("-config")

Select this option if you want to use a Saxon 9.8.0.12 configuration file that will be executed for the XSLT transformation and validation processes. You can specify the
PATH to the configuration file by entering it in the URL field, or by using the Insert Editor Variables button, or using the browsing actions in the Browse drop-down list.

Debugger trace into XPath expressions (applies to debugging sessions)

Instructs the XSLT Debugger (on page 2309) to step into XPath expressions.

Enable Optimizations ("-opt")

This option is selected by default, which means that optimization is enabled. If not selected, the optimization is suppressed, which is helpful when reducing the compiling time is important, optimization conflicts with debugging, or optimization causes extension functions with side-effects to behave unpredictably.

Line numbering ("-l")

Line numbers where errors occur are included in the output messages.

Expand attributes defaults ("-expand")

Specifies whether or not the attributes defined in the associated DTD or XML Schema are expanded in the output of the transformation you are executing.

DTD validation of the source ("-dtd")

Specifies whether or not the source document will be validated against their associated DTD. You can choose from the following:

- **On** - Requests DTD validation of the source file and of any files read using the document() function.
- **Off** - (default setting) Suppresses DTD validation.
- **Recover** - Performs DTD validation but treats the errors as non-fatal.

Note: Any external DTD is likely to be read even if not used for validation, since DTDs can contain definitions of entities.

Recoverable errors ("-warnings")

Specifies how dynamic errors are handled. The following options can be selected:

- **Recover silently** ("silent") - Continues processing without reporting the error.
- **Recover with warnings** ("recover") - Issues a warning but continues processing.
- **Signal the error and do not attempt recovery** ("fatal") - Issues an error and stops processing.

Strip whitespaces ("-strip")

Specifies how the strip whitespaces operation is handled. You can choose one of the following values:
• **All** ("all") - Strips all whitespace text nodes from source documents before any further processing, regardless of any \texttt{xml:space} attributes in the source document.

• **Ignore** ("ignorable") - Strips all ignorable whitespace text nodes from source documents before any further processing, regardless of any \texttt{xml:space} attributes in the source document. Whitespace text nodes are ignorable if they appear in elements defined in the DTD or schema as having element-only content.

• **None** ("none") - Strips no whitespace before further processing.

### Saxon-PE/EE Options

The following advanced options are specific for Saxon 9.8.0.12 Professional Edition (PE) and Enterprise Edition (EE) only:

#### Register Saxon-JS extension functions and instructions

Registers the Saxon-CE extension functions and instructions when compiling a stylesheet using the Saxon 9.8.0.12 processors.

**Note:** Saxon-CE, being JavaScript-based, was designed to run inside a web browser. This means that you will use Oxygen XML Editor only for developing the Saxon-CE stylesheet, leaving the execution part to a web browser. See more details about executing such a stylesheet on Saxonica's website.

#### Allow calls on extension functions ("-ext")

If selected, the stylesheet is allowed to call external Java functions. This does not affect calls on integrated extension functions, including Saxon and EXSLT extension functions. This option is useful when loading an untrusted stylesheet (such as from a remote site using \texttt{http://[URL]}). It ensures that the stylesheet cannot call arbitrary Java methods and thus gain privileged access to resources on your machine.

#### Enable assertions ("-ea")

In XSLT 3.0, you can use the \texttt{xsl:assert} element to make assertions in the form of XPath expressions, causing a dynamic error if the assertion turns out to be false. If this option is selected, XSLT 3.0 \texttt{xsl:assert} instructions are enabled. If it is not selected (default), the assertions are ignored.

### Saxon-EE Options

The advanced options that are specific for Saxon 9.8.0.12 Enterprise Edition (EE) are as follows:

#### XML Schema version

Use this option to change the default XML Schema version for this transformation. To change the default XML Schema version globally, open the Preferences dialog box.
(Options > Preferences) (on page 79) and go to XML > XML Parser > XML Schema and use the Default XML Schema version option (on page 193).

Validation of the source file ("-val")

Requests schema-based validation of the source file and of any files read using `document()` or similar functions. It can have the following values:

- **Schema validation ("strict")** - This mode requires an XML Schema and allows for parsing the source documents with strict schema-validation enabled.

- **Lax schema validation ("lax")** - If an XML Schema is provided, this mode allows for parsing the source documents with schema-validation enabled but the validation will not fail if, for example, element declarations are not found.

- **Disable schema validation** - This specifies that the source documents should be parsed with schema-validation disabled.

Validation errors in the result tree treated as warnings ("-outval")

Normally, if validation of result documents is requested, a validation error is fatal. Selecting this option causes such validation failures to be treated as warnings.

Write comments for non-fatal validation errors of the result document

The validation messages for non-fatal errors are written (wherever possible) as a comment in the result document itself.

Enable streaming mode

Selecting this option will allow an XSLT to run in streaming mode. It is not selected by default.

Other Options

Initializer class

Equivalent to the `-init` Saxon command-line argument. The value is the name of a user-supplied class that implements the `net.sf.saxon.lib.Initializer` interface. This initializer is called during the initialization process, and may be used to set any options required on the configuration programmatically. It is particularly useful for tasks such as registering extension functions, collations, or external object models, especially in Saxon-HE where the option cannot be set via a configuration file. Saxon only calls the initializer when running from the command line, but the same code may be invoked to perform initialization when running user application code.
Using Saxon Integrated Extension Functions

Saxon, the transformation and validation engine used by Oxygen XML Editor, can be customized by adding custom functions (called Integrated Extension Functions) that can be called from XPath.

To define such a function, follow these steps:

1. Create a file with a Java class that extends net.sf.saxon.lib.ExtensionFunctionDefinition. Here is an example:

```java
private static class ShiftLeft extends ExtensionFunctionDefinition {
    @Override
    public StructuredQName getFunctionQName() {
        return new StructuredQName("eg", "http://example.com/saxon-extension", "shift-left");
    }

    @Override
    public SequenceType[] getArgumentTypes() {
        return new SequenceType[] {SequenceType.SINGLE_INTEGER, SequenceType.SINGLE_INTEGER};
    }

    @Override
    public SequenceType getResultType(SequenceType[] suppliedArgumentTypes) {
        return SequenceType.SINGLE_INTEGER;
    }

    @Override
    public ExtensionFunctionCall makeCallExpression() {
        return new ExtensionFunctionCall() {
            public SequenceIterator call(SequenceIterator[] arguments, XPathContext context)
                throws XPathException {
                long v0 = ((IntegerValue)arguments[0].next()).longValue();
                long v1 = ((IntegerValue)arguments[1].next()).longValue();
                long result = v0<<v1;
                return Value.asIterator(Int64Value.makeIntegerValue(result));
            }
        }
    }
}
```
2. Compile the class and add it to a JAR file.
3. Add a file called `net.sf.saxon.lib.ExtensionFunctionDefinition` that contains the fully qualified name of the Java class in the `META-INF/services/` folder of the JAR file.

**Note:** To add more function definitions in the same JAR file, you need to add their fully qualified names on different lines.

To enable Oxygen XML Editor to pick up your custom function definition, the JAR file should be added to the classpath of the transformer. Here are some possibilities:

- If you develop a framework, you just need to link the JAR file in the **Classpath** tab (on page 99).
- In a validation scenario (on page 1094), you can use the **Extensions** button to open a dialog box where you can add libraries.
- In a transformation scenario, you can use the **Extensions** button in the **XSLT** tab (on page 1676) to open a dialog box where you can add libraries.
- You can also create a plugin that contributes such a JAR file in the classpath (on page 2580).

**FO Processor Tab (XSLT Transformations)**

When you create a new transformation scenario (on page 1674) or edit an existing one (on page 1758), a configuration dialog box allows you to customize the transformation with various options in several tabs.

The **FO Processor** tab contains the following options:

**Perform FO Processing**

Specifies whether or not an FO processor is applied (either the built-in Apache FOP engine or an external engine defined in **Preferences**) during the transformation.

**Input**

Choose between the following options to specify which input file to use:

- **XSLT result as input** - The FO processor is applied to the result of the XSLT transformation that is defined in the **XSLT** tab.
- **XML URL as input** - The FO processor is applied to the input XML file.

**Method**

The output format of the FO processing. The available options depend on the selected processor type.
**Processor**

Specifies the FO processor to be used for the transformation. It can be the built-in Apache FOP processor or an external processor (on page 216).

**Output Tab (XSLT Transformations)**

When you create a new transformation scenario (on page 1674) or edit an existing one (on page 1758), a configuration dialog box allows you to customize the transformation with various options in several tabs.

The **Output** tab contains the following options:

**Prompt for file**

At the end of the transformation, a file browser dialog box is displayed for specifying the path and name of the file that stores the transformation result.

**Save As**

The path of the file where the result of the transformation is stored. You can specify the path by using the text field, the ✉️ Insert Editor Variables (on page 276) button, or the ✰ Browse button.

**Open in Browser/System Application**

If selected, Oxygen XML Editor automatically opens the result of the transformation in a system application associated with the file type of the result (for example, in Windows PDF files are often opened in Acrobat Reader).

ᆡ Note: To set the web browser that is used for displaying HTML/XHTML pages, go to Options > Preferences > Global, and set it in the Default Internet browser field.

- **Output file** - When Open in Browser/System Application is selected, you can use this button to automatically open the default output file at the end of the transformation.
- **Other location** - When Open in Browser/System Application is selected, you can use this option to open the file specified in this field at the end of the transformation.

You can specify the path by using the text field, the ✉️ Insert Editor Variables (on page 276) button, or the ✰ Browse button.

**Open in editor**

When this is option is selected, at the end of the transformation, the default output file is opened in a new editor panel with the appropriate built-in editor type (for example, if the result is an XML file it is opened in the built-in XML editor, or if it is an XSL-FO file it is opened with the built-in FO editor).
Show in results view as

You can choose to view the results in one of the following:

- **XML** - If this is selected, Oxygen XML Editor displays the transformation result in an XML viewer panel at the bottom of the application window with syntax highlighting ([on page 178](#)).

- **SVG** - If this is selected, Oxygen XML Editor displays the transformation result in an integrated SVG viewer in the Results panel ([on page 1502](#)) at the bottom of the application window and renders the result as an SVG image.

- **XHTML** - This option is only available if Open in Browser/System Application is not selected. If selected, Oxygen XML Editor displays the transformation result in a built-in XHTML browser panel at the bottom of the application window.

⚠️ **Important:** When transforming very large documents, you should be aware that selecting this option may result in very long processing times. This drawback is due to the built-in Java XHTML browser implementation. To avoid delays for large documents, if you want to see the XHTML result of the transformation, you should use an external browser by selecting the Open in Browser/System Application option instead.

- **Image URLs are relative to** - If Show in results view as XHTML is selected, this option specifies the path used to resolve image paths contained in the transformation result. You can specify the path by using the text field, the ![Insert Editor Variables](#) button, or the ![Browse](#) button.

⚠️ **Attention:** If your input XSLT contains `<xsl:result-document>` elements, then the secondary results will be saved to the specified URIs while the principal result is specified in this Output tab. For more information, see: [https://www.w3.org/TR/xslt-30/#element-result-document](https://www.w3.org/TR/xslt-30/#element-result-document).

Configuring an XSLT Processor for Generating Output

This section explains how to configure an XSLT processor and extensions for such a processor in Oxygen XML Editor.

Supported XSLT Processors

Oxygen XML Editor includes the following XSLT processors:

- **Xalan 2.7.2** - Xalan-Java is an XSLT processor for transforming XML documents into HTML, text, or other XML document types. It implements XSL Transformations (XSLT) Version 1.0 and XML Path Language (XPath) Version 1.0.
• **Saxon 6.5.5** - **Saxon 6.5.5** is an XSLT processor that implements the Version 1.0 XSLT and XPath with a number of powerful extensions. This version of Saxon also includes many of the new features that were first defined in the XSLT 1.1 working draft, but for conformance and portability reasons these are not available if the stylesheet header specifies `version="1.0"`.

• **Saxon 9.8.0.12 Home Edition (HE), Professional Edition (PE)** - **Saxon-HE/PE** implements the basic conformance level for XSLT 2.0 / 3.0 and XQuery 1.0. The term *basic XSLT 2.0 / 3.0 processor* is defined in the draft XSLT 2.0 / 3.0 specifications. It is a conformance level that requires support for all features of the language other than those that involve schema processing. The HE product remains open source, but removes some of the more advanced features that are present in Saxon-PE.

• **Saxon 9.8.0.12 Enterprise Edition (EE)** - **Saxon EE** is the schema-aware edition of Saxon and it is one of the built-in processors included in Oxygen XML Editor. Saxon EE includes an XML Schema processor, and schema-aware XSLT, XQuery, and XPath processors.

The validation in schema aware transformations is done according to the XML Schema 1.0 or 1.1. This can be configured in Preferences (on page 192).

**Note:** Oxygen XML Editor implements a Saxon framework that allows you to create Saxon configuration files. Two templates are available: Saxon collection catalog and Saxon configuration. Both of these templates support content completion, element annotation, and attribute annotation.

**Note:** Saxon can use the *ICU-J localization library* (`saxon9-icu.jar`) to add support for sorting and date/number formatting in a wide variety of languages. This library is not included in the Oxygen XML Editor installation kit. However, Saxon will use the default collation and localization support available in the currently used JRE. To enable this capability, follow these steps:

2. Unpack the downloaded archive.
3. Create a new XSLT transformation scenario (or edit an existing one). In the XSLT tab, click the Extensions button to open the list of additional libraries used by the transformation process.
4. Click Add and browse to the folder where you unpacked the downloaded archive and choose the `saxon9-icu.jar` file.

Note that the `saxon9-icu.jar` should NOT be added to the application library folder because it will conflict with another version of the ICU-J library that comes bundled with Oxygen XML Editor.

• **Saxon-CE (Client Edition)** is Saxicona's implementation of XSLT 2.0 for use on web browsers. Oxygen XML Editor provides support for editing stylesheets that contain Saxon-CE extension functions and instructions. This support improves the validation, content completion, and syntax highlighting.
Note: Saxon-CE, being JavaScript-based, was designed to run inside a web browser. This means that you will use Oxygen XML Editor only for developing the Saxon-CE stylesheet, leaving the execution part to a web browser. See more details about executing such a stylesheet on Saxonica’s website.

Note: A specific template, named Saxon-CE stylesheet, is available in the New document wizard (on page 676).

- Xsltproc (libxslt) - Libxslt is the XSLT C library developed for the Gnome project. Libxslt is based on libxml2, the XML C library developed for the Gnome project. It also implements most of the EXSLT set of processor-portable extensions, functions, and some of Saxon’s evaluate and expression extensions.

Oxygen XML Editor uses Libxslt through its command-line tool (Xsltproc). Depending on your operating system, you must download the Libxslt libraries on your machine from http://xmlsoft.org/XSLT/downloads.html and place them in a local folder. Then you need to update the PATH environmental variable to contain the parent folder where the xsltproc executable is located.

Tip: As an example, a Windows installation of the Xsltproc engine would follow these steps:

2. Unzip all of them into the same folder of your choice.
3. Edit the PATH environment variable and add the bin folder for all four archives:

   ![Edit environment variable](image)

   C:\Users\Desktop\abc\libxslt-1.1.26\win32\bin
   C:\Users\Desktop\abc\libxml2-2.7.8\win32\bin
   C:\Users\Desktop\abc\iconv-1.9.2\win32\bin
   C:\Users\Desktop\abc\zlib-1.2.5\bin

4. Restart Oxygen XML Editor.

Result: You can now use the xsltproc processor as an XSLT engine in the XSLT transformation scenario.

Note: The Xsltproc processor can be configured from the XSLTPROC options page (on page 204).

CAUTION: There is a known problem where file paths that contain spaces are not handled correctly in the LIBXML processor. For example, the built-in XML Catalog (on page 3289) files
of the built-in document types (DocBook, TEI, DITA, etc.) are not handled properly by LIBXML if
Oxygen XML Editor is installed in the default location on Windows (C:\Program Files). This is
because the built-in XML catalog files are stored in the \OXYGEN_INSTALL_DIR\frameworks
subdirectory of the installation directory, and in this case it contains a space character.

- **MSXML 4.0** - MSXML 4.0 is available only on Windows platforms. It can be used for
  transformation (on page 1674) and validation of XSLT stylesheets (on page 1186).

Oxygen XML Editor uses the Microsoft XML parser through its command-line tool **msxsl.exe**.

Since **msxsl.exe** is only a wrapper, Microsoft Core XML Services (MSXML) must be installed on
the computer. Otherwise, you will get a corresponding warning. You can get the latest Microsoft
XML parser from Microsoft web-site.

- **MSXML .NET** - MSXML .NET is available only on Windows platforms. It can be used for
  transformation (on page 1674) and validation of XSLT stylesheets (on page 1186).

Oxygen XML Editor performs XSLT transformations and validations using the .NET Framework
XSLT implementation (System.Xml.Xsl.XsltTransform class) through the **nxslt** command-line
utility. The nxslt version included in Oxygen XML Editor is 1.6.

You should have the .NET Framework version 1.0 already installed on your system. Otherwise,
you will get the following warning: **MSXML.NET requires .NET Framework version 1.0 to be
installed. Exit code: 128**.

You can get the .NET Framework version 1.0 from the Microsoft website.

- **.NET 1.0** - A transformer based on the System.Xml 1.0 library available in the .NET 1.0 and .NET
  1.1 frameworks from Microsoft (http://msdn.microsoft.com/xml/). It is available only on
  Windows.

You should have the .NET Framework version 1.0 or 1.1 already installed on your system.
Otherwise, you will get the following warning: **MSXML.NET requires .NET Framework version 1.0
to be installed. Exit code: 128**.

You can get the .NET Framework version 1.0 from the Microsoft website.

- **.NET 2.0** - A transformer based on the System.Xml 2.0 library available in the .NET 2.0
  Framework from Microsoft. It is available only on Windows.

You should have the .NET Framework version 2.0 already installed on your system. Otherwise,
you will get the following warning: **MSXML.NET requires .NET Framework version 2.0 to be
installed. Exit code: 128**.

You can get the .NET Framework version 2.0 from the Microsoft website.

For information about configuring the XSLT preferences, see the XSLT options (on page 200) section.
### Configuring Custom XSLT Processors

Oxygen XML Editor allows you to configure custom processors to be used for running XSLT and XQuery transformations.

To add a new custom processor, follow these steps:

1. Open the Preferences dialog box (Options > Preferences) and go to XML > XSLT-FO-XQuery > Custom Engines.
2. Click the New button at the bottom of the dialog box.
3. Configure the parameters for the custom engine.
4. Click OK.

**Note:** You cannot use these custom engines in the Debugger perspective.

The output messages of a custom processor are displayed in an output view at the bottom of the application window. If an output message follows the format of an Oxygen XML Editor linked message, clicking it highlights the location of the message in an editor panel containing the file referenced in the message.

#### Related Information:

- Custom Engines Preferences (on page 215)

### Configuring the XSLT Processor Extensions Paths

The Xalan and Saxon processors support the use of extension elements and extension functions. Unlike a literal result element, which the stylesheet simply transfers to the result tree, an extension element performs an action. The extension is usually used because the XSLT stylesheet fails in providing adequate functions for accomplishing a more complex task.

For more information about how to use extensions, see the following links:

- Saxon 6.5.5 - http://saxon.sourceforge.net/saxon6.5.5/extensions.html

To set an XSLT processor extension (a directory or a jar file), use the Extensions button (on page 1676) in the Edit scenario dialog box.
XSL-FO (Apache FOP) Processor for Generating PDF Output

The Oxygen XML Editor installation package is distributed with the Apache FOP that is a Formatting Objects processor for transforming your XML documents to PDF. FOP is a print and output independent formatter driven by XSL Formatting Objects. FOP is implemented as a Java application that reads a formatting object tree and renders the resulting pages to a specified output.

To see the version of the built-in XSL-FO processor for your installation, go to Help > About > Libraries and search for Apache FOP.

Other FO processors can be configured in the FO Processors preferences page (on page 216).

Add a Font to the Built-in FO Processor - Simple Version

If the font that must be set to Apache FOP is one of the fonts that are installed in the operating system you should follow the next steps for creating and setting a FOP configuration file that looks for the font that it needs in the system fonts. It is a simplified version of the procedure for setting a custom font in Apache FOP (on page 1740).

1. Register the font in FOP configuration. (This is not necessary for DITA PDF transformations, skip to the next step)
   a. Create a FOP configuration file that specifies that FOP should look for fonts in the installed fonts of the operating system.

   ```xml
   <fop version="1.0">
     <renderers>
       <renderer mime="application/pdf">
         <fonts>
           <auto-detect/>
         </fonts>
       </renderer>
     </renderers>
   </fop>
   ```
   b. Open the Preferences dialog box (Options > Preferences) (on page 79), go to XML > XSLT/FO/XQuery > FO Processors, and enter the path of the FOP configuration file in the Configuration file text field.

2. Set the font on the document content.
   This is done usually with XSLT stylesheet parameters and depends on the document type processed by the stylesheet.
• For DocBook documents you can start with the built-in scenario called DocBook PDF, edit the XSLT parameters (on page 1674) and set the font name (for example, Arial Unicode MS) to the parameters body.font.family and title.font.family.

• For TEI documents you can start with the built-in scenario called TEI PDF, edit the XSLT parameters (on page 1674) and set the font name (for example, Arial Unicode MS) to the parameters bodyFont and sansFont.

• For DITA transformations to PDF using DITA-OT you should modify the following two files:
  * DITA-OT-DIR/plugins/org.dita.pdf2/cfg/fo/font-mappings.xml - The font-face element included in each element physical-font having the attribute char-set="default" must contain the name of the font (for example, Arial Unicode MS)
  * DITA-OT-DIR/plugins/org.dita.pdf2.fop/fop/conf/fop.xconf - An element auto-detect must be inserted in the element fonts, which is inside the element renderer that has the attribute mime="application/pdf":

```
<renderer mime="application/pdf">
  ...
  <fonts>
    <auto-detect/>
  </fonts>
  ...
</renderer>
```

Add a Font to the Built-in FO Processor - Advanced Version

If an XML document is transformed to PDF using the built-in Apache FOP processor but it contains some Unicode characters that cannot be rendered by the default PDF fonts, then a special font that is capable to render these characters must be configured and embedded in the PDF result.

⚠️ Important: On Windows, fonts are located into the C:\Windows\Fonts directory. On Mac, they are placed in /Library/Fonts. To install a new font on your system, it is enough to copy it in the Fonts directory. If a special font is installed in the operating system, there is a simple way of telling FOP to look for it. See the simplified procedure for adding a font to FOP (on page 1739).

1. Locate the font.

   First, find out the name of a font that has the glyphs for the special characters you used. One font that covers most characters, including Japanese, Cyrillic, and Greek, is Arial Unicode MS.

2. Register the font in the FOP configuration.
Note: DITA PDF transformations have their own fop.xconf (DITA-OT-DIR/plugins/org.dita.pdf2.fop/fop/conf/fop.xconf). If the font is not installed in the system, it needs to be referenced in the fop.xconf.

a. For information about registering the font in the FOP Configuration, see: https://xmlgraphics.apache.org/fop/2.3/fonts.html.

b. Open the Preferences dialog box (Options > Preferences) (on page 79), go to XML > XSLT/FO/XQuery > FO Processors, and enter the path of the FOP configuration file in the Configuration file text field.

3. Set the font on the document content.
   This is usually done with XSLT stylesheet parameters and depends on the document type processed by the stylesheet.

   **DocBook Example:** For DocBook documents, you can start with the built-in scenario called DocBook PDF, edit the XSLT parameters (on page 1674), and set the font name (for example, Arialuni) to the parameters body.font.family and title.font.family.

   **TEI Example:** For TEI documents, you can start with the built-in scenario called TEI PDF, edit the XSLT parameters (on page 1674), and set the font name (for example, Arialuni) to the parameters bodyFont and sansFont.

   **DITA Example:** For DITA to PDF transformations using DITA-OT modify the following two files:

   - DITA-OT-DIR/plugins/org.dita.pdf2/cfg/fo/font-mappings.xml - The font-face element included in each element physical-font having the attribute charset="default" must contain the name of the font.
   - DITA-OT-DIR/plugins/org.dita.pdf2/fop/conf/fop.xconf - An element font must be inserted in the element fonts, which is inside the element renderer that has the attribute mime="application/pdf".

   For more information, see: https://xmlgraphics.apache.org/fop/2.1/fonts.html.

Adding Libraries to the Built-in FO Processor (XML with XSLT and FO)

Starting with Oxygen XML Editor version 20.0, both hyphenation and PDF image support are enabled by default in the built-in Apache FO processor. For older version of Oxygen XML Editor, use the following procedures to enable such support.

**Adding Hyphenation Support for XML with XSLT Transformation Scenarios**

If you want to add newer hyphenation libraries or you are using an older version of Oxygen XML Editor, follow this procedure:
1. Create a folder called fop in the \{OXYGEN_INSTALL_DIR\}/lib folder.
2. Download the compiled JAR (on page 3283) from OFFO.
3. Copy the fop-hyph.jar file into the \{OXYGEN_INSTALL_DIR\}/lib/fop folder.
4. Restart Oxygen XML Editor.

Adding Support for PDF Images

To add support for PDF images in an older version of Oxygen XML Editor, follow these steps:

1. Create a folder called fop in the \{OXYGEN_INSTALL_DIR\}/lib folder.
2. Download the fop-pdf-images JAR libraries.
3. Copy the libraries into the \{OXYGEN_INSTALL_DIR\}/lib/fop folder.
4. Restart Oxygen XML Editor.

How to Enable Debugging for FO Processor Transformations

If you encounter errors when running PDF transformations that use an FO processor, it is possible to enable debugging/logging to help you identify the problem. To enable debugging/logging for FO processing, follow this procedure:

1. Locate and edit the following configuration file: \{OXYGEN_INSTALL_DIR\}/tools/config/log4j.xml.

   Note: You need write access to this folder, so if you do not have administrator permissions, you may first need to copy the file to another location where you have write access.
2. Edit the priority element (inside the root element) and change its value to debug.
3. Save the file in the original location.
4. Restart Oxygen XML Editor and re-run the transformation.

   Tip: It is recommended that you use a small input file when trying to reproduce the problem, to make it easier to analyze the data in the log.
5. Once you are finished with the debugging session, remember to edit the log4j.xml file and change the priority element back to its original value. Otherwise, performance could be affected.

XProc Transformation

This type of transformation specifies the parameters and location of an XProc script.

A sequence of transformations described by an XProc script can be executed with an XProc transformation scenario. To create an XProc transformation scenario, use one of the following methods:
• Use the Configure Transformation Scenario(s) (Ctrl + Shift + C (Command + Shift + C on OS X)) action from the toolbar or the Document > Transformation menu. Then click the New button and select XProc transformation.

• Go to Window > Show View and select Transformation Scenarios to display this view (on page 1768). Click the • New Scenario drop-down menu button and select XProc transformation.

Both methods open the New Scenario dialog box.

The upper part of the dialog box allows you to specify the Name of the transformation scenario and the following Storage options:

• Project Options (on page 3286) - The scenario is stored in the project file and can be shared with other users. For example, if your project is saved on a source versioning/sharing system (CVS, SVN, Source Safe, etc.) or a shared folder, your team can use the scenarios that you store in the project file.

• Global Options (on page 3283) - The scenario is saved in the global options that are stored in the user home directory and is not accessible to other users.

The lower part of the dialog box contains several tabs that allow you to configure the options that control the transformation.

Related Information:

• Integrating an External XProc Engine (on page 1747)

• Editing XProc Scripts (on page 1459)

XProc Tab

When you create a new transformation scenario (on page 1674) or edit an existing one (on page 1758), a configuration dialog box allows you to customize the transformation with various options in several tabs.

The XProc tab contains the following options:

XProc URL

Specify the source XSL file to be used by the transformation. You can specify the path by using the text field, its history drop-down, the Insert Editor Variables (on page 276) button, or the browsing actions in the Browse drop-down list. This URL is resolved
through the catalog resolver. If the catalog does not have a mapping for the URL, the file is used directly from its remote location.

**Processor**

Allows you to select the XProc engine to be used for the transformation. You can select the *Add-on for Calabash XProc engine* or a custom engine that is configured in the **XProc Preferences** page (on page 198).

**Inputs Tab (XProc Transformations)**

When you *create a new transformation scenario* (on page 1674) or *edit an existing one* (on page 1758), a configuration dialog box allows you to customize the transformation with various options in several tabs.

The **Inputs** tab contains a list with the ports that the XProc script uses to read input data. Use the **Filter** text box to search for a specific term in the entire ports collection.

Each input port has an assigned name in the XProc script. The XProc engine reads data from the URL specified in the **URL** column.

The following actions are available for managing the input ports:

**New**

Opens an **Edit** dialog box that allows you to add a new port and its URL. The *built-in editor variables* (on page 276) and *custom editor variables* (on page 284) can be used to specify the URL.

**Edit**

Opens an **Edit** dialog box that allows you to modify the selected port and its URL. The *built-in editor variables* (on page 276) and *custom editor variables* (on page 284) can be used to specify the URL.

**Delete**

Removes the selected port from the list. It is available only for new ports that have been added to the list.

**Parameters Tab (XProc Transformations)**

When you *create a new transformation scenario* (on page 1674) or *edit an existing one* (on page 1758), a configuration dialog box allows you to customize the transformation with various options in several tabs.

The **Parameters** tab presents a list of ports and parameters collected from the XProc script. The tab is divided into three sections:
**List of Ports**

In this section, you can use the **New** and **Delete** buttons to add or remove ports.

**List of Parameters**

This section presents a list of parameters for each port and includes columns for the parameter name, namespace URI, and its value. Use the **Filter** text box to search for a specific term in the entire parameters collection. You can use the **New** and **Delete** buttons to add or remove parameters. You can edit the value of each cell in this table by double-clicking the cell. You can also sort the parameters by clicking the column headers.

**Editor Variable Information**

The built-in editor variables (on page 276) and custom editor variables (on page 284) can be used for specifying the URI. The message pane at the bottom of the dialog box provides more information about the editor variables that can be used.

**Outputs Tab (XProc Transformations)**

When you create a new transformation scenario (on page 1674) or edit an existing one (on page 1758), a configuration dialog box allows you to customize the transformation with various options in several tabs.

The **Outputs** tab displays a list of output ports (along with the URL) collected from the XProc script. Use the **Filter** text box to search for a specific term in the entire ports collection. You can also sort the columns by clicking the column headers.

The following actions are available for managing the output ports:

**New**

Opens an **Edit** dialog box that allows you to add a new output port and its URL. An editor variable (on page 276) can be inserted for the URL by using the ✱. **Insert Editor Variables** button. There is also a **Show in transformation results view** option that allows you to select whether or not the results will be displayed in the output **Results view** (on page 357).

**Edit**

Opens an **Edit** dialog box that allows you to edit an existing output port and its URL. An editor variable (on page 276) can be inserted for the URL by using the ✱. **Insert Editor Variables** button. There is also a **Show in transformation results view** option that allows you to select whether or not the results will be displayed in the output **Results view** (on page 357).

**Delete**
Removes the selected output port from the list. It is available only for new ports that have been added to the list.

Additional options that are available at the bottom of this tab include:

**Open in Editor**

If this option is selected, the XProc transformation result is automatically opened in an editor panel.

**Open in Browser/System Application**

If this option is selected, you can specify a file to be opened at the end of the XProc transformation in the browser or system application that is associated with the file type. You can specify the path by using the text field, its history drop-down, the *Insert Editor Variables (on page 276)* button, or the browsing actions in the *Browse* drop-down list.

**Results**

The result of the XProc transformation can be displayed as a sequence in an output view with two sections:

- A list with the output ports on the left side.
- The content that correspond to the selected output port on the right side.

Figure 608. XProc Transformation Results View

---

**Options Tab (XProc Transformations)**

When you create a new transformation scenario *(on page 1674)* or edit an existing one *(on page 1758)*, a configuration dialog box allows you to customize the transformation with various options in several tabs.

The **Options** tab displays a list of the options collected from the XProc script. The tab is divided into two sections:

**List of Options**
This section presents a list of options and includes columns for the option name, namespace URI, and its value. Use the Filter text box to search for a specific term in the entire options collection. You can use the New and Delete buttons to add or remove options. You can edit the value of each cell in this table by double-clicking the cell. You can also sort the parameters by clicking the column headers. The names of edited options are displayed in bold.

**Editor Variable Information**

The built-in editor variables *(on page 276)* and custom editor variables *(on page 284)* can be used for specifying the URI. This section provides more information about the editor variables that can be used.

**Calabash XProc Processor for Generating PDF Output**

To generate PDF output from your XProc pipeline (when using the Calabash XProc processor), follow these steps:

1. Open the \([OXYGEN_INSTALL_DIR]/lib/xproc/calabash/engine.xml\) file.
2. Uncomment the \(<\text{system-property name}="com.xmlcalabash.fo-processor" value="com.xmlcalabash.util.FoXEP"/>\) system property.
3. Uncomment the \(<\text{system-property name}="com.renderx.xep.CONFIG" file="../tools/xep/xep.xml"/>\) system property. Edit the file attribute to point to the configuration file that is usually located in the XEP installation folder.
4. Uncomment the references to the XEP libraries. Edit them to point to the matching library names from the XEP installation directory.
5. Restart Oxygen XML Editor.

**Integrating an External XProc Engine**

Oxygen XML Editor includes a bundled version of the Calabash XProc engine that can be used for XProc transformations and validation, but you can also integrate other external XProc engines. When you edit an XProc transformation scenario, there is a Processor drop-down menu where you can select the XProc engine to be used for the transformation.

If you do not need the external XProc engine to be used for automatic validation or pass parameters/ports and it is not Java-based, you can simply add the external engine by using the XProc preferences page *(on page 198)*. Otherwise, if the external engine is Java-based, or it has validation support, or it has the ability to receive parameters or ports passed from the transformation, you need to integrate it using the plugin extension procedure below.

For example, there is a public project on GitHub that is an implementation for integrating Morgana XProc with Oxygen XML Editor: [https://github.com/xml-project/support-for-xmleditor](https://github.com/xml-project/support-for-xmleditor). Also, the
Javadoc documentation of the XProc API is available for download from the application website as a zip file: `xprocAPI.zip`.

To create an XProc integration project, follow these steps:

1. Move the `oxygen.jar` file from `{OXYGEN_INSTALL_DIR}/lib` to the `lib` folder of your project.
2. Implement the `ro.sync.xml.transformer.xproc.api.XProcTransformerInterface` interface.
3. Create a [Java archive (JAR) (on page 3283)](#) from the classes you created.
4. Create an `engine.xml` file according to the `engine.dtd` file. The attributes of the `engine` element are as follows:
   - **name** - The name of the XProc engine.
   - **description** - A short description of the XProc engine.
   - **class** - The complete name of the class that implements `ro.sync.xml.transformer.xproc.api.XProcTransformerInterface`.
   - **version** - The version of the integration.
   - **engineVersion** - The version of the integrated engine.
   - **vendor** - The name of the vendor / implementer.
   - **supportsValidation** - true if the engine supports validation (otherwise, false).

   The `engine` element has only one child, `runtime`. The `runtime` element contains several `library` elements with the `name` attribute containing the relative or absolute location of the libraries necessary to run this integration.

5. Create a new folder (for example, named `MyXprocEngine`) and place the `engine.xml` and all the libraries necessary to run the new integration in that folder.
6. Place that new folder (e.g. `MyXprocEngine`) inside a new plugin folder. This new plugin folder should also contain a `plugin.xml` file that points to the new engine folder (e.g. `MyXprocEngine`).

   The `plugin.xml` file would look like this (it is based on the `AdditionalXProcEngine` extension (on page 2591)):

```
<plugin
   id="morgana.xproc.addon"
   name="Contribute Morgana XProc"
   description="Contribute Morgana XProc"
   version="1.0"
   vendor="Syncro Soft"
   class="ro.sync.exml.plugin.Plugin"
   classLoaderType="preferReferencedResources">
```

<extension type="AdditionalXProcEngine" path="MyXprocEngine/"></extension>

Related Information:

- Editing XProc Scripts (on page 1459)
- Creating an XProc Transformation Scenario (on page 1742)
- Additional XProc Engine Plugin Extension (on page 2591)

XQuery Transformation

This type of transformation specifies the parameters and location of an XML source that the edited XQuery file is applied on.

**Note:** When the XML source is a native XML database, the source field of the scenario is empty because the XML data is read with XQuery-specific functions, such as `document()` . When the XML source is a local XML file, the URL of the file is specified in the input field of the scenario.

To create an XQuery transformation scenario, use one of the following methods:

- Use the Configure Transformation Scenario(s) (Ctrl + Shift + C (Command + Shift + C on OS X)) action from the toolbar or the Document > Transformation menu. Then click the New button and select XQuery transformation.
- Go to Window > Show View and select Transformation Scenarios to display this view (on page 1768). Click the New Scenario drop-down menu button and select XQuery transformation.

Both methods open the New Scenario dialog box.

The upper part of the dialog box allows you to specify the Name of the transformation scenario and the following Storage options:

- **Project Options (on page 3286)** - The scenario is stored in the project file and can be shared with other users. For example, if your project is saved on a source versioning/sharing system (CVS, SVN, Source Safe, etc.) or a shared folder, your team can use the scenarios that you store in the project file.

- **Global Options (on page 3283)** - The scenario is saved in the global options that are stored in the user home directory and is not accessible to other users.
The lower part of the dialog box contains several tabs that allow you to configure the options that control the transformation.

**XQuery Tab**

When you create a new transformation scenario (on page 1674) or edit an existing one (on page 1758), a configuration dialog box allows you to customize the transformation with various options in several tabs.

The **XQuery** tab contains the following options:

**XML URL**

Specifies the source XML file. You can specify the path by using the text field, its history drop-down, the Insert Editor Variables (on page 276) button, or the browsing actions in the Browse drop-down list. You can also use the Open in editor button to open the specified file in the editor panel. This URL is resolved through the catalog resolver. If the catalog does not have a mapping for the URL, then the file is used directly from its remote location.

**Note:** If the transformer engine is Saxon 9.x and a custom URI resolver is configured in the advanced Saxon preferences page (on page 204), the XML input of the transformation is passed to that URI resolver.

**XQuery URL**

Specifies the source XQuery file to be used for the transformation. You can specify the path by using the text field, its history drop-down, the Insert Editor Variables (on page 276) button, or the browsing actions in the Browse drop-down list. You can also use the Open in editor button to open the specified file in the editor panel. This URL is resolved through the catalog resolver. If the catalog does not have a mapping for the URL, the file is used directly from its remote location.

**Transformer**

This drop-down menu presents all the transformation engines available to Oxygen XML Editor for performing a transformation. These include the built-in engines and the external engines defined in the Custom Engines preferences page (on page 215). The engine you choose is used as the default transformation engine. Also, if an XSLT or XQuery document does not have an associated validation scenario, this transformation engine is used in the validation process (if it provides validation support).

**Advanced options**

Allows you to configure the advanced options of the Saxon HE/PE/EE engine (on page 1694) for the current transformation scenario. To configure the same options
globally, go to the Saxon-HE/PE/EE preferences page (on page 201). For the current transformation scenario, these **Advanced options** override the options configured in that preferences page.

**Parameters**

Opens the **Configure parameters** dialog box (on page 1693) for configuring the XQuery parameters. You can use the buttons in this dialog box to add, edit, or remove parameters. If the XQuery transformation engine is custom-defined, you can not use this dialog box to set parameters. Instead, you can copy all parameters from the dialog box using contextual menu actions and edit the custom XQuery engine to include the necessary parameters in the command line that starts the transformation process.

**Extensions**

Opens a dialog box for configuring the XQuery extension JARS or classes (on page 1694) that define extension Java functions or extension XSLT elements used in the transformation.

**XQuery Parameters**

The global parameters of the XQuery file used in a transformation scenario can be configured by using the **Parameters** button in the **XQuery** tab.

The resulting dialog box includes a table that displays all the parameters of the current XQuery file, along with their descriptions and current values. You can also add, edit, and remove parameters, and use the **Filter** text box to search for a specific term in the entire parameters collection. Note that edited parameters are displayed with their name in bold.

If the **XPath** column is selected, the parameter value is evaluated as an XPath expression before starting the XQuery transformation.

**Example:**

For example, you can use expressions such as:

```xml
(doc('test.xml')//entry
 //person[@atr='val']
```

**Note:**

1. The **doc** function solves the argument relative to the XQuery file location. You can use full paths or **editor variables** (on page 276) (such as **$cfdu** [current file directory]) to specify other locations: `doc('${cfdu}/test.xml')//*`
2. Only XPath functions are allowed.
Below the table, the following actions are available for managing the parameters:

**New**

Opens the **Add Parameter** dialog box that allows you to add a new parameter to the list. An *editor variable (on page 276)* can be inserted in the text box using the ▶️ **Insert Editor Variables** button. If the Evaluate as XPath option is selected, the parameter will be evaluated as an XPath expression.

**Edit**

Opens the **Edit Parameter** dialog box that allows you to edit the selected parameter. An *editor variable (on page 276)* can be inserted in the text box using the ▶️ **Insert Editor Variables** button. If the Evaluate as XPath option is selected, the parameter will be evaluated as an XPath expression.

**Unset**

Resets the selected parameter to its default value. Available only for edited parameters with set values.

**Delete**

Removes the selected parameter from the list. It is available only for new parameters that have been added to the list.

The bottom panel presents the following:

- The default value of the parameter selected in the table.
- A description of the parameter, if available.
- The system ID of the stylesheet that declares it.

Related Information:

- Editor Variables (on page 276)

**XQuery Extensions**

The **Extensions** button is used to specify the JAR (on page 3283) and classes that contain extension functions called from the XQuery file of the current transformation scenario. You can use the **Add**, **Edit**, and **Remove** buttons to configure the extensions.

An extension function called from the XQuery file of the current transformation scenario will be searched, in the specified extensions, in the order displayed in this dialog box. To change the order of the items, select the item to be moved and press the ▲ **Move up** or ▼ **Move down** buttons.
Advanced Saxon HE/PE/EE XQuery Transformation Options

The XQuery transformation scenario allows you to configure advanced options that are specific for the Saxon HE (Home Edition), PE (Professional Edition), and EE (Enterprise Edition) engines. They are the same options as those in the Saxon HE/PE/EE preferences page (on page 209) but they are configured as a specific set of transformation options for each transformation scenario, while the values set in the preferences page apply as global options. The advanced options configured in a transformation scenario override the global options (on page 3283) defined in the preferences page.

Saxon-HE/PE/EE Options

The advanced options for Saxon 9.8.0.12 Home Edition (HE), Professional Edition (PE), and Enterprise Edition (EE) are as follows:

**Use a configuration file (“-config”)**
Sets a Saxon 9.8.0.12 configuration file that is used for XQuery transformation and validation scenarios.

**Enable Optimizations (“-opt”)**
This option is selected by default, which means that optimization is enabled. If not selected, the optimization is suppressed, which is helpful when reducing the compiling time is important, optimization conflicts with debugging, or optimization causes extension functions with side-effects to behave unpredictably.

**Use linked tree model (“-tree:linked”)**
This option activates the linked tree model.

**Recoverable errors (“-warnings”)**
Specifies how dynamic errors are handled. The following options can be selected:

- **Recover silently (“silent”)** - Continues processing without reporting the error.
- **Recover with warnings (“recover”)** - Issues a warning but continues processing.
- **Signal the error and do not attempt recovery (“fatal”)** - Issues an error and stops processing.

**Strip whitespaces (“-strip”)**
Specifies how the strip whitespaces operation is handled. You can choose one of the following values:

- **All (“all”)** - Strips all whitespace text nodes from source documents before any further processing, regardless of any xml:space attributes in the source document.
- **Ignore** (*ignorable*) - Strips all *ignorable* whitespace text nodes from source documents before any further processing, regardless of any xml:space attributes in the source document. Whitespace text nodes are ignorable if they appear in elements defined in the DTD or schema as having element-only content.

- **None** (*none*) - Strips no whitespace before further processing.

### Saxon-PE/EE Options

The following advanced options are specific for Saxon 9.8.0.12 Professional Edition (PE) and Enterprise Edition (EE) only:

**Allow calls on extension functions** (*-ext*)

If selected, calls on external functions are allowed. Selecting this option is recommended in an environment where untrusted stylesheets may be executed. It also disables user-defined extension elements and the writing of multiple output files, both of which carry similar security risks.

### Saxon-EE Options

The advanced options that are specific for Saxon 9.8.0.12 Enterprise Edition (EE) are as follows:

**Validation of the source file** (*-val*)

Requests schema-based validation of the source file and of any files read using `document()` or similar functions. It can have the following values:

- **Schema validation** (*strict*) - This mode requires an XML Schema and allows for parsing the source documents with strict schema-validation enabled.

- **Lax schema validation** (*lax*) - If an XML Schema is provided, this mode allows for parsing the source documents with schema-validation enabled but the validation will not fail if, for example, element declarations are not found.

- **Disable schema validation** - This specifies that the source documents should be parsed with schema-validation disabled.

**Validation errors in the result tree treated as warnings** (*-outval*)

Normally, if validation of result documents is requested, a validation error is fatal. Selecting this option causes such validation failures to be treated as warnings.

**Write comments for non-fatal validation errors of the result document**

The validation messages for non-fatal errors are written (wherever possible) as a comment in the result document itself.

**Enable XQuery update** (*-update:(on|off)*)
This option controls whether or not XQuery update syntax is accepted. The default value is off.

**Backup files updated by XQuery (~-backup:(on|off))**

If selected, backup versions for any XML files updated with an XQuery Update are generated. This option is available when the Enable XQuery update option is selected.

**Other Options**

**Initializer class**

Equivalent to the `-init` Saxon command-line argument. The value is the name of a user-supplied class that implements the `net.sf.saxon.lib.Initializer` interface. This initializer is called during the initialization process, and may be used to set any options required on the configuration programmatically. It is particularly useful for tasks such as registering extension functions, collations, or external object models, especially in Saxon-HE where the option cannot be set via a configuration file. Saxon only calls the initializer when running from the command line, but the same code may be invoked to perform initialization when running user application code.

**FO Processor Tab (XQuery Transformations)**

When you create a new transformation scenario (on page 1674) or edit an existing one (on page 1758), a configuration dialog box allows you to customize the transformation with various options in several tabs.

The **FO Processor** tab contains the following options:

**Perform FO Processing**

Specifies whether or not an FO processor is applied (either the built-in Apache FOP engine or an external engine defined in Preferences) during the transformation.

**Input**

Choose between the following options to specify which input file to use:

- **XQuery result as input** - The FO processor is applied to the result of the XQuery transformation that is defined in the XQuery tab.
- **XML URL as input** - The FO processor is applied to the input XML file.

**Method**

The output format of the FO processing. The available options depend on the selected processor type.
Processor

Specifies the FO processor to be used for the transformation. It can be the built-in Apache FOP processor or an external processor (on page 216).

Output Tab (XQuery Transformations)

When you create a new transformation scenario (on page 1674) or edit an existing one (on page 1758), a configuration dialog box allows you to customize the transformation with various options in several tabs.

The Output tab contains the following options:

**Present as a sequence**

Selecting this option will reduce the time necessary to fetch the full results, as it will only fetch the first chunk of the results.

**Prompt for file**

At the end of the transformation, a file browser dialog box is displayed for specifying the path and name of the file that stores the transformation result.

**Save As**

The path of the file where the result of the transformation is stored. You can specify the path by using the text field, the Insert Editor Variables (on page 276) button, or the Browse button.

**Open in Browser/System Application**

If selected, Oxygen XML Editor automatically opens the result of the transformation in a system application associated with the file type of the result (for example, in Windows PDF files are often opened in Acrobat Reader).

**Note:** To set the web browser that is used for displaying HTML/XHTML pages, go to Options > Preferences > Global, and set it in the Default Internet browser field.

- **Output file** - When Open in Browser/System Application is selected, you can use this button to automatically open the default output file at the end of the transformation.

- **Other location** - When Open in Browser/System Application is selected, you can use this option to open the file specified in this field at the end of the transformation.

You can specify the path by using the text field, the Insert Editor Variables (on page 276) button, or the Browse button.

**Open in editor**
When this option is selected, at the end of the transformation, the default output file is opened in a new editor panel with the appropriate built-in editor type (for example, if the result is an XML file it is opened in the built-in XML editor, or if it is an XSL-FO file it is opened with the built-in FO editor).

**Show in results view as**

You can choose to view the results in one of the following:

- **XML** - If this is selected, Oxygen XML Editor displays the transformation result in an XML viewer panel at the bottom of the application window with syntax highlighting *(on page 178)*.
- **SVG** - If this is selected, Oxygen XML Editor displays the transformation result in an integrated SVG viewer in the Results panel *(on page 1502)* at the bottom of the application window and renders the result as an SVG image.
- **XHTML** - This option is only available if Open in Browser/System Application is not selected. If selected, Oxygen XML Editor displays the transformation result in a built-in XHTML browser panel at the bottom of the application window.

⚠️ **Important:** When transforming very large documents, you should be aware that selecting this option may result in very long processing times. This drawback is due to the built-in Java XHTML browser implementation. To avoid delays for large documents, if you want to see the XHTML result of the transformation, you should use an external browser by selecting the Open in Browser/System Application option instead.

- **Image URLs are relative to** - If Show in results view as XHTML is selected, this option specifies the path used to resolve image paths contained in the transformation result. You can specify the path by using the text field, the Insert Editor Variables *(on page 276)* button, or the Browse button.

**SQL Transformation**

This type of transformation specifies a database connection for the database server that runs the SQL file associated with the scenario. The data processed by the SQL script is located in the database.

To create an SQL transformation scenario, use one of the following methods:

- Use the Configure Transformation Scenario(s) *(Ctrl + Shift + C (Command + Shift + C on OS X))* action from the toolbar or the Document > Transformation menu. Then click the New button and select SQL transformation.
- Go to Window > Show View and select Transformation Scenarios to display this view *(on page 1768)*. Click the New Scenario drop-down menu button and select SQL transformation.
Both methods open the **New Scenario** dialog box. This dialog box allows you to configure the following options that control the transformation:

**Name**

The unique name of the SQL transformation scenario.

**Storage**

Allows you to select one of the following storage options:

- **Project Options (on page 3286)** - The scenario is stored in the project file and can be shared with other users. For example, if your project is saved on a source versioning/sharing system (CVS, SVN, Source Safe, etc.) or a shared folder, your team can use the scenarios that you store in the project file.
- **Global Options (on page 3283)** - The scenario is saved in the global options that are stored in the user home directory and is not accessible to other users.

**SQL URL**

Allows you to specify the URL of the SQL script. You can specify the path by using the text field, its history drop-down, the • Insert Editor Variables (on page 276) button, or the browsing actions in the • Browse drop-down list. You can also use the • Open in editor button to open the specified file in the editor panel.

**Connection**

Allows you to select a connection from a drop-down list. To configure a connection, use the • Advanced options button to open the Data Source preferences page (on page 229).

**Parameters**

Allows you to add or configure parameters for the transformation.

### Editing a Transformation Scenario

Editing a transformation scenario is useful if you need to configure some of its parameters.

**Note:** Since transformation scenarios that are associated with built-in frameworks (on page 3282) are read-only, to edit one of these scenarios you will need to duplicate it and edit the duplicated scenario (on page 1760).

To configure an existing transformation scenario, follow these steps:

1. Select the • Configure Transformation Scenario(s) (Ctrl + Shift + C (Command + Shift + C on OS X)) action from the toolbar or the Document > Transformation menu.
Step Result: The **Configure Transformation Scenario(s)** dialog box *(on page 1762)* is opened.

2. Select the particular transformation scenario and click the **Edit** button at the bottom of the dialog box or from the contextual menu.

Tip: You could also select the scenario and the **Edit** button in the **Transformation Scenarios view** *(on page 1768)* to achieve the same result.

Result: This will open an **Edit scenario** configuration dialog box that allows you to configure various options in several tabs, depending on the type of transformation scenario that was selected.

Transformation Types

The **Configure Transformation Scenario(s)** dialog box *(on page 1762)* contains a **Type** column that shows you the transformation type for each of the listed scenarios. Each type of transformation contains includes some tabs with various configuration options.

The following is a list of the transformation types and their particular tabs (click the name of each tab below to see details about all the options that are available):

- **DITA OT** - This type of transformation includes configurable options in the following tabs:
  - **Skins Tab** *(on page 3197)* (Available for **WebHelp Classic** and **WebHelp Classic with Feedback**)
  - **Templates Tab** *(on page 3199)* (Available for **WebHelp Responsive** and **WebHelp Responsive with Feedback**)
  - **FO Processor Tab** *(on page 3203)* (Available for PDF output)
  - **Parameters Tab** *(on page 3205)*
  - **Filters Tab** *(on page 3207)*
  - **Advanced Tab** *(on page 3208)*
  - **Output Tab** *(on page 3210)*
• **ANT** - This type of transformation includes configurable options in the following tabs:
  ◦ Options Tab (on page 1719)
  ◦ Parameters Tab (on page 1720)
  ◦ Output Tab (on page 1721)

• **XSLT** - This type of transformation includes configurable options in the following tabs:
  ◦ XSLT Tab (on page 1675)
  ◦ FO Processor Tab (on page 1684)
  ◦ Output Tab (on page 1685)

• **XProc** - This type of transformation includes configurable options in the following tabs:
  ◦ XProc Tab (on page 1743)
  ◦ Inputs Tab (on page 1744)
  ◦ Parameters Tab (on page 1744)
  ◦ Outputs Tab (on page 1745)
  ◦ Options Tab (on page 1746)

• **XQuery** - This type of transformation includes configurable options in the following tabs:
  ◦ XQuery Tab (on page 1691)
  ◦ FO Processor Tab (on page 1697)
  ◦ Output Tab (on page 1697)

Related Information:

• Creating New Transformation Scenarios (on page 1674)

• Duplicating a Transformation Scenario (on page 1760)

• Configure Transformation Scenario(s) Dialog Box (on page 1762)

• Applying Associated Transformation Scenarios (on page 1761)

Duplicating a Transformation Scenario

Duplicating a transformation scenario is useful for creating a scenario that is similar to an existing one or to edit a built-in transformation scenario.

To configure an existing transformation scenario, follow these steps:

1. Select the **Configure Transformation Scenario(s)** (Ctrl + Shift + C (Command + Shift + C on OS X)) action from the toolbar or the Document > Transformation menu.
Step Result: The Configure Transformation Scenario(s) dialog box (on page 1762) is opened.

2. Select the particular transformation scenario and click the Duplicate button at the bottom of the dialog box or from the contextual menu.

Tip: You could also select the scenario and the Duplicate button in the Transformation Scenarios view (on page 1768) to achieve the same result.

Result: This will open an Edit scenario configuration dialog box that allows you to configure various options in several tabs, depending on the type of transformation scenario that was selected. For information about all the specific options in the various tabs, see the Transformation Types section (on page 1759).

Related Information:

- Creating New Transformation Scenarios (on page 1674)
- Editing a Transformation Scenario (on page 1758)

Applying Associated Transformation Scenarios

If you have associated transformation scenarios for the current document (in the Configure Transformation Scenario(s) dialog box (on page 1762) or Transformation Scenarios view (on page 1768)), Oxygen XML Editor included an Apply Transformation Scenario(s) action that allows you to quickly apply the associated transformation scenarios on the current document. Note that if an association is not detected, this action will open the Configure Transformation Scenario(s) dialog box (on page 1762) where you can choose the scenarios you want to apply.

The Apply Transformation Scenario(s) action can be initiated from any of the following methods:

- Use the Ctrl + Shift + T (Command + Shift + T on OS X) keyboard shortcut.
- Click the Apply Transformation Scenario(s) button on the main toolbar.
- Click the Apply Transformation Scenario(s) button on the toolbar in the Transformation Scenarios view (on page 1768).
- Right-click a file in the Project view (on page 333) and select Transform > Apply Transformation Scenario(s).
- Use the Apply Associated button in the Configure Transformation Scenario(s) dialog box (on page 1762).

Related Information:
Configure Transformation Scenario(s) Dialog Box

You can use the Configure Transformation Scenario(s) dialog box for editing existing transformation scenarios (on page 1758) or creating new ones (on page 1674).

To open this dialog box, use the Configure Transformation Scenario(s) (Ctrl + Shift + C (Command + Shift + C on OS X)) action from the toolbar or the Document > Transformation menu.

Figure 610. Configure Transformation Scenario(s) Dialog Box

Top Section

The top section of the dialog box contains a filter that allows you to search through the scenarios list and the Settings button allows you to configure the following options:
Show all scenarios

Select this option to display all the available scenarios, regardless of the document they are associated with.

Show only the scenarios available for the editor

Select this option to only display the scenarios that Oxygen XML Editor can apply for the current document type.

Show associated scenarios

Select this option to only display the scenarios associated with the document you are editing.

ี้ Import scenarios

This option opens the Import scenarios dialog box that allows you to select the scenarios file that contains the scenarios you want to import. If one of the scenarios you import is identical to an existing scenario, Oxygen XML Editor ignores it. If a conflict appears (an imported scenario has the same name as an existing one), you can choose between two options:

- Keep or replace the existing scenario.
- Keep both scenarios.

Note: When you keep both scenarios, Oxygen XML Editor adds imported to the name of the imported scenario.

Export selected scenarios

Use this option to export selected scenarios individually. Oxygen XML Editor creates a scenarios file that contains the scenarios that you export. This is useful if you want to share scenarios with others or export them to another computer.

Middle Section

The middle section of the dialog box displays the scenarios that you can apply to the current document. You can view both the scenarios associated with the current document type and the scenarios defined at project level (on page 3286). The following columns are used to display the transformation scenarios:

- Association - The checkboxes in this column mark whether or not a transformation scenario is associated with the current document.
- Scenario - This column presents the names of the transformation scenarios.
• **Type** - If the **Show Type** contextual menu option is selected, this column displays the type of the transformation scenario. For further details about the types of transformation scenarios that are available in Oxygen XML Editor, see the **Transformation Types section (on page 1759)**.

• **Storage** - If the **Show Storage** contextual menu option is selected, this column displays where a transformation scenario is stored.

To sort each column you can left-click its header. The contextual menu of each header also includes the following actions:

**Show Type**

Use this option to display the transformation type of each scenario.

**Show Storage**

Use this option to display the storage location of the scenarios.

**Group by Association**

Select this option to group the scenarios depending on whether or not they are associated with the current document.

**Group by Type**

Select this option to group the scenarios by their type.

**Group by Storage**

Select this option to group the scenarios by their storage location.

**Ungroup all**

Select this option to ungroup all the scenarios.

**Reset Layout**

Select this option to restore the default settings of the layout.

Each transformation scenario listed in the middle section of the dialog box also includes the following contextual menu actions:

**Edit**

This button opens the **Edit Scenario configuration dialog box (on page 1758)** that allows you to configure the options of the transformations scenario.

**Duplicate**

Use this button to create a **duplicate transformation scenario (on page 1760)**.

**Remove**

Use this button to remove custom transformation scenarios.

**Change storage**
Allows you to change the storage location of a transformation scenario to Project Options (on page 3286) or Global Options (on page 3283). You are also able to keep the original storage location and make a copy of the selected scenario in the new storage location.

Import scenarios

This option opens the Import scenarios dialog box that allows you to select the scenarios file that contains the scenarios you want to import. If one of the scenarios you import is identical to an existing scenario, Oxygen XML Editor ignores it. If a conflict appears (an imported scenario has the same name as an existing one), you can choose between two options:

- Keep or replace the existing scenario.
- Keep both scenarios.

Note: When you keep both scenarios, Oxygen XML Editor adds imported to the name of the imported scenario.

Export selected scenarios

Use this option to export selected scenarios individually. Oxygen XML Editor creates a scenarios file that contains the scenarios that you export. This is useful if you want to share scenarios with others or export them to another computer.

Bottom Section

The bottom section of the dialog box contains the following actions and information:

Association follows selection

Select this checkbox to automatically associate selected transformation scenarios with the current document. This option can also be used for multiple selections.

Note: When this option is selected, the Association column is hidden.

New

This button allows you to create a new transformation scenario (on page 1674).

Edit

This button opens the Edit Scenario dialog box that allows you to configure the options of the transformations scenario. For information about all the specific options in the various tabs, see the Transformation Types section (on page 1759).

Note: If you try to edit a transformation scenario associated with a defined document type, Oxygen XML Editor displays a warning message to inform you that this
is not possible and gives you the option to create a duplicate transformation scenario (on page 1760) to edit instead.

**Duplicate**

Use this button to create a duplicate transformation scenario (on page 1760).

**Remove**

Use this button to remove transformation scenarios.

**Note:** Removing scenarios associated with a defined document type is not allowed.

**Associated scenarios section**

Displays the scenarios that are associated with the current document. Selecting a checkbox in the **Association** column (on page 1763) in the list of scenarios will add that scenario to this section. To remove a scenario from being associated with the current document, simply click the remove icon (✖) to the right of the scenario name.

**Save and close**

Saves the current configuration and closes the dialog box.

**Apply associated**

Use this button to apply the associated scenarios and run the transformation on the current document.

**Cancel**

Cancels any changes made in the dialog box and reverts to the previously saved association.

Your selections in the **Configure Transformation Scenarios(s)** dialog box are persistent so the configured associations for the current document will be remembered after the dialog box is closed.

**Related Information:**

- Editing a Transformation Scenario (on page 1758)
- Duplicating a Transformation Scenario (on page 1760)
- Applying Associated Transformation Scenarios (on page 1761)
- Creating New Transformation Scenarios (on page 1674)
Batch Transformations

A transformation action can be applied on a batch of selected files from the contextual menu of the Project view without having to open the files involved in the transformation. You can apply the same scenario to a batch of files or multiple scenarios to a single file or batch of files.

1. (Optional, but recommended) Organize the files you want to transform in logical folders.
   a. Create a logical folder in the Project view by using the New > Logical Folder action from the contextual menu of the root file.
   b. Add files you want to transform to the logical folder by using the Add Files or Add Edited File actions from the contextual menu of the logical folder.

   Note: You can skip this step if the files are already in a dedicated folder that does not include any additional files or folders. You can also manually select the individual files in the Project view each time you want to transform them, but this can be tedious.

2. Select the files you want to transform (or the newly created logical folder) and from the contextual menu, select Transform > Configure Transformation Scenario(s) to choose one or more transformation scenarios to be applied on all the files in the logical folder.

3. Use Oxygen XML Editor editor variables to specify the input and output files. This ensures that each file from the selected set of resources is processed and that the output is not overwritten by the subsequent processing.
   a. Edit the transformation scenario to make sure the appropriate editor variable is assigned for the input file. For example, for a DocBook PDF transformation, make sure the XML URL input box is set to the ${currentFileURL} editor variable. For a DITA PDF transformation, make sure the args.input parameter is set to the ${cf} editor variable.
   b. Edit the transformation scenario to make sure the appropriate editor variable is assigned for the output file. For example, for an XML transformation with XSLT, switch to the Output tab and set the path of the output file using a construct of editor variables, such as ${cfd}/${cfn}.html.

4. Now that logical folder has been associated with one or more transformation scenarios, whenever you want to apply the same batch transformation you can select Transform > Transform with from the contextual menu and the same previously associated scenario(s) will be applied.
5. If you want a different type of transformation to be applied to each file inside the logical folder, associate individual scenarios for each file and select **Transform > Apply Transformation Scenario(s)** from the contextual menu of the logical folder.

Related Information:

- Editor Variables (on page 276)

Sharing Transformation Scenarios

The transformation scenarios and their settings can be shared with other users by saving them at **project level (on page 3286)** or by exporting them to a specialized scenarios file (on page 276) that can then be imported. When you create a new transformation scenario or edit an existing one, there is a **Storage** option to control whether the scenarios are stored in **Project Options (on page 3286)** or **Global Options (on page 3283)**.

Selecting **Project Options (on page 3286)** stores the scenario in the project file and can be shared with other users that have access to the project. If your project is saved on a source versioning system (CVS, SVN, Source Safe, etc.) then your team will have access to the scenarios that you define. When you create a scenario at the project level, the URLs from the scenario become relative to the project URL.

Selecting **Global Options (on page 3283)** stores the scenario in the global options that are stored in the user home directory.

You can also change the storage options on existing transformation scenarios by using the **Change storage action (on page 1762)** from the contextual menu of the list of scenarios.

Related Information:

- Sharing Application Settings (on page 266)

Transformation Scenarios View

You can manage the transformation scenarios by using the **Transformation Scenarios** view. To open this view, select **Window > Show View > Transformation Scenarios**.
Oxygen XML Editor supports multiple scenarios association. To associate multiple scenarios with a document, select the checkboxes in front of each scenario. You can also associate multiple scenarios with a document from the Configure Transformation Scenario(s) dialog box (on page 1762).

The Transformation Scenarios view presents both global and project-level (on page 3286) scenarios. By default, Oxygen XML Editor presents the items in the following order:

1. Scenarios that match the current framework (on page 3282).
2. Scenarios that match the current project.
3. Scenarios that match other frameworks.

Toolbar/Contextual Menu Actions and Options

The following actions and options are available on the toolbar or in the contextual menu:

- **Apply selected scenarios**
  
  Select this option to run the current transformation scenario.

- **Debug selected scenario**
Select this option to switch to the **Debugger perspective** *(on page 3285)* and initialize it with the parameters from the scenario (the XML, XSLT, or XQuery input, the transformation engine, the XSLT parameters).

**New**

This drop-down menu contains a list of the **scenarios that you can create** *(on page 1674)*. Oxygen XML Editor determines the most appropriate scenarios for the current type of file and displays them at the beginning of the list, followed by the rest of the scenarios.

**Duplicate**

Adds a new scenario to the list that is a duplicate of the current scenario. It is useful for creating a scenario that is similar to an existing one.

**Edit**

Opens the dialog box that allows you to configure various options in several tabs, depending on the type of transformation scenario that was selected. For information about all the specific options in the various tabs, see the **Transformation Types section** *(on page 1759)*.

**Remove**

Removes the current scenario from the list. This action is also available by using the **Delete** key.

**Change storage**

Use this option to change the storage location of the selected scenario. You are also able to keep the original storage location and make a copy of the selected scenario in the target storage location.

**Import scenarios**

This option opens the **Import scenarios** dialog box that allows you to select the **scenarios** file that contains the scenarios you want to import. If one of the scenarios you import is identical to an existing scenario, Oxygen XML Editor ignores it. If a conflict appears (an imported scenario has the same name as an existing one), you can choose between two options:

- Keep or replace the existing scenario.
- Keep both scenarios.

**Note:** When you keep both scenarios, Oxygen XML Editor adds **imported** to the name of the imported scenario.

**Export selected scenarios**
Use this option to export transformation and validation scenarios individually. Oxygen XML Editor creates a scenarios file that contains the scenarios that you export.

### Settings

This drop-down menu allows you to configure the following options (many of these options are also available if you right-click the name of a column):

#### Show all scenarios

Select this option to display all the available scenarios, regardless of the document they are associated with.

#### Show only the scenarios available for the editor

Select this option to only display the scenarios that Oxygen XML Editor can apply for the current document type.

#### Show associated scenarios

Select this option to only display the scenarios associated with the document you are editing.

### Change storage

Use this option to change the storage location of the selected scenario to Project Options (on page 3286) or Global Options (on page 3283). You are also able to keep the original storage location and make a copy of the selected scenario in the new storage location.

### Import scenarios

This option opens the Import scenarios dialog box that allows you to select the scenarios file that contains the scenarios you want to import. If one of the scenarios you import is identical to an existing scenario, Oxygen XML Editor ignores it. If a conflict appears (an imported scenario has the same name as an existing one), you can choose between two options:

- Keep or replace the existing scenario.
- Keep both scenarios.

Note: When you keep both scenarios, Oxygen XML Editor adds imported to the name of the imported scenario.

### Export selected scenarios

Use this option to export selected scenarios individually. Oxygen XML Editor creates a scenarios file that contains the scenarios that you
export. This is useful if you want to share scenarios with others or export them to another computer.

**Show Type**

Use this option to display the transformation type of each scenario.

**Show Storage**

Use this option to display the storage location of the scenarios.

**Group by Association**

Select this option to group the scenarios depending on whether or not they are associated with the current document.

**Group by Type**

Select this option to group the scenarios by their type.

**Group by Storage**

Select this option to group the scenarios by their storage location.

**Ungroup all**

Select this option to ungroup all the scenarios.

**Reset Layout**

Select this option to restore the default settings of the layout.

Your selections in the **Transformation Scenarios** view are persistent so the configured associations for the current document will be remembered whenever the document is opened.

**Related Information:**

- Editing a Transformation Scenario *(on page 1758)*
- Creating New Transformation Scenarios *(on page 1674)*

**WebHelp Output Customization**

**Oxygen XML WebHelp** provides the ability to generate two different types of output, **WebHelp Responsive** and **WebHelp Classic**. Both types include a feedback-enabled variant and each has its own set of options and features. The **WebHelp Responsive** variants are available for DITA documents while the **WebHelp Classic** variants are available for both DITA and DocBook.
### WebHelp System Feature Matrix

<table>
<thead>
<tr>
<th>Features</th>
<th>Responsive w/ Feedback</th>
<th>WebHelp System Variants</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Responsive</td>
<td>Classic w/ Feedback</td>
</tr>
<tr>
<td>Desktop Systems</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>Mobile Devices</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>Built-in Skins</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>Built-in Templates</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>Search Capabilities</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>Modern Layout</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>Adaptable to Any Screen Size</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>Comments Section</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>DITA Documents</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>DocBook Documents</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>Tri-Pane Frames or Frameless Version</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
</tbody>
</table>

### WebHelp Classic Output

The **WebHelp Classic** variant is designed for desktop systems when feedback from users is not necessary and it is available for DocBook and DITA document types. The **WebHelp Classic with Feedback** variant also includes a feedback system that allows your users to make comments and allows you to manage and reply to them. This section contains information about configuring a WebHelp Classic system and customizing the output.

This type of WebHelp system can be generated by using one of the following transformation scenarios:

- DITA Map WebHelp Classic transformation scenario *(on page 1652)*
- DITA Map WebHelp Classic with Feedback transformation scenario *(on page 1653)*
- DocBook WebHelp Classic transformation scenario *(on page 1668)*
- DocBook WebHelp Classic with Feedback transformation scenario *(on page 1668)*

### WebHelp Classic Output Layout and Features

#### Layout of the WebHelp Classic System Interface

The layout of the **WebHelp Classic** system is comprised of the following components:

- **Left Pane or Frame**
This section on the left side of the help system includes the following tabs:

**Content**

A typical table of contents style presentation of your content. You can use the [Expand all]/[Collapse all] buttons to expand or collapse all the topics presented in the Table of Contents.

*Note:* You can enhance the appearance of items in the *Table of Contents*. See the *Customizing WebHelp Classic Output chapter* (on page 1806) for more details.

**Index**

Presents the index terms for your content. If your content does not contain any `indexterm` elements, this tab is not generated.

**Search Results**

This tab is generated when the *Search* field is used. It presents the search results in the form of links to topics where the search terms are found, along with a rating scheme for each result. For more details, see the *Search Feature section* (on page 1777).

**Upper Pane or Frame**

The upper section of the help system includes the following features:

**Search Field**

Use this feature to perform searches in your content. When you enter search terms in this field, the results are displayed in the **Search Results** tab in the left section of the help system, along with a rating scheme for each result. For more details, see the *Search Feature section* (on page 1777).

**Frames Option**

Click on this option to display the output rendered in HTML frames.

**Print Option**

Opens a dialog box with various printing options and a print preview.

**Navigation Links**

You can navigate through the content of your output using the navigation links or arrows in the upper-right part of the page. These arrows allow you to move to the ‹ Parent topic, ‹ Previous topic, or ․ Next topic. Links to the parent topics of the currently opened topic are also presented at
the top of the page. For DITA output, these navigation links are controlled by the `collection-type` attribute. For example, if you set `collection-type="sequence"` on a parent topic reference, navigation links will be generated in the output for that topic and all of its child topics.

**Tip:** To hide the **Parent**, **Next**, and **Previous** links, you can edit the transformation scenario and set the value of the `args.hide.parent.link` parameter to `yes`.

**Main Pane or Frame**

The content of the help pages are rendered and displayed in this main section.

**Figure 612. WebHelp Classic Output**

![WebHelp Classic Output](image)

**WebHelp Classic with Feedback Enabled**

The **WebHelp Classic with Feedback** variant also contains a **Comments** section at the bottom of each topic. This section is where you can interact with users through a comment system. For information about deploying a feedback-enabled system, see [Deploying a Feedback-Enabled System](on page 1873).
Figure 613. WebHelp Classic with Feedback Comments Section

To add a new comment, click the Add New Comment button, or click Reply to add a comment to an existing thread. You can click on the Log in button on the right side of this bar to be authenticated as a user and your user name will be included in any comments that you add. If you do not have a user name, you can click on the Sign Up button to create a new user.

After you log in, your name and user name are displayed in the Comments bar, along with the Log off and Edit buttons. Click the Edit button to open the User Profile dialog box where you can customize the following options:

- **Your Name** - You can use this field to edit the initial name that you used to create your user profile.
- **Your email address** - You can use this field to edit the initial email address that you used to create your profile.
- You can choose to receive an email in the following situations:
  - When a comment is left on a page that you commented on.
  - When a comment is left on any topic in the WebHelp Classic system.
  - When a reply is left to one of my comments.
- **New Password** - Allows you to enter a new password for your user account.
Note: The Current Password field from the top of the User Profile is mandatory if you want to save the changes you make.

If you are an administrator, you can manage user information and comments. For more information, see Managing Users and Comments in a Feedback-Enabled System (on page 1877).

WebHelp Classic Search Engine

Search Rules

Rules that are applied during a search include:

- You can use quotes to perform an exact search for multiple word phrases (for example, "grow flowers" will only return results if both words are found consecutively and exactly as they are typed in the search field). This type of search is known as a phrase search.
- Boolean Search is supported using the following operators: and, or, not. When there are two adjacent search terms without an operator, or is used as the default search operator (for example, grow flowers is the same as grow or flowers).
- The space character separates keywords (an expression such as grow flowers counts as two separate keywords: grow and flowers).
- \texttt{indexterm} and \texttt{keywords} DITA elements are an effective way to increase the ranking of a page (for example, content inside a \texttt{keywords} element weighs more than an \texttt{H1 HTML} element).
- Words composed by merging two or more words with colon (""), minus (""), underline (""), or dot ("") characters count as a single word.
- Your search terms should contain two or more characters (note that stop words will be ignored). This rule does not apply to CJK (Chinese, Japanese, Korean) languages.
- When searching for multi-word phrases in CJK (Chinese, Japanese, Korean) languages that often have multiple words appear in strings without a space separator, you need to add a space to separate the words. Otherwise WebHelp will not find results. For example, Chinese uses a specialized character for space separators, but the current WebHelp implementation cannot detect such specialized characters, so to search for #### (it translates as "before you begin" or "before start"), you have to enter ## ## (notice the space between the second and third symbols) in the search field.

5-Star Rating Mechanism and Sorting

The Search feature is also enhanced with a rating mechanism that computes scores for every result that matches the search criteria. These scores are then translated into a 5-star rating scheme and the stars are displayed to the right of each result. The search results are sorted depending on the following:

- Search entries that satisfy the phrase search criterion are presented first.
• The number of keywords found in a single page (the higher the number, the better).
• The context (for example, a word found in a title, scores better than a word found in unformatted text). The search ranking order, sorted by relevance is as follows:
  ◦ The search term is included in a meta keyword.
  ◦ The search term is in the title of the page.
  ◦ The search term is in bold text in a paragraph.
  ◦ The search term is in normal text in a paragraph.

Excluded Terms

To improve performance, the Search feature excludes certain stop words. For example, the English version of the stop words includes: a, an, and, are, as, at, be, but, by, for, if, in, into, is, it, no, not, of, on, or, such, that, the, their, then, there, these, they, this, to, was, will, with.

WebHelp Classic Search Results Tab

When you enter search terms in the Search field at the top of the help system, the results are displayed in the Search Results tab in the left section. When you click on a result in the Search Results tab, that result is displayed in the main pane with the search terms highlighted. If you press Enter with the Search field empty, the highlights are removed.

Figure 614. WebHelp Classic Search Results Tab
Missing Terms

If you enter multiple search terms (other than stop words), for any result that the search engine found at least one term but not one or more of the other terms, the Missing terms will be listed below each result.

Tag Element Scoring Values

HTML tag elements are also assigned a scoring value and these values are evaluated for the search results. For information about editing these values, see How to Change Element Scoring in Search Results (on page 1825).

Browser Compatibility

This output format is compatible with the most recent versions of the following common browsers:

• Edge
• Internet Explorer (IE 10 or newer)
Important: Due to some security restrictions in certain browsers (Google Chrome and Internet Explorer), WebHelp Classic pages loaded from the local system (through URLs of the file:///... format) may not work properly. It is recommended that you load WebHelp Classic pages in Google Chrome or Internet Explorer only from a web server (with a URL such as http://your.server.com/webhelp/index.html or http://localhost/web_pages/index.html).

Warning: Due to some restrictions in web browsers regarding JavaScript code, the frameless version (index.html start page) of the WebHelp Classic system should only be loaded from a web server (with a URL such as http://your.server.com/webhelp/index.html or http://localhost/web_pages/index.html). When loading WebHelp Classic pages from the local file system, the frameset version (index_frames.html start page) of the WebHelp Classic system should be used instead (file:///...).

Deploying a Feedback-Enabled System

System Requirements

The feedback-enabled WebHelp system requires a standard server deployment. You can request this from your server administrator and it requires the following system components:

- A Web server (such as Apache Web Server)
- A MySQL or MariaDB database server
- A database admin tool (such as phpMyAdmin)
- PHP Version 5.1.6 or later

The WebHelp system supports most of the recent versions of the following browsers: Chrome, Firefox, Edge, Internet Explorer, Safari, Opera.

Create WebHelp with Feedback Database

The WebHelp with Feedback system needs a database to store user details and the actual feedback, and a user added to it with all privileges. After this is created, you should have the following information:

- Database name
- Username
Exactly how you create the database and user depends on your web host and your particular needs.

**Example:**

The following procedure uses *phpMyAdmin* to create a MySQL database for the feedback system and a MySQL user with privileges for that database. The feedback system uses these credentials to connect to the database.

**Using *phpMyAdmin* to create a database:**

1. Access the *phpMyAdmin* instance running on your server.
2. Click *Databases* (in the right frame) and then create a *database*. You can give it any name you want (for example *comments*).
3. Create a user with connection privileges for this database.
4. Under *localhost*, in the right frame, click *Privileges* and then at the bottom of the page click the *reload the privileges* link.

**Deploying the WebHelp with Feedback Output**

If you have a web server configured with PHP and MySQL, you can deploy the *WebHelp with Feedback* output by following these steps:

1. Connect to your server using an FTP client.
2. Locate the home directory (from now on, referred to as *DOCUMENT_ROOT*) of your server.
3. Copy the transformation output folder into the *DOCUMENT_ROOT* folder.
4. Rename it to something relevant (for example, *myProductWebHelp*).
5. Open the output folder (for example, `http://[YOUR_SERVER]/myProductWebHelp/`). You are redirected to the installation wizard. Proceed with the installation as follows:
   a. Verify that the prerequisites are met.
   b. Press *Start Installation*.
   c. Configure the *Deployment Settings* section. Default values are provided, but you should adjust them as needed.

   **Tip:** You can change some of the options later. The installation creates a *config.php* file in `[/OXYGEN_WEBHELP_INSTALL_DIR]/feedback/resources/php/config/config.php` where all your configuration options are stored.

   d. Configure the *MySql Database Connection Settings* section. Use the information (database name, username, password) from the *Create WebHelp with Feedback Database* section (on page 1874) to fill-in the appropriate text boxes.
**Warning:** Selecting the **Create new database structure** option will overwrite any existing data in the selected database, if it already exists. Therefore, it is useful the first time you install the **WebHelp with Feedback** system, but you do not want to select this option on subsequent deployments.

e. If you are using a domain (such as *OpenLDAP* or *Active Directory*) to manage users in your organization, select the **Enable LDAP Authentication** option. This will allow you to configure the LDAP server, which will provide information and credentials for users who will access the WebHelp system. Also, this will allow you to choose which of the domain users will have administrator privileges.

f. If the **Create new database structure** option is selected, the **Create WebHelp Administrator Account** section becomes available. Here you can set the administrator account data. The administrator is able to moderate new posts and manage WebHelp users.

The same database can be used to store comments for multiple **WebHelp with Feedback** deployments. If a topic is available in multiple deployments and there are comments associated with it, you can choose to display the comments in all deployments that share the database. To do this, select the **Display comments from other products** option. In the **Display comments from** section, a list with the deployments sharing the same database is displayed. Select the deployments allowed to share common feedback.

**Note:** You can restrict the displayed comments of a product depending on its version. If you have two products that use the same database and you restrict one of them to display comments starting from a certain version, the comments of the other product are also displayed from the specified version onwards.

g. Press **Next Step**.

h. Remove the installation folder from your web server.

**Important:** When you publish subsequent iterations of your **WebHelp with Feedback** system, you will not upload the `/install` folder in the output, as you only need it uploaded the first time you create the installation. On subsequent uploads, you will just upload the other output files.

i. In your Web browser, go to your **WebHelp with Feedback** system main page.

**Testing Your WebHelp with Feedback System**

To test your system, create a user and post a comment. Check to see if the notification emails are delivered to your email inbox.

**Note:** To read debug messages generated by the system:

1. Enable **JavaScript** logging by doing one of the following:
Open the `log.js` file, locate the `var log= new Log(Level.NONE);` line, and change the logging level to: `Level.INFO`, `Level.DEBUG`, `Level.WARN`, or `Level.ERROR`.

2. Inspect the PHP and Apache server log files.

### Documentation Product ID and Version

When you run a **WebHelp with Feedback** transformation scenario, by default you are prompted for a documentation product ID and version number. This is needed when multiple WebHelp systems are deployed on the same server. Think of your WebHelp output as a *product*. If you have three different WebHelp outputs, you have three different *products* (each with their own unique documentation product ID). This identifier is included in a configuration file so that comments are tied to a particular output (product ID and version number).

**Note:** The **WebHelp with Feedback** installation includes a configuration option (Display comments from other products) that allows you to choose to have comments visible in other specified *products*.

### Refreshing the Content of a Feedback-Enabled System

It is common to update the content of an existing installation of a **WebHelp with Feedback** system on a regular basis. In this case, reinstalling the whole system is not a viable option since it might result in the loss of the comments associated with your topics. Also, reconfiguring the system every time you want to refresh it may be time consuming.

Fortunately, you can refresh just the content without losing the comments or the initial system configuration. To do so, follow these steps:

1. Execute the transformation scenario that produces the **WebHelp with Feedback** output directory.
2. Go to the output directory (specified in the **Output** tab of the transformation scenario), locate the `feedback/resources/php/config/config.php` file, and delete it.
3. Locate the `feedback/install` directory and delete it.
4. Copy the remaining structure of the output folder and paste it into your **WebHelp with Feedback** system installation directory, overwriting the existing content.
Managing Users and Comments in a Feedback-Enabled System

When you installed the WebHelp with Feedback system the first time (assuming the Create new database structure option (on page 1875) was selected), you should have been prompted to create an administrator account (or a user named administrator was created by default). As an administrator, you have access to manage comments posted in your feedback-enabled WebHelp system. You can also manage the user information (such as role, status, or notification options).

To manage comments and user information, follow these steps:

1. At the bottom of each specific topic there is a Comments navigation bar and on the right side there is a Log in button. Click this button and log in with your administrator credentials. This gives you access to an Admin Panel button.
2. Click the Admin Panel button to display an administration page.

Figure 615. Administrative Page

3. Use this page to manage the following options:

   **Delete Orphaned Comments**
   
   Allows you to delete comments that are no longer associated with a topic in your WebHelp system.

   **Delete Pending Users**
   
   Allows you to delete user accounts that you do not wish to activate.

   **View All Posts**
   
   Allows you to view all the comments that are associated with topics in your WebHelp system.

   **Export Comments**
   
   Allows you to export all posts associated with topics in your WebHelp system into an XML file.

   **Set Version**
   
   Use this action to display comments starting with a particular version.
Manage User Information

To edit the details for a user, click on the corresponding row. This opens a window that allows you to customize the following information associated with the user:

**Name**

The full name of the user.

**Level**

Use this field to modify the privilege level (role) for the selected user. You can choose from the following:
- **User** - Regular user, able to post comments and receive e-mail notifications.
- **Moderator** - In addition to the regular User rights, this type of user has access to the Admin Panel where a moderator can view, delete, export comments, and set the version of the feedback-enabled WebHelp system.
- **Admin** - Full administrative privileges. Can manage WebHelp-specific settings, users, and their comments.

**Company**

The name of the organization associated with the user.

**E-Mail**

The contact email address for the user. This is also the address where the WebHelp system sends notifications.

**WebHelp Notification**

When selected, the user receives notifications when comments are posted anywhere in your feedback-enabled WebHelp system.

**Reply Notification**

When selected, the user receives notifications when comments are posted as a reply to one of their comments.

**Page Notification**

When selected, the user receives notifications when comments are posted on a topic where they previously posted a comment.

**Date**

The date the user registered is displayed.

**Status**
Use this drop-down list to change the status of the user. You can choose from the following:

- **Created** - The user is created but does not yet have any rights for the feedback-enabled WebHelp system.
- **Validated** - The user is able to use the feedback-enabled WebHelp system.
- **Suspended** - The user has no rights for the feedback-enabled WebHelp system.

⚠️ **Warning:** The key used for identifying the page a comment is attached to is the relative file path to the output page. Since the output file and folder names mirror the source, any change to the file name (or its folder) in the source will affect the comments associated with that WebHelp page. If you change the file name or path, the comment history for that topic will become orphaned (a change to the topic ID does not affect the comment history).

### Context-Sensitive WebHelp Classic System

Context-sensitive help systems assist users by providing specific informational topics for certain components of a user interface, such as a button or window. This mechanism works based on mappings between a unique ID defined in the topic and a corresponding HTML page.

### Generating Context-Sensitive Help

When WebHelp Classic output is generated, the transformation process produces an XML mapping file called `context-help-map.xml` and copies it in the output folder of the transformation. This XML file maps an ID to a corresponding HTML page through an `appContext` element, as in the following example:

```xml
<map productID="oxy-webhelp" productVersion="1.1">
  <appContext helpID="myapp-functionid1" path="tasks/app-help1.html"/>
  <appContext helpID="myapp-functionid2" path="tasks/app-help1.html"/>
  ...
</map>
```

The possible attributes are as follows:

- **helpID**
  
  A Unique ID provided by a topic from two possible sources (`resourceid` element or the `id` attribute that is set on the topic root element):

  ```xml
  resourceid
  ```
The `resourceid` element is mapped into the `appContext` element and can be specified in either the `topicref` within a DITA map or in a prolog within a DITA topic. The `resourceid` element accepts the following attributes:

- **appname** - A name for the external application that references the topic. If this attribute is not specified, its value is considered to be empty ("").
- **appid** - An ID used by an application to identify the topic.
- **id** - Specifies a value that is used by a specific application to identify the topic, but this attribute is ignored if an `appid` attribute is used. Also, starting with DITA 1.3, the `id` attribute was deprecated in favor of the `appid` attribute.

**Note:** Multiple `appid` values can be associated with a single `appname` value (and multiple `appname` values can be associated with a single `appid` value), but the values for both attributes work in combination to specify a specific ID for a specific application, and therefore each combination of values for the `appid` and `appname` attributes should be unique within the context of a single root map (on page 3287). For example, suppose that you need two different functions of an application to both open the same WebHelp page.

**Example: resourceid Specified in a DITA Map**

The `resourceid` element can be specified in a `topicmeta` element within a `topicref`.

```xml
<map title="App Help">  
   <topicref href="app-help1.dita" type="task">  
      <topicmeta>  
         <resourceid appname="myapp" appid="functionid1"/>  
         <resourceid appname="myapp" appid="functionid2"/>  
      </topicmeta>  
   </topicref>  
</map>
```

**Example: resourceid Specified in a DITA Topic**

The `resourceid` element can be specified in a `prolog` element within a DITA topic.

```xml
<task id="app-help1">  
```
For more information about the `resourceid` element, see DITA Specifications: `<resourceid>`.

**id**

If a `resourceid` element is not declared in the DITA map or DITA topic (as described above), the `id` attribute that is set on the topic root element is mapped into the `appContext` element.

⚠️ **Important:** You should ensure that these defined IDs are unique in the context of the entire DITA project. If the IDs are not unique, the transformation scenario will display warning messages in the transformation console output and the help system will not work properly.

**path**

The path to a corresponding WebHelp page. This path is relative to the location of the `context-help-map.xml` mapping file.

**productID** *(Applicable only if you are using the WebHelp Classic with Feedback transformation scenario)*

The ID of the product for your documentation project.

**productVersion** *(Applicable only if you are using the WebHelp Classic with Feedback transformation scenario)*

The version of the product for your documentation project.

There are two ways of implementing context-sensitive help in your system:

- The XML mapping file can be loaded by a PHP script on the server side. The script receives the `contextId` value and will look it up in the XML file.
- Invoke one of the WebHelp system files `index.html` or `index_frames.html` and pass the `contextId` parameter with a specific value. The WebHelp system will automatically open the help page associated with the value of the `contextId` parameter.

**Note:** The `contextId` parameter is not case-sensitive.
The following example will open a frameless version of the WebHelp system showing the page associated with the ID dialog1ID:

```
index.html?contextId=dialog1ID
```

The following example will open a frameset version of the WebHelp system showing the page associated with the ID view1ID:

```
index_frames.html?contextId=view1ID
```

Tip: You can use an anchor (on page 3279) in the contextId parameter to jump to a specific section in a document. For example, contextId=topicID#anchor.

Context-Sensitive Queries

You can use the URL field in your browser to search for topics in a context-sensitive WebHelp system with the assistance of the following parameters:

- **contextId** - The WebHelp JavaScript engine will look for this value in the context-help-map.xml mapping file and load the corresponding help page.

  Note: You can use an anchor (on page 3279) in the contextId parameter to jump to a specific section in a document. For example, contextId=topicID#anchor.

- **appname** - You can use this parameter in conjunction with contextId to search for this value in the corresponding appname attribute value (on page 1787) in the mapping file.

```
http://localhost/webhelp/index.html?contextId=topicID&appname=myApplication
```

Generating WebHelp Classic Output for DITA

The publishing process can be initiated from a transformation scenario within Oxygen XML Editor/Author, from a command line outside Oxygen XML Editor/Author, or from an integration server.

Running from Oxygen XML Editor/Author

To publish DITA content to WebHelp Classic output from a transformation scenario inside Oxygen XML Editor/Author, use one of the following procedures, depending on whether or not you want a feedback section in your output.

**WebHelp Classic Output**

To publish a DITA map (on page 3281) as a WebHelp Classic system, follow these steps:
1. Select the Configure Transformation Scenario(s) action from the DITA Maps Manager toolbar.

2. Select the DITA Map WebHelp Classic scenario from the DITA Map section.

3. If you want to configure the transformation, click the Edit button.

**Step Result:** This opens an Edit scenario configuration dialog box that allows you to configure various options in the following tabs:

- **Templates Tab** - This tab contains a set of built-in skins that you can use for the layout of your WebHelp system output.
- **Parameters Tab** - This tab includes numerous transformation parameters that can be set to customize your WebHelp system output.
- **Filters Tab** - This tab allows you to filter certain content elements from the generated output.
- **Advanced Tab** - This tab allows you to specify some advanced options for the transformation scenario.
- **Output Tab** - This tab allows you to configure options that are related to the location where the output is generated.

4. Click Apply associated to process the transformation.

When the DITA Map WebHelp Classic transformation is complete, the output is automatically opened in your default browser.

To further customize this transformation, you can edit various parameters, including the following most commonly used ones:

### WebHelp Classic with Feedback Output

To publish a DITA map (on page 3281) as a WebHelp Classic with Feedback system, follow these steps:

1. Select the Configure Transformation Scenario(s) action from the DITA Maps Manager toolbar.

2. Select the DITA Map WebHelp Classic with Feedback scenario from the DITA Map section.

3. If you want to configure the transformation, click the Edit button.

**Step Result:** This opens an Edit scenario configuration dialog box that allows you to configure various options in the following tabs:

- **Templates Tab** - This tab contains a set of built-in skins that you can use for the layout of your WebHelp system output.
- **Parameters Tab** - This tab includes numerous transformation parameters that can be set to customize your WebHelp system output.
- **Filters Tab** - This tab allows you to filter certain content elements from the generated output.
- **Advanced Tab** - This tab allows you to specify some advanced options for the transformation scenario.
• **Output Tab** - This tab allows you to configure options that are related to the location where the output is generated.

4. Click **Apply associated** to begin the transformation.

5. Enter the documentation product ID (value for the `webhelp.product.id` parameter) and the documentation version (value for the `webhelp.product.version` parameter).

When the DITA Map WebHelp Classic with Feedback transformation is complete, your default browser opens the `installation.html` file. This file contains information about the output location, system requirements, installation instructions, and deployment of the output. Follow the instructions to complete the system deployment *(on page 1873)*.

For more information about the feedback-enabled WebHelp system, watch our video demonstration:

[https://www.youtube.com/embed/eoQ2uxHvppE](https://www.youtube.com/embed/eoQ2uxHvppE)

### Running from Command Line

To publish to the WebHelp Classic output from a command line outside of Oxygen XML Editor/Author, you can use the *dita* startup script that comes bundled with *DITA Open Toolkit* distribution.

**Required Arguments for the *dita* Command Startup Script:**

```
DITA-OT-DIR (on page 3282)\bin\[executable] -i [path_to_input.ditamap] -f [transformation_type]
```

**executable**

**Windows** - The *dita.bat* script located in: *DITA-OT-DIR* *(on page 3282)\bin\*.

**Linux/Mac OS X** - The *dita* script file located in: *DITA-OT-DIR* *(on page 3282)*/bin/*.

**-i / -input**

Specifies the master file for your DITA documentation project. Typically this is a DITA map.

**-f / -format**

Specifies the transformation type. The **Oxygen XML WebHelp Plugin** contributes the following transformation types for DITA:

*webhelp* - The transformation that produces WebHelp Classic output for desktop.

*webhelp-feedback* - The transformation that produces feedback-enabled WebHelp Classic with Feedback for desktop.

**Additional Options or Parameters:**
You can also use DITA-OT options to modify the command behavior or additional configuration parameters that are contributed by the Oxygen XML WebHelp Plugin (on page 1792).

DITA-OT-DIR (on page 3282)\bin\[executable] -i [path_to_input.ditamap] -f [transformation_type] [option] -D[parameter=value]

Command Line Examples:

- **Windows**: dita.bat -i c:\mySample.ditamap -f webhelp-responsive -o c:\output - Dwebhelp.logo.image=C:\images\myLogo.jpg
- **Linux/Mac OS X**: dita -i /mySample.ditamap -f webhelp-responsive -o /output - Dwebhelp.logo.image=/images/myLogo.jpg

Additional WebHelp Parameters for DITA

You can append the following parameters to the command line that runs the transformation:

- **-Dwebhelp.copyright** *(not available for WebHelp Responsive systems)*
  Adds a small copyright text that appears at the end of the Table of Contents pane.

- **-Dwebhelp.custom.resources**
  The file path to a directory that contains resources files. All files from this directory will be copied to the root of the WebHelp output.

- **-Dwebhelp.favicon**
  The file path that points to an image to be used as a favicon in the WebHelp output.

- **-Dwebhelp.footer.file** *(not available for WebHelp Responsive systems)*
  Path to an XML file that includes the footer content for your WebHelp output pages. You can use this parameter to integrate social media features (such as widgets for Facebook™, Twitter™, Google Analytics, or Google+™). The file must be well-formed, each widget must be in separate div or span element, and the code for each script element is included in an XML comment (also, the start and end tags for the XML comment must be on a separate line). The following code exert is an example for adding a Facebook™ widget:

```html
<div id="facebook">
  <div id="fb-root"></div>
  <script>
    <!-- (function(d, s, id) { var js, fjs = d.getElementsByTagName(s)[0];
      if (d.getElementById(id)) return;
      js = d.createElement(s); js.id = id;
      js.src = "//connect.facebook.net/en_US/sdk.jsxfbml=1&version=v2.0";
  
```
-Dwebhelp.footer.include (not available for WebHelp Responsive systems)

Specifies whether or not to include footer in each WebHelp page. Possible values:
  yes, no. If set to no, no footer is added to the WebHelp pages. If set to yes and the webhelp.footer.file parameter has a value, then the content of that file is used as footer. If the webhelp.footer.file has no value then a default Oxygen footer is inserted in each WebHelp page.

-Dwebhelp.google.search.results

A file path that specifies the location of a well-formed XHTML file containing the Google Custom Search Engine element gcse:searchresults-only. You can use all supported attributes for this element. It is recommend to set the linkTarget attribute to frm for frameless (iframe) version of WebHelp or to contentWin for the frameset version of WebHelp. The default value for this attribute is _blank and the search results will be loaded in a new window. If this parameter is not specified, the following code will be used
<gcse:searchresults-only linkTarget="frm"></gcse:searchresults-only>

-Dwebhelp.google.search.script

A file path that specifies the location of a well-formed XHTML file containing the Custom Search Engine script from Google.

-Dwebhelp.logo.image.target.url

Specifies a target URL that is set on the logo image. When you click the logo image, you will be redirected to this address.

-Dwebhelp.logo.image

Specifies a path to an image displayed as a logo in the left side of the output header.

-Dwebhelp.product.id (available only for Feedback-enabled systems)

This parameter specifies a short name for the documentation target, or product (for example, mobile-phone-user-guide, hvac-installation-guide).

Note: You can deploy documentation for multiple products on the same server.

Restriction: The following characters are not allowed in the value of this parameter:
< > / \ ' ( ) { } = ; * % + & .
-Dwebhelp.product.version (available only for Feedback-enabled systems)

Specifies the documentation version number (for example, 1.0, 2.5, etc.). New user
comments are bound to this version.

Note: Multiple documentation versions can be deployed on the same server.

Restriction: The following characters are not allowed in the value of this parameter:

< > / \ ' () { } = ; * % + & .

-Dwebhelp.search.japanese.dictionary

The file path of the dictionary that will be used by the Kuromoji morphological engine for
indexing Japanese content in the WebHelp pages. The encoding for the dictionary must
be UTF8.

-Dwebhelp.search.ranking

If this parameter is set to false then the 5-star rating mechanism is no longer included
in the search results that are displayed on the Search tab (default setting is true).

-Dwebhelp.show.changes.and.comments

When set to yes, user comments, replies to comments, and tracked changes are
published in the WebHelp output. The default value is no.

-Dwebhelp.sitemap.base.url

Base URL for all the loc elements in the generated sitemap.xml file. The value
of a loc element is computed as the relative file path from the href attribute of a
topicref element from the DITA map, appended to this base URL value. The loc
element is mandatory in sitemap.xml. If you leave this parameter set to its default
empty value, then the sitemap.xml file is not generated.

-Dwebhelp.sitemap.change.frequency

The value of the changefreq element in the generated sitemap.xml file. The
changefreq element is optional in sitemap.xml. If you leave this parameter set to
its default empty value, then the changefreq element is not added in sitemap.xml.

Allowed values: <empty string> (default), always, hourly, daily, weekly, monthly,
yearly, never.

-Dwebhelp.sitemap.priority

The value of the priority element in the generated sitemap.xml file. It can be
set to any fractional number between 0.0 (least important priority) and 1.0 (most
important priority). For example, 0.3, 0.5, or 0.8. The priority element is optional
in sitemap.xml. If you leave this parameter set to its default empty value, then the
priority element is not added in sitemap.xml.
-Dwebhelp.skin.css (available only for WebHelp Classic and WebHelp Classic with Feedback systems)

Path to a CSS file that sets the style theme in the WebHelp Classic output. It can be one of the built-in skin CSS from the DITA-OT-DIR/com.oxygenxml.webhelp.classic/predefined-skins directory, or it can be a custom skin CSS generated with the Oxygen Skin Builder web application.

Parameters Specific to WebHelp Responsive Output (available only for WebHelp Responsive and WebHelp Responsive with Feedback systems)

-Dbwebhelp.default.collection.type.sequence

Specifies if the sequence value will be used by default when the collection-type attribute is not specified. This option is helpful if you want to have Next and Previous navigational buttons generated for all HTML pages. Allowed values are no (default) and yes.

-Dbwebhelp.enable.search.autocomplete

Specifies if the Autocomplete feature is enabled in the WebHelp search text field. The default value is yes.

-Dbwebhelp.fragment.after.body

In the generated output it displays a given XHTML fragment after the page body. The value of the parameter can be either a well-formed XHTML fragment or a path to a file that contains a well-formed XHTML fragment.

-Dbwebhelp.fragment.after.logo_and_title

In the generated output it displays a given XHTML fragment after the logo and title. The value of the parameter can be either a well-formed XHTML fragment or a path to a file that contains a well-formed XHTML fragment.

-Dbwebhelp.fragment.after.main.page.search

In the generated output it displays a given XHTML fragment after the search field. The value of the parameter can be either a well-formed XHTML fragment or a path to a file that contains a well-formed XHTML fragment.

-Dbwebhelp.fragment.after.toc_or_tiles

In the generated output it displays a given XHTML fragment after the table of contents or tiles in the main page. The value of the parameter can be either a well-formed XHTML fragment or a path to a file that contains a well-formed XHTML fragment.

-Dbwebhelp.fragment.after.top_menu
In the generated output it displays a given XHTML fragment after the top menu. The value of the parameter can be either a *well-formed* XHTML fragment or a path to a file that contains a *well-formed* XHTML fragment.

- **webhelp.fragment.before.body**

  In the generated output it displays a given XHTML fragment before the page body. The value of the parameter can be either a *well-formed* XHTML fragment or a path to a file that contains a *well-formed* XHTML fragment.

- **webhelp.fragment.before.logo_and_title**

  In the generated output it displays a given XHTML fragment before the logo and title. The value of the parameter can be either a *well-formed* XHTML fragment or a path to a file that contains a *well-formed* XHTML fragment.

- **webhelp.fragment.before.main.page.search**

  In the generated output it displays a given XHTML fragment before the search field. The value of the parameter can be either a *well-formed* XHTML fragment or a path to a file that contains a *well-formed* XHTML fragment.

- **webhelp.fragment.before.toc_or_tiles**

  In the generated output it displays a given XHTML fragment before the table of contents or tiles in the main page. The value of the parameter can be either a *well-formed* XHTML fragment or a path to a file that contains a *well-formed* XHTML fragment.

- **webhelp.fragment.before.top_menu**

  In the generated output it displays a given XHTML fragment before the top menu. The value of the parameter can be either a *well-formed* XHTML fragment or a path to a file that contains a *well-formed* XHTML fragment.

- **webhelp.fragment.footer**

  In the generated output it displays a given XHTML fragment as the page footer. The value of the parameter can be either a *well-formed* XHTML fragment or a path to a file that contains a *well-formed* XHTML fragment.

- **webhelp.fragment.head**

  In the generated output it inserts a given XHTML fragment in the `<head>` element. The value of the parameter can be either a *well-formed* XHTML fragment or a path to a file that contains a *well-formed* XHTML fragment.

- **webhelp.fragment.welcome**

  In the generated output it displays a given XHTML fragment as a welcome message (or title). The value of the parameter can be either a *well-formed* XHTML fragment or a path to a file that contains a *well-formed* XHTML fragment.
-Dwebhelp.merge.nested.topics.related.links

  Specifies if the related links from nested topics will be merged with the links in the parent topic. Thus the links will be moved from the topic content to the related links component and all of the links from the same group (for example, Related Tasks, Related References, Related Information) are merged into a single group. The default value is yes.

-Dwebhelp.search.enable.pagination

  Specifies whether or not search results will be displayed on multiple pages. Allowed values are yes or no.

-Dwebhelp.search.page.numberOfItems

  Specifies the number of search results items displayed on each page. This parameter is only used when the webhelp.search.enable.pagination parameter is enabled.

-Dwebhelp.search.stop.words.exclude

  Specifies a list of words that will be excluded from the default list of stop words that are filtered out before the search processing. Use comma separators to specify more than one word (for example: if,for,is).

-Dwebhelp.show.breadcrumb

  Specifies if the breadcrumb component will be presented in the output. The default value is yes.

-Dwebhelp.show.child.links

  Specifies if child links will be generated in the output for all topics that have subtopics. The default value is no.

-Dwebhelp.show.indexterms.link

  Specifies if an icon that links to the index will be presented in the output. The default value is yes.

-Dwebhelp.show.main.page.tiles

  Specifies if the tiles component will be presented in the main page of the output. For a tree style layout, this parameter should be set to no.

-Dwebhelp.show.main.page.toc

  Specifies if the table of contents will be presented in the main page of the output. The default value is yes.

-Dwebhelp.show.navigation.links

  Specifies if navigation links will be presented in the output. The default value is yes.
Specifies if a print link or icon will be presented within each topic in the output. The default value is `yes`.

-Dwebhelp.show.publication.toc

Specifies if a table of contents will be presented on the left side of each topic in the output. The default value is `yes`.

-Dwebhelp.show.topic.toc

Specifies if a topic table of contents will be presented on the right side of each topic in the output. This table of contents contains links to each `<section>` within the current topic that contains an `@id` attribute and the section corresponding to the current scroll position is highlighted. The default value is `yes`.

-Dwebhelp.show.top.menu

Specifies if a menu will be presented at the topic of the main page in the output. The default value is `yes`.

-Dwebhelp.publication.toc.hide.chunked.topics

Specifies if the table of contents will contain links for chunked topics. The default value is `yes`.

-Dwebhelp.publication.toc.links

Specifies which links will be included in the table of contents. The possible values are:

- **chapter** (default) - The TOC will include links for the current topic, its children, its siblings, and its direct ancestor (including the direct ancestor’s siblings), and the parent chapter.
- **topic** - The TOC will only include links for the current topic and its direct children.
- **all** - The TOC will include all links.

-Dwebhelp.publication.toc.tooltip.position

By default, if a topic contains a `shortdesc` element, its content is displayed in a tooltip when the user hovers over its link in the table of contents. This parameter controls whether or not this tooltip is displayed and its position relative to the link. The possible values are:

- **left** (default)
- **right**
- **top**
- **bottom**
- **hidden** - The tooltip will not be displayed.

-Dwebhelp.top.menu.depth
Specifies the maximum depth level of the topics that will be included in the top menu. The default value is 3. A value of 0 means that the menu has unlimited depth.

-Dwebhelp.topic.collapsible.elements.initial.state

Specifies the initial state of collapsible elements (tables with titles, nested topics with titles, sections with titles, index term groups). The possible values are collapsed or expanded (default value).

**Note:** Note that the `fix.external.refs.com.oxygenxml` parameter is not supported. This parameter is normally used to specify whether or not the application tries to fix such references in a temporary files folder before the DITA Open Toolkit is invoked on the fixed references.

**Further Customization**

If you need to further customize the transformation process, you can append other DITA-OT parameters as well. Any parameter that you want to append must follow the `-D` model of the above parameters. For example, to append the `args.csspath` parameter, use:

```
-Dargs.csspath=[CSS_FILE_PATH]
```

where `[CSS_FILE_PATH]` is the location of the directory that contains the CSS file.

**Related Information:**

- Setting DITA-OT Parameters

**Running from an Integration Server**

Oxygen XML Editor can be processed from an automatic publishing system, such as *Jenkins* or *Travis*.

**Automating DITA to WebHelp Output with Jenkins**

To integrate WebHelp output with the Jenkins continuous integration tool, follow these steps:

1. Create a Maven project to incorporate the DITA-OT that already integrates Oxygen XML Editor.
2. Go to the root of your Maven project and edit the `pom.xml` file to include the following fragment:

```xml
<properties>
  <oxygen-webhelp>${basedir}/tools/plugins/com.oxygenxml.webhelp.responsive</oxygen-webhelp>
</properties>
```
3. Go to the Jenkins top page and create a new Jenkins job. Configure this job to suit your particular requirements, such as the build frequency and location of the Maven project.

Automating DITA to WebHelp Output with Travis CI

This topic assumes you have a DITA project hosted on a GitHub public or private repository.

The goal of this tutorial is to help you set up a Travis continuous integration job that automatically publishes your DITA project to GitHub pages after every commit. The published website will contain a feedback link on each page that would allow a contributor to easily suggest changes to the documentation by creating a pull request on GitHub with just a few clicks.

Enable the Travis CI Build

1. Sign in to Travis CI with your GitHub account, accepting the GitHub access permissions confirmation.
2. Once you are signed in, and you have synchronized your GitHub repositories, go to your profile page and enable Travis CI for the repository you want to build.

Configure the Travis CI Build in your GitHub Project

1. Checkout your GitHub project locally.
2. Copy the .travis folder from here to the root directory of your project.
3. In the root of your GitHub project, add a file called `.travis.yml` with the following content:

```yaml
language: dita
install:
  - echo "Installed"
script:
  - sh .travis/publish.sh
after_success:
  - sh .travis/deploy.sh
env:
  global:
    - DITAMAP=/path/to/your/ditamap/file
    - DITAVAL=/path/to/your/ditaval/file
    - ANT_OPTS=-Xmx1024M

Note: Replace `/path/to/your/ditamap/file` and `/path/to/your/ditaval/file` with the appropriate paths to your DITA map and ditaval files.

4. Create a GitHub personal access token by following this procedure.

5. Define an environment variable in the repository settings that has the name `GH_TOKEN` and the value equal with the GitHub personal access token created earlier.

### Register Your License Key

1. Edit your `.gitignore` file (or create it if it does not already exist) and add the following line:

   ```
   licenseKey.txt
   ```

2. Copy your WebHelp license to the root of your GitHub project in a file called `licenseKey.txt`.

   **Important:** The `licenseKey.txt` file should not be committed to GitHub as it contains a license key that is issued only to you.

3. Encrypt the license key file and add it to the `.travis.yml` configuration file. This way only the Travis CI server will be able to decrypt it during the build process.

### Commit to GitHub

1. Commit the following files and folders and push the commit to GitHub:

   ```
   git add .gitignore licenseKey.txt.enc .travis.yml .travis/
   git commit -m "Set up the Travis CI publishing system"
   git push
   ```
2. Create a gh-pages branch in your GitHub project where the WebHelp output will be published. You can follow the procedure here.

Generating WebHelp Classic Output for DocBook

The publishing process can be initiated from a transformation scenario within Oxygen XML Editor/Author or from a command line outside Oxygen XML Editor/Author.

Running from Oxygen XML Editor/Author

To publish DocBook content to WebHelp Classic output from a transformation scenario inside Oxygen XML Editor/Author, use one of the following procedures, depending on whether or not you want a feedback section in your output.

**WebHelp Classic Output**

To publish a DocBook document as a WebHelp Classic system, follow these steps:

1. Click the Configure Transformation Scenario(s) action from the toolbar (or the Document > Transformation menu).
2. Select the DocBook WebHelp Classic scenario from the DocBook 4 or DocBook 5 section.
3. Click Apply associated.

   When the DocBook WebHelp Classic transformation is complete, the output is automatically opened in your default browser.

**WebHelp Classic with Feedback Output**

To publish a DocBook document as a WebHelp Classic with Feedback system, follow these steps:

1. Click Configure Transformation Scenarios.
2. Select the DocBook WebHelp Classic with Feedback scenario from the DocBook 4 or DocBook 5 section.
3. Click Apply associated.
4. Enter the documentation product ID and the documentation version.

   When the DocBook WebHelp Classic with Feedback transformation is complete, your default browser opens the installation.html file. This file contains information about the output location, system requirements, installation instructions, and deployment of the output. Follow the instructions to complete the system deployment. For more information, see Deploying a Feedback-Enabled System (on page 1873).
For more information about the feedback-enabled WebHelp system, watch our video demonstration:

https://www.youtube.com/embed/eoQ2uxHypPE

Running from Command Line

PREREQUISITES: Before you begin, the WebHelp DocBook distribution must be integrated into a DocBook XSL installation.

To run a DocBook to WebHelp transformation outside of Oxygen XML Editor/Author, use the following script file:

- Windows - \[DocBook XSL directory]\com.oxygenxml.webhelp.classic\docbook.bat
- Linux/Mac OS X - \[DocBook XSL directory]/com.oxygenxml.webhelp.classic/docbook.sh

Before running the script to generate output, you must customize it to specify various paths and transformation type. To do this, open the script file and edit the following variables:

- JVM_INSTALL_DIR - Specifies the path to the Java Virtual Machine installation directory on your disk.
- ANT_INSTALL_DIR - Specifies the path to the installation directory of Ant.
- SAXON_6_DIR - Specifies the path to the installation directory of Saxon 6.5.5.
- SAXON_9_DIR - Specifies the path to the installation directory of Saxon 9.1.0.8.
- DOCBOOK_XSL_DIR - Specifies the path to the installation directory of the DocBook XSL distribution.
- TRANSTYPE - Specifies the type of the transformation you want to apply. The Oxygen XML WebHelp Plugin contributes the following transformation types for DocBook:
  - webhelp - The transformation that produces WebHelp Classic output for desktop.
  - webhelp-feedback - The transformation that produces feedback-enabled WebHelp Classic with Feedback for desktop.
- INPUT_DIR - Specifies the path to the input directory, containing the input XML file.
- XML_INPUT_FILE - Specifies the name of the input XML file.
- OUTPUT_DIR - Specifies the path to the output directory where the transformation output is generated.
- DOCBOOK_XSL_DIR_URL - Specifies the path to the directory of the DocBook XSL distribution in URL format.

You can also add additional configuration parameters that are contributed by the Oxygen XML WebHelp Plugin (on page 1804).
Additional WebHelp Parameters for DocBook

You can use various parameters in the command line to customize the transformation. Some of the most commonly used parameters include:

-Ddefault.language

This parameter is used if the language is not detected in the DITA map. The default value is en-us.

-Dclean.output

Deletes all files from the output folder before the transformation is performed (only no and yes values are valid and the default value is no).

-Dl10n.gentext.default.language

This parameter is used to identify the correct stemmer that differs from language to language. For example, for English the value of this parameter is en or for French it is fr, and so on.

-Duse.stemming

Controls whether or not you want to include stemming search algorithms into the published output (default setting is false).

-Dwebhelp.copyright

Adds a small copyright text that appears at the end of the Table of Contents pane.

-Dwebhelp.custom.resources

The file path to a directory that contains resources files. All files from this directory will be copied to the root of the WebHelp output.

-Dwebhelp.favicon

The file path that points to an image to be used as a favicon in the WebHelp output.

-Dwebhelp.footer.file

Path to an XML file that includes the footer content for your WebHelp output pages. You can use this parameter to integrate social media features (such as widgets for Facebook™, Twitter™, Google Analytics, or Google+™). The file must be well-formed, each widget must be in separate div or span element, and the code for each script element is included in an XML comment (also, the start and end tags for the XML comment must be on a separate line). The following code exert is an example for adding a Facebook™ widget:

```xml
<div id="facebook">
  <div id="fb-root"/>
</div>
```
-Dwebhelp.footer.include

Specifies whether or not to include footer in each WebHelp page. Possible values:

- yes, no. If set to no, no footer is added to the WebHelp pages. If set to yes and the webhelp.footer.file parameter has a value, then the content of that file is used as footer. If the webhelp.footer.file has no value then a default Oxygen footer is inserted in each WebHelp page.

-Dwebhelp.logo.image.target.url

Specifies a target URL that is set on the logo image. When you click the logo image, you will be redirected to this address.

-Dwebhelp.logo.image

Specifies a path to an image displayed as a logo in the left side of the output header.

-Dwebhelp.product.id (available only for Feedback-enabled systems)

This parameter specifies a short name for the documentation target, or product (for example, mobile-phone-user-guide, hvac-installation-guide).

Note: You can deploy documentation for multiple products on the same server.

Restriction: The following characters are not allowed in the value of this parameter:
< > / \ ' ( ) { } = ; * % + & .

-Dwebhelp.product.version (available only for Feedback-enabled systems)

Specifies the documentation version number (for example, 1.0, 2.5, etc.). New user comments are bound to this version.

Note: Multiple documentation versions can be deployed on the same server.

Restriction: The following characters are not allowed in the value of this parameter:
< > / \ ' ( ) { } = ; * % + & .
If this parameter is set to \texttt{false} then the 5-star rating mechanism is no longer included in the search results that are displayed on the \texttt{Search} tab (default setting is \texttt{true}).

\texttt{-Dwebhelp.skin.css}

Path to a CSS file that sets the style theme in the WebHelp Classic output. It can be one of the built-in skin CSS from the \texttt{OXYGEN\_INSTALL\_DIR/frameworks/docbook/xsl/com.oxygenxml.webhelp.classic/predefined-skins} directory, or it can be a custom skin CSS generated with the \texttt{Oxygen Skin Builder} web application.

If you need to further customize your transformation, other DocBook XSL parameters can be appended. Any parameter that you want to append must follow the \texttt{-D} model of the above parameters. For example, you can append the \texttt{html.stylesheet} parameter in the following form:

\begin{verbatim}
-Dhtml.stylesheet=/path/to/directory/of/stylesheet.css
\end{verbatim}

Customizing WebHelp Classic Output

\textbf{Oxygen XML WebHelp} provides support for customizing the \textbf{WebHelp Classic} output to suit your specific needs. The \textbf{WebHelp Classic} type of output is designed for desktop systems and features a familiar \textit{tri-pane} layout. You can use this system to publish DITA and DocBook document types. The \textbf{WebHelp Classic with Feedback} variant allows your users to add comments to your output.

To change the overall appearance of the \textbf{WebHelp Classic} output, you can use the visual \textbf{WebHelp Skin Builder tool (on page 1806)}, which does not require knowledge of CSS language. If you are familiar with CSS and coding, you can style your WebHelp output through your own custom stylesheets. You can also customize your output by modifying option and parameters in the transformation scenario.

This section includes topics that explain various ways to customize your WebHelp system output, such as how to improve the appearance of the Table of Contents, add logo images in the title area, integrate with social media, add custom headers and footers, and much more.

\textbf{Changing the Layout and Styles}

This section contains some topics that explain how to customize the layout and style of your WebHelp Classic output using custom CSS, inserting custom HTML content, and more.

\textbf{WebHelp Skin Builder}

The \textbf{WebHelp Skin Builder} is a simple, easy-to-use tool, specially designed to assist users to visually customize the look and feel of the WebHelp output. It is implemented as an online tool hosted
on the Oxygen XML website and allows you to experiment with various styles and colors over a documentation sample.

To be able to use the Skin Builder, you need:

- An Internet connection and unrestricted access to Oxygen XML website.
- A late version web browser.

To start the Skin Builder, do one of the following:

- For DocBook or DITA WebHelp systems, use a web browser to go to [https://www.oxygenxml.com/webhelp-skin-builder](https://www.oxygenxml.com/webhelp-skin-builder).
- For DITA WebHelp systems, you can click the Online preview link in the Skins tab (on page 3197) of a DITA OT transformation scenario. In the upper section of the preview, click the Select Skin button, then choose Customize Skin.

### Skin Builder Layout

The left side panel of the Skin Builder is divided into 3 sections:

- **Actions** - Contains the following two buttons:
  - Import - Opens an Import CSS dialog box that allows you to load a CSS stylesheet and apply it over the documentation sample.
  - Export - Saves all properties as a CSS file.
- **Settings** - Includes a Highlight selection option that helps you identify the areas affected by a particular element customization.
  - When hovering an item in the customizable elements menu, the affected sample area is highlighted with a dotted blue border.
  - When an item in the customizable elements menu is selected, the affected sample area is highlighted with a solid red border.
- **Customize** - Provides a series of customizable elements organized under four main categories:
  - Header
  - TOC Area
  - Vertical Splitter
  - Content

For each customizable element, you can alter properties such as background color or font face. Any alteration made in the customizable elements menu is applied in real time over the sample area.
Creating a Customization Skin

1. You can start with one of the built-in skins or a CSS stylesheet applied over the sample using the **Import** button.
2. Use the elements in the **Customize** section to set properties that modify the look of the skin. By default, all customizable elements display a single property, but you can make more visible by clicking the **Add** button and choosing from the available properties.

   **Note:** If you want to revert a particular property to its initial value, press the **Reset** button.
3. When you are happy with the skin customizations you have made, press the **Export** button. All settings will be saved in a CSS file.

Applying a Custom Skin to a DITA Map to WebHelp Classic Transformation Scenario

1. Start Oxygen XML Editor.
2. Load the **DITA map (on page 3281)** you want to produce as a WebHelp output.
3. Edit a **DITA Map to WebHelp** transformation scenario. Set the previously exported CSS file in the **Custom** section of the **Skins** tab.
4. Run the transformation to obtain the WebHelp output.

Apply a Customization Skin to a DocBook to WebHelp Classic Transformation Scenario

1. Start Oxygen XML Editor.
2. Load the DocBook file you want to produce as a WebHelp output.
3. In the **Parameters** tab, set the **webhelp.skin.css** parameter to point to the previously exported CSS.
4. To customize the logo, use the following parameters: **webhelp.logo.image** and **webhelp.logo.image.target.url**.
5. Run the transformation to obtain the WebHelp output.

For more information about using the WebHelp Skin Builder, watch our video demonstration:

[https://www.youtube.com/embed/32PGX--PQx0](https://www.youtube.com/embed/32PGX--PQx0)

Related Information:
How to Use CSS Styling to Customize WebHelp Output

The most common way to customize the look and style of your WebHelp output is to use custom CSS styling. This method can be used to make small, simple styling changes or more advanced, precise changes. To implement the styling in your WebHelp output, you simply need to create the custom CSS file and reference it in your transformation scenario or script. This custom file will be the final CSS to be applied so its content will override the styles in the other pre-existing CSS files.

Using the CSS Inspector to Identify Content for Custom CSS File

You can use your browser's CSS inspector to identify the pertinent code in the current CSS files and you can even make changes directly in the CSS inspector to test the results so that you know exactly what content to use in your custom CSS file.

In most popular browsers (such as Chrome, Firefox, and Edge), you can access the CSS inspector by using F12 or by selecting Inspect Element (or simply Inspect) from the contextual menu.

Tip: When using Safari on Mac OS X, you must first enable the Develop menu by going to the Advanced settings and selecting Show Develop menu in menu bar. Then you can select Show Web Inspector from the Develop menu or click Command + Option + I.

Referencing the Custom CSS Using Oxygen XML Editor/Author

To use a custom CSS to style WebHelp output and use a transformation scenario from within Oxygen XML Editor/Author, follow this procedure:

1. Create your custom CSS file.
2. Edit the WebHelp transformation scenario and open the Parameters tab.
   • For a DITA transformation, set the args.css parameter to the path of your custom CSS file. Also, set the args.copycss parameter to yes to automatically copy your custom CSS in the output folder when the transformation scenario is processed.
   • For a DocBook transformation, set the html.stylesheet parameter to the path of your custom CSS file.
3. Run the WebHelp transformation scenario to generate the output.

Referencing the Custom CSS Using a Script Outside of Oxygen XML Editor/Author

Important: Running WebHelp transformations from a script outside of Oxygen XML Editor/Author requires an additional license and some additional setup:
• You must have a valid license for the Oxygen XML WebHelp Plugin (https://www.oxygenxml.com/buy_webhelp.html).

• The Oxygen XML WebHelp Plugin must be installed and integrated for the DITA Open Toolkit or a DocBook XSL Distribution.

To use a custom CSS to style WebHelp output and use a script outside of Oxygen XML Editor/Author (on page 1789), follow this procedure:

1. Create your custom CSS file.
2. Reference your custom CSS file:
   • For DITA transformations, use the args.css parameter in your transformation script and set its value to the path of your custom CSS file. Also, set the args.copycss parameter to yes to automatically copy your custom CSS in the output folder when the transformation scenario is processed.
   • For DocBook transformations, use the html.stylesheet parameter in your transformation script and set its value to the path of your custom CSS file.
3. Execute the transformation script.

For example, a DITA script might look like this:

• Windows:
  
dita.bat -i c:\mySample.ditamap -f webhelp -Dargs.css=c:\myFile.css -Dargs.copycss=yes

• Mac OS X/ Linux:
  
dita -i /mySample.ditamap -f webhelp -Dargs.css=/myFile.css -Dargs.copycss=yes

How to Add Custom HTML Content in WebHelp Classic Output

You can add custom HTML content in the WebHelp Classic output by inserting it in a well-formed XML file that will be referenced in the transformation. This content may include references to additional JavaScript, CSS, and other types of resources, or such resources can be inserted inline within the HTML content that is inserted in the XML file.

Using Oxygen XML Editor/Author

To include custom HTML content in the WebHelp Classic output using a transformation scenario from within Oxygen XML Editor/Author, follow this procedure:

1. Insert the HTML content in a well-formed XML file considering the following notes:
• **Well-Formedness** - If the file is not a *Well-formed XML document* (on page 1079) (or fragments are not well-formed), the transformation will fail.

A common use case is if you want to include several `script` or `link` elements. In this case, the XML fragment has multiple root elements and to make it well-formed, you can wrap it in an `html` element. This element tag will be filtered out and only its children will be copied to the output documents. Similarly, you can wrap your content in `head`, `body`, `html/head`, or `html/body` elements.

• **Referencing Resources in the XML File** - You can include references to local resources (such as JavaScript or CSS files) by using the built-in `${oxygen-webhelp-output-dir}` macro to specify their paths relative to the output directory:

```html
<html>
<script type="text/javascript" src="${oxygen-webhelp-output-dir}/js/test.js"></script>
<link rel="stylesheet" type="text/css" href="${oxygen-webhelp-output-dir}/css/test.css" />
</html>
```

To copy the referenced resources to the output directory, follow the procedure in: *How to Copy Additional Resources to Output Directory* (on page 1823).

• **Inline JavaScript or CSS Content**:

JavaScript:

```html
<script type="text/javascript">
/* Include JavaScript code here. */

function myFunction() {
    return true;
}
</script>
```

CSS:

```html
<style>
/* Include CSS style rules here. */

* {
    color:red
}
</style>
```
Note: If you have special characters (for example, ``, ``, `<`) that break the well-formedness of the XML fragment, it is important to place this content inside an XML comment:

```xml
<script type="text/javascript">
<!--
/* Include JavaScript code here. */

function myFunction() {
    return true;
}
-->
</script>
```

2. Edit the WebHelp Classic transformation scenario.
3. Go to the Parameters tab.
4. Edit the value of the `webhelp.head.script` parameter and set it to reference the URL of the XML file created in step 1. Your additional content will be included at the end of the `head` element of your output document.

Note: If you want to include the content in the `body` element, use the `webhelp.body.script` parameter instead.

5. Click OK to save the changes and run the transformation scenario.

Using a Script Outside of Oxygen XML Editor/Author

⚠️ Important: Running WebHelp transformations from a script outside of Oxygen XML Editor/Author requires an additional license and some additional setup:

- You must have a valid license for the Oxygen XML WebHelp Plugin (https://www.oxygenxml.com/buy_webhelp.html).
- The Oxygen XML WebHelp Plugin must be installed and integrated for the DITA Open Toolkit or a DocBook XSL Distribution.

To include custom HTML content in the WebHelp Classic output using a script outside of Oxygen XML Editor/Author (on page 1789), follow this procedure:

1. Insert the HTML content in a well-formed XML file considering the following notes:
   - Well-Formedness - If the file is not a Well-formed XML document (on page 1079) (or fragments are not well-formed), the transformation will fail.

     A common use case is if you want to include several `script` or `link` elements. In this case, the XML fragment has multiple root elements and to make it well-formed, you can wrap it in
an `html` element. This element tag will be filtered out and only its children will be copied to the output documents. Similarly, you can wrap your content in `head, body, html/head, or html/body` elements.

- **Referencing Resources in the XML File** - You can include references to local resources (such as JavaScript or CSS files) by using the built-in `${oxygen-webhelp-output-dir}` macro to specify their paths relative to the output directory:

```xml
<html>
  <script type="text/javascript" src="${oxygen-webhelp-output-dir}/js/test.js"></script>
  <link rel="stylesheet" type="text/css" href="${oxygen-webhelp-output-dir}/css/test.css" />
</html>
```

To copy the referenced resources to the output directory, follow the procedure in: How to Copy Additional Resources to Output Directory (on page 1823).

- **Inline JavaScript or CSS Content**:

  **JavaScript**:

  ```xml
  <script type="text/javascript">
  /* Include JavaScript code here. */
  
  function myFunction() {
      return true;
  }
  </script>
  ```

  **CSS**:

  ```xml
  <style>
  /* Include CSS style rules here. */
  
  *{
      color:red
  }
  </style>
  ```

  **Note**: If you have special characters (for example, `&`, `<`) that break the well-formedness of the XML fragment, it is important to place this content inside an XML comment:

  ```xml
  <script type="text/javascript">
  <!--
  ```
2. Use the `webhelp.head.script` parameter in your transformation script and set its value to reference the URL of the XML file created in step 1. Your additional content will be included at the end of the `head` element of your output document.

**Note:** If you want to include the content in the `body` element, use the `webhelp.body.script` parameter instead.

3. Execute the transformation script.

For example, a DITA script might look like this:

- **Windows:**

  ```bash
dita.bat -i c:\mySample.ditamap -f webhelp -Dwebhelp.head.script=c:\myFile.xml
  ```

- **Mac OS X/ Linux:**

  ```bash
dita -i /mySample.ditamap -f webhelp -Dwebhelp.head.script=/myFile.xml
  ```

**Related Information:**

- [How to Copy Additional Resources to Output Directory](on page 1823)

**How to Change Number Styles for Ordered Lists**

Ordered lists (`ol`) are usually numbered in XHTML output using numerals. If you want to change the numbering to alphabetical, follow these steps:

1. Define a custom `outputclass` value and set it as an attribute of the ordered list, as in the following example:

   ```xml
   <ol outputclass="number-alpha">
     <li>A</li>
     <li>B</li>
     <li>C</li>
   </ol>
   ```
2. Add the following code snippet in a custom CSS file:

```css
ol.number-alpha{
    list-style-type:lower-alpha;
}
```

3. Edit the WebHelp transformation scenario and open the **Parameters** tab.
   a. For a DITA transformation, set the `args.css` parameter to the path of your custom CSS file. Also, set the `args.copycss` parameter to `yes` to automatically copy your custom CSS in the output folder when the transformation scenario is processed.
   b. For a DocBook transformation, set the `html.stylesheet` parameter to the path of your custom CSS file.

4. Run the transformation scenario.

**How to Change the Icons in a WebHelp Classic Table of Contents**

You can change the icons that appear in a WebHelp Classic table of contents by assigning new image files in a custom CSS file. By default, these icons are defined with the following CSS codes (the first example is the icon that appears for a collapsed menu and the second for an expanded menu):

```css
.hasSubMenuClosed{
    background: url('../img/book_closed16.png') no-repeat;
    padding-left: 16px;
    cursor: pointer;
}

.hasSubMenuOpened{
    background: url('../img/book_opened16.png') no-repeat;
    padding-left: 16px;
    cursor: pointer;
}
```

**Using Oxygen XML Editor/Author**

To assign other icons and use a transformation scenario from within **Oxygen XML Editor/Author**, follow this procedure:

1. Create a custom CSS file that assigns your desired icons to the `.hasSubMenuClosed` and `.hasSubMenuOpened` properties.
2. It is recommended that you store the image files in the same directory as the default icons.
   - For DITA transformations: \DITA-OT-DIR\plugins\com.oxygenxml.webhelp.classic \oxygen-webhelp\resources\img\. 
   - For DocBook transformations: \[OXYGEN_INSTALL_DIR]\frameworks\docbook\xsl \com.oxygenxml.webhelp.classic\oxygen-webhelp\resources\img\. 

3. Edit the WebHelp transformation scenario and open the Parameters tab.
   - For a DITA transformation, set the args.css parameter to the path of your custom CSS file.
     Also, set the args.copycss parameter to yes to automatically copy your custom CSS in the output folder when the transformation scenario is processed.
   - For a DocBook transformation, set the html.stylesheet parameter to the path of your custom CSS file.

4. Run the WebHelp transformation scenario to generate the output.

Using a Script Outside of Oxygen XML Editor/Author

⚠️ Important: Running WebHelp transformations from a script outside of Oxygen XML Editor/Author requires an additional license and some additional setup:

   - You must have a valid license for the Oxygen XML WebHelp Plugin (https://www.oxygenxml.com/buy_webhelp.html).
   - The Oxygen XML WebHelp Plugin must be installed and integrated for the DITA Open Toolkit or a DocBook XSL Distribution.

To assign other icons and use a script outside of Oxygen XML Editor/Author (on page 1789), follow this procedure:

1. Create a custom CSS file that assigns your desired icons to the .hasSubMenuClosed and .hasSubMenuOpened properties.

```css
.hasSubMenuClosed{
    background: url('TOC-my-closed-button.png') no-repeat;
}

.hasSubMenuOpened{
    background: url('TOC-my-opened-button.png') no-repeat;
}
```
2. It is recommended that you store the image files in the same directory as the default icons.
   - For DITA transformations: `DITA-OT-DIR\plugins\com.oxygenxml.webhelp.classic\oxygen-webhelp\resources\img\`
   - For DocBook transformations: `[DocBook XSL directory]\com.oxygenxml.webhelp.classic\oxygen-webhelp\resources\img\`

3. Reference your custom CSS file:
   - For DITA transformations, use the `args.css` parameter in your transformation script and set its value to the path of your custom CSS file. Also, set the `args.copycss` parameter to `yes` to automatically copy your custom CSS in the output folder when the transformation scenario is processed.
   - For DocBook transformations, use the `html.stylesheet` parameter in your transformation script and set its value to the path of your custom CSS file.

4. Execute the transformation script.

   For example, a DITA script might look like this:
   
   - **Windows:**
     ```shell
dita.bat -i c:\mySample.ditamap -f webhelp -Dargs.css=c:\myFile.css -Dargs.copycss=yes
     ```
   - **Mac OS X/ Linux:**
     ```shell
dita -i /mySample.ditamap -f webhelp -Dargs.css=/myFile.css -Dargs.copycss=yes
     ```

**How to Customize the Appearance of Selected Items in the Table of Contents**

The appearance of selected items in the table of contents of WebHelp Classic output can be enhanced.

For example, to highlight the background of the selected item, follow these steps:

1. Locate the `toc.css` file in the following directory:
   - a. For DITA transformations: `DITA-OT-DIR\plugins\com.oxygenxml.webhelp.classic\oxygen-webhelp\resources\css`
   - b. For DocBook transformations: `[DocBook XSL directory]\com.oxygenxml.webhelp.classic\oxygen-webhelp\resources\css`

2. Edit that CSS file, find the `menuItemSelected` class, and change the value of the `background` property.

3. Run the transformation.
Note: You can also overwrite the same value from your own custom CSS and then specify the path to your CSS in the transformation scenario by doing one of the following:

- For DITA transformations, use the `args.css` parameter and set its value to the path of your custom CSS file. Also, set the `args.copycss` parameter to `yes` to automatically copy your custom CSS in the output folder when the transformation scenario is processed.
- For DocBook transformations, use the `html.stylesheet` parameter and set its value to the path of your custom CSS file.

How to Generate or Hide Navigation Links in WebHelp Classic Output

The WebHelp Classic output can contain navigation links (Previous / Next / Parent topic arrows) that can be used to navigate to the previous, next, or parent topic.

How to Generate Navigation Links in WebHelp Classic Output

The navigation links are controlled by the `collection-type` attribute. For example, if you set `collection-type="sequence"` on a parent topic reference in your DITA map, navigation links will be generated in the output for all of its child topics (from children to parent, and from child to previous sibling and next sibling).

```xml
<map id="example_map" title="Example Map">
  <topicref href="../topics/ParentTopic.dita" collection-type="sequence">
    <topicref href="../topics/Childtopic.dita"/>
  </topicref>
</map>
```

How to Hide All Navigation Links in WebHelp Classic Output

To hide all navigation links, use the `args.hide.parent.link` parameter in the transformation and set its value to `no`.

Adding Graphics and Media Resources

This section contains topics that explain how to add media resources to the published WebHelp Classic output or to the output directory.

How to Add a Favicon in WebHelp Systems

You can add a custom favicon to your WebHelp output by simply using a parameter in the transformation scenario to point to your favicon image. This is available for DITA and DocBook WebHelp output using WebHelp Classic or WebHelp Classic with Feedback transformations.
Using Oxygen XML Editor/Author

To add a favicon to your WebHelp output using a transformation scenario from within Oxygen XML Editor/Author, follow this procedure:

1. Edit the WebHelp transformation scenario and open the Parameters tab.
2. Locate the webhelp.favicon parameter and enter the file path that points to the image that will be use as the favicon.
3. Run the transformation scenario.

Result: Browsers that provide favicon support will display the favicon (typically in the browser's address bar, in the list of bookmarks, and in the history).

Using a Script Outside of Oxygen XML Editor/Author

⚠️ Important: Running WebHelp transformations from a script outside of Oxygen XML Editor/Author requires an additional license and some additional setup:

- You must have a valid license for the Oxygen XML WebHelp Plugin (https://www.oxygenxml.com/buy_webhelp.html).
- The Oxygen XML WebHelp Plugin must be installed and integrated for the DITA Open Toolkit or a DocBook XSL Distribution.

To add a favicon to your WebHelp output using a script outside of Oxygen XML Editor/Author, follow this procedure:

1. Specify the file path that points to the image that will be use as the favicon using the webhelp.favicon parameter.
2. Execute the transformation script.

Result: Browsers that provide favicon support will display the favicon (typically in the browser's address bar, in the list of bookmarks, and in the history).

For example:

- Windows:
  
  dita.bat -i c:\mySample.ditamap -f webhelp -Dwebhelp.favicon=c:\myFavicon.jpg

- Mac OS X/ Linux:
  
  dita -i /mySample.ditamap -f webhelp -Dwebhelp.favicon=/myFavicon.jpg
How to Add a Logo Image in the Title Area

You can customize WebHelp Classic output to include a logo in the title area. It will be displayed before the publication title. You can also specify a URL that can be used to send users to a specific website when they click the logo image.

This customization can be done using a transformation scenario from within Oxygen XML Editor/Author or using a command-line script outside of Oxygen XML Editor/Author.

Using Oxygen XML Editor/Author

To add a logo in the title area of your WebHelp output using a transformation scenario from within Oxygen XML Editor/Author, follow this procedure:

1. Edit a WebHelp Classic transformation scenario, then open the Parameters tab.
2. Specify the path to your logo in the webhelp.logo.image parameter.
3. If you also want to add a link to your website when you click the logo image, set the URL in the webhelp.logo.image.target.url parameter.
4. Run the transformation scenario.

Using a Script Outside of Oxygen XML Editor/Author

⚠️ Important: Running WebHelp transformations from a script outside of Oxygen XML Editor/Author requires an additional license and some additional setup:

- You must have a valid license for the Oxygen XML WebHelp Plugin (https://www.oxygenxml.com/buy_webhelp.html).
- The Oxygen XML WebHelp Plugin must be installed and integrated for the DITA Open Toolkit or a DocBook XSL Distribution.

To add a logo in the title area of your WebHelp output using a script outside of Oxygen XML Editor/Author, follow this procedure:

1. Specify the path to your logo using the webhelp.logo.image parameter.
2. If you also want to add a link to your website when you click the logo image, set the URL using the webhelp.logo.image.target.url parameter.
3. Execute the transformation script.

For example:

- Windows:
How to Add Video and Audio Objects in DITA WebHelp Classic

You can insert references to video and audio media resources (such as videos, audio clips, or embedded HTML frames) in your DITA topics and then publish them to WebHelp output. The media objects can be played directly in all HTML5-based outputs, including WebHelp systems.

To add media objects in the WebHelp output generated from DITA documents, follow the procedures below.

Adding Videos to DITA WebHelp Output

1. Edit the DITA topic and insert a reference to the video through one of the following methods:
   • Use the [Insert Media Object] toolbar action (on page 3066).
   • Drag (or copy) the video file from your system explorer or the Project view (on page 333) and drop (or paste) it into your document.
   • Manually add an object element, as in one of the following examples:

   ```xml
   <object outputclass="video" type="video/mp4" data="MyVideo.mp4"/>
   ```

   or, instead of the data attribute, you can specify the video using a parameter like this:

   ```xml
   <object outputclass="video">
   <param name="src" value="videos/MyVideo.mp4"/>
   </object>
   ```

2. Apply a DITA to WebHelp transformation to obtain the output.

   Result: The transformation converts the object element to an HTML5 video element.

   ```xml
   <video controls="controls"><source type="video/mp4" src="MyVideo.mp4"></source></video>
   ```

Adding Audio Clips to DITA WebHelp Output

1. Edit the DITA topic and insert a reference to the audio clip through one of the following methods:
   • Use the [Insert Media Object] toolbar action (on page 3066).
• Drag (or copy) the audio file from your system explorer or the Project view (on page 333) and drop (or paste) it into your document.

• Manually add an object element, as in one of the following examples:

```xml
<object outputclass="audio" type="audio/mpeg" data="MyClip.mp3"/>
```

or, instead of the data attribute, you can specify the video using a parameter like this:

```xml
<object outputclass="audio">
  <param name="src" value="audio/MyClip.mp3"/>
</object>
```

2. Apply a DITA to WebHelp transformation to obtain the output.

**Result:** The transformation converts the object element to an HTML5 audio element.

```html
<audio controls="controls"> <source type="audio/mpeg" src="MyClip.mp3"></source> </audio>
```

### Adding Embedded HTML Frames (such as YouTube videos) to DITA WebHelp Output

1. Edit the DITA topic and insert a reference to the embedded object by using the Insert Media Object toolbar action (on page 3066) or by manually adding an object element, as in one of the following examples:

```xml
<object outputclass="iframe" data="https://www.youtube.com/embed/m_vv2s5Trn4"/>
```

or, instead of the data attribute, you can specify the object using a parameter like this:

```xml
<object outputclass="iframe">
  <param name="src" value="http://www.youtube.com/embed/m_vv2s5Trn4"/>
</object>
```

2. If you want the video to be allowed to play in full screen mode once the document is converted to XHTML output, also add an allowfullscreen parameter and set its value to true:

```xml
<object outputclass="iframe" data="https://www.youtube.com/embed/m_vv2s5Trn4"/>
  <param name="allowfullscreen" value="true"/>
</object>
```

**Tip:** If you copy the embed code from the source and paste it into the Insert Media dialog box (see the specific instructions: here (on page 3068)), the allowfullscreen parameter will automatically be added and all you have to do is set the value to true.

3. Apply a DITA to WebHelp transformation to obtain the output.

**Result:** The transformation converts the object element to an HTML5 iframe element.
For more information, see the following video demonstration:

https://www.youtube.com/embed/llX11gS4WaU

Related Information:

- Adding Video, Audio, and Embedded HTML Resources in DITA Topics (on page 3066)

How to Add Videos in DocBook WebHelp Classic Output

You can insert references to videos in your DocBook topics and then publish them to WebHelp Classic output. The videos can be played directly in all HTML5-based outputs, including WebHelp systems.

To add videos in the WebHelp Classic output generated from DocBook documents, follow these steps:

1. Edit the DocBook document and reference the video using an `<mediaobject>` element, as in the following example:

   ```xml
   <mediaobject>
     <videoobject>
       <videodata fileref="http://www.youtube.com/watch/v/VideoName"/>
     </videoobject>
   </mediaobject>
   ``

2. Apply a WebHelp or WebHelp with Feedback transformation scenario to obtain the output.

How to Copy Additional Resources to Output Directory

You can copy additional resources (such as JavaScript, CSS or other resources) to the output directory of a WebHelp system by using the `webhelp.custom.resources` parameter.

Using Oxygen XML Editor/Author

To copy additional resources to the output directory using a transformation scenario from within Oxygen XML Editor/Author, follow this procedure:

1. Place all your resources in the same directory.
2. Edit the WebHelp transformation scenario, then open the Parameters tab.
3. Edit the value for the `webhelp.custom.resources` parameter and set it to the absolute path of the directory in step 1.
4. Click **OK** to save the changes to the transformation scenario.
5. Run the transformation scenario.

**Result:** All files from the new directory will be copied to the root of the WebHelp output directory.

**Using a Script Outside of Oxygen XML Editor/Author**

⚠️ **Important:** Running WebHelp transformations from a script outside of **Oxygen XML Editor/Author** requires an additional license and some additional setup:

- You must have a valid license for the **Oxygen XML WebHelp Plugin** ([https://www.oxygenxml.com/buy_webhelp.html](https://www.oxygenxml.com/buy_webhelp.html)).
- The **Oxygen XML WebHelp Plugin** must be installed and integrated for the DITA Open Toolkit or a DocBook XSL Distribution.

To copy additional resources to the output directory using a script outside of **Oxygen XML Editor/Author** ([on page 1789](on page 1789)), follow this procedure:

1. Place all your resources in the same directory.
2. Specify the absolute path to that directory using the `webhelp.custom.resources` parameter.
3. Execute the transformation script.

**Result:** All files from the new directory will be copied to the root of the WebHelp output directory.

For example:

- **Windows:**
  
  ```
  dita.bat -i c:\mySample.ditamap -f webhelp-responsive -Dwebhelp.custom.resources=c:\resources
  ```

- **Mac OS X/ Linux:**
  
  ```
  dita -i /mySample.ditamap -f webhelp-responsive -Dwebhelp.custom.resources=/resources
  ```

**How to Publish MathML Formulas when Generating WebHelp from a Command Line**

The DITA-OT distribution that comes bundled with **Oxygen** includes some additional pre-installed DITA-OT plugins that add support for properly displaying MathML formulas in the WebHelp output. However, if you are generating your WebHelp output from a command line, MathML formulas will not be displayed properly unless you install these plugins manually.
These plugins can be downloaded and installed from DITA 1.3 Support for Open Toolkit (https://github.com/dita-community/dita13-dita-ot-1.x-support). This plugin package adds DITA 1.3 support, including MathML.

**How to Add Support for MathML when Generating WebHelp from a Command Line**

1. Download and unzip the **DITA 1.3 Support for Open Toolkit 1.x distribution package**. It includes 4 DITA-OT plugins.
2. Copy the four plugin directories to your `DITA-OT-DIR/plugins` directory.
3. In the home directory of your DITA-OT installation, run the `ant -f integrator.xml` command.

**Searching the Output**

This section contains topics that explain how to customize some of the search features in WebHelp Classic output.

**How to Change Element Scoring in Search Results**

The WebHelp **Search** feature is enhanced with a rating mechanism that computes scores for every page that matches the search criteria. HTML tag elements are assigned a scoring value and these values are evaluated for the search results. The WebHelp directory includes a properties file that defines the scoring values for tag elements and this file can be edited to customize the values according to your needs.

To edit the scoring values of HTML tag element for enhancing WebHelp search results, follow these steps:

1. Edit the scoring properties file for DITA or DocBook WebHelp systems. The properties file includes instructions and examples to help you with your customization.
   a. For DITA WebHelp Classic systems, edit the following file: `DITA-OT-DIR\plugins\com.oxygenxml.webhelp.classic\indexer\scoring.properties`.
   b. For DocBook WebHelp system, edit the following file: `[DocBook XSL directory]\com.oxygenxml.webhelp.classic\indexer\scoring.properties`.

The values that can be edited in the `scoring.properties` file:

<table>
<thead>
<tr>
<th>Tag</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>h1</td>
<td>10</td>
</tr>
<tr>
<td>h2</td>
<td>9</td>
</tr>
<tr>
<td>h3</td>
<td>8</td>
</tr>
<tr>
<td>h4</td>
<td>7</td>
</tr>
<tr>
<td>h5</td>
<td>6</td>
</tr>
<tr>
<td>h6</td>
<td>5</td>
</tr>
<tr>
<td>b</td>
<td>5</td>
</tr>
</tbody>
</table>
2. Save your changes to the file.

3. Re-run your WebHelp transformation.

How to Exclude Certain DITA Topics from Search Results

There are several ways to exclude certain DITA resources from your WebHelp system's search results. This is useful if you have topics in your DITA map (on page 3281) structure that you do not want to be included in search results for your WebHelp system. The first method involves setting a parameter in the WebHelp transformation scenario and the second involves setting an attribute for each DITA topic reference that you want to exclude.

Transformation Parameter Method

To exclude DITA topics from WebHelp search results using a transformation parameter, follow these steps:

1. Create a simple text file that will contain your excluded file patterns. Each pattern must be on a new line. The patterns are considered to be relative to the output directory and they accept wildcards such as * (matches zero or more characters) or ? (matches one character). For more information about the patterns, see https://ant.apache.org/manual/dirtasks.html#patterns.

   **Example:** Suppose that in your project, you want to exclude all files located in the resources directory and all files located in the topics directory that have a .bak file extension. You could create a simple text file (for example, named exclude.properties), and add the following lines:

   ```
   resources/*
   topics/* .bak
   ```

2. Edit the WebHelp transformation scenario and open the Parameters tab.
3. Set the `webhelp.search.custom.excludes.file` parameter to specify the path to the file that contains the excluded file patterns (for example, `exclude.properties` in step 1).
4. Run the transformation scenario.

**Search Attribute Method**

The WebHelp Search engine does not index DITA topics that have the `@search` attribute set to `no`.

To exclude DITA topics from WebHelp search results using this attribute, follow these steps:

1. Edit the DITA map and for any `topicref` that you want to exclude from search results, set the `search` attribute to `no`. For example:
   ```xml
   <topicref href="../topics/internal-topic1.dita" search="no"/>
   ```
2. Save your changes to the DITA map.
3. Run your WebHelp system transformation scenario.

**How to Optimize Search Results in WebHelp Classic**

A DITA Map WebHelp transformation scenario can be configured to produce a `sitemap.xml` file that is used by search engines to aid crawling and indexing mechanisms. A `sitemap` lists all pages of a WebHelp system and allows webmasters to provide additional information about each page, such as the date it was last updated, change frequency, and importance of each page in relation to other pages in your WebHelp deployment.

The structure of the `sitemap.xml` file looks like this:

```xml
<urlset xmlns="http://www.sitemaps.org/schemas/sitemap/0.9">
  <url>
    <loc>http://www.example.com/topics/introduction.html</loc>
    <lastmod>2014-10-24</lastmod>
    <changefreq>weekly</changefreq>
    <priority>0.5</priority>
  </url>
  <url>
    <loc>http://www.example.com/topics/care.html#care</loc>
    <lastmod>2014-10-24</lastmod>
    <changefreq>weekly</changefreq>
    <priority>0.5</priority>
  </url>
  . . .
</urlset>
```
Each page has an `<url>` element structure containing additional information, such as:

- **loc** - the URL of the page. This URL must begin with the protocol (such as http), if required by your web server. It is constructed from the value of the `webhelp.sitemap.base.url` parameter from the transformation scenario and the relative path to the page (collected from the `href` attribute of a `topicref` element in the DITA map).

  **Note:** The value must have fewer than 2,048 characters.

- **lastmod** (optional) - the date when the page was last modified. The date format is `YYYY-MM-DD`.

- **changefreq** (optional) - indicates how frequently the page is likely to change. This value provides general information to assist search engines, but may not correlate exactly to how often they crawl the page. Valid values are: always, hourly, daily, weekly, monthly, yearly, and never. The first time the `sitemap.xml` file is generated, the value is set based upon the value of the `webhelp.sitemap.change.frequency` parameter in the DITA WebHelp transformation scenario. You can change the value in each `url` element by editing the `sitemap.xml` file.

  **Note:** The value `always` should be used to describe documents that change each time they are accessed. The value `never` should be used to describe archived URLs.

- **priority** (optional) - the priority of this page relative to other pages on your site. Valid values range from 0.0 to 1.0. This value does not affect how your pages are compared to pages on other sites. It only lets the search engines know which pages you deem most important for the crawlers. The first time the `sitemap.xml` file is generated, the value is set based upon the value of the `webhelp.sitemap.priority` parameter in the DITA WebHelp transformation scenario. You can change the value in each `url` element by editing the `sitemap.xml` file.

Creating and Editing the `sitemap.xml` File

Follow these steps to produce a `sitemap.xml` file for your WebHelp system, which can then be edited to fine-tune search engine optimization:

1. **Edit** the transformation scenario you currently use for obtaining your WebHelp output. This opens the `Edit DITA Scenario` dialog box.
2. Open the **Parameters** tab and set a value for the following parameters:
   - **webhelp.sitemap.base.url** - the URL of the location where your WebHelp system is deployed
     
     **Note:** This parameter is required for Oxygen XML Editor to generate the `sitemap.xml` file.
   - **webhelp.sitemap.change.frequency** - how frequently the WebHelp pages are likely to change (accepted values are: always, hourly, daily, weekly, monthly, yearly, and never)
   - **webhelp.sitemap.priority** - the priority of each page (value ranging from 0.0 to 1.0)
3. Run the transformation scenario.
4. Look for the `sitemap.xml` file in the transformation's output folder. Edit the file to fine-tune the parameters of each page, according to your needs.

**How to Index Japanese Content in WebHelp Classic**

To optimize the indexing of Japanese content in WebHelp pages, the Lucene Kuromoji Japanese analyzer can be used. This analyzer is included in the Oxygen XML Editor/Author installation kit.

**Using Oxygen XML Editor/Author**

To activate the Japanese indexing in your WebHelp output using a transformation scenario from within Oxygen XML Editor/Author, follow this procedure:

1. Set the language for your content to Japanese (depending on your framework):
   - **DITA**: Edit a DITA to WebHelp transformation scenario and in the Parameters tab, set the value of the `default.language` parameter to `ja-jp`.
     
     **Note**: Alternatively, you could set the `xml:lang` attribute on the root of the DITA map (on page 3281) and the referenced topics to `ja-jp`. Another alternative for DITA output is to use the `webhelp.search.japanese.dictionary` parameter to specify a path to a Japanese dictionary that will be used by the Kuromoji morphological engine (note that the encoding for the dictionary must be UTF8).
   - **DocBook**: Edit a DocBook to WebHelp transformation scenario and in the Parameters tab, set the value of the `l10n.gentext.default.language` parameter to `ja`.

2. Run the WebHelp transformation scenario to generate the output.

**Using a Script Outside of Oxygen XML Editor/Author**

**Important**: Running WebHelp transformations from a script outside of Oxygen XML Editor/Author requires an additional license and some additional setup:

- You must have a valid license for the Oxygen XML WebHelp Plugin (https://www.oxygenxml.com/buy_webhelp.html).
- The Oxygen XML WebHelp Plugin must be installed and integrated for the DITA Open Toolkit or a DocBook XSL Distribution.

To activate the Japanese indexing in your WebHelp output using a script outside of Oxygen XML Editor/Author, follow this procedure:

1. Set the language for your content to Japanese (depending on your framework):
   - **DITA**: Use the `args.default.language` parameter in your transformation script and set its value to `ja-jp`.
Note: Alternatively, you could set the `xml:lang` attribute on the root of the DITA map (on page 3281) and the referenced topics to `ja-jp`. Another alternative for DITA output is to use the `webhelp.search.japanese.dictionary` parameter to specify a path to a Japanese dictionary that will be used by the Kuromoji morphological engine (note that the encoding for the dictionary must be UTF8).

- **DocBook:** Use the `l10n.gentext.default.language` parameter in your transformation script and set its value to `ja`.

2. Execute the transformation script.

For example, a DITA script might look like this:

- **Windows:**
  
  dita.bat -i c:\mySample.ditamap -f webhelp -Dargs.default.language=ja-jp

- **Mac OS X/ Linux:**
  
  dita -i /mySample.ditamap -f webhelp -Dargs.default.language=ja-jp

---

**Related Information:**

- **How to Localize the Interface of DITA Map to WebHelp Classic Output (on page 1832)**

- **How to Localize the Interface of DocBook to WebHelp Classic Output (on page 1835)**

---

**Localization in WebHelp Classic Output**

This section contains topics that explain the localization support for DITA or DocBook WebHelp Classic transformations.

**How to Localize Email Notifications of WebHelp Classic with Feedback Output**

The feedback-enabled WebHelp systems use emails to notify users when comments are posted. These emails are based on templates stored in the WebHelp directory. The default messages are in English, French, German, and Japanese. These messages are copied into the WebHelp system deployment directory during the execution of the corresponding transformation scenario.

**Using Oxygen XML Editor/Author**

To change the language of the emails for WebHelp Classic with Feedback output using a transformation scenario from within **Oxygen XML Editor/Author**, follow this procedure:
1. Create the following directory, depending on your framework:
   - **DITA**: `DITA-OT-DIR\plugins\com.oxygenxml.webhelp.classic\oxygen-webhelp\resources\php\templates\[Language code]` (where the *Language code* is the 2-digit code, such as *nl* for Dutch)
   - **DocBook**: `[DocBook XSL directory]\com.oxygenxml.webhelp.classic\oxygen-webhelp\resources\php\templates\[Language code]` (where the *Language code* is the 2-digit code, such as *nl* for Dutch)

2. Copy all English template files from the following directory (depending on your framework) and paste them into the directory you just created.
   - **DITA**: `DITA-OT-DIR\plugins\com.oxygenxml.webhelp.classic\oxygen-webhelp\resources\php\templates\en`
   - **DocBook**: `[DocBook XSL directory]\com.oxygenxml.webhelp.classic\oxygen-webhelp\resources\php\templates\en`

3. Edit the HTML files from the following directory (depending on your framework) and translate the content into your language.
   - **DITA**: `DITA-OT-DIR\plugins\com.oxygenxml.webhelp.classic\oxygen-webhelp\resources\php\templates\[Language code]` (where the *Language code* is the 2-digit code, such as *nl* for Dutch)
   - **DocBook**: `[DocBook XSL directory]\com.oxygenxml.webhelp.classic\oxygen-webhelp\resources\php\templates\[Language code]` (where the *Language code* is the 2-digit code, such as *nl* for Dutch)

4. Edit a WebHelp Classic with Feedback transformation scenario and open the Parameters tab.
5. In the Parameters tab, look for the default.language parameter and set its value to the appropriate language code (for example, *nl* for Dutch).

   **Note:** If you set the parameter to a value such as LanguageCode-CountryCode (for example, *en-us*), the transformation scenario will only use the language code.

6. Run the transformation scenario.

### Using a Script Outside of Oxygen XML Editor/Author

**Important:** Running WebHelp transformations from a script outside of Oxygen XML Editor/Author requires an additional license and some additional setup:

- You must have a valid license for the Oxygen XML WebHelp Plugin (https://www.oxygenxml.com/buy_webhelp.html).
- The Oxygen XML WebHelp Plugin must be installed and integrated for the DITA Open Toolkit or a DocBook XSL Distribution.

To change the language of the emails for WebHelp Classic with Feedback output using a script outside of Oxygen XML Editor/Author (on page 1789), follow this procedure:
1. Create the following directory, depending on your framework:
   - **DITA**: `DITA-OT-DIR\plugins\com.oxygenxml.webhelp.classic\oxygen-webhelp\resources\php\templates\[Language code]` (where the *Language code* is the 2-digit code, such as `nl` for Dutch)
   - **DocBook**: `[DocBook XSL directory]\com.oxygenxml.webhelp.classic\oxygen-webhelp\resources\php\templates\[Language code]` (where the *Language code* is the 2-digit code, such as `nl` for Dutch)

2. Copy all English template files from the following directory (depending on your framework) and paste them into the directory you just created:
   - **DITA**: `DITA-OT-DIR\plugins\com.oxygenxml.webhelp.classic\oxygen-webhelp\resources\php\templates\en`
   - **DocBook**: `[DocBook XSL directory]\com.oxygenxml.webhelp.classic\oxygen-webhelp\resources\php\templates\en`

3. Edit the HTML files from the following directory (depending on your framework) and translate the content into your language:
   - **DITA**: `DITA-OT-DIR\plugins\com.oxygenxml.webhelp.classic\oxygen-webhelp\resources\php\templates\[Language code]` (where the *Language code* is the 2-digit code, such as `nl` for Dutch)
   - **DocBook**: `[DocBook XSL directory]\com.oxygenxml.webhelp.classic\oxygen-webhelp\resources\php\templates\[Language code]` (where the *Language code* is the 2-digit code, such as `nl` for Dutch)

4. Use the `args.default.language` parameter in your transformation script and set its value to the appropriate language code (for example, `nl` for Dutch).

   **Note:** If you set the parameter to a value such as `LanguageCode-CountryCode` (for example, `en-us`), the transformation scenario will only use the language code.

5. Execute the transformation script.

   For example, a DITA to WebHelp Classic with Feedback script might look like this:

   - **Windows**:
     ```
     dita.bat -i c:\mySample.ditamap -f webhelp-feedback -Dargs.default.language=nl
     ```
   - **Mac OS X/ Linux**:
     ```
     dita -i /mySample.ditamap -f webhelp-feedback -Dargs.default.language=nl
     ```

   **How to Localize the Interface of DITA Map to WebHelp Classic Output**

   Static labels used in the WebHelp output are stored in translation files that have the `strings-lang1-lang2.xml` name format, where `lang1` and `lang2` are ISO language codes. For example, the US English labels are kept in the `strings-en-us.xml` file.
These translation files are collected from two locations:

- **DITA-OT-DIR/xsl/common folder** - DITA-OT's default translations (generated text for note, fig, and table elements).
- **DITA-OT-DIR/plugins/com.oxygenxml.webhelp.classic/oxygen-webhelp/resources/localization folder** - These translations are contributed by the WebHelp plugin and extend the default ones provided by DITA-OT. The labels defined in this folder take precedence over the DITA-OT defaults.

There are two major reasons you may want to use modify the translation files: to modify the existing strings or to translate to a new language.

**Modifying the Existing Strings**

To modify the generated text for WebHelp transformations, you need to create a DITA-OT extension plugin that uses the `dita.xsl.messages` extension point. The following procedure is for changing English labels, but you can adapt it for any language:

1. Create a `com.oxygenxml.webhelp.localization` plugin directory inside the DITA-OT-DIR/plugins/ location.
2. Create a plugin.xml file inside that `com.oxygenxml.webhelp.localization` directory with the following content:

```xml
<plugin id="com.oxygenxml.webhelp.localization">
  <require plugin="com.oxygenxml.webhelp.classic"/>
  <require plugin="com.oxygenxml.webhelp.responsive"/>
  <feature extension="dita.xsl.strings" file="webhelp-extension-strings.xml"/>
</plugin>
```

3. Create a webhelp-extension-strings.xml file with the following content:

```xml
<langlist>
  <lang xml:lang="en" filename="strings-en-us.xml"/>
  <lang xml:lang="en-us" filename="strings-en-us.xml"/>
</langlist>
```

4. Copy the strings you want to change from the translation files (on page 1833) to the strings-en-us.xml file. Make sure you leave the name attribute unchanged because this is the key used to look up the string. A sample content might be:

```xml
<strings xml:lang="en-US">
  <str name="Figure">Fig</str>
  <str name="Draft comment">ADDRESS THIS DRAFT COMMENT</str>
</strings>
```
5. Use the Run DITA-OT Integrator transformation scenario (on page 1665) found in the DITA Map section in the Configure Transformation Scenario(s) dialog box (on page 1762).

Adding a New Language

To add a new language for WebHelp transformations, you need to create a DITA-OT extension plugin that uses the `dita.xsl.messages` extension point. The following sample procedure is for adding translation files for the Polish language, but you can adapt it for any language:

1. Create a `com.oxygenxml.webhelp.localization` plugin directory inside the `DITA-OT-DIR/plugins/` location.
2. Create a `plugin.xml` file inside that `com.oxygenxml.webhelp.localization` directory with the following content:

   ```xml
   <plugin id="com.oxygenxml.webhelp.localization">
     <require plugin="com.oxygenxml.webhelp.classic"/>
     <require plugin="com.oxygenxml.webhelp.responsive"/>
     <feature extension="dita.xsl.strings" file="webhelp-extension-strings.xml"/>
   </plugin>
   ```

3. Create a `webhelp-extension-strings.xml` file with the following content:

   ```xml
   <langlist>
     <lang xml:lang="pl" filename="strings-pl-pl.xml"/>
     <lang xml:lang="pl-PL" filename="strings-pl-pl.xml"/>
   </langlist>
   ```


5. In the `strings-pl-pl.xml` file, change the `@xml:lang` attribute on the root element that conforms with the new language.

   ```xml
   <strings xml:lang="pl-PL">
     ...
   </strings>
   ```

6. Translate the content of each `<str>` element (make sure to leave the `name` attribute unchanged).

   ```xml
   <strings xml:lang="pl-PL">
     ...
   </strings>
   ```
7. Copy the common DITA-OT strings defined in the DITA-OT-DIR/xsl/common/strings-en-us.xml file. It defines a set generated text available for HTML based transformations (such as note, fig, and table elements). Translate the content of each <str> element.

Result:

```xml
<strings xml:lang="pl-PL">
  ...
  <str name="webhelp.content" js="true" php="false">Polish translation for "Content".</str>
  <str name="webhelp.search" js="true" php="false">Polish translation for "Search"</str>
  ...
</strings>
```

8. Use the Run DITA-OT Integrator transformation scenario (on page 1665) found in the DITA Map section in the Configure Transformation Scenario(s) dialog box (on page 1762).

Related Information:

- How to Index Japanese Content in WebHelp Classic (on page 1829)

How to Localize the Interface of DocBook to WebHelp Classic Output

Static labels that are used in the WebHelp output are kept in translation files in the [DocBook XSL directory]/com.oxygenxml.webhelp.classic/oxygen-webhelp/resources/localization folder. Translation files have the strings-lang1-lang2.xml name format, where lang1 and lang2 are ISO language codes. For example, the US English text is kept in the strings-en-us.xml file.

To localize the interface of the WebHelp output for DocBook transformations, follow these steps:
1. Look for the strings-[lang1]-[lang2].xml file in [DocBook XSL directory]/com.oxygenxml.webhelp.classic/oxygen-webhelp/resources/localization directory (for example, the Canadian French file would be: strings-fr-ca.xml). If it does not exist, create one starting from the strings-en-us.xml file.

2. Translate all the labels from the above language file. Labels are stored in XML elements that have the following format: `<str name="Label name">Caption</str>`.

3. Make sure that the new XML file that you created in the previous two steps is listed in the file [DocBook XSL directory]/com.oxygenxml.webhelp.classic/oxygen-webhelp/resources/localization/strings.xml. For example, a Canadian French file would be listed as: `<lang xml:lang="fr-ca" filename="strings-fr-ca.xml"/>`.

4. Edit any of the DocBook to WebHelp transformation scenarios (with or without feedback) and set the l10n.gentext.default.language parameter to the code of the language you want to localize (for example, fr-ca for Canadian French).

5. Run the transformation scenario to produce the WebHelp output.

Related Information:

- How to Index Japanese Content in WebHelp Classic (on page 1829)

How to Activate Support for Right-to-Left (RTL) Languages

To activate support for RTL (right-to-left) languages in WebHelp output, edit the DITA map (on page 3281) and set the xml:lang attribute on its root element (map). The corresponding attribute value can be set for following RTL languages:

- ar-eg - Arabic
- he-il - Hebrew
- ur-pk - Urdu

Integrating Social Media and Google Tools in the WebHelp Classic Output

Oxygen XML Editor includes support for integrating some of the most popular social media sites in WebHelp output.

How to Add a Facebook Like Button in WebHelp Classic Output

It is possible to integrate Facebook™ into your WebHelp Classic output and the widget will appear in the footer sections of your WebHelp page.
Using Oxygen XML Editor/Author

To add a Facebook Like widget to your WebHelp output using a transformation scenario from within Oxygen XML Editor/Author, follow this procedure:

1. Go to the Facebook Developers website.
2. Fill-in the displayed form, then click the Get Code button.
3. Copy the two code snippets and paste them into a `<div>` element inside an XML file called `facebook-widget.xml`. Make sure you follow these rules:
   - The file must be well-formed.
   - The code for each `<script>` element must be included in an XML comment.
   - The start and end tags for the XML comment must be on a separate line.

   The content of the XML file should look like this:

   ```xml
   <div id="facebook">
     <div id="fb-root"/>
     <script>
       <!--
       (function(d, s, id) {
         var js, fjs = d.getElementsByTagName(s)[0];
         if (d.getElementById(id)) return;
         js = d.createElement(s); js.id = id;
         js.src = "//connect.facebook.net/en_US/sdk.js#xfbml=1&version=v2.0";
         fjs.parentNode.insertBefore(js, fjs);
       })(document, 'script', 'facebook-jssdk');
       -->
     </script>
     <div class="fb-like" data-layout="standard" data-action="like"
      data-show-faces="true" data-share="true"/>
   </div>
   ```

4. In Oxygen XML Editor/Author, click the Configure Transformation Scenario(s) action from the toolbar (or the Document > Transformation menu).
5. Select an existing WebHelp Classic transformation scenario (depending on your needs, it may be with or without feedback) and click the Duplicate button to open the Edit Scenario dialog box.
6. Switch to the Parameters tab and edit the `webhelp.footer.file` parameter to reference the `facebook-widget.xml` file that you created earlier.
7. Click Ok and run the transformation scenario.
Using a Script Outside of Oxygen XML Editor/Author

⚠️ Important: Running WebHelp transformations from a script outside of Oxygen XML Editor/Author requires an additional license and some additional setup:

- You must have a valid license for the Oxygen XML WebHelp Plugin (https://www.oxygenxml.com/buy_webhelp.html).
- The Oxygen XML WebHelp Plugin must be installed and integrated for the DITA Open Toolkit or a DocBook XSL Distribution.

To add a Facebook Like widget to your WebHelp output using a script outside of Oxygen XML Editor/Author (on page 1789), follow this procedure:

1. Go to the Facebook Developers website.
2. Fill-in the displayed form, then click the Get Code button.
3. Copy the two code snippets and paste them into a `<div>` element inside an XML file called `facebook-widget.xml`. Make sure you follow these rules:
   - The file must be well-formed.
   - The code for each `<script>` element must be included in an XML comment.
   - The start and end tags for the XML comment must be on a separate line.

   The content of the XML file should look like this:

   ```xml
   <div id="facebook">
       <div id="fb-root"/>
       <script>
           <!--
               (function(d, s, id) {
                   var js, fjs = d.getElementsByTagName(s)[0];
                   if (d.getElementById(id)) return;
                   js = d.createElement(s); js.id = id;
                   js.src = "//connect.facebook.net/en_US/sdk.js#xfbml=1&version=v2.0";
                   fjs.parentNode.insertBefore(js, fjs);
               })(document, 'script', 'facebook-jssdk');
           -->
       </script>
       <div class="fb-like" data-layout="standard" data-action="like"
           data-show-faces="true" data-share="true"/>
   </div>
   ```

4. Use the webhelp.footer.file parameter in your transformation script and set its value to reference the `facebook-widget.xml` file that you created earlier.
5. Execute the transformation script.

For example:

- **Windows:**

  ```
  dita.bat -i c:\mySample.ditamap -f webhelp -Dwebhelp.footer.file=c:\facebook-widget.xml
  ```

- **Mac OS X/ Linux:**

  ```
  dita -i /mySample.ditamap -f webhelp -Dwebhelp.footer.file=/facebook-widget.xml
  ```

---

**How to Add a Google+ Button in WebHelp Classic Output**

It is possible to integrate Google into your WebHelp Classic output and the widget will appear in the footer section of your WebHelp page.

**Using Oxygen XML Editor/Author**

To add a Google+ widget to your WebHelp Classic output using a transformation scenario from within Oxygen XML Editor/Author, follow this procedure:

1. Go to the Google Developers website.
2. Fill-in the displayed form. The preview area on the right side displays the code and a preview of the widget.
3. Copy the code snippet displayed in the preview area and paste it into a `div` element inside an XML file called `google-plus-button.xml`. Make sure that the content of the file is well-formed. The content of the XML file should look like this:

   ```
   <div id="google-plus">
       <!-- Place this tag in your head or just before your close body tag. -->
       <script src="https://apis.google.com/js/platform.js" async defer"></script>
       <!-- Place this tag where you want the +1 button to render. -->
       <div class="g-plusone" data-annotation="inline" data-width="300"></div>
   </div>
   ```

4. In Oxygen XML Editor/Author, click the Configure Transformation Scenario(s) action from the toolbar (or the Document > Transformation menu).
5. Select an existing WebHelp Responsive transformation scenario (depending on your needs, it may be with or without feedback) and click the Duplicate button to open the Edit Scenario dialog box.
6. Switch to the Parameters tab and edit the `webhelp.footer.file` parameter to reference the `google-plus-button.xml` file that you created earlier.
7. Click Ok and run the transformation scenario.

Using a Script Outside of Oxygen XML Editor/Author

⚠️ Important: Running WebHelp transformations from a script outside of Oxygen XML Editor/Author requires an additional license and some additional setup:

- You must have a valid license for the Oxygen XML WebHelp Plugin (https://www.oxygenxml.com/buy_webhelp.html).
- The Oxygen XML WebHelp Plugin must be installed and integrated for the DITA Open Toolkit or a DocBook XSL Distribution.

To add a Google+ widget to your WebHelp Classic output using a script outside of Oxygen XML Editor/Author (on page 1789), follow this procedure:

1. Go to the Google Developers website.
2. Fill-in the displayed form. The preview area on the right side displays the code and a preview of the widget.
3. Copy the code snippet displayed in the preview area and paste it into a div element inside an XML file called google-plus-button.xml. Make sure that the content of the file is well-formed. The content of the XML file should look like this:

   <div id="google-plus">
     <!-- Place this tag in your head or just before your close body tag. -->
     <script src="https://apis.google.com/js/platform.js" async defer></script>
     <!-- Place this tag where you want the +1 button to render. -->
     <div class="g-plusone" data-annotation="inline" data-width="300"></div>
   </div>

4. Use the webhelp.footer.file parameter in your transformation script and set its value to reference the google-plus-button.xml file that you created earlier.
5. Execute the transformation script.

For example:

- Windows:
  
  dita.bat -i c:\mySample.ditamap -f webhelp -Dwebhelp.footer.file=c:\google-plus-button.xml

- Mac OS X/ Linux:
  
  dita -i /mySample.ditamap -f webhelp -Dwebhelp.footer.file=/google-plus-button.xml
How to Add Tweet Button in WebHelp Classic Output

It is possible to integrate Twitter into your WebHelp Classic output and the widget will appear in the footer section of your WebHelp page.

Using Oxygen XML Editor/Author

To add a Twitter Tweet widget to your WebHelp Classic output using a transformation scenario from within Oxygen XML Editor/Author, follow this procedure:

1. Go to the Tweet button generator page.
2. Fill-in the displayed form. The Preview and code area displays the code that you will need.
3. Copy the code snippet displayed in the Preview and code area and paste it into a div element inside an XML file called tweet-button.xml. Make sure you follow these rules:
   - The file must be well-formed.
   - The code for each script element must be included in an XML comment.
   - The start and end tags for the XML comment must be on a separate line.

The content of the XML file should look like this:

```xml
<div id='twitter'>
  <a href='https://twitter.com/share' class='twitter-share-button'>Tweet</a>
  <script>
    !function(d, s, id) {
      var js, fjs = d.getElementsByTagName(s)[0], p = /^http:/.test(d.location) ? 'http' : 'https';
      if (! d.getElementById(id)) {
        js = d.createElement(s);
        js.id = id;
        js.src = p + '//platform.twitter.com/widgets.js';
        fjs.parentNode.insertBefore(js, fjs);
      }
    }
    {document,
      'script', 'twitter-wjs'};
  </script>
</div>
```

4. In Oxygen XML Editor/Author, click the Configure Transformation Scenario(s) action from the toolbar (or the Document > Transformation menu).
5. Select an existing WebHelp Responsive transformation scenario (depending on your needs, it may be with or without feedback) and click the **Duplicate** button to open the **Edit Scenario** dialog box.

6. Switch to the **Parameters** tab and edit the `webhelp.footer.file` parameter to reference the `tweet-button.xml` file that you created earlier.

7. Click **Ok** and run the transformation scenario.

---

**Using a Script Outside of Oxygen XML Editor/Author**

⚠️ **Important:** Running WebHelp transformations from a script outside of Oxygen XML Editor/Author requires an additional license and some additional setup:

- You must have a valid license for the [Oxygen XML WebHelp Plugin](https://www.oxygenxml.com/buy_webhelp.html).
- The [Oxygen XML WebHelp Plugin](https://www.oxygenxml.com/buy_webhelp.html) must be installed and integrated for the DITA Open Toolkit or a DocBook XSL Distribution.

To add a Twitter Tweet widget to your WebHelp Classic output using a script outside of Oxygen XML Editor/Author (on page 1789), follow this procedure:

1. Go to the Tweet button generator page.
2. Fill-in the displayed form. The **Preview and code** area displays the code that you will need.
3. Copy the code snippet displayed in the **Preview and code** area and paste it into a `div` element inside an XML file called `tweet-button.xml`. Make sure you follow these rules:
   - The file must be well-formed.
   - The code for each `script` element must be included in an XML comment.
   - The start and end tags for the XML comment must be on a separate line.

The content of the XML file should look like this:

```xml
<div id="twitter">
  <a href="https://twitter.com/share" class="twitter-share-button">Tweet</a>
  <script>
    <!--
    !function (d, s, id) {
      var js, fjs = d.getElementsByTagName(s)[0], p = /^http/.test(d.location) ? 'http': 'https';
      if (! d.getElementById(id)) {
        js = d.createElement(s);
        js.id = id;
        js.src = p + '://platform.twitter.com/widgets.js';
    ```
4. Use the `webhelp.footer.file` parameter in your transformation script and set its value to reference the `tweet-button.xml` file that you created earlier.

5. Execute the transformation script.

For example:

- **Windows:**

  ```bash
dita.bat -i c:\mySample.ditamap -f webhelp -Dwebhelp.footer.file=c:\tweet-button.xml
  ```

- **Mac OS X/ Linux:**

  ```bash
dita -i /mySample.ditamap -f webhelp -Dwebhelp.footer.file=/tweet-button.xml
  ```

---

**How to Integrate Google Analytics in WebHelp Classic Output**

You can use Google Analytics to track and report site data for your WebHelp Classic output.

**Using Oxygen XML Editor/Author**

To integrate Google Analytics into your WebHelp Classic output using a transformation scenario from within Oxygen XML Editor/Author, follow this procedure:

1. Create a new Google Analytics account (if you do not already have one) and log on.
2. Choose the Analytics solution that best fits the needs of your website.
3. Follow the on-screen instructions to obtain a Tracking Code that contains your Tracking ID. A Tracking Code looks like this:

```html
<script>
(function(i,s,o,r,a,m){i['GoogleAnalyticsObject']=r;i[r]=i[r]||function(){
  (i[r].q=i[r].q||[]).push(arguments)},i[r].l=1*new Date();a=s.createElement(o),
m=s.getElementsByTagName(o)[0];a.async=1;a.src=g;m.parentNode.insertBefore(a,m)
 })(window,document,'script','//www.google-analytics.com/analytics.js','ga');

ga('create', 'UA-XXXXXXXX-X', 'auto');
</script>
```
4. Save the Tracking Code (obtained in the previous step) in a new XML file called `googleAnalytics.xml`. Note that the file should only contain the tracking code.

5. In Oxygen XML Editor/Author, click the Configure Transformation Scenario(s) action from the toolbar (or the Document > Transformation menu).

6. Select an existing WebHelp Responsive transformation scenario (depending on your needs, it may be with or without feedback) and click the Duplicate button to open the Edit Scenario dialog box.

7. Switch to the Parameters tab and edit the `webhelp.footer.file` parameter to reference the `googleAnalytics.html` file that you created earlier.

8. Click Ok and run the transformation scenario.

Using a Script Outside of Oxygen XML Editor/Author

⚠️ **Important:** Running WebHelp transformations from a script outside of Oxygen XML Editor/Author requires an additional license and some additional setup:

- You must have a valid license for the Oxygen XML WebHelp Plugin (https://www.oxygenxml.com/buy_webhelp.html).
- The Oxygen XML WebHelp Plugin must be installed and integrated for the DITA Open Toolkit or a DocBook XSL Distribution.

To integrate Google Analytics into your WebHelp Classic output using a script outside of Oxygen XML Editor/Author (on page 1789), follow this procedure:

1. Create a new Google Analytics account (if you do not already have one) and log on.
2. Choose the Analytics solution that best fits the needs of your website.
3. Follow the on-screen instructions to obtain a Tracking Code that contains your Tracking ID. A Tracking Code looks like this:

```html
<script>
(function(i,s,o,g,r,a,m){i['GoogleAnalyticsObject']=r;i[r]=i[r]||function()
(i[r].q=i[r].q||[]).push(arguments)},i[r].l=1*new Date();a=s.createElement(o), m=s.getElementsByTagName(o)[0];a.async=1;a.src=g;m.parentNode.insertBefore(a,m)
)(window,document,'script','//www.google-analytics.com/analytics.js','ga');

ga('create', 'UA-XXXXXXXX-X', 'auto');
ga('send', 'pageview');
</script>
```
4. Save the Tracking Code (obtained in the previous step) in a new XML file called `googleAnalytics.xml`. Note that the file should only contain the tracking code.

5. Use the `webhelp.footer.file` parameter in your transformation script and set its value to reference the `googleAnalytics.html` file that you created earlier.

6. Execute the transformation script.

For example:

- **Windows:**
  
  `dita.bat -i c:\mySample.ditamap -f webhelp -Dwebhelp.footer.file=c:\googleAnalytics.xml`

- **Mac OS X/ Linux:**
  
  `dita -i /mySample.ditamap -f webhelp -Dwebhelp.footer.file=/googleAnalytics.xml`

### How to Integrate Google Search in WebHelp Classic Output

It is possible to integrate the *Google Search Engine* into your *WebHelp Classic* output and you can specify where you want the results to appear in your WebHelp page.

### Using Oxygen XML Editor/Author

To integrate the *Google Search Engine* into your WebHelp Responsive output using a transformation scenario from within *Oxygen XML Editor/Author*, follow this procedure:

1. Go to the *Google Custom Search Engine page* using your Google account.
2. Select the *Create a custom search engine* button.
3. Follow the on-screen instructions to create a search engine for your site. At the end of this process you should obtain a code snippet that looks like this:

```html
<script>
(function() {
    var cx = '000888210889775888983:8mn4x_mf-yg';
    var gcse = document.createElement('script');
    gcse.type = 'text/javascript';
    gcse.async = true;
    var s = document.getElementsByTagName('script')[0];
    s.parentNode.insertBefore(gcse, s);
});
</script>
```
4. Save the script into a well-formed HTML file called `googlecse.html`.

5. In **Oxygen XML Editor/Author**, click the Configure Transformation Scenario(s) action from the toolbar (or the Document > Transformation menu).

6. Select an existing WebHelp Responsive transformation scenario (depending on your needs, it may be with or without feedback) and click the **Duplicate** button to open the **Edit Scenario** dialog box.

7. Switch to the **Parameters** tab and edit the `webhelp.google.search.script` parameter to reference the `googlecse.html` file that you created earlier.

8. You can also use the `webhelp.google.search.results` parameter to choose where to display the search results.
   a. Create an HTML file with the following content:
      ```html
      <div class="gcse-searchresults-only" data-autoSearchOnLoad="true" data-queryParameterName="searchQuery"></div>
      ```
      (you must use the HTML5 version for the GCSE). For more information about other supported attributes, see [Google Custom Search: Supported Attributes](#).
   b. Set the value of the `webhelp.google.search.results` parameter to the file path of the file you just created. If this parameter is not specified, the following code is used:
      ```html
      <div class="gcse-searchresults-only" data-autoSearchOnLoad="true" data-queryParameterName="searchQuery"></div>.
      ```

9. Click **Ok** and run the transformation scenario.

---

**Using a Script Outside of Oxygen XML Editor/Author**

⚠️ **Important**: Running WebHelp transformations from a script outside of **Oxygen XML Editor/Author** requires an additional license and some additional setup:

- You must have a valid license for the **Oxygen XML WebHelp Plugin** ([https://www.oxygenxml.com/buy_webhelp.html](https://www.oxygenxml.com/buy_webhelp.html)).
- The **Oxygen XML WebHelp Plugin** must be installed and integrated for the DITA Open Toolkit or a DocBook XSL Distribution.

To integrate the **Google Search Engine** into your WebHelp Classic output using a script outside of **Oxygen XML Editor/Author (on page 1789)**, follow this procedure:

1. Go to the **Google Custom Search Engine page** using your Google account.
2. Select the **Create a custom search engine** button.
3. Follow the on-screen instructions to create a search engine for your site. At the end of this process you should obtain a code snippet that looks like this:
function() {
    var cx = '00088821089775889983:8mn4x_mf-yg';
    var gcse = document.createElement('script');
    gcse.type = 'text/javascript';
    gcse.async = true;
    var s = document.getElementsByTagName('script')[0];
    s.parentNode.insertBefore(gcse, s);
})();
</script>

4. Save the script into a well-formed HTML file called googlecse.html.

5. Use the webhelp.google.search.script parameter in your transformation script and set its value to reference the googlecse.html file that you created earlier.

6. You can also use the webhelp.google.search.results parameter to choose where to display the search results.
   a. Create an HTML file with the following content: `<div class="gcse-searchresults-only" data-autoSearchOnLoad="true" data-queryParameterName="searchQuery"></div>` (you must use the HTML5 version for the GCSE). For more information about other supported attributes, see Google Custom Search: Supported Attributes.
   b. Set the value of the webhelp.google.search.results parameter to the file path of the file you just created. If this parameter is not specified, the following code is used: `<div class="gcse-searchresults-only" data-autoSearchOnLoad="true" data-queryParameterName="searchQuery"></div>`.

7. Execute the transformation script.

For example:

- **Windows:**
  
  dita.bat -i c:\mySample.ditamap -f webhelp -Dwebhelp.google.search.script=c:\googlecse.html -Dwebhelp.google.search.results=c:\myFile.html

- **Mac OS X/ Linux:**
  
  dita -i /mySample.ditamap -f webhelp -Dwebhelp.google.search.script=/googlecse.html -Dwebhelp.google.search.results=/myFile.html
Overriding XSLT Processing Step of DITA WebHelp Classic Transformations

Since WebHelp output is primarily obtained by running XSLT transformations over the DITA input files (through the DITA Map WebHelp Classic transformation scenarios), one customization method would be to override the default XSLT templates that are used by the WebHelp transformations.

There are two methods available to override the XSLT stylesheets implied by the WebHelp transformation.

• The first method is to use one of the WebHelp XSLT-import extension points (on page 1848) that allow you to import an XSLT stylesheet so that it becomes part of the normal build. This method uses the same mechanism as the DITA-OT XSLT-import extension points. Note that this method will affect all the outputs generated with the WebHelp system.

• The second method implies that you will create a DITA-OT extension plugin (on page 1850) with a custom transtype and use an Ant build file to define the transformation process. The main difference from the first customization method is that you will not affect all WebHelp transformations. Only the transformations that use the declared plugin transtype will be affected.

WebHelp Classic XSLT-Import and XSLT-Parameter Extension Points

The WebHelp XSLT-Import extension points allows you to extend the XSLT stylesheets associated with some of the WebHelp transformation steps. The DITA-OT plug-in installer adds an XSLT import statement in the default WebHelp XSLT so that the XSLT stylesheet referenced by the extension point becomes part of the normal build.

Example:

```xml
<plugin id="com.oxygenxml.webhelp.classic.extension">
  <feature extension="com.oxygenxml.webhelp.classic.xsl.dita2webhelp"
    file="xsl/fixup.xsl"/>
</plugin>
```

⚠️ Attention: The customizations you make by using this extension point will affect all WebHelp transformations. If you want to have a customization that is only available for a certain transformation, use the Overriding a WebHelp XSLT Stylesheet from an Ant Build File (on page 1850) method.

XSLT-Import Extension Points

The following extension points are available:

  com.oxygenxml.webhelp.classic.xsl.dita2webhelp
Extension point to override the XSLT stylesheet (dita2webhelpImpl.xsl) that produces an HTML file for each DITA topic. The path to this stylesheet is: DITA-OT-DIR\plugins\com.oxygenxml.webhelp.classic\xsl\dita\desktop\dita2webhelpImpl.xsl

com.oxygenxml.webhelp.classic.xsl.createMainFiles

Extension point to override the XSLT stylesheet (createMainFilesImpl.xsl) that produces the WebHelp main HTML page (index.html). The path to this stylesheet is: DITA-OT-DIR\plugins\com.oxygenxml.webhelp.classic\xsl\dita\desktop\createMainFilesImpl.xsl

com.oxygenxml.webhelp.classic.xsl.createTocXML

Extension point to override the XSLT stylesheet (tocDita.xsl) that produces the toc.xml file. This file contains information extracted from the DITA map (on page 3281) and it is mainly used to construct the WebHelp Table of Contents and navigational links. The path to this stylesheet is: DITA-OT-DIR\plugins\com.oxygenxml.webhelp.classic\xsl\dita\tocDita.xsl.

XSLT-Parameter Extension Points

If your customization stylesheet declares one or more XSLT parameters and you want to control their values from the transformation scenario, you can use one of the following XSLT parameter extension points:

com.oxygenxml.webhelp.classic.xsl.dita2webhelp.param

Use this extension point to pass parameters to the stylesheet specified using the com.oxygenxml.webhelp.classic.xsl.dita2webhelp extension point (on page 1848).

com.oxygenxml.webhelp.classic.xsl.createMainFiles.param

Use this extension point to pass parameters to the stylesheet specified using the com.oxygenxml.webhelp.classic.xsl.createMainFiles extension point (on page 1849).

com.oxygenxml.webhelp.classic.xsl.createTocXML.param

Use this extension point to pass parameters to the stylesheet specified using the com.oxygenxml.webhelp.classic.xsl.createTocXML extension point (on page 1849).

Related Information:

• [DITA-OT] XSLT-Import Extension Points
How to Override a WebHelp Classic XSLT Stylesheet from Ant Build File

To create a WebHelp XSLT customization that is only available for a certain DITA OT transformation, the extension plugin should declare a custom transtype. The WebHelp XSLT stylesheets can be overridden from an ANT file provided by the DITA-OT extension plugin. From the Ant target associated with the plugin, you will specify a custom XSLT stylesheet that imports the original WebHelp stylesheet and add some customization templates.

The following procedure explains how to create a DITA-OT extension plugin that uses this extension method:

1. In the `DITA-OT-DIR\plugins\` folder, create a folder for this plugin (for example, `com.oxygenxml.webhelp.classic.custom`).
2. Create a `plugin.xml` file (in the folder you created in step 1) that specifies a new DITA-OT transtype and the build file associated with the plugin. For example:

   ```xml
   <plugin id="com.oxygenxml.webhelp.classic.custom">
     <feature extension="dita.conductor.target.relative" file="integrator.xml"/>
     <transtype name="webhelp-classic-custom" extends="webhelp"
               desc="WebHelp Classic Customization"/>
   </plugin>
   ```

3. Create the `integrator.xml` file that will import the actual plugin Ant build file.

   ```xml
   <project basedir="." name="Webhelp Classic Customization">
     <import file="build.xml"/>
   </project>
   ```

4. Create the `build.xml` file that overrides the value of properties associated with the XSLT stylesheets used to produce HTML files (on page 1852). The following Ant properties can be overridden to specify your customization stylesheets:

   ```xml
   <property name="args.wh.classic.topic.xsl" value="com.oxygenxml.webhelp.classic.custom.webhelp-classic-custom.xsl"/>
   Specify this property if you want to customize the XSLT stylesheet used to produce an HTML file for each topic (on page 1852).
   ```

   ```xml
   <property name="args.wh.classic.create.main.files.xsl" value="com.oxygenxml.webhelp.classic.custom.webhelp-classic-custom.xsl"/>
   Specify this property if you want to customize the XSLT stylesheet used to produce the main HTML files (on page 1852).
   ```
Specify this property if you want to customize the XSLT stylesheet used to produce the toc.xml file (on page 1853). The toc.xml file contains information extracted from DITA map and it is mainly used to create the WebHelp TOC.

For example, to customize a WebHelp Classic transformation type, the build file should look like:

```xml
<project basedir="." name="Webhelp Classic Customization">
  <target name="dita2webhelp-classic-custom">
    <!--
    Override this property if you want to customize the XSLT stylesheet used to produce an HTML file for each topic
    -->
    <property name="args.wh.classic.topic.xsl" value="${dita.plugin.com.oxygenxml.webhelp.classic.custom.dir}/xsl/dita2webhelpCustom.xsl"/>
    <!--
    Override this property if you want to customize the XSLT stylesheet used to produce the main HTML file.
    -->
    <property name="args.wh.classic.create.main.files.xsl" value="${dita.plugin.com.oxygenxml.webhelp.classic.custom.dir}/xsl/createMainFilesCustom.xsl"/>
    <!--
    Override this property if you want to customize the XSLT stylesheet used to produce the toc.xml file.
    -->
    <property name="args.wh.classic.createTocXML.xsl" value="${dita.plugin.com.oxygenxml.webhelp.classic.custom.dir}/xsl/createTocXMLCustom.xsl"/>
    <!--
    You need to delegate the build target:
    * dita2webhelp - for WebHelp Classic
    -->
    <antcall target="dita2webhelp"/>
  </target>
</project>
```

5. Create an xsl directory in the plugin customization directory (that you created in step 1) to store the customized XSLT stylesheets.
6. Now that the extension plugin is created, install it in the DITA Open Toolkit (on page 3256).

Referencing the WebHelp XSLT Stylesheets from Your Customizations

Note that your customization stylesheets should import the original stylesheets that they override. To reference the WebHelp stylesheets, you can use the `plugin:com.oxygenxml.dita-ot.plugin.webhelp` prefix. This prefix is rewritten by an XML catalog to the WebHelp root directory.

**Customizing the `dita2webhelp.xsl` Stylesheet**

The XSLT stylesheet that customizes the WebHelp `dita2webhelp.xsl` stylesheet should look like:

```xml
<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
    xmlns:xs="http://www.w3.org/2001/XMLSchema"
    xmlns:math="http://www.w3.org/2005/xpath-functions/math"
    exclude-result-prefixes="xs math"
    version="2.0">

    <!-- Import the original stylesheet used to produce an HTML file for each topic. -->

    <!-- Add your customization templates here. -->
</xsl:stylesheet>
```

You need to import the following XSLT stylesheet:

```
```

**Customizing the `createMainFiles.xsl` Stylesheet**

The XSLT stylesheet that customizes the WebHelp `createMainFiles.xsl` stylesheet should look like:

```xml
<?xml version="1.0" encoding="UTF-8"?>
<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
    xmlns:xs="http://www.w3.org/2001/XMLSchema"
    xmlns:math="http://www.w3.org/2005/xpath-functions/math"
    exclude-result-prefixes="xs math"
    version="2.0">

    <!-- Import the original stylesheet used to produce the main HTML file. -->
</xsl:stylesheet>
```
You need to import the following XSLT stylesheet:

```xml
<xsl:import href="plugin:com.oxygenxml.webhelp.classic:xsl/dita/desktop/createMainFiles.xsl"/>
```

Add your customization templates here.

```xml
</xsl:stylesheet>
```

Customizing the `tocDita.xsl` File

The XSLT stylesheet that customizes the WebHelp `tocDita.xsl` stylesheet should look like:

```xml
<?xml version="1.0" encoding="UTF-8"?>
<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
    xmlns:xs="http://www.w3.org/2001/XMLSchema"
    xmlns:math="http://www.w3.org/2005/xpath-functions/math"
    exclude-result-prefixes="xs math"
    version="2.0">
    <!-- Import the original stylesheet used to produce the toc.xml file. -->
    <!-- Add your customization templates here. -->
    </xsl:stylesheet>
```

Miscellaneous Customization Topics

This section contains miscellaneous topics about how to customize the WebHelp Classic output.

How to Disable Caching in WebHelp Classic Output

In cases where a set of WebHelp Classic pages need to be updated on a regular basis to deliver the latest version of the documentation, the WebHelp pages should always be requested from the server upon re-loading it in a Web browser on the client side, rather than re-using an outdated cached version in the browser.
To disable caching in WebHelp Classic output, follow this procedure:

1. Edit the following XSL file for DITA or DocBook WebHelp systems:
   - For DITA WebHelp systems, edit the following file: `DITA-OT-DIR\plugins\com.oxygenxml.webhelp.classic\xsl\createMainFiles.xsl`.
   - For DocBook WebHelp system, edit the following file: `{OXYGEN_INSTALL_DIR}\frameworks\docbook\xsl\com.oxygenxml.webhelp.classic\xsl\createMainFiles.xsl`.

2. Locate the following template in the XSL file: `<xsl:template name="create-toc-common-file">` and add the following code snippet:

   ```xml
   <meta http-equiv="Pragma" content="no-cache" />
   <meta http-equiv="Expires" content="-1" />
   ```

   **Note:** The code should look like this:

   ```xml
   <html>
   <head>
   <xsl:if test="$withFrames">
   <base target="contentwin"/>
   </xsl:if>
   <meta http-equiv="Content-Type" content="text/html; charset=utf-8"/>
   <!-- Disable caching of WebHelp pages in web browser. -->
   <meta http-equiv="Pragma" content="no-cache" />
   <meta http-equiv="Expires" content="-1" />
   ....
   ```

3. Save your changes to the file.
4. Re-run your WebHelp transformation scenario.

How to Flag DITA Content in WebHelp Output

Flagging content in WebHelp output involves defining a set of images that will be used for marking content across your information set.

To flag DITA content, you need to create a filter file that defines properties that will be applied on elements to be flagged. Generally, flagging is supported for *block elements* (on page 3280) (such as paragraphs), but not for phrase-level elements within a paragraph. This ensures that the images that will flag the content are easily scanned by the reader, instead of being buried in the text.
Using Oxygen XML Editor/Author

To flag content in the DITA Map to WebHelp output using a transformation scenario from within Oxygen XML Editor/Author, follow this procedure:

1. Create a DITA filter file (DITAVAL) and add it in a directory of your choice (for example, named myFile.ditaval).
2. Define the property for the elements you want to be flagged. For example, if you want to flag any element that has the audience attribute set to programmer, the content of the DITAVAL file should look like this:

```xml
<?xml version="1.0" encoding="UTF-8"?>
<val>
  <prop att="audience" val="programmer" action="flag"
    img="D:\resource\delta.gif" alt="sample alt text"/>
</val>
```

Note that for an element to be flagged, at least one attribute-value pair needs to have a property declared in the DITAVAL file.
3. Edit a DITA Map to WebHelp transformation scenario.
4. Specify the DITAVAL file in the Filters tab (with the Use DITAVAL File option).
5. Run the transformation scenario.

Using a Script Outside of Oxygen XML Editor/Author

⚠️ Important: Running WebHelp transformations from a script outside of Oxygen XML Editor/Author requires an additional license and some additional setup:

- You must have a valid license for the Oxygen XML WebHelp Plugin (https://www.oxygenxml.com/buy_webhelp.html).
- The Oxygen XML WebHelp Plugin must be installed and integrated for the DITA Open Toolkit or a DocBook XSL Distribution.

To flag content in the DITA Map to WebHelp output using a script outside of Oxygen XML Editor/Author, follow this procedure:

1. Create a DITA filter file (DITAVAL) and add it in a directory of your choice (for example, named myFile.ditaval).
2. Define the property for the elements you want to be flagged. For example, if you want to flag any element that has the audience attribute set to programmer, the content of the DITAVAL file should look like this:
Note that for an element to be flagged, at least one attribute-value pair needs to have a property declared in the DITAVAL file.

3. Use the `args.filter` parameter in your transformation script and set its value to the path of the DITAVAL file you created.

4. Execute the transformation script.

For example:

- **Windows:**

  dita.bat -i c:\mySampleMap.ditamap -f webhelp -Dargs.filter=c:\myFile.ditaval

- **Mac OS X / Linux:**

  dita -i /mySampleMap.ditamap -f webhelp -Dargs.filter=/myFile.ditaval

**How to Publish WebHelp Classic Output on a SharePoint Site**

Since WebHelp output must be published locally, on the same machine where the WebHelp process is running, to publish your files directly to a SharePoint library you need to map a network drive to connect to SharePoint and change your file extensions to `.aspx`, as described in the steps below.

**Using Oxygen XML Editor/Author**

To publish WebHelp Classic output on a SharePoint site and use a transformation scenario from within Oxygen XML Editor/Author, follow this procedure:

1. Map a network drive to connect to your SharePoint library. For more information, see: https://support.microsoft.com/en-us/kb/2616712.

2. Edit the WebHelp transformation scenario and open the Parameters tab.

   - For a DITA transformation, set the `args.outext` parameter to `.aspx`.
   - For a DocBook transformation, set the `html.ext` parameter to `.aspx`.

3. Run the WebHelp transformation scenario to generate the output.
Using a Script Outside of Oxygen XML Editor/Author

**Important:** Running WebHelp transformations from a script outside of Oxygen XML Editor/Author requires an additional license and some additional setup:

- You must have a valid license for the Oxygen XML WebHelp Plugin (https://www.oxygenxml.com/buy_webhelp.html).
- The Oxygen XML WebHelp Plugin must be installed and integrated for the DITA Open Toolkit or a DocBook XSL Distribution.

To publish WebHelp Classic output on a SharePoint site and use a script outside of Oxygen XML Editor/Author (on page 1789), follow this procedure:

1. Map a network drive to connect to your SharePoint library. For more information, see: https://support.microsoft.com/en-us/kb/2616712.
2. Use the following parameter to change your file extensions to .aspx:
   - For DITA transformations, use the args.outext parameter in your transformation script and set its value to .aspx.
   - For DocBook transformations, use the html.ext parameter in your transformation script and set its value to .aspx.
3. Execute the transformation script.

For example, a DITA script might look like this:

- **Windows:**
  ```cmd
  dita.bat -i c:\mySample.ditamap -f webhelp -Dargs.outext=.aspx
  ```
- **Mac OS X/ Linux:**
  ```bash
  dita -i /mySample.ditamap -f webhelp -Dargs.outext=.aspx
  ```

WebHelp Responsive Output

The WebHelp Responsive features a very flexible layout, is designed to adapt to any screen size to provide an optimal viewing and interaction experience. It is based upon the Bootstrap responsive front-end framework and is available for DITA document types.

The WebHelp Responsive with Feedback variant also includes a feedback system that allows your users to add comments and allows you to manage and reply to them.

WebHelp Responsive output can be generated by using the DITA Map WebHelp Responsive (on page 1644) or DITA Map WebHelp Responsive with Feedback transformation scenario (on page 1644).
WebHelp Responsive Output Layout and Features

This section contains information about the layout and features of the WebHelp Responsive output.

Layout of the Responsive Page Types

You can select from several different styles of layouts (for example, by default, you can select either a tiles or tree style of layout). Furthermore, each layout includes a collection of skins that you can choose from, or you can customize your own.

Figure 616. WebHelp Responsive Output on a Normal Screen

![WebHelp Responsive Output on a Normal Screen](image)

Figure 617. WebHelp Responsive Output on a Narrow Screen
Main Page

The Main Page is the home page generated in the WebHelp Responsive output. The main function of the home page is to display top-level information and provide links that help you easily navigate to any of the top-level topics of the publication. These links can be rendered in either a Tiles or Tree style of layout. The main page also consists of various other components, such as a logo, title, menu, search field, or index link.

Main Page - Tiles Layout

In the tiles presentation mode, a tile component is created for each chapter (first-level topic) in the publication. The tile presents a link to the topic and its short description.

Figure 618. Main Page - Tiles Layout
Main Page - Tree Layout

In the tree presentation mode, links to the first and second level topics in the publication are displayed using a tree-like component.

Figure 619. Main Page - Tree Layout
The layout components displayed in the main page are:

**Publication Title**

The title of the publication. It is usually taken from the DITA map title.

**Logo**
Displays a logo associated with the publication. Additionally you can set a target URL that will be opened when you click on the logo image.

The logo image can be specified using the `webhelp.logo.image` transformation parameter (on page 2004). For the target URL, use the `webhelp.logo.image.target.url` parameter (on page 2004).

**Menu**

Helps you to navigate to your documentation. This component presents a set of links to all topics from your publication. For information about customizing the menu, see How to Customize the Menu (on page 1954) topic.

**Index Terms Link**

Presents a link to the index terms page. You can control if this component is displayed by using the `webhelp.show.indexterms.link` parameter (on page 2007).

**Search Input**

Input text field allowing you to easily enter your search queries.

**Topic Tiles**

A tile associated with a main topic. Each topic tile has three sections that correspond to the topic title, short description, and image.

**Topic Tile Title**

Presents the navigation title of the associated topic.

**Topic Tile Short Description**

Presents the short description of the topic. It may be collected either from the topic or from the DITA map topic meta.

**Topic Tile Image**

Presents an image associated with the topic. The image association (on page 1954) is done in the DITA map.

**Tree Table of Contents**

An area containing topic titles from first and second level of your publication.

**Page Footer**

WebHelp Responsive output footer.
The **Topic Page** is the page generated for each DITA topic in the WebHelp Responsive output. The HTML pages produced for each topic consist of the topic content along with various other additional components, such as a title, menu, navigation breadcrumb, print icon, or side table of contents.

**Figure 620. Topic Page**

---

poly 74, 13, 18, 58, 17, 123, 73, 124, 72, 50, 149, 49, 148, 13 **Logo Component** *(on page 1864)*  
poly 211, 13, 144, 82, 80, 82, 80, 103, 206, 103, 205, 82, 171, 82, 211, 50, 286, 48, 284, 12 **Title Component** *(on page 1864)*  
poly 232, 73, 232, 110, 184, 157, 144, 157, 144, 188, 654, 186, 654, 158, 210, 156, 256, 109, 331, 108, 331, 72 **Search Input Component** *(on page 1864)*  
poly 418, 13, 417, 50, 348, 83, 349, 101, 738, 102, 736, 81, 586, 80, 516, 13 **Menu Component** *(on page 1864)*  
poly 601, 11, 601, 50, 701, 50, 748, 81, 741, 85, 742, 101, 771, 101, 772, 82, 702, 13 **Index Terms Link Component** *(on page 1864)*  
poly 595, 190, 595, 217, 690, 217, 701, 219, 706, 235, 723, 236, 720, 217, 692, 190 **Expand/Collapse All Sections Component** *(on page 1865)*  
poly 633, 124, 634, 152, 672, 152, 730, 220, 729, 235, 757, 235, 757, 221, 703, 153, 738, 153, 736, 125 **Navigation Links Component** *(on page 1864)*
Topic Page Components

The layout components displayed in this page are:

Publication Title

The title of the publication. It is usually taken from the DITA map title.

Logo

Displays a logo associated with the publication. Additionally you can set a target URL that will be opened when you click on the logo image.

The logo image can be specified using the webhelp.logo.image transformation parameter (on page 2004). For the target URL, use the webhelp.logo.image.target.url parameter (on page 2004).

Menu

Helps you to navigate to your documentation. This component presents a set of links to all topics from your publication. For information about customizing the menu, see How to Customize the Menu (on page 1954) topic.

Index Terms Link

Presents a link to the index terms page. You can control if this component is displayed by using the webhelp.show.indexterms.link parameter (on page 2007).

Search Input

Input text field allowing you to easily enter your search queries.

Navigation Links
The navigation links (➤ Previous / ➤ Next arrows) can be used to navigate to the previous or next topic. These navigation links are controlled by the `collection-type` attribute. For example, if you set `collection-type="sequence"` on a parent topic reference, navigation links will be generated in the output for that topic and all of its child topics. You can also use the `webhelp.default.collection.type.sequence` parameter and set its value to `yes` to generate navigation links for all topics, regardless of whether or not the `collection-type` attribute is present.

**Tip:** To hide the navigation links, you can edit the transformation scenario and set the value of the `webhelp.show.navigation.links` parameter to `no`.

**Expand/Collapse Sections Button**

Icon that expands or collapses sections listed in the side table of contents within a topic.

**Print Link**

A print icon that opens the print dialog box for your particular browser.

**Breadcrumb**

Presents the path of the current displayed DITA topic in documentation.

**Topic Content**

Presents the content of the associated DITA topic.

**Publication Table of Contents**

A Table of Content for the publication displayed in the left side.

**Topic Table of Contents (On this page links)**

A table of contents for the topic displayed on the right side with a heading named **On this page** and it contains links to each section within the current topic and the section corresponding to the current scroll position is highlighted. This component is generated for any topic that contains at least two `<section>` elements and each `<section>` must have an `@id` attribute.

**Page Footer**

WebHelp Responsive output footer.

**Search Page**

The **Search Page** presents search results in the WebHelp Responsive output. The HTML page consists of a search results component along with various other additional components, such as a title, menu, or index link.
When you enter search terms in the **Search** field, the results are displayed in a results page. When you click on a result, the topic is opened in the main pane and the search results are highlighted. If you want to remove the colored highlights, click the **Toggle Highlights** button at the top-right side of the page. The **Search** field also includes an **autocomplete** feature.

Figure 621. Search Results Page
Search Page Components

The layout components displayed in the search page are:

Publication Title

The title of the publication. It is usually taken from the DITA map title.

Logo

Displays a logo associated with the publication. Additionally you can set a target URL that will be opened when you click on the logo image.

The logo image can be specified using the `webhelp.logo.image` transformation parameter (on page 2004). For the target URL, use the `webhelp.logo.image.target.url` parameter (on page 2004).

Menu

Helps you to navigate to your documentation. This component presents a set of links to all topics from your publication. For information about customizing the menu, see How to Customize the Menu (on page 1954) topic.

Index Terms Link

Presents a link to the index terms page. You can control if this component is displayed by using the `webhelp.show.indexterms.link` parameter (on page 2007).

Search Input

Input text field allowing you to easily enter your search queries.

Search Results

Each result includes the topic title that can be clicked to open that page. Under the title, a breadcrumb is displayed that shows the path of the topic and you can click any of the topics in the breadcrumb to open that particular page.

Page Footer

WebHelp Responsive output footer.

Autocomplete Suggestions in the Search Text Field

When you are typing in the search text field, proposals are presented to help you to compute the search query. The information proposed when you are typing is collected from:

- The search queries from the history of the previous searches.
- The titles collected from your documentation.
• Documentation index terms and keywords. For example, in a DITA topic, the keywords and index terms are specified in the topic prolog section like this:

```xml
<prolog>
  <metadata>
    <keywords><indexterm>databases</indexterm></keywords>
    <keyword>installing</keyword>
    <keyword>uninstalling</keyword>
    <keyword>prerequisites</keyword>
  </metadata>
</prolog>
```

**Missing Terms**

If you enter multiple search terms (other than *stop words*), for any result that the search engine found at least one term but not one or more of the other terms, the **Missing** terms will be listed below each result.

**Related Information:**

- WebHelp Responsive Search Engine (*on page 1870*)

**Index Terms Page**

The *Index Terms Page* page consists of an index terms section along with various other additional components, such as a title, menu, or search field.

An alphabet that contains the first letter of the documentation index terms is generated at the top of the index page. Each letter represents a link to a specific indices section. The indexes are presented in multiple columns to make it easier to read this page.

Figure 622. Index Terms Page
Index Terms Page Components

The layout components displayed in this page are:

**Publication Title**

The title of the publication. It is usually taken from the DITA map title.

**Logo**

Displays a logo associated with the publication. Additionally you can set a target URL that will be opened when you click on the logo image.
The logo image can be specified using the `webhelp.logo.image transformation parameter (on page 2004)`. For the target URL, use the `webhelp.logo.image.target.url parameter (on page 2004)`.

**Menu**

Helps you to navigate to your documentation. This component presents a set of links to all topics from your publication. For information about customizing the menu, see **How to Customize the Menu (on page 1954)** topic.

**Index Terms Link**

Presents a link to the index terms page. You can control if this component is displayed by using the `webhelp.show.indexterms.link parameter (on page 2007)`.

**Index Terms Alphabet**

An alphabet that contains the first letter of index terms. Each letter represents a link to a specific indices section.

**Index Terms**

The first letter of the index along with the list of index terms.

**Page Footer**

WebHelp Responsive output footer.

**Search Engine**

Search engine has two main components:

**Search indexer**

It is also known as a **spider**. This component is active when you publish your documentation to WebHelp and it is responsible for creating the **search index**. This component traverses all HTML pages (for DITA topics) to gather information.

**Search interface**

This component is an interface between the user and the **search index**. It helps the user to search through the **search index** and displays results in the search page.

**Search Field and Results Page**

When you enter search terms in the **Search** field, the results are displayed in a results page. When you click on a result, the topic is opened in the main pane and the search results are highlighted. If you want to remove the colored highlights, click the **Toggle Highlights** button at the top-right side of the page. The **Search** field also includes an **autocomplete** feature.
Each result includes the topic title that can be clicked to open that page. Under the title, a breadcrumb is displayed that shows the path of the topic and you can click any of the topics in the breadcrumb to open that particular page.

If you enter multiple search terms (other than stop words), for any result that the search engine found at least one term but not one or more of the other terms, the Missing terms will be listed below each result.

5-Star Rating Mechanism and Sorting

The Search feature is also enhanced with a rating mechanism that computes scores for every result that matches the search criteria. These scores are then translated into a 5-star rating scheme and the stars are displayed to the right of each result. The search results are sorted depending on the following:

- Search entries that satisfy the phrase search criterion are presented first.
- The number of keywords found in a single page (the higher the number, the better).
- The context (for example, a word found in a title, scores better than a word found in unformatted text). The search ranking order, sorted by relevance is as follows:
  - The search term is included in a meta keyword.
  - The search term is in the title of the page.
  - The search term is in bold text in a paragraph.
  - The search term is in normal text in a paragraph.

Tag Element Scoring Values

HTML tag elements are also assigned a scoring value and these values are evaluated for the search results. For information about editing these values, see How to Change Element Scoring in Search Results (on page 1967).

Search Rules

Rules that are applied during a search include:

- You can use quotes to perform an exact search for multiple word phrases (for example, "grow flowers" will only return results if both words are found consecutively and exactly as they are typed in the search field). This type of search is known as a phrase search.
- Boolean Search is supported using the following operators: and, or, not. When there are two adjacent search terms without an operator, or is used as the default search operator (for example, grow flowers is the same as grow or flowers).
• The space character separates keywords (an expression such as *grow flowers* counts as two separate keywords: *grow* and *flowers*).

• **indexterm** and **keywords** DITA elements are an effective way to increase the ranking of a page (for example, content inside a *keywords* element weighs more than an *H1* HTML element).

• Words composed by merging two or more words with colon (":"), minus ("-"), underline ("_"), or dot ("." ) characters count as a single word.

• Your search terms should contain two or more characters (note that stop words will be ignored). This rule does not apply to CJK (Chinese, Japanese, Korean) languages.

• When searching for multi-word phrases in CJK (Chinese, Japanese, Korean) languages that often have multiple words appear in strings without a space separator, you need to add a space to separate the words. Otherwise WebHelp will not find results. For example, Chinese uses a specialized character for space separators, but the current WebHelp implementation cannot detect such specialized characters, so to search for ### (it translates as "before you begin" or "before start"), you have to enter ## ## (notice the space between the second and third symbols) in the search field.

### Excluded Terms

To improve performance, the **Search** feature excludes certain *stop words*. For example, the English version of the *stop words* includes: *a, an, and, are, as, at, be, but, by, for, if, in, into, is, it, no, not, of, on, or, such, that, the, their, then, there, these, they, this, to, was, will, with.*

#### Related Information:

- [WebHelp Responsive HTML5 Pages: Search Page](on page 1865)

### Feedback System

The **WebHelp Responsive with Feedback** variant contains a **Comments** section at the bottom of each topic. This section is where you can interact with users through a comment system. For information about deploying a feedback-enabled system, see [Deploying a Feedback-Enabled System](on page 1873).

Figure 623. WebHelp Responsive with Feedback Comments Section
To add a new comment, click the Add New Comment button, or click Reply to add a comment to an existing thread. You can click on the Log in button on the right side of this bar to be authenticated as a user and your user name will be included in any comments that you add. If you do not have a user name, you can click on the Sign Up button to create a new user.

After you log in, your name and user name are displayed in the Comments bar, along with the Log off and Edit buttons. Click the Edit button to open the User Profile dialog box where you can customize the following options:

- **Your Name** - You can use this field to edit the initial name that you used to create your user profile.
- **Your email address** - You can use this field to edit the initial email address that you used to create your profile.
- **You can choose to receive an email in the following situations:**
  - When a comment is left on a page that you commented on.
  - When a comment is left on any topic in the WebHelp Classic system.
  - When a reply is left to one of my comments.
- **New Password** - Allows you to enter a new password for your user account.

**Note:** The Current Password field from the top of the User Profile is mandatory if you want to save the changes you make.

If you are an administrator, you can manage user information and comments. For more information, see Managing Users and Comments in a Feedback-Enabled System *(on page 1877)*.

**Related Information:**

- Deploying a Feedback-Enabled System *(on page 1873)*
Deploying a Feedback-Enabled System

System Requirements

The feedback-enabled WebHelp system requires a standard server deployment. You can request this from your server administrator and it requires the following system components:

- A Web server (such as Apache Web Server)
- A MySQL or MariaDB database server
- A database admin tool (such as phpMyAdmin)
- PHP Version 5.1.6 or later

The WebHelp system supports most of the recent versions of the following browsers: Chrome, Firefox, Edge, Internet Explorer, Safari, Opera.

Create WebHelp with Feedback Database

The WebHelp with Feedback system needs a database to store user details and the actual feedback, and a user added to it with all privileges. After this is created, you should have the following information:

- Database name
- Username
- Password

Exactly how you create the database and user depends on your web host and your particular needs.

Example:

The following procedure uses phpMyAdmin to create a MySQL database for the feedback system and a MySQL user with privileges for that database. The feedback system uses these credentials to connect to the database.

Using phpMyAdmin to create a database:

1. Access the phpMyAdmin instance running on your server.
2. Click Databases (in the right frame) and then create a database. You can give it any name you want (for example comments).
3. Create a user with connection privileges for this database.
4. Under localhost, in the right frame, click Privileges and then at the bottom of the page click the reload the privileges link.
Deploying the WebHelp with Feedback Output

If you have a web server configured with PHP and MySQL, you can deploy the WebHelp with Feedback output by following these steps:

1. Connect to your server using an FTP client.
2. Locate the home directory (from now on, referred to as DOCUMENT_ROOT) of your server.
3. Copy the transformation output folder into the DOCUMENT_ROOT folder.
4. Rename it to something relevant (for example, myProductWebHelp).
5. Open the output folder (for example, http://[YOUR_SERVER]/myProductWebHelp/). You are redirected to the installation wizard. Proceed with the installation as follows:
   a. Verify that the prerequisites are met.
   b. Press Start Installation.
   c. Configure the Deployment Settings section. Default values are provided, but you should adjust them as needed.

   Tip: You can change some of the options later. The installation creates a config.php file in [OXYGEN_WEBHELP_INSTALL_DIR]/feedback/resources/php/config/config.php where all your configuration options are stored.

   d. Configure the MySql Database Connection Settings section. Use the information (database name, username, password) from the Create WebHelp with Feedback Database section (on page 1874) to fill-in the appropriate text boxes.

   Warning: Selecting the Create new database structure option will overwrite any existing data in the selected database, if it already exists. Therefore, it is useful the first time you install the WebHelp with Feedback system, but you do not want to select this option on subsequent deployments.

   e. If you are using a domain (such as OpenLDAP or Active Directory) to manage users in your organization, select the Enable LDAP Authentication option. This will allow you to configure the LDAP server, which will provide information and credentials for users who will access the WebHelp system. Also, this will allow you to choose which of the domain users will have administrator privileges.

   f. If the Create new database structure option is selected, the Create WebHelp Administrator Account section becomes available. Here you can set the administrator account data. The administrator is able to moderate new posts and manage WebHelp users.

   The same database can be used to store comments for multiple WebHelp with Feedback deployments. If a topic is available in multiple deployments and there are comments associated with it, you can choose to display the comments in all deployments that share the database. To do this, select the Display comments from other products option. In the Display
comments from section, a list with the deployments sharing the same database is displayed. Select the deployments allowed to share common feedback.

Note: You can restrict the displayed comments of a product depending on its version. If you have two products that use the same database and you restrict one of them to display comments starting from a certain version, the comments of the other product are also displayed from the specified version onwards.

- Press **Next Step**.
- Remove the installation folder from your web server.

**Important:** When you publish subsequent iterations of your WebHelp with Feedback system, you will not upload the /install folder in the output, as you only need it uploaded the first time you create the installation. On subsequent uploads, you will just upload the other output files.

- In your Web browser, go to your WebHelp with Feedback system main page.

### Testing Your WebHelp with Feedback System

To test your system, create a user and post a comment. Check to see if the notification emails are delivered to your email inbox.

Note: To read debug messages generated by the system:

1. Enable JavaScript logging by doing one of the following:
   - Open the `log.js` file, locate the `var log= new Log(Level.NONE);` line, and change the logging level to: `Level.INFO`, `Level.DEBUG`, `Level.WARN`, or `Level.ERROR`.
   - Append `?log=true` to the WebHelp URL.
2. Inspect the PHP and Apache server log files.

### Documentation Product ID and Version

When you run a WebHelp with Feedback transformation scenario, by default you are prompted for a documentation product ID and version number. This is needed when multiple WebHelp systems are deployed on the same server. Think of your WebHelp output as a product. If you have three different WebHelp outputs, you have three different products (each with their own unique documentation product ID). This identifier is included in a configuration file so that comments are tied to a particular output (product ID and version number).

Note: The WebHelp with Feedback installation includes a configuration option (Display comments from other products) that allows you to choose to have comments visible in other specified products.
Related Information:

- Managing Users and Comments in a Feedback-Enabled System (on page 1877)

Refreshing the Content of a Feedback-Enabled System

It is common to update the content of an existing installation of a **WebHelp with Feedback** system on a regular basis. In this case, reinstalling the whole system is not a viable option since it might result in the loss of the comments associated with your topics. Also, reconfiguring the system every time you want to refresh it may be time consuming.

Fortunately, you can refresh just the content without losing the comments or the initial system configuration. To do so, follow these steps:

1. Execute the transformation scenario that produces the **WebHelp with Feedback** output directory.
2. Go to the output directory (specified in the **Output** tab of the transformation scenario), locate the `\feedback\resources\php\config\config.php` file, and delete it.
3. Locate the `\feedback\install` directory and delete it.
4. Copy the remaining structure of the output folder and paste it into your **WebHelp with Feedback** system installation directory, overwriting the existing content.

Managing Users and Comments in a Feedback-Enabled System

When you installed the **WebHelp with Feedback** system the first time (assuming the **Create new database structure** option (on page 1875) was selected), you should have been prompted to create an administrator account (or a user named **administrator** was created by default). As an administrator, you have access to manage comments posted in your feedback-enabled WebHelp system. You can also manage the user information (such as role, status, or notification options).

To manage comments and user information, follow these steps:

1. At the bottom of each specific topic there is a **Comments** navigation bar and on the right side there is a **Log in** button. Click this button and log in with your administrator credentials. This gives you access to an **Admin Panel** button.
2. Click the **Admin Panel** button to display an administration page.

Figure 624. Administrative Page
3. Use this page to manage the following options:

**Delete Orphaned Comments**
Allows you to delete comments that are no longer associated with a topic in your WebHelp system.

**Delete Pending Users**
Allows you to delete user accounts that you do not wish to activate.

**View All Posts**
Allows you to view all the comments that are associated with topics in your WebHelp system.

**Export Comments**
Allows you to export all posts associated with topics in your WebHelp system into an XML file.

**Set Version**
Use this action to display comments starting with a particular version.

**Manage User Information**
To edit the details for a user, click on the corresponding row. This opens a window that allows you to customize the following information associated with the user:

**Name**
The full name of the user.

**Level**
Use this field to modify the privilege level (role) for the selected user. You can choose from the following:

- **User** - Regular user, able to post comments and receive e-mail notifications.
- **Moderator** - In addition to the regular User rights, this type of user has access to the **Admin Panel** where a moderator can view,
delete, export comments, and set the version of the feedback-enabled WebHelp system.

- **Admin** - Full administrative privileges. Can manage WebHelp-specific settings, users, and their comments.

**Company**

The name of the organization associated with the user.

**E-Mail**

The contact email address for the user. This is also the address where the WebHelp system sends notifications.

**WebHelp Notification**

When selected, the user receives notifications when comments are posted anywhere in your feedback-enabled WebHelp system.

**Reply Notification**

When selected, the user receives notifications when comments are posted as a reply to one of their comments.

**Page Notification**

When selected, the user receives notifications when comments are posted on a topic where they previously posted a comment.

**Date**

The date the user registered is displayed.

**Status**

Use this drop-down list to change the status of the user. You can choose from the following:

- **Created** - The user is created but does not yet have any rights for the feedback-enabled WebHelp system.
- **Validated** - The user is able to use the feedback-enabled WebHelp system.
- **Suspended** - The user has no rights for the feedback-enabled WebHelp system.

**Warning:** The key used for identifying the page a comment is attached to is the relative file path to the output page. Since the output file and folder names mirror the source, any change to the file name (or its folder) in the source will affect the comments associated with that WebHelp page. If you change the file name or path, the comment history for that topic will become orphaned (a change to the topic ID does not affect the comment history).
Context-Sensitive WebHelp Responsive System

Context-sensitive help systems assist users by providing specific informational topics for certain components of a user interface, such as a button or window. This mechanism works based on mappings between a unique ID defined in the topic and a corresponding HTML page.

Generating Context-Sensitive Help

When WebHelp Responsive output is generated, the transformation process produces an XML mapping file called `context-help-map.xml` and copies it in the output folder of the transformation. This XML file maps an ID to a corresponding HTML page through an `<appContext>` element, as in the following example:

```xml
<map productID="oxy-webhelp" productVersion="1.1">
  <appContext helpID="myapp-functionid1" path="tasks/app-help1.html"/>
  <appContext helpID="myapp-functionid2" path="tasks/app-help1.html"/>
  ...
</map>
```

The possible attributes are as follows:

**helpID**

A Unique ID provided by a topic from two possible sources (`resourceid` element or `id` attribute):

**resourceid**

The `resourceid` element is mapped into the `appContext` element and can be specified in either the `topicref` within a DITA map or in a `prolog` within a DITA topic. The `resourceid` element accepts the following attributes:

- **appname** - A name for the external application that references the topic. If this attribute is not specified, its value is considered to be empty ("").
- **appid** - An ID used by an application to identify the topic.
- **id** - Specifies a value that is used by a specific application to identify the topic, but this attribute is ignored if an `appid` attribute is used.

**Note:** Multiple `appid` values can be associated with a single `appname` value (and multiple `appname` values can be associated with a single `appid` value), but the values for both attributes work in combination to specify a specific ID for a specific application, and therefore each
combination of values for the `appid` and `appname` attributes should be unique within the context of a single root map (on page 3287). For example, suppose that you need two different functions of an application to both open the same WebHelp page.

**Example: `resourceid` Specified in a DITA Map**

The `resourceid` element can be specified in a `topicmeta` element within a `topicref`.

```xml
<map title="App Help">
  <topicref href="app-help1.dita" type="task">
    <topicmeta>
      <resourceid appname="myapp" appid="functionid1"/>
      <resourceid appname="myapp" appid="functionid2"/>
    </topicmeta>
  </topicref>
</map>
```

**Example: `resourceid` Specified in a DITA Topic**

The `resourceid` element can be specified in a `prolog` element within a DITA topic.

```xml
<task id="app-help1">
  <title>My App Help</title>
  <prolog>
    <resourceid appname="myapp" appid="functionid1"/>
    <resourceid appname="myapp" appid="functionid2"/>
  </prolog>
  ...
</task>
```

For more information about the `resourceid` element, see DITA Specifications: `<resourceid>`.

**id**

If a `resourceid` element is not declared in the DITA map or DITA topic (as described above), the `id` attribute that is set on the topic root element is mapped into the `appContext` element.

⚠️ **Important:** You should ensure that these defined IDs are unique in the context of the entire DITA project. If the IDs are not unique,
the transformation scenario will display warning messages in the transformation console output and the help system will not work properly.

**path**

The path to a corresponding WebHelp page. This path is relative to the location of the context-help-map.xml mapping file.

**productID** *(Applicable only if you are using the WebHelp Responsive with Feedback transformation scenario)*

The ID of the product for your documentation project.

**productVersion** *(Applicable only if you are using the WebHelp Responsive with Feedback transformation scenario)*

The version of the product for your documentation project.

There are two ways of implementing context-sensitive help in your system:

- The XML mapping file can be loaded by a PHP script on the server side. The script receives the contextId value and will look it up in the XML file.
- Invoke the index.html WebHelp system file and pass the contextId parameter with a specific value. The WebHelp system will automatically open the help page associated with the value of the contextId parameter.

```html
index.html?contextId=myDITATopic
```

**Note:** The contextId parameter is not case-sensitive.

**Context-Sensitive Queries**

You can use the URL field in your browser to search for topics in a context-sensitive WebHelp system with the assistance of the following parameters:

**contextId**

The WebHelp JavaScript engine will look for this value in the context-help-map.xml mapping file and load the corresponding help page.

**Note:** You can use an anchor *(on page 3279)* in the contextId parameter to jump to a specific section in a document. For example, contextId=topicID#anchor.

**appname**

You can use this parameter in conjunction with contextId to search for this value in the corresponding appname attribute value in the mapping file.
Another parameter indicates the search query:

**searchQuery**

You can use this parameter to perform a search operation when WebHelp is loaded. For example, if you want to open WebHelp showing all search results for *growing flowers*, the URL should look like this: http://localhost/webhelp/index.html?searchQuery=growing%20flowers.

**Accessibility**

**Oxygen XML WebHelp Responsive** output is compliant with the [Section 508 accessibility standard](https://www.section508.gov/), making the output accessible for people with visual impairment and other disabilities. Documentation and interface components are considered accessible when they have support in place that allows those with disabilities to use assistive technologies to understand the content.

Generally speaking, the WebHelp Responsive output has two major parts: topic content and WebHelp Responsive-related components (publication TOC, breadcrumb, menu). While the WebHelp Responsive components are designed to comply with the accessibility rules, it is important to adhere to some rules when you write DITA topics so that the content is also accessible.

**Related Information:**

- DITA-OT Day 2017 Presentation: Accessibility in DITA-OT

**Writing Guidelines for Accessible Documentation**

To create accessible content, good authoring practices involve following guidelines, such as marking table headers, using semantic elements where available, and using alternative text for images.

**Accessible Images**

Images must have text alternatives that describe the information or function represented by them.

**Short Text Equivalents for Images**

When using the `
```
Long Descriptions of Images

For complex images, when a short text equivalent does not suffice to adequately convey the function or role of an image, provide additional information in a file designated by the `<longdesc>` element.

```xml
<image href="puffin.jpg">
  <alt>Puffin figure</alt>
  <longdesc href="http://www.example.org/birds/puffin.html" scope="external" format="html"/>
</image>
```

Related Information:

- Darwin Information Typing Architecture (DITA) Specification `
  <area>
    <shape>circle</shape>
    <coords>172, 265, 14</coords>
    <xref href="parts/bushings.dita#bushings_topic/bushings" format="dita">Bushings</xref>
  </area>
  <area>
    <shape>circle</shape>
    <coords>324, 210, 14</coords>
  </area>
</imagemap>
```
Accessible Tables

Accessible HTML tables need markup that indicates header cells and data cells and defines their relationship. Header cells must be marked with `<th>`, and data cells with `<td>`, to make tables accessible. For more complex tables, explicit associations may be needed using @scope, @id, and @headers attributes.

When you implement the table, it is best to use the `<table>` element (CALS table or OASIS Table Exchange Model). The `<table>` element includes all that you need to make a fully accessible table.

Table with Header Cells in the Top Row Only

For this type of table, you have to embed the table rows in the `<thead>` element.

**Table 67. Example: Oxygen Events**

<table>
<thead>
<tr>
<th>Event</th>
<th>Date</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>Evolution of TC 2018</td>
<td>May 31 - June 1, 2018</td>
<td>Sofia, Bulgaria</td>
</tr>
<tr>
<td>Markup UK</td>
<td>June 9 - 10, 2018</td>
<td>London, United Kingdom</td>
</tr>
<tr>
<td>Balisage 2018 - The Markup Conference</td>
<td>July 31 - August 3, 2018</td>
<td>Rockville, Maryland, USA</td>
</tr>
</tbody>
</table>

```xml
<xmlname href="parts/ports.dita#ports_topic/suction_port" format="dita">  
>Suction Port</xmlname>
</area>
</imagemap>

Related Information:

- Darwin Information Typing Architecture (DITA) Specification `<imagemap>` element

Accessible Tables

Accessible HTML tables need markup that indicates header cells and data cells and defines their relationship. Header cells must be marked with `<th>`, and data cells with `<td>`, to make tables accessible. For more complex tables, explicit associations may be needed using @scope, @id, and @headers attributes.

When you implement the table, it is best to use the `<table>` element (CALS table or OASIS Table Exchange Model). The `<table>` element includes all that you need to make a fully accessible table.

Table with Header Cells in the Top Row Only

For this type of table, you have to embed the table rows in the `<thead>` element.

**Table 67. Example: Oxygen Events**

<table>
<thead>
<tr>
<th>Event</th>
<th>Date</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>Evolution of TC 2018</td>
<td>May 31 - June 1, 2018</td>
<td>Sofia, Bulgaria</td>
</tr>
<tr>
<td>Markup UK</td>
<td>June 9 - 10, 2018</td>
<td>London, United Kingdom</td>
</tr>
<tr>
<td>Balisage 2018 - The Markup Conference</td>
<td>July 31 - August 3, 2018</td>
<td>Rockville, Maryland, USA</td>
</tr>
</tbody>
</table>
Table with Header Cells in the First Column Only

For this type of table, you have to set the `@rowheader="firstcol"` attribute on the `<table>` element to identify the header column.

**Table 68. Example: Oxygen Events**

<table>
<thead>
<tr>
<th>Event</th>
<th>Evolution of TC 2018</th>
<th>Markup UK</th>
<th>Balisage 2018 - The Markup Conference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Date</td>
<td>May 31 - June 1, 2018</td>
<td>June 9 - 10, 2018</td>
<td>July 31 - August 3, 2018</td>
</tr>
<tr>
<td>Location</td>
<td>Sofia, Bulgaria</td>
<td>London, United Kingdom</td>
<td>Rockville, Maryland, USA</td>
</tr>
</tbody>
</table>
Table with Header Cells in the Top Row and First Column

For this type of table, you can use `<thead>` to identify header rows and `@rowheader` to identify a header column.

Table 69. Example: Bus Timetable

<table>
<thead>
<tr>
<th></th>
<th>Monday</th>
<th>Tuesday</th>
<th>Wednesday</th>
<th>Thursday</th>
<th>Friday</th>
</tr>
</thead>
<tbody>
<tr>
<td>09:00 - 11:00</td>
<td>Closed</td>
<td>Open</td>
<td>Open</td>
<td>Closed</td>
<td>Closed</td>
</tr>
</tbody>
</table>
### Example: Bus Timetable

<table>
<thead>
<tr>
<th></th>
<th>Monday</th>
<th>Tuesday</th>
<th>Wednesday</th>
<th>Thursday</th>
<th>Friday</th>
</tr>
</thead>
<tbody>
<tr>
<td>11:00 - 13:00</td>
<td>Open</td>
<td>Open</td>
<td>Closed</td>
<td>Closed</td>
<td>Closed</td>
</tr>
<tr>
<td>13:00 - 15:00</td>
<td>Open</td>
<td>Open</td>
<td>Closed</td>
<td>Open</td>
<td>Closed</td>
</tr>
<tr>
<td>15:00 - 17:00</td>
<td>Closed</td>
<td>Closed</td>
<td>Closed</td>
<td>Open</td>
<td>Open</td>
</tr>
</tbody>
</table>

```xml
<table id="table_dqk_n24_vdb" rowheader="firstcol" colsep="1" rowsep="1" frame="all">
  <title>Example: Bus Timetable</title>
  <tgroup cols="6">
    <colspec colnum="1" colname="col1"/>
    <colspec colnum="2" colname="col2"/>
    <colspec colnum="3" colname="col3"/>
    <colspec colnum="4" colname="col4"/>
    <colspec colnum="5" colname="col5"/>
    <colspec colnum="6" colname="col6"/>
  </tgroup>
  <thead>
    <row>
      <entry>Monday</entry>
      <entry>Tuesday</entry>
      <entry>Wednesday</entry>
      <entry>Thursday</entry>
      <entry>Friday</entry>
    </row>
  </thead>
  <tbody>
    <row>
      <entry>09:00 - 11:00</entry>
      <entry>Closed</entry>
      <entry>Open</entry>
      <entry>Open</entry>
      <entry>Closed</entry>
      <entry>Closed</entry>
    </row>
    <row>
      <entry>11:00 - 13:00</entry>
      <entry>Open</entry>
      <entry>Open</entry>
      <entry>Closed</entry>
      <entry>Closed</entry>
      <entry>Closed</entry>
    </row>
  </tbody>
</table>
```
WebHelp Responsive 508 VPAT

WebHelp Responsive was designed to adhere to the U.S. Government Section 508 accessibility standards. This document describes the accessibility features that address the Section 508 Standards. This VPAT (Voluntary Product Accessibility Template) is an informational tool developed by industry and government to help facilitate the understanding of compatibility issues under Section 508.

Table 70. 1194.22 Web-based intranet and internet information and applications.

<table>
<thead>
<tr>
<th>Criteria</th>
<th>Supporting Features</th>
<th>Remarks and Explanations</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a) A text equivalent for every non-text element shall be provided (e.g., via “alt”, “longdesc”, or in element content)</td>
<td>Supported with exceptions</td>
<td>• The process that produces the WebHelp Responsive accessible output uses information extracted from the DITA topics. It is the technical writer's responsibility to write accessible-friendly DITA topics (on page 1883).</td>
</tr>
<tr>
<td>Criteria</td>
<td>Supporting Features</td>
<td>Remarks and Explanations</td>
</tr>
<tr>
<td>-------------------------------------------------------------------------</td>
<td>---------------------</td>
<td>--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------</td>
</tr>
<tr>
<td>(b) Equivalent alternatives for any multimedia presentation shall be synchronized with the presentation</td>
<td>Supported with exceptions</td>
<td>WebHelp Responsive plugin offers support to transfer multimedia objects (video, audio) from DITA topics to the generated HTML pages. Technical writers are responsible for ensuring that they use multimedia objects that conform to this criterion.</td>
</tr>
</tbody>
</table>
| (c) Web pages shall be designed so that all information conveyed with color is also available without color, for example from context or markup | Supported with exceptions | • The built-in Cobalt theme was specially designed to help visually impaired users.  
• The developers who customize the WebHelp output are responsible for ensuring that the template they customize conforms to this criterion. |
<p>| (d) Documents shall be organized so they are readable without requiring an associated stylesheet | Supported | The WebHelp Responsive output is readable without requiring any stylesheet |
| (e) Redundant text links shall be provided for each active region of a server-side image map | Not applicable | The product contains no server-side image maps |
| (f) Client-side image maps shall be provided instead of server-side image maps except where the regions cannot be defined with an available geometric shape | Supported with exceptions | Technical writers can insert image maps in DITA topics. They are responsible for specifying the information required to generate accessible image maps (on page 1884). |
| (g) Row and column headers shall be identified for data tables            | Supported with exceptions | Technical writers can insert tables in DITA topics. They are responsible for inputting the information required to generate accessible tables (on page 1885). |</p>
<table>
<thead>
<tr>
<th>Criteria</th>
<th>Supporting Features</th>
<th>Remarks and Explanations</th>
</tr>
</thead>
<tbody>
<tr>
<td>(h) Markup shall be used to associate data cells and header cells for</td>
<td>Supported with</td>
<td>Technical writers can insert tables in DITA topics. They are responsible for inputting the information required to generate <strong>accessible tables</strong> <em>(on page 1885)</em>.</td>
</tr>
<tr>
<td>data tables that have two or more logical levels of row or column headers</td>
<td>exceptions</td>
<td></td>
</tr>
<tr>
<td>(i) Frames shall be titled with text that facilitates frame</td>
<td>Not applicable</td>
<td>The WebHelp Responsive output does not use frames</td>
</tr>
<tr>
<td>identification and navigation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(j) Pages shall be designed to avoid causing the screen to flicker</td>
<td>Not applicable</td>
<td>The screen does not flicker with frequencies greater than 2 Hz and lower than 55 Hz</td>
</tr>
<tr>
<td>with a frequency greater than 2 Hz and lower than 55 Hz</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(k) A text-only page, with equivalent information or functionality,</td>
<td>Not applicable</td>
<td>Accessibility provisions in WebHelp Responsive output can be provided without requiring a separate text-only version.</td>
</tr>
<tr>
<td>shall be provided to make a website comply with the provisions of this</td>
<td></td>
<td></td>
</tr>
<tr>
<td>part, when compliance cannot be accomplished in any other way. The</td>
<td></td>
<td></td>
</tr>
<tr>
<td>content of the text-only page shall be updated whenever the primary page</td>
<td></td>
<td></td>
</tr>
<tr>
<td>changes.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(l) When pages utilize scripting languages to display content, or to</td>
<td>Supported with</td>
<td>The developers who customize the WebHelp output are responsible for ensuring that the template they customize conforms to this criterion.</td>
</tr>
<tr>
<td>create interface elements, the information provided by the script</td>
<td>exceptions</td>
<td></td>
</tr>
<tr>
<td>shall be identified with functional text that can be read by assistive</td>
<td></td>
<td></td>
</tr>
<tr>
<td>technology</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(m) When electronic forms are designed to be completed on-line, the</td>
<td>Supported with</td>
<td>The developers who customize the WebHelp output are responsible for ensuring that the template they customize conforms to this criterion.</td>
</tr>
<tr>
<td>form shall allow people using assistive technology to access the</td>
<td>exceptions</td>
<td></td>
</tr>
<tr>
<td>information, field elements, and functionality required for completion</td>
<td></td>
<td></td>
</tr>
<tr>
<td>and submission of the form, including all directions and cues</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(n) A method shall be provided that permits users to skip repetitive</td>
<td>Supported</td>
<td></td>
</tr>
<tr>
<td>navigation links</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(o) When a timed response is required, the user shall be alerted</td>
<td>Not applicable</td>
<td>WebHelp Responsive output does not require a timed response as part of its core functionality</td>
</tr>
<tr>
<td>and given sufficient time to indicate more time is required</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**Note:** This VPAT pertains only to the HTML output generated by the WebHelp Responsive plugin as shipped and not to any customization. It specifically applies to version 20.1 or above and it does not apply to any versions prior to this.
Supported Platforms

All accessibility tests have been carried out in the following environment:

- NVDA (Non Visual Desktop Access) version 2018.1.1 with Firefox version 60.0.1 and Chrome version 66.0.3359.181.
- Windows 10 Narrator with Microsoft Edge browser.

However, this does not mean that WebHelp Responsive-generated output has any issue with other modern, standards-compliant browsers and alternative screen reader solutions. In any case, if you encounter any accessibility-related issue while using WebHelp Responsive generated output, contact the Oxygen support team. All accessibility issues are treated with utmost attention.

Related Information:

- Section 508 Standards for Electronic and Information Technology

Publishing Templates

An Oxygen Publishing Template defines all aspects of the layout and styles for output obtained from the following transformation scenarios:

- WebHelp Responsive
- WebHelp Responsive with Feedback
- DITA Map PDF - based on HTML5 & CSS

It is a self-contained customization package stored as a ZIP archive or folder that can easily be shared with others. It provides the primary method for customizing the output.

Some possible customization methods include:

- Add additional template resources to customize the output (such as logos, Favicons, or CSS files).
- Extend the default processing by specifying one or more XSLT extension points.
- Specify one or more transformation parameters to customize the output.
- Customize various aspects of the output through simple CSS styling.
- For WebHelp Responsive output, change the layout of the main page or topic pages by customizing which components will be displayed and where they will be positioned in the page.

The following graphics are possible sample structure for Oxygen Publishing Template packages:
For information about creating and customizing publishing templates, and how to adjust the WebHelp and PDF output through CSS styling and other customization methods, watch our Webinar: Creating Custom Publishing Templates for WebHelp and PDF Output. The Webinar slides and sample project are also available from that webpage.

Related Information:

- How to Create a Publishing Template (on page 1935)
- How to Edit a Packed Publishing Template (on page 1937)
- How to Add a Publishing Template to the Publishing Templates Gallery (on page 1938)
- How to Share a Publishing Template (on page 2033)
Publishing Templates Gallery

Oxygen XML Editor comes bundled with a variety of built-in templates. You can use one of them to publish your documentation or as a starting point for a new publishing template.

**Built-in Templates**

There are two categories of templates, *Tiles* and *Tree*. You can see the built-in templates in the **Templates** tab when editing a WebHelp Responsive transformation scenario in **Oxygen XML Editor/Author**. Each one also includes an **Online preview** icon in the bottom-right corner that opens a webpage in your default browser that provides a sample of how the main page will look when that particular template is used to generate the output.

**Tiles Templates**

The main page in the WebHelp output presents a tile for each main topic (chapter) of the documentation.

![Tiles Templates](image)

**Tree Templates**

The main page in the WebHelp output presents a tree-like table of contents.
Built-in Templates Location

All built-in templates are stored in the following directory: DITA-OT-DIR/plugins/com.oxygenxml.webhelp.responsive/templates.

Custom Templates

You can use a built-in template as a starting point for creating your own custom template (on page 2029). You can store all of your custom templates in a particular directory. Then, go to Options > Preferences > DITA > Publishing and add your directory to the list, and all the templates stored in that directory will be displayed in the preview pane in the transformation scenario’s Template tab along with all the built-in templates.

Sharing Publishing Template

To share a publishing template with others, following these steps:

1. Copy your template in a new folder.
2. Go to Options > Preferences > DITA > Publishing and add that new folder to the list.
3. Switch the option as the bottom of that preferences page to Project Options.
4. Share your project file (.xpr).

Publishing Template Package Contents for WebHelp Responsive Customizations

An Oxygen Publishing Template package for WebHelp output must contain a template descriptor file and at least one CSS file, and may contain other resources (such as graphics, XHTML files, XSLT files, etc.). All the template resources can be stored in either a ZIP archive or in a folder. It is recommended to use a ZIP archive because it is easier to share with others.
Template Descriptor File

Each publishing template includes a descriptor file that defines the meta-data associated with template. It is an XML file with certain elements that defines all the resources included in a template (such as CSS files, images, JS files, and transformation parameters).

The template descriptor file must have the .opt file extension and must be located in the template's root folder.

A template descriptor might look like this:

```xml
<publishing-template>
   <name>Flowers</name>

   <webhelp>
      <tags>
         <tag>tree</tag>
         <tag>light</tag>
      </tags>
      <preview-image file="flowers-tree.png"/>

      <!-- Resources (CSS, favicon, logo and others) -->
      <resources>
         <!-- Main CSS file -->
         <css file="flowers.css"/>

         <!-- Resources to copy to the output folder -->
         <fileset>
            <include name="resources/**/*"/>
            <exclude name="resources/**/.svn"/>
            <exclude name="resources/**/.git"/>
         </fileset>
      </resources>

      <!-- Parameters -->
      <parameters>
         <parameter name="webhelp.show.main.page.tiles" value="no"/>
         <parameter name="webhelp.show.main.page.toc" value="yes"/>
         <parameter name="webhelp.top.menu.depth" value="3"/>
      </parameters>
   </webhelp>
</publishing-template>
```
Tip: It is recommended to edit the template descriptor in Oxygen XML Editor/Author because it provides content completion and validation support.

Template Name and Description

Each template descriptor file requires a name element. This information is displayed as the name of the template in the transformation scenario dialog box.

Optionally, you can include a description and it displayed when the user hovers over the template in the transformation scenario dialog box.

```xml
<publishing-template>
  <name>Lorem Ipsum</name>
  <description>Lorem ipsum dolor sit amet, consectetur adipiscing elit</description>
  ...
</publishing-template>
```

Template Author

Optionally, you can include author information in the descriptor file and it displayed when the user hovers over the template in the transformation scenario dialog box. This information might be useful if users run into an issue or have questions about a certain template.

If you include the author element, a name is required and optionally you can include email, organization, and organizationUrl information.

```xml
<publishing-template>
  ...
  <author>
    <name>John Doe</name>
    <email>jdoe@example.com</email>
    <organization>ACME</organization>
    <organizationUrl>http://www.example.com/jdoe</organizationUrl>
  </author>
</publishing-template>
```

Webhelp Element

The webhelp element contains various details that define the WebHelp Responsive output. It is a required element if you intend on using a WebHelp Responsive transformation scenario. The elements that are allowed in this webhelp section specify the template tags (on page 1898), template preview image (on page 1898), resources (on page 1899) (such as CSS, JS, fonts, logos), transformation
parameters (on page 1901), HTML fragment extensions (on page 1902) (used to add fragments to placeholders), XSLT extensions (on page 1902), or HTML page layout files (on page 1909).

Template Tags

The tags section provides meta information about the template (such as layout type or color theme). Each tag is displayed at the top of the Templates tab window in the transformation scenario dialog box and they help the user filter and find particular templates.

Template Preview Image

The preview-image element is used to specify an image that will be displayed in the transformation scenario dialog box. It provides a visual representation of the template to help the user select the right
template. The image dimensions should be 200 x 115 pixels and the supported image formats are: JPEG, PNG, or GIF.

You can also include an online-preview-url element to specify the URL of a published sample of your template. This will display an Online preview icon in the bottom-right corner the image in the transformation scenario dialog box and if the user clicks that icon, it will open the specified URL in their default browser.

```xml
<publishing-template>
  ...
  <webhelp>
    ...
    <preview-image file="ashes/ashes-tree.png"/>
    <online-preview-url>https://www.example.com/samples/tiles/ashes</online-preview-url>
  </webhelp>
</publishing-template>
```

Template Resources

The resources section of the descriptor file specifies a set of resources (CSS, JS, fonts, logos, graphics, etc.) that are used to customize various components in generated output. These resources will be copied to the output folder during the transformation process. At least one CSS file must be included, while the other types of resources are optional.

This section is defined using the resources element and the types of resources that can be specified include:

- **CSS files** - One or more CSS files that will define the styles of all generated HTML pages. They are referenced using the css element.
- **Favicon** - You can specify the path to an image for the favicon associated with your website. It is referenced using the favicon element.
- **Logo** - You can specify the path to a logo image that will be displayed in the left side of the output header. It is referenced using the logo element. Optionally, you can also specify:
  - **target-url** - will redirect the user to the specified URL if they click the logo in the output.
  - **alt** - provides an alternate text for the logo image.
- **JavaScript AMD module** - The path to a JavaScript module that uses the AMD (Asynchronous Module Definition) format. This module will be loaded in the output HTML pages using the RequireJS library. It can be referenced using the js-amd-module element. For more information, see How to Insert JavaScript AMD Modules in WebHelp Responsive Output (on page 1949).
- **Additional Resources (graphics, JS, fonts)** - For other resources (such as images referenced in CSS, JS, fonts, etc.) that need to be included in the output, you need to instruct the transformation to include them in the output folder. You can specify one or more sets of additional resources to
be copied to the output folder by using the `fileset` element and you can use one or more `include` and `exclude` elements. This semantic is similar to the ANT FileSet.

```xml
<publishing-template>
  ...
  <webhelp>
    ...
    <resources>
      <css file="css/custom_styles.css"/>
      <css file="css/custom_fonts.css"/>

      <favicon file="images/favicon.png"/>

      <logo
        file="images/logo.png"
        target-url="http://www.example.com"
        alt="Alternate text for the logo image"/>

      <js-amd-module file="js/template-main.js"/>

      <fileset>
        <include name="common/**/**"/>
        <include name="JS/**/**"/>
        <exclude name="**/*.svn"/>
        <exclude name="**/*.git"/>
      </fileset>
    </resources>
  </webhelp>
</publishing-template>
```

**Note:** All relative paths specified in the descriptor file are relative to the template root folder.

The resources specified in the template descriptor are copied to the following output folder: `[WebHelp_OUTPUT_DIR]/oxygen-webhelp/template`. The following graphic illustrates the mapping between the template resources and the location where they will be copied to the output folder:

Figure 627. Template Resources Mapping
Transformation Parameters

You can also set one or more WebHelp transformation parameters in the descriptor file.

```xml
<publishing-template>
  ...
  <webhelp>
    ...
    <parameters>
      <parameter name="webhelp.show.main.page.toc" value="yes"/>
      <parameter name="webhelp.top.menu.depth" value="3"/>
      <parameter name="webhelp.fragment.welcome" value="html-fragment/webhelp.fragment.welcome.html" type="filePath"/>
    </parameters>
  </webhelp>
</publishing-template>
```

The following information can be specified in the `parameter` element:

**Parameter name**

The name of the parameter. It may be one of the WebHelp Responsive transformation parameters *(on page 2003)* or a DITA-OT HTML-based output parameter.

**Note:** It is not recommended to specify an input/output parameter in the descriptor file (such as the input Map, DITAVAL file, or temporary directory).
⚠️ **Attention:** JVM arguments like `-Xmx` cannot be specified as a transformation parameter.

### Parameter Value

The value of the parameter. It should be a relative path to the template root folder for file paths parameters.

### Parameter Type

The type of the parameter: `string` or `filepath`. The `string` value is default.

After creating a publishing template (on page 2029) and adding it to the templates gallery (on page 1938), when you select the template in the transformation scenario dialog box, the **Parameters** tab will automatically be updated to include the parameters defined in the descriptor file. These parameters are displayed in italics.

### XSLT Extension Points

The publishing templates support one or more XSLT extension points. They are helpful when you want to change the structure of the HTML pages that are primarily generated from XSLT processing. They can be specified in the descriptor file using the following structure:

```xml
<publishing-template>
 ...
 <webhelp>
  ...
 <xslt>
   <extension
     id="com.oxygenxml.webhelp.xsl.dita2webhelp"
     file="xsl/customDita2webhelp.xsl"/>

   <extension
     id="com.oxygenxml.webhelp.xsl.createMainPage"
     file="xsl/customMainPage.xsl"/>

 </xslt>
</publishing-template>
```

For more information, and a full list of the available extension points, see: XSLT-Import and XSLT-Parameter Extension Points (on page 2010).

**Note:** You can read the value of a WebHelp transformation parameter from your XSLT extension stylesheets by using the `getParameter(param.name)` function from the `http://www.oxygenxml.com/functions` namespace.
HTML Fragment Extension Points

The HTML pages contain component placeholders that can be used to insert custom HTML fragments (either a well-formed XHTML fragment or a path to a file that contains a well-formed XHTML fragment).

You can specify one or more HTML fragment extension points in the descriptor file using the following structure:

```xml
<publishing-template>
  ...
  <webhelp>
    ...
    <html-fragments>
      <fragment>
        file="html-fragments/webhelp_fragment_welcome.html"
        placeholder="webhelp.fragment.welcome"/>
      </fragment>
      <fragment>
        file="html-fragments/webhelp_fragment_footer.html"
        placeholder="webhelp.fragment.footer"/>
      </fragment>
    </html-fragments>
  </webhelp>
  ...
</publishing-template>
```

Some of these placeholders are left empty in the default output configurations, but you can use them to insert custom content.

Each placeholder has an associated parameter value in the transformation. These predefined placeholders are illustrated and described below.

Figure 628. Predefined Placeholders Diagram
Each of these placeholders can hold either a **well-formed** XHTML fragment or a path to a file that contains a **well-formed** XHTML fragment:

1- webhelp.fragment.head

   In the generated output it inserts a given XHTML fragment in the `<head>` element. The value of the parameter can be either a **well-formed** XHTML fragment or a path to a file that contains a **well-formed** XHTML fragment.

2- webhelp.fragment.before.body

   In the generated output it displays a given XHTML fragment before the page body. The value of the parameter can be either a **well-formed** XHTML fragment or a path to a file that contains a **well-formed** XHTML fragment.
3- `webhelp.fragment.before.logo_and_title`

In the generated output it displays a given XHTML fragment before the logo and title. The value of the parameter can be either a well-formed XHTML fragment or a path to a file that contains a well-formed XHTML fragment.

4- `webhelp.fragment.after.logo_and_title`

In the generated output it displays a given XHTML fragment after the logo and title. The value of the parameter can be either a well-formed XHTML fragment or a path to a file that contains a well-formed XHTML fragment.

5- `webhelp.fragment.before.top_menu`

In the generated output it displays a given XHTML fragment before the top menu. The value of the parameter can be either a well-formed XHTML fragment or a path to a file that contains a well-formed XHTML fragment.

6- `webhelp.fragment.after.top_menu`

In the generated output it displays a given XHTML fragment after the top menu. The value of the parameter can be either a well-formed XHTML fragment or a path to a file that contains a well-formed XHTML fragment.

7- `webhelp.fragment.before.main.page.search`

In the generated output it displays a given XHTML fragment before the search field. The value of the parameter can be either a well-formed XHTML fragment or a path to a file that contains a well-formed XHTML fragment.

8- `webhelp.fragment.welcome`

In the generated output it displays a given XHTML fragment as a welcome message (or title). The value of the parameter can be either a well-formed XHTML fragment or a path to a file that contains a well-formed XHTML fragment.

9- `webhelp.fragment.after.main.page.search`

In the generated output it displays a given XHTML fragment after the search field. The value of the parameter can be either a well-formed XHTML fragment or a path to a file that contains a well-formed XHTML fragment.

10- `webhelp.fragment.before.toc_or_tiles`

In the generated output it displays a given XHTML fragment before the table of contents or tiles in the main page. The value of the parameter can be either a well-formed XHTML fragment or a path to a file that contains a well-formed XHTML fragment.

11- `webhelp.fragment.after.toc_or_tiles`
In the generated output it displays a given XHTML fragment after the table of contents or tiles in the main page. The value of the parameter can be either a **well-formed** XHTML fragment or a path to a file that contains a **well-formed** XHTML fragment.

### 12- webhelp.fragment.footer

In the generated output it displays a given XHTML fragment as the page footer. The value of the parameter can be either a **well-formed** XHTML fragment or a path to a file that contains a **well-formed** XHTML fragment.

### 13- webhelp.fragment.after.body

In the generated output it displays a given XHTML fragment after the page body. The value of the parameter can be either a **well-formed** XHTML fragment or a path to a file that contains a **well-formed** XHTML fragment.

#### Related Information:

- [How to Insert HTML Content in WebHelp Responsive Output](on page 1944)

### WebHelp Responsive Macros

You can use the `whc:macro` layout component to specify a macro value (a variable that will be expanded when the output files are generated).

A macro has the following syntax:

```
${macro-name}
```

or

```
${macro-name(macro-parameter)}
```

A macro name can accept any alphanumeric characters, as well as the following characters: `-` (minus), `_` (underscore), `.` (dot), `:` (colon). The value of a parameter may contain any character except the `}` (close curly bracket) character.

### Implementations

The following macros are supported:

#### i18n

For localizing a string.

```
${i18n(string.id)}
```
param

Returns the value of a transformation parameter.

${param(webhelp.show.main.page.tiles)}

env

Returns the value of an environment variable.

${env(JAVA_HOME)}

system-property

Returns the value of a system property.

${system-property(os.name)}

timestamp

Can be used to format the current date and time. Accepts a string (as a parameter) that determines how the date and time will be formatted (format string or picture string as it is known in the XSLT specification). The format string must comply with the rules of the XSLT format-dateTime function specification.

${timestamp([h1]:[m01] [P] [M01]/[D01]/[Y0001])}

path

Returns the path associated with the specified path ID. The following paths IDs are supported:

- oxygen-webhelp-output-dir - The path to the output directory. The path is relative to the current HTML file.
- oxygen-webhelp-assets-dir - The path to the oxygen-webhelp subdirectory from the output directory. The path is relative to the current HTML file.
- oxygen-webhelp-template-dir - The path to the template directory. The path is relative to the current HTML file.

${path(oxygen-webhelp-template-dir)}

Note: New paths IDs can be added by overriding the wh-macro-custom-path template from com.oxygenxml.webhelp.responsive\xsl\template\macroExpander.xsl:

<-- Extension template for expanding a custom path macro. -->
<xsl:template name="wh-macro-custom-path"
map-xpath
Can be used to execute an XPath expression over the DITA map file from the temporary directory.

Tip: Available in all template layout HTML pages.

${map-xpath(/map/title)}

topic-xpath
Can be used to execute an XPath expression over the current topic.

Tip: Available only in the topic HTML page template (wt_topic.html).

${topic-xpath(string-join(/shortdesc//text(), ' '))}

oxygen-webhelp-build-number
Returns the current WebHelp distribution ID (build number).

${oxygen-webhelp-build-number}

Extensibility

To add new macros, you can add an XSLT extension to overwrite the wh-macro-extension template from the com.oxygenxml.webhelp.responsive\xsl\template\macroExpander.xsl file.

<!-- Extension template for expanding custom macro constructs -->
<xsl:template name="wh-macro-extension">
    <xsl:param name="name"/>
    <xsl:param name="params"/>
    <xsl:param name="contextNode"/>
    <xsl:param name="matchedString"/>

    <xsl:choose>
        <xsl:when test="$contextNode instance of attribute()">
            <xsl:value-of select="$matchedString"/>
        </xsl:when>
        <xsl:otherwise>
            <xsl:message>Cannot expand macro: 
            </xsl:message>
        </xsl:otherwise>
    </xsl:choose>
</xsl:template>
The **`wh-macro-extension`** template has the following parameters:

- **name** - The name of the current *macro*.
- **params** - List of parameters of the current *macro* as string sequence. The current *macros* parsing mechanism only allows *macros* with a maximum of one parameter. Consequently, this list will contain at most one element.
- **contextNode** - The current element or attribute where the *macro* was declared.
- **matchedString** - The entire value of the matched *macro* as specified in the HTML template page.

**HTML Page Layout Files**

The HTML page layout files define the default layout of the generated pages in the output for the built-in template. There are four types of pages (*main*, *search*, *topic*, *index*) and each type of page is a simple HTML file. Each page type has various components that appear by default and each component has a corresponding element and when that element is included in the HTML file, the corresponding components will appear in the output.

⚠️ **Warning:** It is no longer recommended for you to customize these files because if you upgrade to a newer version of *Oxygen*, those files may no longer produce the desired results and if new components have been added, you won't have access to them.

If you do choose to customize these HTML files, each type of page is defined inside an **`html-page-layout-files`** element in the descriptor file.

```xml
<publishing-template>
  ...
  <webhelp>
    ...
  </webhelp>

  <!-- HTML page layout files -->
  <html-page-layout-files>
    <page-layout-file page="main" file="page-templates/wt_index.html"/>
    <page-layout-file page="search" file="page-templates/wt_search.html"/>
    <page-layout-file page="topic" file="page-templates/wt_topic.html"/>
    <page-layout-file page="index-terms" file="page-templates/wt_terms.html"/>
  </html-page-layout-files>
</publishing-template>
```
If you do use the `html-page-layout-files` element, you must specify all four types of pages (`main`, `search`, `topic`, `index`). When not specified, the files from the `DITA-OT-DIR/plugins/com.oxygenxml.webhelp.responsive/oxygen-webhelp/page-templates` folder will be used to define the layout of each type of page.

**HTML Page Components**

Each type of page contains various components that control the layout of that page. The rendering of each component depends on the context where it is placed and its content depends on the transformed DITA map (on page 3281).

Some of the components can be used in all four types of pages, while some are only available for certain pages. For instance, the `Publication Title` component can be used in all pages, but the `Navigation Breadcrumb` component can only be used in the `Topic Page`.

To include a component in the output of a particular type of page, you have to reference a specific element in that particular HTML file. All the elements associated with a component should belong to the `http://www.oxygenxml.com/webhelp/components` namespace.

Every component can contain custom content or reference another component. To specify where the component content will be located in the output, you can use the `whc:component_content` element as a descendant of the component element. It can specify the location as before, after, or it can wrap the component content. The following snippet contains an example of each:

```xml
<whc:webhelp_search_input class="navbar-form wh_main_page_search" role="form">
  <div class="custom-content-before">Enter search terms here:</div>
  <div class="custom-wrapper">
    <whc:component_content/>
  </div>
  <div class="custom-content-after">Results will be displayed in a new window.</div>
</whc:webhelp_search_input>
```

**Main Page**

The `Main Page` is the home page generated in the WebHelp Responsive output. The name of the HTML file that defines this page is `wt_index.html` and it is located in the following directory: `DITA-OT-DIR/plugins/com.oxygenxml.webhelp.responsive/oxygen-webhelp/page-templates`.

The main function of the home page is to display top-level information and provide links that help you easily navigate to any of the top-level topics of the publication. These links can be rendered in either
a Tiles or Tree style of layout. The HTML page produced for the home page also consists of various other components, such as a logo, title, menu, search field, or index link.

Figure 629. Examples of Main Page Components for a Tiles Style of Layout

![Diagram showing examples of main page components for a tiles style layout]

Figure 630. Examples of Main Page Components for a Tree Style of Layout

![Diagram showing examples of main page components for a tree style layout]
The following components can be referenced in the Main Page (wt_index.html) file:

**Publication Title** (*webhelp_publication_title*)

This component generates the publication title in the output. To generate this component, the *webhelp_publication_title* element must be specified in the HTML file as in the following example:

```html
<whc:webhelp_publication_title
```

In the output, you will find an element with the class: *wh_publication_title*.

**Publication Logo** (*webhelp_logo*)
This component generates a logo image in the output. To generate this component, the `webhelp_logo` element must be specified in the HTML file as in the following example:

```xml
<whc:webhelp_logo
```

In addition, you must also specify the path of the logo image in the `webhelp.logo.image` transformation parameter (in the Parameters tab in the transformation scenario). You can set the `webhelp.logo.image.target.url` parameter to generate a link to a URL when you click the logo image.

In the output, you will find an element with the class: `wh_logo`.

**Search Input (`webhelp_search_input`)**

This component is used to generate the input widget associated with search function in the output. To generate this component, the `webhelp_search_input` element must be specified in the HTML file as in the following example:

```xml
<whc:webhelp_search_input
```

In the output, you will find an element with the class: `wh_search_input`.

**Print Link (`webhelp_print_link`)**

This component is used to generate a print icon that opens the print dialog box for your particular browser. To generate this component, the `webhelp_print_link` element must be specified in the HTML file as in the following example:

```xml
<whc:webhelp_print_link
```

In the output, you will find an element with the class: `wh_print_link`.

**Main Menu (`webhelp_top_menu`)**

This component generates a menu with all the documentation topics. To generate this component, the `webhelp_top_menu` element must be specified in the HTML file as in the following example:

```xml
<whc:webhelp_top_menu
```

In the output, you will find an element with the class: `wh_top_menu`. 
You can control the maximum level of topics that will be included in the menu using the `webhelp.top.menu.depth` transformation parameter (in the Parameters tab of the transformation scenario).

For information about customizing the menu, see How to Customize the Menu (on page 1954).

**Main Page Topic Tiles (`webhelp_tiles`)**

This component generates the tiles section in the main page. This section will contain a tile for each root topic of the published documentation. Each topic tile has three sections that correspond to the topic title, short description, and image. To generate this component, the `webhelp_tiles` element must be specified in the HTML file as in the following example:

```xml
<whc:webhelp_tiles
```

In the output, you will find an element with the class: `wh_tiles`.

If you want to control the HTML structure that is generated for a WebHelp tile you can also specify the template for a tile by using the `whc:webhelp_tile` component, as in the following example:

```xml
<whc:webhelp_tile class="col-md-4">
  <!-- Place holder for tile's image -->
  <whc:webhelp_tile_image/>
</whc:webhelp_tile>

<whc:webhelp_tile>
  <!-- Place holder for tile's title -->
  <whc:webhelp_tile_title/>
</whc:webhelp_tile>

  <!-- Place holder for tile's shortdesc -->
  <whc:webhelp_tile_shortdesc/>
</whc:webhelp_tile>
```

For information about customizing the tiles, see How to Configure the Tiles on the WebHelp Responsive Main Page (on page 1959).

**Main Page Table of Contents (`webhelp_main_page_toc`)**

This component generates a simplified Table of Contents. It is simplified because it contains only two levels from the documentation hierarchy. To generate this component,
the `webhelp_main_page_toc` element must be specified in the HTML file as in the following example:

```xml
<whc:webhelp_main_page_toc
```

In the output, you will find an element with the class: `wh_main_page_toc`.

**Index Terms Link (webhelp_indexterms_link)**

This component can be used to generate a link to the index terms page (`indexterms.html`). If the published documentation does not contain any index terms, then the link will not be generated. To generate this component, the `webhelp_indexterms_link` element must be specified in the HTML file as in the following example:

```xml
<whc:webhelp_indexterms_link
```

In the output, you will find an element with the class: `wh_indexterms_link`. This element will contain a link to the `indexterms.html` page.

**Link to Skins Resources (webhelp_skin_resources)**

This component can be used to add a link to resources for the current WebHelp skin (such as the CSS file). To generate this component, the `webhelp_skin_resources` element must be specified in the HTML file as in the following example:

```xml
<whc:webhelp_skin_resources/>
```

In the output, you will find a link to the skin resources.

**Topic Page**

The *Topic Page* is the page generated for each DITA topic in the WebHelp Responsive output. The name of the HTML file that defines this page is `wt_topic.html` and it is located in the following directory: `DITA-OT-DIR/plugins/com.oxygenxml.webhelp.responsive/oxygen-webhelp/page-templates`.

The HTML pages produced for each topic consist of the topic content along with various other additional components, such as a title, menu, navigation breadcrumb, print icon, or side table of contents.

Figure 631. Examples of Topic Page Components
poly 74, 13, 18, 58, 17, 123, 73, 124, 72, 50, 149, 49, 148, 13 Publication Logo (on page 1917)
poly 211, 13, 144, 82, 80, 82, 80, 103, 206, 103, 205, 82, 171, 82, 211, 50, 286, 48, 284, 12 Publication Title (on page 1917)
poly 232, 73, 232, 110, 184, 157, 144, 157, 144, 188, 654, 186, 654, 158, 210, 156, 256, 109, 331, 108, 331, 72 Search Input (on page 1917)
poly 418, 13, 417, 50, 348, 83, 349, 101, 738, 102, 736, 81, 586, 80, 516, 13 Main Menu (on page 1919)
poly 601, 11, 601, 50, 701, 50, 748, 81, 741, 85, 742, 101, 771, 101, 772, 82, 702, 13 Index Terms Link (on page 1920)
poly 598, 190, 598, 216, 696, 216, 710, 219, 709, 235, 739, 236, 738, 218, 695, 188 Expand/Collapse All Sections (on page 1919)
poly 738, 157, 738, 179, 764, 182, 764, 221, 761, 235, 781, 235, 781, 220, 776, 182, 798, 182, 796, 155 Print Link (on page 1918)
poly 382, 249, 409, 234, 704, 235, 704, 220, 16, 220, 16, 238, 324, 237, 381, 288, 480, 287, 479, 249 Breadcrumb (on page 1917)
poly 34, 480, 34, 518, 150, 518, 149, 479, 95, 479, 96, 429, 171, 428, 171, 261, 18, 262, 20, 427, 84, 430, 85, 480 Publication Table of Contents (on page 1918)
poly 362, 480, 362, 516, 459, 515, 459, 480, 415, 479, 415, 443, 679, 442, 676, 244, 476, 290, 372, 290, 322, 245, 185, 246, 185, 442, 368, 444 Topic Content (on page 1918)
The following components can be referenced in the Topic Page (wt_topic.html) file:

**Publication Title (webhelp_publication_title)**

This component generates the publication title in the output. To generate this component, the `webhelp_publication_title` element must be specified in the HTML file as in the following example:

```xml
<whc:webhelp_publication_title
```

In the output, you will find an element with the class: `wh_publication_title`.

**Publication Logo (webhelp_logo)**

This component generates a logo image in the output. To generate this component, the `webhelp_logo` element must be specified in the HTML file as in the following example:

```xml
<whc:webhelp_logo
```

In addition, you must also specify the path of the logo image in the `webhelp.logo.image` transformation parameter (in the Parameters tab in the transformation scenario). You can set the `webhelp.logo.image.target.url` parameter to generate a link to a URL when you click the logo image.

In the output, you will find an element with the class: `wh_logo`.

**Search Input (webhelp_search_input)**

This component is used to generate the input widget associated with search function in the output. To generate this component, the `webhelp_search_input` element must be specified in the HTML file as in the following example:

```xml
<whc:webhelp_search_input
```

In the output, you will find an element with the class: `wh_search_input`.

**Topic Breadcrumb (webhelp_breadcrumb)**

This component generates a breadcrumb that displays the path of the current topic. To generate this component, the `webhelp_breadcrumb` element must be specified in the HTML file as in the following example:

```xml
<whc:webhelp_breadcrumb
```
In the output, you will find an element with the class: `wh_breadcrumb`. This element will contain a list with items that correspond to the topics in the path. The first item in the list has a link to the main page with the `home` class. The last item in the list corresponds to the current topic and has the `active` class set.

**Navigation Links (webhelp_navigation_links)**

This component generates navigation links to the next and previous topics. To generate this component, the `webhelp_navigation_links` element must be specified in the HTML file as in the following example:

```xml
<whc:webhelp_navigation_links
```

In the output, you will find an element with the class: `wh_navigation_links`. This element will contain the links to the next and previous topics.

**Print Link (webhelp_print_link)**

This component is used to generate a print icon that opens the print dialog box for your particular browser. To generate this component, the `webhelp_print_link` element must be specified in the HTML file as in the following example:

```xml
<whc:webhelp_print_link
```

In the output, you will find an element with the class: `wh_print_link`.

**Topic Content (webhelp_topic_content)**

This component generates the content of a topic and it represent the content of the HTML files as they are produced by the DITA-OT processor. To generate this component, the `webhelp_topic_content` element must be specified in the HTML file as in the following example:

```xml
<whc:webhelp_topic_content
```

In the output, you will find an element with the class: `wh_topic_content`.

**Publication TOC (webhelp_publication_toc)**

This component generates a mini table of contents for the current topic (on the left side). It will contain links to the children of current topic, its siblings, and all of its ancestors. To generate this component, the `webhelp_publication_toc` element must be specified in the HTML file as in the following example:
In the output, you will find an element with the class: `wh_publication_toc`. This element will contain links to the topics that are close to the current topic.

**Topic TOC (webhelp_topic_toc)**

This component generates a topic table of contents for the current topic (on the right side) with a heading named **On this page**. It contains links to each section within the current topic and the section corresponding to the current scroll position is highlighted. The topic must contain at least two `<section>` elements and each `<section>` must have an `@id` attribute. To generate this component, the `webhelp_topic_toc` element must be specified in the HTML file as in the following example:

```
```

In the output, you will find an element with the class: `wh_topic_toc`. This element will contain links to the topics that are close to the current topic.

**Expand/Collapse Sections (webhelp_expandCollapseSections)**

This component is used to generate an icon that expands or collapses sections listed in the side table of contents within a topic. To generate this component, the `webhelp_expandCollapseSections` element must be specified in the HTML file as in the following example:

```
```

In the output, you will find an element with the class: `webhelp_expandCollapseSections`.

**Topic Feedback (webhelp_feedback)**

This component generates a placeholder for where the comments section will be presented. To generate this component, the `webhelp_feedback` element must be specified in the HTML file as in the following example:

```
```

**Main Menu (webhelp_topMenu)**
This component generates a menu with all the documentation topics. To generate this component, the `webhelp_top_menu` element must be specified in the HTML file as in the following example:

```xml
<whc:webhelp_top_menu
```

In the output, you will find an element with the class: `wh_top_menu`.

You can control the maximum level of topics that will be included in the menu using the `webhelp.top.menu.depth` transformation parameter (in the Parameters tab of the transformation scenario).

For information about customizing the menu, see How to Customize the Menu (on page 1954).

**Index Terms Link (webhelp_indexterms_link)**

This component can be used to generate a link to the index terms page (`indexterms.html`). If the published documentation does not contain any index terms, then the link will not be generated. To generate this component, the `webhelp_indexterms_link` element must be specified in the HTML file as in the following example:

```xml
<whc:webhelp_indexterms_link
```

In the output, you will find an element with the class: `wh_indexterms_link`. This element will contain a link to the `indexterms.html` page.

**Child Links (webhelp_child_links)**

For all topics with subtopics (child topics), this component generates a list of links to each child topic. To generate this component, the `webhelp_child_links` element must be specified in the HTML file as in the following example:

```xml
<whc:webhelp_child_links
```

**Related Links (webhelp_related_links)**

For all topics that contain related links, this component generates a list of related links that will appear in the output. To generate this component, the `webhelp_related_links` element must be specified in the HTML file as in the following example:

```xml
<whc:webhelp_related_links
```
Link to Skins Resources (webhelp_skin_resources)

This component can be used to add a link to resources for the current WebHelp skin (such as the CSS file). To generate this component, the `webhelp_skin_resources` element must be specified in the HTML file as in the following example:

```html
<whc:webhelp_skin_resources/>
```

In the output, you will find a link to the skin resources.

Search Results Page

The Search Results Page is the page generated that present search results in the WebHelp Responsive output. The name of the HTML file that defines this page is `wt_search.html` and it is located in the following directory: `DITA-OT-DIR/plugins/com.oxygenxml.webhelp.responsive/oxygen-webhelp/page-templates`.

The HTML page that is produced consists of a search results component along with various other additional components, such as a title, menu, or index link.

Figure 632. Examples of Search Results Page Components

poly 72, 12, 17, 59, 17, 125, 73, 124, 72, 60, 148, 51, 148, 12 Publication Logo (on page 1922)
The following components can be referenced in the Search Results Page (wt_search.html) file:

**Publication Title (webhelp_publication_title)**

This component generates the publication title in the output. To generate this component, the `webhelp_publication_title` element must be specified in the HTML file as in the following example:

```xml
<whc:webhelp_publication_title
```

In the output, you will find an element with the class: `wh_publication_title`.

**Publication Logo (webhelp_logo)**

This component generates a logo image in the output. To generate this component, the `webhelp_logo` element must be specified in the HTML file as in the following example:

```xml
<whc:webhelp_logo
```

In addition, you must also specify the path of the logo image in the `webhelp.logo.image` transformation parameter (in the Parameters tab in the transformation scenario). You can set the `webhelp.logo.image.target.url` parameter to generate a link to a URL when you click the logo image.

In the output, you will find an element with the class: `wh_logo`.

**Search Input (webhelp_search_input)**

This component is used to generate the input widget associated with search function in the output. To generate this component, the `webhelp_search_input` element must be specified in the HTML file as in the following example:

```xml
<whc:webhelp_search_input
```
In the output, you will find an element with the class: wh_search_input.

**Search Results (webhelp_search_results)**

This component is used to generate a placeholder to signal where the search results will be presented in the output. To generate this component, the `webhelp_search_results` element must be specified in the HTML file as in the following example:

```xml
<whc:webhelp_search_results
```

In the output, you will find an element with the class: wh_search_results.

**Print Link (webhelp_print_link)**

This component is used to generate a print icon that opens the print dialog box for your particular browser. To generate this component, the `webhelp_print_link` element must be specified in the HTML file as in the following example:

```xml
<whc:webhelp_print_link
```

In the output, you will find an element with the class: wh_print_link.

**Main Menu (webhelp_top_menu)**

This component generates a menu with all the documentation topics. To generate this component, the `webhelp_top_menu` element must be specified in the HTML file as in the following example:

```xml
<whc:webhelp_top_menu
```

In the output, you will find an element with the class: wh_top_menu.

You can control the maximum level of topics that will be included in the menu using the `webhelp.top.menu.depth` transformation parameter (in the Parameters tab of the transformation scenario).

For information about customizing the menu, see How to Customize the Menu (on page 1954).

**Index Terms Link (webhelp_indexterms_link)**

This component can be used to generate a link to the index terms page (indexterms.html). If the published documentation does not contain any index terms, then the link will not be generated. To generate this component, the
webhelp_indexterms_link element must be specified in the HTML file as in the following example:

```xml
<whc:webhelp_indexterms_link
```

In the output, you will find an element with the class: wh_indexterms_link. This element will contain a link to the indexterms.html page.

**Link to Skins Resources (webhelp_skin_resources)**

This component can be used to add a link to resources for the current WebHelp skin (such as the CSS file). To generate this component, the webhelp_skin_resources element must be specified in the HTML file as in the following example:

```xml
<whc:webhelp_skin_resources/>
```

In the output, you will find a link to the skin resources.

### Index Terms Page

The *Index Terms Page* is the page generated that presents index terms in the WebHelp Responsive output. The name of the HTML file that defines this page is wt_terms.html and it is located in the following directory: `DITA-OT-DIR/plugins/com.oxygenxml.webhelp.responsive/oxygen-webhelp/page-templates`

The HTML page that is produced consists of an index terms section along with various other additional components, such as a title, menu, or search field.

An alphabet that contains the first letter of the documentation index terms is generated at the top of the index page. Each letter represents a link to a specific indices section.

Figure 633. Example of Index Terms Page Components
The following components can be referenced in the Index Terms Page (wt_terms.html) file:

**Publication Title** ([webhelp_publication_title](#))

This component generates the publication title in the output. To generate this component, the `webhelp_publication_title` element must be specified in the HTML file as in the following example:

```xml
<whc:webhelp_publication_title
```

In the output, you will find an element with the class: `wh_publication_title`.

**Publication Logo** ([webhelp_logo](#))

This component generates a logo image in the output. To generate this component, the `webhelp_logo` element must be specified in the HTML file as in the following example:
In addition, you must also specify the path of the logo image in the
webhelp.logo.image transformation parameter (in the Parameters tab in the
transformation scenario). You can set the webhelp.logo.image.target.url parameter
to generate a link to a URL when you click the logo image.

In the output, you will find an element with the class: wh_logo.

Search Input (webhelp_search_input)

This component is used to generate the input widget associated with search function in
the output. To generate this component, the webhelp_search_input element must be
specified in the HTML file as in the following example:

```
<whc:webhelp_search_input
```

In the output, you will find an element with the class: wh_search_input.

Print Link (webhelp_print_link)

This component is used to generate a print icon that opens the print dialog box for your
particular browser. To generate this component, the webhelp_print_link element must
be specified in the HTML file as in the following example:

```
<whc:webhelp_print_link
```

In the output, you will find an element with the class: wh_print_link.

Main Menu (webhelp_top_menu)

This component generates a menu with all the documentation topics. To generate this
component, the webhelp_top_menu element must be specified in the HTML file as in the
following example:

```
<whc:webhelp_top_menu
```

In the output, you will find an element with the class: wh_top_menu.

You can control the maximum level of topics that will be included in the menu using
the webhelp.top.menu.depth transformation parameter (in the Parameters tab of the
transformation scenario).
For information about customizing the menu, see How to Customize the Menu (on page 1954).

**Index Terms Link (webhelp_indexterms_link)**

This component can be used to generate a link to the index terms page (indexterms.html). If the published documentation does not contain any index terms, then the link will not be generated. To generate this component, the `webhelp_indexterms_link` element must be specified in the HTML file as in the following example:

```xml
<wc:webhelp_indexterms_link
    xmlns:wc="http://www.oxygenxml.com/webhelp/components"/>
```

In the output, you will find an element with the class: `wh_indexterms_link`. This element will contain a link to the `indexterms.html` page.

**Link to Skins Resources (webhelp_skin_resources)**

This component can be used to add a link to resources for the current WebHelp skin (such as the CSS file). To generate this component, the `webhelp_skin_resources` element must be specified in the HTML file as in the following example:

```xml
<wc:webhelp_skin_resources/>
```

In the output, you will find a link to the skin resources.

**Combining WebHelp Responsive and PDF Customizations in a Template Package**

An *Oxygen Publishing Template* package can contain both a WebHelp Responsive and PDF customization in the same template package and you can use that same template in both types of transformations. The template descriptor file can define the customization for both types by including both a `webhelp` and `pdf` element and some of the resources can be reused. Resources referenced in elements in the `webhelp` element will only be used for WebHelp transformations, and resources referenced in the elements in the `pdf` element will only be used in PDF transformations.

```xml
<publishing-template>
    <name>Flowers</name>
    <description>Flowers themed light-colored template</description>

    <webhelp>
        <tags>
            <tag>purple</tag>
            <tag>light</tag>
        </tags>
    </webhelp>
</publishing-template>
```
Generating WebHelp Responsive Output

The publishing process can be initiated from a transformation scenario within Oxygen XML Editor/Author, from a command line outside Oxygen XML Editor/Author, or from an integration server.

Running from Oxygen XML Editor/Author

To publish to the WebHelp Responsive output from a transformation scenario inside Oxygen XML Editor/Author, use one of the following procedures, depending on whether or not you want a feedback section in your output.
WebHelp Responsive Output

To publish a DITA map as WebHelp Responsive output, follow these steps:

1. Select the Configure Transformation Scenario(s) action from the DITA Maps Manager toolbar.
2. Select the DITA Map WebHelp Responsive scenario from the DITA Map section.
3. If you want to configure the transformation, click the Edit button.

**Step Result:** This opens an Edit scenario configuration dialog box that allows you to configure various options in the following tabs:

- **Templates Tab** - This tab contains a set of built-in skins that you can use for the layout of your WebHelp system output.
- **Parameters Tab** - This tab includes numerous transformation parameters that can be set to customize your WebHelp system output.
- **Filters Tab** - This tab allows you to filter certain content elements from the generated output.
- **Advanced Tab** - This tab allows you to specify some advanced options for the transformation scenario.
- **Output Tab** - This tab allows you to configure options that are related to the location where the output is generated.

4. Click Apply associated to process the transformation.

When the DITA Map WebHelp Responsive transformation is complete, the output is automatically opened in your default browser.

WebHelp Responsive with Feedback Output

To publish a DITA map as a WebHelp Responsive with Feedback system, follow these steps:

1. Select the Configure Transformation Scenario(s) action from the DITA Maps Manager toolbar.
2. Select the DITA Map WebHelp Responsive with Feedback scenario from the DITA Map section.
3. If you want to configure the transformation, click the Edit button.

**Step Result:** This opens an Edit scenario configuration dialog box that allows you to configure various options in the following tabs:

- **Templates Tab** - This tab contains a set of built-in skins that you can use for the layout of your WebHelp system output.
- **Parameters Tab** - This tab includes numerous transformation parameters that can be set to customize your WebHelp system output.
- **Filters Tab** - This tab allows you to filter certain content elements from the generated output.
• **Advanced Tab** - This tab allows you to specify some advanced options for the transformation scenario.

• **Output Tab** - This tab allows you to configure options that are related to the location where the output is generated.

4. Click **Apply associated** to begin the transformation.

5. Enter the documentation product ID (value for the `webhelp.product.id` parameter) and the documentation version (value for the `webhelp.product.version` parameter).

When the DITA Map WebHelp Responsive with Feedback transformation is complete, your default browser opens the `installation.html` file. This file contains information about the output location, system requirements, installation instructions, and deployment of the output. Follow the instructions to complete the system deployment *(on page 1873)*.

### Running from Command Line

To publish to the WebHelp Responsive output from a command line outside of **Oxygen XML Editor/Author**, you can use the `dita` startup script that comes bundled with **DITA-OT** distribution.

#### dita Command Format

**DITA-OT** `dita` command has the following format:

```
DITA-OT-DIR/bin/dita --format=webhelp-responsive --input=input-file options
```

where the arguments are as follows:

- **dita**  
  - **Windows** - The `dita.bat` script located in: `DITA-OT-DIR (on page 3282)\bin\`.  
  - **Linux/Mac OS X** - The `dita` script file located in: `DITA-OT-DIR (on page 3282)/bin/`.  

- **--format = webhelp-responsive**  
  - Specifies the output format (transformation type) for WebHelp Responsive transformation.

- **--input = input-file**  
  - The `input-file` represents the path to the DITA map that you want to process.

- **options**  
  - **options** include the following optional build parameters:

```
--output =dir  
-o dir
```
Specifies the path of the output directory; the path can be absolute or relative to the current directory. By default, the output is written to the `out` subdirectory of the current directory.

`--filter =file`

Specifies filter file(s) used to include, exclude, or flag content.

Relative paths are resolved against the current directory and internally converted to absolute paths.

`--temp =dir`

`-t dir`

Specifies the location of the temporary directory.

`--verbose`

`-v`

Verbose logging.

`--debug`

`-d`

Debug logging.

`--logfile =file`

`-l file`

Write logging messages to a file.

`--parameter =value`

`-D parameter=value`

Specify a value for a DITA-OT or Ant build parameter.

`--propertyfile =file`

Use build parameters defined in the referenced `.properties` file.

Build parameters specified on the command line override those set in the `.properties` file.

**WebHelp and DITA-OT parameters**

In addition to the transformation parameters that are specific to WebHelp Responsive (on page 2003), you can use the common DITA-OT transformation parameters and the HTML-based Output Parameters.
Command-Line Example

• Windows:

```bash
dita.bat
 --format=webhelp-responsive
 --input=c:\path\to\mySample.ditamap
 --output=c:\path\to\output
 -Dwebhelp.logo.image=myLogo.jpg
```

• Linux/Mac OS X:

```bash
dita
 --format=webhelp-responsive
 --input=/path/to/mySample.ditamap
 --output=/path/to/output
 -Dwebhelp.logo.image=myLogo.jpg
```

Related Information:

• DITA-OT Documentation: Building Output Using the dita Command

• DITA-OT Documentation: Publishing DITA Content

• DITA-OT Documentation: HTML-based output parameters

• WebHelp Responsive Output Parameters (on page 2003)

Running from an Integration Server

Oxygen XML Editor can be processed from an automatic publishing system, such as Jenkins or Travis.

Automating DITA to WebHelp Output with Jenkins

To integrate WebHelp output with the Jenkins continuous integration tool, follow these steps:

1. Create a Maven project to incorporate the DITA-OT that already integrates Oxygen XML Editor.
2. Go to the root of your Maven project and edit the pom.xml file to include the following fragment:

```xml
<properties>
```
3. Go to the Jenkins top page and create a new Jenkins job. Configure this job to suit your particular requirements, such as the build frequency and location of the Maven project.

Automating DITA to WebHelp Output with Travis CI

This topic assumes you have a DITA project hosted on a GitHub public or private repository.

The goal of this tutorial is to help you set up a Travis continuous integration job that automatically publishes your DITA project to GitHub pages after every commit. The published website will contain a feedback link on each page that would allow a contributor to easily suggest changes to the documentation by creating a pull request on GitHub with just a few clicks.

Enable the Travis CI Build

1. Sign in to Travis CI with your GitHub account, accepting the GitHub access permissions confirmation.

2. Once you are signed in, and you have synchronized your GitHub repositories, go to your profile page and enable Travis CI for the repository you want to build.
Configure the Travis CI Build in your GitHub Project

1. Checkout your GitHub project locally.
2. Copy the `.travis` folder from here to the root directory of your project.
3. In the root of your GitHub project, add a file called `.travis.yml` with the following content:

```yaml
language: dita
install:
  - echo "Installed"
script:
  - sh .travis/publish.sh
after_success:
  - sh .travis/deploy.sh
env:
  global:
    - DITAMAP=/path/to/your/ditamap/file
    - DITAVAL=/path/to/your/ditaval/file
    - ANT_OPTS=-Xmx1024M

Note: Replace /path/to/your/ditamap/file and /path/to/your/ditaval/file with the appropriate paths to your DITA map and ditaval files.
4. Create a GitHub personal access token by following this procedure.
5. Define an environment variable in the repository settings that has the name GH_TOKEN and the value equal with the GitHub personal access token created earlier.

Register Your License Key

1. Edit your `.gitignore` file (or create it if it does not already exist) and add the following line:

   licenseKey.txt

2. Copy your WebHelp license to the root of your GitHub project in a file called licenseKey.txt.

   Important: The licenseKey.txt file should not be committed to GitHub as it contains a license key that is issued only to you.

3. Encrypt the license key file and add it to the `.travis.yml` configuration file. This way only the Travis CI server will be able to decrypt it during the build process.

Commit to GitHub

1. Commit the following files and folders and push the commit to GitHub:
git add .gitignore licenseKey.txt.enc .travis.yml .travis/
git commit -m "Set up the Travis CI publishing system"
git push

2. Create a gh-pages branch in your GitHub project where the WebHelp output will be published. You can follow the procedure here.

Customizing the WebHelp Responsive Output

Oxygen XML Editor provides support for customizing the WebHelp Responsive output to suit your specific needs. The WebHelp Responsive output is based upon the Bootstrap responsive front-end framework and is available for DITA document types. The WebHelp Responsive with Feedback variant allows your users to add comments to your output.

To change the overall appearance of your WebHelp Responsive output, you can use several different customization methods or a combination of methods. If you are familiar with CSS and coding, you can style your WebHelp output through your own custom style sheets. You can also customize your output by modifying existing templates, create your own layout pages, or by configuring certain options and parameters in the transformation scenario.

This section includes topics that explain various ways to customize your WebHelp Responsive system output, such as how to configure the tiles on the main page, add logos in the title area, integrate with social media, localizing the interface, and much more.

Working with Publishing Templates

An Oxygen Publishing Template (on page 3285) defines all aspects of the layout and styles of the WebHelp Responsive output. It is a self-contained customization package stored as a ZIP archive or folder that can easily be shared with others. It provides the primary method for customizing the output. The recommended method for customizing the WebHelp Responsive output is to use a custom publishing template.

This section contains topics about how to create, edit, publish, and share publishing templates.

Related Information:

- Publishing Template Package Contents for WebHelp Responsive Customizations (on page 1895)
How to Create a Publishing Template

To create a customization, you can start from scratch or from an existing template, and then adapt it according to your needs.

Creating a Template Starting from Scratch

To create a new Oxygen Publishing Template, follow these steps:

1. Create a folder that will contain all the template files.
2. In Oxygen XML Editor/Author, open the new document wizard (use File > New or the New toolbar button), then choose the Publishing Template Descriptor template.

3. Save the .opt file into your customization directory.
4. Open the .opt file in the editor and customize it to suit your needs.

Creating a Template Starting from an Existing Template

If you are using a WebHelp Responsive or DITA Map PDF - based on HTML5 & CSS transformation, the easiest way to create a new Oxygen Publishing Template (on page 3285) is to select an existing template in the transformation scenario dialog box and use the Save template as button to save that template into a new template package that can be used as a starting point.

To create a new Oxygen Publishing Template, follow these steps:
1. Open the transformation scenario dialog box and select the publishing template you want to export and use as a starting point.

2. **Optional:** You can set one or more transformation parameters from the **Parameters** tab and the edited parameters will be exported along with the selected template. You will see which parameters will be exported in the dialog box that is displayed after the next step.

3. Click the **Save template as** button.

   **Step Result:** This opens a template package configuration dialog box that contains some options and displays the parameters that will be exported to your template package.

4. Specify a name for the new template.

5. **Optional:** Specify a template description.

6. **Optional:** The same publishing template package can contain both a WebHelp Responsive and PDF customization and you can use the same template in both types of transformations (*DITA Map WebHelp Responsive* or *DITA Map to PDF - based on HTML5 & CSS*). You can use the **Include WebHelp customization** and **Include PDF customization** options to specify whether your custom template will include both types of customizations.

7. **Optional:** For **WebHelp Responsive** customizations, you can select the **Include HTML Page Layout Files** option if you want to copy the default *HTML Page Layout Files (on page 1909)* in your template package. They are helpful if you want to change the structure of the generated HTML pages.

8. In the **Save as** field, specify the name and path of the ZIP file where the template will be saved.

   **Step Result:** A new ZIP archive will be created on disk in the specified location with the specified name.

9. Open the `.opt` file in the editor and customize it to suit your needs.

For more information about creating and customizing publishing templates, watch our video demonstration:

https://www.youtube.com/embed/zNmXfWXwO8

Related Information:

- *Publishing Template Package Contents for PDF Customizations (on page 2023)*

*Publishing Template Package Contents for WebHelp Responsive Customizations (on page 1895)*
How to Edit a Packed Publishing Template

To edit an existing *Oxygen Publishing Template* (on page 3285) package, follow these steps:

1. Unzip the ZIP archive associated with the *Oxygen Publishing Template* in a separate folder.
2. Link the folder associated with the template in the Project view.
3. Using the Project view, you can modify the resources (CSS, JS, fonts) within the *Oxygen Publishing Template* folder to fit your needs.
4. Open the publishing template descriptor file (.opt extension) in the editor and modify to suit your needs.
5. **Optional:** Once you finish your customization, you can archive the folder as a ZIP file.

Related Information:

- **Publishing Template Package Contents for PDF Customizations** (on page 2023)
- **Publishing Template Package Contents for WebHelp Responsive Customizations** (on page 1895)

How to Add a Publishing Template to the Publishing Templates Gallery

To add the publishing template to your templates gallery, follow these steps:

1. Open the transformation scenario dialog box by editing a WebHelp Responsive transformation.
2. In the Templates tab, click the Configure Publishing Templates Gallery link to.
   - This will open the preferences page.
3. Click the Add button and specify the location of your template directory.
   - Your template directory is now added to the Additional Publishing Templates Galleries list.
4. Click OK to return to the transformation scenario dialog box.
   - All the templates contained in your template directory will be displayed in the preview pane along with all the built-in templates.

How to Use a Publishing Template from a Command Line

Before you run the transformation, you need to know if the publishing template has a single or multiple template descriptor files (on page 1895). If you don't know, open the ZIP archive or folder and check for files with the .opt extension.
Using a Publishing Template with a Single Descriptor

A template with a single descriptor is used for a single customization.

To run from a command line, you need to use the webhelp.publishing.template parameter (on page 2003). This parameter specifies the path to the ZIP archive (or root folder) that contains your custom WebHelp Responsive template.

**Command-Line Example:**

- **Windows:**

```bash
dita.bat
    --format=webhelp-responsive
    --input=c:\path\to\mySample.ditamap
    --output=c:\path\to\output
    -Dwebhelp.publishing.template=custom-template
```

- **Linux/Mac OS X:**

```bash
dita
    --format=webhelp-responsive
    --input=/path/to/mySample.ditamap
    --output=/path/to/output
    -Dwebhelp.publishing.template=custom-template
```

Using a Publishing Template with Multiple Descriptors

A template with multiple descriptors contains multiple customizations.

Because the publishing template is self-contained, it is used to reuse resources that are common to multiple publications.

To run from a command line, you need to use the webhelp.publishing.template and webhelp.publishing.template.descriptor parameters.

The webhelp.publishing.template parameter specifies the path to the ZIP archive (or root folder) while the webhelp.publishing.template.descriptor parameter specifies the name of the descriptor you want to use.

**Command-Line Example:**

- **Windows:**

```bash
dita.bat
```
How to Share a Publishing Template

To share a publishing template with others, following these steps:

1. Copy your template in a new folder in your project.
2. Go to **Options > Preferences > DITA > Publishing** and add that new folder to the list.
3. Switch the option as the bottom of that preferences page to **Project Options**.
4. Share your project file (**.xpr**).

Converting Old Templates to Version 20.0 and Newer

With the introduction of the Publishing Template concept in Oxygen XML Editor version 20.0, the old WebHelp output template formats (version 19.1 and older) are no longer supported. However, they can be easily converted to the new format by following this procedure:

1. Set Oxygen XML Editor to point to the DITA-OT distribution that contains your old template:
   a. Go to **Options > Preferences > DITA**.
   b. Select **Custom** in the **DITA Open Toolkit** section and specify the DITA-OT directory that contains your old template.
2. Edit a **WebHelp Responsive** transformation scenario.
3. Select your old custom template in the **Templates** tab.
4. Click on the **Save Template as** button, complete the required fields, and save the template.
5. Edit the **WebHelp Responsive** transformation scenario again.
6. This time, use the **Choose custom template** button to select your old template.
7. Save the scenario and use it to generate the WebHelp Responsive output.
Converting Old Templates with Custom HTML Page Layout Files to Version 21

If you have a custom Publishing Template that was created in Oxygen XML Editor version 20.0 or 20.1 and it includes custom HTML page layout files, the following conversion procedure is required for the template to be compatible with Oxygen XML Editor version 21.0:

1. In the Project view, add the root directory for your custom Publishing Template (you can use a linked folder and the easiest way to do this is to drag and drop the folder).

   Note: If your template is stored as a ZIP archive, you first need to unzip it.

2. Expand your template directory, right-click the page-templates subfolder, and select Refactoring > XML Refactoring.

3. In the XML Refactoring dialog box, scroll to the Publishing Template section and select Migrate HTML Page Layout Files to v21, then click Next.

4. The Scope should be left as Selected project resources.

5. You can use the Preview button to open a comparison panel where you can review all the changes that will be made by the refactoring operation before applying the changes.

6. Click Finish to perform the conversion.

Related Information:

- Converting Old Templates with Custom HTML Page Layout Files to Version 21 (on page 1941)

Troubleshooting: Errors Encountered when Loading Templates

When the Templates tab of a WebHelp Responsive transformation scenario dialog box is opened, all templates (built-in and custom) are loaded and validated. Specifically, certain elements in the template descriptor file are checked for validity. If errors are encountered that prevents the template from loading, the following message will be displayed toward the bottom of the dialog box:

Some templates could not be loaded. More details
If you click the More details link, a window will open with more information about the encountered error. For example, it might offer a hint for which element is missing from the expected descriptor file structure (on page 1895).

Also, if a template could be loaded, but certain elements could not be found in the descriptor file (on page 1895), a warning icon (⚠️) will be displayed on the template's image (in the Templates tab of the transformation dialog box). For example, this happens if a valid preview-image element (on page 1898) cannot be found.

Changing the Layout and Styles

This section contains topics that explain how to customize the output using CSS, inserting HTML fragments, changing the layout of the main page, and more.

How to Use CSS Styling to Customize the Output

The most common way to customize WebHelp Responsive output is to use custom CSS styling. This method can be used to make small, simple styling changes or more advanced, precise changes. To implement the styling in your WebHelp output, you simply need to create the custom CSS file and reference it in your transformation scenario (using an Oxygen Publishing Templater (on page 3285) or a transformation parameter). This custom file will be the final CSS to be applied so its content will override the styles in the other pre-existing CSS files.

Using CSS Inspector to Identify Content for Custom CSS File

You can use your browser's CSS inspector to identify the pertinent code in the current CSS files and you can even make changes directly in the CSS inspector to test the results so that you know exactly what content to use in your custom CSS file.

In most popular browsers (such as Chrome, Firefox, and Edge), you can access the CSS inspector by using F12 or by selecting Inspect Element (or simply Inspect) from the contextual menu.

Tip: When using Safari on Mac OS X, you must first enable the Develop menu by going to the Advanced settings and selecting Show Develop menu in menu bar. Then you can select Show Web Inspector from the Develop menu or click Command + Option + I.

Create the Custom CSS

As a practical example, the following procedure would change the background color of the footer bar in the WebHelp output:

1. Use the browser's CSS inspector to identify the current CSS code that styles the footer bar. In this particular case, the pertinent code that would be identified is:
2. If you want to test the color you want to apply as the background of this particular element, use the browser's CSS inspector to change the value of the `background-color` attribute. After you find a suitable color, copy that new code.

3. Create a custom CSS file and paste or enter the copied code. For example:

```css
.wh_footer {
    background-color: #255890;
}
```

4. Save the custom CSS file at a location of your convenience.

5. Reference the CSS file in a WebHelp Responsive transformation using an Oxygen Publishing Template (on page 1943) or the `args.css` parameter (on page 1944).

Referencing the CSS Using a Publishing Template

1. If you haven't already created a Publishing Template, see Working with Publishing Templates (on page 1935).

2. Using the Project view, copy your custom CSS in a folder inside the publishing template root folder (for example, in the `custom_footer_template/resources` folder).

3. Open the template descriptor file (on page 1895) associated with your publishing template and add your custom CSS in the `resources` section.

```xml
<publishing-template>
    ...
    <webhelp>
        ...
        <resources>
            ...
            <css file="resources/MyCustom.css"/>
        </resources>
    </webhelp>
    ...
</publishing-template>
```

4. Open the DITA Map WebHelp Responsive transformation scenario.

5. Click the Choose Custom Publishing Template link and select your template.

6. Click OK to save the changes to the transformation scenario.

7. Run the transformation scenario.

**Result:** Your custom CSS will be applied as a final layer on top of any existing CSS rules and the output will reflect the changes you made.
Referencing the CSS Using the args.css Parameter

1. Edit the DITA Map WebHelp Responsive transformation scenario and open the Parameters tab.
2. Set the args.css parameter to the path of your custom CSS file.
3. Set the args.copycss parameter to yes to automatically copy your custom CSS in the output folder when the transformation scenario is processed.
4. Click OK to save the changes to the transformation scenario.
5. Run the transformation scenario.

Result: Your custom CSS will be applied as a final layer on top of any existing CSS rules and the output will reflect the changes you made.

How to Insert HTML Content in WebHelp Responsive Output

You can add custom HTML content in the WebHelp Responsive output by inserting it in a well-formed XML file that will be referenced in the transformation (either from an Oxygen Publishing Template (on page 3285) or using one of the HTML fragment parameters (on page 2005)). This content may include references to additional JavaScript, CSS, and other types of resources, or such resources can be inserted inline within the HTML content that is inserted in the XML file.

The XML File

There are several things to consider regarding this XML file:

- **Well-Formedness** - If the file is not a Well-formed XML document (on page 1079) (or fragments are not well-formed), the transformation will fail.

  A common use case is if you want to include several script or link elements. In this case, the XML fragment has multiple root elements and to make it well-formed, you can wrap it in an html element. This element tag will be filtered out and only its children will be copied to the output documents. Similarly, you can wrap your content in head, body, html/head, or html/body elements.

- **Referencing Resources in the XML File** - You can include references to local resources (such as JavaScript or CSS files) by using the built-in `${oxygen-webhelp-output-dir}` macro to specify their paths relative to the output directory:

```xml
<html>
<script type="text/javascript" src="${oxygen-webhelp-output-dir}/js/test.js"></script>
<link rel="stylesheet" type="text/css"
     href="${oxygen-webhelp-output-dir}/css/test.css" />
</html>
```
If you want that the path of your resource to be relative to the templates directory *(on page 1892)*, you can use the `${oxygen-webhelp-template-dir}` macro.

To copy the referenced resources to the output directory, follow the procedure in: How to Copy Additional Resources to Output Directory *(on page 1961)*.

- **Inline JavaScript or CSS Content:**

  **JavaScript:**

  ```
  <script type="text/javascript">
  /* Include JavaScript code here. */

  function myFunction() {
    return true;
  }

  </script>
  ```

  **CSS:**

  ```
  <style>
  /* Include CSS style rules here. */

  *{
    color:red
  }

  </style>
  ```

  **Note:** If you have special characters (for example, &, < ) that break the well-formedness of the XML fragment, it is important to place this content inside an XML comment:

  ```
  <script type="text/javascript">
    <!--
    /* Include JavaScript code here. */

    function myFunction() {
      return true;
    }

    //-->
  </script>
  ```
Using WebHelp Macros Inside an HTML Fragment File

The XML file can use WebHelp macros, which are variables that will be expanded when the content of the HTML fragment file will be copied in the final output.

There are two possibilities for using macros:

- **Directly in attribute values** - For example, if you want to reference a JavaScript file from the Publishing Template directory, you can use the following construct:

  ```html
  <script type="text/javascript" src="${path(oxygen-webhelp-template-dir)}/"></script>
  ```

- **In text content** - Using the `<whc:macro/>` template component:

  ```html
  <script type="text/javascript" xmlns:whc="http://www.oxygenxml.com/webhelp/'>
    var outDirPath = '${path(oxygen-webhelp-output-dir)}/';
    console.log("The output directory path is: ", outDirPath);
  </script>
  ```

The following *macros* are supported:

- **i18n**
  
  For localizing a string.

  ```text
  ${i18n(string.id)}
  ```

- **param**
  
  Returns the value of a transformation parameter.

  ```text
  ${param(webhelp.show.main.page.tiles)}
  ```

- **env**
  
  Returns the value of an environment variable.

  ```text
  ${env(JAVA_HOME)}
  ```

- **system-property**
  
  Returns the value of a system property.

  ```text
  ${system-property(os.name)}
  ```

- **timestamp**
Can be used to format the current date and time. Accepts a string (as a parameter) that determines how the date and time will be formatted (format string or picture string as it is known in the XSLT specification). The format string must comply with the rules of the XSLT `format-dateTime` function specification.

```text
${timestamp([h1]:[m01] [P] [M01]/[D01]/[Y0001])}
```

**path**

Returns the path associated with the specified path ID. The following paths IDs are supported:

- `oxygen-webhelp-output-dir` - The path to the output directory. The path is relative to the current HTML file.
- `oxygen-webhelp-assets-dir` - The path to the `oxygen-webhelp` subdirectory from the output directory. The path is relative to the current HTML file.
- `oxygen-webhelp-template-dir` - The path to the template directory. The path is relative to the current HTML file.

```text
${path(oxygen-webhelp-template-dir)}
```

**Note:** New paths IDs can be added by overriding the `wh-macro-custom-path` template from `com.oxygenxml.webhelp.responsive\xsl\template\macroExpander.xsl`:

```xml
<!-- Extension template for expanding a custom path macro. -->
<xsl:template name="wh-macro-custom-path">
    <xsl:param name="pathId"/>
    <xsl:value-of select="$pathId"/>
</xsl:template>
```

**map-xpath**

Can be used to execute an XPath expression over the DITA map file from the temporary directory.

**Tip:** Available in all template layout HTML pages.

```text
${map-xpath(/map/title)}
```

**topic-xpath**

Can be used to execute an XPath expression over the current topic.

**Tip:** Available only in the topic HTML page template (`wt_topic.html`).
Referencing the HTML fragment using a Publishing Template

1. If you have not already created a Publishing Template, see Working with Publishing Templates (on page 1935).
2. Insert the HTML content in a well-formed XML file (for example, custom-html.html).
3. Using the Project view, copy your custom HTML fragment in a folder inside publishing the template root folder (for example, in the custom_footer_template/html-fragments folder).
4. Open the template descriptor file (on page 1895) associated with your publishing template and add a reference to the custom HTML fragment in the html-fragments section.

```xml
<publishing-template>
  ...
  <webhelp>
    ...
    <html-fragments>
      ...  
      <fragment
          file="html-fragments/custom-html.html"
          placeholder="webhelp.fragment.head"/>
    </html-fragments>
  </webhelp>
</publishing-template>
```

**Note:** If you want to insert the content in another location within the output document, you can reference the XML file from any other HTML Fragment extension points (on page 1902).
5. Open the DITA Map WebHelp Responsive transformation scenario.
6. Click the Choose Custom Publishing Template link and select your template.
7. Click OK to save the changes to the transformation scenario.
8. Run the transformation scenario.

**Results:** Your additional content will be included at the end of the head element of your output document.

Referencing the HTML Fragment using a Transformation Parameter

1. Insert the HTML content in a well-formed XML file.
2. Edit the DITA Map WebHelp Responsive transformation scenario and open the Parameters tab.
3. Edit the value of the `webhelp.fragment.head` parameter and set it to the absolute path of your XML file.

   **Note:** If you want to insert the content in another location within the output document, you can reference the XML file from any other HTML Fragment extension points *(on page 1902).*

4. Click **OK** to save the changes to the transformation scenario.
5. Run the transformation scenario.

**Results:** Your additional content will be included at the end of the `head` element of your output document.

---

**Related Information:**

- HTML Fragment Extension Points *(on page 1902)*

    Publishing Template Package Contents for WebHelp Responsive Customizations *(on page 1895)*

---

**How to Insert JavaScript AMD Modules in WebHelp Responsive Output**

In the WebHelp Responsive output, you may want to include a JavaScript module that uses the Asynchronous Module Definition (AMD) format. Unlike the traditional JavaScript resources that are loaded using `<script>` tags, these modules are loaded using the RequireJS library. For the traditional JavaScript libraries, the standard procedure to contribute your script to the output would be to use an HTML fragment file as described here *(on page 1944).*

Although following the procedure that uses HTML fragments *(on page 1944)* would result in having your JS file included in the output, loading the JS code in the browser will result in an error. Since your JS module uses the AMD API, it cannot be loaded using a `<script>` element. For example, because many jQuery plugins use the AMD format, it will be difficult for you to use those libraries in your custom WebHelp output.

Normally, a JavaScript AMD module can be loaded in one of the following ways:

- **As a top-level script,** using the `data-main` attribute of the `<script>` element used to load the RequireJS library.

    ```html
    <script data-main="js/template-main.js" src="js/require.js"></script>
    ```

However, since WebHelp already loads its internal JS modules using RequireJS, a top level script is already specified and you cannot specify another top level script in the same page. Therefore,
this approach can not be used to load your custom JS module in Oxygen XML WebHelp, leaving you with only the following option.

- **As a dependency module**, using a `require()` call from the top level (main) script or from one of its dependency modules. This means that you would have to alter one of the WebHelp core JS libraries and inject a `require()` call to load your custom module:

  ```javascript
  require(['js/template-main.js']);
  ```

**Note:** Altering the WebHelp core libraries is not recommended because when you will upgrade the WebHelp plugin to a newer version, those modifications will be lost.

### Contributing JavaScript AMD Modules Using a Publishing Template

Oxygen XML WebHelp provides the ability to contribute a custom JavaScript Asynchronous Module Definition (AMD) resource in the output by referencing it in the Publishing Template descriptor file (on page 1895). This module is automatically copied to the output directory and it is automatically loaded in the output HTML pages using a `require()` call. Thus, you can include your scripts in the output without altering WebHelp’s core JavaScript libraries.

This module may contain all of your custom functionality or can be used to load other AMD JavaScript modules. The additional sub-modules can be stored either locally in your custom Publishing Template or on a remote web server.

**Important:** To enable loading of a JS module you should set the `webhelp.enable.template.js.module.loading` parameter to `yes` (the default value is `no`) in the Publishing Template descriptor file or in the transformation scenario.

### The JavaScript Modules

The JS Modules sample template contains a main JavaScript module (`template-main.js`) that loads other modules stored in the template package or in a remote location on the Internet.

```javascript
define(['require'], function (require) {
    require(['./red', './italic', './tables']);
});
```

Besides the main JavaScript example, the template contains 3 other sub-modules:

- **red.js** - Changes the font color of the publication title.

```javascript
define(['jquery'], function ($) {
    $(document).ready(function () {
        // Make the title red
    });
});
```
• **italic.js** - Changes the font style of your publication title.

```javascript
define(['jquery'], function ($) {
  $(document).ready(function () {
    // Make the title italic
    $('.wh_publication_title a').wrapInner('<i></i>');
  });
});
```

• **tables.js** - Loads the DataTables jQuery plugin from a CDN.

```javascript
define(['jquery',
  'https://cdn.datatables.net/1.10.16/js/jquery.dataTables.min.js'],
  function ($) {

  $(document).ready(function () {
    $('.table').DataTable();
  });
});
```

The JavaScript modules are stored in the Publishing Template package as follows:

```
[template-dir]
[js]
  template-main.js
  italic.js
  red.js
  tables.js
```

**Note:**

• The main module should be referenced in the Publishing Template descriptor file (on page 1895) by specifying its path relative to the base directory of the template.

```xml
<js-amd-module file="js/template-main.js"/>
```

• The main JS module is copied automatically to the output directory, but the sub-modules are not. To instruct the Publishing Template engine to copy those modules to the output directory you should include a `<fileset>` section in the Publishing Template descriptor file (on page 1895).

```xml
<fileset>
```
• The main module can reference other modules bundled in the publishing template package as follows:
  ◦ Relative to template directory - Prefix their paths with the ID of the template directory:
    template-base-dir (for example: template-base-dir/js/italic).
  ◦ Relative to the name of the current JS module - Use ./ to prefix the paths of the referenced modules.
  ◦ The .js extension should be omitted for local modules, because the RequireJS library will add it automatically.

Related Information:

• How to Insert HTML Content in WebHelp Responsive Output (on page 1944)

How to Change Numbering Styles for Ordered Lists

Ordered lists (ol) are usually numbered in XHTML output using numerals. If you want to change the numbering to alphabetical, follow these steps:

1. Define a custom outputclass value and set it as an attribute of the ordered list, as in the following example:

   `<ol outputclass="number-alpha">
   <li>A</li>
   <li>B</li>
   <li>C</li>
   </ol>`

2. Add the following code snippet in a custom CSS file:

   ```
   ol.number-alpha{
   list-style-type:lower-alpha;
   }
   ```

3. Reference the CSS file in a WebHelp Responsive transformation using an Oxygen Publishing Template (on page 1953) or the args.css parameter (on page 1953).
Referencing the Custom CSS from a Publishing Template

1. If you haven’t already created a Publishing Template, see Working with Publishing Templates (on page 1935).
2. Using the Project view, copy your custom CSS in a folder inside the publishing template root folder (for example, in the custom_footer_template/resources folder).
3. Open the template descriptor file (on page 1895) associated with your publishing template and add your custom CSS in the resources section.

```xml
<publishing-template>
  ...
  <webhelp>
    ...
    <resources>
      ...
      <css file="resources/MyCustom.css"/>
    </resources>
  </webhelp>
  ...
</publishing-template>
```

4. Open the DITA Map WebHelp Responsive transformation scenario.
5. Click the Choose Custom Publishing Template link and select your template.
6. Click OK to save the changes to the transformation scenario.
7. Run the transformation scenario.

**Result:** Your custom CSS will be applied as a final layer on top of any existing CSS rules and the output will reflect the changes you made.

Referencing the CSS Using the *args.css* Parameter

1. Edit the DITA Map WebHelp Responsive transformation scenario and open the Parameters tab.
2. Set the *args.css* parameter to the path of your custom CSS file.
3. Set the *args.copycss* parameter to *yes* to automatically copy your custom CSS in the output folder when the transformation scenario is processed.
4. Click OK to save the changes to the transformation scenario.
5. Run the transformation scenario.

**Result:** Your custom CSS will be applied as a final layer on top of any existing CSS rules and the output will reflect the changes you made.

How to Show or Hide Navigation Links in Topic Pages

The topic pages (on page 1862) in WebHelp Responsive output can contain navigation links (◀ Previous / ▶ Next arrows) that can be used to navigate to the previous or next topic.
How to Control Which Topic Pages Include Navigation Links

The navigation links are controlled by the `collection-type` attribute. For example, if you set `collection-type="sequence"` on a parent topic reference in your DITA map, navigation links will be generated in the output for all of its child topics (from children to parent, and from child to previous sibling and next sibling).

```xml
<map id="example_map" title="Example Map">
  <topicref href="../topics/ParentTopic.dita" collection-type="sequence">
    <topicref href="../topics/Childtopic.dita"/>
  </topicref>
</map>
```

How to Generate Navigation Links for All Topics (Ignoring the Collection Type Attribute)

You can use the `webhelp.default.collection.type.sequence` parameter in the transformation and set its value to `yes` to generate navigation links for all topics, regardless of whether or not the `collection-type` attribute is present.

How to Hide All Navigation Links

To hide all navigation links, use the `webhelp.show.navigation.links` parameter in the transformation and set its value to `no`.

How to Change the Main Page Layout

This section contains topics that explain how to customize the layout of the main page in the WebHelp Responsive output.

How to Customize the Menu

By default, the menu component is displayed in all WebHelp Responsive pages. However, you might want to hide it completely, or only display some of its menu entries.

How to Hide Some of the Menu Entries

There are two methods for doing this. One of them involves editing the `DITA map (on page 3281)` and marking the topics that do not need to be included in the menu, and another one that uses a small CSS customization.

Editing the DITA Map
To edit the metadata in the DITA map to control which topics will not be displayed in the menu, follow these steps:

1. Open the DITA map in the Text editing mode of Oxygen XML Editor.
2. Add the following metadata information in the topicref element (or any of its specializations) for each topic you do not want to be displayed in the menu:

   ```xml
   <topicmeta>
   <data name="wh-menu">
     <data name="hide" value="yes"/>
   </data>
   </topicmeta>
   ```

Customizing the CSS

To customize the CSS to control which topics will not be displayed in the menu, follow these steps:

1. Make sure you set an ID on the topic that you do not want to include in the menu.
2. Create a new CSS file that contains a rule that hides the menu entry generated for the topic (identified by the topic ID `growing-flowers` in the following example). The CSS file should have content that is similar to this:

   ```css
   .wh_top_menu *[data-id='growing-flowers'] { display:none; }
   ```

3. Reference the CSS file in a WebHelp Responsive transformation using an Oxygen Publishing Template (on page 1943) or the args.css parameter (on page 1944).

How to Hide the Entire Menu

If you do not want to include a main menu in the pages of the WebHelp Responsive output, you can instruct the transformation scenario to skip the menu generation completely.

Using a Publishing Template

To hide the menu using an Oxygen Publishing Template (on page 1892), follow this procedure:

1. If you haven't already created a Publishing Template, see Working with Publishing Templates (on page 1935).
2. Open the template descriptor file (on page 1895) associated with your publishing template and add the webhelp.show.top.menu parameter in the parameters section with its value set to no.
3. Open the DITA Map WebHelp Responsive transformation scenario.
4. Click the Choose Custom Publishing Template link and select your template.
5. Click OK to save the changes to the transformation scenario.
6. Run the transformation scenario.

**Using a Transformation Scenario in Oxygen XML Editor/Author**

To hide the menu using a transformation scenario from within Oxygen XML Editor/Author, follow this procedure:

1. Edit the DITA Map WebHelp Responsive transformation scenario and choose a template.
2. Open the Parameters tab and set the webhelp.show.top.menu parameter to no.
3. Click OK to save the changes to the transformation scenario.
4. Run the transformation scenario.

**How to Add a Welcome Message in the WebHelp Responsive Main Page**

The main page of the WebHelp Responsive output contains a set of empty placeholders (on page 1902) that can be used to display customized text fragments. These placeholders are available to you through WebHelp Responsive transformation scenario parameters. For example, the placeholder identified through the webhelp.fragment.welcome parameter displays text content above the search box in the main page.

**Using a Publishing Template**

To add a customized welcome message in the main page of the WebHelp Responsive output using an Oxygen Publishing Template (on page 1892), follow this procedure:

1. If you haven't already created a Publishing Template, see Working with Publishing Templates (on page 1935).
2. Open the template descriptor file (on page 1895) associated with your publishing template and add the webhelp.fragment.welcome parameter in the parameters section with its value set to one of the following:
   - A small well-formed XHTML fragment (such as: `<i>Welcome to the User Guide</i>`).
   - A path to a file that contains well-formed XHTML content.
3. Open the **DITA Map WebHelp Responsive** transformation scenario.
4. Click the **Choose Custom Publishing Template** link and select your template.
5. Click **OK** to save the changes to the transformation scenario.
6. Run the transformation scenario.

**Result:** In the WebHelp output, your custom message will be displayed above the search box in the main page.

### Using a Transformation Scenario in Oxygen XML Editor/Author

⚠️ **Important:** Running WebHelp transformations from a script outside of Oxygen XML Editor/Author requires an additional license and some additional setup:

- You must have a valid license for the Oxygen XML WebHelp Plugin ([https://www.oxygenxml.com/buy_webhelp.html](https://www.oxygenxml.com/buy_webhelp.html)).
- The Oxygen XML WebHelp Plugin must be installed and integrated for the DITA Open Toolkit or a DocBook XSL Distribution.

To add a customized welcome message in the main page of the WebHelp Responsive output using a transformation scenario from within Oxygen XML Editor/Author, follow this procedure:

1. Edit the **DITA Map WebHelp Responsive** transformation scenario and choose a template.
2. Open the **Parameters** tab and set the `webhelp.fragment.welcome` parameter with its value set to one of the following:
   - A small well-formed XHTML fragment (such as: `<i>Welcome to the User Guide</i>`).
   - A path to a file that contains well-formed XHTML content.
3. Click **OK** to save the changes to the transformation scenario.
4. Run the transformation scenario.

**Result:** In the WebHelp output, your custom message will be displayed above the search box in the main page.
How to Create a Custom Footer

The main page of the WebHelp Responsive output contains a set of empty placeholders (on page 1902) that can be used to display customized text fragments. These placeholders are available to you through WebHelp Responsive transformation scenario parameters. For example, the placeholder identified through the webhelp.fragment.footer parameter displays the custom content at the bottom of the page.

Using a Publishing Template

To create a custom footer in the WebHelp Responsive output using an Oxygen Publishing Template (on page 1892), follow this procedure:

1. If you haven’t already created a Publishing Template, see Working with Publishing Templates (on page 1935).
2. Open the template descriptor file (on page 1895) associated with your publishing template and add the webhelp.fragment.footer parameter in the parameters section with its value set to one of the following:
   • A small well-formed XHTML fragment.
   • A path to a file that contains well-formed XHTML content.

3. Open the DITA Map WebHelp Responsive transformation scenario.
4. Click the Choose Custom Publishing Template link and select your template.
5. Click OK to save the changes to the transformation scenario.
6. Run the transformation scenario.

Result: In the WebHelp output, your custom footer will be displayed at the bottom of the page.

Using a Transformation Scenario in Oxygen XML Editor/Author

⚠️ Important: Running WebHelp transformations from a script outside of Oxygen XML Editor/Author requires an additional license and some additional setup:
You must have a valid license for the Oxygen XML WebHelp Plugin (https://www.oxygenxml.com/buy_webhelp.html).

The Oxygen XML WebHelp Plugin must be installed and integrated for the DITA Open Toolkit or a DocBook XSL Distribution.

To create a custom footer in the WebHelp Responsive output using a transformation scenario from within Oxygen XML Editor/Author, follow this procedure:

1. Edit the DITA Map WebHelp Responsive transformation scenario and choose a template.
2. Open the Parameters tab and set the webhelp.fragment.footer parameter with its value set to one of the following:
   - A small well-formed XHTML fragment.
   - A path to a file that contains well-formed XHTML content.
3. Click OK to save the changes to the transformation scenario.
4. Run the transformation scenario.

   Result: In the WebHelp output, your custom footer will be displayed at the bottom of the page.

How to Configure the Tiles on the WebHelp Responsive Main Page

The tiles version of the main page of the WebHelp Responsive output displays a tile for each topic found on the first level of the DITA map (on page 3281). However, you might want to customize the way they look or even to hide some of them.

Depending on your particular setup, you can choose to customize the tiles either by setting metadata information in the DITA map or by customizing the CSS that is associated with the DITA map.

How to Hide Some of the Tiles

If your documentation is very large or there is a large number of topics on the first level, you might want to hide some of the tiles. Also, this might be useful if you only want to display the topics in the first page that are most relevant to your intended audience.

There are two methods for doing this. One of them involves editing the DITA map and marking the topics that do not need to be displayed as tiles, and another one that uses a small CSS customization level to hide some tiles identified by the ID of the topic.

Editing the DITA Map

To edit the metadata in the DITA map to control which topics on the first level of the DITA map will not be displayed as a tile, follow these steps:

1. Open the DITA map in the Text editing mode of Oxygen XML Editor.
2. Add the following metadata information in the `topicref` element (or any of its specializations) for each first-level topic that you do not want to be displayed as a tile:

```xml
<topicmeta>
  <data name="wh-tile">
    <data name="hide" value="yes"/>
  </data>
</topicmeta>
```

**Customizing the CSS**

To customize the CSS to control which topics on the first level of the `DITA map` will not be displayed as a tile, follow these steps:

1. Make sure you set an ID on the topic you want to hide.
2. Create a new CSS file that contains a rule that hides the tile generated for the topic (identified in the following example by the topic ID `growing-flowers`). The CSS file should have content that is similar to this:

```css
.wh_tile [data-id='growing-flowers'] {
  display: none;
}
```
3. Reference the CSS file in a `WebHelp Responsive` transformation using an `Oxygen Publishing Template (on page 1943)` or the `args.css` parameter (on page 1944).

**How to Add an Image to the Tiles**

There are two methods that you can use to add an image to a tile. One of them involves editing the `DITA map`, and the other uses a CSS customization.

**Editing the DITA Map**

To edit the metadata in the `DITA map` to set an image to be displayed in a tile, follow these steps:

1. Open the `DITA map` in the `Text` editing mode of Oxygen XML Editor.
2. Add the following metadata information in the `topicref` element (or any of its specializations) for each first-level topic that will have an image displayed in the corresponding tile:

```xml
<topicmeta>
  <data name="wh-tile">
    <data name="image" href="img/tile-image.png" format="png"/>
    <data name="attr-width" value="64"/>
    <data name="attr-height" value="64"/>
  </data>
</topicmeta>
```
Note: The `attr-width` and `attr-height` attributes can be used to control the size of the image, but they are optional.

Customizing the CSS

To customize the CSS to set an image to be displayed in a tile, follow these steps:

1. Make sure you set an ID on the topic that you want the tile include an image.
2. Create a new CSS file that contains a rule that associates an image with a specific tile. The CSS file should have content that is similar to this:
   ```css
   .wh_tile[data-id='growing-flowers'] > div {
     background-image: url('resources/flower.png');
   }
   ```
3. Reference the CSS file in a WebHelp Responsive transformation using an Oxygen Publishing Template (on page 1943) or the `args.css` parameter (on page 1944).

Adding Graphics and Media Resources

This section contains topics that explain how to add media resources to the published output or the output directory.

How to Copy Additional Resources to Output Directory

You can copy additional resources (such as JavaScript, CSS, or other resources) to the output directory either by using an Oxygen Publishing Template (on page 3285) or the `webhelp.custom.resources` parameter.

Copying Additional Resources to the Output Directory using a Publishing Template

1. If you haven't already created a Publishing Template, see Working with Publishing Templates (on page 1935).
2. Add a new `<fileset>` element in the resources section of the template descriptor file (on page 1899).
3. Open the DITA Map WebHelp Responsive transformation scenario.
4. Click the Choose Custom Publishing Template link and select your template.
5. Click OK to save the changes to the transformation scenario.
6. Run the transformation scenario.

**Results:** All files from the custom resources directory will be copied to the WebHelp Output Directory/oxygen-webhelp/template folder.

### Copying Additional Resources to the Output Directory using a Transformation Parameter

1. Place all your resources in the same directory.
2. Edit the DITA Map WebHelp Responsive transformation scenario and open the Parameters tab.
3. Edit the value of the webhelp.custom.resources parameter and set it to the absolute path of the directory in step 1.
4. Click OK to save the changes to the transformation scenario.
5. Run the transformation scenario.

**Results:** All files from the new directory will be copied to the root of the WebHelp output directory.

### How to Add a Logo Image in the Title Area

You can customize WebHelp Responsive output to include a logo in the title area. It will be displayed before the publication title. You can also specify a URL that can be used to send users to a specific website when they click the logo image.

This customization can be done using an Oxygen Publishing Template or using a transformation scenario from within Oxygen XML Editor/Author.

### Using a Publishing Template

To add a logo in the title area of your WebHelp output using an Oxygen Publishing Template (on page 1892), follow this procedure:
1. If you haven’t already created a Publishing Template, see Working with Publishing Templates (on page 1935).

2. Open the template descriptor file (on page 1895) associated with your publishing template and add the webhelp.logo.image parameter in the parameters section with its value set to path of your logo.

3. If you also want to add a link to your website when you click the logo image, set its URL in the webhelp.logo.image.target.url parameter.

   ```xml
   <publishing-template>
     ...
     <webhelp>
       ...
       <parameters>
         <parameter name="webhelp.logo.image" value="c:\myLogo.jpg"/>
         <parameter name="webhelp.logo.image.target.url" value="http://sample.com"/>
       </parameters>
     </webhelp>
   </publishing-template>
   ```

4. Open the DITA Map WebHelp Responsive transformation scenario.

5. Click the Choose Custom Publishing Template link and select your template.

6. Click OK to save the changes to the transformation scenario.

7. Run the transformation scenario.

**Using a Transformation Scenario in Oxygen XML Editor/Author**

To add a logo in the title area of your WebHelp output using a transformation scenario from within Oxygen XML Editor/Author, follow this procedure:

1. Edit the DITA Map WebHelp Responsive transformation scenario and choose a template.
2. Open the Parameters tab and set the webhelp.logo.image parameter to the path of your logo.
3. If you also want to add a link to your website when you click the logo image, set its URL in the webhelp.logo.image.target.url parameter.
4. Click OK to save the changes to the transformation scenario.
5. Run the transformation scenario.

**How to Add a Favicon in WebHelp Systems**

You can add a custom favicon to your WebHelp output by simply using a parameter in the transformation scenario to point to your favicon image.
This customization can be done using an *Oxygen Publishing Template* or using a transformation scenario from within *Oxygen XML Editor/Author*.

**Using a Publishing Template**

To add a *favicon* to your WebHelp output using an *Oxygen Publishing Template (on page 1892)*, follow this procedure:

1. If you haven't already created a Publishing Template, see *Working with Publishing Templates (on page 1935)*.
2. Open the template descriptor file (on page 1895) associated with your publishing template and add the *webhelp.favicon* parameter in the *parameters* section with its value set to path of your image.

   ```xml
   <publishing-template>
       ...
       <webhelp>
           ...
           <parameters>
               <parameter name="webhelp.favicon" value="c:\myFavicon.jpg"/>
           </parameters>
       </webhelp>
   </publishing-template>
   
3. Open the *DITA Map WebHelp Responsive* transformation scenario.
4. Click the *Choose Custom Publishing Template* link and select your template.
5. Click OK to save the changes to the transformation scenario.
6. Run the transformation scenario.

   **Result:** Browsers that provide *favicon* support will display the *favicon* (typically in the browser's address bar, in the list of bookmarks, and in the history).

**Using a Transformation Scenario in Oxygen XML Editor/Author**

To add a *favicon* to your WebHelp output using a transformation scenario from within *Oxygen XML Editor/Author*, follow this procedure:

1. Edit the *DITA Map WebHelp Responsive* transformation scenario and choose a *template*.
2. Open the *Parameters* tab and set the *webhelp.favicon* parameter to the path of your image.
3. Click OK to save the changes to the transformation scenario.
4. Run the transformation scenario.
How to Add Video and Audio Objects in DITA WebHelp Output

You can insert references to video and audio media resources (such as videos, audio clips, or embedded HTML frames) in your DITA topics and then publish them to WebHelp output. The media objects can be played directly in all HTML5-based outputs, including WebHelp systems.

To add media objects in the WebHelp output generated from DITA documents, follow the procedures below.

### Adding Videos to DITA WebHelp Output

1. Edit the DITA topic and insert a reference to the video through one of the following methods:
   
   - Use the [Insert Media Object](on page 3066).
   - Drag (or copy) the video file from your system explorer or the [Project view](on page 333) and drop (or paste) it into your document.
   - Manually add an `object` element, as in one of the following examples:

     ```xml
     <object outputclass="video" type="video/mp4" data="MyVideo.mp4"/>
     ```

     or, instead of the `data` attribute, you can specify the video using a parameter like this:

     ```xml
     <object outputclass="video">
     <param name="src" value="videos/MyVideo.mp4"/>
     </object>
     ```

2. Apply a [DITA to WebHelp](transformation) transformation to obtain the output.

**Result:** The transformation converts the `object` element to an HTML5 `video` element.

```xml
<video controls="controls">
  <source type="video/mp4" src="MyVideo.mp4"></source>
</video>
```

### Adding Audio Clips to DITA WebHelp Output

1. Edit the DITA topic and insert a reference to the audio clip through one of the following methods:

   - Use the [Insert Media Object](on page 3066).
   - Drag (or copy) the audio file from your system explorer or the [Project view](on page 333) and drop (or paste) it into your document.
   - Manually add an `object` element, as in one of the following examples:

     ```xml
     <object outputclass="audio" type="audio/mpeg" data="MyClip.mp3"/>
     ```

     or, instead of the `data` attribute, you can specify the video using a parameter like this:
2. Apply a **DITA to WebHelp** transformation to obtain the output.

**Result:** The transformation converts the *object* element to an HTML5 *audio* element.

```html
<audio controls="controls">
  <source type="audio/mpeg" src="MyClip.mp3"/>
</audio>
```

### Adding Embedded HTML Frames (such as YouTube videos) to DITA WebHelp Output

1. Edit the DITA topic and insert a reference to the embedded object by using the **Insert Media Object** toolbar action ([on page 3066](#)) or by manually adding an *object* element, as in one of the following examples:

```html
<object outputclass="iframe" data="https://www.youtube.com/embed/m_vv2s5Trn4"/>
```

or, instead of the *data* attribute, you can specify the object using a parameter like this:

```html
<object outputclass="iframe">
  <param name="src" value="http://www.youtube.com/embed/m_vv2s5Trn4"/>
</object>
```

2. If you want the video to be allowed to play in full screen mode once the document is converted to XHTML output, also add an *allowfullscreen* parameter and set its value to `true`:

```html
<object outputclass="iframe" data="https://www.youtube.com/embed/m_vv2s5Trn4"/>
  <param name="allowfullscreen" value="true"/>
</object>
```

**Tip:** If you copy the embed code from the source and paste it into the **Insert Media** dialog box ([see the specific instructions: here (on page 3068)](#)), the *allowfullscreen* parameter will automatically be added and all you have to do is set the value to `true`.

3. Apply a **DITA to WebHelp** transformation to obtain the output.

**Result:** The transformation converts the *object* element to an HTML5 *iframe* element.

```html
<iframe controls="controls" src="https://www.youtube.com/embed/m_vv2s5Trn4"/>
```

For more information, see the following video demonstration:
How to Publish MathML Formulas when Generating WebHelp from a Command Line

The DITA-OT distribution that comes bundled with Oxygen includes some additional pre-installed DITA-OT plugins that add support for properly displaying MathML formulas in the WebHelp output. However, if you are generating your WebHelp output from a command line, MathML formulas will not be displayed properly unless you install these plugins manually.

These plugins can be downloaded and installed from DITA 1.3 Support for Open Toolkit (https://github.com/dita-community/dita13-dita-ot-1.x-support). This plugin package adds DITA 1.3 support, including MathML.

How to Add Support for MathML when Generating WebHelp from a Command Line

1. Download and unzip the DITA 1.3 Support for Open Toolkit 1.x distribution package. It includes 4 DITA-OT plugins.
2. Copy the four plugin directories to your DITA-OT-DIR/plugins directory.
3. In the home directory of your DITA-OT installation, run the ant -f integrator.xml command.

Searching the Output

This section contains topics that explain how to use some of the search features in WebHelp Responsive output.

How to Change Element Scoring in Search Results

The WebHelp Search feature is enhanced with a rating mechanism that computes scores for every page that matches the search criteria. HTML tag elements are assigned a scoring value and these values are evaluated for the search results. The WebHelp directory includes a properties file that defines the scoring values for tag elements and this file can be edited to customize the values according to your needs.

To edit the scoring values of HTML tag element for enhancing WebHelp search results, follow these steps:
1. Edit the scoring properties file for DITA. The properties file includes instructions and examples to help you with your customization. The file is located in: \DITA-OT-DIR\plugins \com.oxygenxml.webhelp.responsive\indexer\scoring.properties. The values that can be edited in the scoring.properties file:

   h1 = 10
   h2 = 9
   h3 = 8
   h4 = 7
   h5 = 6
   h6 = 5
   b = 5
   strong = 5
   em = 3
   i = 3
   u = 3
   div.toc = -10
   title = 20
   div.ignore = ignored
   meta_keywords = 20
   meta_indexterms = 20
   meta_description = 25
   shortdesc = 25

2. Save your changes to the file.

3. Re-run your WebHelp transformation.

How to Exclude Certain DITA Topics from Search Results

There are several ways to exclude certain DITA resources from your WebHelp system's search results. This is useful if you have topics in your DITA map (on page 3281) structure that you do not want to be included in search results for your WebHelp system. The first method involves setting a parameter in the WebHelp transformation scenario and the second involves setting an attribute for each DITA topic reference that you want to exclude.

Transformation Parameter Method

To exclude DITA topics from WebHelp search results using a transformation parameter, follow these steps:
1. Create a simple text file that will contain your excluded file patterns. Each pattern must be on a new line. The patterns are considered to be relative to the output directory and they accept wildcards such as `*` (matches zero or more characters) or `?` (matches one character). For more information about the patterns, see [https://ant.apache.org/manual/dirtasks.html#patterns](https://ant.apache.org/manual/dirtasks.html#patterns).

**Example:** Suppose that in your project, you want to exclude all files located in the `resources` directory and all files located in the `topics` directory that have a `.bak` file extension. You could create a simple text file (for example, named `exclude.properties`), and add the following lines:

```
resources/*
topics/*/bak
```

2. Set the `webhelp.search.custom.excludes.file` parameter to specify the path to the file that contains the excluded file patterns (for example, `exclude.properties` in step 1). The parameter can be specified in the *parameters* section of the template descriptor file (on page 1901) associated with your publishing template or in the Parameters tab of the transformation scenario dialog box in Oxygen XML Editor/Author.

3. Run the transformation.

**Search Attribute Method**

The WebHelp Search engine does not index DITA topics that have the `@search` attribute set to `no`.

To exclude DITA topics from WebHelp search results using this attribute, follow these steps:

1. Edit the DITA map and for any `topicref` that you want to exclude from search results, set the `search` attribute to `no`. For example:

   ```
   <topicref href="../topics/internal-topic1.dita" search="no"/>
   ```

2. Save your changes to the DITA map.

3. Run your WebHelp system transformation.

**How to Optimize Search Results**

A DITA Map WebHelp transformation scenario can be configured to produce a `sitemap.xml` file that is used by search engines to aid crawling and indexing mechanisms. A `sitemap` lists all pages of a WebHelp system and allows webmasters to provide additional information about each page, such as the date it was last updated, change frequency, and importance of each page in relation to other pages in your WebHelp deployment.

The structure of the `sitemap.xml` file looks like this:

```xml
<urlset xmlns="http://www.sitemaps.org/schemas/sitemap/0.9">
```
Each page has a `<url>` element structure containing additional information, such as:

- **loc** - The URL of the page. This URL must begin with the protocol (such as `http`), if required by your web server. It is constructed from the value of the `webhelp.sitemap.base.url` parameter from the transformation scenario and the relative path to the page (collected from the `href` attribute of a `topicref` element in the DITA map).

  - **Note:** The value must have fewer than 2,048 characters.

- **lastmod** (optional) - The date when the page was last modified. The date format is `YYYY-MM-DD`.

- **changefreq** (optional) - Indicates how frequently the page is likely to change. This value provides general information to assist search engines, but may not correlate exactly to how often they crawl the page. Valid values are: *always*, *hourly*, *daily*, *weekly*, *monthly*, *yearly*, and *never*. The first time the `sitemap.xml` file is generated, the value is set based upon the value of the `webhelp.sitemap.change.frequency` parameter in the DITA WebHelp transformation scenario. You can change the value in each `url` element by editing the `sitemap.xml` file.

  - **Note:** The value *always* should be used to describe documents that change each time they are accessed. The value *never* should be used to describe archived URLs.

- **priority** (optional) - The priority of this page relative to other pages on your site. Valid values range from 0.0 to 1.0. This value does not affect how your pages are compared to pages on other sites. It only lets the search engines know which pages you deem most important for the crawlers.

  - The first time the `sitemap.xml` file is generated, the value is set based upon the value of the `webhelp.sitemap.priority` parameter in the DITA WebHelp transformation scenario. You can change the value in each `url` element by editing the `sitemap.xml` file.
Creating and Editing the sitemap.xml File

Follow these steps to produce a sitemap.xml file for your WebHelp system, which can then be edited to fine-tune search engine optimization:

1. Edit the transformation scenario you currently use for obtaining your WebHelp output. This opens the Edit DITA Scenario dialog box.
2. Open the Parameters tab and set a value for the following parameters:
   - **webhelp.sitemap.base.url** - The URL of the location where your WebHelp system is deployed.
     - **Note:** This parameter is required for Oxygen XML Editor to generate the sitemap.xml file.
   - **webhelp.sitemap.change.frequency** - How frequently the WebHelp pages are likely to change (accepted values are: always, hourly, daily, weekly, monthly, yearly, and never).
   - **webhelp.sitemap.priority** - The priority of each page (value ranging from 0.0 to 1.0).
3. Run the transformation scenario.
4. Look for the sitemap.xml file in the transformation's output folder. Edit the file to fine-tune the parameters of each page, according to your needs.

How to Index Japanese Content

To optimize the indexing of Japanese content in WebHelp pages, the Lucene Kuromoji Japanese analyzer can be used. This analyzer is included in the Oxygen XML Editor/Author installation kit.

Using a Publishing Template

To add a logo in the title area of your WebHelp output using an Oxygen Publishing Template (on page 1892), follow this procedure:

1. If you haven't already created a Publishing Template, see Working with Publishing Templates (on page 1935).
2. Open the template descriptor file (on page 1895) associated with your publishing template and add the `default.language` parameter in the `parameters` section with its value set to `ja-jp`.

```xml
<publishing-template>
  ...
  <webhelp>
    ...
    <parameters>
      <parameter name="default.language" value="ja-jp"/>
    </parameters>
  </webhelp>
  ...
</publishing-template>
```
3. Open the DITA Map WebHelp Responsive transformation scenario.
4. Click the Choose Custom Publishing Template link and select your template.
5. Click OK to save the changes to the transformation scenario.
6. Run the transformation scenario.

Using a Transformation Scenario in Oxygen XML Editor/Author

To activate the Japanese indexing in your WebHelp output using a transformation scenario from within Oxygen XML Editor/Author, follow this procedure:

1. Edit a DITA to WebHelp transformation scenario and in the Parameters tab, set the value of the default.language parameter to ja-jp.

   **Note:** Alternatively, you could set the xml:lang attribute on the root of the DITA map (on page 3281) and the referenced topics to ja-jp. Another alternative for DITA output is to use the webhelp.search.japanese.dictionary parameter to specify a path to a Japanese dictionary that will be used by the Kuromoji morphological engine (note that the encoding for the dictionary must be UTF8).

2. Run the WebHelp transformation scenario to generate the output.

Localization

This section contains topics that explain how to use the localization support in WebHelp Responsive output.

How to Localize Email Notifications of Feedback System

The feedback-enabled WebHelp Responsive systems use emails to notify users when comments are posted. These emails are based on templates stored in the WebHelp directory. The default messages are in English, French, German, and Japanese. These messages are copied into the WebHelp system deployment directory during the execution of the corresponding transformation scenario.

Using a Publishing Template

To change the language of the emails for DITA Map WebHelp Responsive with Feedback output using an Oxygen Publishing Template (on page 1892), follow this procedure:

1. Create the following directory:
2. Copy all English template files from `DITA-OT-DIR\plugins\com.oxygenxml.webhelp.responsive\oxygen-webhelp\resources\php\templates\en` and paste them into the directory you just created.

3. Edit the HTML files from the `DITA-OT-DIR\plugins\com.oxygenxml.webhelp.responsive\oxygen-webhelp\resources\php\templates\nl` directory and translate the content into your language.

4. Open the template descriptor file (on page 1895) associated with your publishing template and add the `default.language` parameter in the `parameters` section with its value set to the appropriate language code (for example, `nl` for Dutch).

   ![Note: If you set the parameter to a value such as `LanguageCode-CountryCode` (for example, `en-us`), the transformation scenario will only use the language code.]

   ```xml
   <publishing-template>
     ...
     <webhelp>
       ...
       <parameters>
         <parameter name="default.language" value="nl"/>
       </parameters>
     </webhelp>
   </publishing-template>
   
   5. Open the `DITA Map WebHelp Responsive` transformation scenario.
   6. Click the Choose Custom Publishing Template link and select your template.
   7. Click OK to save the changes to the transformation scenario.
   8. Run the transformation scenario.

Using a Transformation Scenario in Oxygen XML Editor/Author

To change the language of the emails for DITA Map WebHelp Responsive with Feedback output using a transformation scenario from within Oxygen XML Editor/Author, follow this procedure:

1. Create the following directory:

   ```
   DITA-OT-DIR\plugins\com.oxygenxml.webhelp.responsive\oxygen-webhelp\resources\php\templates\nl
   ```

2. Copy all English template files from `DITA-OT-DIR\plugins\com.oxygenxml.webhelp.responsive\oxygen-webhelp\resources\php\templates\en` and paste them into the directory you just created.
3. Edit the HTML files from the `DITA-OT-DIR\plugins \com.oxygenxml.webhelp.responsive\oxygen-webhelp\resources\php \templates\nl` directory and translate the content into your language.

4. Edit a DITA Map WebHelp Responsive transformation scenario and open the Parameters tab.

5. In the Parameters tab, look for the default.language parameter and set its value to the appropriate language code (for example, `nl` for Dutch).

   **Note:** If you set the parameter to a value such as `LanguageCode-CountryCode` (for example, `en-us`), the transformation scenario will only use the language code.

6. Run the transformation scenario.

---

**Related Information:**

- Feedback System *(on page 1872)*

---

**How to Localize the Interface of WebHelp Responsive Output**

Static labels used in the WebHelp output are stored in translation files that have the `strings-lang1-lang2.xml` name format, where `lang1` and `lang2` are ISO language codes. For example, the US English labels are kept in the `strings-en-us.xml` file.

These translation files are collected from two locations:

- `DITA-OT-DIR/xsl/common` folder - DITA-OT's default translations (generated text for `note`, `fig`, and `table` elements).
- `DITA-OT-DIR/plugins/com.oxygenxml.webhelp.responsive/oxygen-webhelp/resources/localization` folder - These translations are contributed by the WebHelp plugin and extend the default ones provided by DITA-OT. The labels defined in this folder take precedence over the DITA-OT defaults.

There are two major reasons you may want to use modify the translation files: to modify the existing strings or to translate to a new language.

---

**Related Information:**

- How to Index Japanese Content *(on page 1971)*
- Customizing Generated Text
Modifying the Existing Strings

To modify the generated text for WebHelp transformations, you need to create a DITA-OT extension plugin that uses the dita.xsl.messages extension point. The following procedure is for changing English labels, but you can adapt it for any language:

1. Create a com.oxygenxml.webhelp.localization plugin directory inside the DITA-OT-DIR/plugins/ location.
2. Create a plugin.xml file inside that com.oxygenxml.webhelp.localization directory with the following content:

```xml
<plugin id="com.oxygenxml.webhelp.localization">
  <require plugin="com.oxygenxml.webhelp.classic"/>
  <require plugin="com.oxygenxml.webhelp.responsive"/>
  <feature extension="dita.xsl.strings" file="webhelp-extension-strings.xml"/>
</plugin>
```

3. Create a webhelp-extension-strings.xml file with the following content:

```xml
<langlist>
  <lang xml:lang="en" filename="strings-en-us.xml"/>
  <lang xml:lang="en-us" filename="strings-en-us.xml"/>
</langlist>
```

4. Copy the strings you want to change from the translation files (on page 1974) to the strings-en-us.xml file. Make sure you leave the name attribute unchanged because this is the key used to look up the string. A sample content might be:

```xml
<strings xml:lang="en-US">
  <str name="Figure">Fig</str>
  <str name="Draft comment">ADDRESS THIS DRAFT COMMENT</str>
</strings>
```

5. Use the Run DITA-OT Integrator transformation scenario (on page 1665) found in the DITA Map section in the Configure Transformation Scenario(s) dialog box (on page 1762).

Adding a New Language

To add a new language for WebHelp transformations, you need to create a DITA-OT extension plugin that uses the dita.xsl.messages extension point. The following sample procedure is for adding translation files for the Polish language, but you can adapt it for any language:
1. Create a `com.oxygenxml.webhelp.localization` plugin directory inside the `DITA-OT-DIR/plugins/` location.

2. Create a `plugin.xml` file inside that `com.oxygenxml.webhelp.localization` directory with the following content:

   ```xml
   <plugin id="com.oxygenxml.webhelp.localization">
   <require plugin="com.oxygenxml.webhelp.classic"/>
   <require plugin="com.oxygenxml.webhelp.responsive"/>
   <feature extension="dita.xsl.strings" file="webhelp-extension-strings.xml"/>
   </plugin>
   ```

3. Create a `webhelp-extension-strings.xml` file with the following content:

   ```xml
   <langlist>
   <lang xml:lang="pl" filename="strings-pl-pl.xml"/>
   <lang xml:lang="pl-PL" filename="strings-pl-pl.xml"/>
   </langlist>
   ```


5. In the `strings-pl-pl.xml` file, change the `@xml:lang` attribute on the root element that conforms with the new language.

   ```xml
   <strings xml:lang="pl-PL">
   ...
   </strings>
   ```

6. Translate the content of each `<str>` element (make sure to leave the `name` attribute unchanged).

   ```xml
   <strings xml:lang="pl-PL">
   ...
   <str name="webhelp.content" js="true" php="false">Polish translation for "Content".</str>
   <str name="webhelp.search" js="true" php="false">Polish translation for "Search"</str>
   ...
   </strings>
   ```

7. Copy the common DITA-OT strings defined in the `DITA-OT-DIR/xsl/common/strings-en-us.xml` file. It defines a set generated text available for HTML-based transformations (such as `note`, `fig`, and `table` elements). Translate the content of each `<str>` element.

   ```xml
   <strings xml:lang="pl-PL">
   ```
8. Use the Run DITA-OT Integrator transformation scenario (on page 1665) found in the DITA Map section in the Configure Transformation Scenario(s) dialog box (on page 1762).

How to Activate Support for Right-to-Left (RTL) Languages

To activate support for RTL (right-to-left) languages in WebHelp output, edit the DITA map (on page 3281) and set the xml:lang attribute on its root element (map). The corresponding attribute value can be set for following RTL languages:

- ar-eg - Arabic
- he-il - Hebrew
- ur-pk - Urdu

Integrating Social Media and Google Tools in the WebHelp Output

This section contains topics that explain how to integrate some of the most popular social media sites in WebHelp output.

How to Add a Facebook Like Button in WebHelp Responsive Output

It is possible to integrate Facebook into your WebHelp Responsive output and you can specify where you want the widget to appear in your WebHelp page.

Using a Publishing Template

To add a Facebook Like widget to your WebHelp output using an Oxygen Publishing Template (on page 1892), follow this procedure:

1. Go to the Facebook Developers website.
2. Fill in the displayed form, then click the Get Code button.
3. Copy the two code snippets and paste them into a `<div>` element inside an XML file called `facebook-widget.xml`. Make sure you follow these rules:

   • The file must be well-formed.
   • The code for each `script` element must be included in an XML comment.
   • The start and end tags for the XML comment must be on a separate line.

   The content of the XML file should look like this:

   ```xml
   <div id="facebook">
   <div id="fb-root"/>
   <script>
   <!--
   (function(d, s, id) {
     var js, fjs = d.getElementsByTagName(s)[0];
     if (d.getElementById(id)) return;
     js = d.createElement(s); js.id = id;
     js.src = "//connect.facebook.net/en_US/sdk.js#xfbml=1&version=v2.0";
     fjs.parentNode.insertBefore(js, fjs);
   })(document, 'script', 'facebook-jssdk');
   -->
   </script>
   <div class="fb-like" data-layout="standard" data-action="like"
    data-show-faces="true" data-share="true"/>
   </div>
   ```

4. Open the template descriptor file (on page 1895) associated with your publishing template.

5. Use one of the parameters that begin with `webhelp.fragment` (on page 1902) in the `html-fragments` section of the descriptor file. Set the value of that parameter to reference the `facebook-widget.xml` file that you created earlier.

   ```xml
   <publishing-template>
   ...
   <webhelp>
   ...
   <html-fragments>
   <fragment
    file="HTML-fragments/facebook-widget.xml"
    placeholder="webhelp.fragment.after.toc_or_tiles"/>
   </html-fragments>
   </webhelp>
   </publishing-template>
   ```

6. Open the DITA Map WebHelp Responsive transformation scenario.

7. Click the Choose Custom Publishing Template link and select your template.
8. Click OK to save the changes to the transformation scenario.
9. Run the transformation scenario.

Using a Transformation Scenario in Oxygen XML Editor/Author

To add a Facebook Like widget to your WebHelp output using a transformation scenario from within Oxygen XML Editor/Author, follow this procedure:

1. Go to the Facebook Developers website.
2. Fill in the displayed form, then click the Get Code button.
3. Copy the two code snippets and paste them into a <div> element inside an XML file called facebook-widget.xml. Make sure you follow these rules:
   - The file must be well-formed.
   - The code for each script element must be included in an XML comment.
   - The start and end tags for the XML comment must be on a separate line.

The content of the XML file should look like this:

```xml
<div id="facebook">
  <div id="fb-root"/>
  <script>
    <!--
    (function(d, s, id) {
      var js, fjs = d.getElementsByTagName(s)[0];
      if (d.getElementById(id)) return;
      js = d.createElement(s); js.id = id;
      js.src = "//connect.facebook.net/en_US/sdk.js#xfbml=1&version=v2.0";
      fjs.parentNode.insertBefore(js, fjs);
    }(document, 'script', 'facebook-jssdk'));
    -->
  </script>
  <div class="fb-like" data-layout="standard" data-action="like"
    data-show-faces="true" data-share="true"/>
</div>
```

4. Edit the DITA Map WebHelp Responsive transformation scenario and choose a template.
5. Switch to the Parameters tab. Depending on where you want to display the button, edit one of the parameters that begin with webhelp.fragment (on page 1902). Set that parameter to reference the facebook-widget.xml file that you created earlier.
6. Click Ok and run the transformation scenario.
How to Add a Google+ Button in WebHelp Responsive Output

It is possible to integrate Google into your WebHelp Responsive output and you can specify where you want the widget to appear in your WebHelp page.

Using a Publishing Template

To add a Google+ widget to your WebHelp Responsive output using an Oxygen Publishing Template (on page 1892), follow this procedure:

1. Go to the Google Developers website.
2. Fill in the displayed form. The preview area on the right side displays the code and a preview of the widget.
3. Copy the code snippet displayed in the preview area and paste it into a div element inside an XML file called google-plus-button.xml. Make sure that the content of the file is well-formed. The content of the XML file should look like this:

```xml
<div id="google-plus">
  <!-- Place this tag in your head or just before your close body tag. -->
  <script src="https://apis.google.com/js/platform.js" async defer></script>
  <!-- Place this tag where you want the +1 button to render. -->
  <div class="g-plusone" data-annotation="inline" data-width="300"></div>
</div>
```
4. Open the template descriptor file (on page 1895) associated with your publishing template.
5. Use one of the parameters that begin with webhelp.fragment (on page 1902) in the html-fragments section of the descriptor file. Set the value of that parameter to reference the google-plus-button.xml file that you created earlier.

```xml
<publishing-template>
  ...
  <webhelp>
    ...
    <html-fragments>
      <fragment
        file="HTML-fragments/google-plus-button.xml"
        placeholder="webhelp.fragment.after.toc_or_tiles"/>
    </html-fragments>
  </webhelp>
</publishing-template>
```
6. Open the DITA Map WebHelp Responsive transformation scenario.
7. Click the Choose Custom Publishing Template link and select your template.
8. Click OK to save the changes to the transformation scenario.
9. Run the transformation scenario.

**Using a Transformation Scenario in Oxygen XML Editor/Author**

To add a Google+ widget to your WebHelp Responsive output using a transformation scenario from within Oxygen XML Editor/Author, follow this procedure:

1. Go to the Google Developers website.
2. Fill in the displayed form. The preview area on the right side displays the code and a preview of the widget.
3. Copy the code snippet displayed in the preview area and paste it into a div element inside an XML file called google-plus-button.xml. Make sure that the content of the file is well-formed. The content of the XML file should look like this:

```xml
<div id="google-plus">
  <!-- Place this tag in your head or just before your close body tag. -->
  <script src="https://apis.google.com/js/platform.js" async defer></script>
  <!-- Place this tag where you want the +1 button to render. -->
  <div class="g-plusone" data-annotation="inline" data-width="300"></div>
</div>
```
4. Edit the DITA Map WebHelp Responsive transformation scenario and choose a template.
5. Switch to the Parameters tab. Depending on where you want to display the button, edit one of the parameters that begin with webhelp.fragment (on page 1902). Set that parameter to reference the google-plus-button.xml file that you created earlier.
6. Click Ok and run the transformation scenario.

**How to Add Tweet Button in WebHelp Responsive Output**

It is possible to integrate Twitter into your WebHelp Responsive output and you can specify where you want the widget to appear in your WebHelp page.

**Using a Publishing Template**

To add a Twitter Tweet widget to your WebHelp Responsive output using an Oxygen Publishing Template (on page 1892), follow this procedure:

1. Go to the Tweet button generator page.
2. Fill in the displayed form. The Preview and code area displays the code that you will need.
3. Copy the code snippet displayed in the Preview and code area and paste it into a div element inside an XML file called tweet-button.xml. Make sure you follow these rules:
The file must be well-formed.

- The code for each `<script>` element must be included in an XML comment.
- The start and end tags for the XML comment must be on a separate line.

The content of the XML file should look like this:

```xml
<div id="twitter">
  <a href="https://twitter.com/share" class="twitter-share-button">Tweet</a>
  <script>
    <!--
    !function (d, s, id) {
      var js, fjs = d.getElementsByTagName(s)[0], p = /^http:/test(d.location) ? 'http': 'https';
      if (! d.getElementById(id)) {
        js = d.createElement(s);
        js.id = id;
        js.src = p + '://platform.twitter.com/widgets.js';
        fjs.parentNode.insertBefore(js, fjs);
      }
    }
    (document, 'script', 'twitter-wjs');
    -->
  </script>
</div>
```

4. Open the template descriptor file (on page 1895) associated with your publishing template.
5. Use one of the parameters that begin with `webhelp.fragment` (on page 1902) in the `html-fragments` section of the descriptor file. Set the value of that parameter to reference the `tweet-button.xml` file that you created earlier.

```xml
<publishing-template>
  ...
  <webhelp>
    ...
    <html-fragments>
      <fragment
        file="HTML-fragments/tweet-button.xml"
        placeholder="webhelp.fragment.after.toc_or_tiles"/>
    </html-fragments>
  </webhelp>
</publishing-template>
```

6. Open the DITA Map WebHelp Responsive transformation scenario.
7. Click the **Choose Custom Publishing Template** link and select your template.

8. Click **OK** to save the changes to the transformation scenario.

9. Run the transformation scenario.

**Using a Transformation Scenario in Oxygen XML Editor/Author**

To add a Twitter Tweet widget to your WebHelp Responsive output using a transformation scenario from within **Oxygen XML Editor/Author**, follow this procedure:

1. Go to the **Tweet button generator** page.

2. Fill in the displayed form. The **Preview and code** area displays the code that you will need.

3. Copy the code snippet displayed in the **Preview and code** area and paste it into a **div** element inside an XML file called `tweet-button.xml`. Make sure you follow these rules:
   - The file must be well-formed.
   - The code for each **script** element must be included in an XML comment.
   - The start and end tags for the XML comment must be on a separate line.

   The content of the XML file should look like this:

   ```xml
   <div id="twitter">
   <a href="https://twitter.com/share" class="twitter-share-button">Tweet</a>
   <script>
     !function (d, s, id) {
       var js, fjs = d.getElementsByTagName(s)[0], p = /^http:/.test(d.location) ? 'http' : 'https';
       if (!d.getElementById(id)) {
         js = d.createElement(s);
         js.id = id;
         js.src = p + '://platform.twitter.com/widgets.js';
         fjs.parentNode.insertBefore(js, fjs);
       }
     }
     (document,
     'script', 'twitter-wjs');
   -->
   </script>
   </div>
   ```

   4. Edit the **DITA Map WebHelp Responsive** transformation scenario and choose a **template**.
5. Switch to the **Parameters** tab. Depending on where you want to display the button, edit one of the parameters that begin with `webhelp.fragment` (on page 1902). Set that parameter to reference the `tweet-button.xml` file that you created earlier.

6. Click **Ok** and run the transformation scenario.

**How to Integrate Google Analytics in WebHelp Responsive Output**

You can use *Google Analytics* to track and report site data for your *WebHelp Responsive* output.

**Using a Publishing Template**

To integrate *Google Analytics* into your WebHelp Responsive output using an *Oxygen Publishing Template* (on page 1892), follow this procedure:

1. Create a new *Google Analytics account* (if you do not already have one) and log on.
2. Choose the Analytics solution that best fits the needs of your website.
3. Follow the on-screen instructions to obtain a **Tracking Code** that contains your Tracking ID. A Tracking Code looks like this:

```xml
<script>
(function(i,s,o,g,r,a,m){i['GoogleAnalyticsObject']=r;i[r]=i[r]||function()
(i[r].q=i[r].q||[]).push(arguments),i[r].l=1*new Date();a=s.createElement(o),
m=s.getElementsByTagName(o)[0];a.async=1;a.src=g;m.parentNode.insertBefore(a,m)
}(window,document,'script','//www.google-analytics.com/analytics.js','ga'));

ga('create','UA-XXXXXXXX-X','auto');
ga('send','pageview');
</script>
```

4. Save the Tracking Code (obtained in the previous step) in a new XML file called `googleAnalytics.xml`. Note that the file should only contain the tracking code.

5. Open the **template descriptor file** (on page 1895) associated with your publishing template.

6. Use the `webhelp.fragment.after.body` parameter (on page 2005) in the **html-fragments** section of the descriptor file. Set the value of that parameter to reference the `googleAnalytics.xml` file that you created earlier. The content of this file will be copied at the end of all generated output pages, right before the ending `<body>` element. This ensures that the page is loaded before the Google Analytics servers are contacted, thus reducing page loading time.

```xml
<publishing-template>
...
<webhelp>
...
```
7. Open the DITA Map WebHelp Responsive transformation scenario.
8. Click the Choose Custom Publishing Template link and select your template.
9. Click OK to save the changes to the transformation scenario.
10. Run the transformation scenario.

Using a Transformation Scenario in Oxygen XML Editor/Author

To integrate Google Analytics into your WebHelp Responsive output using a transformation scenario from within Oxygen XML Editor/Author, follow this procedure:

1. Create a new Google Analytics account (if you do not already have one) and log on.
2. Choose the Analytics solution that best fits the needs of your website.
3. Follow the on-screen instructions to obtain a Tracking Code that contains your Tracking ID. A Tracking Code looks like this:

```html
<script>
(function(i,s,o,g,r,a,m){i['GoogleAnalyticsObject']=r;i[r]=i[r]|||
function(){
(i[r].q=i[r].q||[]).push(arguments)},i[r].l=1*
new Date();a=s.createElement(o),
m=s.getElementsByTagName(o)[0];a.async=1;a.src=g;m.parentNode.insertBefore(a,m)
}(window,document,'script','//www.google-analytics.com/analytics.js','ga'));

ga('create', 'UA-XXXXXXXX-X', 'auto');
ga('send', 'pageview');
</script>
```
4. Save the Tracking Code (obtained in the previous step) in a new XML file called googleAnalytics.xml. Note that the file should only contain the tracking code.
5. Edit the DITA Map WebHelp Responsive transformation scenario and choose a template.
6. Switch to the Parameters tab. Edit the webhelp.fragment.after.body parameter (on page 2005) and set it to reference the googleAnalytics.xml file that you created earlier. The content of this file will be copied at the end of all generated output pages, right before the ending <body> element. This ensures that the page is loaded before the Google Analytics servers are contacted, thus reducing page loading time.
7. Click Ok and run the transformation scenario.
How to Integrate Google Search in WebHelp Responsive Output

It is possible to integrate the Google Search Engine into your WebHelp Responsive output and you can specify where you want the results to appear in your WebHelp page.

Using a Publishing Template

To integrate the Google Search Engine into your WebHelp Responsive output using an Oxygen Publishing Template (on page 1892), follow this procedure:

1. Go to the Google Custom Search Engine page using your Google account.
2. Select the Create a custom search engine button.
3. Follow the on-screen instructions to create a search engine for your site. At the end of this process you should obtain a code snippet that looks like this:

```html
<script>
(function() {
  var cx = '00088821088975888983:8mn4x_mf-yg';
  var gsc = document.createElement('script');
  gsc.type = 'text/javascript';
  gsc.async = true;
  var s = document.getElementsByTagName('script')[0];
  s.parentNode.insertBefore(gsc, s);
})();
</script>
```
4. Save the script into a well-formed HTML file called googlecse.html.
5. Open the template descriptor file (on page 1895) associated with your publishing template and add the `webhelp.google.search.script` parameter in the parameters section with its value set to reference the googlecse.html file that you created earlier.

```xml
<publishing-template>
...
</publishing-template>

<webhelp>
...
</webhelp>

<parameters>
  ...
  <parameter name="webhelp.google.search.script" value="resources/googlecse.html"/>
  ...
</parameters>
```
6. You can also use the `webhelp.google.search.results` parameter to choose where to display the search results.
   a. Create an HTML file with the following content:
      ```html
      <div class="gcse-searchresults-only" data-autoSearchOnLoad="true" data-queryParameterName="searchQuery"></div>  
      ```
      (you must use the HTML5 version for the GCSE). For more information about other supported attributes, see Google Custom Search: Supported Attributes.
   b. Set the value of the `webhelp.google.search.results` parameter to the file path of the file you just created. If this parameter is not specified, the following code is used:
      ```html
      <div class="gcse-searchresults-only" data-autoSearchOnLoad="true" data-queryParameterName="searchQuery"></div>  
      ```

7. Open the DITA Map WebHelp Responsive transformation scenario.
8. Click the Choose Custom Publishing Template link and select your template.
9. Click OK to save the changes to the transformation scenario.
10. Run the transformation scenario.

Using a Transformation Scenario in Oxygen XML Editor/Author

To integrate the Google Search Engine into your WebHelp Responsive output using a transformation scenario from within Oxygen XML Editor/Author, follow this procedure:

1. Go to the Google Custom Search Engine page using your Google account.
2. Select the Create a custom search engine button.
3. Follow the on-screen instructions to create a search engine for your site. At the end of this process you should obtain a code snippet that looks like this:

   ```javascript
   (function() {
     var cx = '00088210889775888983:8mn4x_mf-yg';
     var gcse = document.createElement('script');
     gcse.type = 'text/javascript';
     gcse.async = true;
     var s = document.getElementsByTagName('script')[0];
     s.parentNode.insertBefore(gcse, s);
   })();
   ```
4. Save the script into a well-formed HTML file called `googlecse.html`

5. Edit the DITA Map WebHelp Responsive transformation scenario and choose a template.

6. Switch to the **Parameters** tab and edit the `webhelp.google.search.script` parameter to reference the `googlecse.html` file that you created earlier.

7. You can also use the `webhelp.google.search.results` parameter to choose where to display the search results.
   a. Create an HTML file with the following content:
      ```html
      <div class="gcse-searchresults-only" data-autoSearchOnLoad="true" data-queryParameterName="searchQuery"></div>
      ```
      (you must use the [HTML5 version for the GCSE](https://developers.google.com/custom-search/v1/overview)). For more information about other supported attributes, see [Google Custom Search: Supported Attributes](https://developers.google.com/custom-search/v1/overview).
   b. Set the value of the `webhelp.google.search.results` parameter to the file path of the file you just created. If this parameter is not specified, the following code is used:
      ```html
      <div class="gcse-searchresults-only" data-autoSearchOnLoad="true" data-queryParameterName="searchQuery"></div>
      ```

8. Click **Ok** and run the transformation scenario.

**XSLT Extensions for WebHelp Responsive Transformations**

Since WebHelp Responsive output is primarily obtained by running XSLT transformations over the DITA input files, one customization method would be to override the default XSLT templates that are used by the WebHelp Responsive transformations.

There are two methods available to override the XSLT stylesheets implied by the WebHelp Responsive transformation.


  **Note**: Use this method if you want to affect only the transformations that use this publishing template.

- Use **XSLT-import extension points** from a DITA-OT extension plugin.

  **Note**: This method will affect all the outputs generated with the WebHelp system.

**Related Information:**


**How to Use XSLT Extension Points from a Publishing Template**

Use Case 1: Add Copyright Information Extracted from a DITA Bookmap

Suppose you want to customize the WebHelp Responsive main page by adding information about the legal rights associated with the book in the footer (for example, copyright dates and owner). This information is specified in the bookmap:

```xml
<bookrights>
  <copyrfirst>
    <year>2002</year>
  </copyrfirst>
  <copyrlast>
    <year>2017</year>
  </copyrlast>
  <bookowner>
    <organization>SyncRO Soft SRL</organization>
  </bookowner>
</bookrights>
```

Figure 635. Example: Copyright information added in the WebHelp footer

The XSLT stylesheet that generates the main page is located in: $DITA-CT-DIR\plugins\com.oxygenxml.webhelp.responsive\xsl\mainFiles\createMainPage.xsl. This XSLT stylesheet declares the `copy_template` mode that processes the main page template (on page 1910) to expand its components. The main page template declares a component for the footer section that looks like this:

```html
<div class="footer-container text-center">
  <whc:include_html href="${webhelp.fragment.footer}"/>
</div>
```

In the following example, the extension stylesheet will add a template that matches this component. It applies the default processing and adds the copyright information at the end.

```xml
<xsl:template match="*:div[contains(@class, 'footer-container')]" mode="copy_template">
  <!-- Apply the default processing -->
```
To add this functionality using a Oxygen Publishing Template, follow these steps:

1. If you haven't already created a Publishing Template, see Working with Publishing Templates (on page 1935).
2. Link the folder associated with the publishing template to your current project in the **Project** view.
   You should have the `custom_footer_template` folder linked in your project.

3. Using the **Project** view, create an `xslt` folder inside the project root folder.
   You should have the `custom_footer_template/xsl` folder in your project.

4. Create your customization stylesheet (for example, `custom_mainpage.xsl`) in the
   `custom_footer_template/xsl` folder. Edit it to override the template that produces the footer section:

   ```xml
   <xsl:template match="*:div[contains(@class, 'Footer-container')]" mode="copy_template">
     <!-- Apply the default processing -->
     <xsl:next-match/>
   </xsl:template>

   <!-- Add a div containing the copyright information -->
   <div class="copyright_info">
     <xsl:choose>
       <!-- Adds the start-end years if they are defined -->
       <xsl:when test="exists($toc/*:topicmeta/*:bookrights/*:copyrfirst) and exists($toc/*:topicmeta/*:bookrights/*:copyrlast)">
         <span class="copyright_years">
           ©<xsl:value-of select="$toc/*:topicmeta/*:bookrights/*:copyrfirst"/>
           -<xsl:value-of select="$toc/*:topicmeta/*:bookrights/*:copyrlast"/>
         </span>
       </xsl:when>
       <!-- Adds only the first year if last is not defined. -->
       <xsl:when test="exists($toc/*:topicmeta/*:bookrights/*:copyrfirst)">
         <span class="copyright_years">
           ©<xsl:value-of select="$toc/*:topicmeta/*:bookrights/*:copyrfirst"/>
         </span>
       </xsl:when>
     </xsl:choose>

     <!-- Adds the bookowner organization if defined -->
     <xsl:if test="exists($toc/*:topicmeta/*:bookrights/*:bookowner/*:organization)">
       <span class="organization">
         <xsl:value-of select="$toc/*:topicmeta/*:bookrights/*:bookowner/*:organization"/>
       </span>
     </xsl:if>
   </div>
   ```
5. Open the template descriptor file *(on page 1895)* associated with your publishing template and set the XSLT stylesheet created in previous step with the `com.oxygenxml.webhelp.xsl.createMainPage` XSLT extension point.

6. Open the DITA Map WebHelp Responsive transformation scenario.

7. Click the Choose Custom Publishing Template link and select your template.

8. Click OK to save the changes to the transformation scenario.

9. Run the transformation scenario.

**Use Case 2: Add generation time in the output footer**

Another possible customization for the main page is to add the generation time in its footer. A transformation parameter is used to control whether or not this customization is active.

**Figure 636. Generation time added in the WebHelp footer**

To add this functionality, follow these steps:
1. In the customization stylesheet that you just created (for example, `custom_mainpage.xsl`), modify the template by adding the following XSLT code at the end.

```xml
<xsl:if test="oxyf:getParameter('webhelp.footer.add.generation.time') = 'yes'">
  <div class="generation_time">
    Generation date: <xsl:value-of select="format-dateTime(current-dateTime(), '[h1]:[m01] [P] on [M01]/[D01]/[Y0001].')"/>
  </div>
</xsl:if>

**Note:** You can read the value of a WebHelp transformation parameter from your XSLT extension stylesheets by using the `getParameter(param.name)` function from the `http://www.oxygenxml.com/functions` namespace.

2. Open the template descriptor file (on page 1895) associated with your publishing template and set the `webhelp.footer.add.generation.time` parameter to the default value.

```xml
<publishing-template>
  ...
  <webhelp>
    ...
    <parameters>
      <parameter
        name="webhelp.footer.add.generation.time"
        value="yes"/>
    </parameters>
  </webhelp>
  ...
</publishing-template>
```

3. Open the DITA Map WebHelp Responsive transformation scenario.

4. In the Parameters tab, you can change the value of the `webhelp.footer.add.generation.time` parameter.

5. Click OK to save the changes to the transformation scenario.

6. Run the transformation scenario.

**How to Use XSLT Extension Points from a DITA-OT Plugin**

In this example, the main page footer is modified by adding copyright information extracted from the DITA bookmap or by adding the output generation time. The first use-case uses an XSLT-Import extension point while the second uses an XSLT-Parameter extension point.
**Note:** This customization is available as a GitHub project at: https://github.com/oxygenxml/com.oxygenxml.webhelp.responsive.custom.footer.

**Use Case 1: WebHelp XSLT-Import extension point to add copyright information extracted from a DITA Bookmap**

Suppose you want to customize the WebHelp Responsive main page by adding information about the legal rights associated with the book in the footer (for example, copyright dates and owner). This information is specified in the bookmap:

```xml
<bookrights>
  <copyrfirst>
    <year>2002</year>
  </copyrfirst>
  <copyrlast>
    <year>2017</year>
  </copyrlast>
  <bookowner>
    <organization>SyncRO Soft SRL</organization>
  </bookowner>
</bookrights>
```

Figure 637. Example: Copyright information added in the WebHelp footer

The XSLT stylesheet that generates the main page is located in: DITA-OT-DIR\plugins\com.oxygenxml.webhelp.responsive\xsl\mainFiles\createMainPage.xsl. This XSLT stylesheet declares the `copy_template` mode that processes the main page template to expand its components. The main page template (on page 1910) declares a component for the footer section that looks like this:

```xml
<div class="footer-container text-center">
  <whc:include_html href="${webhelp.fragment.footer}"/>
</div>
```
In the following example, the extension stylesheet will add a template that matches this component. It applies the default processing and adds the copyright information at the end.

```xml
<xsl:template match="*:div[contains(@class, 'footer-container')]" mode="copy_template">
  <!-- Apply the default processing -->
  <xsl:next-match/>

  <!-- Add a div containing the copyright information -->
  <div class="copyright_info">
    <xsl:choose>
      <!-- Adds the start-end years if they are defined -->
      <xsl:when test="exists($toc/*:topicmeta/*:bookrights/*:copyrfirst) and exists($toc/*:topicmeta/*:bookrights/*:copyrlast)">
        <span class="copyright_years">
          ©<xsl:value-of select="$toc/*:topicmeta/*:bookrights/*:copyrfirst"/>
          -<xsl:value-of select="$toc/*:topicmeta/*:bookrights/*:copyrlast"/>
        </span>
      </xsl:when>
      <!-- Adds only the first year if last is not defined. -->
      <xsl:when test="exists($toc/*:topicmeta/*:bookrights/*:copyrfirst)">
        <span class="copyright_years">
          ©<xsl:value-of select="$toc/*:topicmeta/*:bookrights/*:copyrfirst"/>
        </span>
      </xsl:when>
    </xsl:choose>

    <!-- Adds only the first year if last is not defined. -->
    <xsl:if test="exists($toc/*:topicmeta/*:bookrights/*:bookowner/*:organization)">
      <span class="organization">
        <xsl:if test="exists($toc/*:topicmeta/*:bookrights/*:bookowner/*:organization)">
          <xsl:comment>
            . All rights reserved.</xsl:comment>
        </xsl:if>
      </span>
    </xsl:if>
  </div>
</xsl:template>
```
You can implement this functionality with a WebHelp extension plugin that uses the `com.oxygenxml.webhelp.xsl.createMainPage` extension point (on page 2012). This extension point allows you to specify a customization stylesheet that will override the template described above.

To add this functionality as a DITA-OT plugin, follow these steps:

1. In the `DITA-OT-DIR\plugins\` folder, create a folder for this plugin (for example, `com.oxygenxml.webhelp.responsive.custom.footer`).
2. Create a `plugin.xml` file (in the folder you created in step 1) that specifies the extension point and your customization stylesheet. For example:

   ```xml
   <plugin id="com.oxygenxml.webhelp.responsive.custom.footer">
     <feature extension="com.oxygenxml.webhelp.xsl.createMainPage">
       <file>custom_mainpage.xsl</file>
     </feature>
   </plugin>
   ```

3. Create your customization stylesheet (for example, `custom_mainpage.xsl`), and edit it to override the template that produces the footer section:

   ```xml
   <xsl:template match="*:div[contains(@class, 'footer-container')]" mode="copy_template">
     <!-- Apply the default processing -->
     <xsl:next-match/>
   </xsl:template>

   <!-- Add a div containing the copyright information -->
   <div class="copyright_info">
     <xsl:choose>
       <!-- Adds the start-end years if they are defined -->
       <xsl:when test="exists($toc/*:topicmeta/*:bookrights/*:copyrfirst) and exists($toc/*:topicmeta/*:bookrights/*:copyrlast)">
         <span class="copyright_years">
           ©<xsl:value-of select="$toc/*:topicmeta/*:bookrights/*:copyrfirst"/>
           -<xsl:value-of select="$toc/*:topicmeta/*:bookrights/*:copyrlast"/>
         </span>
       </xsl:when>
       <!-- Adds only the first year if last is not defined. -->
       <xsl:when test="exists($toc/*:topicmeta/*:bookrights/*:copyrfirst)">
         <span class="copyright_years">
           ©<xsl:value-of select="$toc/*:topicmeta/*:bookrights/*:copyrfirst"/>
         </span>
       </xsl:when>
     </xsl:choose>
   </div>
   ```
4. Use the Run DITA-OT Integrator transformation scenario *(on page 1665)* found in the DITA Map section in the Configure Transformation Scenario(s) dialog box *(on page 1762)*.

5. Run a DITA Map WebHelp Responsive transformation scenario to obtain the customized side TOC.

**Use-Case 2: WebHelp XSLT-Parameter extension point to control if generation time is displayed in the output**

Another possible customization for the main page is to add the generation time in its footer. You can use an XSLT-Parameter extension point to control whether or note this customization is active. In this case, you can use the com.oxygenxml.webhelp.xsl.createMainPage.param extension point *(on page 2012)*.

Figure 638. Generation time added in the WebHelp footer

To add this functionality, follow these steps:

1. Create a DITA-OT plugin structure by following the first 3 steps in the procedure above *(on page 1993)*.

2. In the customization stylesheet that you just created (for example, custom_mainpage.xsl), `declare webhelp.footer.add.generation.time` as a global parameter and modify the template by adding the following XSLT code at the end.
3. Edit the plugin.xml file to specify the com.oxygenxml.webhelp.xsl.createMainPage.param extension point and a custom parameter file by adding the following line:

```xml
<feature extension="com.oxygenxml.webhelp.xsl.createMainPage.param" file="params.xml"/>
```

4. Create a custom parameter file (for example, params.xml). It should look like this:

```xml
<dummy>
  <param name="webhelp.footer.add.generation.time" expression="${webhelp.footer.add.generation.time}" if="webhelp.footer.add.generation.time"/>
</dummy>
```

5. Use the Run DITA-OT Integrator transformation scenario (on page 1665) found in the DITA Map section in the Configure Transformation Scenario(s) dialog box (on page 1762).

6. Edit a DITA Map WebHelp Responsive transformation scenario and in the Parameters tab (on page 3205), specify the desired value (yes or no) for your custom parameter (webhelp.footer.add.generation.time).

7. Run the transformation scenario.

Related Information:

- [DITA-OT] XSLT-Import Extension Points
- [DITA-OT] XSLT-Parameter Extension Points

Miscellaneous Customization Topics

This section contains miscellaneous topics about how to customize the WebHelp Responsive output.
How to Add an Edit Link to Launch Oxygen XML Web Author

You can embed *Edit* links in the DITA WebHelp Responsive output that will automatically launch a particular document in Oxygen XML Web Author. A reviewer can then simply click the link and they will be redirected to the Oxygen XML Web Author editing page with that particular file open and editable.

**Using a Publishing Template**

To embed an *Edit* link in the DITA Map WebHelp Responsive output using an Oxygen Publishing Template *(on page 1892)*, follow this procedure:

1. If you haven't already created a Publishing Template, see Working with Publishing Templates *(on page 1935)*.
2. Open the template descriptor file *(on page 1895)* associated with your publishing template and add the following parameters with their values set to the URLs:
   - `editlink.remote.ditamap.url` - The URL of the DITA Map suitable for opening in Oxygen XML Web Author.
   - `editlink.web.author.url` - The URL of the Oxygen XML Web Author installation.

   ```xml
   <publishing-template>
     ... 
     <webhelp>
       ... 
       <parameters>
         <parameter name="editlink.remote.ditamap.url" value="webdav-https://dav.box.com/dav/my.ditamap"/>
         <parameter name="editlink.web.author.url" value="https://www.oxygenxml.com/webauthor.html"/>
       </parameters>
     </webhelp>
   </publishing-template>
   ```

3. Open the DITA Map WebHelp Responsive transformation scenario.
4. Click the Choose Custom Publishing Template link and select your template.
5. Click OK to save the changes to the transformation scenario.
6. Run the transformation scenario.

**Result:** In the WebHelp output, all topics will have an *Edit* link to the right side of the title and clicking the link will launch that particular document in Oxygen XML Web Author.

For example:

- **Windows:**
Using a Transformation Scenario in Oxygen XML Editor/Author

To embed an Edit link in the DITA Map WebHelp Responsive output using a transformation scenario from within Oxygen XML Editor/Author, follow this procedure:

1. Edit a DITA Map WebHelp Responsive transformation scenario and open the Parameters tab.
2. Set values for the following parameters:
   - `editlink.remote.ditamap.url` - The URL of the DITA Map suitable for opening in Oxygen XML Web Author.
   - `editlink.web.author.url` - The URL of the Oxygen XML Web Author installation.
3. Run the transformation scenario.

**Result:** In the WebHelp output, all topics will have an Edit link to the right side of the title and clicking the link will launch that particular document in Oxygen XML Web Author.


Related Information:

- Web Author Customization Guide: Embedding an Edit Link that will Launch Web Author

How to Flag DITA Content in WebHelp Output

Flagging content in WebHelp output involves defining a set of images that will be used for marking content across your information set.

To flag DITA content, you need to create a filter file that defines properties that will be applied on elements to be flagged. Generally, flagging is supported for block elements (on page 3280) (such as paragraphs), but not for phrase-level elements within a paragraph. This ensures that the images that will flag the content are easily scanned by the reader, instead of being buried in the text.
Using a Publishing Template

To flag content in DITA Map to WebHelp output using an Oxygen Publishing Template (on page 1892), follow this procedure:

1. Create a DITA filter file (DITAVAL) and add it in a directory of your choice (for example, named myFile.ditaval.
2. Define the property for the elements you want to be flagged. For example, if you want to flag any element that has the audience attribute set to programmer, the content of the DITAVAL file should look like this:

   ```xml
   <?xml version="1.0" encoding="UTF-8"?>
   <val>
     <prop att="audience" val="programmer" action="flag"
       img="D:\resource\delta.gif" alt="sample alt text"/>
   </val>
   ```

   Note that for an element to be flagged, at least one attribute-value pair needs to have a property declared in the DITAVAL file.
3. Open the template descriptor file (on page 1895) associated with your publishing template and add the args.filter parameter in the parameters section with its value set to the path of the DITAVAL file you created.

   ```xml
   <publishing-template>
     ...
     <webhelp>
       ...
       <parameters>
         <parameter name="args.filter" value="resources/myFile.ditaval"/>
       </parameters>
     </webhelp>
   </publishing-template>
   ```

4. Open the DITA Map WebHelp Responsive transformation scenario.
5. Click the Choose Custom Publishing Template link and select your template.
6. Click OK to save the changes to the transformation scenario.
7. Run the transformation scenario.

Using a Transformation Scenario in Oxygen XML Editor/Author

To flag content in the DITA Map to WebHelp output using a transformation scenario from within Oxygen XML Editor/Author, follow this procedure:
1. Create a DITA filter file (DITAVAL) and add it in a directory of your choice (for example, named `myFile.ditaval`).

2. Define the property for the elements you want to be flagged. For example, if you want to flag any element that has the `audience` attribute set to `programmer`, the content of the DITAVAL file should look like this:

```xml
<?xml version="1.0" encoding="UTF-8"?>
<val>
  <prop att="audience" val="programmer" action="flag" img="D:\resource\delta.gif" alt="sample alt text"/>
</val>
```

Note that for an element to be flagged, at least one attribute-value pair needs to have a property declared in the DITAVAL file.

3. Edit a DITA Map to WebHelp transformation scenario.

4. Specify the DITAVAL file in the Filters tab (with the Use DITAVAL File option).

5. Run the transformation scenario.

Related Information:

- Filtering Profiling Values with a DITAVAL File (on page 3248)

How to Deploy the Output on a SharePoint Site

Since WebHelp output must be published locally, on the same machine where the WebHelp process is running, to publish your files directly to a SharePoint library you need to map a network drive to connect to SharePoint and change your file extensions to `.aspx`, as described in the steps below.

Using a Script Outside of Oxygen XML Editor/Author

To publish WebHelp Responsive output on a SharePoint site using an Oxygen Publishing Template (on page 1892), follow this procedure:

1. Map a network drive to connect to your SharePoint library. For more information, see: https://support.microsoft.com/en-us/kb/2616712.

2. To allow browsers to open your published files (rather than downloading them), you need to change the file extensions from `.html` to `.aspx`.

3. Open the template descriptor file (on page 1895) associated with your publishing template and add the `args.outext` parameter in the parameters section with its value set to `.aspx`.

```xml
<publishing-template>
  <parameter name="args.outext" value=".aspx"/>
</publishing-template>
```
4. Open the DITA Map WebHelp Responsive transformation scenario.
5. Click the Choose Custom Publishing Template link and select your template.
6. Click OK to save the changes to the transformation scenario.
7. Run the transformation scenario.

Using a Transformation Scenario in Oxygen XML Editor/Author

To publish WebHelp Responsive output on a SharePoint site using a transformation scenario from within Oxygen XML Editor/Author, follow this procedure:

1. Map a network drive to connect to your SharePoint library. For more information, see: https://support.microsoft.com/en-us/kb/2616712.
2. To allow browsers to open your published files (rather than downloading them), you need to change the file extensions from .html to .aspx. Fortunately, this can be done in the transformation.
   a. Edit the WebHelp transformation scenario and open the Parameters tab.
   b. Set the args.outext parameter to .aspx.
   c. Run the transformation scenario.

WebHelp Responsive Transformation Parameters

In addition to the common DITA-OT transformation parameters and the HTML-based Output Parameters, there are numerous other supported parameters that are specific to the WebHelp Responsive output.

Publishing Template Parameters

webhelp.publishing.template

Specifies the path to the ZIP archive (or root folder) that contains your custom WebHelp Responsive template.

Note: The built-in templates are stored in the DITA-OT-DIR/plugins/com.oxygenxml.webhelp.responsive/templates folder.
**Note:** Relative paths are resolved based on the current working directory.

**webhelp.publishing.template.descriptor**

Specifies the name of the descriptor to be loaded from the WebHelp Responsive template package. If it is not specified, the first encountered descriptor will be automatically loaded.

### Custom Resource Parameters

**webhelp.custom.resources**

The file path to a directory that contains resources files. All files from this directory will be copied to the root of the WebHelp output.

**webhelp.favicon**

The file path that points to an image to be used as a favicon in the WebHelp output.

**webhelp.logo.image.target.url**

Specifies a target URL that is set on the logo image. When you click the logo image, you will be redirected to this address.

**webhelp.logo.image**

Specifies a path to an image displayed as a logo in the left side of the output header.

**webhelp.logo.image.alt**

Specifies a value that will be set in the alt attribute of the logo image. If the parameter is not specified, the alt attribute will contain the publication title. Note that this parameter makes sense only in conjunction with the webhelp.logo.image parameter.

### Feedback-Enabled Parameters

**webhelp.product.id** *(available only for Feedback-enabled systems)*

This parameter specifies a short name for the documentation target, or product (for example, mobile-phone-user-guide, hvac-installation-guide).

**Note:** You can deploy documentation for multiple products on the same server.

**Restriction:** The following characters are not allowed in the value of this parameter: `< > / ' { } = ; * % + & .`

**webhelp.product.version** *(available only for Feedback-enabled systems)*
Specifies the documentation version number (for example, 1.0, 2.5, etc.). New user comments are bound to this version.

Note: Multiple documentation versions can be deployed on the same server.

Restriction: The following characters are not allowed in the value of this parameter:

\< > / \ ' ( ) { } = ; * % + & .

HTML Fragment Extension Parameters

**webhelp.fragment.after.body**

In the generated output it displays a given XHTML fragment after the page body. The value of the parameter can be either a **well-formed** XHTML fragment or a path to a file that contains a **well-formed** XHTML fragment.

**webhelp.fragment.after.logo_and_title**

In the generated output it displays a given XHTML fragment after the logo and title. The value of the parameter can be either a **well-formed** XHTML fragment or a path to a file that contains a **well-formed** XHTML fragment.

**webhelp.fragment.after.main.page.search**

In the generated output it displays a given XHTML fragment after the search field. The value of the parameter can be either a **well-formed** XHTML fragment or a path to a file that contains a **well-formed** XHTML fragment.

**webhelp.fragment.after.toc_or_tiles**

In the generated output it displays a given XHTML fragment after the table of contents or tiles in the main page. The value of the parameter can be either a **well-formed** XHTML fragment or a path to a file that contains a **well-formed** XHTML fragment.

**webhelp.fragment.after.top_menu**

In the generated output it displays a given XHTML fragment after the top menu. The value of the parameter can be either a **well-formed** XHTML fragment or a path to a file that contains a **well-formed** XHTML fragment.

**webhelp.fragment.before.body**

In the generated output it displays a given XHTML fragment before the page body. The value of the parameter can be either a **well-formed** XHTML fragment or a path to a file that contains a **well-formed** XHTML fragment.

**webhelp.fragment.before.logo_and_title**
In the generated output it displays a given XHTML fragment before the logo and title. The value of the parameter can be either a well-formed XHTML fragment or a path to a file that contains a well-formed XHTML fragment.

**webhelp.fragment.before.main.page.search**

In the generated output it displays a given XHTML fragment before the search field. The value of the parameter can be either a well-formed XHTML fragment or a path to a file that contains a well-formed XHTML fragment.

**webhelp.fragment.before.toc_or_tiles**

In the generated output it displays a given XHTML fragment before the table of contents or tiles in the main page. The value of the parameter can be either a well-formed XHTML fragment or a path to a file that contains a well-formed XHTML fragment.

**webhelp.fragment.before.top_menu**

In the generated output it displays a given XHTML fragment before the top menu. The value of the parameter can be either a well-formed XHTML fragment or a path to a file that contains a well-formed XHTML fragment.

**webhelp.fragment.footer**

In the generated output it displays a given XHTML fragment as the page footer. The value of the parameter can be either a well-formed XHTML fragment or a path to a file that contains a well-formed XHTML fragment.

**webhelp.fragment.head**

In the generated output it inserts a given XHTML fragment in the `<head>` element. The value of the parameter can be either a well-formed XHTML fragment or a path to a file that contains a well-formed XHTML fragment.

**webhelp.fragment.welcome**

In the generated output it displays a given XHTML fragment as a welcome message (or title). The value of the parameter can be either a well-formed XHTML fragment or a path to a file that contains a well-formed XHTML fragment.

**Output Component Parameters**

**webhelp.default.collection.type.sequence**

Specifies if the sequence value will be used by default when the collection-type attribute is not specified. This option is helpful if you want to have Next and Previous navigational buttons generated for all HTML pages. Allowed values are no (default) and yes.

**webhelp.merge.nested.topics.related.links**
Specifies if the related links from nested topics will be merged with the links in the parent topic. Thus the links will be moved from the topic content to the related links component and all of the links from the same group (for example, Related Tasks, Related References, Related Information) are merged into a single group. The default value is yes.

webhelp.show.breadcrumb

Specifies if the breadcrumb component will be presented in the output. The default value is yes.

webhelp.show.changes.and.comments

When set to yes, user comments, replies to comments, and tracked changes are published in the WebHelp output. The default value is no.

webhelp.show.child.links

Specifies if child links will be generated in the output for all topics that have subtopics. The default value is no.

webhelp.show.full.size.image

Specifies if responsive images that are displayed with a smaller dimension than their original size can be clicked to see an enlarged version of the image. The default value is yes.

webhelp.show.indexterms.link

Specifies if an icon that links to the index will be presented in the output. The default value is yes.

webhelp.show.main.page.tiles

Specifies if the tiles component will be presented in the main page of the output. For a tree style layout, this parameter should be set to no.

webhelp.show.main.page.toc

Specifies if the table of contents will be presented in the main page of the output. The default value is yes.

webhelp.show.navigation.links

Specifies if navigation links will be presented in the output. The default value is yes.

webhelp.show.print.link

Specifies if a print link or icon will be presented within each topic in the output. The default value is yes.

webhelp.show.publication.toc
Specifies if a table of contents will be presented on the left side of each topic in the output. The default value is yes.

webhelp.show.topic.toc

Specifies if a topic table of contents will be presented on the right side of each topic in the output. This table of contents contains links to each <section> within the current topic that contains an @id attribute and the section corresponding to the current scroll position is highlighted. The default value is yes.

webhelp.show.top.menu

Specifies if a menu will be presented at the topic of the main page in the output. The default value is yes.

webhelp.publication.toc.hide.chunked.topics

Specifies if the table of contents will contain links for chunked topics. The default value is yes.

webhelp.publication.toc.links

Specifies which links will be included in the table of contents. The possible values are:

- **chapter** (default) - The TOC will include links for the current topic, its children, its siblings, and its direct ancestor (including the direct ancestor's siblings), and the parent chapter.
- **topic** - The TOC will only include links for the current topic and its direct children.
- **all** - The TOC will include all links.

webhelp.publication.toc.tooltip.position

By default, if a topic contains a shortdesc element, its content is displayed in a tooltip when the user hovers over its link in the table of contents. This parameter controls whether or not this tooltip is displayed and its position relative to the link. The possible values are:

- **left** (default)
- **right**
- **top**
- **bottom**
- **hidden** - The tooltip will not be displayed.

webhelp.top.menu.depth

Specifies the maximum depth level of the topics that will be included in the top menu. The default value is 3. A value of 0 means that the menu has unlimited depth.

webhelp.topic.collapsible.elements.initial.state
Specifies the initial state of collapsible elements (tables with titles, nested topics with titles, sections with titles, index term groups). The possible values are collapsed or expanded (default value).

**Search-Related Parameters**

**webhelp.search.japanese.dictionary**

The file path of the dictionary that will be used by the *Kuromoji* morphological engine for indexing Japanese content in the WebHelp pages. The encoding for the dictionary must be UTF8.

**webhelp.search.ranking**

If this parameter is set to false then the 5-star rating mechanism is no longer included in the search results that are displayed on the Search tab (default setting is true).

**webhelp.search.stop.words.exclude**

Specifies a list of words that will be excluded from the default list of stop words that are filtered out before the search processing. Use comma separators to specify more than one word (for example: if,for,is).

**webhelp.sitemap.base.url**

Base URL for all the loc elements in the generated sitemap.xml file. The value of a loc element is computed as the relative file path from the href attribute of a topicref element from the DITA map, appended to this base URL value. The loc element is mandatory in sitemap.xml. If you leave this parameter set to its default empty value, then the sitemap.xml file is not generated.

**webhelp.enable.search.autocomplete**

Specifies if the Autocomplete feature is enabled in the WebHelp search text field. The default value is yes.

**webhelp.search.enable.pagination**

Specifies whether or not search results will be displayed on multiple pages. Allowed values are yes or no.

**webhelp.search.page.numberOfItems**

Specifies the number of search results items displayed on each page. This parameter is only used when the webhelp.search.enable.pagination parameter is enabled.

**webhelp.sitemap.change.frequency**

The value of the changefreq element in the generated sitemap.xml file. The changefreq element is optional in sitemap.xml. If you leave this parameter set to its default empty value, then the changefreq element is not added in sitemap.xml.
Allowed values: <empty string> (default), always, hourly, daily, weekly, monthly, yearly, never.

**webhelp.sitemap.priority**

The value of the `priority` element in the generated `sitemap.xml` file. It can be set to any fractional number between 0.0 (least important priority) and 1.0 (most important priority). For example, 0.3, 0.5, or 0.8. The `priority` element is optional in `sitemap.xml`. If you leave this parameter set to its default empty value, then the `priority` element is not added in `sitemap.xml`.

**webhelp.google.search.results**

A file path that specifies the location of a well-formed XHTML file containing the Google Custom Search Engine element `gcse:searchresults-only`. You can use all supported attributes for this element. It is recommend to set the `linkTarget` attribute to `frm` for frameless (iframe) version of WebHelp or to `contentWin` for the frameset version of WebHelp. The default value for this attribute is `_blank` and the search results will be loaded in a new window. If this parameter is not specified, the following code will be used: `<gcse:searchresults-only linkTarget="frm"></gcse:searchresults-only>`

**webhelp.google.search.script**

A file path that specifies the location of a well-formed XHTML file containing the Custom Search Engine script from Google.

**Note:** The `fix.external.refs.com.oxygenxml` parameter is not supported when running the transformation from a command line. This parameter is normally used to specify whether or not the application tries to fix such references in a temporary files folder before the DITA Open Toolkit is invoked on the fixed references.

**Related Information:**

- Generating WebHelp Responsive Output *(on page 1928)*
- Setting DITA-OT Parameters

**WebHelp Responsive XSLT-Import and XSLT-Parameter Extension Points**

XSLT extension points can be used from either from an Oxygen Publishing Template or from a DITA-OT extension plug-in.
Extension Points from an Oxygen Publishing Template

The publishing template allows you to specify one or more XSLT extension points. These extension points will affect only the transformations that use the particular template.

For an example of how to use these extension in a publishing template, see: How to Use a XSLT Extension Point from a Publishing Template *(on page 1988)* topic.

Example:

```xml
<publishing-template>
  ...
  <webhelp>
    ...
    <xslt>
      <extension
          id="com.oxygenxml.webhelp.xsl.createMainPage"
          file="xsl/customMainPage.xsl"/>
    </xslt>
  </webhelp>
  ...
</publishing-template>
```

Extension Points from a DITA-OT Extension Plug-in

The DITA-OT plug-in installer adds an XSLT import statement in the default WebHelp XSLT so that the XSLT stylesheet referenced by the extension point becomes part of the normal build. You can use these extension points to override XSLT processing steps.

Example:

```xml
<plugin id="com.oxygenxml.webhelp.responsive.extension">
  <feature extension="com.oxygenxml.webhelp.responsive.xsl.dita2webhelp"
           file="xsl/fixup.xsl"/>
</plugin>
```

XSLT-Import Extension Points

The following extension points are available:

`com.oxygenxml.webhelp.xsl.dita2webhelp`

Extension point to override the XSLT stylesheet (`dita2webhelp.xsl`) that produces an HTML file for each DITA topic. The location of this file is `DITA-OT_DIR\plugins\com.oxygenxml.webhelp.responsive\xsl\dita2webhelp\dita2webhelp.xsl`
Extension point to override the XSLT stylesheet (`createMainPage.xsl`) that produces the WebHelp Responsive main HTML page (`index.html`). The location of this file is `DITA-OT-DIR/plugins/com.oxygenxml.webhelp.responsive/xsl/mainFiles/createMainPage.xsl`.

Extension point to override the XSLT stylesheets that are used to generate navigation links in the WebHelp Responsive pages. These stylesheets can be found in the `navLinks` folder: `DITA-OT-DIR/plugins/com.oxygenxml.webhelp.responsive/xsl/navLinks`.

Extension point to override the XSLT stylesheet (`createSearchPage.xsl`) that produces the WebHelp Responsive search HTML page (`search.html`). The location of this file is `DITA-OT-DIR/plugins/com.oxygenxml.webhelp.responsive/xsl/mainFiles/createSearchPage.xsl`.

Extension point to override the XSLT stylesheet (`createIndexTermsPage.xsl`) that produces the WebHelp Responsive index terms HTML page (`indexterms.html`). The location of this file is `DITA-OT-DIR/plugins/com.oxygenxml.webhelp.responsive/xsl/mainFiles/createIndexTermsPage.xsl`.

Extension point to override the XSLT stylesheet (`tocDita.xsl`) that produces the `toc.xml` file. This file contains information extracted from the `DITA map (on page 3281)` and it is mainly used to construct the WebHelp Table of Contents and navigational links. The path to this stylesheet is: `DITA-OT-DIR/plugins/com.oxygenxml.webhelp.responsive/xsl/toc/tocDita.xsl`.

**XSLT-Parameter Extension Points**

If your customization stylesheet declares one or more XSLT parameters and you want to control their values from the transformation scenario, you can use one of the following XSLT parameter extension points:

`com.oxygenxml.webhelp.xsl.dita2webhelp.param`

Use this extension point to pass parameters to the stylesheet specified using the `com.oxygenxml.webhelp.xsl.dita2webhelp extension point (on page 2011).`
Use this extension point to pass parameters to the stylesheet specified using the `com.oxygenxml.webhelp.xsl.createMainPage` extension point (on page 2012).

`com.oxygenxml.webhelp.xsl.createNavLinks.param`

Use this extension point to pass parameters to the stylesheet specified using the `com.oxygenxml.webhelp.xsl.createNavLinks` extension point (on page 2012).

`com.oxygenxml.webhelp.xsl.createSearchPage.param`

Use this extension point to pass parameters to the stylesheet specified using the `com.oxygenxml.webhelp.xsl.createSearchPage` extension point (on page 2012).

`com.oxygenxml.webhelp.xsl.createIndextermsPage.param`

Use this extension point to pass parameters to the stylesheet specified using the `com.oxygenxml.webhelp.xsl.createIndexTermsPage` extension point (on page 2012).

`com.oxygenxml.webhelp.xsl.createTocXML.param`

Use this extension point to pass parameters to the stylesheet specified using the `com.oxygenxml.webhelp.xsl.createTocXML` extension point (on page 2012).

### Related Information:

- How to Override an XSLT-processing step (on page 1988)
- [DITA-OT] XSLT-Import Extension Points
- [DITA-OT] XSLT-Parameter Extension Points

### DITA to PDF Output Customization

Oxygen XML Editor provides support for generating PDF output using transformation scenarios for certain types of documents (for example, DITA, DocBook, TEI, and JATS) and Oxygen XML Editor supports several different types of processors. There are numerous ways to customize the published output to fit your specific needs.

### CSS-based DITA to PDF Customization

Oxygen XML Editor comes bundled with a DITA-OT CSS-based PDF Publishing Plugin that combines all the topics from a map or bookmark and styles the resulting document using CSS. It is the base of the DITA Map PDF - based on HTML5 & CSS transformation scenario.
DITA Map to PDF - based on HTML5 and CSS Transformation Type

This transformation type uses a CSS-based processing engine and HTML5 as an intermediate format. For this transformation, the `pdf-css-html5` transtype is used. Because the structure of the HTML5 intermediate format resembles the one used in WebHelp output, it is possible to reuse parts of your CSS file you developed for a WebHelp customization.

DITA Map PDF - based on DITA and CSS (WYSIWYG) Transformation Type (Deprecated)

This transformation type converts DITA maps to PDF using a CSS-based processing engine and a merged DITA map (one with all topics expanded inline) as an intermediate format. For this transformation, the `pdf-css` transtype is used. This transformation scenario was deprecated starting with version 21.0. It is recommended to use the DITA Map PDF - based on HTML5 & CSS transformation scenario (on page 1657) instead.

Related Information:

- DITA Map to PDF - based on HTML5 and CSS Transformation (on page 1657)

Overview

This section contains topics that provide a basic overview of the DITA-OT CSS-based PDF Publishing Plugin, technical details, and some additional resources to help you with your customizations.

Resources

Customizing the PDF output requires knowledge of CSS, Paged Media, and DITA. The following list provides some resources to help you:

- **CSS** - You can find a good tutorial here: https://developer.mozilla.org/en-US/docs/Learn/CSS/Introduction_to_CSS. Also, the specification is available on the W3C website: https://www.w3.org/Style/CSS/Overview.en.html.
- **CSS Paged Media** - This is a part of the CSS specification that shows how to organize your publication in pages, how to use headers/footers, page breaks, and other page-related issues. The specification is available here: https://www.w3.org/TR/CSS2/page.html. Also, there is a set of hands-on examples in the Oxygen PDF Chemistry user guide: https://www.oxygenxml.com/doc/ug-chemistry/.
• **DITA** - You will need a basic understanding of DITA elements, attributes, and structure. A good resource is *The DITA Style Guide - Best Practices for Authors* by Tony Self. It is available at: [www.ditastyle.com](http://www.ditastyle.com) and: [https://www.oxygenxml.com/dita/styleguide/webhelp-feedback/Artefact/c_DITA_Authoring_Concepts.html](https://www.oxygenxml.com/dita/styleguide/webhelp-feedback/Artefact/c_DITA_Authoring_Concepts.html).

• **HTML5** - For the DITA Map PDF - based on HTML5 & CSS transformation type, you will need a good knowledge of HTML5. You can find resources here: [https://developer.mozilla.org/en-US/docs/Web/Guide/HTML/HTML5](https://developer.mozilla.org/en-US/docs/Web/Guide/HTML/HTML5)

---

**Related Information:**

- **DITA-OT DAY 2017: Using CSS to Style PDF Output**

---

**Supported Processors**

The **DITA-OT CSS-based PDF Publishing Plugin** supports the following CSS processors:

- **Oxygen PDF Chemistry** - This is recommended processor because the built-in CSS files were fine-tuned for this processor. For example, metadata extraction *(on page 2070)* only functions with this processor. If the plugin is started from an **Oxygen XML Editor/Author** distribution, a Chemistry installation is not needed.


---

**Technical Details**

The **DITA-OT CSS-based PDF Publishing Plugin** comes bundled in the **Oxygen XML Editor/Author** distributions. The plugin ID is: `com.oxygenxml.pdf.css`. It is installed in the `[OXYGEN-INSTALL-DIR]/frameworks/dita/DITA-OT3.x/plugins/com.oxygenxml.pdf.css` folder.

It has two transformation types:

- **pdf-css-html5** *(DITA Map PDF - based on HTML5 & CSS transformation)* - CSS styling applied over a merged HTML5 document (the merged DITA converted to HTML5).

- **pdf-css** *(DITA Map PDF - based on DITA & CSS - WYSIWYG transformation)* - CSS styling applied directly over a merged DITA document. **This transformation type was deprecated started with version 21.**

This is how it works:
1. It expands all the topic references into a temporary clone of the map, resolving keys and reused content. This is the standard DITA-OT pre-processing procedure.

2. It generates a structure for the table of contents and index. The result is a merged map with all the references resolved. This is a standard DITA-OT processing procedure, based on the PDF2 plugin.

3. Then it post-processes the merged map. It fixes some of the structure in the TOC and index, moves the *frontmatter* and *backmatter* to the correct places, transforms any change tracking and review processing instructions to elements that can be styled later, etc. The result is another merged map.

4. When using the **DITA Map PDF - based on HTML5 & CSS** transformation type, the merged DITA map is transformed to a single HTML5 file. The generated HTML elements copy the class attributes from the original DITA elements. In this way you can either use selectors that were designed for DITA structure, or ones for the HTML structure - see: *Reusing the Styling for...*
WebHelp and PDF Output (on page 2144). This step can apply customization XSLT extension points (on page 2033) that change the default processing.

5. In the last phase, it uses a collection of CSS files to style the merged map (or for the DITA Map PDF - based on HTML5 & CSS transformation type, the merged map in the HTML5 format with the help of the CSS processor).

**Note:** For the DITA Map PDF - based on DITA & CSS (WYSIWYG) transformation type, the used CSS files are those selected in the Styles drop-down menu from the toolbar in Oxygen XML Editor/Author, and they are processed along with the CSS files specified with the args.css parameter set in the transformation scenario.

**Note:** For the DITA Map PDF - based on HTML5 & CSS transformation type, references to the CSS files are collected from the publishing template (on page 2023).

Increasing Memory Allocation for Java

If you are working with a large project with extensive metadata or key references, you may need to increase the amount of memory that is allocated to the Java process that performs the publishing.

**When the Transformation is Started from Oxygen**

It is possible to alter the memory allocation setting from the transformation scenario:

1. Open the Configure Transformation Scenario(s) dialog box.
2. Select your transformation scenario, then click Edit.
3. Go to the Advanced tab.
4. Locate the JVM Arguments, and increase the default value. For instance, to set 1GB as maximum of memory, you can specify: -Xmx1024m.
When the Transformation is Started from the Command Line

You can change the value of the `ANT_OPTS` environment variable from a command line for a specific session.

**Example:** To increase the JVM memory allocation to 1024 MB for a specific session, issue the following command from a command prompt (depending on your operating system):

- **Windows**
  
  ```
  set ANT_OPTS=%ANT_OPTS% -Xmx1024M
  ```

- **Linux/Mac OS X**
  
  ```
  export ANT_OPTS=$ANT_OPTS -Xmx1024M
  ```

**Tip:** To persistently change the memory allocation, change the value allocated to the `ANT_OPTS` environment variable on your system.

Transformation Parameters

This list includes the most common customization parameters that are available in the DITA Map PDF - based on HTML5 & CSS transformation scenario. Other standard DITA-OT parameters were omitted for clarity, but they are still supported.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>args.css</code></td>
<td>You can use this to specify a list of CSS URLs to be used in addition to those specified in the <code>dita.css.list</code> parameter or publishing template. The files must have URL syntax and be separated using semicolons.</td>
</tr>
<tr>
<td><code>args.css.param.*</code></td>
<td>You can use this parameter pattern to set attributes on the root of the merged map. This means you can activate specific CSS rules from your custom CSS using custom attributes. For examples, see: [Styling Through Custom Parameters](on page 2163).</td>
</tr>
</tbody>
</table>
| `args.css.param.numbering` | You can use this parameter to change the numbering of the chapters and sections. Allowed values:  

  - **shallow** - Only the topics from the first level will be numbered (chapters).
  - **deep** - All the topics from the map will be numbered (chapters and sections).
  - **deep-chapter-scope** - Similar to deep, but in addition, the page numbers, figures, and table numbers are reset at the start of each chapter. The table and figure titles (and the links to
them) are prefixed with the chapter numbers. The generic cross reference links contain both the chapter numbers and the page numbers to avoid ambiguity. This parameter value is only available for the **DITA Map PDF - based on HTML5 & CSS** transformation scenario.

- **deep-chapter-scope-no-page-reset** - Similar to `deep-chapter-scope`, but the page numbers do not reset at the start of each chapter. The generic cross reference links contain only the page number. This parameter value is only available for the **DITA Map PDF - based on HTML5 & CSS** transformation scenario.

For more details, see [Numbering Types (on page 2092)](https://example.com).

<table>
<thead>
<tr>
<th><strong>args.draft</strong></th>
<th>Specifies whether or not the content of <code>&lt;draft-comment&gt;</code> and <code>&lt;required-cleanup&gt;</code> elements is included in the output.</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Allowed values:</strong></td>
<td></td>
</tr>
<tr>
<td>• <strong>no</strong> - No draft information is shown in the output. This is the default.</td>
<td></td>
</tr>
<tr>
<td>• <strong>yes</strong> - The draft information is shown in the output.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th><strong>args.figurelink.style</strong></th>
<th>Specifies how cross references to figures are styled in output. Allowed values:</th>
</tr>
</thead>
<tbody>
<tr>
<td>• <strong>NUMBER</strong> - Only the number of the figures will be shown in links.</td>
<td></td>
</tr>
<tr>
<td>• <strong>TITLE</strong> - Only the title of the figures will be shown in links.</td>
<td></td>
</tr>
<tr>
<td>• <strong>NUMTITLE</strong> (default) - Both the title and number of the figures will be shown in links.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th><strong>args.chapter.layout</strong></th>
<th>Specifies whether chapter level TOCs are generated for bookmaps. When set to <strong>MINITOC</strong>, a small section with links is added at the beginning of each chapter. The default is <strong>BASIC</strong>. For details, see: <a href="https://example.com">Table of Contents for Chapters (Mini TOC) (on page 2102)</a>.</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Allowed values:</strong></td>
<td></td>
</tr>
<tr>
<td>• <strong>BASIC</strong> - No chapter TOC is created.</td>
<td></td>
</tr>
<tr>
<td>• <strong>MINITOC</strong> - A chapter level TOC will be generated.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th><strong>args.gen.task.lbl</strong></th>
<th>Specifies whether or not to generate headings for sections within task topics. Allowed values: <strong>YES</strong> or <strong>NO</strong> (default). When set to yes, headings like &quot;About this task&quot;, &quot;Procedure&quot;, or &quot;What to do next&quot;, are shown in the task contents.</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>args.input</strong></td>
<td>Specifies the master DITA map file for your documentation project.</td>
</tr>
<tr>
<td>arg</td>
<td>Description</td>
</tr>
<tr>
<td>-----</td>
<td>-------------</td>
</tr>
<tr>
<td>args.output.base</td>
<td>Specifies the name of the output file without a file extension. By default, the name of the PDF file is derived from the name of the DITA map file. This parameter allows you to override it.</td>
</tr>
<tr>
<td>args.tablelink.style</td>
<td>Specifies how cross references to tables are styled in output. Allowed values:</td>
</tr>
<tr>
<td>- NUMBER</td>
<td>Only the number of the tables will be shown in links.</td>
</tr>
<tr>
<td>- TITLE</td>
<td>Only the title of the tables will be shown in links.</td>
</tr>
<tr>
<td>- NUMTITLE (default)</td>
<td>Both the title and number of the tables will be shown in links.</td>
</tr>
<tr>
<td>clean.temp</td>
<td>Specifies whether the DITA-OT deletes the files in the temporary directory after it finishes a build. Allowed values: yes (default) / no</td>
</tr>
<tr>
<td>css.processor.path.antenna-house</td>
<td>Path to the Antenna House executable file that needs to be run to generate the PDF (for example, C:\path\to\AHFCmd.exe on Windows).</td>
</tr>
<tr>
<td>css.processor.path.chemistry</td>
<td>Path to the Oxygen PDF Chemistry executable file that needs to be run to generate the PDF (for example, C:\path\to\chemistry.bat on Windows). If this parameter is not set, the plugin will use the system's PATH environment variable to locate and start Oxygen PDF Chemistry.</td>
</tr>
<tr>
<td>css.processor.path.prince</td>
<td>Path to the Prince executable file that needs to be run to generate the PDF (for example, C:\path\to\prince.exe on Windows).</td>
</tr>
<tr>
<td>css.processor.type</td>
<td>Specifies the processor to use for the transformation. Allowed values: chemistry (default) / antenna-house / prince.</td>
</tr>
<tr>
<td>default.language</td>
<td>Specifies the default language for source documents. Examples: fr, de, zh, etc. Depending on the transformation type, the actual number of supported languages can vary, see: Localization (on page 2132).</td>
</tr>
<tr>
<td>editlink.remote.ditamap.url</td>
<td>Use this parameter in conjunction with editlink.web.author.url to add an Edit link next to the topic title in the PDF output. When a user clicks the link, the topic is opened in Oxygen XML Web Author where they can make changes that can be saved to a file server. The value should be set as the custom URL of the main DITA map. For example, a GitHub custom URL might look like this: <a href="https://getFileContent/oxyengxml/userguide/master/UserGuide.ditamap">https://getFileContent/oxyengxml/userguide/master/UserGuide.ditamap</a>.</td>
</tr>
<tr>
<td>editlink.web.author.url</td>
<td>This parameter needs to be used in conjunction with editlink.remote.ditamap.url to add an Edit link next to the topic title in the PDF output. When a user clicks the link, the topic is opened in Oxygen XML Web Author where they can make changes that can be saved to a file server. The value should be set as</td>
</tr>
</tbody>
</table>
the URL of the Web Author installation. For example: https://www.oxygenxml.com/oxygen-xml-web-author/.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>figure.title.placement</td>
<td>Controls the title placement of the figures, relative to the image. Possible values include top (default) and bottom.</td>
</tr>
<tr>
<td>generate.named.destinations</td>
<td>When set to yes (default), the @id attributes from the DITA content are used as PDF named destinations</td>
</tr>
<tr>
<td>hide.frontpage.toc.index.glossary</td>
<td>When set to yes, the generated structures (table of contents, index list, front page, etc.) are removed from the output. The default is no.</td>
</tr>
<tr>
<td>show.changes.and.comments</td>
<td>When set to yes, the user comments, colored highlights and track-changes are shown in the output.</td>
</tr>
<tr>
<td>show.changes.and.comments.as.pdf.sticky.notes</td>
<td>When set to yes (default) and the show.changes.and.comments parameter is also set to yes, the user comments and tracked changes are shown in the PDF output as stick note annotations. When set to no, the comments and tracked changes are left in the document model and are styled by the default CSS rules as footnotes. You can override this from your customization CSS (on page 2041).</td>
</tr>
</tbody>
</table>

The following parameters can be used to specify a publishing template:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>pdf.publishing.template</td>
<td>Specifies the path to the folder containing the custom PDF template.</td>
</tr>
<tr>
<td>pdf.publishing.template.descriptor</td>
<td>Specifies the name of the descriptor to be loaded from the PDF template folder or package. If it is not specified, the first encountered descriptor will be loaded.</td>
</tr>
</tbody>
</table>

Publishing Templates

An Oxygen Publishing Template defines all aspects of the layout and styles for output obtained from the following transformation scenarios:

- WebHelp Responsive
- WebHelp Responsive with Feedback
- DITA Map PDF - based on HTML5 & CSS

It is a self-contained customization package stored as a ZIP archive or folder that can easily be shared with others. It provides the primary method for customizing the output.

Some possible customization methods include:

- Add additional template resources to customize the output (such as logos, Favicons, or CSS files).
- Extend the default processing by specifying one or more XSLT extension points.
- Specify one or more transformation parameters to customize the output.
Customize various aspects of the output through simple CSS styling.

For WebHelp Responsive output, change the layout of the main page or topic pages by customizing which components will be displayed and where they will be positioned in the page.

The following graphics are possible sample structure for Oxygen Publishing Template packages:

Figure 639. Oxygen Publishing Template Package (WebHelp Responsive)

Figure 640. Oxygen Publishing Template Package (PDF)

For information about creating and customizing publishing templates, and how to adjust the WebHelp and PDF output through CSS styling and other customization methods, watch our Webinar: Creating Custom Publishing Templates for WebHelp and PDF Output. The Webinar slides and sample project are also available from that webpage.

Related Information:

- How to Create a Publishing Template (on page 1935)
- How to Edit a Packed Publishing Template (on page 1937)
- How to Add a Publishing Template to the Publishing Templates Gallery (on page 1938)
An Oxygen Publishing Template for PDF output must contain a template descriptor file and at least one CSS file, and may contain other resources (such as graphics, XSLT files, etc.). All the template resources can be stored in either a ZIP archive or in a folder. It is recommended to use a ZIP archive because it is easier to share with others.

Template Descriptor File

Each publishing template includes a descriptor file that defines the meta-data associated with template. It is an XML file with certain elements that defines all the resources included in a template (such as CSS files, images, and transformation parameters).

The template descriptor file must have the .opt file extension and must be located in the templates' root folder.

A PDF template descriptor might look like this:

```
<publishing-template>
  <name>Flowers</name>

  <pdf>
    <tags>
      <tag>purple</tag>
      <tag>light</tag>
    </tags>
    <preview-image file="flowers-preview.png"/>

    <resources>
      <css file="flowers.css"/>
    </resources>

    <parameters>
      <parameter name="figure.title.placement" value="top"/>
    </parameters>
  </pdf>
</publishing-template>
```
Tip: It is recommended to edit the template descriptor in Oxygen XML Editor/Author because it provides content completion and validation support.

Template Name and Description

Each template descriptor file requires a name element. This information is displayed as the name of the template in the transformation scenario dialog box.

Optionally, you can include a description and it displayed when the user hovers over the template in the transformation scenario dialog box.

```xml
<publishing-template>
  <name>Flowers</name>
  <description>Flowers themed light colored template</description>
...</publishing-template>
```

Template Author

Optionally, you can include author information in the descriptor file and it displayed when the user hovers over the template in the transformation scenario dialog box. This information might be useful if users run into an issue or have questions about a certain template.

If you include the author element, a name is required and optionally you can include email, organization, and organizationUrl information.

```xml
<publishing-template>
  ...
  <author>
    <name>John Doe</name>
    <email>jdoe@example.com</email>
    <organization>ACME</organization>
    <organizationUrl>http://www.example.com/jdoe</organizationUrl>
  </author>
  ...
</publishing-template>
```

PDF Element

The pdf element contains various details about the template and its resources that define the PDF output. It is a required element if you intend on using a DITA Map to PDF transformation scenario. The elements that are allowed in this pdf section specify the template tags (on page 2025), template
Template Tags

The tags section provides meta information about the template (such as color theme). Each tag is displayed at the top of the Templates tab window in the transformation scenario dialog box and they help the user filter and find particular templates.

```
<pdf>
  <tags>
    ...
  </tags>
  <preview-image file="MyPreview.png"/>
</pdf>
```

Template Preview Image

The preview-image element is used to specify an image that will be displayed in the transformation scenario dialog box. It provides a visual representation of the template to help the user select the right template. The image dimensions should be 200 x 115 pixels and the supported image formats are: JPEG, PNG, or GIF.

You can also include an online-preview-url element to specify the URL of a published sample of your template. This will display an Online preview icon in the bottom-right corner of the image in the
transformation scenario dialog box and if the user clicks that icon, it will open the specified URL in their default browser.

```xml
<publishing-template>
  ...
  <pdf>
    ...
    <preview-image file="ashes/ashes-tree.png"/>
    <online-preview-url=https://www.example.com/samples/tiles/ashes</online-preview-url>
  </pdf>
</publishing-template>
```

**Template Resources**

The **resources** section of the descriptor file specifies a set of resources (CSS files) that are used to customize various components in generated output. These resources will be copied to the output folder during the transformation process. At least one CSS file must be included, while the other types of resources are optional.

```xml
<publishing-template>
  ...
  <pdf>
    ...
    <resources>
      <css file="css/custom_styles.css"/>
      <css file="css/custom_fonts.css"/>
    </resources>
  </pdf>
</publishing-template>
```

**Note:** All relative paths specified in the descriptor file are relative to the template root folder.

**Transformation Parameters**

You can also set one or more transformation parameters in the descriptor file.

```xml
<publishing-template>
  ...
  <pdf>
    ...
    <parameters>
      <parameter name="show.changes.and.comments" value="yes"/>
    </parameters>
  </pdf>
</publishing-template>
```
The following information can be specified in the `parameter` element:

**Parameter name**

The name of the parameter. It may be one of the transformation parameters listed in the **Parameters** tab of the **DITA Map to PDF - based on HTML5 & CSS** transformation scenario or a **DITA-OT PDF-based output parameter**.

⚠️ **Note:** It is not recommended to specify an input/output parameter in the descriptor file (such as the input Map, DITAVAL file, or temporary directory).

⚠️ **Attention:** JVM arguments like `-Xmx` cannot be specified as a transformation parameter.

**Parameter Value**

The value of the parameter. It should be a relative path to the template root folder for file paths parameters.

**Parameter Type**

The type of the parameter: `string` or `filepath`. The `string` value is default.

After creating a publishing template (on page 2029) and adding it to the templates gallery (on page 2032), when you select the template in the transformation scenario dialog box, the **Parameters** tab will automatically be updated to include the parameters defined in the descriptor file. These parameters are displayed in italics.

**XSLT Extension Points**

The publishing templates support one or more XSLT extension points. They can be specified in the descriptor file using the following structure:

```xml
<publishing-template>
  ...
  <pdf>
    ...
    <xslt>
      <extension
        id="com.oxygenxml.pdf.css.xsl.merged2html5"
        file="xslt/merged2html5Extension.xsl"/>
      <extension
        id="com.oxygenxml.pdf.css.xsl.merged2merged"
        file="xslt/merged2mergedExtension.xsl"/>
      
    </xslt>
  </pdf>
</publishing-template>
```
For more information about the available extension points, see: XSLT Extensions for PDF Transformations (on page 2033).

Combining PDF and WebHelp Responsive Customizations in a Template Package

An Oxygen Publishing Template package can contain both a PDF and WebHelp Responsive customization in the same template package and you can use that same template in both types of transformations. The template descriptor file can define the customization for both types by including both a `webhelp` and `pdf` element and some of the resources can be reused. Resources referenced in elements in the `webhelp` element will only be used for WebHelp transformations, and resources referenced in the elements in the `pdf` element will only be used in PDF transformations.

```xml
<publishing-template>
  <name>Flowers</name>
  <description>Flowers themed light-colored template</description>

  <webhelp>
    <tags>
      <tag>purple</tag>
      <tag>light</tag>
    </tags>
    <preview-image file="flowers-preview.png"/>
    <resources>
      <css file="flowers-wh.css"/>
      <css file="flowers-page-styling.css"/>
    </resources>
    <parameters>
      <parameter name="webhelp.show.main.page.tiles" value="no"/>
      <parameter name="webhelp.show.main.page.toc" value="yes"/>
    </parameters>
  </webhelp>

  <pdf>
    <tags>
      <tag>purple</tag>
      <tag>light</tag>
    </tags>
    <preview-image file="flowers-preview.png"/>
    <resources>
      <css file="flowers-pdf.css"/>
      <css file="flowers-page-styling.css"/>
    </resources>
  </pdf>
</publishing-template>
```
<parameters>
  <parameter name="show.changes.and.comments" value="yes"/>
</parameters>

<pdf />
</publishing-template>

Related Information:

- Publishing Template Package Contents for WebHelp Responsive Customizations (on page 1895)

How to Create a Publishing Template

To create a customization, you can start from scratch or from an existing template, and then adapt it according to your needs.

Creating a Template Starting from Scratch

To create a new Oxygen Publishing Template, follow these steps:

1. Create a folder that will contain all the template files.
2. In Oxygen XML Editor/Author, open the new document wizard (use File > New or the New toolbar button), then choose the Publishing Template Descriptor template.

Figure 641. Choosing the Publishing Template Descriptor Document Template
3. Save the .opt file into your customization directory.
4. Open the .opt file in the editor and customize it to suit your needs.

Creating a Template Starting from an Existing Template

If you are using a WebHelp Responsive or DITA Map PDF - based on HTML5 & CSS transformation, the easiest way to create a new Oxygen Publishing Template (on page 3285) is to select an existing template in the transformation scenario dialog box and use the Save template as button to save that template into a new template package that can be used as a starting point.

To create a new Oxygen Publishing Template, follow these steps:

1. Open the transformation scenario dialog box and select the publishing template you want to export and use as a starting point.
2. Optional: You can set one or more transformation parameters from the Parameters tab and the edited parameters will be exported along with the selected template. You will see which parameters will be exported in the dialog box that is displayed after the next step.
3. Click the Save template as button.

   **Step Result:** This opens a template package configuration dialog box that contains some options and displays the parameters that will be exported to your template package.

4. Specify a name for the new template.
5. Optional: Specify a template description.
6. Optional: The same publishing template package can contain both a WebHelp Responsive and PDF customization and you can use the same template in both types of transformations (DITA Map WebHelp Responsive or DITA Map to PDF - based on HTML5 & CSS). You can use the
Include WebHelp customization and Include PDF customization options to specify whether your custom template will include both types of customizations.

7. **Optional:** For WebHelp Responsive customizations, you can select the Include HTML Page Layout Files option if you want to copy the default HTML Page Layout Files (on page 1909) in your template package. They are helpful if you want to change the structure of the generated HTML pages.

8. In the **Save as** field, specify the name and path of the ZIP file where the template will be saved.

   **Step Result:** A new ZIP archive will be created on disk in the specified location with the specified name.

9. Open the .opt file in the editor and customize it to suit your needs.

For more information about creating and customizing publishing templates, watch our video demonstration:

https://www.youtube.com/embed/zNmXfKWXwO8

**Related Information:**

- Publishing Template Package Contents for PDF Customizations (on page 2023)

  Publishing Template Package Contents for WebHelp Responsive Customizations (on page 1895)

**How to Edit a Packed Publishing Template**

To edit an existing Oxygen Publishing Template (on page 3285) package, follow these steps:

1. Unzip the ZIP archive associated with the Oxygen Publishing Template in a separate folder.

2. Link the folder associated with the template in the Project view.

3. Using the Project view, you can modify the resources (CSS, JS, fonts) within the Oxygen Publishing Template folder to fit your needs.

4. Open the publishing template descriptor file (.opt extension) in the editor and modify to suit your needs.

5. **Optional:** Once you finish your customization, you can archive the folder as a ZIP file.

**Related Information:**

- Publishing Template Package Contents for PDF Customizations (on page 2023)
How to Use a Publishing Template in a PDF Transformation

**From Oxygen XML Editor/Author**

A publishing template can be used for PDF output from the **DITA Map PDF - based on HTML5 & CSS** transformation scenario.

The **Templates** tab in the **DITA Map PDF - based on HTML5 & CSS** transformation scenario dialog displays all the templates that are available in your template gallery. To use a particular template in the transformation scenario, simply select it from this tab and then continue configuring the transformation using the other tabs to suit your needs.

To add the publishing template to your templates gallery, follow these steps:

1. Open the transformation scenario dialog box by editing a **DITA Map PDF - based on HTML5 & CSS** transformation.
2. In the **Templates** tab, click the **Configure Publishing Templates Gallery** link to.
   
   **Step Result:** This will open the preferences page.
3. Click the **Add** button and specify the location of your template directory.
   
   **Step Result:** Your template directory is now added to the **Additional Publishing Templates Galleries** list.
4. Click **OK** to return to the transformation scenario dialog box.
   
   **Step Result:** All the templates contained in your template directory will be displayed in the preview pane along with all the built-in templates.

**From Command Line**

You can use the simpler form, in which you use only the **pdf.publishing.template** parameter to point to the *.opt (publishing template) file:

```
dita.bat
   --input=map\test.ditamap
   "-Dpdf.publishing.template=full_path_to_template_dir/my_template.opt"
   --format=pdf-css-html5
   ...
```
Or use the two parameters to indicate the folder containing the publishing templates and the name of the publishing template file relative to that folder:

```

dita.bat
   --input=map\test.ditamap
   "-Dpdf.publishing.template=full_path_to_template_dir"
   "-Dpdf.publishing.template.descriptor=my_template.opt"
   --format=pdf-css-html5
   ...
```

Related Information:

- Transformation Parameters (on page 2018)

How to Share a Publishing Template

To share a publishing template with others, following these steps:

1. Copy your template in a new folder in your project.
2. Go to Options > Preferences > DITA > Publishing and add that new folder to the list.
3. Switch the option as the bottom of that preferences page to Project Options.
4. Share your project file (.xpr).

XSLT Extensions for PDF Transformations

Since PDF output is primarily obtained by running XSLT transformations over the DITA input files, one customization method would be to override the default XSLT templates that are used by the PDF transformation.

The pdf-css-html5 transformation type uses two stages to transform the merged DITA map (the one that aggregates all the topics) to HTML5:

1. **Stage 1**: Makes some changes on the merged map (on page 2042) and the result is a modified merged map. This stage can be altered by implementing the `com.oxygenxml.pdf.css.xsl.merged2merged` XSLT extension point. This extension overrides the stylesheets found in the following folder: `DITA-OT-DIR\plugins\com.oxygenxml.pdf.css\xsl\merged2merged`.

   **Note:** Use this when you need to filter DITA content.
2. **Stage 2**: Transforms the merged map (on page 2042) to HTML5 and the result is a single HTML document. This stage can be altered by implementing the `com.oxygenxml.pdf.css.xsl.merged2html5` XSLT extension point. This extension overrides the stylesheets found in the following folder: `DITA-OT-DIR\plugins\com.oxygenxml.pdf.css\xsl\merged2html5`.

   Note: Use this when you need to change the HTML structures generated for a specific DITA element.

These extension points can be used either from a **Publishing Template** or a DITA-OT extension plugin.

**How to Use XSLT Extension Points for PDF Output from a Publishing Template**

These examples demonstrate how to use XSLT extension points from an **Oxygen Publishing Template**.

**Use Case 1: Styling Codeblocks with a Zebra Effect**

Suppose you want your codeblocks to have a particular background color for one line, and another color for the next line. One advantage of this coloring technique is that you can clearly see when text from the codeblock is wrapped.

This effect can be done by altering the HTML5 output, creating a `div` for each line from the code block, then styling them.

To add this functionality using an **Oxygen Publishing Template**, follow these steps:

1. If you haven't already created a Publishing Template, see [How to Create a Publishing Template](on page 2029).
2. Link the folder associated with the publishing template to your current project in the **Project** view.
3. Using the **Project** view, create an `xslt` folder inside the project root folder.
4. In this folder, create an XSL file (for example, named `merged2html5Extension.xsl`) with the following content:

   ```xml
   <?xml version="1.0" encoding="UTF-8"?>
   <xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
                   xmlns:xs="http://www.w3.org/2001/XMLSchema"
                   exclude-result-prefixes="xs"
                   version="2.0">

   <xsl:template match="*[contains(@class, ' pr-d/codeblock ')]">
     <div class='zebra'>
       <xsl:analyze-string regex="\n" select=".">
         <xsl:matching-substring/>
       </xsl:analyze-string>
     </div>
   </xsl:template>
   ```
5. Open the template descriptor file (on page 2023) associated with your publishing template (the .opt file) and set the XSLT stylesheet created in previous step with the com.oxygenxml.pdf.css.xsl.merged2html5 XSLT extension point:

```xml
<publishing-template>
  ...
  <pdf>
    ...
    <xslt>
      <extension
        id="com.oxygenxml.pdf.css.xsl.merged2html5"
        file="xslt/merged2html5Extension.xsl"/>
    </xslt>
  </pdf>
</publishing-template>
```

6. Create a css folder in the publishing template directory. In this directory, save a custom CSS file with rules that style the codeblock structure. For example:

```css
div.zebra {
  font-family: courier, fixed, monospace;
  white-space: pre-wrap;
}

div.zebra > *:nth-of-type(odd) {
  background-color: silver;
}
```

7. Open the template descriptor file (on page 2023) associated with your publishing template (the .opt file) and reference your custom CSS file in the resources element:

```xml
<publishing-template>
  ...
  <pdf>
    ...
    <resources>
      <css file="css/custom.css"/>
    </resources>
  </pdf>
</publishing-template>
```
8. Edit the DITA Map PDF - based on HTML5 & CSS transformation scenario.
9. In the Templates tab, click the Choose Custom Publishing Template link and select your template.
10. Click OK to save the changes to the transformation scenario.
11. Run the transformation scenario.

Use Case 2: Removing the Related Links Section

Suppose you want the related links sections to be removed from the PDF output.

To add this functionality using an Oxygen Publishing Template, follow these steps:

1. If you haven’t already created a Publishing Template, see How to Create a Publishing Template (on page 2029).
2. Link the folder associated with the publishing template to your current project in the Project view.
3. Using the Project view, create an xslt folder inside the project root folder.
4. In this folder, create an XSL file (for example, named merged2mergedExtension.xsl) with the following content:

```xml
<?xml version="1.0" encoding="UTF-8"?>
<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
    xmlns:xs="http://www.w3.org/2001/XMLSchema"
    exclude-result-prefixes="xs"
    version="2.0">

    <xsl:template match="*[contains(@class, ' topic/related-links ')]">
        <!-- Remove. -->
    </xsl:template>
</xsl:stylesheet>
```

5. Open the template descriptor file (on page 2023) associated with your publishing template (the .opt file) and set the XSLT stylesheet created in previous step with the following content:

```xml
<publishing-template>
    ...
    <pdf>
        ...
        <xslt>
            <extension
                id="com.oxygenxml.pdf.css.xsl_merged2merged"
                file="xslt/merged2mergedExtension.xsl"/>
        </xslt>
    </pdf>
    ...
</publishing-template>
```
6. Edit the DITA Map PDF - based on HTML5 & CSS transformation scenario.
7. In the Templates tab, click the Choose Custom Publishing Template link and select your template.
8. Click OK to save the changes to the transformation scenario.
9. Run the transformation scenario.

How to Use XSLT Extension Points for PDF Output from a DITA-OT Plugin

These examples demonstrate how to use XSLT extension points from a DITA-OT plugin.

Use-Case 1: Styling Codeblocks with a Zebra Effect

Suppose you want your codeblocks to have a particular background color for one line, and another color for the next line. One advantage of this coloring technique is that you can clearly see when text from the codeblock is wrapped.

This effect can be done by altering the HTML5 output, creating a div for each line from the codeblock, then styling them.

To add this functionality using a DITA-OT plugin, follow these steps:

1. In the DITA-OT-DIR\plugins\ folder, create a folder for this plugin (for example, com.oxygenxml.pdf.custom.codeblocks).
2. Create a plugin.xml file (in the folder you created in step 1) that specifies the extension point and your customization stylesheet. For example:

```xml
<plugin id="com.oxygenxml.pdf.custom.codeblocks">
  <feature extension="com.oxygenxml.pdf.css.xsl.merged2html5">
    <file>custom_codeblocks.xsl</file>
  </feature>
</plugin>
```

3. Create your customization stylesheet (for example, custom_codeblocks.xsl) with the following content:

```xml
<?xml version="1.0" encoding="UTF-8"?>
<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
     xmlns:xs="http://www.w3.org/2001/XMLSchema"
     exclude-result-prefixes="xs"
     version="2.0">

  <xsl:template match="*[contains(@class, ' pr-d/codeblock ')]">
    <div class='zebra'>
      <xsl:analyze-string regex="\n" select='.'>
        ...
      </xsl:analyze-string>
    </div>
  </xsl:template>
</xsl:stylesheet>
```
Use the Run DITA-OT Integrator transformation scenario (on page 1665) found in the DITA Map section in the Configure Transformation Scenario(s) dialog box.

5. Create a custom CSS file with rules that style the codeblock structure. For example:

```css
div.zebra {
    font-family: courier, fixed, monospace;
    white-space: pre-wrap;
}
div.zebra > *:nth-of-type(odd) {
    background-color: silver;
}
```

6. Edit a DITA Map PDF - based on HTML5 & CSS transformation scenario and reference your custom CSS file (using the args.css parameter).

7. Run the transformation scenario.

Use-Case 2: Removing the Related Links Section

Suppose you want the related links sections to be removed from the PDF output.

To add this functionality using a DITA-OT plugin, follow these steps:

1. In the DITA-OT-DIR\plugins\ folder, create a folder for this plugin (for example, com.oxygenxml.pdf.custom.codeblocks).
2. Create a plugin.xml file (in the folder you created in step 1) that specifies the extension point and your customization stylesheet. For example:

```xml
<plugin id="com.oxygenxml.pdf.custom.related.links">
  <feature extension="com.oxygenxml.pdf.css.xsl.merged2merged"
           file="custom_related_links.xsl"/>
</plugin>
```
3. Create your customization stylesheet (for example, custom_related_links.xsl) with the following content:
4. Use the Run DITA-OT Integrator transformation scenario (on page 1665) found in the DITA Map section in the Configure Transformation Scenario(s) dialog box.

5. Run the DITA Map PDF - based on HTML5 & CSS transformation scenario.

Sample Use-cases: Using XSLT and CSS for PDF Transformations

In this section, you will find a series of use-cases that can be used as starting points for other customizations.

How to Use a Bullet Instead of Numbers for Tasks Containing a Single Step

If a DITA Task only contains one step (\texttt{<step>} element), you probably want it to be rendered like an unordered list (displayed with a bullet instead of a number).

\[
\begin{align*}
\ldots \\
\text{<steps>}
\text{<step>}
\text{<cmd>The step</cmd>}
\text{</step>}
\text{</steps>}
\ldots
\end{align*}
\]

Should be rendered as:

- The step

Instead of:

1. The step
To achieve this, you need to create an XSLT template that adds a special @outputclass attribute (with its value set to single) for the single step, then you need to match this attribute from the CSS and change its aspect.

1. In the customization XSL, add:

   <xsl:template match="*[contains(@class, ' task/step ')]*[count(../*[contains(@class, ' task/step ')][]) = 1]">
     <xsl:copy>
       <xsl:copy-of select="@*"/>
       <xsl:attribute name="outputclass" select="concat(@outputclass, ' single ')">
       </xsl:attribute>
       <xsl:apply-templates/>
     </xsl:copy>
   </xsl:template>

2. In your customization CSS (on page 2041), add:

   *[outputclass =~ "single"] {  
     list-style-type: circle !important;
     margin-left: 2em;
   }

Related Information:

- How to Use XSLT Extension Points for PDF Output from a Publishing Template (on page 2034)

DITA-OT Extension Points

The DITA-OT CSS-based PDF Publishing Plugin supports DITA-OT extension points that can be used to expand the functionality of the transformation. The extension points are defined in the plugin.xml file. For more information, see DITA Open Toolkit Extension Points.

Related Information:

- XSLT Extensions for PDF Transformations (on page 2033)
How to Contribute a Custom CSS to the Transformation from a DITA-OT Plugin

This topic is intended for publishing architects/developers that need to deploy a customized DITA-OT.

Usually, the CSS styles can be passed to the transformation by referencing the CSS files using the `args.css` parameter. However, there are cases where you want to add some sort of “built-in” CSS that is applied in conjunction with the publishing template or CSS files referenced in the transformation.

For this, you need to use the `com.oxygenxml.pdf.css.init` extension point and set the value of the `extension.css` ANT property to the path of the custom CSS file:

1. In your `plugin.xml` file, add:

   ```xml
   <feature extension="com.oxygenxml.pdf.css.init" file="init.xml"/>
   ```

2. Create a file named `init.xml` with the following ANT content:

   ```xml
   <root>
   <property name="extension.css"
     value="${dita.plugin.[com.my.plugin.id].dir}/css/my-custom.css"/>
   <!-- add here more init stuff if needed -->
   </root>
   ```

**Note:** The name of the root element does not matter. The content of this element will be copied in an initialization template.

**Important:** Make sure all file references begin with the ANT variable that is expanded to the base directory of your plugin.

Related Information:

- How to Use XSLT Extension Points for PDF Output from a DITA-OT Plugin *(on page 2037)*

Customization CSS

The publishing process is driven by a customization CSS.

To change the styling of the output for the DITA Map PDF - based on HTML5 & CSS transformation scenario:

1. Create the CSS file that will contain all your customizations. It is recommended to create this file in your project directory so you can edit it easily.
2. Add the custom CSS rules. See the various topics in this section for assistance with specific types of customizations.

3. For linking the CSS file, you have two options:
   a. Create a publishing template, create the customization CSS file inside the template folder and link it into the publishing template descriptor. See Publishing Templates (on page 1892).
   b. Choose an existing publishing template, then edit the scenario and set the full path to the custom CSS file as the value of the args.css parameter. The rules from custom CSS will override the rules from the template CSS files.

4. Run the transformation scenario.

**Debugging the CSS**

If you notice that some of the CSS properties were not applied as expected, some of the tips offered in this topic might help you with the debugging process.

**Merged Map File**

Depending on the type of transformation, one or more merged map files are created at some point during the transformation stages. These files could be used to help debug unexpected results.

1. The first thing you should try is to check the file structure of the merged map file. This can be found in the out/pdf-css directory and it has the .merged.xml file extension. For the DITA Map PDF - based on HTML5 & CSS transformation type, you will also find a .merged.html file. You can open these files in Oxygen XML Editor/Author to examine the structure. Optionally, you can use the pretty print feature (Format and Indent) to make the structure easier to read.

2. Check that the CSS selectors are written correctly against the document structure.

3. If you still cannot identify the problem, then inspect how the styles are applied (you can try any of the methods listed below).

**Inspecting the Applied Styles Using the Chrome Browser**

To inspect the applied CSS styles using Chrome:

1. In Chrome, open the file ending in .merged.xml or .merged.html (for the DITA Map PDF - based on HTML5 & CSS transformation type).

2. Click on the element you want to inspect.

3. Activate the Chrome Developer Tools by using More Tools > Developer Tools, or press CTRL +SHIFT+I.

4. Activate the Rendering pane by using More Tools > Rendering:
5. In the **Rendering** pane, select **print** from the **Emulate CSS media** section. This will activate the CSS selectors enclosed in `@media print { .. }`.

- **Note:** This allows you to debug the styling of elements, table of contents, and index, but not the styles of the page margin boxes (headers, footers) or page breaks.

- **Tip:** In the left pane of the **Developer Tools** interface, you can inspect elements and their styles in the **Elements** tab. You can click on any of the links to display the applied CSS files in the **Styles** tab in the right pane. Editing the styles in that pane results in a live preview of how the change will affect the output.

- **CAUTION:** Do not modify the built-in rules directly in the CSS files from the **Oxygen XML Editor/Author** installation. Instead, copy the rules to your own customization CSS.
Inspecting the Applied Styles Using Oxygen XML Editor/Author

To inspect styles:

1. In Oxygen XML Editor/Author, open the file ending in `merged.xml` or `merged.html` (for the DITA Map PDF - based on HTML5 & CSS transformation type).
2. [Optional] From the Styles toolbar, choose the + Print Ready entry. This will activate certain CSS selectors enclosed in `@media print {..}`.
3. Click on the element you want to style. Use the Inspect Styles action from the Contextual Menu. A specialized CSS Inspector view will show the built-in CSS rules.

Tip: With this file opened in Author mode, it might be helpful to switch the Tags Display Mode to Full Tags with Attributes. You might be able to identify the selector you need to style without using the CSS Inspector view.

Note: This allows you to debug styling of elements, but not of the page margin boxes (headers, footers) or page breaks.

CAUTION: Do not modify the built-in rules directly in the CSS files from the Oxygen XML Editor/Author installation. Instead, copy the rules to your own customization CSS.

Other techniques

These are some other techniques you may find useful:

- Add background and borders properties to the specific CSS rule. If they do not appear in the output then there is a problem with the rule selector.
- Try to use the !important notation to the property that is not applied, or make the selector more specific (you can add more parent selectors).
- To figure out how the elements are mapped into PDF, you can use this fragment in the customization CSS:

```css
* {
    border: 1pt solid blue !important;
}

*:before(1000) { 
    content: oxy_name() !important;
    color: orange;
}

*:before(999) {
```
How to Speed up CSS Development and Debugging

You can speed up your CSS development considerably by not invoking the entire pipeline of transforming your DITA maps to PDF. Instead, you can use the merged map (on page 2042) and transform it directly to PDF.

1. Transform your DITA Map to PDF using the DITA Map PDF - based on HTML5 & CSS or DITA Map PDF - based on DITA & CSS transformation scenario.
2. Open the merged file (on page 2042) (*.merged.html or *.merged.xml) that is located in the output directory in the editor.
3. Configure an XML to PDF transformation with CSS scenario. Do not set CSS files here since the merged file already contains pointers to the stylesheets. This scenario uses the Chemistry CSS processor.
4. Optional: Enable the output of the CSS processor using the following preferences page: Options > Preferences > XML > PDF Processors > CSS Processor.

Now you can make incremental changes to the CSS stylesheet and quickly see the results by transforming the merged file directly.

**Fastpath:** If your changes involve only element styling, with no specific paged media CSS rules and properties, you can simply open the merged file in a browser (such as Chrome or Firefox) and refresh at each CSS change, as shown in: Debugging the CSS (on page 2042).

How to Write XPath Expressions

This topic contains some guidelines for writing XPath expressions. They are used to extract the content from the merged DITA map document.

This is an example where the product name meta-information is placed before the front page title:

```xml
*[class="front-page/front-page-title"]:before {
    text-align: left;
    content: oxy_xpath("//*[contains(@class, 'topic/prodname')]/text()"[1]));
    display:block;
}
```
Notes:

- Do not use the DITA element names directly. You must use the DITA `@class` attribute instead, as these attributes are propagated to the merged elements (including HTML `<div>` elements) while the element names can be lost. By using the class selectors, you also cover DITA specializations.
- Use the `[1]` XPath predicate to select the first value from the document. For example, `oxy_xpath("///*[contains(@class, 'topic/prodname')]/text()])[1]`). The meta-information might be copied multiple times in the output, inherited by the `<topicref>` elements, so you can get many more values than expected.
- Do not use strings as values for the pseudo elements content, as the string values are not supported for pseudo elements. Instead, use the XPath directly.
- Use the Oxygen XPath Builder view to test the XPath expressions.

Related Information:

- How to Debug XPath Expressions *(on page 2046)*

How to Debug XPath Expressions

You can use the content extracted from the document using the `oxy_xpath` function in your pseudo elements (`:before`, `:after`) or in string-set variables.

For example, the following XPath finds the publication author, set in the DITA map:

```
<map>
  <title>The Art of Bike Repair</title>
  <topicmeta>
    <author>John Doe</author>
  </topicmeta>
...

:root {
  string-set: author oxy_xpath("///*[contains(@class, "front-page/front-page")]/*[contains(@class, "map/topicmeta")/*[contains(@class, "topic/author")]']/text()";}
```

To debug an XPath expression:

1. Read the XPath Expressions Guidelines *(on page 2045)*.
2. Begin by transforming your document using your customization CSS.
3. In the output folder, you will find a [MAP_NAME].merged.xml file (or if you are using the DITA Map PDF - based on HTML5 & CSS transformation, a [MAP_NAME].merged.html file).
4. Open the merged file in the Oxygen XML Editor/Author.
5. Activate the XPath Builder view (Window > Show View > XPath/XQuery Builder).
6. Paste your XPath expression and press the Execute XPath button. Check if it returns the expected results.

The XPath builder has a function that allows it to display the document path of the current element from the editor (Settings drop-down menu > Update on cursor move). Alternatively, you can right-click the element in the merged document and select the Copy XPath action, then paste it in the XPath builder.

Related Information:

- XPath Builder Documentation
- XPath Examples (w3schools.com)

Default Page Definitions

All page definitions are found in: [PLUGIN_DIR]css/print/p-pages-and-headers.css.

Note: This is listed solely for illustration purposes, as the plugin might use something different.

There are pages for the default page, chapter page, front matter page, back matter page, blank pages, index page, and large tables page.

Default Page

The default page imposes a header that contains the publication title, chapter, and section title. They alternate on the left or right side of the page:

```xml
@page :left {
    @top-left {
        content: string(maptitle) string(parttitle) string(chaptertitle)
        string(sectiontitle) " | " counter(page);
        font-size:8pt;
    }
}
```
Tip: To override the default rules defined for named pages (such as chapter or table of contents), you need to use more specific page rules that contain the page name:

```xml
@page: left, table-of-contents: left, chapter: left {
  @top-left {
    content: "...";
  }
}

@page: right, table-of-contents: right, chapter: right {
  @top-right {
    content: "...";
  }
}
```

Chapter Page

This is inherited from the default page. The chapter page is associated to the topics marked as chapters, usually direct children of the map. It clears the header from the first page of each chapter.

```xml
@page chapter{
  /* Currently inherit from the default page.*/
}

/* No headers on the chapter first page. */
@page chapter:first: left{
  @top-left {
    content: none;
  }
}

@page chapter:first: right{
  @top-right {
    content: none;
  }
}
```
Front Matter and Back Matter page

The bookmap front matter and back matter page. It clears the headers.

```xml
@page matter-page {
    @top-left-corner    { content:none }
    @top-left           { content:none }
    @top-center         { content:none }
    @top-right          { content:none }
    @top-right-corner   { content:none }
    @bottom-left-corner { content:none }
    @bottom-left        { content:none }
    @bottom-center      { content:none }
    @bottom-right       { content:none }
    @bottom-right-corner{ content:none }
}
```

Blank Pages

The following example clears the header for the blank pages that may be created by a `page-break-before`, `page-break-after`, or by using double side pagination (on page 2109):

```xml
@page :blank{
    @top-left { content: none;
    }
    @top-right { content: none;
    }
}
```

Index Page

The page that contains the index terms (appears only if there are such items in your topics). It uses a lower roman page number in the footer:

```xml
@page index {
    @top-left-corner   { content:none }
}
```
When transformed, the page layout is spread on two columns.

**Large Tables Page**

The big tables are placed on a rotated page, with orientation landscape:

```xml
@page landscape-page :right {
  size: landscape;

  @top-left {
    content: none
  }
  @top-center {
    content: none
  }
  @top-right {
    content: none
  }
  @right-bottom {
    content: string(maptitle) string(parttitle) string(chaptertitle) string(sectiontitle) " | " counter(page);
    font-size: 8pt;
    transform: rotate(90);
  }
}
```
<p>Page Size</p>

This is where you can find information on how the page sizes are defined.

**Page Size - Built-in CSS rules**

The {PLUGIN_DIR}/css/print/p-page-size.css file contains the default page rules. It uses the US-LETTER size (8.5 X 11 inches). The content of this file is:

```css
@page {
    padding-top: 0.2em;
    padding-bottom: 0.2em;
    size: us-letter;
}
```
How to Change the Page Size

Suppose you want to publish using the standard A4 page size, with a margin of 2cm.

In your customization CSS (on page 2041), use:

```css
@page {
    size: A4;
    margin: 2cm;
}
```

If you need different margins depending on the page side:

```css
@page {
    size: A4;
    margin: 2cm;
}
@page :left{
    margin-right: 4cm;
}
@page :right{
    margin-left: 4cm;
}
```

This would only increase the gutter margins or the inside margins needed for binding of the final book. The other margins would remain 2cm.

How to Change the Page Orientation

Suppose you want to publish on a landscape page. The default is portrait, so you need to change it by using the size property. This will contain both the physical measurements and the orientation. In your customization CSS (on page 2041), use:

```css
@page {
    size: us-letter landscape;
}
```
How to Change the Page Settings for a Specific Element

Suppose your publication is mainly using a portrait page orientation, but there are some topics that have wide images. To avoid having the images bleeding outside of the page, you could use a wider page setting (landscape).

1. Mark the topic with an `@outputclass` attribute and give it a distinct value (for example, `wide`).
   You can set the attribute on the root element of the topic, or on the `<topicref>` element from the map.

   **Note:** The `outputclass` values from the `topicref` automatically propagate to the root of the topic from the merged map (on page 2042).

2. In your customization CSS (on page 2041), match the output class and associate it with a named page. This page has landscape orientation and small margins. This technique works for any element (consider a table or a list) not necessarily a topic.

   ```xml
   *[outputclass = 'wide'] {
     page: wide-page;
   }

   @page wide-page {
     size: letter landscape;
     margin: 0.5in;
   }
   ```

Page Headers and Footers

The page headers and footers use the string sets defined for publication, chapter, and section titles. These string-sets are defined in the numbering CSS (on page 2088):

- **parttitle**
  Set to the title of the current part (only for DITA bookmaps that use parts).

- **chaptitile**
  Set to the title of the current chapter (Shallow and Deep numbering).

- **sectiontitle**
  Set to the title of each section (Deep numbering only).

Although you may define string sets in your customization CSS, you need to take into account the fact that the string-set CSS property is not additive, and matching the same elements will end up breaking the current definitions. A very common use-case is to match the title element that is also used in the default CSS. The best approach in this case is to take a look at the rules from the numbering CSS.
(on page 2088), copy the ones dealing with string sets to your customization, then alter the property definition by adding your definition to the existing ones (and not removing the existing ones).

Related Information:

- Numbering (on page 2088)

Page Headers and Footers - Built-in CSS

The headers and footers are part of the page definitions. To see how the default page layouts are defined, see: Default Page Definitions (on page 2047).

How to Position Text in the Headers and Footers

By default, the name of the publication and chapter titles are placed in the top-left or top-right page margin boxes:

```css
@page :left {
    @top-left {
        content: string(maptitle) string(parttitle) string(chaptertitle) string(sectiontitle) " | " counter(page);
    }
}

@page :right{
    @top-right {
        content: string(maptitle) string(parttitle) string(chaptertitle)
        string(sectiontitle) " | " counter(page);
    }
}
```

If you want to change this, you should use the content CSS properties of other page margin boxes, and inhibit the ones in the above content. For example, to set the chapter title in the page top left corner, you can use:

```css
@page :left {
    @top-left {
        content:none;
    }
    @top-left-corner {
```
Note: The corner page margin boxes are fixed and limited as the available space. Above, the `text-align` and `white-space` properties are used to make the text bleed out of these boxes towards the center of the page. If you plan to add an image or artwork background, you should consider using the technique described in: How to Decorate the Header by Using a Background Image on the Entire Page (on page 2060).

How to Change the Size of Headers and Footers

This is directly related to the page margins and size.

The headers and footers are placed in the so called page margin boxes, a series of rectangular areas residing in the page margins.

To affect the margins of all page definitions, you may use the following rule:

```css
@page {
  margin-top:3cm !important;
  margin-bottom:3cm !important;
  margin-left:2cm !important;
  margin-right:2cm !important;
}
```
If you want to affect only a specific page, like the first page from chapters for instance, you must use more specific page selectors. See the Default Page Definitions (on page 2047) for details.

Note that the page margin boxes fill the entire page margin. This means the margin-top, for example, dictates the height of the @top-left-corner, @top-left, @top-center, @top-right, @top-right-corner margin boxes. These cannot have margins on themselves, so to change the position of the content inside them, you must use padding properties:

```css
@page {
  @top-left {
    content: "...
    padding: 1cm;
  }
}
```

How to Change the Font of the Headers and Footers

To change the font for all the headers and footers, in your customization CSS (on page 2041), add a CSS rule similar to this:

```css
@page {
  font-size: 12pt;
  font-family: "Arial";
}
```

⚠️ **Important:** These settings apply to all page margin boxes, but not to the text inside the page.

If you want to change the settings only for a specific page type (for example, the table of contents), use the name of the page:

```css
@page table-of-contents {
  font-size: 12pt;
  font-family: "Arial";
}
```

**Related Information:**

- How to Change the Header of the Table of Contents (on page 2099)
How to Add a Multi-line Copyright Notice to the Footer

Suppose you want to add a footer with the following two lines of text at the end of each page that is shown on the right side:

© 2017 - My Company Ltd
All rights reserved

For this, you need to specify a rule that matches all the right pages and adds that content in the bottom-center. In your customization CSS (on page 2041), add the following CSS rule:

```css
@page :right {
    @bottom-center {
        content: "© 2017 - My Company Ltd \A All rights reserved";
        font-size: 0.5em;
        color: silver;
    }
}
```

**Note:** Other page rules (such as the table-of-contents) override the contents of the @bottom-center because they are more specific. If you need to also print the copyright in the TOC pages, then use this as the selector:

```css
@page :right, table-of-contents:right {
    ...
}
```

**Note:** To use new lines (\n characters) in your headers or footers, use the \A notation, as in the example above.

How to Add a Group of Topics to the Footer

To create a footer that contains the content of several topic files, but only on the last page, there are two possible approaches:

**Method 1: Using the position:fixed CSS Property**

1. Group all the footer topics under a single parent topic, under the last topic from your DITA map. For example, you can have the following map structure:

```dita
...
End topic
    Footer container topic
```
2. Add an `<outputclass>=footer` on the `<topic>` root element of the footer container topic, or on its `<topicref>` in the map.

3. Use the CSS `position: fixed` property to position this topic to the bottom of the page:

```css
*[outputclass ~= "footer"] {
    position: fixed;

    bottom: 0.5in;
    left: 0.5in;

    width: 5in;
    height: 200pt;
}
```

**Note**: Make sure the width and height are enough for the content of the footer to fit. Be careful because the content might bleed out of the page. Use bottom and left values to position the block in the page.

**Method 2: Using the float:footnote CSS Property**

The second approach would be to declare the footer block as a footnote. Assuming the same DITA Map structure as above, you can use the following CSS fragment:

```css
*[outputclass ~= "footer"] {
    float: footnote;
}

*[outputclass ~= "footer"]:footnote-call{
    color: transparent;
    font-size: 0;
}

*[outputclass ~= "footer"]:footnote-marker{
    color: transparent;
    font-size: 0;
}
```

**Note**: Use transparent colors and/or zero size font to avoid the display of the footnote counters.
How to Add a Background Image to the Header

A common use-case is to add a background image to one of the page corners.

```css
@page :left {
    @bottom-left-corner{
        content: " ";
        background-image: url('https://www.oxygenxml.com/resellers/resources/OxygenXMLEditor_icon.svg');
        background-repeat:no-repeat;
        background-position:50% 50%;
    }
}

⚠️ Important: Always specify a `content` property. If not, the page margin box will not be generated.

Another use-case is to use one of the `@top-left` or `@top-right` page margin boxes. These boxes have an automatic layout and they can be very small if they have no content. If there is no text to be placed over the image, use a series of non-breaking spaces ( \A0 ) to increase the box width as in the following example (alternatively, you can use the technique described in How to Decorate the Header by Using a Background Image on the Entire Page (on page 2060)):

```css
@page :left {
    @top-left{
        content: '\A0\A0\A0\A0\A0\A0\A0\A0\A0\A0';
        background-image: url('https://www.oxygenxml.com/resellers/resources/OxygenXMLEditor_icon.svg');
        background-repeat:no-repeat;
        background-position:50% 50%;
    }
}

‼️ Note: You can use raster image formats (such as PNG or JPEG), but it is best to use vector images (such as SVG or PDF). They scale very well and produce better results when printed. In addition the text from these images is searchable and can be selected (if the glyphs have not been converted to shapes) in the PDF viewer.

Related Information:

- Images and Figures (on page 2150)
How to Decorate the Header by Using a Background Image on the Entire Page

If you want to precisely position artwork and the page margin boxes are not sufficient, it is possible to use a background image for the entire page.

This technique consists of creating an image (SVG is the best since it is a vector image) as wide as the page that would contain the logo and placing other decorations at the desired locations. This offers the best results and the position of the artwork does not depend on the page margin contents.

Example:

```xml
@page :left, chapter:left, chapter:first:left {
  background-image: url('img/page_background_image_with_logos_and_artwork_for_left_page.svg');
  background-repeat: no-repeat;
  background-position: 50% 50%;
}
```

For a list of all the possible page names, see: Default Page Definitions (on page 2047).

Related Information:

• How to Add a Background Image for the Cover (on page 2078)

How to Style a Part of the Text from the Header

If you need to style a fragment of text (for example, a company slogan) with certain colors or font styles, you have several options:

• Use an SVG image as background for a page margin box or for the entire page. See: How to Add a Background Image to the Header (on page 2058).
• Use the oxy_label constructor. This is a function that creates a text label with a set of styles.

```xml
@page {
  @top-right {
    content: oxy_label(text, "My Company", styles, "color:red; font-size: larger;");
  }
}
```
You can combine the `oxy_label` with `oxy_xpath`, to extract and style a piece of text from the document:

```xml
oxy_label(text, oxy_xpath("/some/xpath"), styles, "color:blue; ");
```

Note: These functions work only with the Chemistry CSS processor.

Note: You cannot use `string()` inside an `oxy_label()`. As a workaround, to apply styling on the dynamic text retrieved by a `string()` function you can define some overall styles for the entire page margin box and then use the `oxy_label` to style differently the static text.

```css
@page {
  @top-right {
    color: red;
    content: oxy_label(text, "My Company", styles, "color:black")
      ,
      string(chaptertitle); /* This inherits the styling from @top-right*/
  }
}
```

• Use two adjacent page margin boxes, and style them differently:

```css
@page {
  @top-center {
    content: "First part";
    color: red;
    text-align:right;
  }
  @top-left {
    content: "- Second part";
    color: blue;
    text-align:left;
  }
}
```
How to Simplify the Header (Keep Only the Chapter Title)

The headers display information such as map title, part title, chapter title, and section title, ending in the page number.

```css
counter: string(maptitle) string(parttitle) string(chaptertitle) string(sectiontitle) " |
    counter(page);
```

This might be too much if you have long titles. The solution is to override the default header content.

In your customization CSS (on page 2041), add the following CSS rule:

```css
$page :left {  
    @top-left {  
        content: string(chaptertitle) " | " counter(page);  
    }  
}  
$page :right {  
    @top-right {  
        content: string(chaptertitle) " | " counter(page);  
    }  
}
```

⚠️ **Important:** Some of the CSS default page rules are more important. If you see that the content does not change:

- Try to also specify the name of the page, to increase the specificity of the rules:

  ```css
  @page :left, table-of-contents:left, chapter:left {  
    ...  
  }  
  @page :right, table-of-contents:right, chapter:right {  
    ...  
  }
  ```

- Add an `!important` classifier just before the semi-colon.

  ```css
  @top-right {  
    content: string(chaptertitle) " | " counter(page) !important;  
  }
  ```
How to Change the Header Separators (Between Sections and Chapter Titles)

There are some strings defined for part, chapter, and sections. Each of these strings start with the " | " character as a separator. For example, in the header of a page, you may find a sequence of strings:

| My Publication | Introduction | Getting Started |

1. "My Publication" is the value of the maptitle string.
2. "Introduction" is the value of the chaptertitle string.
3. "Getting Started" is the value of the sectiontitle string.

There might be cases where you want to change this separator. You will need to recompose the header content using the above string sets. Suppose you want to use " - " as a separator. In your customization CSS (on page 2041), add the following CSS rule:

```css
* [class ~="topic/topic"] [is-part] > * [class ~="topic/title"] {  
  string-set: parttitle " - " counter(part, upper-roman) " - " content(),  
  chaptertitle ""; /* Avoid propagating a past chapter title on a new part */
}
* [class ~="topic/topic"] [is-chapter]:not([is-part]) > * [class ~="topic/title"] {  
  string-set: chaptertitle " - " counter(chapter) " - " content();
}
```

If you enabled the deep numbering for chapters and subsections (on page 2092), then use:

```css
/*  
 * Alter the string sets that are shown in the header of the page.  
 */
* [class ~="map/map"] [p|numbering~='deep'] * [class ~="topic/topic"] [is-part] > * [class ~="topic/title"] {  
  string-set: parttitle " - " counter(part, upper-roman) " - " content(),  
  chaptertitle ""; /* Avoid propagating a past chapter title on a new part */
}
* [class ~="map/map"] [p|numbering~='deep'] * [class ~="topic/topic"] [is-chapter]:not([is-part]) > * [class ~="topic/title"] {  
  string-set: chaptertitle " - " counter(chapter) " - " content(), sectiontitle "";
}
* [class ~="map/map"] [p|numbering~='deep'] * [class ~="topic/topic"] [is-chapter]:not([is-part]) > * [class ~="topic/title"] > * [class ~="topic/title"] {  
  string-set: sectiontitle " - " counter(chapter) "." counter(section1) " - " content();
}
```
How to Change the Header Styling Depending on Page Side

To modify the styling of the default page headers, add the following CSS rule in your customization CSS (on page 2041):

```
@page :left {
    @top-left {
        color: navy;
        font-style: italic;
    }
    @top-right {
        color: red;
    }
}
```

If you intend to modify just the headers of the table of contents, use the `table-of-contents` page rule selector:

```
@page table-of-contents: left {
    @top-left {
        color: navy;
        font-style: italic;
    }
    @top-right {
        color: red;
    }
}
```

How to Use XPath Computed Data or Images in the Header or Footer

A very simple approach is to use the `oxy_xpath` directly in the `content` property:

```
@page front-page {
    @top-center {
        content: "Created: " oxy_xpath('//*'[contains(@class, " topic/created "])[1]');
    }
}
```

Example 1: Compute the Number of Words

The following example computes the number of words from the publication. It counts all the words, including the ones from the TOC, but does not take the static labels into account:

```
@page front-page {
```
Note: The XPath expression from the page rules is evaluated in the context of the document root element, so you will need to use absolute expressions starting with / or // . This is different from the case when the oxy_xpath is used in CSS rules that match an element. In this case, the XPath expressions are evaluated in the context of the matched element and you can use relative paths.

Tip: XPath 2.0 is supported (not schema aware).

Example 2: Retrieve Image from a Document and Insert it in the Header

Another example is to use an image from the document in the publication header:

```xml
<bookmeta>
  <metadata>
    ...
    <data name="cover">
      <image href="product-cover.png" outputclass="cover-image"/>
    </data>
    ...
  </metadata>
</bookmeta>
```

```css
@page {
  @top-center {
    content: url("oxy_xpath('//*[contains(@outputclass, "cover-image")/@href"]");
  }
}
```

If the URL returned by oxy_xpath is not absolute, it is considered to be relative to the CSS file. To obtain an absolute URL from one relative to the XML document, you can use in the XPath expression functions like resolve-uri and document-uri:

```css
@page {
  @top-center {
    content: url(oxy_xpath("resolve-uri('//*[contains(@outputclass, 'cover-image')]/@href"), document-uri(/))");
  }
}
```
Example 3: Insert the Current Date in the Footer

Another example is to use the `oxy_xpath` function to compute the current date and insert it in the publication footer:

```xml
@page {
  @bottom-left {
    content: oxy_xpath('current-date()');
  }
}
```

Related Information:

• Oxygen PDF Chemistry User Guide: Headers and Footers

• [http://zvon.org/xxl/XPathTutorial/General/examples.html](http://zvon.org/xxl/XPathTutorial/General/examples.html)

• Oxygen User Guide: `oxy_xpath()` Function

How to Change Header Images for Each Chapter

It is possible to dynamically change an image in the header depending on the chapter. For this, you need to define an image reference in the metadata section of each chapter. One way is to specify it in the DITA map by using the `<topicmeta>` element for the `<chapter>` topic reference:

```xml
...<chapter href="topics/installing.dita">
  <topicmeta>
    <data name="header-image" value="img/installing.png"/>
  </topicmeta>
..."
```

In the above example, there is a set of key value pairs with the name `header-image`. The `img/installing.png` is an image reference relative to the DITA map URI. This information is automatically copied into the content in the merged map file (on page 2042), like this:

```xml
<topic is-chapter="true" ...>
  <title class="--topic/title">Installing</title>
```
You install components to make them available for your solution.

This information can be picked up from CSS:

```css
/* Define the string set variable that contains an URL */
*[^class ~="topic/topic"][^class ~="topic/data"][^name="header-image"] {
    string-set: imgst oxy_url(oxy_xpath(`/@xtrf`), attr(value));
}

/* Using the value='none' stops applying the image. */
*[^class ~="topic/topic"][^class ~="topic/data"][^name="header-image"][^value="none"] {
    string-set: imgst "";
}

/* Use the string set variable in one of the page margin boxes. */
@page chapter {
    @top-left-corner {
        content: string(imgst);
        font-size:0; /* remove the font ascent and descent */
    }
}
```

**Details:** The `@value` attribute is used to build a URL relative to the URI of the DITA map. To determine the base URI of the DITA map, the `@xtrf` attribute was used from the root element of the merged map document, extracted using the `oxy_xpath` function.

**Notes:**

- The image is always aligned vertically to the middle of available space from the page margin box.
- Make sure you use an image of the correct size. For example, if you want to place the image in the top-left corner of the page, assuming the top and left page margins are 1 in, then make sure the image is a square having a size of 1 in.
- The image is applied to all pages that follow the data element, until another data element changes it:
To clear the image, use the `none` value:

```
...<data name="header-image" value="none"/>
...
```

### How to Add a Line Under the Header

There are two ways to add a horizontal line under the header.

#### Method 1: Add a Border in the Page Margin Boxes

To add a horizontal line that would stretch across the width of the page, add a bottom border to each of the 5 margin boxes in the top side of the page (`top-left-corner`, `top-left`, `top-center`, `top-right`, `top-right-corner`).

If you consider that the space between the header and the bottom border is too large, you could also change the alignment by adding a `vertical-align: bottom;` declaration in the page margin boxes.

For example, if you need to set some text as a header in the top-left margin box and insert a horizontal line under it, the customization CSS would look something like this:

```css
@page chapter, chapter:first: left: right, front-page{
...
Note: The `padding-top: 1em;` is used to avoid the border at the bottom of the header that joins with the page content.

**Method 2: Use a Background Image**

An alternative method is to add a horizontal line/border under an existing header (or in any other part of the page) using an SVG image, as described in How to Add a Background Image to the Header (on page 2058).
Metadata

DITA has a solid vocabulary for specifying metadata. There are `<prolog>` elements in the topics, and `<topicmeta>`, `<bookmeta>` elements in the bookmaps. They can be used to define authors, dates, audiences, organizations, etc. See: https://www.oxygenxml.com/dita/1.3/specs/archSpec/base/metadata-in-maps-and-topics.html

It is up to you to decide where this information should be presented, in the PDF content or in the PDF document properties.

Metadata - XML Fragment

In the merged map file (on page 2042), the metadata section is placed inside the `<oxy:front-page>` element. This is different from the original placement in the map or bookmap - after the title, but allows usage of information from it in the title page.

Bookmaps

This is an example of a section taken from a merged bookmap. It only contains some of the possible metadata elements. The `<bookmeta>` metadata section is inherited from `<topicmeta>`:

```xml
         xmlns:opentopic-index="http://www.idiominc.com/opentopic/index" cascade="merge"
         class="- map/map bookmap/bookmap "
         ditaarch:DITAArchVersion="1.3">


        <bookmeta xmlns:dita-ot="http://dita-ot.sourceforge.net/ns/201007/dita-ot"
                   class="- map/topicmeta bookmap/bookmeta ">

            <author class="- topic/author ">Howe Tuduit</author>
            <bookid class="- topic/data bookmap/bookid">
                <isbn class="- topic/data bookmap/isbn ">071271271X</isbn>
                <booknumber class="- topic/data bookmap/booknumber ">SG99-9999-00</booknumber>
                <maintainer class="- topic/data bookmap/maintainer ">
                    <organization class="- topic/data bookmap/organization ">ACME Tools</organization>
                    <person class="- topic/data bookmap/person ">
                    </person>
                </maintainer>
            </bookid>

        </bookmeta>

    </oxy:front-page>
</bookmap>
```

...
For the DITA Map PDF - based on HTML5 & CSS transformation type, the merged map is further processed resulting in a collection of HTML5 `<div>` elements. These elements preserve the original DITA `@class` attribute values and add a new value derived from the DITA element name.
Maps

The maps have a more simple structure, they use the `<topicmeta>` element for metadata sections. This is also a simplified example, as there may be many more elements in the metadata section:

```xml
     xmlns:opentopic-index="http://www.idiominc.com/opentopic/index"
     cascade="merge" class="- map/map "
     ditaarch:DITAArchVersion="1.3">
    ...
</map>


   <topicmeta class="- map/topicmeta ">
      <author class="- topic/author ">Dan C</author>
   </topicmeta>
   ...
</oxy:front-page>
```

For the DITA Map PDF - based on HTML5 & CSS transformation type, the merged map is further processed resulting in a collection of HTML5 `<div>` elements:

```xml
     xmlns:opentopic-index="http://www.idiominc.com/opentopic/index"
     cascade="merge" class="- map/map "
     ditaarch:DITAArchVersion="1.3">
    ...
</div>

<div class=" front-page/front-page front-page">
   ...
</div>

<div class="- map/topicmeta topicmeta">
   <div class="- topic/author author">
      Dan C
   </div>
</div>
```
Metadata - Built-in CSS rules

The [PLUGIN_DIR]/css/print/p-meta.css file contains the rules that extract metadata.

How to Add the Publication Audience to the Custom PDF Metadata

The audience element indicates the users the publication is addressing. This can be placed inside a <topicmeta> element in a <map> as in the following example:

```xml
<map>
  ...
  <topicmeta>
    ...
    <audience type="programmer" job="programming" experiencelevel="expert"/>
  </topicmeta>
</map>
```

To collect the @type attribute, add the following in your customization CSS (on page 2041):

```css
*[^class ~= "map/map"] > *[^class ~= "map/topicmeta"] > *[^class ~= "topic/audience"] {
  -oxy-pdf-meta-custom: "Audience" attr(type);
}
```

**Note:** It is best to use the class selector (such as *[^class ~= "map/topicmeta"]*) instead of topicmeta to cover cases where the elements are specialized (for instance, in a bookmap the bookmeta is a topicmeta, so your selector will also function for bookmaps, not only simple maps.

**Note:** The selector begins with map > to choose the <topicmeta> that is a direct child of the map, not other <topicmeta> elements from other <topicref> elements.

The metadata is displayed in the Custom tab of the Document Properties dialog box from Acrobat Reader:
How to Show Metadata in the Cover Page

Suppose you need to present the **author** and the **ISBN** just under the publication title. Your bookmap contains:

```xml
<bookmap id="taskbook">
  <booktitle>
    <booklibrary>Retro Tools</booklibrary>
    <mainbooktitle>Product tasks</mainbooktitle>
    <booktitlealt>Tasks and what they can do</booktitlealt>
  </booktitle>
  <bookmeta>
    <author>Howe Tuduit</author>
    <critdates>
      <created date="1/1/2015"/>
      <revised modified="3/4/2016"/>
      <revised modified="3/5/2016"/>
    </critdates>
    <bookid>
      <isbn>071271271X</isbn>
      <booknumber>SG99-9999-00</booknumber>
    </bookid>
  </bookmeta>
</bookmap>
```
The entire `<booktitle>` element content is displayed on the first page of the PDF, so suppose you need to add the information after it.

In your customization CSS (on page 2041), add the following CSS rules:

```css
*[class =~ "bookmap/booktitle"]:after {
    display:block;
    content: "by " oxy_xpath('//*[contains(@class, " bookmap/bookmeta ")]//
*[contains(@class, " topic/author ")]//text()');
    margin-top: 4em;
    text-align: center;
    color: gray;
}
*[class =~ "bookmap/booktitle"]:after(2) {
    display:block;
    content: "ISBN " oxy_xpath('//*[contains(@class, " bookmap/isbn ")]//text()');
    text-align: center;
    color: gray;
}
```

The following CSS extensions were used in this example:

- **oxy_xpath** - Executes an XPath expression and returns a string content. Use this whenever you need to extract data from elements other than the one matched by the CSS rule selector.
- **:after(N)** - Creates more than one `after` pseudo element. The argument value represents how far the generated content is from the real content. In the example above, the content of the `:after` is closer to the title (upper) than the content of the `:after(2)`.

Note: The `attr()` CSS function can also be used but is limited to extracting attribute values from the matched element.

**Generating Synthetic Pages for Metadata.**

Suppose you need to show this information on a page that follows the title page, instead of on the title page. In this case, you need to prepare a named page and place the content on it. In your customization CSS (on page 2041), add the following CSS rules:

```css
@page page-for-meta {
    background-color: yellow; /* Just to see it better*/
    @top-left-corner {
        content:""; /* Remove the default header */
    }
```
How to Show Metadata in the Header or Footer

The header and footer are composed of page margin boxes that can be populated with static text by using string-sets.

If you need to add some of the map metadata to the header of the front page (for example, the creation date), add the following CSS rules in your customization CSS (on page 2041):

```css
 *[class ~= "bookmap/booktitle"]:after {
   page: page-for-meta;
 }
 *[class ~= "bookmap/booktitle"]:after(2) {
   page: page-for-meta;
 }

@page front-page {
  @top-center {
    content: "Created: " string(mapcreated);
  }
}
```

**Note:** The front-page is the name of a page that used to present the element with the class “front-page/front-page”. The above page rule is combined with the default styles.

Cover (Title) Page

Customizing the cover page is one of the most requested customization requests.
The merged map file (on page 2042) contains the <oxy:front-page> element, as a child of the root element. This contains the metadata and an <oxy:front-page-title> element with the title structure.

```xml
<bookmap xmlns:ditaarch="http://dita.oasis-open.org/architecture/2005/" ...
<bookmeta xmlns:dita-ot="http://dita-ot.sourceforge.net/ns/201007/dita-ot"
<oxy:front-page-title>
<booktitle xmlns:dita-ot="http://dita-ot.sourceforge.net/ns/201007/dita-ot"
  class="- topic/title bookmap/booktitle ”>
  <booklibrary class="- topic/ph bookmap/booklibrary ”>Retro Tools</booklibrary>
  <mainbooktitle class="- topic/ph bookmap/mainbooktitle ”>Tasks</mainbooktitle>
  <booktitlealt class="- topic/ph bookmap/booktitlealt ”>Product tasks</booktitlealt>
</booktitle>
</oxy:front-page-title>
</oxy:front-page>
```

For the DITA Map PDF - based on HTML5 & CSS transformation type, the merged map is further processed resulting in a collection of HTML5 <div> elements. These elements preserve the original DITA @class attribute values and add a new value derived from the DITA element name.

```xml
<div class="- map/map bookmap/bookmap bookmap">
  <div class=" front-page/front-page front-page front-page">
    <div class="- map/topicmeta bookmap/bookmeta bookmeta">
      ...
    </div>
  </div>
<div class=" front-page/front-page-title front-page-title">
  <div class="- topic/title bookmap/booktitle booktitle">
    <div class="- topic/ph bookmap/booklibrary booklibrary”>Retro Tools</div>
    <div class="- topic/ph bookmap/mainbooktitle mainbooktitle ”>Tasks</div>
    <div class="- topic/ph bookmap/booktitlealt booktitlealt ”>Product tasks</div>
  </div>
</div>
```

...
Cover Page - Built-in CSS rules

The element with the class `frontpage/frontpage` is associated with a page named `front-page` with no headers or footers. The front page title is styled with a bigger font. The built-in CSS rules are in `[PLUGIN_DIR]/css/print/p-front-page.css`.

```css
@media print {

  *[class~="front-page/front-page"] {
    page: front-page;
  }

  *[class~="front-page/front-page-title"] {
    display:block;
    text-align:center;
    margin-top:3in;
    font-size:2em;
    font-family:arial, helvetica, sans-serif;
    font-weight:bold;
  }

  @page front-page {
    @top-left-corner { content:none }
    @top-left { content:none }
    @top-center { content:none }
    @top-right { content:none }
    @top-right-corner { content:none }
    @bottom-left-corner { content:none }
    @bottom-left { content:none }
    @bottom-center { content:none }
    @bottom-right { content:none }
    @bottom-right-corner{ content:none }
  }
}
```

Note: This is listed solely for illustration purposes, as the plugin might use something different.

How to Add a Background Image for the Cover

The simplest way is to create an SVG image as large as the entire physical page and set it as the background for the `front-page`. This makes it very easy to accomplish a good positioning of the
graphical elements or artwork. In the foreground, you can place text fragments using a series of :after pseudo elements bound to the front page title.

To set the size to an SVG image, you should specify the @width and @height attributes on the <svg> root element using specified unit values (in, cm, etc.) This should be enough only if all the coordinates from your drawing have unit identifiers.

If you are using unit-less coordinates in your drawing like the following:

```
<polygon points="17.78 826.21 577.51 ....
```

then make sure you also specify a @viewBox attribute on the <svg> root element that defines the abstract rectangle that contains the drawing:

```
<svg xmlns="http://www.w3.org/2000/svg" width="8.5in" height="11in" viewBox="0 0 600 850">
```

The following SVG document has the @width, @height, and @viewBox attributes. The width and height have physical units (in inches), while the view box and rectangle coordinates are unit-less.

```
<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN" "http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd">
<svg xmlns="http://www.w3.org/2000/svg" width="8.5in" height="11in" viewBox="0 0 110 110">
  <desc>A gradient as big as a page.</desc>
  <defs>
    <linearGradient id="lc"
      x1="0%" y1="0%"
      x2="0%" y2="100%"
      spreadMethod="pad">
      <stop offset="0%" stop-color="#00DD00" stop-opacity="1"/>
      <stop offset="100%" stop-color="#00AA00" stop-opacity="1"/>
    </linearGradient>
  </defs>
  <rect x="5" y="5" width="100" height="100" rx="10" ry="10"
    style="fill:url(#lc); stroke: #005000; stroke-width: 3;"/>
  <text x="33%" y="50%" color="#FFFFAA">Sample</text>
</svg>
```
This example shows a gradient. It is the size of a US-LETTER page and can be used in a publication using this page size.

**Note:** You can use raster image formats (such as PNG or JPEG), but it is best to use vector images (such as SVG or PDF). They scale very well and produce better results when printed. In addition the text from these images is searchable and can be selected (if the glyphs have not been converted to shapes) in the PDF viewer.

In your customization CSS *(on page 2041)*, add the following:

```css
@page front-page {
    background-image: url("us-letter.svg");
    background-position: center;
}
```

For smaller artworks, you can use `background-position` with percentage values to position and center the artwork (for example, a company logo):

```css
@page front-page {
    background-image: url("company-logo.svg");
    background-position: 50% 5%; /* The first is the alignment on the X axis, the second on the Y axis.*/
    background-repeat: no-repeat;
}
```

**Note:** The text from the SVG or PDF background images are searchable in the PDF reader.

Related Information:

- Oxygen PDF Chemistry: Graphics

How to Change Styling of the Cover Page Title

Match the front page title element in your customization CSS *(on page 2041)* based on its class attribute:

```css
*[class =~ "front-page/front-page-title"] {
    margin-top: 1in;
    font-size: 3em;
}
```
How to Add Text to the Cover Page

If you need to add arbitrary text to the cover page, you can use the front page title element as an anchor and add as many blocks of text as you need after it, and style them differently.

In your customization CSS (on page 2041), add the following:

```css
*[class =~ "front-page/front-page-title"]:after(1) {
  display:block;
  content: "DRAFT VERSION";
  font-size: large;
  color: red;
  text-align:center;
}

*[class =~ "front-page/front-page-title"]:after(2) {
  display:block;
  content: "DO NOT DISTRIBUTE WITHOUT PERMISSION";
  font-size: large;
  color: red;
  text-align:center;
  font-style: italic;
}
```

The result is:

![Result Image]

To use content from the document, you can use the `oxy_xpath` function in the `content` property. For a more complex example, including the generation of a new page for the synthetic `:after` elements, see: How to Show Metadata in the Cover Page (on page 2074).

Related Information:
How to Place Cover on the Right or Left Side

In your customization CSS (on page 2041), add the following CSS rules:

```
*[class ~="front-page/front-page"]{
    page-break-before: left;
}
```

⚠️ **Note:** This will create an empty page at the beginning of the publication, moving the cover content on the needed side.

For more information, see: Oxygen PDF Chemistry: Controlling Page Breaks.

Related Information:

- Double Side Pagination (on page 2109)

How to Add a Specific Number of Empty Pages After the Cover Page

In your customization CSS (on page 2041), add the following CSS rules:

```
@page my-blank-page {
    /* Hide the page numbers */
    @top-left {content: none};
    @top-right {content: none};
}

*[class ~='front-page/front-page']:after(1){
    page:my-blank-page;
    display:block;
    content:'\2002';
    color:transparent;
    page-break-after:always;
}

*[class ~='front-page/front-page']:after(2){
    page:my-blank-page;
    display:block;
```

Note: The \002 character is a space that is not shown on the pages, but gives a value for the content property.

Related Information:

- How to Force an Odd or Even Number of Pages in a Chapter (on page 2110)

How to Add a Copyright Page after the Map Cover (Not for Bookmaps)

Regular DITA maps do not have the concept of a copyright notice. This is available only in the DITA bookmap structure.

If you are constrained to using a regular map and you need to add a copyright page between the front cover and the TOC, use the following technique:

In your customization CSS (on page 2041), declare a new page layout:

```css
@page copyright-notice-page {
  @top-left {
    content:none; /* Clear the headers for the copyright page */
  }
  @top-right {
    content:none;
  }
}
```

The oxy:front-page element contains the title of the publication and generates the cover page. A synthetic :after element is created that follows this element and it is placed on a different page.

```css
front-page:after{
  content: '\002';
  page-break-after:always;
}
```
display:block;

page: copyright-notice-page; /* Moves the synthetic element on a new page. */

margin-top:90%; /* use margins to position the text in the page */
margin-left: 5em;
margin-right: 5em;

content: "Copyright 2018-2019 MyCorp Inc. All rights reserved";

text-align: center; /* More styling */
color: blue;
}

If you need to add more content as blocks, use the :after(2), :after(3) pseudo elements:

front-page:after(2){

display:block;
page: copyright-notice-page; /* Continue on the same page as the first ':after'. */
content: "Some more styled text";
color: red;
}

If you want to extract information from the document, use the oxy_xpath() function. For example, if the copyright info is stored in the map like this:

<map ...>
  <topicmeta>
    <copyright>
      <copyryear year="2018"/>
      <copyrholder>MyCorp Inc.</copyrholder>
    </copyright>
  </topicmeta>
  ...
</map>

Use:

front-page:after(3){

display:block;
page: copyright-notice-page;
content: "Year: oxy_xpath('//*:front-page/topicmeta/copyright/copyryear/@year')"
How to Remove the Cover Page and TOC

If you need to hide or remove the cover page, the table of contents or other structures, match the elements with a "front-page/front-page" and "toc/toc" classes in your customization CSS (on page 2041):

```
/*[class =~ 'map/map'] > *[class =~ 'toc/toc'] {
  display:none !important;
}
/*[class =~ 'map/map'] > *[class =~ 'front-page/front-page']{
  display:none !important;
}
/*[class~='topic/topic'][is-chapter] {
  -oxy-page-group : auto;
}
```

Front Matter and Back Matter

The **front matter** is a series of topics that are usually placed after the cover page and before the TOC or the content.

The **back matter** is a series of topics that are usually placed after the content of the book.

Front Matter and Back Matter - XML Fragment

In the merged map file (on page 2042), the frontmatter topics are wrapped in an `<oxy:front-matter>` element that has the class `bookmap/frontmatter` (it is a clone of the original `<frontmatter>` element from the map):

```
<bookmap xmlns:ditaarch="http://dita.oasis-open.org/architecture/2005/" ...>
    class=" front-page/front-page ">
    ...
  </oxy:front-page>
    class="- map/topicref bookmap/frontmatter ">
    <concept xmlns:dita-ot="http://dita-ot.sourceforge.net/ns/201007/dita-ot"
      class="- topic/topic concept/concept ">
For the **DITA Map PDF - based on HTML5 & CSS** transformation type, the merged map is further processed resulting in a collection of HTML5 `<div>` elements. These elements preserve the original DITA `@class` attribute values and add a new value derived from the DITA element name.

```
<oxy:front-matter
...
</oxy:front-matter>
```

Front Matter and Back Matter - Built-in CSS

The built-in CSS rules are in `[PLUGIN_DIR]/css/print/p-bookmap-frontmatter-backmatter.css`. By default, it associates the top-level topics that do not represent chapters to a `matter-page` style of page layout. Each child topic starts on a new page.

Related Information:

- Page Headers and Footers (on page 2053)

How to Remove Page Breaks Between Front Matter Child Topics

If you do not like the fact that all the topics that enter a bookmap frontmatter start on a new page, you can disable this by using the following rules in your customization CSS (on page 2041):

```
* [class =~ "map/map"] > * [class =~ "topic/topic"]:not([is-chapter]) {
  page-break-before: auto;
}
```
How to Style the Front Matter and Back Matter Topics

Style all the Topics with the Same Aspect

All the topics referenced from the `<frontmatter>` and `<backmatter>` bookmap elements are formatted using the `matter-page` as defined in Default Page Definitions (on page 2047). In the merged file, the `<backmatter>` and `<frontmatter>` elements are omitted, and their child topic content is matched using a CSS rule like the one below:

```
*[class =~ "map/map"] > *[class =~ "topic/topic"]:not([is-chapter]){
    page: matter-page;
    ...
}
```

Style the Topics Depending on Their Role

There might be cases when you need to distinguish between different topics having different roles in your publication:

- Preface
- Notice
- Abstract
- Copyright

These are referenced from the DITA map by specialized `<topicref>` elements, with different class attribute values.

The class attribute values are then passed by the transformation process onto the corresponding topic elements from the merged map content. For example, a topic that was referenced by a `<preface>` map element now has a "bookmap/preface" value in its `@topicrefclass` attribute:

```
<topic class="- topic/topic "
    id="unique_1"
    topicrefclass="- map/topicref bookmap/preface " .. >
    ...
</topic>
```

This can be used to match and apply different styling, or even a different page layout:

```
@page preface-page {
    background-color:silver;
    @top-center{
```
Numbering

The topics in this section contain some technical details in case you need to fine-tune the way the numbering works.

Numbering - Built-in CSS

The built-in CSS rules are in:

- `[PLUGIN_DIR]/css/print/p-numbering-shallow.css`
- `[PLUGIN_DIR]/css/print/p-numbering-deep.css`
- `[PLUGIN_DIR]/css/print/p-numbering-deep-chapter-scope.css`
- `[PLUGIN_DIR]/css/print/p-numbering-deep-chapter-scope-no-page-reset.css`

The first CSS (shallow) contains rules that add a "Chapter NN" before the first-level topics from the publication, the second one (deep) contains rules that add a deep structure of counters on all topics referenced from the map (at any level), the third one (chapter-scope) creates a chapter scope-oriented numbering (meaning that the numbering for pages, tables, figures, and links to them are reset for each chapter), and the last one is similar to the third except that page numbers do not reset. For more details, see Numbering Types (on page 2092).

Numbering - Input XML Fragments

The numbering affects multiple logical parts of your publication, the table of contents, headers/footers, chapter titles, figures and tables titles:

The Table of Contents

The table of contents is a tree of `<topicref>` elements.
Note: The <opentopic:map> element contains the effective table of contents structure.

Note: The TOC items are the elements with the class: - map/topicref.

Note: The ones identified as chapters have the @is-chapter attribute set.

For the DITA Map PDF - based on HTML5 & CSS transformation type, the merged map is further processed resulting in a collection of HTML5 <div> elements. These elements preserve the original DITA @class attribute values and add a new value derived from the DITA element name.
The Header and Footers

These are based on string sets generated for the titles. The complete set of strings is defined in:
[INSTALLATION_DIR]/css/print/p-pages-and-headers.css.

The CSS rules that build the string sets are matching the map title from the front page and the titles from the content.

For the DITA Map PDF - based on HTML5 & CSS transformations:

The main content is organized as follows:
For the DITA Map PDF - based on HTML5 & CSS transformations:

```
<opentopic:map>
  ...
</opentopic:map>

Note: The topic content comes after the `<opentopic:map>` element.

Note: The child topics are the elements that have the class `-topic/topic` included in the parents.
Note: The ones identified as chapters have the @is-chapter attribute set.

The Titles of Chapters

The titles from the content are children of the topics:

```
<topic class="- topic/topic " id="unique_2" oid="dcpp_parameters">
    <title class="- topic/title ">Parameters</title>
    ...
</topic>
```

For the DITA Map PDF - based on HTML5 & CSS transformations:

```
<div class="- topic/topic topic" id="unique_2" oid="dcpp_parameters">
    <div class="- topic/title title ">Parameters</div>
    ...
</div>
```

Note: The title elements have the class: - topic/title. The actual element name can be different.

Numbering Types

The type of numbering is controlled by the parameter args.css.param.numbering.

This parameter activates various sets of CSS rules from the built-in CSS. By default, only the first-level topics (the chapters) are numbered (shallow numbering). The following values are accepted:

<table>
<thead>
<tr>
<th>Value</th>
<th>Chapters</th>
<th>Sections</th>
<th>Figures &amp; Tables</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>shallow</td>
<td>numbered</td>
<td>counted from the start of the publication</td>
<td>from the start of the publication</td>
<td></td>
</tr>
<tr>
<td>deep</td>
<td>numbered</td>
<td>numbered</td>
<td>counted from the start of the publication</td>
<td>from the start of the publication</td>
</tr>
<tr>
<td>deep-chapter-scope</td>
<td>numbered</td>
<td>numbered</td>
<td>numbering is restarted at the beginning of each chapter, adds the chapter number in their titles (and in the links to them), and in the list of tables and list of figures sections</td>
<td>restarted at the beginning of each chapter</td>
</tr>
<tr>
<td>deep-chapter-scope-no-page-reset</td>
<td>numbered</td>
<td>numbered</td>
<td>numbering is restarted at the beginning of each chapter, adds the chapter number in their titles</td>
<td>from the start of the publication</td>
</tr>
<tr>
<td>Value</td>
<td>Chapters</td>
<td>Sections</td>
<td>Figures &amp; Tables</td>
<td>Pages</td>
</tr>
<tr>
<td>-------</td>
<td>----------</td>
<td>----------</td>
<td>------------------</td>
<td>-------</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(and in the links to them), and</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>in the list of tables and list of</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>figures sections</td>
<td></td>
</tr>
</tbody>
</table>

Note: The `deep-chapter-scope` and `deep-chapter-scope-no-page-reset` values are only available for the DITA Map PDF - based on HTML5 & CSS transformation scenario.

Examples

**Shallow**

Each chapter is numbered, but sections are not numbered. Figures, tables, and pages are numbered sequentially from the start of the publication and they do not reset.

1. First Chapter
   - Page 1
   - Section
   - Table 1
   - Table 2
   - Section
   - Page 2
   - Table 3
2. Second Chapter
   - Page 3
   - Section
   - Table 4
   - Table 5
   - Section
   - Page 4

**Deep**

Each chapter and section is numbered (sections are prefixed with the chapter number). Figures, tables, and pages are numbered sequentially from the start of the publication and they do not reset.

1. First Chapter
   - Page 1
   - Section 1.1
   - Table 1
   - Section 1.2
   - Table 2
   - Page 2
Deep Chapter Scope

Each chapter is independent (so it can be read separately, as a separate part of your publication). The section, page, figure, and table counters (and links to them) restart at each chapter. The general cross reference links also display the chapter number before the page number to clearly specify the target.

Deep Chapter Scope No Page Reset

Each chapter is independent (so it can be read separately, as a separate part of your publication). The section, figure, and table counters (and links to them) restart at each chapter, but the page numbers do not reset. The generic cross reference links contain only the page number.
How to Remove the 'Chapter NN' Prefix from Table of Contents and Content

If you are using the shallow numbering CSS (this is the default), and you want to hide the "Chapter" prefix, use the following rules in your customization CSS (on page 2041):

For the TOC:

```
*[class ~="map/topicmeta"] > *[class ~="topic/navtitle"]:before {
    display:none !important;
}
```

For the titles in the content, change the content of the title :before (this example just uses the chapter number):

```
*[class ~="topic/topic"][is-chapter]:not([is-part]) > *[class ~="topic/title"]:before {
    
    content: counter(chapter) ". " !important;
}
```

Table of Contents

The table of contents is a hierarchy of topic titles with links to the topic content.

For plain maps, the TOC is automatically generated. For DITA bookmaps, you will need to add a `<toc>` element in the `<booklists>` element (inside the `<frontmatter>`):
<bookmap>
...
</bookmap>

<frontmatter>
  <booklists>
    <toc/>
    <figurelist/>
    <tablelist/>
  </booklists>
</frontmatter>

Related Information:

- Table of Contents for Chapters (Mini TOC) *(on page 2102)*
- List of Tables/Figures *(on page 2106)*
- Index *(on page 2114)*

Table of Contents - XML Fragment

In the merged map file *(on page 2042)*, the `<opentopic:map>` contains a hierarchy of `<topicref>` elements, or other elements (such as `<chapter>` or `<part>`) that are specializations of `<topicref>`.

Each of the `<topicref>` elements include a *metadata* section that includes the topic title.

```xml
<bookmap ...
<oxy:front-page> ...
<oxy:front-matter> ...
<opentopic:map xmlns:opentopic="http://www.idiominc.com/opentopic" class="- toc/toc">
  <booklibrary class="- topic/ph bookmap/booklibrary ">Retro Tools</booklibrary>
  <mainbooktitle class="- topic/ph bookmap/mainbooktitle ">Tasks</mainbooktitle>
```
For the **DITA Map PDF - based on HTML5 & CSS** transformation type, the merged map is further processed resulting in a collection of HTML5 `<div>` elements. These elements preserve the original DITA `@class` attribute values and add a new value derived from the DITA element name.
Note: The <oxy:toc-title> element is used as a placeholder for the name of the TOC. For instance, you can use the string "Contents", specified on a pseudo element, in the CSS.

Table of Contents - Built-in CSS

The built-in CSS rules are in: [PLUGIN_DIR]/css/print/p-toc.css.

Related Information:

- Page Headers and Footers (on page 2053)

How to Style the Table of Contents Entries

Note: Each of the items from the table of contents is an element that has the map/topicref class.

The following example uses the italic font for the label and changes the color and style of the connecting line between the title and the page number.

In your customization CSS (on page 2041), add the following two selectors:
And if you need to alter the indent of the nested table of content items, use the following selector:

```css
*[class =~ "map/topicref"] *{margin-left: 1em;}
```

The numbers can be styled like this:

```css
*[class =~ "map/topicref"] > *[class =~ "map/topicmeta"]:before, *[class =~ "map/topicref"]
  > *[class =~ "map/topicmeta"] > *[class =~ "topic/navtitle"]:before{
    color:blue;
}
```

The following is an example of customizing the font size for the items representing chapters. The chapters are level one topics and are marked in the merged DITA document TOC with the attribute `@is-chapter`.

```css
*[class =~ "map/topicref"][@is-chapter = "true"] > *[class =~ "map/topicmeta"] > *[class =~ "topic/navtitle"]{
  font-size:2em;
}
```

How to Change the Header of the Table of Contents

In the built-in CSS, there is a page named `table-of-contents`. The default is to have the word ‘Contents’ in its header (this is localized, using the `toc-header` string defined in the `p-18n.css`) alternating in the left or right side of the header:

```css
@page table-of-contents: left {
  @top-left {
    
```
If you need to change this string, or change the color, you should use the following `@page` selectors as a starting point in your customization CSS (*on page 2041*):

```css
@page table-of-contents: left {
  @top-left {
    content: "My publication table of contents | " counter(page, lower-roman);
    color: red;
  }
}
@page table-of-contents: right {
  @top-right {
    content: "My publication table of contents | " counter(page, lower-roman);
    color: red;
  }
}
```

**Related Information:**

- Localization (*on page 2132*)

How to Make the Table of Contents Start on an Odd Page

In your customization CSS (*on page 2041*), add the following snippet for the `table-of-contents` page:

```css
@page table-of-contents {
  -oxy-initial-page-number: auto-odd;
}
```

**Related Information:**
How to Display a Topic Before the Table of Contents

To display a topic before the table-of-contents page, follow these steps:

1. Make sure the topic is referenced on the first level in the DITA map.
2. Set the @outputclass to before-toc on the <topicref>.

   `<topicref href="pathToMyTopic" outputclass="before-toc">`

**Result:** When the PDF is processed, the topic will automatically appear before the table of contents.

**Related Information:**

- Controlling the Publication Content (on page 2164)

---

How to Display Short Descriptions in the TOC

To display the short descriptions from the topics in the table of contents, you need to make the <shortdesc> element visible.

The following example only makes the short descriptions associated with the chapters visible. The chapters are level one topics and are marked in the merged DITA document TOC with the attribute @is-chapter.

In your customization CSS (on page 2041), add the following CSS selector:

```css
*[class ~="map/topicref"] [is-chapter = "true"] > *[class ~="map/topicmeta"] > *[class ~="map/shortdesc"] {
  display:block; /* The default is none - the shortdesc is hidden. */
  color:gray;
}
```

**Note:** If you need all the TOC item short descriptions to be visible, remove the [is-chapter] condition.
How to Remove Entries from the TOC

To remove entries from the table of contents, set the @toc="no" attribute on the topicrefs from the map that need to be removed. This is sometimes desirable for the topics listed in the frontmatter or backmatter when using a bookmap.

How to Hide the TOC

To hide the TOC, you have multiple options:

- Use a DITA bookmap instead of a DITA map, and omit the <toc> element from the <booklists>. An example bookmap can be found in the DITA 1.3 Spec. This is the best approach.
- Use the transformation parameter: hide.frontpage.toc.index.glossary (on page 2021).
- Use a display:none property to hide the element that contains the TOC structure, and also remove it from the PDF bookmarks tree:

    ```html
    *[class ~="map/map"] > *[class ~="toc/toc"] { display:none; }
    *[class ~="map/map"] > *[class ~="toc/toc"] > *[class ~="toc/title"]{
      bookmark-label: none;
      -ah-bookmark-label: none;
    }
    ```

Related Information:

- Transformation Parameters (on page 2018)

Table of Contents for Chapters (Mini TOC)

To add a mini table of contents for each chapter, you need to:

- Use DITA bookmaps instead of regular maps.
- Set the args.chapter.layout transformation parameter to the value: MINITOC.

This table of contents is positioned between the chapter title and the chapter child topics. It consists of a list of links pointing to the child topics, positioned in the left side of the page, and a description in the right side. This content is collected from the topic file referenced by the chapter <topicref> in the map.
Chapter 1. Introduction

Topics:

About this framework.

Description

DITA Open Toolkit, or DITA-OT for short, is a set of Java-based, open-source tools that provide processing for content authored in the Darwin Information Typing Architecture.

The DITA Open Toolkit documentation provides information about installing, running, configuring and extending the toolkit.

About this framework.

The framework is DITA.

Description

The framework is composed by a large set of modules.

The above chapter example has the following DITA map fragment:

```dita
<chapter href="topics/chapter-introduction.dita">
  <topicref href="topics/introduction-about.dita" />
  <topicref href="topics/introduction-description.dita" />
</chapter>
```

The `chapter-introduction.dita` file provides the description content that is in the right side of the page. The children `<topicref>` elements generate the mini TOC links.

Table of Contents for Chapters (Mini TOC) - XML Fragment

In the merged XML file, the mini TOC is built from a related links section and some `<div>` elements that wrap the entire mini TOC and the description area.

`chapter/minitoc`

Wraps the entire structure, including the content of the chapter `<topicref>`.

`chapter/minitoc-links`

Wraps the `<related-links>` element. Note that the label of the related links list is internationalized.

`chapter/minitoc-desc`

Contains the entire content of the topic file referenced by the chapter `<topicref>` element in the map.
When using the pdf-css-html5 transformation, this structure is converted to a set of HTML elements, preserving the class values:
DITA Open Toolkit, or DITA-OT for short, is a set of Java-based, open-source tools that provide processing for content authored in the Darwin Information Typing Architecture.

The DITA Open Toolkit documentation provides information about installing, running, configuring and extending the toolkit.
In your customization CSS (on page 2041), add the following selectors:

```css
/* Change from inline to blocks to stack them one over the other. */

*[class~="chapter/minitoc-desc"],
*[class~="chapter/minitoc-links"] {
  display: block;
  width: 100%;
}

/* No need for the 'Topics:' label. */

*[class~="chapter/minitoc-links"] *[class~="topic/desc"] {
  display: none;
}

/* Add background for the links list. */

*[class~="chapter/minitoc-links"] {
  background-color: silver;
  padding: 0.5em;
}

/* Remove the border and the padding from the description. We do not need that separator. */

*[class~="chapter/minitoc-desc"] {
  border-left: none;
  padding-left: 0;
}

/* Add a number before each of the links. */

*[class~="chapter/minitoc-links"] *[class~="topic/link"] {
  display: list-item;
  list-style-type: decimal;
  margin-left: 1em;
}
```

Related Information:

- How to Speed up CSS Development and Debugging (on page 2045)
List of Tables/Figures

To activate these:

1. The map must be a DITA bookmap.
2. There must be a `<figurelist>` or `<tablelist>` in the frontmatter or backmatter. In the following example, both of the lists are added just after the table of contents (the `<toc>` element is the placeholder where the table of contents will be created):

```xml
<frontmatter>
    <booklists>
        <toc/>
        <figurelist/>
        <tablelist/>
    </booklists>
</frontmatter>
```

How to Set a Header for a List of Tables/Figures

Suppose you want to set the headline “Figure List” on the second and subsequent pages associated to a list of figures and something similar for a list of tables.

Start by associating pages to the list of figures and tables from the merged file:

```xml
 *[class~="placeholder/tablelist"] { 
     page:tablelist;
     color:green;
 }

 *[class~="placeholder/figurelist"]{ 
     page:figurelist;
     color:green;
 }
```

![Note:](Note: The "placeholder/tablelist" is the class name of the output generated from the `<tablelist>` bookmap element.

Then define the pages:

```xml
 @page figurelist {
     @top-left { content: none; } 
     @top-center { content: "Figure List"; } 
     @top-right { content: none; }
```
How to Remove the Numbers Before a List of Tables or Figures

Suppose you need to remove the "Figure NN" prefix before each entry of a list of figures.

An entry in the generated list of figures from the merged map looks like this:

```html
<entry class="- listentry/entry " href="#unique_6_Connect_42_fig_rjy_spn_xgb">
  <prefix class="- listentry/prefix ">Figure</prefix>
  <number class="- listentry/number ">4</number>
  <title class="- topic/title ">This is another figure</title>
</entry>
```

For the HTML merged map, the element names are all div elements but they have the same class.

So, to hide the label and the number, use:

```css
*[class="listentry/prefix"],
*[class="listentry/number"] { display:none; }
```

This works for both a list of tables and list of figures since the structure of each entry is the same.
To make it more specific (for example, to apply it only for the list of figures), you can add the selector:

```
*[class~="placeholder/figurelist"] *[class~="listentry/prefix"],
*[class~="placeholder/figurelist"] *[class~="listentry/number"] {
  display:none;
}
```

**Double Side Pagination**

By default, the processor generates pages that are mirror images (the right page has the header on the right side, the left pages have the header on the left side). The chapters follow one another with no constraint on the page side.

**Note:** For a plain DITA map, the chapters are the `<topicref>` elements that are placed on the first level. For bookmaps, the chapters are the topics referenced by a `<chapter>` element.

This section contains information about how to position the start of the chapters on an odd folio number. Some of the CSS rules given here as examples are already listed in: [INSTALLATION_DIRECTORY]/css/print/p-optional-double-side-pagination.css. You may choose to import this file from your customization CSS (on page 2041).

**How to Start Chapters on Odd Pages**

A common use case is to arrange the chapters of the publication to start on an odd page number.

In your customization CSS (on page 2041), add the following:

```css
@page chapter {
  -oxy-initial-page-number: auto-odd;
}
@page table-of-contents {
  -oxy-initial-page-number: auto-odd;
}
```

Supported values for `-oxy-initial-page-number` include: auto, auto-even, auto-odd, or a number.

**How to Style the Empty (Blank) Pages**

By making the chapters start on an odd page, the CSS processor might add blank pages to the previous page sequence as padding.

To style those blank pages add the following code in your customization CSS (on page 2041):

```css
@page chapter:blank, table-of-contents:blank {
  @top-left { content: none; }
}
Note: This just removes the headers and footers, but you can use a background image or a header with "Intentionally left blank" text.

Related Information:

- How to Add a Background Image for the Cover (on page 2078)

How to Force an Odd or Even Number of Pages in a Chapter

Another use case is to specify a number of pages for a section. Suppose that you have a table of contents that follows the cover page and you need to have an even number of pages. Hence, the next chapter would start on an even page.

In your customization CSS (on page 2041), use the -oxy-force-page-count property with an even value:

```css
@page table-of-contents {
  -oxy-force-page-count: even;
}
```

Supported values for -oxy-force-page-count include: even, odd, end-on-even, end-on-odd, auto, no-force.

How to Style the First page of a Chapter

You can use the :first page rule selector to control how the first page of a chapter looks. Suppose that you have defined the following layout for your default page and you want to put the publication title (the maptile string) on the header of the first page (instead of the chapter name that is displayed on this page):

In your customization CSS (on page 2041), add the following:

```css
@page chapter:first {
  @top-right-corner { content: string(maptitle); }
  @top-left { content: none; }
}```
Multiple Column Pages

This section contains information about how to deal with pages that have multiple columns.

How to Use a Two Column Layout

Change Layout for Predefined Pages.

First you need to identify which of the pages need to be changed. Pages are already defined for the cover page, table of contents, chapter content, and others. The complete list is here: Default Page Definitions (on page 2047).

Next, add the column-count and column-gap properties to that page. For example:

```xml
@page chapter{
    column-count:2;
    column-gap:1in;
}
```

If you need some of the elements to expand on all the columns, use the column-span:all CSS property. The next snippet makes the chapter titles span both columns:

```css
*[class ~= "topic/topic"] [is-chapter] > *[class ~= "topic/title"] {
    column-span:all;
}
```

⚠️ Limitation: You cannot use multiple column configurations on the same page. Oxygen XML Editor only takes the column-count and column-gap properties into account if they are set on @page rules, not on elements from the content.

Change Layout for a Specific Topic.

If you need to have a different column layout just for one topic, you can use the following technique:

1. Define an outputclass on the topic root element.

   ```xml
   <topic outputclass="two_columns" ...>
   ```

2. Define a CSS rule that changes the page property for the matching element.

   ```css
   *[class ~= "two_columns"],
   *[outputclass ~= "two_columns"]{
   ```
Tip: In the selector, use the class attribute for the HTML transformation, or outputclass for the direct transformation, or leave them both if you are not sure.

Note: The topics from the first level use the chapter page. You must use !important because the built-in rules are more specific and you need to override the page property.

3. Define a page layout.

```html
@page two_column_page {
  column-count: 2;
}
```

Note that the topic will be separated from other sibling topics with different page layouts by page breaks.

Related Information:

- Page Formatting in oXygen PDF Chemistry

PDF Bookmarks

The PDF Bookmarks are used to generate a hierarchical structure similar to a table of contents in a specialized view of your PDF Reader.

By default, the titles defined in the topics are used as bookmark labels.

PDF Bookmarks - Built-in CSS

The PDF bookmarks are generated by matching the titles from the topics in the content. The built-in CSS rules are in: [PLUGIN_DIR]/css/print/p-bookmarks.css.

How to Change the Bookmark Labels using the Navigation Title

To change the bookmark labels, you can specify a navigation title in a DITA map or topic.

This will be used as the bookmark label instead of the topic title in the table of contents and the bookmark views. There are two possibilities to do specify it:

1. Place a `<navtitle>` element in the topic reference in the DITA map:

   ```xml
   ...
   ```
Note: As a best practice, a `@locktitle` attribute with the value 'yes' is needed to activate the navigation title. The plugin applies the navigation title even if the attribute is missing.

2. Place a `<navtitle>` element in the topic, as a title alternative.

How to Control the Depth of the Sections From the PDF Bookmarks.

By default, the PDF bookmarks are generated for up to 7 levels. If you need to limit them (for example to 2 levels), you can use the following CSS rules in your customization CSS (on page 2041):

```css
*[class~="topic/topic"] *\[class~="topic/topic"] *\[class~="topic/title"] { 
bookmark-label:none;
}
```

These rules clear the labels generated by the titles starting with the depth 3 (the topic nesting level is given by the selectors `*[class="topic/topic"]`).
How to Specify the Open/Closed PDF Bookmark State

If you want to specify the initial state for the bookmarks (opened/expanded or closed/collapsed), you can use the `bookmark-state` property in your customization CSS (on page 2041).

For example, to specify that all bookmarks for the first three levels are opened (expanded) in the initial state, use:

```html
*[class~="topic/topic"] > *[class~="topic/title"],
*[class="topic/topic"] *[class~="topic/topic"] > *[class~="topic/title"],
*[class="topic/topic"] *[class~="topic/topic"] *[class~="topic/topic"] >
  *[class~="topic/title"] {
    bookmark-state:open;
  }
```

How to Remove the Numbering From the PDF Bookmarks

By default, the PDF bookmark labels are generated while taking the text set before the chapters titles into account. Since this usually contains the part, chapter, or section numbers, the PDF Bookmarks will make use of them.

The solution is to remove the `content(before)` from the `bookmark-label`, leaving just the `content(text)`.

In your customization CSS (on page 2041), add the following CSS rules:

```html
*[class~="topic/topic"] > *[class~="topic/title"] {
  bookmark-label: content(text);
  -ah-bookmark-label: content();
}
```

⚠️ Important: This is a simple example that does not use the possible navigation titles, just the content of the `<title>` element. Copy and modify the built-in CSS for the full CSS rule that matches the `<title>` and `<titlealts>` elements:

```html
*[class~="topic/topic"]:has(*[class~="topic/titlealts"])) > *[class~="topic/title"]
{...
```

Related Information:

- Numbering (on page 2088)
Index

The content of an `<indexterm>` element is used to produce an index entry in the generated index. You can nest `<indexterm>` elements to create multi-level indexes. The content is not output as part of the topic content, only as part of the index tree.

To add an index to your publication, you just need to add `<indexterm>` elements inside the `<prolog>` section (inside a `<metadata>` element):

```
<title>The topic title.</title>
<prolog>
  <metadata>
    <keywords>
      <indexterm>Installing <indexterm>Water Pump</indexterm></indexterm></indexterm>
    </keywords>
  </metadata>
</prolog>
<body>
  .....  
```

or in the content itself:

```
...  
<p>Open the lid then turn the body pump to the right.</p>  
<indexterm>Installing <indexterm>Water Pump</indexterm></indexterm>
</p>  
...  
```

If you are using a bookmap, you need to specify where the index list should be presented (for instance in the `backmatter` of the book. Technically, it is possible to also add it to the frontmatter, but this is unusual). This is done using an `<indexlist>` element in the `<booklists>` element (inside the `<backmatter>`):

```
<bookmap>
  ...
  <chapter href="tasks/troubleshooting.dita">
    ...
  </chapter>
  ...
</bookmap>

<backmatter>
  <booklists>
    <indexlist/>
  </booklists>
</backmatter>  
```
For plain maps, the index list is automatically added at the end of the publication, with no need to modify the map.

Index - XML Fragment

In the merged map file (on page 2042), the structure that holds the index tree is the `<opentopic-index:index.groups>` element.

```xml
<map class="- map/map ">
  <oxy:front-page>...
  </oxy:front-page>
  <opentopic:map xmlns:opentopic="http://www.idiominc.com/opentopic">
    ...
  </opentopic:map>
  <topic class="- topic/topic ">
    <title class="- topic/title ">Request Support</title>
    ...
  </topic>
  <opentopic-index:index.groups id="d16e5548">
    ...
  </opentopic-index:index.groups>
</map>
```

Each of the groups contain:

- A label, the starting letter ("T" in the following example).
- A tree of `<opentopic-index:index.entry>` elements.

```xml
<opentopic-index:index.group>
  <opentopic-index:index.label>T</opentopic-index:index.label>
  <opentopic-index:index.entry value="table of contents">
    <opentopic-index:formatted-value>table of contents</opentopic-index:formatted-value>
    <opentopic-index:refID value="table of contents:">[d16e3988]
      <oxy:index-link xmlns:oxygen="http://www.oxygenxml.com/extensions/author" href="#d16e3988">[d16e3988]
```
Each of the entries contain:

- The formatted value (`<opentopic-index:formatted-value>`).
- A link to the publication content (`<opentopic-index:refID>/<oxy:index-link>`).
- Possibly other child entries.

For the DITA Map PDF - based on HTML5 & CSS transformation type, the merged map is further processed resulting in a collection of HTML5 `<div>` elements. These elements preserve the original DITA `@class` attribute values and add a new value derived from the DITA element name.
The index group content becomes:

```html
<div class="index/group group">
  <div class="index/label label">T</div>
  <div class="index/entry entry">
    <div class="index/formatted-value formatted-value">table of contents</div>
    <div class="index/refid refid">
      <div class="index/link link" href="#d16e3988">[d16e3988]</div>
    </div>
  </div>
</div>
```

```html
<div class="index/entry entry">
  <div class="index/formatted-value formatted-value">change header</div>
  <div class="index/refid refid">
    <div class="index/link link" href="#d16e4176">[d16e4176]</div>
  </div>
</div>
```

```html
<div class="index/entry entry">
  <div class="index/formatted-value formatted-value">style</div>
  <div class="index/refid refid">
    <div class="index/link link" href="#d16e4120">[d16e4120]</div>
  </div>
</div>
```

**Index - Built-in CSS**

All index styling is found in: [PLUGIN_DIR]css/print/p-index.css.
How to Style the Index Page Title and the Grouping Letters

In your customization CSS (on page 2041), add the following CSS rules:

```css
*[^index/groups] *[^index/group] *[^index/label] {
  font-size: 1.5em;
  color: navy;
}

[^index/groups]:before {
  content: "- Index - ";
  color: navy;
  font-size: 4em;
}
```

The result is:

```
- Index -
```

How to Style the Index Terms Labels

In your customization CSS (on page 2041), add the following CSS rule:

```css
[^index/groups] *[^index/formatted-value] {
  font-style: oblique;
  color: gray;
}
```

The result is:
How to Add Filling Dots Between the Index Labels and the Page Numbers

Suppose you want the leader CSS content to generate a row of dots. It is necessary that the parent entry has the text justified.

In your customization CSS (on page 2041), add the following CSS rule:

```css
*[class~="index/formatted-value"],
*[class="index/refid"] {
  display:inline;
}

/* Hide the sequences of links that actually do not contain links. */
*[class="index/group"] *[class ~="index/entry"] > *[class="index/refid"]{
  display:none;
}
*[class="index/group"] *[class ~="index/entry"] > *[class="index/refid"]:has(*[class="index/link"]){
  display:inline;
}

*[class="index/group"] *[class="index/entry"] {
  text-align:justify;
}
*[class="index/group"] *[class ~="index/entry"] > *[class="index/refid"]:before{
  content:leader('');?>;
}
```

The output now contains the dots:
How to Change the Index Page Number Format and Reset its Value

The page number is reset at the beginning of the index page by the built-in CSS rule:

```css
* [class ~="index/groups"] {
    counter-reset: page 1;
}
```

If you want to start the page counter from a different initial number, just change the value of this counter. For example, to continue the normal page counting, use:

```css
* [class ~="index/groups"] {
    counter-reset: none;
}
```

If you need to style the page number differently (for example, using decimals), add the following CSS rule in your customization CSS (on page 2041):

```css
@page index {
    @bottom-center  {
        content: counter(page, decimal) }
}
```

How to Impose a Table-like Index Layout

In case you need to place the index labels and links on the same line but with some extra alignment constraints, you can use inline blocks to give the index a table-like appearance:
You need to place the elements that have the following class on the same line:

- `index/formatted-value`
  - This is the text of the index term.
- `index/refid`
  - This element contains a list of links.

A fixed width is used for the formatted value and the links container (almost half of the available width). To achieve the index hierarchical layout, set progressive padding to the formatted value text.

In your customization CSS (on page 2041), add the following CSS rule:

```css
*[class~="index/formatted-value"],
*[class~="index/refid"]{
    display:inline-block;
}

*[class~="index/formatted-value"]{
    width:45%;
}
*[class~="index/refid"] {
    width:45%;
}

/* Hide the sequences of links that actually do not contain links. */
```
To avoid bleeding of the index term label, you may need to mark it as being hyphenated:
To activate hyphenation, see: How to Enable Hyphenation for Entire Map (on page 2128).

Footnotes

Footnotes are pieces of information placed at the bottom of the page. A footnote has a number that is left in the content (the footnote call) and the same value placed before the footnote text (the footnote marker).

Footnotes - Built-in CSS

Footnote properties are defined in [PLUGIN_DIR]css/print/p-foot-notes.css.

How to Change Style of the Footnote Markers and Footnote Calls

To bold the footnotes numbers and use some colors, add the following rules to your customization CSS (on page 2041):

```css
*[class =~ "topic/fn"]:footnote-call {
  font-weight: bold;
  color:red;
}

*[class =~ "topic/fn"]:footnote-marker {
  font-weight: bold;
  color:red;
}
```

Related Information:


How to Add a Separator Above the Footnotes

The @footnote part of a @page declaration controls the style of the separator between the page content and the footnotes. For the content, you should set a leader. The leader uses a letter or a line style to fill the entire width of the page.

```xml
$page {
  margin:0.5in;
  ....
}
```
To create a dotted line, you can use the dot character: `leader('.')`. Other commonly used characters are: "-" (dash) and "_" (underscore).

How to Reset the Footnotes Counter

There are cases where you want to reset the footnote counter.

For example, if you need to reset it at the beginning of each chapter, add the following rules to your customization CSS (on page 2041):

```css
*[class ~="bookmap/chapter"],
*[class ~="topic/topic"]{is-chapter} {
  counter-reset: footnote 1;
}
```

Or you can mark any element with an `@outputclass` value, match that value, and reset the counter at any point in your counter:

```css
<p outputclass="reset-footnotes"/>

*[outputclass ~="reset-footnotes"] {
  counter-reset: footnote 1;
}
```

Page Breaks

The page breaks can be controlled in multiple ways:

1. By creating an `@page` and assigning it to an element will create a page break between this element and the sibling elements that have a different page.
3. In your DITA topic, set the `@outputclass` attribute on the topic root (or any element) to contain one of the `page-break-before`, `page-break-after`, or `page-break-avoid` values. If you want to control the page breaking from the DITA map, use the `@outputclass` attribute on the `<topicref>`, with any of the values mentioned above.
Page Breaks - Built-in CSS

Page break properties are used in: \[PLUGIN_DIR\]css/print/p-page-breaks.css.

How to Avoid Page Breaks in Lists and Tables

To avoid splitting elements over two pages, you can use the page-break-inside CSS property. For example, if you want to impose this on tables and lists, then add the following rules to your customization CSS (on page 2041):

*\[class ~="topic/table"]\{*
  page-break-inside:avoid;
*
*\[class ~="topic/ol"]\{*
  page-break-inside:avoid;
*
*\[class ~="topic/ul"]\{*
  page-break-inside:avoid;
*

\[Note:\] Since the task steps are inherited from topic/ol, they will also not be split over two separate pages. However, if you want to allow this, add the following CSS rule:

*\[class ~="task/steps"]\{*
  page-break-inside:auto;
*

\[Note:\] Another way to do this is to mark the element with an @outputclass set to page-break-avoid.

How to Force a Page Break Before or After a Topic or Another Element

If you want to force a page break, mark the topic (or any other element you need to control page breaking for) with an @outputclass set to one of these values:
**page-break-before**

Use this for a page break before the marked element.

**page-break-after**

Use this for a page break after the marked element.

**page-break-avoid**

Use this to avoid page breaks inside the marked element.

For example, to force a page break before a certain topic, you should use:

```xml
<topic outputclass="page-break-before" ...
```

**Note:** You can set the output class on the `<topicref>` element from the DITA map instead of the `<topic>` element. In this way you can reuse the topic in another context where the page breaking is not necessary.

You can also control page breaking for lists, paragraphs, or any other block type elements. The following example avoids page breaks inside an ordered list:

```xml
<ol outputclass="page-break-avoid" ...
```

**How to Add a Blank Page After a Topic**

If you want to add a new blank page after a topic, add the following rules to your customization CSS *(on page 2041).*

Style the separating blank page:

```css
@page topic-separating-page{
  @top-left {
    content: "";
  }
  @top-right {
    content: "";
  }
  @top-center {
    content: "This page is blank";
  }
}
```

Associate this page to the `:after` pseudo element of the topic:

```css
*[class="topic/topic"]*[outputclass="add-separator-page"]:after {
```
In the XML content, on the `<topic>` element, set the `@outputclass` to the `add-separator-page` value.

```xml
<topic outputclass="add-separator-page"> ... </topic>
```

The `:after` pseudo element will be created next to the topic content and will be placed on the `topic-separating-page`.

Use the page margin box selectors to override the default content from the headers/footers.

⚠️ **Note:** You can set the output class on the `<topicref>` element from the DITA map instead of the `<topic>` element. This allows you to reuse the topic in another context where the page breaking is not necessary.

### How to Enforce a Number of Lines from Paragraphs that Continue in Next Page

In typography, an *orphan* is the first line of a paragraph that appears alone at the bottom of a page (the paragraph continues on a following page), while a *widow* is the last line of a paragraph that appears alone at the top of a page. The default is 2 for each of them. You can control this number by adding the following to your customization CSS (on page 2041):

```css
:root {
    widows: 4;
    orphans: 4;
}
```

### Hyphenation

Hyphenation specifies how words should be hyphenated when text wraps across multiple lines.

#### How to Enable Hyphenation for Entire Map

To enable hyphenation for your entire map:

1. Make sure you set an `@xml:lang` attribute on the root of your map, or set the `default.language` parameter in the transformation.
2. In your customization CSS (on page 2041), add:

```css
:root {
    hyphens: auto;
}
```
3. To except certain elements from being hyphenated, use `hyphens:none`. The following example excludes the `<keyword>` elements from being hyphenated:

```css
*[class =~ "topic/keyword"] {
    hyphens: none;
}
```

How to Enable/Disable Hyphenation for Tables

To enable hyphenation for your entire map:

1. Make sure you set an `@xml:lang` attribute on the root of your map or your table elements.
2. In your customization CSS (on page 2041), add:

```css
*[class =~ "topic/table"] {
    hyphens: auto;
}
```
3. To except certain elements from being hyphenated, use `hyphens:none`. The following example excludes the `<keyword>` elements from being hyphenated:

```css
*[class =~ "topic/keyword"] {
    hyphens: none;
}
```

Accessibility

By default, the PDF documents produced using this plugin are partially accessible in the sense that most of the paragraphs, tables, lists, headers, and footers are tagged automatically so a PDF reader can use this information to present the content.

Related Information:
- Oxygen PDF Chemistry: Accessibility

Accessibility - Built-in CSS

Accessibility properties are defined in [PLUGIN_DIR]css/print/p-accessibility.css.
How to Create Fully Accessible Documents

To make your documents fully accessible (PDF/UA1), do the following:

1. In your customization CSS (on page 2041), specify fonts for all elements and for all page margin boxes. There should be no text that falls back to the basic provided fonts (Times, Courier, etc.). For instance, you can use:

```css
:root { font-family: Arial }
@page {
    @top-left {font-family: Arial }
    ...
}
```

2. Specify an `@alt` attribute with a description on any image, or better, use the `<alt>` DITA element.

3. Change the Chemistry invocation from the `build.xml` file, adding the argument `-pdf-ua`. There are two targets to change: `chemistry` and `chemistry.embedded`.

Fonts

Fonts are an important part of the publication. Your font selection should take into consideration both design and the targeted ranges of characters.

To use them in the customization CSS (on page 2041):

- You can place the font files in the same folder as your CSS and use a `@font-face` definition to reference them.
- You can use web fonts (for example, Google Fonts), and import the CSS snippet into your CSS.
- You can use system fonts.

All these techniques are explained in: Oxygen PDF Chemistry User Manual: Fonts.

How to Avoid Characters Being Rendered as #

When the processor renders text with a font that does not include certain characters, those characters are replaced with the `#` symbol.

To prevent this, make sure you use the proper font.

As an example, suppose the right arrow character is used in a definition list like this:

```xml
<dlentry>
    <dt>→</dt>
    <dd><ph>This is the right arrow.</ph></dd>
</dlentry>
```
If the font does not include this character, the output will look something like this:

```
#
This is the right arrow.
```

To fix this, use a fallback font. For example, if you use *Times New Roman* for the entire publication, you could add *Symbol* as the fallback font. In your *customization CSS (on page 2041)*, add:

```
*[class =~ "topic/dlentry"] {  
  font-family: "Times New Roman", Symbol;
}
```

**Tip:** On Windows, one simple way to determine the font needed to display the text is to copy the text fragment that has rendering problems from the DITA source document and paste it into Microsoft WordPad or Word. It will automatically select a font capable of rendering the text. Simply click on the text to see the name of the font from the "Font" ribbon toolbar. Then you can use it as a fallback font in the CSS. Make sure there are no licensing restrictions on that particular font.

**How to Set Fonts in Titles and Content**

Suppose that in your *customization CSS (on page 2041)*, you have defined your font (for example, *Roboto*) using a Google web font:

```
@import url('https://fonts.googleapis.com/css?family=Roboto');
```

You can force a font on all elements, then style the ones that need to be different. The advantage of this method is that you do not need to trace all elements that have a font family defined in the built-in CSS files, you just reset them all.

In your *customization CSS (on page 2041)*, add an `!important` rule that associates a font to all the elements from the document:

```
*{
  font-family:"Roboto" !important;
}
```

**Note:** If you want to use the `:root` selector instead of the `*` sector, without the `!important` qualifier, the elements that have a predefined font specified in the built-in CSS will keep that font. If your content uses non-Latin glyphs, it is possible that the built-in fonts do not render them.

Next, identify the selectors for the elements that need to be styled with a different font than the one associated above. For information on how to do this, see: *Debugging the CSS (on page 2042).*
For example, if you want the titles or the pre-formatted text to have a different font from the rest, matched by the above `*` selector, you need to use more specific CSS selectors:

```css
* [class~="front-page/front-page-title"],
* [class~="topic/title"] {
  font-family: Arial !important;
}

* [class~="pr-d/codeph"],
* [class~="topic/pre"] {
  font-family: monospace !important;
}
```

Related Information:

- How to Change the Font of the Headers and Footers (on page 2056)

How to Use Fonts for Asian Languages

For Asian languages, you must use a font or a sequence of fonts that cover the needed character ranges. If the characters are not found, the `#` symbol is used.

When you specify a sequence of fonts, if the glyphs are not found in the first font, the next font is selected until one that includes all the glyphs is found. A common font sequence for Asian languages is as follows:

```css
font-family: Calibri, SimSun, "Malgun Gothic", "Microsoft JhengHei";
```

To apply this font sequence, see: How to Set Fonts in Titles and Content (on page 2131).

Some of the Asian fonts do not have italic, bold, or bold-italic variants. In this case, you may use the regular font file with multiple font face definitions to simulate (synthesize) the missing variants. You need to use the `-oxy-simulate-style:yes` CSS property in the font face definition as explained in: Using Simulated/Synthetic Styles in Oxygen Chemistry

Localization

Depending on the transformation type, based on HTML5 or using a direct DITA transformation, there are different localization capabilities. If you are just starting your customization, we strongly recommend using the pdf-css-html5 transformation, since it supports out of the box a large number of languages.
Localization - Transformation Based on HTML5 and CSS

This section applies to the **DITA Map PDF - based on HTML5 & CSS** transformation type.

In this type of transformation, the intermediary merged DITA map is transformed to HTML5 using the DITA-OT built-in support, so the customization of the internationalization (the labels for chapters, parts, figures, tables, notes, etc.) can be achieved by following the DITA-OT recommendations: Customizing Generated Text.

It is recommended that you do this customization on a DITA-OT distribution deployed outside of the Oxygen installation. Otherwise, you will lose the customization when upgrading Oxygen. You can contact the Oxygen support team to ask for the Oxygen Publishing Engine package.

Supported Languages (HTML5 and CSS)

There are supported over 20 languages. For the full list of supported languages (and their codes), see the list: [https://www.dita-ot.org/3.2/topics/globalization-languages.html](https://www.dita-ot.org/3.2/topics/globalization-languages.html).

How to Select a Language (HTML5 and CSS)

There are two ways to switch the labels to a specific language:

- Alter the DITA maps and/or topics to have the `@xml:lang` attribute set to the root element, to one of a supported value (i.e. "fr", "de", "zh", "ru").
- If changing the files is not an option, you can alter the value of the transformation parameter `default.language` to the desired language code.

How to Add Support for a New Language (HTML5 and CSS)

If the list of supported languages does include the language you need, you can create a custom dictionary for this transformation.

The DITA-OT documentation offers a good insight on how to do it: [https://www.dita-ot.org/3.2/topics/plugin-addgeneratedtext.html](https://www.dita-ot.org/3.2/topics/plugin-addgeneratedtext.html)

In addition to that, you need to alter your CSS. Some of the labels come from CSS files located in:

```
[PLUGIN_DIR]/css/print/i18n/
```

You should use one of the files as a template and copy its rules to your customization CSS ([on page 2041](#)) and translate the labels. Make sure you change also the `:lang` selector to match your language code.
Localization - Transformation Based on DITA and CSS

The DITA Map PDF - based on DITA & CSS - WYSIWYG transformation type supports fewer languages than the one based on HTML5 (on page 2132).

Supported Languages (DITA and CSS)

The list of supported languages for the DITA Map PDF - based on DITA & CSS - WYSIWYG transformation type includes: English, German, French (en, de, fr).

How to Select a Language (DITA and CSS)

There are two ways to switch the labels to a specific language for the DITA Map PDF - based on DITA & CSS - WYSIWYG transformation type:

- Alter the DITA maps and/or topics to have the @xml:lang attribute set to the root element, to one of a supported value (i.e. "fr", "en", "de").
- If changing the files is not an option, you can alter the value of the transformation parameter default.language to the desired language code.

How to Add Support for a New Language (DITA and CSS)

For the DITA Map PDF - based on DITA & CSS - WYSIWYG transformation type, the built-in CSS rules are in two directories. For example, the French translation is in:

```
[PLUGIN_DIR]/css/core/-i18n-fr.css
[PLUGIN_DIR]/css/print/i18n/p-i18n-fr.css
```

1. Copy and then rename the English translation files next to your customization CSS (on page 2041).

   - i18n-en.css -> i18n-nl.css
   - p-i18n-en.css -> p-i18n-nl.css

2. Reference these two files from your customization CSS (on page 2041).

3. Change the rules to match your language code and translate each of the strings. For example, for Dutch, the rules should contain the :lang(nl) selector:

   ```
   /* Title in the Index page */
   *[class =~ "index/groups"]:lang(nl):before {
     content: "Trefwoordenregister";
   }
   ```
Comments and Tracked Changes

The comments and tracked changes can be made visible in the PDF output by setting the `show.changes.and.comments` transformation parameter to `yes`.

Figure 642. Chemistry Annotations in Acrobat Reader

By default, they are shown as PDF text annotations (sticky notes). These are graphical markers in the document content and are also listed in the Comments section when opening the output file in Acrobat Reader.

**Note:** Comments with the Mark as Done flag selected appear with a checkmark in the Comments section and with a Completed label (✓ John Doe Completed).

To avoid rendering the elements as PDF annotations and show them as footnotes instead, you can use the `show.changes.and.comments.as.pdf.sticky.notes` transformation parameter set to `no`.

The comments and changes are included in the merged map file (on page 2042) either as XML elements (`<oxy-insert>`, `<oxy-delete>`, `<oxy-comment>`, `<oxy-attributes>`) in the case of the XML merged map, or as HTML elements with similar classes (`oxy-insert`, `oxy-delete`, `oxy-comment`, `oxy-attributes`) in the case of the HTML merged map. Sub-elements contain meta-information about each change.

**Tip:** These elements are automatically recognized and transformed in PDF annotations when using Chemistry as PDF processor.

**Note:** The inserted text, deleted text, and deleted markup are included in the sticky notes.

**Related Information:**

- Transformation Parameters (on page 2018)
Comments and Tracked Changes - XML Fragment

This section contains information about how each type of tracked change is structured in the merged map XML file (on page 2042).

Insertions

For an insertion type of tracked change, the structure that defines the insertion details is inside the range (oxy-range-start to oxy-range-end), the inserted text is highlighted by an oxy-insert-hl element, and the details are stored in the oxy-insert element.

```
<oxy:oxy-range-start id="sc_1" hr_id="1"/>

<oxy:oxy-insert href="#sc_1" hr_id="1">
  
  <oxy:oxy-author>dan</oxy:oxy-author>
  <oxy:oxy-content>insert</oxy:oxy-content>
  <oxy:oxy-date>2018/03/15</oxy:oxy-date>
  <oxy:oxy-hour>09:38:29</oxy:oxy-hour>
  <oxy:oxy-tz>+02:00</oxy:oxy-tz>
</oxy:oxy-insert>

<oxy:oxy-insert-hl>This is an insert!!</oxy:oxy-insert-hl>

<oxy:oxy-range-end hr_id="1"/>
```

Comments

Similar to insertions, comments are defined in a range (oxy-range-start to oxy-range-end), the comment details is in the oxy-comment element, and the highlighted content is wrapped in the oxy-comment-hl element.

```
<oxy:oxy-range-start id="sc_1" hr_id="1"/>

<oxy:oxy-comment href="#sc_1" hr_id="1">
  
  <oxy:oxy-author>dan</oxy:oxy-author>
  <oxy:oxy-comment-text>This is a comment.</oxy:oxy-comment-text>
  <oxy:oxy-date>2018/03/15</oxy:oxy-date>
  <oxy:oxy-hour>09:56:59</oxy:oxy-hour>
</oxy:oxy-comment>
```
Note: Comments that are marked as done have a `flag="done"` attribute:

```xml
<oxy:oxy-comment href="#sc_6" hr_id="6" flag="done">
```

### Attribute changes

The attribute changes are more complex. The `range` is empty, and is directly above the affected element (the one that has modified attributes). The `<oxy-attributes>` element contains details about multiple attribute changes, each stored in the `<oxy-attributed-change>` element.

```xml
<oxy:oxy-attributes href="#sc_3" hr_id="3">

  <oxy:oxy-attribute-change type="inserted" name="platform">
    <oxy:oxy-author>dan</oxy:oxy-author>
    <oxy:oxy-current-value>windows</oxy:oxy-current-value>
    <oxy:oxy-date>2018/03/15</oxy:oxy-date>
    <oxy:oxy-hour>10:05:04</oxy:oxy-hour>
    <oxy:oxy-tz>+02:00</oxy:oxy-tz>
  </oxy:oxy-attribute-change>
  
  ...  

  <oxy:oxy-attribute-change type="removed" name="audience">
  
  ...  

</oxy:oxy-attributes>
```

```xml
</element>
```
Deletions

For a deletion, there are some elements that define the start and end of the deletion, and the highlighted text is wrapped in the `<oxy-delete-hl>` element.

```xml
<oxy:oxy-range-start id="sc_2" hr_id="2"/>
<oxy:oxy-delete-hl>This is a deleted text. </oxy:oxy-delete-hl>
<oxy:oxy-range-end hr_id="2"/>
```

There is a structure that offers details about the deletion change, using the `<oxy-delete>` element. This is linked to the above deletion range by the same ID value:

```xml
<oxy:oxy-delete href="#sc_2" hr_id="2">
  <oxy:oxy-author>dan</oxy:oxy-author>
  <oxy:oxy-content><image href="../img/ex.gif"></oxy:oxy-content>
  <oxy:oxy-date>2018/03/14</oxy:oxy-date>
  <oxy:oxy-hour>11:38:06</oxy:oxy-hour>
  <oxy:oxy-tz>+02:00</oxy:oxy-tz>
</oxy:oxy-delete>
```

Colored Highlights

To show some text as highlighted with a background color:

```xml
<oxy:oxy-color-hl color="rgba(140,255,140,50)">Some colored text.</oxy:oxy-color-hl>
```

Comments and Tracked Changes - HTML Fragment

This section contains information about how each type of tracked change is structured in the merged map HTML file (on page 2042).

Insertions

For an insertion type of tracked change, the structure that defines the insertion details is inside a `range` (oxy-range-start to oxy-range-end), the inserted text is highlighted by a `<span>` element with the class `oxy-insert-hl`, and the details are stored in a `<span>` element with the `oxy-insert` class.

```xml
<span class="oxy-range-start" id="sc_1" hr_id="1"/>

<span class="oxy-insert" href="#sc_1" hr_id="1">
  <span class="oxy-author">dan</span>
</span>
```
Comments

Similar to insertions, comments are defined in a range (oxy-range-start to oxy-range-end), the comment details in an element with the class oxy-comment, and the highlighted content is wrapped in the oxy-comment-hl element.

Attribute changes

The attribute changes are more complex. The range is empty, and is directly above the affected element (the one that has modified attributes). The element with the class oxy-attributes contains details about multiple attribute changes, each stored in an element with the class oxy-attribute-change.
Deletions

For a deletion, there are some elements that define the start and end of the deletion, and the highlighted text is wrapped in an element with the class `oxy-delete-hl`.

There is a structure that offers details about the deletion change, using the element with the class `oxy-delete`. This is linked to the above deletion range by the same ID value:
**Colored Highlights**

To show some text as highlighted with a background color:

```html
<span class="oxy-color-hl" color="rgba(140,255,140,50)">Some colored text.</span>
```

**Comments and Tracked Changes - Built-in CSS**

The built-in CSS that controls the way tracked changes and comments are displayed is found in:

```
[PLUGIN_DIR]css/print/p-side-notes.css
```

**How to Style Changed or Commented Text**

To style the highlighted text from the document content, use the `<oxy-comment-hl>` element (or `<oxy-delete-hl>`, `<oxy-insert-hl>`, respectively, by local name or class name):

```css
oxy-comment-hl,
.oxy-comment-hl {
  color:magenta;
}
```

**Note**: The class name selector is useful when using the DITA Map PDF - based on HTML5 & CSS transformation scenario.

If you want to change the small labels that define the affected start and end ranges (they are a number formatted like: “[n] .. [/n]” where n is the number of the change), you can use the following selectors:

```css
oxy-range-start:before,
.oxy-range-start:before {
  display:inline;
  content:'[ ' attr(hr_id) ' ]';
  color:red;
}
oxy-range-end:before,
.oxy-range-end:before {
  display:inline;
  content:'[/ ' attr(hr_id) ' ]';
  color:red;
}
```

Use `display:none` if you want to hide them.
If you want to change the background color of the comment footnote (assuming you set the `show.changes.and.comments.as.pdf.sticky.notes` transformation to `no`), add the following snippet in your customization CSS (on page 2041):

```
oxy-comment,
  .oxy-comment {
    background-color: inherit;
    border: 2pt solid yellow;
  }
```

Similarly, you can style the other footnotes for `<oxy-attributes>`, `<oxy-delete>`, and `<oxy-insert>` elements.

### How to Hide Tracked Change Footnotes

This topic is relevant if you have set the `show.changes.and.comments.as.pdf.sticky.notes` transformation parameter to `no`, and therefore the changes are shown as footnotes instead of PDF annotations.

In some cases, when your document contains a lot of tracked changes, you may need to hide the footnotes associated with the insertions, deletions, or attribute changes. Using the following example, the deletions and insertions are hidden, but the comments remain visible. In your customization CSS (on page 2041), add:

```
oxy-attributes,
oxy-delete,
oxy-insert{
  float: none;
  display: none;
}
```

### Draft Watermarks

A *watermark* is an image displayed as the background of a printed document and it is faded enough to keep the publication text readable. *Draft watermarks* are used to indicate that a document is under construction or has not yet been approved.

### How to Add a Draft Watermark on All Pages

To add a draft watermark to all of your publication pages, you can use the following page selector in your customization CSS (on page 2041):

```
@page {
```
If you have already set a background image for other pages (for example, the front-page or table-of-contents), the above selector won’t change them, as they are more specific.

The best practice is to use a different draft.css CSS file that imports the customization CSS where the rest of the style changes reside. If you need to publish as draft, use the draft.css in your transformation scenario, otherwise directly reference the customization CSS (on page 2041).

Related Information:

• Images and Figures (on page 2150)

How to Add a Draft Watermark Depending on Metadata

Suppose you want to apply a Draft watermark until your DITA bookmap is approved and the map is approved when an <approved> element has been added to the metadata section (for example, in the bookmeta/bookchangehistory element).

Use oxy_xpath every time you need to probe the value from an element other than the one matched by the CSS selector, and test the expression on the merged HTML file using the Oxygen XPath Builder view.

You can either use a page selector that imposes the draft watermark on the entire page surface (recommended):
or use an element selector that restricts the watermark image only to the page area covered by that element:

```css
:root, body{
  ...
/* same as properties above */
}
```

The `body` selector is used here in case you want to apply the DITA Map PDF - based on HTML5 & CSS transformation type. You can use another element selector to target a specific part of your publication (for example, marking only the tables as drafts).

### Related Information:

- Metadata *(on page 2070)*
- How to Debug XPath Expressions *(on page 2046)*

### Styling the Content

If you need to change the styles of the elements from the topic contents, you should create a customization CSS *(on page 2041)* and then add CSS rules. To create the CSS rules, you can use the development tools described in Debugging the CSS *(on page 2042)*.

### Reusing the Styling for WebHelp and PDF Output

If you are using the `pdf-css-html5` transformation type, then the generated HTML5 document that is later converted to PDF is very similar to the generated HTML5 pages from the WebHelp Responsive output.

This is an output example from the WebHelp transformation:

```html
<h1 class="title topictitle1" id="ariaid-title2">Care and Preparation</h1>
```
When caring ...

When caring for your flower garden you want ...

It makes sense to reuse the same CSS rules you developed for one transformation type to the other. The main rule is to use the short class names instead of the long ones. For example, to style the short descriptions with italic font, use:

```
.shortdesc {
    font-style: italic;
}
```

The rule of thumb is that if you have a CSS rule that successfully styles an element in WebHelp, it should apply without any modification in the PDF output.

**Equations**

This processor supports MathML equations.

**How to Change the Font of MathML Equations**

Suppose that you need to change the font of MathML equations from the documentation, and also add some padding. The MathML fragments are wrapped in elements that have the class `equation-d/equation-block` or `equation-d/equation-inline`, so you can match them with:

```
*[class ~="equation-d/equation-block"],
*[class ~="equation-d/equation-inline"]{
    font-family:"courier new";
    font-size:1.5em;
    padding:1em;
}
```

**Note:** Some of the fonts may not be supported. In that case, a default serif font is used.
Lists

You can style the list item markers, or other properties.

How to Style the List Markers

For the media print, the default CSS rules for the list items use the :marker pseudo-class.

```css
@media print {
  *[class~="topic/li"]:marker {
    text-align: center;
    font-weight: bold;
  }
  *[class~="topic/li"] {
    margin-left: 0.25in;
  }
}
```

To eliminate the bold font weight for the items form ordered lists then add the following rules to your customization CSS (on page 2041):

```css
*[class~="topic/ol"] > *[class~="topic/li"]:marker {
  font-weight: normal;
}
```

For the unordered lists:

```css
*[class~="topic/ul"] > *[class~="topic/li"]:marker {
  font-weight: normal;
}
```

How to Change the Numbering System of Ordered Lists

It is possible to change all lists to have a different numbering system and there are several methods that can be used to achieve this.

Use the list-style-type CSS Property.

The Chemistry engine supports the following types: decimal, decimal-leading-zero, lower-roman, upper-roman, lower-latin, upper-latin, lower-alpha, upper-alpha.

```css
*[class =~ "topic/ol"] {
  list-style-type: lower-roman;
}
```
Change the Content of the :marker CSS Pseudo Element.

The following example emulate the Cyrillic numbering for the list items for an ordered list that has the @outputclass attribute set to cyrillic:

⚠️ Important: This example will work only for lists up to 28 items. You will have to extend it for longer lists!

```
*{class =~ "topic/ol"}[outputclass =~ "cyrillic"] > *{class =~ "topic/li"}:marker {
  width:3em;
}

*{class =~ "topic/ol"}[outputclass =~ "cyrillic"] > *{class =~ "topic/li"}:nth-of-type(1):marker{ content:"а" }
*{class =~ "topic/ol"}[outputclass =~ "cyrillic"] > *{class =~ "topic/li"}:nth-of-type(2):marker{ content:"а" }
*{class =~ "topic/ol"}[outputclass =~ "cyrillic"] > *{class =~ "topic/li"}:nth-of-type(3):marker{ content:"а" }
*{class =~ "topic/ol"}[outputclass =~ "cyrillic"] > *{class =~ "topic/li"}:nth-of-type(4):marker{ content:"а" }
*{class =~ "topic/ol"}[outputclass =~ "cyrillic"] > *{class =~ "topic/li"}:nth-of-type(5):marker{ content:"а" }
*{class =~ "topic/ol"}[outputclass =~ "cyrillic"] > *{class =~ "topic/li"}:nth-of-type(6):marker{ content:"а" }
*{class =~ "topic/ol"}[outputclass =~ "cyrillic"] > *{class =~ "topic/li"}:nth-of-type(7):marker{ content:"а" }
*{class =~ "topic/ol"}[outputclass =~ "cyrillic"] > *{class =~ "topic/li"}:nth-of-type(8):marker{ content:"а" }
*{class =~ "topic/ol"}[outputclass =~ "cyrillic"] > *{class =~ "topic/li"}:nth-of-type(9):marker{ content:"а" }
*{class =~ "topic/ol"}[outputclass =~ "cyrillic"] > *{class =~ "topic/li"}:nth-of-type(10):marker{ content:"а" }
*{class =~ "topic/ol"}[outputclass =~ "cyrillic"] > *{class =~ "topic/li"}:nth-of-type(11):marker{ content:"а" }
*{class =~ "topic/ol"}[outputclass =~ "cyrillic"] > *{class =~ "topic/li"}:nth-of-type(12):marker{ content:"а" }
*{class =~ "topic/ol"}[outputclass =~ "cyrillic"] > *{class =~ "topic/li"}:nth-of-type(13):marker{ content:"а" }
```
Related Information:

- Oxygen PDF Chemistry User Guide: Lists

Links

Links allow the users to navigate through the documentation.
How to Remove 'on page NNN' Link Label

For printed material, it is usually desirable for the links to display a label after the text content (such as "on page 54"). This makes it easier the user to identify the target page. However, if the produced PDF is not printed and is intended only for electronic use, this label may create clutter and make the document harder to read. To eliminate this label, add the following in your customization CSS (on page 2041):

```css
*[class ~="topic/xref"] [href]:after,
*[class ~="topic/link"] [href]:after {
  content: none !important;
}
```

Another use-case is to remove the labels only from links shown in tables cells, and leave the others as they are. For this, you could use a more specific selector:

```css
*[class ~="topic/entry"] *[class ~="topic/xref"] [href]:after{
  content: none !important;
}
```

How to Change Link Styles

Suppose you want the links to be bold and with an underline. In your customization CSS (on page 2041), add this snippet:

```css
*[class ~="topic/xref"] [href]:after,
*[class ~="topic/link"] [href]:after {
  font-weight: bold;
  text-decoration: underline;
}
```

How to Hide Descriptions in Related Links Sections

The link descriptions that come from DITA relationship tables or related link elements within topics, are structured in the merged map (on page 2042) like this:

```xml
<related-links class="- topic/related-links ">
  <linkpool class="- topic/linkpool ">
    <link class="- topic/link "
      ... 
      role="friend" scope="local" type="topic">
      <linktext class="- topic/linktext ">Salvia</linktext>
      <desc class="- topic(desc ">
The salvia plant</desc>
    </link>
  </linkpool>
</related-links>
```
Images and Figures

Images are an important part of a publication.

**Note:** You can use raster image formats (such as PNG or JPEG), but it is best to use vector images (such as SVG or PDF). They scale very well and produce better results when printed. In addition the text from these images is searchable and can be selected (if the glyphs have not been converted to shapes) in the PDF viewer.

Images - Built-in CSS

Image properties are defined in [PLUGIN_DIR]css/print/p-images.css.

```css
*[class =~ "topic/image"] {  
  prince-image-resolution: 120dpi;  
  -ah-image-resolution: 120dpi;  
  image-resolution: 120dpi;  
  /* The US-letter page size minus page margins. See p-page-size.css for the  
  current page size. */  
  max-width: 6.5in;  
}
```

How to Fix Image Bleeding - Control Image Size

Sometimes the images may be too big for the page. The built-in CSS rules specify a maximum size for images, limiting to the width of the parent block. But if the parent block is itself too wide and bleeds out of page, you might consider specifying a length.

In your customization CSS (on page 2041), add the following snippet:

```css
*[class =~ "topic/image"] {  
  /*  
   
   */  
}
```
How to Change Image Resolution

This is a good technique to change the size of all raster images from your documentation. This will not work for vector images, such as PDF or SVG. If the images (PNG, for example) contain the image resolution in their metadata, this will be taken into account. For all other images, the default resolution is 120dpi.

If the default resolution is not good (suppose you need a higher pixel density of 300dpi), you can change it by adding the following in your customization CSS (on page 2041):

```css
*[class ~="topic/image"] {
    prince-image-resolution: 300dpi;
    -ah-image-resolution: 300dpi;
    image-resolution: 300dpi;
}
```

How to Place Big Images on Rotated Pages

Very wide images may bleed out of the page. One solution for this is to use landscape pages for these wide images.

In your customization CSS (on page 2041), add:

```css
*[class~="topic/image"][outputclass='land'] {
    page: landscape-page;
}
```

Setting the attribute @outputclass = 'land' on the table element will force the table on a new landscape page.

Another solution is to set an @outputclass attribute on the image, then create a rule that matches it, and associate a landscape page for it.

How to Place a Text and Image Side by Side

If you need to align text and an image side by side, you can use the following technique:

1. Organize your text and image under a <div> element like this:
...  
```html
<div outputclass="side-by-side">
  <p>This will be in the left side, the next figure in the right. </p>
  <fig>
    <image href="cactus.jpeg"/>
  </fig>
</div>
...  
```

**Note:** You can use the `@outputclass` attribute to mark the `<div>` elements that have this special layout.

2. In your customization CSS *(on page 2041)*, add:

```css
*[@outputclass = "side-by-side"] > *[class = "topic/p"] {
  display:inline-block;
  width: 45%;
}

*[@outputclass = "side-by-side"] > *[class = "topic/fig"] {
  display:inline-block;
  width: 45%;
}

The image should fill the entire width of the parent `<fig>` element:

```css
*[@outputclass = "side-by-side"] > *[class = "topic/fig"] > *[class = "topic/image"] {
  width:100%;
}
```

By default, the bottom of the image is on the same line as the text baseline. If you want the text and the image to be aligned at the top, add these lines:

```css
*[@outputclass = "side-by-side"] > *[class = "topic/p"] {
  vertical-align:top;
}

*[@outputclass = "side-by-side"] > *[class = "topic/fig"] {
  vertical-align:top;
  font-size:0pt;
}
```
**Note:** The `font-size:0pt` is needed to remove the font ascent and descent around the image rectangle.

### How to Control the Image Size in Complex Static Content

It is common to have text and images mixed together in a `:before` or `:after` pseudo element. For example, for notes you may have both artwork and text:

```css
*[class ~="topic/note"]::before {
  content: url('note.png') "Some text";
}
```

If you want to change the size of the image, you have two options:

1. **Use the `image-resolution` CSS property:**

   ```css
   *[class ~="topic/note"] {
     image-resolution:300dpi;
   }
   ```

2. **Separate the image from the text and apply the width and height CSS properties only on the image,** using the width and height properties. You could use multiple `:before` pseudo-elements for that, considering that the farthest content presented before the actual content of an element is matched by the `:before` with the highest number in the brackets:

   ```css
   *[class ~="topic/note"]:before(2) {
     content: url('note.png') ;
     width:0.5in;
   }

   *[class ~="topic/note"]:before(1) {
     content: "Some text";
   }
   ```

### How to Center Images

DITA defines a `@placement` attribute for the `<image>` elements. The implicit value is `inline`. Suppose that you need to center the images that have the placement set to `break` (for example, they are not on the same line with other content and the images from the `<fig>` element).

In your customization CSS *(on page 2041)*, add:
How to Change/Reset the Figure Numbering

**Note:** This topic is applicable for the DITA Map PDF - based on HTML5 & CSS transformation type.

There are cases when you need to change the aspect of the figure counter that is shown before the figure titles. By default, the figure titles are formatted like this:

```
Figure NN. Lore Ipsum Title
```

NN is the number of the figure that starts being counted from the beginning of the publication.

One use-case is to have the NN counter be incremented only within one chapter (for example, the first chapter contains "Figure 1" and "Figure 2", and second chapter starts over with "Figure 1" instead of incrementing to "Figure 3").

You should reset the figure counter on each topic marked as chapter, then hide the label from the figure `<figcaption>` (this is an HTML element generated by the XSL transformation), and create another label using a `:before` selector on the `<figcaption>`.

```
*[class =~ "topic/topic"] {is-chapter} {
  counter-reset: figcount;
}
```
Tables

Tables are widely used in technical documentation. This section contains information about the CSS rules that are used to style them and how to fix some problems.

Tables - Built-in CSS

There is a combination of CSS files that address tables:

- [PLUGIN_DIR]/css/core/-table-html-cals.css
- [PLUGIN_DIR]/css/print/p-tables.css

How to Deal With Wide Tables - Page Rotation

Some of the tables can have a large number of columns. In this case, the table may bleed out of the page. One solution is to use landscape pages for these tables.

Setting the attribute \texttt{@orient = 'land'} on the table element will force the table on a new landscape page.

Another solution is to use automatic detection of wide tables (5 or more columns):

```css
*[class~="topic/table"] > *[class="topic/tgroup"][cols='5'],
*[class~="topic/table"] > *[class="topic/tgroup"][cols='6'],
*[class~="topic/table"] > *[class="topic/tgroup"][cols='7'],
*[class~="topic/table"] > *[class="topic/tgroup"][cols='8'] { 
    page: landscape-page;
    max-width: 100%;
    page-break-before: avoid;
}
```
**Note:** The landscape-page page layout is defined in the `[PLUGIN_DIR]css/print/p-pages-and-headers.css`.

If you want to rotate the entire topic that contains the big table, use:

```
*{class~="topic/table"} > *{class="topic/tgroup"}[cols='5'],
*{class="topic/table"} > *{class="topic/tgroup"}[cols='6'],
*{class="topic/table"} > *{class="topic/tgroup"}[cols='7'],
*{class="topic/table"} > *{class="topic/tgroup"}[cols='8'] {
  max-width: 100%;
  table-layout: auto;
}
```

```
*{class="topic/topic"}:has(*:not([class="topic/topic"]) > *{class="topic/table"} > *{class="topic/tgroup"}[cols='5']),
*{class="topic/topic"}:has(*:not([class="topic/topic"]) > *{class="topic/table"} > *{class="topic/tgroup"}[cols='6']),
*{class="topic/topic"}:has(*:not([class="topic/topic"]) > *{class="topic/table"} > *{class="topic/tgroup"}[cols='7']),
*{class="topic/topic"}:has(*:not([class="topic/topic"]) > *{class="topic/table"} > *{class="topic/tgroup"}[cols='8'] ),
*{class="topic/topic"}:has(*:not([class="topic/topic"]) > *:not([class="topic/topic"]) > *{class="topic/table"} > *{class="topic/tgroup"}[cols='5'] ),
*{class="topic/topic"}:has(*:not([class="topic/topic"]) > *:not([class="topic/topic"]) > *{class="topic/table"} > *{class="topic/tgroup"}[cols='6'] ),
*{class="topic/topic"}:has(*:not([class="topic/topic"]) > *:not([class="topic/topic"]) > *{class="topic/table"} > *{class="topic/tgroup"}[cols='7'] ),
*{class="topic/topic"}:has(*:not([class="topic/topic"]) > *:not([class="topic/topic"]) > *{class="topic/table"} > *{class="topic/tgroup"}[cols='8'] ),
*{class="topic/topic"}:has(*:not([class="topic/topic"]) > *:not([class="topic/topic"]) > *:not([class="topic/topic"]) > *{class="topic/table"} > *{class="topic/tgroup"}[cols='5'] ),
*{class="topic/topic"}:has(*:not([class="topic/topic"]) > *:not([class="topic/topic"]) > *:not([class="topic/topic"]) > *{class="topic/table"} > *{class="topic/tgroup"}[cols='6'] ),
*{class="topic/topic"}:has(*:not([class="topic/topic"]) > *:not([class="topic/topic"]) > *:not([class="topic/topic"]) > *{class="topic/table"} > *{class="topic/tgroup"}[cols='7'] ),
*{class="topic/topic"}:has(*:not([class="topic/topic"]) > *:not([class="topic/topic"]) > *:not([class="topic/topic"]) > *{class="topic/table"} > *{class="topic/tgroup"}[cols='8'] );
```
How to Fix Text Bleeding From Table Cells

Slim tables or tables that have many columns make the text from the cells to be confined to a small horizontal space. Long words would bleed outside the cell boundaries. To fix this, you should enable hyphenation in your tables, thus making the words spread on multiple lines. In your customization CSS (on page 2041), add:

```css
*[^])="topic/table"]{ 
  hyphens:auto;
}
```

Related Information:

- Hyphenation (on page 2128)

How to Enable the Automatic Table Layout

The DITA specification indicates that tables should have a fixed layout. However, you can get a more optimal arrangement of the cells using the automatic layout. In your customization CSS (on page 2041), add:

```css
*[^])="topic/tgroup"]{ 
  table-layout:auto !important;
}
```

If you want to control which table you want this layout, you can set the @outputclass attribute on the `<table>` element:

```xml
<table outputclass='auto_tbl'> ... </table>
```

Then, in the CSS, use a rule that matches the @outputclass:

```css
*[^])="topic/table"][@outputclass='auto_tbl'] > *[^])="topic/tgroup"]{ 
  table-layout:auto !important;
}
```

⚠️ Important: Make sure the tables have no column width specified.
How to Rotate Content from a Table Cell

There are cases where you want to style the first column as a kind of table header, with vertical text.

There is an important thing to remember: you can rotate an element from a table cell, but not the cell itself. So, your DITA table cell should contain a `<div>` or a `<p>` element that will be rotated. The cell has to be marked somehow so that it can be matched from the CSS. One way is to set an `@outputclass` attribute on it, another will be to mark the table and then match the first entries from it.

```xml
<row>
  ...
  <entry outputclass="rotated">
    <p>Rotated</p>
  </entry>
  ...
</row>
```

In your customization CSS (on page 2041), use the following rule that matches the child of the entry:

```css
*[outputclass =~ "rotated"] > * {
  display: block;
  transform: rotate(-90deg) !important;
  text-align: left !important;

  padding:0;
  margin:0;

  white-space: nowrap;

  width:150px;
  height:80px;
}
```

The padding and margins are set to zero to clear any space that may come from other rules. The width is required - it will become the height of the cell. If this is not specified, the vertical rotated text will bleed out of the cell. The height is optional.

How to Add Horizontal Lines to a Choice Table

To add horizontal lines that separate the options within a `<choicetable>`, you can use borders set on each of the rows. The following CSS styles the top header and the first column with some background colors. In a choice table, the first column represents the choice labels.
Note: Using the frame attribute on the choice table will make these selectors apply partially. Please make sure you are designing your customization CSS taking into account all possible values for the frame attribute.

Code Blocks

Code blocks are used to render section of programming code.

How to Enable Code Syntax Highlighting

This topic refers only to the DITA Map PDF - based on HTML5 & CSS transformation type.

You can use syntax highlighting to make it easier to read your code snippets by displaying each type of code in different colors and fonts. In the DITA topics, set the @outputclass attribute on the <codeblock> elements to one of these values:

- language-bourne
- language-c
- language-cpp
For example, for a java snippet:

```csharp
<codeblock outputclass="language-java">
  for (int i=0; i <100; i++) {
    // do something
  }
</codeblock>
```

The resulting HTML fragment in the merged HTML5 document is:

```html
<pre class="+ topic/pre pr-d/codeblock pre codeblock language-java"
 xml:space="preserve">
  <strong class="hl-keyword" style="color:#7f0055">for</strong>
  <strong class="hl-keyword" style="color:#7f0055">int</strong> i=<span class="hl-number">0</span>; i &lt;100; i++) {
    <em class="hl-comment" style="color:#006400">// do something</em>
  }
</pre>
```

And in the output, it will be rendered as:

```
for (int i=0; i <100; i++) {
    // do something
}
Changing the Colors for the Syntax Highlighting

As you can see in the above example, the HTML elements `<span>` and `<strong>` are used to color the content. Since they have a `@style` attribute set, the overriding properties need to be marked with `!important`.

Suppose you want to color the keywords in red and the comments in blue. To do so, add the following to your customization CSS (on page 2041):

```css
.hl-keyword {
    color: red !important;
}
.hl-comment {
    color: blue !important;
}
```

How to Disable Line Wrapping in Code Blocks

By default, code blocks have the content wrapped to avoid the bleeding of long lines out of the page. To avoid wrapping, add the following in your customization CSS (on page 2041):

```css
 *[class~="pr-d/codeblock"] {
     white-space: pre;
 }
```

For the DITA Map PDF - based on HTML5 & CSS transformation type, the best solution to distinguish between lines is to leave them wrapped, but color each line with a different background (zebra coloring). An example is provided here: XSLT Extensions for PDF Transformations (on page 2033).

How to Deal with Unwanted Returns in Code Blocks

There are cases where the source file contains long lines of code that need to continue onto the next line in the rendered PDF (to wrap visually).

When the user copies the block from the PDF reader, they get two separated lines. This means that the command fails when users copy it from the PDF to the command-line terminal (because it comes in as two commands).

For example, the command:

```
$gist = ls -l * | count -n | some more
```

May be rendered in the PDF on two lines:
$gist = ls -l * | count -n
| some more

And this is invalid when used in the terminal.

There is no CSS workaround for this, but to manually format the command line, add a line continuation character like this:

$gist = ls -l * | count -n \
| some more

⚠️ Note: For Linux/Mac OSX, the continuation character is the backslash \. For Windows, this is the shift character ^.

The command-line processor will now recognize that the first line is continuing on to the next one.

Notes

Notes contain an additional piece of information that calls attention to particular content. They may have various types (tip, caution, danger, restriction, important, warning).

For information on how to add and manage mixed content before the note icons and labels, see How to Control the Image Size in Complex Static Content (on page 2153).

How to Change Note Icons

The recommended icon format is SVG.

To change the default icons for notes that do not have a type attribute, add the following rule to your customization CSS (on page 2041):

```css
div.note > span.note__title{
    background-image: url("../img/note.svg") !important;
}
```

For a note with a type attribute set to warning, caution, or trouble, add the following corresponding CSS rule:

```css
div.warning > span.note__title{
    background-image: url("../img/warning.svg") !important;
}
div.caution > span.note__title{
    background-image: url("../img/caution.svg") !important;
}
```
Abbreviated Forms

When using the `<abbreviated-form>` element in your content, it is possible to style the subsequent occurrences differently than the first occurrence. To achieve this, add something similar to the following rule in your customization CSS (on page 2041):

```css
a:has(dfn[class ~="abbreviated-form"]) {
    color: oxy_xpath("let $cdf:= dfn return if (preceding::dfn[@keyref = $cdf/@keyref]) then 'black' else 'red'");
    text-decoration: oxy_xpath("let $cdf:= dfn return if (preceding::dfn[@keyref = $cdf/@keyref]) then 'none' else 'underline'");
}
```

This example would render the first occurrence with a red color and an underline, while the subsequent occurrences would be rendered with a black color and no underline.

Styling Through Custom Parameters

You can activate parts of your CSS by using custom transformation parameters that start with the `args.css.param` prefix.

These parameters are recognized by the publishing pipeline and are forwarded as synthetic attributes on the root element of the merged map. The last part of the parameter name will become the attribute name, while the value of the parameter will become the attribute value. The namespace of these synthetic attributes is: http://www.oxygenxml.com/extensions/publishing/dita/css/params.

**Notes:**

- Use only Latin alphanumeric characters for parameter names.
- You can set multiple styling parameters at the same time.

How to Limit the Depth of the TOC Using a Parameter

In the following example, a custom parameter is used to switch from a full depth table of contents to a flat one that shows only the titles of the first-level topics (such as chapters, preface, notices).

The custom parameter is:
The CSS that hides the topicrefs at level 2 or more:

@namespace a "http://www.oxygenxml.com/extensions/publishing/dita/css/params";

:root[a|only-chapters-in-toc='yes'] *[class =~ "toc/toc"]
   > *[class =~ "map/topicref"] > *[class =~ "map/topicref"] {
     display: none;
   }

The selector :root[a|only-chapters-in-toc='yes'] makes the rule activate only when the attribute is set.

How to Change the Page Size Using a Parameter

In the next example, a custom parameter is used to modify the page size. The parameter is defined in the transformation scenario:

args.css.param.page-size="A4"

Then in the CSS, the attribute value is extracted and used:

@page {
   size: oxy_xpath('/@*[local-name()="page-size"]');
}

Controlling the Publication Content

Using a plain DITA map, the transformation will produce a publication with a front page, a table of contents, chapters with content, and an index at the end. This is appropriate for most cases, but there are use cases where some adjustments are necessary. For example, if you want to do one of the following:

- Remove the TOC or index.
- Add a glossary.
- Change the position of the TOC or the index relative to the sibling topics.
- Add a preface, frontmatter, or backmatter with copyright notices, abstracts, list of tables, list of figures, etc.

All of these can be achieved using a DITA bookmap.
A bookmap has a more elaborate structure than a regular map. You should start by defining the title structure, with a main title and alternative title:

```xml
<!DOCTYPE bookmap PUBLIC "-//OASIS//DTD DITA BookMap//EN" "bookmap.dtd">
<bookmap id="taskbook">
    <booktitle>
        <mainbooktitle>Publication Title</mainbooktitle>
        <booktitlealt>A very short description of the publication</booktitlealt>
    </booktitle>
</bookmap>
```

Then you may define a front matter. In this, you may link the topics that need to appear before the main content. You may also define the location where the table of contents will be placed. In the example below, it appears between the "abstract" and "foreword" topics:

```xml
<frontmatter>
    <topicref href="topics/abstract.dita"/>
    <booklists>
        <toc/>
    </booklists>
    <topicref href="topics/foreword.dita"/>
</frontmatter>
```

**Note:** To remove the TOC from the publication, just omit the `<toc>` element from the `<booklists>`.

Next, the topics are grouped into chapters:

```xml
...<chapter href="topics/installation.dita" />
...
```

At the end, you could define the structure of the backmatter. Just like for the frontmatter, you can include some topics and some generated content, such as the index. In the example below, it is defined that the glossary should come after the index, followed by a list of figures and list of tables. At the very end, there is a topic with some thank you notes.

```xml
<backmatter>
    <topicref href="topics/conclusion.dita"/>
    <booklists>
        <indexlist/>
        <glossarylist>
            <topicref href="topics/xp.dita" keys="xp" print="yes"/>
        </glossarylist>
    </booklists>
</backmatter>
```
As you can see, the bookmap offers a much better control over the final content of the publication. It also offers more options in controlling the metadata that will go into the PDF (see the Metadata (on page 2070) topic).

How to Omit the Front Page, TOC, Glossary, Index for a Plain DITA Map

For a plain DITA map, there are no elements that allow you to control if and where to place the generated content such as the title page, table of contents, list of tables, glossary, or index. For the most common use-case, when you want to hide them all and just keep the content, you can use the transformation parameter hide.frontpage.toc.index.glossary. See: Transformation Parameters (on page 2018).

Related Information:

• How to Remove Entries from the TOC (on page 2101)

• How to Hide the TOC (on page 2102)

How to Make Chapters Look Like Individual Publications

Note: This topic is only applicable for the DITA Map PDF - based on HTML5 & CSS transformation scenario.

Sometimes you want to make each chapter independent (i.e. it can be read separately, as a separate part of your publication). For this, you need the page counter, figure, and table counters to restart at each chapter. You can control this by using the args.css.param.numbering (on page 2088) command line parameter.

In addition to numbering, you can force the creation of a chapter TOC (on page 2102).
Troubleshooting

This section contains information about fixing various publishing problems.

Error Parsing CSS File - Caused by a Networking Problem

Problem

My custom styles are not applied and in the transformation results console, I get an error containing one of the following: I/O exception, Unknown host, Error parsing.

Cause

One of the CSS files contains references to resources from another website that is currently inaccessible. These resources may include:

- Fonts
- Images
- Other CSS files

Note: If you exported one of the built-in publishing templates from the transformation scenario dialog, it is possible that the associated CSS files use an imported Google Font.

Remedy

1. Check your proxy settings (ask the system administrator for help).

2. If the server is still inaccessible from the transformation process, download the remote resources using a web browser, save them in the customization CSS file folder, and refer them directly from your CSS.

Note: If the problem is caused by a remote font, see Using Local Fonts.

XSL FO-based DITA to PDF Customization

Oxygen XML Editor comes bundled with the DITA Open Toolkit that provides a mechanism for converting DITA maps (on page 3281) to PDF output. Oxygen XML Editor includes a built-in DITA Map PDF - based on XSL-FO (on page 1662) transformation scenario that converts DITA maps to PDF using an xsl:fo processor.

There are several methods that can be used to customize DITA to PDF output:
• Create a customization directory that contains your customized files and reference that directory in the PDF transformation scenario (using the `customization.dir` parameter).
• Creating a DITA Open Toolkit plugin that adds extensions to the PDF output. More details can be found in the DITA Open Toolkit Documentation.

**Tip:** Some sample plugins are available on GitHub that could help you to get started with creating a plugin:
- Sample Plugin: DITA-OT PDF Customization Plugin for Oxygen User Manual
- Sample Plugin: DITA-OT PDF2 - Generate Numbers Before Topic's Title

### Using a Customization Directory

One way to customize the PDF output generated by the DITA Map to PDF - based on XSL-FO (on page 1662) transformation scenario is to create a dedicated folder to store customized files. With this approach, you will copy the contents of the built-in customization directory to a new directory where you can customize the files according to your needs and reference the new directory using the `customization.dir` parameter in the transformation scenario. The biggest advantage of this method is that the contents of your customization directory will remain unaffected when the DITA-OT is upgraded.

### How to Create a Customization Directory

Follow this procedure to create a customization directory:

1. Copy all the entire `DITA-OT-DIR\plugins\org.dita.pdf2\Customization` directory to another location where you have write access.
2. Modify any of the files in whatever way necessary to achieve your specific goal. For inspiration, see Embedding a Company Logo (on page 2169) for a specific example of how you can modify contents of the directory to embed a logo in the output.

**Tip:** For other specific examples, see DITA-OT Documentation - PDF Customization Plugin.
3. Edit the DITA Map to PDF - based on XSL-FO (on page 1662) transformation scenario, go to the Parameters tab, and set the `customization.dir` parameter to point to the location of your customization directory.

**Related Information:**

- Automatic PDF plugin customization generator by Jarno Elovirta.
Embedding a Company Logo

The following procedure explains how to embed a company logo image in the front matter of the book.

1. Create a customization directory (on page 2168) (if you haven’t already done so).
2. Create a `cfg\common\artwork` directory structure in your customization directory and copy your logo to that directory (for example, `C:\Customization\cfg\common\artwork\logo.png`).

   **Important:** Make sure that your logo image is named: `logo.png`.

3. Rename `Customization\catalog.xml.orig` to: `Customization\catalog.xml`.
4. Open the `catalog.xml` in Oxygen XML Editor and *uncomment* this line:

   ```xml
   <!--uri name="cfg:fo/xsl/custom.xsl" uri="fo/xsl/custom.xsl"/-->  
   ```

   It now looks like this:

   ```xml
   <uri name="cfg:fo/xsl/custom.xsl" uri="fo/xsl/custom.xsl"/>
   ```

5. Rename the file `Customization\fo\xsl\custom.xsl.orig` to: `C:\Customization\fo\xsl\custom.xsl`.
6. Open the `custom.xsl` file in Oxygen XML Editor and create the template called `createFrontCoverContents` for DITA-OT 3.3.1.

   **Tip:** You can copy the same template from `DITA-OT-DIR\plugins\org.dita.pdf2\xsl\fo\front-matter.xsl` and modify it in whatever way necessary to achieve your specific goal. This new template in the `custom.xsl` file will override the same template from `DITA-OT-DIR\plugins\org.dita.pdf2\xsl\fo\front-matter.xsl`.

   **Example:**

   For example, the `custom.xsl` could look like this:

   ```xml
   <?xml version='1.0'?>
   <xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
                   xmlns:fo="http://www.w3.org/1999/XSL/Format"
                   version="2.0">
    <xsl:template name="createFrontCoverContents">
    <!-- set the title -->
   ```
7. Edit the DITA Map to PDF - based on XSL-FO (on page 1662) transformation scenario, go to the Parameters tab, and set the customization.dir parameter to point to the location of your customization directory.
Tip: For other specific examples, see DITA-OT 3.x Documentation - Customizing PDF Output.

Related Information:

- Using a Customization Directory (on page 2168)

Customizing the Header and Footer in PDF Output

The XSLT stylesheet \texttt{DITA-OT-DIR/plugins/org.dita.pdf2/xsl/fo/static-content.xsl} contains templates that output the static header and footers for various parts of the PDF such as the prolog, table of contents, front matter, or body.

The templates for generating a footer for pages in the body are called \texttt{insertBodyOddFooter} or \texttt{insertBodyEvenFooter}.

These templates get the static content from resource files that depend on the language used for generating the PDF. The default resource file is \texttt{DITA-OT-DIR/plugins/org.dita.pdf2/cfg/common-vars/en.xml}. These resource files contain variables (such as \textit{Body odd footer}) that can be set to specific user values.

Instead of modifying these resource files directly, they can be overwritten with modified versions of the resources in a PDF customization directory.

1. Create a customization directory (on page 2168) (if you haven't already done so).
2. Locate the stylesheets and templates listed above in your customization directory and modify them in whatever way necessary to achieve your specific goal.

Tip: For more information and examples, see the Oxygen PDF Customization Plugin project on GitHub.

3. Edit the DITA Map to PDF - based on XSL-FO (on page 1662) transformation scenario, go to the Parameters tab, and set the customization.dir parameter to point to the location of your customization directory.

Related Information:


- Using a Customization Directory (on page 2168)
Adding a Watermark to PDF Output

To add a watermark to the PDF output of a DITA Map PDF - based on XSL-FO (on page 1662) transformation scenario, follow this procedure:

1. Create a customization directory (on page 2168) (if you haven’t already done so).
2. Create a cfg\common\artwork directory structure in your customization directory and copy your watermark image to that directory (for example, C:\Customization\cfg\common\artwork\watermark.png).
3. Rename the Customization\catalog.xml.orig file to Customization\catalog.xml.
4. Open the catalog.xml in Oxygen XML Editor and uncomment this line:

   <!--uri name="cfg:fo/xsl/custom.xsl" uri="fo/xsl/custom.xsl"/-->

   The uncommented line should look like this:

   <uri name="cfg:fo/xsl/custom.xsl" uri="fo/xsl/custom.xsl"/>

5. Rename the file: Customization\fo\xsl\custom.xsl.orig to Customization\fo\xsl\custom.xsl.
6. Open the Customization\fo\xsl\custom.xsl file in Oxygen XML Editor to overwrite two XSLT templates:

   • The first template is located in the XSLT stylesheet DITA-OT-DIR\plugins\org.dita.pdf2\xsl\fo\static-content.xsl. Override by copying the original template content in the custom.xsl and specifying a watermark image for every page in the PDF content, using a block-container element that references the watermark image file:

     ```xml
     <fo:static-content flow-name="odd-body-header">
       <fo:block-container absolute-position="absolute"
         top="-2cm" left="-3cm" width="21cm" height="29.7cm"
         background-image="{concat($artworkPrefix,'Configuration/OpenTopic/cfg/common/artwork/watermark.png')}">
         <fo:block/>
       </fo:block-container>
       <fo:block xsl:use-attribute-sets="__body__odd__header">
         <xsl:call-template name="insertVariable">
           <xsl:with-param name="theVariableID" select="'Body odd header'"/>
           <xsl:with-param name="theParameters">
             <prodname>
               <xsl:value-of select="$productName"/>
             </prodname>
             <heading>
               <!--... -->
             </heading>
           </xsl:with-param>
         </xsl:call-template>
       </fo:block>
     </fo:static-content>
     ```
The second template to override is located in the XSLT stylesheet `DITA-OT-DIR\plugins\org.dita.pdf2\xsl\fo\commons.xsl` and is used for styling the first page of the output. Override it by copying the original template content in the `custom.xsl` and adding the `block-container` element that references the watermark image file:

```xml
<xsl:template name="createFrontMatter_1.0">
  <fo:page-sequence master-reference="front-matter"
                   xsl:use-attribute-sets="__force__page__count">
    <xsl:call-template name="insertFrontMatterStaticContents"/>
    <fo:flow flow-name="xsl-region-body">
      <fo:block-container absolute-position="absolute"
                           top="-2cm" left="-3cm" width="21cm" height="29.7cm"
                           background-image="{concat($artworkPrefix,
                                            'Configuration/OpenTopic/cfg/common/artwork/watermark.png')}">
        <fo:block/>
      </fo:block-container>
      <fo:block xsl:use-attribute-sets="__frontmatter">
        <!-- set the title -->
      </fo:block>
      <fo:block xsl:use-attribute-sets="__frontmatter__title">
        <xsl:choose>
          <xsl:when test="$map/*[contains(@class,' topic/title ')][1]">
            <xsl:apply-templates select="$map/*[contains(@class,' topic/title ')][1]"/>
          </xsl:when>
          <xsl:when test="$map/*[contains(@class,' bookmap/mainbooktitle ')][1]">
            <xsl:apply-templates select="$map/*[contains(@class,' bookmap/mainbooktitle ')][1]"/>
          </xsl:when>
        </xsl:choose>
      </fo:block>
    </fo:flow>
  </fo:page-sequence>
</xsl:template>
```
7. Edit the DITA Map to PDF - XSL-FO (on page 1662) transformation scenario, go to the Parameters tab, and set the customization.dir parameter to point to the location of your customization directory.
Adding an Edit Link in PDF Output to Launch Oxygen XML Web Author

You can embed *Edit* links in the DITA Map PDF output that will automatically launch a particular document in Oxygen XML Web Author. A reviewer can then simply click the link and they will be redirected to the Oxygen XML Web Author editing page with that particular file open and editable.

To embed an *Edit* link in the DITA Map PDF output, follow these steps:

1. Edit a DITA Map to PDF - based on XSL-FO (on page 1662) transformation scenario and open the Parameters tab.
2. Set values for the following parameters:
   - `editlink.remote.ditamap.url` - The URL of the DITA Map suitable for opening in Oxygen XML Web Author.
   - `editlink.web.author.url` - The URL of the Oxygen XML Web Author installation, for example https://www.oxygenxml.com/oxygen-xml-web-author/
3. Run the transformation scenario.

**Result:** In the PDF output, all topics will have an *Edit* link to the right side of the title and clicking the link will launch that particular document in Oxygen XML Web Author.

**Force Page Breaks Between Two Block Elements in PDF Output**

Suppose that in your DITA content you have two block elements (on page 3280), such as two paragraphs:

```xml
<p>First para</p>

<p>Second para</p>
```

and you want to force a page break between them in the PDF output.

Here is how you can implement a DITA Open Toolkit plugin (on page 3285) that would achieve this:

1. Define your custom processing instruction that marks the place where a page break should be inserted in the PDF, for example:

```xml
<p>First para</p>

<?pagebreak?>

<p>Second para</p>
```

2. Locate the DITA Open Toolkit distribution and in the plugins directory create a new plugin folder (for example, DITA-OT-DIR/plugins/pdf-page-break).
3. In this new folder, create a new `plugin.xml` file with the following content:

```xml
<plugin id="com.yourpackage.pagebreak">
  <feature extension="package.support.name" value="Force Page Break Plugin"/>
  <feature extension="package.support.email" value="support@youremail.com"/>
  <feature extension="package.version" value="1.0.0"/>
  <feature extension="dita.xsl.xslfo" value="pageBreak.xsl" type="file"/>
</plugin>
```

The most important feature in the `plugin` is that it will add a new XSLT stylesheet to the XSL processing that produces the PDF content.

4. In the same folder, create an XSLT stylesheet named `pageBreak.xsl` with the following content:

```xml
<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
                 xmlns:fo="http://www.w3.org/1999/XSL/Format" version="1.0">
  <xsl:template match="processing-instruction('pagebreak')">
    <fo:block break-after="page"/>
  </xsl:template>
</xsl:stylesheet>
```

5. Install your `plugin` in the DITA Open Toolkit. (on page 3256)

The source code for the plugin can be found on GitHub here: https://github.com/dita-community/org.dita-community.pdf-page-break.

Customizing Note Images in PDF

To customize the images that appear next to each type of note in the PDF output, use a PDF customization folder (on page 2168) with the following procedure:

1. Create a customization directory (on page 2168) (if you haven't already done so).
2. Create a `cfg\common\vars` directory structure in your customization directory and copy the contents of `DITA-OT-DIR\plugins\org.dita.pdf2\cfg\common\vars` into that created directory.
3. Locate the `DITA-OT-DIR\plugins\org.dita.pdf2\cfg\common\vars\en.xml` file in your customization directory (for example, `custom_org.dita.pdf2\cfg\common\vars \en.xml`).
4. Create a `cfg\common\artwork` directory structure in your customization directory and add your custom `notice` image (for example, `Customization\cfg\common\artwork\notice.gif`).
5. Locate and edit the `Customization\cfg\common\vars\en.xml` file and modify the appropriate note element. For example, modify the path to the image for `<note>` element with the `type` attribute set to `notice` from:
6. Edit the DITA Map to PDF - based on XSL-FO (on page 1662) transformation scenario, go to the Parameters tab, and set the path for the customization.dir property to point to the customization folder. Also, set the com.oxygenxml.use.custom.note.images parameter to no.

Show Comments and Tracked Changes in PDF Output

To include comments and tracked changes (stored within your DITA topics) in the PDF output, follow these steps:

1. Edit a DITA Map to PDF transformation scenario.
2. In the Parameters tab, set the value of the show.changes.and.comments parameter to yes.
3. Optionally, you can configure any of these other parameters to adjust the colors of the comments and tracked changes:
   - **ct.insert.color** - Specifies the color for insertion type tracked changes, as a plain color (e.g. red, yellow, blue), or with a hexadecimal equivalent (e.g. #FFFFFF). The default value is 'blue'.
   - **ct.delete.color** - Specifies the color for deletion type tracked changes, as a plain color (e.g. red, yellow, blue), or with a hexadecimal equivalent (e.g. #FFFFFF). The default value is 'red'.
   - **ct.comment.bg.color** - Specifies the background color for comment type tracked changes, as a plain color (e.g. red, yellow, blue), or with a hexadecimal equivalent (e.g. #FFFFFF). The default value is 'yellow'.
4. Click OK and then the Apply Associated button to run the transformation scenario.

   **Result:** Comment threads and tracked changes will now appear in the PDF output. Details about each comment or change will be available in the footer section for each page.

Set a Font for PDF Output Generated with FO Processor

When a DITA map (on page 3281) is transformed to PDF using an FO processor and it contains some Unicode characters that cannot be rendered by the default PDF fonts, a font that is capable of rendering these characters must be configured and embedded in the PDF result.

The settings that must be modified for configuring a font for the built-in FO processor are detailed in Add a Font to the Built-in FO Processor - Advanced Version (on page 1740).
DITA OT PDF Font Mapping

The DITA OT contains a file `DITA-OT-DIR/plugins/org.dita.pdf2/cfg/fo/font-mappings.xml` that maps logical fonts used in the XSLT stylesheets to physical fonts that will be used by the FO processor to generate the PDF output.

The XSLT stylesheets used to generate the XSL-FO output contain code like this:

```
<xsl:attribute name="font-family">monospace</xsl:attribute>
```

The font-family is defined to be `monospace`, but `monospace` is just an alias. It is not a physical font name. Therefore, another stage in the PDF generation takes this `monospace` alias and looks in the `font-mappings.xml`.

If it finds a mapping like this:

```
<aliases>
  <alias name="monospace">Monospaced</alias>
</aliases>
```

then it looks to see if the `monospace` has a `logical-font` definition and if so, it will use the `physical-font` specified there:

```
<logical-font name="Monospaced">
  <physical-font char-set="default">
    <font-face>Courier New, Courier</font-face>
  </physical-font>
  ............
</logical-font>
```

⚠️ **Important:**

If no alias mapping is found for a font-family specified in the XSLT stylesheets, the processing defaults to `Helvetica`.

Related Information:

Adding Libraries to the Built-in FO Processor (DITA-OT)

Starting with Oxygen XML Editor version 20.0, both hyphenation and PDF image support are enabled by default in the built-in DITA-OT FO processor. For older version of Oxygen XML Editor, use the following procedures to enable such support.

Adding Hyphenation Support for DITA-OT Transformation Scenarios

1. Download the pre-compiled JAR (on page 3283) from OFFO.
2. Edit the DITA-OT transformation scenario and switch to the Advanced tab.
3. Click the Libraries button and add the path to the fop-hyph.jar library.

Adding Support for PDF Images

1. Download the fop-pdf-images JAR libraries.
2. Edit the DITA-OT transformation scenario and switch to the Advanced tab.
3. Click the Libraries button and add the path to the libraries.

Adding Support for CGM Images

1. Go to the JCGM page and download the jcgm-image-0.1.1.jar and jcgm-core-0.2.0.jar libraries.
2. Edit the DITA-OT transformation scenario and switch to the Advanced tab.
3. Click the Libraries button and add the path to the libraries.

Debugging DITA PDF Transformations

To debug a DITA PDF transformation scenario using the XSLT Debugger follow these steps:

1. Open the Preferences dialog box (Options > Preferences) (on page 79), go to XML > XML Catalog, click Add, and select the file located at DITA-OT-DIR\plugins \org.dita.pdf2\cfg\catalog.xml.

2. Open the map in the DITA Maps Manager (on page 2990) and create a DITA Map PDF - XSL-FO transformation scenario.

3. Edit the scenario, go to the Parameters tab and change the value of the clean.temp parameter to no.

4. Run the transformation scenario.
5. Open the `stage1.xml` file located in the temporary directory and format and indent (on page 863) it.

6. Create a transformation scenario for this XML file by associating the `topic2fo_shell_fop.xsl` stylesheet located at `DITA-OT-DIR\plugins\org.dita.pdf2\xsl\fo\topic2fo_shell_fop.xsl`. If you are specifically using the RenderX XEP or Antenna House FO processors to build the PDF output, you should use the XSL stylesheets `topic2fo_shell_xep.xsl` or `topic2fo_shell_axf.xsl` located in the same folder.

**Note:** For validation purposes, you need to add the main debugged stylesheet (usually `topic2fo_shell_fop.xsl`) to the Master Files folder (on page 729) in the Project view.

7. In the transformation scenario, edit the XSLT Processor combo box choose the Saxon EE XSLT processor (the same processor used when the DITA OT transformation is executed).

8. In the transformation scenario, edit the Parameters list and set the parameter `locale` with the value `en_GB` and the parameter `customizationDir.url` to point either to your customization directory or to the default DITA OT customization directory. Its value should have a URL syntax like this: `file://c:/path/to/DITA-OT-DIR/plugins/org.dita.pdf2/cfg`.

9. Debug the transformation scenario.

**Related Information:**

- Debugging XSLT Stylesheets and XQuery Documents (on page 2290)
- How to Enable Debugging for FO Processor Transformations (on page 1742)

---

**DocBook to PDF Output Customization**

When the default layout and output of the DocBook to PDF transformation needs to be customized, follow these steps:


   You should start from a copy of the file `[DocBook XSL directory]/fo/titlepage.templates.xml` and customize it. The instructions for the spec file can be found here.

   An example of spec file:
2. Generate a new XSLT stylesheet from the title spec file from the previous step. Apply [DocBook XSL directory]/template/titlepage.xsl to the title spec file. The result is an XSLT stylesheet (for example, mytitlepages.xsl).

3. Import mytitlepages.xsl in a DocBook customization layer. The customization layer is the stylesheet that will be applied to the XML document. The mytitlepages.xsl should be imported with an element like this:

   ```xml
   <xsl:import href="dir-name/mytitlepages.xsl"/>
   ```


5. Apply the customization layer to the XML document. A quick way is to duplicate the transformation scenario DocBook PDF that is included with Oxygen XML Editor and set the customization layer in the XSL URL property of the scenario (on page 1675).

Related Information:

- Video demonstration for creating a DocBook customization layer in Oxygen XML Editor.
11.

Working with XPath Expressions

XPath is a language for addressing specific parts of a document. XPath models an XML document as a tree of nodes. An XPath expression is a mechanism for navigating through and selecting nodes from the document. An XPath expression is, in a way, analogous to an SQL query used to select records from a database.

**Note:** If an XPath expression is run over a JSON document, it is converted to XML and the XPath is executed over the converted XML document.

There are various types of nodes, including element nodes, attribute nodes, and text nodes. XPath defines a way to compute a string-value for each type of node.

XPath defines a library of standard functions for working with strings, numbers and boolean expressions.

**Examples:**

- `child::*` - Selects all children of the root node.
- `./name` - Selects all elements having the name "name", descendants of the current node.
- `/catalog/cd[price>10.80]` - Selects all the `cd` elements that have a price element with a value larger than 10.80.

To find out more about XPath, see [http://www.w3.org/TR/xpath](http://www.w3.org/TR/xpath).

**Related Information:**

- Content Completion in XPath Expressions (*on page 1192*)
- Find/Replace in Multiple Files (*on page 745*)
- Find/Replace Dialog Box (*on page 740*)
XPath Toolbar

XPath is a query language for selecting nodes from an XML document. To use XPath expressions effectively, you need a good understanding of the XPath Core Function Library.

XPath Toolbar

Oxygen XML Editor provides an XPath toolbar to let you query XML documents fast and easy using XPath expressions.

Figure 643. XPath Toolbar

The XPath toolbar includes the following features:

**XPath version chooser drop-down menu**

You can choose the XPath version from the drop-down menu available in the left side of the toolbar. Available options include XPath 1.0, XPath 2.0, XPath 2.0 SA, XPath 3.1, XPath 3.1 SA.

Note: The XPath 2.0 SA and XPath 3.1 SA options have some limitations. These options only offer information about the beginning part of the matching result. For example, if you search for an element, it will only highlight the start tag.

Warning: Oxygen XML Editor uses Saxon to execute XPath 3.1 expressions, but implements a part of the 3.1 functions. When using a function that is not implemented, Oxygen XML Editor can return a compilation error.

**XPath scope menu**

Oxygen XML Editor allows you to define a scope for which the XPath operation will be executed. You can choose where the XPath expression will be executed:

- Current file - Current selected file only.
- Project - All the files in the project.
- Selected project resources - The files selected in the project.
- All opened files - All files opened in the application.
- Current DITA Map hierarchy - All resources referenced in the currently selected DITA map, opened in the DITA Maps Manager view (on page 2990).
- Opened archive - Files open in the Archive Browser view (on page 2191).
- Working sets - The selected working sets (on page 3288).
At the bottom of the scope menu the following scope configuration actions are available:

- **Configure XPath working sets** - Allows you to configure and manage collections of files and folders, encapsulated in logical containers called *working sets* (on page 3288).
- **XPath file filter** - You can filter the files from the selected scope for which the XPath expression will be executed. By default, the XPath expression will be executed only on XML or JSON files, but you can also define a set of patterns that will filter out files from the current scope. If you select the **Include archive** option, the XPath expression will also be executed on the files in any archive (including EPUB and DocX) found at the current scope.

**History drop-down list**

The XPath combo box keeps a history of the last 15 expressions that were used so that you can easily choose them again.

**Settings menu**

The following actions are available in this drop-down menu:

- **XPath update on cursor move**

  When selected and you navigate through a document, the XPath expression corresponding to the XML node at the current cursor position is displayed. For JSON documents, it displays the XPath expression for the current property.

- **Evaluate XPath as you type**

  When you select this option, the XPath expression you are composing is evaluated in real time.

  **Note:** This option and the automatic validation are disabled when you edit huge documents (on page 781) or when the scope is other than Current file.

- **XPath Options**

  Opens the Preferences page of the currently selected processing engine.

- **Switch to XPath Builder View**

  Opens the XPath Builder view (on page 2185).

  **Note:** During the execution of an XPath expression, the XPath toolbar displays a **Stop** button. Press this button to stop the XPath execution.
When you type expressions longer than 60 characters, a dialog box opens that offers you the possibility to switch to the **XPath Builder view (on page 2185)**.

Related Information:
- XPath Expression Results View (on page 2188)

## XPath Builder View

The **XPath/XQuery Builder** view allows you to compose complex XPath expressions and execute them over the currently edited XML document. For XPath 2.0 / 3.1, you can use the `doc()` function to specify the source file for which the expressions are executed. When you connect to a database, the expressions are executed over that database. If you are using the **XPath/XQuery Builder view** and the current file is an XSLT document, Oxygen XML Editor executes the expressions over the XML document in the associated scenario.

**Note:** If an XPath expression is run over a JSON document, it is converted to XML and the XPath is executed over the converted XML document.

If the view is not displayed, it can be opened by selecting it from the **Window > Show View** menu. You can also open it simply by pressing the **Switch to XPath Builder View** button that is located on the **XPath toolbar (on page 2182)**.

The upper part of the view contains the following actions:

### XPath version chooser drop-down menu

A drop-down menu that allows you to select the type of the expression you want to execute. You can choose between:

- XPath 1.0 (Xerces-driven)
- XPath 2.0, XPath 2.0 SA, XPath 3.1, XPath 3.1 SA, Saxon-HE XQuery, Saxon-PE XQuery, or Saxon-EE XQuery (all of them are Saxon-driven)
- Custom connection to XML databases that can execute XQuery expressions

**Note:** The results returned by XPath 2.0 SA and XPath 3.1 SA have a location limited to the line number of the start element (there are no column information and no end specified).

**Note:** Oxygen XML Editor uses Saxon to execute XPath 3.1 expressions. Since Saxon implements a part of the 3.1 functions, when using a function that is not implemented, Oxygen XML Editor returns a compilation error.
Execute XPath button

Use this button to start the execution of the XPath or XQuery expression you are editing. The result of the execution is displayed in the Results view (on page 357).

Favorites button

Allows you to save certain expressions that you can later reuse. To add an expression as a favorite, press the star button and enter a name for it. The star turns yellow to confirm that the expression was saved. Expand the drop-down menu next to the star button to see all your favorites. Oxygen XML Editor automatically groups favorites in folders named after the method of execution.

History drop-down menu

Keeps a list of the last 15 executed XPath expressions. Use the Clear history action from the bottom of the list to remove them.

Settings drop-down menu

Contains the following three options:

- Update on cursor move
  When selected and you navigate through a document, the XPath expression corresponding to the XML node at the current cursor position is displayed. For JSON documents, it displays the XPath expression for the current property.

- Evaluate as you type
  When you select this option, the XPath expression you are composing is evaluated in real time.

  Note: This option and the automatic validation are disabled when you edit huge documents (on page 781) or when the scope is other than Current file.

- Options
  Opens the Preferences page of the currently selected processing engine.

XPath scope menu

Oxygen XML Editor allows you to define a scope for which the XPath operation will be executed. You can choose where the XPath expression will be executed:

- Current file - Current selected file only.
- Project - All the files in the project.
- Selected project resources - The files selected in the project.
• **All opened files** - All files opened in the application.

• **Current DITA Map hierarchy** - All resources referenced in the currently selected *DITA map*, opened in the [DITA Maps Manager view](on page 2990).

• **Opened archive** - Files open in the [Archive Browser view](on page 2191).

• **Working sets** - The selected *working sets* (on page 3288).

At the bottom of the scope menu the following scope configuration actions are available:

• **Configure XPath working sets** - Allows you to configure and manage collections of files and folders, encapsulated in logical containers called *working sets* (on page 3288).

• **XPath file filter** - You can filter the files from the selected scope for which the XPath expression will be executed. By default, the XPath expression will be executed only on XML or JSON files, but you can also define a set of patterns that will filter out files from the current scope. If you select the *Include archive* option, the XPath expression will be also executed on the files in any archive (including EPUB and DocX) found at the current scope.

Figure 644. XPath/XQuery Builder View
While you edit an XPath or XQuery expression, Oxygen XML Editor assists you with the following features:

- **Content Completion Assistant (on page 3280)** - It offers context-dependent proposals and takes into account the cursor position in the document you are editing. The set of functions proposed by the Content Completion Assistant also depends on the engine version. Select the engine version from the drop-down menu available in the toolbar.

- **Syntax Highlighting** - Allows you to identify the components of an expression. To customize the colors of the components of the expression, open the Preferences dialog box (Options > Preferences) (on page 79) and go to Editor > Syntax Highlight (on page 178).

- **Automatic validation of the expression as you type.**

  - *Note:* When you type invalid syntax, a red serrated line underlines the invalid fragments.

- **Function signature and documentation balloon,** when the cursor is located inside a function.

The usual edit actions (Cut, Copy, Paste, Select All, Undo, Redo) are available in the contextual menu of the top editable part of the view.

**Related Information:**

- XPath Expression Results View (on page 2188)

### XPath Expression Results View

When you run an XPath expression, Oxygen XML Editor displays the results of its execution in the Results view (on page 357).

This view contains the following columns:

- **Description** - The result that Oxygen XML Editor displays when you run an XPath expression.
- **XPath location** - The path to the matched node.
- **Resource** - The name of the document that you run the XPath expression on.
- **System ID** - The path to the document itself.
- **Location** - The location of the result in the document.

To arrange the results depending on a column, click its header. To group the results by their resource, or by their system ID, right-click the header of any column in the Results view and select Group by "Resource" or Group by "System ID". If no information regarding location is available, Oxygen XML Editor displays Not available in the Location column. Oxygen XML Editor displays the results in a valid XPath expression format.
The **Results** view also includes various toolbar and contextual menu actions. For more information, see **Results View (on page 357)**.

**Example:**

The following snippets are taken from a DocBook book based on the DocBook XML DTD. The book contains a number of chapters. To return all the chapter nodes of the book, enter `//chapter` in the XPath expression field and press **(Enter)**. This action returns all the `chapter` nodes of the DocBook book in the **Results View**. Click a record in the **Results View** to locate and highlight its corresponding chapter element and all its children nodes in the document you are editing.

To find all `example` nodes contained in the `sect2` nodes of a DocBook XML document, use the following XPath expression: `//chapter/sect1/sect2/example`. Oxygen XML Editor adds a result in the **Results View** for each `example` node found in any `sect2` node.

For example, if the result of the above XPath expression is:

```
- /chapter[1]/sect1[3]/sect2[7]/example[1]
```

it means that in the edited file, the `example` node is located in the first chapter, third section level one, seventh section level 2.

**Figure 645. XPath Results Highlighted in Editor Panel with Character Precision**
XPath and XML Catalogs

The evaluation of the XPath expression tries to resolve the locations of documents referenced in the expression through XML Catalogs (on page 3289). These catalogs are configured in the XML Catalog preferences (on page 189) pages and the XML Parser preferences (on page 191).

Example:

As an example, consider the evaluation of the collection(URIofCollection) function (XPath 2.0). To resolve the references from the files returned by the collection() function with an XML catalog, specify the class name of the catalog-enabled parser for parsing these collection files. The class name is ro.sync.xml.parser.CatalogEnabledXMLReader. Specify it as it follows:

```xml
let $docs := collection(iri-to-uri{
    "file:///D:/temp/test/XQuery-catalog/mydocsdir?recurse=yes;select=*.xml;
    parser=ro.sync.xml.parser.CatalogEnabledXMLReader")
```

XPath Prefix Mapping

To define default mappings between prefixes (that you can use in the XPath toolbar (on page 2182)) and namespace URIs go to the XPath preferences page (on page 214) and enter the mappings in the Default prefix-namespace mappings table. The same preferences panel allows you to configure the default namespace used in XPath 2.0 expressions.

⚠️ Important: If you define a default namespace, Oxygen XML Editor binds this namespace to the first free prefix from the list: default, default1, default2, and so on. For example, if you define the default namespace xmlns="something" and the prefix default is not associated with another namespace, you can match tags without prefix in an XPath expression typed in the XPath toolbar by using the prefix default. To find all the level elements when you define a default namespace in the root element, use this expression: //default:level in the XPath toolbar.
12.

Working with Archives

Oxygen XML Editor includes a useful Archive Browser view (on page 2191) that offers the means to work with files directly from various types of archives (for example, opening and saving files directly in archives, or browsing and modifying archive structures). The archive support is available for all ZIP-type archives, including:

- ZIP archives
- EPUB books
- JAR archives (on page 3283)
- Office Open XML (OOXML) files
- Open Document Format (ODF) files
- IDML files (on page 3283)

You can transform, validate, and perform many other operations on files directly from an archive. For instance, you can transform, or validate files directly from OOXML or ODF packages, and the structure and content of the ZIP archives can be opened, edited, and saved, similar to any other ZIP archive browsing tool. Also, when browsing for a URL in various dialog boxes, you can use the Browse for archived file action to browse and select files from a particular archive.

For more information about working with an EPUB archive in Oxygen XML Editor, watch our video demonstration:

https://www.youtube.com/embed/OIGTNQw0CI8

Browsing Archives

Oxygen XML Editor includes a helper view called the Archive Browser that allows you to view the contents and structure of an archive, and it offers a variety of toolbar and contextual menu actions. If the view is not displayed, it can be opened by selecting it from the Window > Show View menu.

To open an archive in the Archive Browser view, use one of the following methods:

- Open an archive from the Project view (on page 333).
- Select an archive in one of the file chooser dialog boxes in Oxygen XML Editor (such as the Open dialog box).
- Drag an archive from a system file explorer and drop it in the Archives Browser view.
When displaying an archive, the **Archive Browser** view locks the archive file. It is then automatically unlocked when the **Archive Browser** view is closed.

**Tip:** If a file is not recognized by Oxygen XML Editor as a supported archive type, you can add it from the **Archive preferences page** (on page 244).

---

**Archive Browser Toolbar Actions**

The following actions are available on the **Archive Browser** toolbar:

- **Open Archive menu**
  
  Provides access to the **Open Archive** action that opens a new archive in the browser. If the extension is not known as an archive extension, you will be directed to the **Archive preferences page** (on page 244) to add a new extension. The sub-menu keeps a list of recently open archive files and a **Clear history** action that allows you to delete the list.

- **Close**
  
  Closes the browsed archive and unlocks the archive file.

- **Validate (available for EPUB archives only)**
  
  Checks the EPUB archive to see if its content and structure is valid.

- **New folder**
  
  Creates a folder as child of the selected folder in the browsed archive.

- **New file**
  
  Creates a file as child of the selected folder in the browsed archive.
Add files

Adds existing files as children of the selected folder in the browsed archive.

Note: You can also add files in the archive by dragging them from the file browser or the Project view (on page 333) and dropping them in the Archive Browser view.

Delete

Deletes the selected resource in the browsed archive.

Open in System Application

Opens the selected resource in the default system application that is associated with that type of file.

Archive Options

Opens the Archive preferences page (on page 244).

Archive Browser Contextual Menu Actions

The following additional actions are available from the contextual menu for resources in the Archive Browser view:

Open

Opens a resource from the archive in the editor.

Extract

Extracts a resource from the archive in a specified folder.

New folder

Creates a folder as child of the selected folder in the browsed archive.

New file

Creates a file as child of the selected folder in the browsed archive.

Add files

Adds existing files as children of the selected folder in the browsed archive.

Note: On OS X, the Add file action is also available and it allows you to add one file at a time.

Rename

Renames a resource in the archive.

Find/Replace in Files
Opens the **Find/Replace in Files** dialog box *(on page 745)* that allows you to search for and replace specific pieces of text inside the archive.

**Cut**
Cut the selected archive resource.

**Copy**
Copies the selected archive resource.

**Paste**
Paste a file or folder into the archive.

**Delete**
Remove a file or folder from archive.

**Preview**
Previews an image contained in the archive. See the **Image Preview** *(on page 721)* topic for more details.

**Copy location**
Copy the URL location of the selected resource.

**Refresh**
Refreshes the selected resource.

**Properties**
Shows the properties of the selected resource.

For more information, watch our video demonstration about working with an EPUB in the **Archive Browser** view:

https://www.youtube.com/embed/OIGTNQw0C18

**Working with Archive Files**

Oxygen XML Editor includes support for working with various types of archives, including the following:

- **EPUB** - An e-book file format that can be used on many types of devices, such as smart phones, tablets, e-readers, or computers.
- **OOXML** - An XML-based file format for representing spreadsheets, charts, presentations, and word processing documents.
- **ODF** - An free and open-source XML-based file format for electronic office documents, such as spreadsheets, charts, presentations, and word processing documents.
When these types of files are opened in the Archive Browser view (on page 2191), their internal components are expanded:

- Document content (XHTML and image files).
- Packaging files.
- Container files.

Figure 647. EPUB File Displayed in the Archive Browser View

When an archive is expanded in the Archive Browser view (on page 2191), you can add or delete files that compose the archive structure. All changes made to the structure of an archive are saved immediately. You can open files from within the archive to edit them in the main editing pane and save changes (on page 2196) back to the archive. You can also use the Open in System Application action to open the archive in the default system application that is associated with that type of file.

EPUB-Specific Validation

When working with EPUB archives, the Archive Browser (on page 2191) includes a Validate action on the toolbar that checks the EPUB archive to make sure the structure and content are valid. Oxygen XML Editor uses the open-source EpubCheck validator to perform the validation. This validator detects many types of errors, including OCF container structure, OPF and OPS mark-up, as well as internal reference consistency.
Creating an Archive

To create an archive from scratch, follow these steps:

1. Go to File > New or click New on the main toolbar.

2. Choose your particular type of archive template. For example, select one of the ODF, OOXML, or EPUB templates.

3. Click Create and choose the name and location of the file.

4. Click Save.
   A skeleton archive is saved on disk and opened in the Archive Browser view (on page 2191).

   Tip: Use toolbar and contextual menu actions to edit, add, and remove resources from the archive. For EPUB archives, you can use the Validate action to verify the integrity of the EPUB archive.

Editing and Saving Files Inside an Archive

You can open files directly from an archive in the Archive Browser view (on page 2191) and then edit them in the main editor pane. To open a file, simply double-click it or select Open from the contextual menu.

When saving the file back to the archive, you are prompted to choose if you want the application to make a backup copy of the archive before saving the new content. If you choose Never ask me again, you will not be asked again to make backup copies. You can re-enable the pop-up message from the Messages preferences page (on page 260).
Migrating Archives to DITA or TEI

Certain types of archives can be converted to DITA or TEI. For example, OOXML (Office Open XML) archive files with the DOCX file extension can be migrated to DITA or TEI.

To migrate DOCX files to DITA or TEI, follow these steps:

1. Open and expand the archive in the Archive Browser (on page 2191).
2. Open the `document.xml` file contained in the archive.
3. Run one of the following built-in transformation scenarios:
   a. **DOCX DITA** to migrate to DITA.
   b. **DOCX TEI P5** to migrate to TEI.
4. You may need to do some manual reconfiguring to map DOCX styles to DITA or TEI content.

**Tip**: Oxygen XML Editor also includes a built-in transformation scenario called **ODT TEI P5** for converting ODF archive files with the ODT file extension to TEI and a similar process can be used to migrate ODT files to TEI.
13. Databases and SharePoint

Oxygen XML Editor provides support for connecting and integrating with various databases and Microsoft SharePoint. This section includes information about the database-related features in Oxygen XML Editor. It explains how to connect with the supported databases, presents the actions that are available for each type, and includes information about SharePoint integration.

Working with Databases

XML is a storage and interchange format for structured data and is supported by all major database systems. Oxygen XML Editor offers the means for managing the interaction with some of the most commonly used databases (both Relational and Native XML databases). Through this interaction, Oxygen XML Editor helps users with browsing, content editing, importing from databases, using XQuery with databases, SQL execution, and generating XML Schema from a database structure.

The types of connections that are supported in Oxygen XML Editor include:

- IBM DB2 (on page 2204)
- Microsoft SQL Server (on page 2209)
- Oracle Database (on page 2213)
- PostgreSQL (on page 2218)
- Berkeley DB XML (on page 2222)
- eXist (on page 2229)
- MarkLogic (on page 2234)
- MySQL (on page 2244)
- Generic JDBC (on page 2246)
- JDBC-ODBC (on page 2247)
- BaseX (on page 2249)
- WebDAV (on page 2254)
- Microsoft SharePoint (on page 2268)

Related Information:

- Integration with Microsoft SharePoint (on page 2268)
Data Source Explorer View

The **Data Source Explorer** view displays your database connections. If the view is not displayed, it can be opened by selecting it from the **Window > Show View** menu.

You can connect to a database simply by expanding the connection node (click the connection). The database structure can be expanded to resource level, or even all the way to column level for tables inside relational databases. Oxygen XML Editor supports multiple simultaneous database connections and the connection tree in the **Data Source Explorer** view provides an easy method for browsing them.

![Data Source Explorer View](image)

The objects (nodes) that are displayed in the **Data Source Explorer** view depend on the connection type and structure of the database. Various contextual menu actions are available for each hierarchical level and for some connections you can add or move resources in a container by simply dragging them from the **Project view (on page 333)**, a file browsing application, or another database.

**Toolbar Actions**

The following actions are available in the toolbar of this view:

- **Filters**
  
  Opens the **Data Sources / Table Filters preferences page (on page 233)**, allowing you to decide which table types are displayed in the **Data Source Explorer** view.

- **Configure Database Sources**
  
  Opens the **Data Sources preferences page (on page 229)** where you can configure both data sources and connections.
Database-Specific Contextual Menu Actions

Each specific type of database will also include its own specific contextual menu actions in the Data Source Explorer view. The actions depend on the type of database, the type of node, or the hierarchical level of the node in which the contextual menu is invoked.

For more information on the specific actions that are available, see the topics in this section for each specific type of database.

Related Information:

- Data Sources Preferences (on page 229)

Table Explorer View

Relational databases tables in the Data Source Explorer view (on page 2198) can be displayed and edited in the Table Explorer view by selecting the Edit action from the contextual menu of a Table node or by double-clicking one of its fields. To modify the content of a cell, double-click it and start typing. When editing is complete, Oxygen XML Editor attempts to update the database with the new cell content.

Figure 649. Table Explorer View

You can sort the content of a table by one of its columns by clicking its column header.

Note the following:

- The first column is an index (not part of the table structure).
- Every column header contains the field name and its data type.
- The primary key columns are marked with this symbol: 🟢.
• Multiple tables are presented in a tabbed manner.

For performance issues, you can set the maximum number of cells that are displayed in the Table Explorer view (using the Limit the number of cells option in the Data Sources Preferences page (on page 233)). If a table that has more cells than the value set in the options is displayed in the Table Explorer view, a warning dialog box informs you that the table is only partially shown.

You are notified if the value you have entered in a cell is not valid (and thus cannot be updated).

• If the content of the edited cell does not belong to the data type of the column, the cell is marked by a red square and remains in an editing state until a correct value is inserted. For example, in the following figure propID contains LONG values. If a character or string is inserted, the cell will look like this:

Figure 650. Cell Containing an Invalid Value

• If the constraints of the database are not met (for instance, primary key constraints), an information dialog box will appear, notifying you of the reason the database has not been updated. For example, in the table below, trying to set the second record in the primary key propID column to 8, results in a duplicate entry error since that value has already been used in the first record:

Figure 651. Duplicate Entry for Primary Key
Table Explorer Contextual Menu Actions

Common editing actions (Cut, Copy, Paste, Select All, Undo, Redo) are available in the contextual menu of an edited cell.

The contextual menu, available on every cell in the Table Explorer view, also includes the following actions:

Set NULL

Sets the content of the cell to null. This action is not available for columns that cannot have a value of null.

Insert row

Inserts an empty row in the table.

Duplicate row

Makes a copy of the selected row and adds it in the Table Explorer view. Note that the new row will not be inserted in the database table until all conflicts are resolved.

Commit row

Commits the selected row.

Delete row

Deletes the selected row.

Copy

Copies the content of the cell.

Paste

Pastes copied content into the selected cell.
Table Explorer Toolbar Actions

The toolbar of the Table Explorer view also includes the following actions:

- **Export to XML**
  
  Opens the Export Criteria dialog box (a thorough description of this dialog box can be found in the Import from database (on page 2282) chapter).

- **Refresh**
  
  Performs a refresh for the sub-tree of the selected node.

- **Insert row**
  
  Inserts an empty row in the table.

- **Duplicate row**
  
  Makes a copy of the selected row and adds it in the Table Explorer view. Note that the new row will not be inserted in the database table until all conflicts are resolved.

- **Commit row**
  
  Commits the selected row.

- **Delete row**
  
  Deletes the selected row.

Related Information:

- Data Source Explorer View (on page 2198)

Database Connection Support

Oxygen XML Editor offers support for a variety of Relational and Native XML database connections. The database drivers and connections for various types of database are configured in the Data Sources preferences page (on page 229) and once configured, the database connections can be viewed and managed in the Data Source Explorer view (on page 2198). Oxygen XML Editor also includes a Database perspective (on page 300) that helps you to manage databases.

The database support in Oxygen XML Editor offers a variety of capabilities, including:

- Browsing the structure of databases in the Data Source Explorer view (on page 2198).
- Viewing relational tables in the Table Explorer view (on page 2200).
- Executing SQL queries against databases.
- Calling stored procedures with input and output parameters.
- XQuery execution with databases.
- Exporting data from databases to XML.

Relational Database Support

Relational databases use a relational model and are based on tables linked by a common key. Oxygen XML Editor offers support for the most commonly used relational databases, including:

- IBM DB2
- Oracle 11g
- Microsoft SQL Server
- PostgreSQL
- MySQL

Oxygen XML Editor also offers generic support (table browsing and execution of SQL queries) for any JDBC-compliant database (for example, MariaDB).

Native XML Database Support

Native XML databases have an XML-based internal model and their fundamental unit of storage is XML. They use XML as an interface to specify documents as tree structured data that may contain unstructured text, but on disk the data is stored as optimized binary files. This makes query and retrieval processes faster. Oxygen XML Editor offers support for the most commonly used native XML databases, including:

- Berkeley DB XML
- eXist
- MarkLogic
- Oracle XML DB
- Base X

Related Information:

- WebDAV Connections (on page 2254)
- Integration with Microsoft SharePoint (on page 2268)
IBM DB2 Database Connections

Oxygen XML Editor includes support for IBM DB2 database connections. Oxygen XML Editor allows you to browse the structure of an IBM DB2 database in the Data Source Explorer view (on page 2198), open tables in the Table Explorer view (on page 2200), and perform various operations on the resources in the repository.

Figure 652. IBM DB2 Database Connection

Configuring an IBM DB2 Database Connection

To configure the support for the IBM DB2 database, follow this procedure:

1. Go to the IBM website and in the DB2 Clients and Development Tools category select the DB2 Driver for JDBC and SQLJ download link. Fill out the download form and download the zip file. Unzip the zip file and use the db2jcc.jar and db2jcc_license_cu.jar files in Oxygen XML Editor for configuring a DB2 data source (on page 2205).
2. Configure IBM DB2 Data Source drivers (on page 2205).
3. Configure an IBM DB2 Server Connection (on page 2207).
4. To view your connection, go to the Data Source Explorer view (on page 2198) (if the view is not displayed, it can be opened by selecting it from the Window > Show View menu) or switch to the Database perspective (on page 3285).

How to Configure IBM DB2 Data Source Drivers

Available in the Enterprise edition only.
To configure a data source for connecting to an IBM DB2 server, follow these steps:

1. Go to the IBM website and in the DB2 Clients and Development Tools category select the DB2 Driver for JDBC and SQLJ download link. Fill out the download form and download the zip file.

2. Unzip the downloaded archive.

3. Open the Preferences dialog box (Options > Preferences) (on page 79) and go to Data Sources.

4. Click the + New button in the Data Sources panel.

The dialog box for configuring a data source is opened.

Figure 653. Data Source Drivers Configuration Dialog Box

5. Enter a unique name for the data source.

6. Select DB2 in the driver Type drop-down menu.

7. Click the Add Files button and select the IBM DB2 driver files from the archive that you downloaded and unzipped.

The IBM DB2 driver files are:

- db2jcc.jar
- db2jcc_license_cisuz.jar
• db2jcc_license_cu.jar

8. Select the most appropriate **Driver class**.

9. Click the **OK** button to finish the data source configuration.

10. Continue on to configure your IBM DB2 connection (on page 2207).

## How to Configure an IBM DB2 Connection

The support to create an IBM DB2 connection is available in the Enterprise edition only.

To configure a connection to an IBM DB2 server, follow these steps:

1. Open the **Preferences** dialog box (Options > Preferences) (on page 79) and go to **Data Sources**.

2. Click the **+ New** button in the **Connections** panel.

   The dialog box for configuring a database connection is displayed.

   **Figure 654. Connection Configuration Dialog Box**

3. Enter a unique name for the connection.

4. Select an **IBM DB2** data source in the **Data Source** drop-down menu.

5. Enter the connection details.
   a. Enter the URL to the installed IBM DB2 engine.
   b. Enter the user name to access the IBM DB2 engine.
   c. Enter the password to access the IBM DB2 engine.
6. Click the **OK** button to finish the connection configuration.

7. To view your connection, go to the **Data Source Explorer view (on page 2198)** (if the view is not displayed, it can be opened by selecting it from the **Window > Show View** menu) or switch to the **Database perspective (on page 3285)**.

### IBM DB2 Contextual Menu Actions

#### General Contextual Menu Actions

For relational databases, the following general actions are available in the contextual menu of the **Data Source Explorer view (on page 2198)**, depending on the node in which it is invoked:

- **Refresh**
  
  Performs a refresh on the selected node.

- **Disconnect (available on Connection nodes)**
  
  Closes the current database connection. If a table is already open, you are warned to close it before proceeding.

- **Configure Database Sources (available on Connection nodes)**
  
  Opens the **Data Sources preferences page (on page 229)** where you can configure both data sources and connections.

- **Edit (available on Table nodes)**
  
  Opens the selected table in the **Table Explorer view (on page 2200)**.

- **Export to XML (available on Table nodes)**
  
  Opens the **Export Criteria** dialog box (a thorough description of this dialog box can be found in the **Import from Database (on page 2282)** chapter).

#### Database-Specific Contextual Menu Actions

In addition to the general contextual menu actions in the **Data Source Explorer view (on page 2198)**, the various nodes in IBM DB2 connections include the following additional contextual menu actions:

- **XML Schema Repository Level Nodes**

  - **Register**
    
    Opens a dialog box for adding a new schema file in the DB XML repository.

    In this dialog box, you enter a collection name and the necessary schema...
files. Schema dependencies management can be done by using the Add and Remove buttons.

**Schema Level Nodes**

**Unregister**

Removes the selected schema from the XML Schema Repository.

**View**

Opens the selected schema in Oxygen XML Editor.

**Microsoft SQL Server Database Connections**

Oxygen XML Editor includes support for Microsoft SQL Server database connections. Oxygen XML Editor allows you to browse the structure of a SQL Server database in the Data Source Explorer view (on page 2198), open tables in the Table Explorer view (on page 2200), and perform various operations on the resources in the repository.

**Configuring a Microsoft SQL Server Connection**

To configure the support for a Microsoft SQL Server database, follow this procedure:

2. Configure MS SQL Server Data Source drivers (on page 2209).
3. Configure a MS SQL Server Connection (on page 2210).
4. To view your connection, go to the Data Source Explorer view (on page 2198) (if the view is not displayed, it can be opened by selecting it from the Window > Show View menu) or switch to the Database perspective (on page 3285).

**How to Configure Microsoft SQL Server Data Source Drivers**

Available in the Enterprise edition only.

To configure a data source for connecting to a Microsoft SQL server, follow these steps:

2. Open the Preferences dialog box (Options > Preferences) (on page 79) and go to Data Sources.
3. Click the New button in the Data Sources panel.

The dialog box for configuring a data source is opened.

Figure 655. Data Source Drivers Configuration Dialog Box

4. Enter a unique name for the data source.

5. Select SQLServer in the driver Type drop-down menu.

6. Click the Add Files button and select the Microsoft SQL Server driver file that you downloaded.
   The SQL Server driver file is called sqljdbc.jar.

7. Select the most appropriate Driver class.

8. Click the OK button to finish the data source configuration.

9. Continue on to configure your Microsoft SQL Server connection (on page 2210).

How to Configure a Microsoft SQL Server Connection

The support to configure a Microsoft SQL Server connection is available in the Enterprise edition only.

To configure a connection to a Microsoft SQL Server, follow these steps:

1. Open the Preferences dialog box (Options > Preferences) (on page 79) and go to Data Sources.
2. Click the **New** button in the **Connections** panel.

   The dialog box for configuring a database connection is displayed.

   **Figure 656. Connection Configuration Dialog Box**

   ![Connection Configuration Dialog Box](image)

3. Enter a unique name for the connection.

4. Select the *SQL Server* data source in the **Data Source** drop-down menu.

5. Enter the connection details.

   a. Enter the URL of the SQL Server.

      If you want to connect to the server using Windows integrated authentication, you must add `;integratedSecurity=true` to the end of the URL. The URL will look like this:

      ```
      jdbc:sqlserver://localhost;instanceName=SQLEXPRESS;integratedSecurity=true;
      ```

      **Note:** For integrated authentication, leave the **User** and **Password** fields empty.

   b. Enter the user name for the connection to the SQL Server.

   c. Enter the password for the connection to the SQL Server.

6. Click the **OK** button to finish the connection configuration.

7. To view your connection, go to the **Data Source Explorer view** *(on page 2198)* (if the view is not displayed, it can be opened by selecting it from the **Window > Show View** menu) or switch to the **Database perspective** *(on page 3285)*.
General Contextual Menu Actions

For relational databases, the following general actions are available in the contextual menu of the Data Source Explorer view (on page 2198), depending on the node in which it is invoked:

- **Refresh**
  Performs a refresh on the selected node.

- **Disconnect (available on Connection nodes)**
  Closes the current database connection. If a table is already open, you are warned to close it before proceeding.

- **Configure Database Sources (available on Connection nodes)**
  Opens the Data Sources preferences page (on page 229) where you can configure both data sources and connections.

- **Edit (available on Table nodes)**
  Opens the selected table in the Table Explorer view (on page 2200).

- **Export to XML (available on Table nodes)**
  Opens the Export Criteria dialog box (a thorough description of this dialog box can be found in the Import from Database (on page 2282) chapter).

Database-Specific Contextual Menu Actions

In addition to the general contextual menu actions in the Data Source Explorer view (on page 2198), the resource level nodes in Microsoft SQL Server connections include the following additional contextual menu action:

- **XML Schema Repository Level Nodes**
  
  - **Register**
    Opens a dialog box for adding a new schema file in the DB XML repository. In this dialog box, you enter a collection name and the necessary schema files. Schema dependencies management can be done by using the Add and Remove buttons.

- **Schema Level Nodes**
  
  - **Add**
    Adds a new schema to the XML Schema files.
### Unregister

Removes the selected schema from the XML Schema Repository.

### View

Opens the selected schema in Oxygen XML Editor.

### Oracle Database Connections

The Oracle database is a common relational type of database system. Oxygen XML Editor comes with built-in support for the 11g version of the database system. The Oracle database also includes an Oracle XML DB component that adds native XML support. Oxygen XML Editor allows you to browse Oracle repositories in the **Data Source Explorer view** (on page 2198), open tables in the **Table Explorer view** (on page 2200), and perform various operations on the resources in the repository.

![Figure 657. Oracle Database Connection](image)

Related Information:

- Using XQuery with Oracle XML DB

### Configuring an Oracle 11g Database Connection

To configure the support for an Oracle 11g database, follow this procedure:

2. Configure Oracle 11g **Data Source drivers** (on page 2214).
3. Configure an Oracle 11g **Connection** (on page 2215).
4. To view your connection, go to the Data Source Explorer view (on page 2198) (if the view is not displayed, it can be opened by selecting it from the Window > Show View menu) or switch to the Database perspective (on page 3285).

How to Configure Oracle 11g Data Source Drivers

Available in the Enterprise edition only.

To configure a data source for connecting to an Oracle 11g server, follow these steps:


2. Open the Preferences dialog box (Options > Preferences) (on page 79) and go to Data Sources.

3. Click the + New button in the Data Sources panel.

   The dialog box for configuring a data source is opened.

   Figure 658. Data Source Drivers Configuration Dialog Box

   ![Data Source Drivers Configuration Dialog Box]

4. Enter a unique name for the data source.

5. Select Oracle in the driver Type drop-down menu.
6. Click the Add Files button and select the Oracle driver file that you downloaded. The Oracle driver file is called ojdbc5.jar.

7. Select the most appropriate Driver class.

8. Click the OK button to finish the data source configuration.

9. Continue on to configure your Oracle connection (on page 2215).

How to Configure an Oracle 11g Connection

Available in the Enterprise edition only.

To configure a connection to an Oracle 11g server, follow these steps:

1. Open the Preferences dialog box (Options > Preferences) (on page 79) and go to Data Sources.

2. Click the New button in the Connections panel.

   The dialog box for configuring a database connection is displayed.

   Figure 659. Connection Configuration Dialog Box

3. Enter a unique name for the connection.

4. Select the Oracle 11g data source in the Data Source drop-down menu.

5. Enter the connection details.
   a. Enter the URL of the Oracle server.
   b. Enter the user name for the connection to the Oracle server.
c. Enter the password for the connection to the Oracle server.

6. Click the **OK** button to finish the connection configuration.

7. To view your connection, go to the **Data Source Explorer view** *(on page 2198)* (if the view is not displayed, it can be opened by selecting it from the **Window > Show View** menu) or switch to the **Database perspective** *(on page 3285)*.

**Oracle Database Contextual Menu Actions**

**General Contextual Menu Actions**

For relational databases, the following general actions are available in the contextual menu of the **Data Source Explorer view** *(on page 2198)*, depending on the node in which it is invoked:

- **Refresh**
  
  Performs a refresh on the selected node.

- **Disconnect (available on Connection nodes)**
  
  Closes the current database connection. If a table is already open, you are warned to close it before proceeding.

- **Configure Database Sources (available on Connection nodes)**
  
  Opens the **Data Sources preferences page** *(on page 229)* where you can configure both data sources and connections.

- **Edit (available on Table nodes)**
  
  Opens the selected table in the **Table Explorer view** *(on page 2200)*.

- **Export to XML (available on Table nodes)**
  
  Opens the **Export Criteria** dialog box (a thorough description of this dialog box can be found in the **Import from Database** *(on page 2282)* chapter).

**Database-Specific Contextual Menu Actions**

In addition to the general contextual menu actions in the **Data Source Explorer view** *(on page 2198)*, the various nodes in Oracle database connections include the following additional contextual menu actions:

- **XML Schema Repository Level Nodes**
  
  **Register**
Opens a dialog box for adding a new schema file in the XML repository.
To add an XML Schema, enter the schema URI and location on your file system. *Local* scope means that the schema is visible only to the user who registers it. *Global* scope means that the schema is public.

**Note:** Registering a schema may involve dropping/creating types. Hence you need type-related privileges such as DROP TYPE, CREATE TYPE, and ALTER TYPE. You need privileges to delete and register the XML schemas involved in the registering process. You need all privileges on XMLType tables that conform to the registered schemas. For XMLType columns, the ALTER TABLE privilege is needed on corresponding tables. If there are schema-based XMLType tables or columns in other database schemas, you need privileges such as the following:

- CREATE ANY TABLE
- CREATE ANY INDEX
- SELECT ANY TABLE
- UPDATE ANY TABLE
- INSERT ANY TABLE
- DELETE ANY TABLE
- DROP ANY TABLE
- ALTER ANY TABLE
- DROP ANY INDEX

To avoid having to grant all these privileges to the schema owner, Oracle recommends that the registration be performed by a DBA if there are XML schema-based XMLType table or columns in other user database schemas.

**XML Repository Level Nodes**

**Add container**

Adds a new child container to the current one.

**Add resource**

Adds a new resource to the folder.

**Container Level Nodes**

**Add container**

Adds a new child container to the current one.

**Add resource**
Adds a new resource to the folder.

**Delete**

Deletes the current container.

**Properties**

Shows various properties of the current container.

**Resource Level Nodes**

**Open**

Opens the selected resource in the editor.

**Open in System Application**

When you use this action, Oxygen XML Editor downloads the selected resource to a local temporary folder and opens the selected resource in the system application that is currently set as the default application associated with that type of resource. You can then edit the resource, save it, and when you switch the focus back to the Data Source Explorer view, Oxygen XML Editor will detect that there was a change and will ask if you want to upload the edited resource to the server.

**Rename**

Renames the current resource

**Move**

Moves the current resource to a new container (also available through drag and drop).

**Delete**

Deletes the current container.

**Copy location**

Allows you to copy (to the clipboard) an application-specific URL for the resource that can then be used for various actions, such as opening or transforming the resources.

**Properties**

Shows various properties of the current container.

**Compare**

Compares two selected resources using the Compare Files tool (on page 2770).
PostgreSQL Database Connections

Oxygen XML Editor includes support for PostgreSQL database connections. Oxygen XML Editor allows you to browse the structure of a PostgreSQL database in the Data Source Explorer view (on page 2198), open tables in the Table Explorer view (on page 2200), and perform various operations on the resources in the repository.

Figure 660. PostgreSQL Database Connection

Configuring a PostgreSQL Database Connection

To configure the support for a PostgreSQL database, follow this procedure:

1. Go to http://jdbc.postgresql.org/download.html and download the PostgreSQL 8.3 JDBC3 driver.
2. Configure PostgreSQL Data Source drivers (on page 2219).
3. Configure a PostgreSQL Connection (on page 2220).
4. To view your connection, go to the Data Source Explorer view (on page 2198) (if the view is not displayed, it can be opened by selecting it from the Window > Show View menu) or switch to the Database perspective (on page 3285).

How to Configure PostgreSQL 8.3 Data Source Drivers

To configure a data source for connecting to a PostgreSQL server, follow these steps:

1. Go to http://jdbc.postgresql.org/download.html and download the PostgreSQL 8.3 JDBC3 driver.
2. Open the Preferences dialog box (Options > Preferences) (on page 79) and go to Data Sources.
3. Click the + New button in the Data Sources panel.

The dialog box for configuring a data source is opened.

4. Enter a unique name for the data source.

5. Select PostgreSQL in the driver Type drop-down list.

6. Click the Add Files button and select the PostgreSQL driver file that you downloaded.

   The PostgreSQL driver file is called postgresql-8.3-603.jdbc3.jar.

7. Select the most appropriate Driver class.

8. Click the OK button to finish the data source configuration.

9. Continue on to configure your PostgreSQL connection (on page 2220).

How to Configure a PostgreSQL 8.3 Connection

To configure a connection to a PostgreSQL 8.3 server, follow these steps:

1. Open the Preferences dialog box (Options > Preferences) (on page 79) and go to Data Sources.

2. Click the + New button in the Connections panel.

   The dialog box for configuring a database connection is displayed.

Figure 661. Connection Configuration Dialog Box
3. Enter a unique name for the connection.

4. Select the *PostgreSQL 8.3* data source in the **Data Source** drop-down menu.

5. Enter the connection details.
   a. Enter the URL of the PostgreSQL 8.3 server.
   b. Enter the user name for the connection to the PostgreSQL 8.3 server.
   c. Enter the password for the connection to the PostgreSQL 8.3 server.

6. Click the **OK** button to finish the connection configuration.

7. To view your connection, go to the **Data Source Explorer view (on page 2198)** (if the view is not displayed, it can be opened by selecting it from the **Window > Show View** menu) or switch to the **Database perspective (on page 3285)**.

**PostgreSQL Contextual Menu Actions**

**General Contextual Menu Actions**

For relational databases, the following general actions are available in the contextual menu of the **Data Source Explorer view (on page 2198)**, depending on the node in which it is invoked:

- **Refresh**
  Performs a refresh on the selected node.

- **Disconnect (available on ![Connection nodes])**
  Closes the current database connection. If a table is already open, you are warned to close it before proceeding.

- **Configure Database Sources (available on ![Connection nodes])**
  Opens the **Data Sources preferences page (on page 229)** where you can configure both data sources and connections.

- **Edit (available on ![Table nodes])**
  Opens the selected table in the **Table Explorer view (on page 2200)**.

- **Export to XML (available on ![Table nodes])**
  Opens the **Export Criteria** dialog box (a thorough description of this dialog box can be found in the **Import from Database (on page 2282)** chapter).
Database-Specific Contextual Menu Actions

In addition to the general contextual menu actions in the **Data Source Explorer view** *(on page 2198)*, the resource level nodes in PostgreSQL connections include the following additional contextual menu action:

- **Resource Level Nodes**

  **Compare**

  Compares two selected resources using the **Compare Files tool** *(on page 2770)*.

Berkeley DB XML Database Connections

Oxygen XML Editor includes support for Berkeley DB XML database connections. Oxygen XML Editor allows you to browse the structure of a Berkeley DB XML database in the **Data Source Explorer view** *(on page 2198)* and perform various operations on the resources in the repository.

Oracle Berkeley DB XML is an open source, embeddable XML database with XQuery-based access to documents stored in containers and indexed based on their content. It is built on top of the Oracle Berkeley DB and inherits its features and attributes, along with native XML support. A detailed description can be found at: [http://www.oracle.com/us/products/database/berkeley-db/xml/overview/index.html](http://www.oracle.com/us/products/database/berkeley-db/xml/overview/index.html).

Figure 662. Berkeley DB XML Connection

Configuring a Berkeley DB XML Database Connection

Follow this procedure to configure the support for a Berkeley DB XML database:
1. Configure Berkeley DB XML Data Source drivers (on page 2223).
2. Configure a Berkeley DB XML Connection (on page 2223).
3. To view your connection, go to the Data Source Explorer view (on page 2198) (if the view is not displayed, it can be opened by selecting it from the Window > Show View menu) or switch to the Database perspective (on page 3285).

How to Configure Berkeley DB XML Data Source Drivers

For this procedure, you need to already have a Berkeley DB XML database installed on your system.

Oxygen XML Editor supports Berkeley DB XML versions 2.3.10, 2.4.13, 2.4.16 & 2.5.16. To configure a data source for a Berkeley DB XML database, follow these steps:

1. Open the Preferences dialog box (Options > Preferences) (on page 79) and go to Data Sources.
2. Click the + New button in the Data Sources panel.
3. Enter a unique name for the data source.
4. Select Berkeley DBXML from the driver Type drop-down menu.
5. Click the Add Files button to add the Berkeley DB driver files.

   The driver files for the Berkeley DB database (and their locations) are as follows:
   - db.jar (check for it in [DBXML_DIR]/lib or [DBXML_DIR]/jar)
   - dbxml.jar (check for it in [DBXML_DIR]/lib or [DBXML_DIR]/jar)

   Where [DBXML_DIR] is the Berkeley DB XML database root directory. For example, in Windows it is: C:\Program Files\Oracle\Berkeley DB XML <version>.
6. Click the OK button to finish the data source configuration.
7. Continue on to configure your Berkeley DB XML connection (on page 2223).

How to Configure a Berkeley DB XML Connection

Oxygen XML Editor supports Berkeley DB XML versions 2.3.10, 2.4.13, 2.4.16 & 2.5.16. To configure a connection to a Berkeley DB XML database, follow these steps:

1. Open the Preferences dialog box (Options > Preferences) (on page 79) and go to Data Sources.
2. Click the + New button in the Connections panel.
3. Enter a unique name for the connection.
4. Select a previously configured Berkeley data source from the Data Source drop-down menu.
5. Enter the connection details.
a. Set the path to the Berkeley DB XML database directory in the Environment home directory field. Use a directory with write access. DO NOT use the installation directory where Berkeley DB XML is installed if you do not have write access to that directory.

b. Select the Verbosity level: DEBUG, INFO, WARNING, or ERROR.

c. Optionally, you can select the Join existing environment checkbox. If selected, an attempt is made to join an existing environment in the specified home directory and all the original environment settings are preserved. If that fails, try reconfiguring the connection with this option unchecked.

6. Click the OK button to finish the connection configuration.

7. To view your connection, go to the Data Source Explorer view (on page 2198) (if the view is not displayed, it can be opened by selecting it from the Window > Show View menu) or switch to the Database perspective (on page 3285).

Berkeley DB XML Contextual Menu Actions

While browsing Berkeley DB XML connections in the Data Source Explorer view (on page 2198), the various nodes include the following contextual menu actions:

Connection Level Nodes

- **Configure Database Sources**
  
  Opens the Data Sources preferences page (on page 229) where you can configure both data sources and connections.

- **Disconnect**
  
  Stops the connection.

- **New Collection**
  
  Opens a Container configuration dialog box that allows you to add a new container in the repository.

Figure 663. Container Configuration Dialog Box
This dialog box allows you to configure the following:

- **Name** - The name of the new container.

- **Container type** - At creation time, every container must have a type defined for it. This container type identifies how XML documents are stored in the container. As such, the container type can only be determined at container creation time. You cannot change it when subsequent container opens. You can select one of the following types:
  - **Node container** - XML documents are stored as individual nodes in the container. Each record in the underlying database contains a single leaf node, its attributes and attribute values (if any), and its text nodes (if any). Berkeley DB XML also keeps the information it requires to reassemble the document from the individual nodes stored in the underlying databases. This is the default selection and is the preferred container type.
  - **Whole document container** - The container contains entire documents. The documents are stored without any manipulation of line breaks or whitespace.

- **Allow validation** - If selected, documents will be validated when they are loaded into the container. The default behavior is to not validate documents.

- **Index nodes** - If selected, indices for the container will return nodes rather than documents. The default is to index at the document level. This property has no meaning if the container type is **Whole document container**.

**Refresh**

Performs a refresh on the selected node.

**Properties**
Shows various properties of the current container.

**Find/Replace in Files**

Opens the Find/Replace in Files dialog box (on page 745) that allows you to find and replace text in multiple files from the connection.

**Container Level Nodes**

**Import Files**

Allows you to add a new file on the connection, in the current folder.

**Export**

Allows you to export the folder on the remote connection to a local folder.

**Cut**

Removes the current selection and places it in the clipboard.

**Paste**

Pastes the copied selection.

**Rename**

Renames the current resource

**Delete**

Deletes the current container.

**Edit indices**

Opens a Container Indices dialog box that allows you to configure indices properties for the selected Berkeley container.

Figure 664. Container Indices Dialog Box
This dialog box allows you to configure the following properties:

- **Granularity** - A measure of the level of details of your data in the database. You can select one of the following:
  - **Document level** - Good option for retrieving large documents.
  - **Node level** - Good option for retrieving nodes from within documents.
- **Node** - The name of the node.
- **Namespace** - The index namespace.
- **Index type**:
  - **Uniqueness** - Indicates whether or not the indexed value must be unique within the container.
  - **Path type** - Drop-down menu that allows you to select from the following:
    - **node** - Indicates that you want to index a single node in the path.
    - **edge** - Indicates that you want to index the portion of the path where two nodes meet.
  - **Node type** - Drop-down menu that allows you to select from the following:
    - **element** - An element node in the document content.
    - **attribute** - An attribute node in the document content.
● **metadata** - A node found only in the metadata content of a document.
  ◦ **Key type** - Drop-down menu that allows you to select from the following:
    ● **equality** - Improves the performances of tests that look for nodes with a specific value.
    ● **presence** - Improves the performances of tests that look for the existence of a node regardless of its value.
    ● **substring** - Improves the performance of tests that look for a node whose value contains a given sub-string.
  ◦ **Syntax** - The syntax describes the type of data the index contains and is mostly used to determine how indexed values are compared. The default value is **string**.

**Refresh**
Performs a refresh on the selected node.

**Properties**
Shows various properties of the current container.

**Find/Replace in Files**
Opens the **Find/Replace in Files** dialog box (on page 745) that allows you to find and replace text in multiple files from the connection.

**Resource Level Nodes**

**Open**
Opens the selected resource in the editor.

**Open in System Application**
When you use this action, Oxygen XML Editor downloads the selected resource to a local temporary folder and opens the selected resource in the system application that is currently set as the default application associated with that type of resource. You can then edit the resource, save it, and when you switch the focus back to the **Data Source Explorer** view, Oxygen XML Editor will detect that there was a change and will ask if you want to upload the edited resource to the server.

**Cut**
Removes the current selection and places it in the clipboard.
Allows you to copy (to the clipboard) an application-specific URL for the resource that can then be used for various actions, such as opening or transforming the resources.

**Rename**

- Renames the current resource

**Delete**

- Deletes the current container.

**Refresh**

- Performs a refresh on the selected node.

**Properties**

- Shows various properties of the current container.

**Find/Replace in Files**

- Opens the Find/Replace in Files dialog box (on page 745) that allows you to find and replace text in multiple files from the connection.

**Compare**

- Compares two selected resources using the Compare Files tool (on page 2770).

**Debugging with Berkeley DB XML**

The Berkeley DB XML database added a debugging interface starting with version 2.5. The current version is supported in the Oxygen XML Editor XQuery Debugger. The same restrictions and peculiarities (on page 2241) apply for the Berkeley debugger as for the MarkLogic debugger.

**eXist Database Connections**

Oxygen XML Editor includes support for eXist database connections. Oxygen XML Editor allows you to browse the structure of a eXist database in the Data Source Explorer view (on page 2198) and perform various operations on the resources in the repository.

Figure 665. eXist Database Connection
Configuring an eXist Database Connection

There are two ways to configure the support for an eXist database:

- Use the dedicated Create eXist-db XML connection wizard.
- Use the Data Sources preferences page to manually configure your connection.

How to Configure an eXist Connection Using the Built-in Wizard

To configure a connection for an eXist database using the dedicated Create eXist-db XML connection wizard, follow these steps:

1. Open the Preferences dialog box (Options > Preferences) (on page 79), go to Data Sources and click the Create eXist-db XML connection link.
2. Enter your connection details in the connection wizard and click OK.

⚠ Important: To create an eXist connection using this wizard, Oxygen XML Editor expects the exist/webstart/exist.jnlp path to be accessible at the provided Host and Port.
3. To view your connection, go to the Data Source Explorer view (on page 2198) (if the view is not displayed, it can be opened by selecting it from the Window > Show View menu) or switch to the Database perspective (on page 3285).

How to Configure an eXist Connection Manually

⚠ Attention: For this manual procedure, you need to already have an eXist database server installed.
Tip: There is an easier way to configure an eXist database connection using a built-in wizard. For more information, see How to Configure an eXist Connection Using the Built-in Wizard (on page 2230).

Step 1: Configure eXist Data Source Drivers

Oxygen XML Editor supports eXist database server versions up to and including version 4.5. To configure a data source for an eXist database, follow these steps:

1. Open the Preferences dialog box (Options > Preferences) (on page 79) and go to Data Sources.
2. Click the New button in the Data Sources panel.
3. Enter a unique name for the data source.
4. Select eXist from the driver Type drop-down menu.
5. Click the Add Files button to add the eXist driver files. The following driver files should be added and they are found in the installation directory of the eXist database server. Make sure you copy the files from the installation of the eXist server where you want to connect from Oxygen XML Editor.
   - The exist.jar file located in the base directory.
   - All JAR files in the lib/core/ directory.
6. Click the OK button to finish the data source configuration.

Step 2: Configure an eXist Connection

To configure a connection to an eXist database, follow these steps:

1. Open the Preferences dialog box (Options > Preferences) (on page 79) and go to Data Sources.
2. Click the New button in the Connections panel.
3. Enter a unique name for the connection.
4. Select a previously configured eXist data source from the Data Source drop-down menu.
5. Enter the connection details:
   a. Set the URI to the installed eXist engine in the XML DB URI field.
   b. Set the user name in the User field.
   c. Set the password in the Password field.
   d. Enter the start collection in the Collection field.

   eXist organizes all documents in hierarchical collections. Collections are like directories. They are used to group related documents together. This text field allows the user to set the default collection name.
6. Click the OK button to finish the connection configuration.
7. To view your connection, go to the Data Source Explorer view (on page 2198) (if the view is not displayed, it can be opened by selecting it from the Window > Show View menu) or switch to the Database perspective (on page 3285).

For more information about running XQuery against an eXist XML database, watch our video demonstration:

https://www.youtube.com/embed/Yoc5h1zSddA

eXist Contextual Menu Actions

While browsing eXist database connections in the Data Source Explorer view (on page 2198), the various nodes include the following contextual menu actions:

**Connection Level Nodes**

- **Configure Database Sources**
  
  Opens the Data Sources preferences page (on page 229) where you can configure both data sources and connections.

- **Disconnect**
  
  Stops the connection.

- **Refresh**
  
  Performs a refresh on the selected node.

- **Find/Replace in Files**
  
  Opens the Find/Replace in Files dialog box (on page 745) that allows you to find and replace text in multiple files from the connection.

**Container Level Nodes**

- **New File**
  
  Creates a new file on the connection, in the current folder.

- **New Collection**
  
  Creates a new collection on the connection.

- **Import Folders**
  
  Imports folders on the server.

- **Import Files**
  
  Allows you to add a new file on the connection, in the current folder.

- **Export**
Allows you to export the folder on the remote connection to a local folder.

**Cut**
Removes the current selection and places it in the clipboard.

**Paste**
Paste the copied selection.

**Refresh**
Performs a refresh on the selected node.

**Properties**
Shows various properties of the current container.

**Find/Replace in Files**
Opens the Find/Replace in Files dialog box (on page 745) that allows you to find and replace text in multiple files from the connection.

**Resource Level Nodes**

**Open**
Opens the selected resource in the editor.

**Open in System Application**
When you use this action, Oxygen XML Editor downloads the selected resource to a local temporary folder and opens the selected resource in the system application that is currently set as the default application associated with that type of resource. You can then edit the resource, save it, and when you switch the focus back to the Data Source Explorer view, Oxygen XML Editor will detect that there was a change and will ask if you want to upload the edited resource to the server.

**Save As**
Allows you to save the selected resource as a file on disk.

**Cut**
Removes the current selection and places it in the clipboard.

**Copy**
Copies the current selection into the clipboard.

**Copy location**
Allows you to copy (to the clipboard) an application-specific URL for the resource that can then be used for various actions, such as opening or transforming the resources.

**Rename**

Renames the current resource

**Delete**

Deletes the current container.

**Refresh**

Performs a refresh on the selected node.

**Properties**

Shows various properties of the current container.

**Find/Replace in Files**

Opens the Find/Replace in Files dialog box (on page 745) that allows you to find and replace text in multiple files from the connection.

**Compare**

Compares two selected resources using the Compare Files tool (on page 2770).

MarkLogic Database Connections

Oxygen XML Editor Enterprise edition includes support for MarkLogic database connections. Once you configure a MarkLogic connection (on page 2236), you can use the Data Source Explorer view (on page 2198) to display all the application servers that are configured on the MarkLogic server. You can expand each application server and view all of its configured modules, and the Data Source Explorer view (on page 2198) allows you to open and edit these modules.

**Note:** To browse modules located in a database, directory properties must be associated with them. These directory properties are generated automatically if the directory creation property of the database is set to automatic. If this property is set to manual or manual-enforced, add the directory properties of the modules manually, using the XQuery function `xdmp:directory-create()`. For example, for two documents with the `/code/modules/main.xqy` and `/code/modules/imports/import.xqy` IDs, run the following query:

```
(xdmp:directory-create('/code/modules/'), xdmp:directory-create('/code/modules/imports/'))
```

For more information about directory properties, go to: [http://blakeley.com/blogofile/2012/03/19/directory-assistance/](http://blakeley.com/blogofile/2012/03/19/directory-assistance/).
MarkLogic and XQuery

MarkLogic connections can be used in conjunction with XQuery scripts to debug and solve problems with XQuery transformations. XQuery modules can also be validated using a MarkLogic server to allow to you to spot possible issues without the need of actually executing the XQuery script.

When debugging XQuery files with MarkLogic (on page 2239), you can use the Data Source Explorer view (on page 2198) to open the files from the application server that is involved in the debugging process. By using the Data Source Explorer view (on page 2198), any imported modules are better identified by the MarkLogic server. You can also use step actions and breakpoints (on page 2241) in the modules to help identify problems.

Modules Container

For each Application server (for example: Bill (HTTP port:8060)), you have access to the XQuery modules that are visible to that server. When editing, executing, or debugging XQuery it is recommended to open the XQuery files from this Modules container.

Note: You can also manage resources for a MarkLogic database through a WebDAV connection, although it is not recommended if you work with XQuery files since imported modules may not be resolved correctly.

Requests Container

Each MarkLogic application server includes a Requests container. In this container, Oxygen XML Editor displays both queries that are stopped for debugging purposes and queries that are still running. To clean up the entire Requests container at the end of your session, right-click it and use the Cancel all requests action (on page 2243).

Figure 666. MarkLogic Connection in Data Source Explorer
Configuring a MarkLogic Database Connection

Note that this feature is available in Oxygen XML Editor Enterprise edition only.

Follow this procedure to configure the support for a MarkLogic database connection:

1. Download the MarkLogic driver from MarkLogic Community site.
2. Configure MarkLogic Data Source drivers (on page 2236).
3. Configure a MarkLogic Connection (on page 2236).
4. To view your connection, go to the Data Source Explorer view (on page 2198) (if the view is not displayed, it can be opened by selecting it from the Window > Show View menu) or switch to the Database perspective (on page 3285).

Related Information:

• MarkLogic Development in Oxygen XML Editor (on page 2237)

How to Configure MarkLogic Data Source Drivers

Available in the Enterprise edition only.

Note: Oxygen XML Editor supports MarkLogic version 4.0 or later.

To configure a data source for MarkLogic, follow this procedure:

2. Unzip the downloaded archive.
3. Open the Preferences dialog box (Options > Preferences) (on page 79) and go to Data Sources.
4. Click the + New button in the Data Sources panel.
5. Enter a unique name for the data source.
6. Select MarkLogic from the driver Type drop-down list.
7. Click the Add Files button and select the MarkLogic driver file from the lib folder of the archive that you downloaded and unzipped. The driver file name is marklogic-xcc-{server_version}.jar, where {server_version} is the MarkLogic server version.
8. Click the OK button to finish the data source configuration.
9. Continue on to configure your MarkLogic Connection (on page 2236).

How to Configure a MarkLogic Connection

Available in the Enterprise edition only.
Note: Oxygen XML Editor supports MarkLogic version 4.0 or later.

To configure a connection to a MarkLogic database, follow these steps:

1. Open the Preferences dialog box (Options > Preferences) (on page 79) and go to Data Sources.
2. Click the + New button in the Connections panel.
3. Enter a unique name for the connection.
4. Select a previously configured MarkLogic data source from the Data Source drop-down menu.
5. Enter the connection details.
   a. The host name or IP address of the installed MarkLogic engine in the XDBC Host field. Oxygen XML Editor uses XCC connector to interact with MarkLogic XDBC server and requires the basic authentication schema to be set. Starting with version MarkLogic 4.0 the default authentication method when you create an HTTP or WebDAV Server is digest, so make sure to change it to basic.
   b. Set the port number of the MarkLogic engine in the Port field. A MarkLogic XDBC application server must be configured on the server on this port. This XDBC server will be used to process XQuery expressions against the server. Later, if you want to change the XDBC server, instead of editing the configuration just use the Use it to execute queries action (on page 2242) from Data Source Explorer.
   c. Set the user name to access the MarkLogic engine in the User field.
   d. Set the password to access the MarkLogic engine in the Password field.
   e. Optionally, in the WebDAV URL field, set the URL used for browsing the MarkLogic database in the Data Source Explorer view (on page 2198). The Database field specifies the database for which the XQuery expressions are executed. If you set this option to default, the database associated to the application server of the configured port is used.
6. Click the OK button to finish the connection configuration.
7. To view your connection, go to the Data Source Explorer view (on page 2198) (if the view is not displayed, it can be opened by selecting it from the Window > Show View menu) or switch to the Database perspective (on page 3285).

MarkLogic Development in Oxygen XML Editor

The Oxygen XML Editor support for MarkLogic includes features designed for developers, such as debugging XQuery transformations, remote and collaborative debugging, XQuery editing and validation, and an XQuery builder (on page 1343) that helps to improve productivity.
Working with XQuery Files

MarkLogic supports working with XQuery files to create queries over stored XML content. You can open an XQuery file, configure a transformation scenario to match your MarkLogic connection, write the XQuery, and then execute it.

When editing XQuery modules stored on the MarkLogic server, the Outline view (on page 1341) collects and displays all the functions from all imported modules. The Content Completion Assistant (on page 3280) also presents all of these functions along with the latest built-in XQuery functions in accordance with the server version.

When developing queries for MarkLogic, it is best to open the resources from the Data Source Explorer view (on page 2198). When you execute or debug XQuery files opened from this view, imported modules can be resolved better by the MarkLogic server. Another advantage is that validation is automatically performed on the MarkLogic server, including any imported modules.

XQuery Debugging

Oxygen XML Editor allows you to use MarkLogic connections to debug real applications that use XQuery (for example, web applications that trigger XQuery executions). By setting the server in debug mode, you can intercept all the XQuery scripts that run on that server. Oxygen XML Editor connects to the MarkLogic server, shows you the running XQuery scripts, and allows you to debug them. The remote debugging support also allows you to debug collaboratively. Multiple users can participate in the same debugging session. You can start a debugging session and another user can continue it, and vice versa.

Working with Modules

MarkLogic has a concept of two types of XQuery modules, library and main modules. A library module is used to define functions. Library modules cannot be evaluated directly. They are imported, either from other library modules or from main modules. A main module is used as an entry point that can be executed as an XQuery program. For more information on these types of modules, see XQuery Library Modules and Main Modules.

When working with library modules, you need to create a validation scenario and associate it with the module. In the validation scenario you need to specify a main module as the entry point for validation. The modules need to be deployed on a MarkLogic server because Oxygen XML Editor will request the server to validate the modules.

To validate library modules stored on a MarkLogic server, follow these steps:

1. Configure a MarkLogic database connection (on page 2236).
2. Expand the MarkLogic connection in the Data Source Explorer view (on page 2198) and open the library modules. The main module must also be opened from the Data Source Explorer view (on page 2198).

3. Configure a validation scenario (on page 1094) for each library module. Specify the main module in the URL of the file to validate field.

Result: Validation is done on the server that contains the main module. The main module and all other library modules involved in the validation must be saved. Otherwise, the server will validate what was saved on the server, without the uncommitted changes. Also, the Content Completion Assistant (on page 3280) and the Outline view (on page 1341) should now present the functions from all the modules.

Related Information:

- Debugging with MarkLogic (on page 2239)
- Configuring a MarkLogic Database Connection (on page 2236)

### Debugging with MarkLogic

Oxygen XML Editor includes support for debugging XQuery transformations that are executed against a MarkLogic database.

To use a debugging session against the MarkLogic engine, follow these steps:

1. Configure a MarkLogic data source (on page 2236) and a MarkLogic connection (on page 2236).

2. Make sure that the debugging support is enabled in the MarkLogic server that Oxygen XML Editor accesses. On the server side, debugging must be activated in the XDBC server and in the Task Server section of the server control console (the switch debug allow). If the debugging is not activated, the MarkLogic server reports a DBG-TASKDEBUGALLOW error.

**Note:** An XDBC application server must be running to connect to the MarkLogic server and this XDBC server will be used to process XQuery expressions against the server. You can change the XDBC application server that Oxygen XML Editor uses to process XQuery expressions by selecting the Use It to execute queries action (on page 2242) from the contextual menu in the Data Source Explorer view (on page 2198).

3. Open the XQuery file and start the debugging process.
   - If you want to debug an XQuery file stored on the MarkLogic server, it is recommend to use the Data Source Explorer view (on page 2198) and open the file from the application
server that is involved in the debugging process. This improves the resolving of any imported modules.

- The MarkLogic XQuery debugger integrates seamlessly into the XQuery Debugger perspective (on page 299). If you have a MarkLogic validation scenario configured for the XQuery file, you can choose to debug the scenario (on page 2309) directly.

- Otherwise, switch to the XQuery Debugger perspective (on page 3285), open the XQuery file in the editor, and select the MarkLogic connection in the XQuery engine selector from the debug control toolbar (on page 2293).

For general information about how a debugging session is started and controlled, see the Working with the Debugger (on page 2309) section.

In a MarkLogic debugging session, you can use step actions and breakpoints (on page 2313) to help identify problems. When you add a breakpoint (on page 2314) on a line where the debugger never stops, Oxygen XML Editor displays a warning message. These warnings are displayed for breakpoints you add either in the main XQuery (which you can open locally or from the server) or for breakpoints you add in any XQuery that is opened from the connection that participates in the debugging session. For more information, see Using Breakpoints for Debugging Queries that Import Modules with MarkLogic (on page 2241).

**Remote Debugging with MarkLogic**

Oxygen XML Editor allows you to debug remote applications that use XQuery (for example, web applications that trigger XQuery executions). Oxygen XML Editor connects to a MarkLogic server, shows you the running XQuery scripts and allows you to debug them. You can even pause the scripts so that you can start the debugging queries in the exact context of the application. You can also switch a server to debug mode to intercept all XQuery scripts.

Oxygen XML Editor also supports collaborative debugging. This feature allows multiple users to participate in the same debugging session. You can start a debugging session and at a certain point, another user can continue it.

⚠️ **Important:** When using the remote debugging feature, the HTTP and the XDBC servers involved in the debugging session must have the same module configuration.

For more information about the XQuery debugger for MarkLogic, watch our video demonstration:

[https://www.youtube.com/embed/eQ4ThDZq1bk](https://www.youtube.com/embed/eQ4ThDZq1bk)

**Related Information:**

- MarkLogic Development in Oxygen XML Editor (on page 2237)
Using Breakpoints for Debugging Queries that Import Modules with MarkLogic

When debugging queries that imports modules stored in the database, it is recommended to place breakpoints in the modules. When starting a new debugging session, make sure that the modules that you will debug are already opened in the editor. This is necessary so that the breakpoints in all the modules will be considered. Also, make sure that there are no other opened modules that are not involved in the current debugging session.

To place breakpoints in the modules, use the following procedure:

1. In the Data Source Explorer view (on page 2198), open all the modules from the Modules container of the XDBC application server (on page 2237) that performs the debugging.
2. Set breakpoints (on page 2314) in the module as needed.
3. Continue debugging (on page 2309) the query.

If you get a warning that the breakpoints failed to initialize, try the following solutions:

• Check the Breakpoints view (on page 2297) and make sure there are no older breakpoints (set on resources that are not part of the current debugging context).
• Make sure you open the modules from the context of the application server that does the debugging and place breakpoints there.

Related Information:

• MarkLogic Database Connections (on page 2234)
• MarkLogic Development in Oxygen XML Editor (on page 2237)

Peculiarities and Limitations of the MarkLogic Debugger

MarkLogic debugger has the following peculiarities and limitations:

• Debugging support is only available for MarkLogic server versions 4.0 or newer.
• For MarkLogic server versions 4.0 or newer, there are three XQuery syntaxes that are supported: '0.9-ml' (inherited from MarkLogic 3.2), '1.0-ml', and '1.0'.
• All declared variables are presented as strings. The Value column of the Variables view contains the expression from the variable declaration. It can be evaluated by copying the expression with
the **Copy value** action from the contextual menu of the **Variables view** *(on page 2307)* and pasting it in the **XWatch view** *(on page 2299)*.

- There is no support for **output to source mapping** *(on page 2310)*.
- There is no support for **showing the trace** *(on page 2304)*.
- You can only set **breakpoints** *(on page 2297)* in imported modules in one of the following cases:
  - When you open the module from the context of the application server involved in the debugging, using the **Data Source Explorer view** *(on page 2198)*.
  - When the debugger automatically opens the modules in the Editor.
- **No breakpoints** *(on page 2313)* are set in modules from the same server that are not involved in the current debugging session.
- **No support for profiling** *(on page 2314)* when an XQuery transformation is executed in the debugger.

**MarkLogic Contextual Menu Actions**

While browsing MarkLogic connections in the **Data Source Explorer view** *(on page 2198)*, the various nodes include the following contextual menu actions:

### Connection Level Nodes

- **Configure Database Sources**
  Opens the **Data Sources preferences page** *(on page 229)* where you can configure both data sources and connections.

- **Disconnect**
  Stops the connection.

- **Refresh**
  Performs a refresh on the selected node.

- **Find/Replace in Files**
  Opens the **Find/Replace in Files dialog box** *(on page 745)* that allows you to find and replace text in multiple files from the connection.

### Container Level Nodes

- **Enable Debug Mode**
  Switches the server to a debugging mode. For more information, see **MarkLogic debugging sessions** *(on page 2239)*.

- **Use it to Execute Queries**
  The server will be used to process XQuery expressions against it.
Refresh
Performs a refresh on the selected node.

Module or Folder Level Nodes

Export
Allows you to export the folder on the remote connection to a local folder.

Refresh
Performs a refresh on the selected node.

Requests Level Nodes

Refresh
Performs a refresh on the selected node.

Cancel all requests
Cancels all queries that are either running or stopped on the application server. You can use this action to clean up the entire Requests container at the end of your sessions.

Resource Level Nodes

Open
Opens the selected resource in the editor.

Open in System Application
When you use this action, Oxygen XML Editor downloads the selected resource to a local temporary folder and opens the selected resource in the system application that is currently set as the default application associated with that type of resource. You can then edit the resource, save it, and when you switch the focus back to the Data Source Explorer view, Oxygen XML Editor will detect that there was a change and will ask if you want to upload the edited resource to the server.

Copy location
Allows you to copy (to the clipboard) an application-specific URL for the resource that can then be used for various actions, such as opening or transforming the resources.

Refresh
Performs a refresh on the selected node.

Compare
Compares two selected resources using the Compare Files tool (on page 2770).

Related Information:

- Configuring a MarkLogic Database Connection (on page 2236)
- MarkLogic Development in Oxygen XML Editor (on page 2237)
- Debugging with MarkLogic (on page 2239)

MySQL Database Connections

Oxygen XML Editor includes support for MySQL database connections. Oxygen XML Editor allows you to browse the structure of a SQL Server database in the Data Source Explorer view (on page 2198), open tables in the Table Explorer view (on page 2200), and perform various operations on the resources in the repository.

Configuring a MySQL Database Connection

To configure the support for a MySQL database, follow this procedure:

1. Configure MySQL Data Source drivers (on page 2244).
2. Configure a MySQL Connection. (on page 2245)
3. To view your connection, go to the Data Source Explorer view (on page 2198) (if the view is not displayed, it can be opened by selecting it from the Window > Show View menu) or switch to the Database perspective (on page 3285).

How to Configure MySQL Data Source Drivers

To connect to a MySQL server, you need to create a generic JDBC type data source based on the MySQL JDBC driver available on the MySQL website.

To configure this data source, follow these steps:

1. Go to https://www.oxygenxml.com/database_drivers.html and download the appropriate MySQL driver.
2. Open the Preferences dialog box (Options > Preferences) (on page 79) and go to Data Sources.
3. Click the New button in the Data Sources panel.
The dialog box for configuring a data source is opened.

Figure 667. Data Source Drivers Configuration Dialog Box

![Data Source Drivers Configuration Dialog Box]

4. Enter a unique name for the data source.

5. Select *Generic JDBC* in the driver **Type** drop-down list.

6. Click the **Add Files** button and select the MySQL driver file that you downloaded.
   The driver file for the MySQL server is called `mysql-com.jar`.

7. Select the most appropriate **Driver class**.

8. Click the **OK** button to finish the data source configuration.

9. Continue on to configure your MySQL connection *(on page 2245)*.

**How to Configure a MySQL Connection**

To configure a connection to a MySQL server, follow these steps:

1. Open the **Preferences** dialog box (**Options > Preferences**) *(on page 79)* and go to **Data Sources**.

2. Click the **+ New** button in the **Connections** panel.
The dialog box for configuring a database connection is displayed.

Figure 668. Connection Configuration Dialog Box

3. Enter a unique name for the connection.

4. Select the MySQL data source in the Data Source drop-down list.

5. Enter the connection details.
   a. Enter the URL of the MySQL server.
   b. Enter the user name for the connection to the MySQL server.
   c. Enter the password for the connection to the MySQL server.

6. Click the OK button to finish the connection configuration.

7. To view your connection, go to the Data Source Explorer view (on page 2198) (if the view is not displayed, it can be opened by selecting it from the Window > Show View menu) or switch to the Database perspective (on page 3285).

Generic JDBC Database Connections

Oxygen XML Editor includes support for Generic JDBC database connections.

Configuring a Generic JDBC Database Connection

To configure the support for a generic JDBC database, follow this procedure:

1. Configure Generic JDBC Data Source drivers (on page 2247).
2. Configure a Generic JDBC Connection (on page 2247).

3. To view your connection, go to the Data Source Explorer view (on page 2198) (if the view is not displayed, it can be opened by selecting it from the Window > Show View menu) or switch to the Database perspective (on page 3285).

How to Configure Generic JDBC Data Source Drivers

Starting with version 17, Oxygen XML Editor comes bundled with Java 8, which does not provide built-in access to JDBC-ODBC data sources. To access such sources, you need to find an alternative JDBC-ODBC bridge or use a platform-independent distribution of Oxygen XML Editor along with a Java VM version 7 or 6.

To configure a generic JDBC data source, follow these steps:

1. Open the Preferences dialog box (Options > Preferences) (on page 79) and go to Data Sources.
2. Click the + New button in the Data Sources panel.
3. Enter a unique name for the data source.
4. Select Generic JDBC in the driver Type drop-down list.
5. Add the driver file(s) using the Add Files button.
6. Select the most appropriate Driver class.
7. Click the OK button to finish the data source configuration.
8. Continue on to configure a generic JDBC connection (on page 2247).

How to Configure a Generic JDBC Connection

To configure a connection to a generic JDBC database, follow these steps:

1. Open the Preferences dialog box (Options > Preferences) (on page 79) and go to Data Sources.
2. Click the + New button in the Connections panel.
3. Enter a unique name for the connection.
4. Select the Generic JDBC data source in the Data Source drop-down menu.
5. Enter the connection details.
   a. Enter the URL of the generic JDBC database, with the following format: jdbc:<subprotocol>:<subname>.
   b. Enter the user name for the connection to the generic JDBC database.
   c. Enter the password for the connection to the generic JDBC database.
6. Click the OK button to finish the connection configuration.
7. To view your connection, go to the Data Source Explorer view (on page 2198) (if the view is not displayed, it can be opened by selecting it from the Window > Show View menu) or switch to the Database perspective (on page 3285).
JDBC-ODBC Database Connections

Oxygen XML Editor includes support for JDBC-ODBC database connections.

How to Configure a JDBC-ODBC Connection

Starting with version 17, Oxygen XML Editor comes bundled with Java 8, which does not provide built-in access to JDBC-ODBC data sources. To access such sources, you need to find an alternative JDBC-ODBC bridge or use a platform-independent distribution of Oxygen XML Editor along with a Java VM version 7 or 6.

To configure a connection to an ODBC data source, follow these steps:

1. Open the Preferences dialog box (Options > Preferences) (on page 79) and go to Data Sources.

2. Click the + New button in the Connections panel.

   The dialog box for configuring a database connection is displayed.

   Figure 669. Connection Configuration Dialog Box

3. Enter a unique name for the connection.

4. Select JDBC-ODBC Bridge in the Data Source drop-down list.

5. Enter the connection details.
   a. Enter the URL of the ODBC source.
   b. Enter the user name of the ODBC source.
   c. Enter the password of the ODBC source.
6. Click the **OK** button to finish the connection configuration.

7. To view your connection, go to the **Data Source Explorer view (on page 2198)** (if the view is not displayed, it can be opened by selecting it from the **Window > Show View** menu) or switch to the **Database perspective (on page 3285)**.

BaseX Database Connections

Oxygen XML Editor includes support for BaseX database connections using a WebDAV connection. BaseX is a light-weight XML database engine and XQuery processor. Oxygen XML Editor allows you to browse the structure of a BaseX database in the **Data Source Explorer view (on page 2198)** and perform XQuery executions.

How to Configure a BaseX Connection

To configure a BaseX connection, follow these steps:

1. First of all, make sure the BaseX HTTP Server is started. For details about starting the BaseX HTTP server, go to [http://docs.basex.org/wiki/Startup#BaseX_HTTP_Server](http://docs.basex.org/wiki/Startup#BaseX_HTTP_Server). The configuration file for the HTTP server is named `.basex` and is located in the BaseX installation directory. This file helps you to find out which port the HTTP server using. The default port for BaseX WebDAV is 8984.

2. To ensure that everything is functioning, open a WebDAV URL inside a browser and check to see if it works. For example, the following URL retrieves a document from a database named TEST: [http://localhost:8984/webdav/TEST/etc/factbook.xml](http://localhost:8984/webdav/TEST/etc/factbook.xml).

3. Once you are sure that the BaseX WebDAV service is working, you can configure the WebDAV connection in Oxygen XML Editor as described in **How to Configure a WebDAV Connection (on page 2254)**. The WebDAV URL should resemble this: `http://{hostname}:{port}/webdav/`. If the BaseX server is running on your own machine and it has the default configuration, the data required by the WebDAV connection is:
   - **WebDAV URL**: `http://localhost:8984/webdav`
   - **User**: `admin`
   - **Password**: `admin`

4. Once the WebDAV connection is created, to view your connection, go to the **Data Source Explorer view (on page 2198)** (if the view is not displayed, it can be opened by selecting it from the **Window > Show View** menu) or switch to the **Database perspective (on page 3285)**.

BaseX Contextual Menu Actions

While browsing BaseX connections in the **Data Source Explorer view (on page 2198)**, the various nodes include the following contextual menu actions:
Connection Level Nodes

Configure Database Sources

Opens the Data Sources preferences page (on page 229) where you can configure both data sources and connections.

Disconnect

Stops the connection.

New Folder

Creates a new folder on the connection.

Import Files

Allows you to add a new file on the connection, in the current folder.

Refresh

Performs a refresh on the selected node.

Find/Replace in Files

Opens the Find/Replace in Files dialog box (on page 745) that allows you to find and replace text in multiple files from the connection.

Folder Level Nodes

New File

Creates a new file on the connection, in the current folder.

New Folder

Creates a new folder on the connection.

Import Folders

Imports folders on the server.

Import Files

Allows you to add a new file on the connection, in the current folder.

Export

Allows you to export the folder on the remote connection to a local folder.

Cut

Removes the current selection and places it in the clipboard.

Copy

Copies the current selection into the clipboard.
**Paste**

Pastes the copied selection.

**Rename**

Renames the current resource.

**Delete**

Deletes the current container.

**Refresh**

Performs a refresh on the selected node.

**Find/Replace in Files**

Opens the Find/Replace in Files dialog box (on page 745) that allows you to find and replace text in multiple files from the connection.

**Resource Level Nodes**

**Open**

Opens the selected resource in the editor.

**Open in System Application**

When you use this action, Oxygen XML Editor downloads the selected resource to a local temporary folder and opens the selected resource in the system application that is currently set as the default application associated with that type of resource. You can then edit the resource, save it, and when you switch the focus back to the Data Source Explorer view, Oxygen XML Editor will detect that there was a change and will ask if you want to upload the edited resource to the server.

**Cut**

Removes the current selection and places it in the clipboard.

**Copy**

Copies the current selection into the clipboard.

**Copy location**

Allows you to copy (to the clipboard) an application-specific URL for the resource that can then be used for various actions, such as opening or transforming the resources.

**Rename**

Renames the current resource.
Delete

Deletes the current container.

Refresh

Performs a refresh on the selected node.

Properties

Shows various properties of the current container.

Find/Replace in Files

Opens the Find/Replace in Files dialog box (on page 745) that allows you to find and replace text in multiple files from the connection.

Compare

Compares two selected resources using the Compare Files tool (on page 2770).

Base X XQJ Connection

XQuery execution is possible in a BaseX connection through an XQJ connection.

⚠️ Important: The XQJ connector is only capable of running XQuery 1.0 scripts, therefore XQuery 3.0 and 3.1 scripts are not supported.

BaseX XQJ Data Source

First of all, create an XQJ data source as described in How to Configure an XQJ Data Source (on page 2253). The BaseX XQJ API-specific files that must be added in the configuration dialog box are xqj-api-1.0.jar, xqj-2-0.1.0.jar and basex-xqj-1.2.3.jar (the version names of the JAR file may differ). These libraries can be downloaded from xqj.net/basex/basex-xqj-1.2.3.zip. As an alternative, you can also find the libraries in the BaseX installation directory, in the lib sub-directory.

BaseX XQJ Connection

The next step is to create an XQJ connection (on page 2253).

For a default BaseX configuration, the following connection details apply (you can modify them when necessary):

- **Port**: 1984
- **serverName**: localhost
- **user**: admin
- **password**: admin
**XQuery Execution**

Now that the XQJ connection is configured, open the XQuery file you want to execute in Oxygen XML Editor and create an [XQuery Transformation](on page 1749). In the **Transformer** drop-down menu, select the name of the XQJ connection you created. Apply the transformation scenario and the XQuery will be executed.

**How to Configure an XQJ Data Source**

Any transformer that offers an XQJ API implementation can be used when validating XQuery or transforming XML documents. An example of an XQuery engine that implements the XQJ API is [Zorba](https://zorba.io).

1. If your XQJ Implementation is native, make sure the directory containing the native libraries of the engine is added to your system environment variables: to **PATH** - on Windows, to **LD_LIBRARY_PATH** - on Linux, or to **DYLD_LIBRARY_PATH** - on OS X. Restart Oxygen XML Editor after configuring the environment variables.

2. Open the [Preferences dialog box (Options > Preferences)](on page 79) and go to **Data Sources**.

3. Click the **New** button in the **Data Sources** panel.

4. Enter a unique name for the data source.

5. Select **XQuery API for Java (XQJ)** in the **Type** combo box.

6. Press the **Add** button to add XQJ API-specific files.
   You can manage the driver files using the **Add, Remove, Detect,** and **Stop** buttons.
   Oxygen XML Editor detects any implementation of `javax.xml.xquery.XQDataSource` and presents it in **Driver class** field.

7. Select the most suited driver in the **Driver class** combo box.

8. Click the **OK** button to finish the data source configuration.

9. Continue on to configure the XQJ connection *(on page 2253)*.

**How to Configure an XQJ Connection**

The steps for configuring an XQJ connection are the following:

1. Open the [Preferences dialog box (Options > Preferences)](on page 79) and go to **Data Sources**.

2. Click the **New** button in the **Connections** panel.
3. Enter a unique name for the connection.

4. Select one of the previously configured XQJ data sources (on page 2253) in the Data Source combo box.

5. Fill-in the connection details.
   The properties presented in the connection details table are automatically detected depending on the selected data source.

6. Click the OK button to finish the connection configuration.

WebDAV Connections

Oxygen XML Editor includes support for WebDAV server connections. Oxygen XML Editor allows you to browse the structure of a WebDAV connection in the Data Source Explorer view (on page 2198) and perform various operations on the resources in the repository.

How to Configure a WebDAV Connection

By default, Oxygen XML Editor contains built-in data source drivers for WebDAV connections. Based on this data source, you can create a WebDAV connection for browsing and editing data from a database that provides a WebDAV interface. The connection is available in the Data Source Explorer view (on page 2198).

To configure a WebDAV connection, follow these steps:

1. Open the Preferences dialog box (Options > Preferences) (on page 79) and go to Data Sources.

2. Click the + New button in the Connections panel.

3. Enter a unique name for the connection.

4. Select one of the WebDAV data sources in the Data Source drop-down menu.

5. Enter the connection details:
   a. Set the URL to the WebDAV repository in the field WebDAV URL.
   b. Set the user name that is used to access the WebDAV repository in the User field.
   c. Set the password that is used to access the WebDAV repository in the Password field.

6. Click the OK button to finish the connection configuration.

7. To view your connection, go to the Data Source Explorer view (on page 2198) (if the view is not displayed, it can be opened by selecting it from the Window > Show View menu) or switch to the Database perspective (on page 3285).
For more information about the WebDAV support in Oxygen XML Editor, watch our video demonstration:

https://www.youtube.com/embed/vDXO36CqbyM

WebDAV Contextual Menu Actions

While browsing WebDAV connections in the Data Source Explorer view (on page 2198), the various nodes include the following contextual menu actions:

**Connection Level Nodes**

- **Configure Database Sources**
  - Opens the Data Sources preferences page (on page 229) where you can configure both data sources and connections.

- **Disconnect**
  - Stops the connection.

- **New Folder**
  - Creates a new folder on the connection.

- **Import Files**
  - Allows you to add a new file on the connection, in the current folder.

- **Refresh**
  - Performs a refresh on the selected node.

- **Find/Replace in Files**
  - Opens the Find/Replace in Files dialog box (on page 745) that allows you to find and replace text in multiple files from the connection.

**Folder Level Nodes**

- **New File**
  - Creates a new file on the connection, in the current folder.

- **New Folder**
  - Creates a new folder on the connection.

- **Import Folders**
  - Imports folders on the server.

- **Import Files**
Allows you to add a new file on the connection, in the current folder.

**Export**

Allows you to export the folder on the remote connection to a local folder.

**Cut**

Removes the current selection and places it in the clipboard.

**Copy**

Copies the current selection into the clipboard.

**Paste**

Pastes the copied selection.

**Rename**

Renames the current resource

**Delete**

Deletes the current container.

**Refresh**

Performs a refresh on the selected node.

**Find/Replace in Files**

Opens the *Find/Replace in Files* dialog box (on page 745) that allows you to find and replace text in multiple files from the connection.

**Resource Level Nodes**

**Open**

Opens the selected resource in the editor.

**Open in System Application**

When you use this action, Oxygen XML Editor downloads the selected resource to a local temporary folder and opens the selected resource in the system application that is currently set as the default application associated with that type of resource. You can then edit the resource, save it, and when you switch the focus back to the *Data Source Explorer* view, Oxygen XML Editor will detect that there was a change and will ask if you want to upload the edited resource to the server.

**Cut**

Removes the current selection and places it in the clipboard.

**Copy**
Copies the current selection into the clipboard.

**Copy location**

Allows you to copy (to the clipboard) an application-specific URL for the resource that can then be used for various actions, such as opening or transforming the resources.

**Rename**

Renames the current resource

**Delete**

Deletes the current container.

**Refresh**

Performs a refresh on the selected node.

**Properties**

Shows various properties of the current container.

**Find/Replace in Files**

Opens the Find/Replace in Files dialog box (on page 745) that allows you to find and replace text in multiple files from the connection.

**Compare**

Compares two selected resources using the Compare Files tool (on page 2770).

### SQL Execution Support

The database support in Oxygen XML Editor includes support for writing SQL statements, syntax highlighting, folding (on page 3282), and dragging and dropping from the Data Source Explorer view (on page 2198). It also includes transformation scenarios for executing the statements, and the results are displayed in the Table Explorer view (on page 2200).

### Drag and Drop from Data Source Explorer View

Dragging operations from the Data Source Explorer view (on page 2198) and dropping them in the SQL Editor allows you to create SQL statements quickly by inserting the names of tables and columns in the SQL statements.

1. Configure a database connection (see the specific procedure for your database server in the Database Connection Support (on page 2203) section).

2. Browse to the table you will use in your statement.
3. Drag the table or a column of the table into the editor where a SQL file is open.

Drag and drop actions are available both on the table and on its fields. A pop-up menu is displayed in the SQL editor.

Figure 670. SQL Statement Editing with Drag and Drop

4. Select the type of statement from the pop-up menu.

Depending on your choice, dragging a table results in one of the following statements being inserted into the document:

- **SELECT `field1`, `field2`, .... FROM `catalog`.`table`** (for example: SELECT `DEPT`, `DEPTNAME`, `LOCATION` FROM `camera`.`cameraDesc`)

- **UPDATE `catalog`.`table` SET `field1`=, `field2`=,....** (for example: UPDATE `camera`.`cameraDesc` SET `DEPT`=, `DEPTNAME`=, `LOCATION`=)

- **INSERT INTO `catalog`.`table` ( `field1`, `field2`, ....) VALUES (, , )** (for example: INSERT INTO `camera`.`cameraDesc` ( `DEPT`, `DEPTNAME`, `LOCATION`) VALUES (, , ))

- **DELETE FROM `catalog`.`table`** (for example: DELETE FROM `camera`.`cameraDesc`)

Depending on your choice, dragging a column results in one of the following statements being inserted into the document:
• SELECT `field` FROM `catalog`.`table` (for example: SELECT `DEPT` FROM `camera`.`cameraDesc`)
• UPDATE `catalog`.`table` SET `field` = (for example: UPDATE `camera`.`cameraDesc` SET `DEPT` = )
• INSERT INTO `catalog`.`table` (`field`) VALUES () (for example: INSERT INTO `camera`.`cameraDesc` (`DEPT`) VALUES ( )
• DELETE FROM `catalog`.`table` (for example: DELETE FROM `camera`.`cameraDesc` WHERE `DEPT` = )

SQL Validation

SQL validation support is offered for IBM DB2. Note that if you choose a connection that does not support SQL validation, you will receive a warning when trying to validate. The SQL document is validated using the connection from the associated transformation scenario.

Executing SQL Statements

The steps for executing an SQL statement on a relational database are as follows:

1. Configure a transformation scenario (on page 1640) using the Configure Transformation Scenario(s) action from the toolbar or the Document > Transformation menu.
   A SQL transformation scenario needs a database connection. You can configure a connection using the Preferences button from the SQL transformation dialog box.
   The dialog box contains the list of existing scenarios that apply to SQL documents.

2. Set parameter values for SQL placeholders using the Parameters button from the SQL transformation dialog box.
   For example, in SELECT * FROM `test`.`department` where DEPT = ? or DEPTNAME = ? the two parameters can be configured for the placeholders (?) in the transformation scenario.

   When the SQL statement is executed, the first placeholder is replaced with the value set for the first parameter in the scenario, the second placeholder is replaced by the second parameter value, and so on.

   **Restriction:** When a stored procedure is called in an SQL statement executed on an SQL Server database, mixing inline parameter values with values specified using the Parameters button of the scenario dialog box is not recommended. This is due to a limitation of the SQL Server driver for Java applications. An example of stored procedure that is not recommended: call dbo.Test(22, ?).

3. Execute the SQL scenario by clicking the OK or Apply associated button.
The result of a SQL transformation is displayed in a view (on page 357) at the bottom of the Oxygen XML Editor window.

4. View more complex return values of the SQL transformation in a separate editor panel.
A more complex value returned by the SQL query (for example, an XMLTYPE or CLOB value) cannot be displayed entirely in the result table.

   a. Right-click the cell containing the complex value.

   b. Select the action Copy cell from the contextual menu.
      The action copies the value in the clipboard.

   c. Paste the value into an appropriate editor.
      For example, you can paste the value in an opened XQuery editor panel of Oxygen XML Editor.

XQuery and Databases

XQuery is a native XML query language that is useful for querying XML views of relational data to create XML results. It also provides the mechanism to efficiently and easily extract information from Native XML Databases (NXD) and relational data. The following database systems supported in Oxygen XML Editor offer XQuery support:

- **Native XML Databases**:
  - Berkeley DB XML
  - eXist
  - MarkLogic (validation support available starting with version 5)

- **Relational Databases**:
  - IBM DB2
  - Microsoft SQL Server (validation support not available)
  - Oracle (validation support not available)

Related Information:

- Editing XQuery Documents (on page 1337)
Build Queries with Drag and Drop from the Data Source Explorer View

When a query is edited in the XQuery editor, the XPath expressions can be composed quickly by dragging them from the Data Source Explorer view (on page 2198) and dropping them into the editor panel.

1. Configure the data source drivers (on page 2203) for the particular relational database in the Data Sources preferences page (on page 229).
2. Configure the connection (on page 2203) for the particular relational database in the Data Sources preferences page (on page 229).
3. Browse the connection in the Data Source Explorer view (on page 2198), expanded to the table or column that you want to insert in the query.
4. Drag the table or column name to the XQuery editor panel.
5. Drop the table or column name where the XPath expression is needed.

An XPath expression that selects the dragged name is inserted in the XQuery document at the cursor position.

XQuery Validation When Connected to a Database

With Oxygen XML Editor, you can validate your XQuery documents when connected to a database. When you open an XQuery document from a connection that supports validation (for example, MarkLogic, or eXist), by default Oxygen XML Editor uses this connection for validation. If you open an XQuery file using a MarkLogic connection, the validation resolves imports better.

Related Information:
- XQuery Validation (on page 1337)

XQuery Transformation for Databases

XQuery is designed to retrieve and interpret XML data from any source, whether it is a database or document. Data is stored in relational databases but it is often required that the data be extracted and transformed as XML when interfacing to other components and services. Also, it is an XPath-based querying language supported by most NXD vendors. To perform a query, you need an XQuery transformation scenario.

1. Configure the data source drivers and the connection (on page 2203) for the particular database.
2. Configure an XQuery transformation scenario.
a. Click the Configure Transformation Scenario toolbar button or go to menu Document > Transformation > Configure Transformation Scenario.

The Configure Transformation Scenario dialog box (on page 1762) is opened.

b. Click the New button toward the bottom of the dialog box.

c. Select XML Transformation with XQUERY (on page 1690).

The New Scenario dialog box for configuring an XQuery scenario is opened.

Figure 671. New Scenario Dialog Box

d. Insert the scenario name in the dialog box for editing the scenario.

e. Choose the database connection in the Transformer drop-down list.

f. Configure any other parameters as needed.

For an XQuery transformation, the output tab has an option called Sequence that allows you to run an XQuery in lazy mode. The amount of data extracted from the database is controlled from the Size limit on Sequence view option (on page 208) in the XQuery preferences page. If you choose Perform FO Processing in the FO Processor tab, the Sequence option is ignored.

g. Click the OK button to finish editing the scenario.
Once the scenario is associated with the XQuery file, the query can include calls to specific XQuery functions that are implemented by that engine. The available functions depend on the target database engine selected in the scenario. For example, for eXist and Berkeley DB XML, the Content Completion Assistant (on page 3280) lists the functions supported by that database engine. This is useful for only inserting calls to the supported functions (standard XQuery functions or extension ones) into the query.

Note: An XQuery transformation is executed against a Berkeley DB XML server as a transaction using the query transaction support of the server.

3. Run the transformation scenario.

To view a more complex value returned by the query that cannot be entirely displayed in the XQuery query result table at the bottom of the Oxygen XML Editor window (for example, an XMLTYPE or CLOB value), do the following:

- Right-click that table cell.
- Select the Copy cell action from the contextual menu to copy the value into the clipboard.
- Paste the value wherever you need it (for example, in an opened XQuery editor panel of Oxygen XML Editor).

Related Information:

- XML Transformation with XQuery (on page 1690)
- XQuery XQJ Transformation (on page 2263)

XQuery XQJ Transformation

XQuery API for Java (XQJ) refers to the common Java API for the XQuery 1.0 specification. The XQJ API enables you to execute XQuery against an XML data source.

Important: The XQJ connector is only capable of running XQuery 1.0 scrips, therefore XQuery 3.0 and 3.1 scripts are not supported.

Oxygen XML Editor supports any transformer that offers an XQJ API implementation and it be used for validating XQuery or transforming XML documents.

To configure the support for XQJ, do the following:

1. Configure an XQJ Data Source (on page 2253).
2. Configure an XQJ Connection (on page 2253).
To view your connection, go to the Data Source Explorer view (on page 2198) (if the view is not
displayed, it can be opened by selecting it from the Window > Show View menu) or switch to the
Database perspective (on page 3285).

How to Configure an XQJ Data Source

Any transformer that offers an XQJ API implementation can be used when validating XQuery or
transforming XML documents. An example of an XQuery engine that implements the XQJ API is
Zorba.

1. If your XQJ Implementation is native, make sure the directory containing the native libraries
of the engine is added to your system environment variables: to PATH - on Windows, to
LD_LIBRARY_PATH - on Linux, or to DYLD_LIBRARY_PATH - on OS X. Restart Oxygen XML Editor
after configuring the environment variables.

2. Open the Preferences dialog box (Options > Preferences) (on page 79) and go to Data Sources.

3. Click the New button in the Data Sources panel.

4. Enter a unique name for the data source.

5. Select XQuery API for Java (XQJ) in the Type combo box.

6. Press the Add button to add XQJ API-specific files.
   You can manage the driver files using the Add, Remove, Detect, and Stop buttons.
   Oxygen XML Editor detects any implementation of javax.xml.xquery.XQDataSource and presents
it in Driver class field.

7. Select the most suited driver in the Driver class combo box.

8. Click the OK button to finish the data source configuration.

9. Continue on to configure the XQJ connection (on page 2253).

How to Configure an XQJ Connection

The steps for configuring an XQJ connection are the following:

1. Open the Preferences dialog box (Options > Preferences) (on page 79) and go to Data Sources.

2. Click the New button in the Connections panel.

3. Enter a unique name for the connection.
4. Select one of the previously configured XQJ data sources (on page 2253) in the Data Source combo box.

5. Fill-in the connection details. The properties presented in the connection details table are automatically detected depending on the selected data source.

6. Click the OK button to finish the connection configuration.

XQuery Database Debugging

Oxygen XML Editor includes a debugging interface that helps you to detect and solve problems with XQuery transformations that are executed against MarkLogic and Berkeley DB XML databases.

For more information about the debugging support in Oxygen XML Editor, see Debugging XSLT Stylesheets and XQuery Documents (on page 2290).

Debugging with MarkLogic

Oxygen XML Editor includes support for debugging XQuery transformations that are executed against a MarkLogic database.

To use a debugging session against the MarkLogic engine, follow these steps:

1. Configure a MarkLogic data source (on page 2236) and a MarkLogic connection (on page 2236).

2. Make sure that the debugging support is enabled in the MarkLogic server that Oxygen XML Editor accesses. On the server side, debugging must be activated in the XDBC server and in the Task Server section of the server control console (the switch debug allow). If the debugging is not activated, the MarkLogic server reports a DBG-TASKDEBUGALLOW error.

   ![Note](image)
   
   An XDBC application server must be running to connect to the MarkLogic server and this XDBC server will be used to process XQuery expressions against the server. You can change the XDBC application server that Oxygen XML Editor uses to process XQuery expressions by selecting the Use it to execute queries action (on page 2242) from the contextual menu in the Data Source Explorer view (on page 2198).

3. Open the XQuery file and start the debugging process.

   • If you want to debug an XQuery file stored on the MarkLogic server, it is recommend to use the Data Source Explorer view (on page 2198) and open the file from the application server that is involved in the debugging process. This improves the resolving of any imported modules.
The MarkLogic XQuery debugger integrates seamlessly into the XQuery Debugger perspective (on page 299). If you have a MarkLogic validation scenario configured for the XQuery file, you can choose to debug the scenario (on page 2309) directly.

Otherwise, switch to the XQuery Debugger perspective (on page 3285), open the XQuery file in the editor, and select the MarkLogic connection in the XQuery engine selector from the debug control toolbar (on page 2293).

For general information about how a debugging session is started and controlled, see the Working with the Debugger (on page 2309) section.

In a MarkLogic debugging session, you can use step actions and breakpoints (on page 2313) to help identify problems. When you add a breakpoint (on page 2314) on a line where the debugger never stops, Oxygen XML Editor displays a warning message. These warnings are displayed for breakpoints you add either in the main XQuery (which you can open locally or from the server) or for breakpoints you add in any XQuery that is opened from the connection that participates in the debugging session. For more information, see Using Breakpoints for Debugging Queries that Import Modules with MarkLogic (on page 2241).

**Remote Debugging with MarkLogic**

Oxygen XML Editor allows you to debug remote applications that use XQuery (for example, web applications that trigger XQuery executions). Oxygen XML Editor connects to a MarkLogic server, shows you the running XQuery scripts and allows you to debug them. You can even pause the scripts so that you can start the debugging queries in the exact context of the application. You can also switch a server to debug mode to intercept all XQuery scripts.

Oxygen XML Editor also supports collaborative debugging. This feature allows multiple users to participate in the same debugging session. You can start a debugging session and at a certain point, another user can continue it.

⚠️ **Important:** When using the remote debugging feature, the HTTP and the XDBC servers involved in the debugging session must have the same module configuration.

For more information about the XQuery debugger for MarkLogic, watch our video demonstration:

https://www.youtube.com/embed/eQ4ThDZq1bk

**Related Information:**

- MarkLogic Development in Oxygen XML Editor (on page 2237)
Using Breakpoints for Debugging Queries that Import Modules with MarkLogic

When debugging queries that import modules stored in the database, it is recommended to place breakpoints in the modules. When starting a new debugging session, make sure that the modules that you will debug are already opened in the editor. This is necessary so that the breakpoints in all the modules will be considered. Also, make sure that there are no other opened modules that are not involved in the current debugging session.

To place breakpoints in the modules, use the following procedure:

1. In the Data Source Explorer view (on page 2198), open all the modules from the Modules container of the XDBC application server (on page 2237) that performs the debugging.
2. Set breakpoints (on page 2314) in the module as needed.
3. Continue debugging (on page 2309) the query.

If you get a warning that the breakpoints failed to initialize, try the following solutions:

• Check the Breakpoints view (on page 2297) and make sure there are no older breakpoints (set on resources that are not part of the current debugging context).
• Make sure you open the modules from the context of the application server that does the debugging and place breakpoints there.

Related Information:

• MarkLogic Database Connections (on page 2234)

• MarkLogic Development in Oxygen XML Editor (on page 2237)

Peculiarities and Limitations of the MarkLogic Debugger

MarkLogic debugger has the following peculiarities and limitations:

• Debugging support is only available for MarkLogic server versions 4.0 or newer.
• For MarkLogic server versions 4.0 or newer, there are three XQuery syntaxes that are supported: '0.9-ml' (inherited from MarkLogic 3.2), '1.0-ml', and '1.0'.
• All declared variables are presented as strings. The Value column of the Variables view contains the expression from the variable declaration. It can be evaluated by copying the expression with
the **Copy value** action from the contextual menu of the **Variables view** *(on page 2307)* and pasting it in the **XWatch view** *(on page 2299)*.

- There is no support for **output to source mapping** *(on page 2310)*.
- There is no support for **showing the trace** *(on page 2304)*.
- You can only set **breakpoints** *(on page 2297)* in imported modules in one of the following cases:
  - When you open the module from the context of the application server involved in the debugging, using the **Data Source Explorer view** *(on page 2198)*.
  - When the debugger automatically opens the modules in the Editor.
- No **breakpoints** *(on page 2313)* are set in modules from the same server that are not involved in the current debugging session.
- No support for **profiling** *(on page 2314)* when an XQuery transformation is executed in the debugger.

**Debugging with Berkeley DB XML**

The Berkeley DB XML database added a debugging interface starting with version 2.5. The current version is supported in the Oxygen XML Editor XQuery Debugger. The **same restrictions and peculiarities** *(on page 2241)* apply for the Berkeley debugger as for the MarkLogic debugger.

**Integration with Microsoft SharePoint**

Oxygen XML Editor provides support for browsing and managing SharePoint connections in the **Data Source Explorer view** *(on page 2198)*. You can easily create new resources on the repository, copy and move them using contextual actions or the drag and drop support, or edit and transform the documents in the editor.

**Note:** You can access documents stored on SharePoint Online for Office 365 sites that use either **Cloud identity (default)** or **Federated identity (ADFS)** as the authentication method.

**Restriction:** The SharePoint connection is only available in the Enterprise edition of Oxygen XML Editor.

Figure 672. SharePoint Connection
By default, Oxygen XML Editor contains built-in data source drivers for SharePoint. Use this data source to create a connection to a SharePoint server that will be available in the Data Source Explorer view (on page 2198).

To configure a SharePoint connection, follow these steps:

1. Open the Preferences dialog box (Options > Preferences) (on page 79) and go to Data Sources.

2. In the Connections panel click the + New button.

3. Enter a unique name for the connection.

4. Select SharePoint in the Data Source combo box.

5. Fill-in the connection details:
   a. Set the URL to the SharePoint repository in the field SharePoint URL.
b. Set the server domain in the **Domain** field. If you are using a SharePoint 365 account, leave this field empty.

c. Set the user name to access the SharePoint repository in the **User** field.

d. Set the password to access the SharePoint repository in the **Password** field.

6. To view your connection, go to the **SharePoint Browser view** (on page 2270) (if the view is not displayed, it can be opened by selecting it from the **Window > Show View** menu).

For more information about connecting to repository located on a SharePoint server, watch our video demonstration:

https://www.youtube.com/embed/1u2xBtBp1mQ

**SharePoint Browser View**

The **SharePoint Browser** view allows you to connect to a SharePoint repository and perform SharePoint-specific actions on the available resources. To display this view, go to **Window > Show View > SharePoint Browser**.

Figure 673. SharePoint Browser View

The view is split in several functional areas:
Connection Area

The following controls are available:

- The **Site** combo box allows you to select and connect to an already **defined SharePoint connection (on page 2269)**.
- The **Disconnect** action terminates the current connection.
- The **Settings** drop-down menu contains actions that help you to quickly define a new connection or manage the existing ones from the **Data Source** options page: **New SharePoint Connection** and **Configure Database Sources**. Also, here you can choose one of the predefined view layouts.

SharePoint Site Navigation Area

If there is no connection selected in the **Site** combo box, this area is left blank and promotes the actions that allow you to quickly add SharePoint connections. Otherwise, the navigation area presents the SharePoint site structure in a tree-like fashion with various node types (such as *sites*, *libraries*, and *folders*).

Depending on the type of node, a contextual menu offers customized actions that can be performed on that node. The contextual menu of a folder allows you to create new folders and documents, import folders and files, and to rename and delete the folder.

**Note:** The rename and delete actions are not available for library root folders (*folders located at first level in a SharePoint library*).

Each library node displays a drop-down menu next to its name where you can select what you want to display for the current library node. This functionality is also available on the contextual menu of the node.

![Figure 674. Drop-Down Menu to Select Which Items to Display](image)

Folder Content Area

The content of a folder is displayed in a tabular form, where each row represents the properties of a folder or document. The list of columns and the way the documents and folders are organized depends on the currently selected view of the parent library.
### Table 72. Contextual Menu Actions for the Folder Area

| Action      | Description                                                                 | Available for | |                      |
|-------------|-----------------------------------------------------------------------------|---------------|-----------------------|
| Open        | Displays the content of the currently selected folder.                      |               |                      |
|             | Opens the current document for editing.                                     |               |                      |
| Rename      | Renames the current node on server.                                         |               |                      |
| Import      | Import files or folders into the currently selected folder.                 |               |                      |
| Delete      | Deletes the current node from the server.                                   |               |                      |
| Copy Location | Copies to clipboard the URL of the current node.                           |               |                      |
| Check Out   | Reserves the current document for your use so that other users cannot change it while you are editing it. |               |                      |
| Check In    | Commits on the server the changes you made to the document, so that other users can see them. It also makes the document available for editing to other users. |               |                      |
| Discard Check Out | Discards the previous checkout operation, making the file available for editing to other users. |               |                      |
| Refresh     | Queries the server to refresh the available properties of the current node. |               |                      |
| Drag and Drop | You can drag documents from the SharePoint Browser view and drop them in the main editor area to open them with ease. |               |                      |

You can filter and sort the displayed items. To display the available filters of a column, click the filter widget located on the column header. You can apply multiple filters at the same time.

**Note:** A column can be filtered or sorted only if it was configured this way on the server side.

Figure 675. Column Filter

![Column Filter](image)

**Related Information:**

- How to Configure a SharePoint Connection *(on page 2269)*
SharePoint Contextual Menu Actions

While browsing SharePoint connections in the Data Source Explorer view (on page 2198), the various nodes include the following contextual menu actions:

Connection Level Nodes

- **Configure Database Sources**
  
  Opens the Data Sources preferences page (on page 229) where you can configure both data sources and connections.

- **Disconnect**
  
  Stops the connection.

- **New Folder**
  
  Creates a new folder on the connection.

- **Import Files**
  
  Allows you to add a new file on the connection, in the current folder.

- **Refresh**
  
  Performs a refresh on the selected node.

- **Find/Replace in Files**
  
  Opens the Find/Replace in Files dialog box (on page 745) that allows you to find and replace text in multiple files from the connection.

Folder Level Nodes

- **New File**
  
  Creates a new file on the connection, in the current folder.

- **New Folder**
  
  Creates a new folder on the connection.

- **Import Folders**
  
  Imports folders on the server.

- **Import Files**
  
  Allows you to add a new file on the connection, in the current folder.

- **Export**
  
  Allows you to export the folder on the remote connection to a local folder.

- **Cut**
Removes the current selection and places it in the clipboard.

**Copy**

Copies the current selection into the clipboard.

**Paste**

Pastes the copied selection.

**Rename**

Renames the current resource

**Delete**

Deletes the current container.

**Refresh**

Performs a refresh on the selected node.

**Find/Replace in Files**

Opens the Find/Replace in Files dialog box (on page 745) that allows you to find and replace text in multiple files from the connection.

**Resource Level Nodes**

**Open**

Opens the selected resource in the editor.

**Open in System Application**

When you use this action, Oxygen XML Editor downloads the selected resource to a local temporary folder and opens the selected resource in the system application that is currently set as the default application associated with that type of resource. You can then edit the resource, save it, and when you switch the focus back to the Data Source Explorer view, Oxygen XML Editor will detect that there was a change and will ask if you want to upload the edited resource to the server.

**Cut**

Removes the current selection and places it in the clipboard.

**Copy**

Copies the current selection into the clipboard.

**Copy location**
Allows you to copy (to the clipboard) an application-specific URL for the resource that can then be used for various actions, such as opening or transforming the resources.

**Check Out**

Checks out the selected document on the server.

**Check In**

Checks in the selected document on the server. This action opens the **Check In** dialog box. In this dialog box, the following options are available:

- **Minor Version** - Increments the minor version of the file on the server.
- **Major Version** - Increments the major version of the file on the server.
- **Overwrite** - Overwrites the latest version of the file on the server.
- **Comment** - Allows you to comment on a file that you check in.

**Discard Check Out**

Discards the previous checkout operation, making the file available for editing to other users.

**Rename**

Renames the current resource

**Delete**

Deletes the current container.

**Refresh**

Performs a refresh on the selected node.

**Properties**

Shows various properties of the current container.

**Find/Replace in Files**

Opens the Find/Replace in Files dialog box (on page 745) that allows you to find and replace text in multiple files from the connection.

**Compare**

Compares two selected resources using the Compare Files tool (on page 2770).
14. Importing Data

Computer systems and databases contain data in incompatible formats and exchanging data between these systems can be very time consuming. Converting the data to XML can greatly reduce the complexity and create data that can be read by various types of applications.

Oxygen XML Editor offers support for importing text files, MS Excel files, Database Data, and HTML files into XML documents. The XML documents can be further converted into other formats using the Transform features (on page 1640).

Import from Text Files

Oxygen XML Editor includes the possibility of importing text files (.txt or .csv file extensions) as XML documents.

To import a text file into an XML file, follow these steps:

1. Go to File > Import > Text File.
   A Select text file dialog box is displayed.

2. Select the URL of the text file (.txt or .csv file extensions).

3. Select the encoding of the text file.

4. Click the Next button.
   The Import Criteria dialog box is displayed.

Figure 676. Import Criteria Dialog Box
5. Configure the settings for the conversion.
   a. Select the Field delimiter for the import settings. You can choose between the following:
      Comma, Semicolon, Tab, Space, or Pipe.
   b. The Import settings section presents the input data in a tabular form. By default, all data items are converted to element content (\rightarrow symbol), but this can be overridden by clicking the individual column headers. Clicking a column header once causes the data from this column to be converted to attribute values (\Rightarrow symbol). Clicking a second time causes the column data to be ignored (\times symbol) when generating the XML file. You can cycle through these three options by continuing to click the column header.
   c. First row contains field names - If this option is selected, the default column headers are replaced (where such information is available) by the content of the first row. In other words, the first row is interpreted as containing the field names. The changes are also visible in the preview panel.
   d. Customize - This button opens a Presentation Names dialog box that allows you to edit the name, XML name, and conversion criterion for the root and row elements. The XML names can be edited by double-clicking the desired item and entering the label. The conversion
criteria can also be modified by selecting one of the following options in the drop-down menu: ELEMENT, ATTRIBUTE, or SKIPPED.

e. **Import Settings** - Clicking this button opens the Import preferences page (on page 221) that allows you to configure more import options.

f. The XML Import Preview panel contains an example of what the generated XML document looks like.

g. **Open in editor** - If selected, the new XML document created from the imported text file is opened in the editor.

h. **Save in file** - If selected, the new XML document is saved in the specified path.

6. Click **Import** to generate the XML document.

**Import from MS Excel Files**

Oxygen XML Editor provides several methods for importing MS Excel files into an XML file. The first method is to use the Oxygen XML Editor Smart Paste mechanism (on page 918) by simply copying data from Excel and pasting it into a document in Author mode (note that this is only supported in DITA, DocBook, TEI, JATS, and XHTML documents). You can also copy data from Excel and paste it into inserted cells in Grid mode, but this is a more manual process. If you want to import an entire Excel file, Oxygen XML Editor also offers a configurable import wizard that works with any type of XML document.

**Smart Paste Method in Author Mode**

If you are importing data into DITA, DocBook, TEI, JATS, or XHTML documents, you can open the Excel spreadsheet in your office application, copy its content, and simply paste it into your document in Author mode.

The Oxygen XML Editor Smart Paste mechanism (on page 918) will convert the pasted content to the equivalent XML markup and considers various pasting solutions to keep the resulting document valid, while preserving the original text styling (such as bold, italics, underline) and formatting (such as lists, tables, paragraphs).

**Grid Mode Method**

The Grid mode in Oxygen XML Editor displays all content in an XML document as a structured grid of nested tables and you can work with the cells in those tables much like you would with any spreadsheet application. When importing Excel data into Grid mode, you first need to insert new cells in the particular nested table and then you can paste data from Excel the same as you would in any table or spreadsheet.
1. Copy the particular cells from your Excel spreadsheet that you want to import into an XML file.
2. Switch to Grid mode in Oxygen XML Editor.
3. Expand the particular nodes and locate the nested table where you want to insert the copied cells.
4. Right-click a particular row or column where you want to insert the data and select Insert row or Insert column, depending on the structure of the copied cells.
5. Paste the copied cells from the clipboard into the newly inserted cells in Grid mode.
6. You may need to make some manual adjustments. For example, if the selection of copied cells contained an empty cell, Oxygen XML Editor might ignore that cell.

**Import Wizard Method**

By default, this method supports importing Excel 97/2000/XP/2003 formats out-of-the-box. To import spreadsheet data from Excel 2007 or newer, additional libraries are needed before using this procedure. See Import Data from MS Excel 2007 or Newer (on page 2281) for instructions on adding more libraries.

To use the Import wizard to import an Excel file into an XML file, follow these steps:

1. Go to File > Import > MS Excel file.
2. Select the URL of the Excel file. The sheets of the document you are importing are presented in the Available Sheets section of this dialog box.
3. Click the Next button to proceed to the next stage of the wizard.

Figure 677. Import Wizard
4. Configure the settings for the conversion. This stage of the wizard offers the following options:

**Import settings section**

Presents the input data in a tabular form. By default, all data items are converted to element content (├ symbol), but this can be overridden by clicking the individual column headers. Clicking a column header once causes the data from this column to be converted to attribute values (═ symbol). Clicking a second time causes the column data to be ignored (x symbol) when generating the XML file. You can cycle through these three options by continuing to click the column header.

**First row contains field names**

If this option is selected, the default column headers are replaced (where such information is available) by the content of the first row. In other words, the first row is interpreted as containing the field names. The changes are also visible in the preview panel.

**Customize**
This button opens a **Presentation Names** dialog box that allows you to edit the name, XML name, and conversion criterion for the root and row elements. The XML names can be edited by double-clicking the desired item and entering the label. The conversion criteria can also be modified by selecting one of the following option in the drop-down menu: **ELEMENT**, **ATTRIBUTE**, or **SKIPPED**.

**Import Settings**

Clicking this button opens the **Import preferences page (on page 221)** that allows you to configure more import options.

**Import formatted data (as displayed in Excel)**

If this option is selected, the imported data retains the Excel data formatting (such as the representation of numeric values or dates). If deselected, the data formatting is not imported.

**XML Import Preview panel**

Contains an example of what the generated XML document will look like.

**Open in editor**

If selected, the new XML document created from the imported file is opened in the editor.

**Save in file**

If selected, the new XML document is saved in the specified path.

5. Click **Import** to generate the XML document.

For more information about exchanging data between Oxygen XML Editor and spreadsheet applications, watch our video demonstration:

https://www.youtube.com/embed/8VwsF58zLkJ

**Related Information:**

- Exporting XML Content to Excel (on page 892)

---

**Import Data from MS Excel 2007 or Newer**

To import spreadsheet data from Excel 2007 or newer (.xlsx), Oxygen XML Editor needs additional libraries from the release 3.10 of the Apache POI project.

To add this support, follow this procedure:
1. Go to Help > Install new add-ons to open an add-on selection dialog box.
2. Enter or paste https://www.oxygenxml.com/InstData/Addons/default/updateSite.xml in the Show add-ons from field or select it from the drop-down menu.
3. Select Excel XLSX libraries plugin and click Next.
4. Restart the application.

**Result:** You can now use the Import wizard (on page 2279) to import data from Excel 2007 or newer.

### Alternate Method to Manually Add the Libraries

To manually add the libraries, follow these steps:

3. Copy the following .jar files into the lib directory of the installation folder of Oxygen XML Editor:
   - dom4j-1.6.1.jar
   - poi-ooxml-3.10-FINAL-20140208.jar
   - poi-ooxml-schemas-3.10-FINAL-20140208.jar
   - xmlbeans-2.3.0.jar

**Note:** The .jar files can be found in either the root folder where you unpacked the archive, or in the ooxml-lib subfolder.

**Result:** You can now use the Import wizard (on page 2279) to import data from Excel 2007 or newer.

### Import Database Data as an XML Document

To import the data from a relational database table as an XML document, follow these steps:

1. Go to File > Import > Database Data to start the Import wizard.

   This opens a Select database table dialog box that lists all the defined database connections:

   ![Select database table dialog box](image)

**Figure 678. Select Database Table Dialog Box**
2. Select the connection to the database that contains the appropriate data. Only connections configured in relational data sources can be used to import data.

3. If you want to edit, delete, or add a data source or connection, click the Configure Database Sources button. The Preferences/Data Sources option page is opened.

4. Click Connect.

5. In the list of sources, expand a schema and choose the required table.

6. Click the Next button.

   The Import Criteria dialog box is opened with a default query string in the SQL Query pane.

Figure 679. Import from Database Criteria Dialog Box
7. Configure the settings for the conversion.

   a. **SQL Preview** - If this button is pressed, the **Settings** pane displays the labels that are used in the XML document and the first five lines from the database. By default, all data items are converted to element content (\(<>\) symbol), but this can be overridden by clicking the individual column headers. Clicking a column header once causes the data from this column to be converted to attribute values (\(=\) symbol). Clicking a second time causes the column data to be ignored (\(x\) symbol) when generating the XML file. You can cycle through these three options by continuing to click the column header.

   b. **Customize** - This button opens a **Presentation Names** dialog box that allows you to edit the name, XML name, and conversion criterion for the root and row elements. The XML names can be edited by double-clicking the desired item and entering the label. The conversion criteria can also be modified by selecting one of the following option in the drop-down menu: **ELEMENT**, **ATTRIBUTE**, or **SKIPPED**.

   c. **Import Settings** - Clicking this button opens the **Import preferences page (on page 221)** that allows you to configure more import options.

   d. The **XML Import Preview** panel contains an example of what the generated XML document looks like.
e. **Open in editor** - If selected, the new XML document created from the imported file is opened in the editor.

f. **Save in file** - If selected, the new XML document is saved in the specified path.

g. **Generate XML Schema** - Allows you to specify the path of the generated XML Schema file.

8. Click **Import** to generate the XML document.

---

**Import from HTML Files**

Oxygen XML Editor offers two methods for importing HTML files into an XML document. The first method is to simply copy data from an HTML document and paste it into a document in Author mode, but this is only supported in DITA, DocBook, TEI, JATS, and XHTML documents. Oxygen XML Editor also offers a configurable import wizard that works with any type of XML document.

**Smart Paste Method**

If you are importing data into DITA, DocBook, TEI, JATS, or XHTML documents, you can open the HTML document in your web browser, copy its content, and paste it into your document in Author mode.

The Oxygen XML Editor **Smart Paste mechanism (on page 918)** will convert the pasted content to the equivalent XML markup and considers various pasting solutions to keep the resulting document valid, while preserving the original text styling (such as bold, italics, underline) and formatting (such as lists, tables, paragraphs).

**Import Wizard Method**

To use the **Import** wizard to import from HTML files, follow these steps:

1. Go to File > Import > HTML File. The Import HTML wizard is displayed.
2. Enter the URL of the HTML document.
3. Select the type of the resulting XHTML document:
   - XHTML5
   - XHTML 1.0 Transitional
   - XHTML 1.0 Strict
4. Click the **OK** button.

**Result:** The resulting document is an XHTML file containing a DOCTYPE declaration that references the XHTML DTD definition on the Web. The parsed content of the imported file is transformed to XHTML5, XHTML Transitional, or XHTML Strict depending on the option you chose.
Import Content Dynamically

Along with the built-in support for various useful URL protocols (such as HTTP or FTP), Oxygen XML Editor also provides special support for a convert protocol that can be used to chain predefined processors to dynamically import content from various sources.

A dynamic conversion URL chains various processors that can be applied, in sequence, on a target resource and has the following general syntax:

```
convert:/processor=xslt;ss=urn:processors:excel2d.xsl/processor=excel!/urn:files:my.xls
```

The previous example first applies a processor (excel) on a target identified by the identifier (urn:files:sample.xls) and converts the Excel™ resource to XML. The second applied processor (xslt) applies an XSLT stylesheet identified using the identifier (urn:processors:excel2d.xsl) over the resulting content from the first applied processor. These identifiers are all mapped to real resources on disk via an XML catalog that is configured in the application, as in the following example:

```
<catalog xmlns="urn:oasis:names:tc:entity:xmlns:xml:catalog">
  <rewriteURI uriStartString="urn:files:" rewritePrefix="./resources/"/>
  <rewriteURI uriStartString="urn:processors:" rewritePrefix="./processors/"/>
</catalog>
```

The target resource part of the conversion URL must always follow the !/ pattern. It can be any of the following:

- An absolute URL that points to a resource.
- An identifier that will be resolved to an actual resource via the XML Catalog support in the application. In the example above, the urn:files:sample.xls target resource is resolved via the XML catalog.
- A relative location. This location can only be resolved to an actual resource URL when the application has enough information about the location where the URL is referenced.

For example, for a DITA map (on page 3281) with a topicref such as:

```
<topicref href="convert:/.../processor=excel!/resources/sample.xls"/>
```

the resources/sample.xls path will be resolved relative to the DITA map location.

This type of URL can be opened in the application by using the Open URL action from the File menu. It can also be referenced from existing XML resources via xi:include or as a topic reference from a DITA map.

A GitHub project that contains various dynamic conversion samples for producing DITA content from various sources (and then publishing it) can be found here: https://github.com/oxygenxml/dita-glass.
Conversion Processors

A set of predefined conversion processors is provided in Oxygen XML Editor. Each processor has its own parameters that can be set to control the behavior of the conversion process. All parameters that are resolved to resources are passed through the XML catalog mapping.

The following predefined conversion processors are included:

- **xslt Processor** - Converts an XML input using the Saxon EE XSLT processor. The `ss` parameter indicates the stylesheet resource to be loaded. All other specified parameters will be set as parameters to the XSLT transformation.

```xml
convert:/processor=xslt;ss=urn:processors:convert.xsl;p1=v1!/urn:files:sample.xml
```

- **xquery Processor** - Converts an XML input using the Saxon EE XQuery processor. The `ss` parameter indicates the XQuery script to be loaded. All other specified parameters will be set as parameters to the XSLT transformation.

```xml
convert:/processor=xquery;ss=urn:processors:convert.xquery;p1=v1!/urn:files:sample.xml
```

- **excel Processor** - Converts an Excel™ input to an XML format that can later be converted by other piped processors. It has a single parameter `sn`, which indicates the name of the sheet that needs to be converted. If this parameter is missing, the XML will contain the combined content of all sheets included in the Excel™ document.

```xml
convert:/processor=excel;sn=test!/urn:files:sample.xls
```

- **java Processor** - Converts an input to another format by applying a specific Java method. The `jars` parameter is a comma-separated list of JAR (on page 3283) libraries, or folders that libraries will be loaded from. The `ccn` parameter is the fully qualified name of the conversion class that will be instantiated. The conversion class needs to have a method with the following signature:

```java
public void convert(String systemID, String originalSourceSystemID, InputStream is, OutputStream os, LinkedHashMap<String, String> properties)
    throws IOException
```

```xml
convert:/processor=java;jars=libs;ccn=test.JavaToXML!/urn:files:java/WSEditorBase.java
```

- **js Processor** - Converts an input to another format by applying a JavaScript method. The `js` parameter indicates the script that will be used. The `fn` parameter is the name of the method that will be called from the script. The method must take a string as an argument and return a string. If any of the parameters are missing, an error is thrown and the conversion stops.

```xml
convert:/processor=js;js=script.js;fn=test!/urn:files:sample.js
```
importing data

- **json** Processor - Converts a JSON input to XML. It has no parameters.

  - `convert:/processor=js;js=urn:processors:md.js;fn=convertExternal!/urn:files:sample.md`

- **xhtml** Processor - Converts HTML content to well-formed XHTML. It has no parameters.

  - `convert:/processor=xhtml!/urn:files:test.html`

- **wrap** Processor - Wraps content in a tag name making it well-formed XML. The `rn` parameter indicates the name of the root tag to use. By default, it is `wrapper`. The `encoding` parameter specifies the encoding that should be used to read the content. By default, it is UTF8. As an example, this processor can be used if you want to process a comma-separated values file with an XSLT stylesheet to produce XML content. The CSV file is first wrapped as well-formed XML, which is then processed with an `xslt` processor.

  - `convert:/processor=wrap!/urn:files:test.csv`

- **cache** Processor - Caches the converted content obtained from the original document to a temporary file. The cache will be used on subsequent uses of the same URL, thus increasing the speed for the application returning the converted content. If the original URL points to the local disk, the cache will be automatically invalidated when the original file content gets modified. Otherwise, if the original URL points to a remote resource, the cache will need to be invalidated by reloading (`File > C Reload (F5)`) the URL content that is opened in the editor.

  - `convert:/processor=cache/processor=xslt;...!/urn:files:test.csv`

### Reverse Conversion Processors

All processors defined above can also be used for saving content back to the target resource if they are defined in the URL as reverse processors. Reverse processors are evaluated right to left. These reverse processors allow round-tripping content to and from the target resource.

As an example, the following URL converts HTML to DITA when the URL is opened using the `h2d.xsl` stylesheet and converts DITA to HTML when the content is saved in the application using the `d2h.xsl` stylesheet.

  - `convert:/processor=xslt;ss=h2d.xsl/rprocessor=xslt;ss=d2h.xsl!/urn:files:sample.html`

⚠️ **Important:** If you are publishing a DITA map that has such conversion URL references inside, you need to edit the transformation scenario and set the value of the parameter `fix.external.refs.com.oxygenxml` to `true`. This will instruct Oxygen XML Editor to resolve such references during a special pre-processing stage. Depending on the conversion, you may also require
additional libraries to be added using the **Libaries** button in the **Advanced** tab of the transformation scenario.

**Related Information:**

- [https://github.com/oxygenxml/dita-glass](https://github.com/oxygenxml/dita-glass)
15.

Debugging XSLT Stylesheets and XQuery Documents

Oxygen XML Editor includes a powerful debugging interface that helps you to detect and solve problems with XSLT and XQuery transformations.

**XSLT Debugger Perspective**

The XSLT Debugger perspective (on page 3285) allows you to detect problems in an XSLT transformation by executing the process step by step. To switch the focus to this perspective, select the XSLT Debugger button in the top-right corner of the interface or Window > Open perspective > XSLT Debugger.

**XQuery Debugger Perspective**

The XQuery Debugger perspective (on page 3285) allows you to detect problems in an XQuery transformation process by executing the process step by step in a controlled environment and inspecting the information provided in the special views. To switch the focus to this perspective, select the XQuery Debugger button in the top-right corner of the interface or Window > Open perspective > XQuery Debugger.

**XSLT/XQuery Debugging Overview**

The XSLT Debugger and XQuery Debugger perspectives (on page 3285) allows you to test and debug XSLT 1.0 / 2.0 / 3.0 stylesheets and XQuery 1.0 / 3.0 documents including complex XPath 2.0 / 3.0 expressions. The interface presents simultaneous views of the source XML document, the XSLT/XQuery document and the result document. As you go step by step through the XSLT/XQuery document the corresponding output is generated step by step, and the corresponding position in the XML file is highlighted. At the same time, special views provide various types of debugging information and events useful to understand the transformation process.

The following set of features allow you to test and solve XSLT/XQuery problems:

- Support for XSLT 1.0 stylesheets (using Saxon 6.5.5 and Xalan XSLT engines), XSLT 2.0 / 3.0 stylesheets and XPath 2.0 / 3.0 expressions that are included in the stylesheets (using Saxon 9.8.0.12 XSLT engine) and XQuery 1.0 / 3.0 (using Saxon 9.8.0.12 XQuery engine).
• Stepping capabilities: step in, step over, step out, run, run to cursor, run to end, pause, stop.
• Output to source mapping between every line of output and the instruction element / source context that generated it.
• **Breakpoints (on page 2313)** on both source and XSLT/XQuery documents.
• Call stack on both source and XSLT/XQuery documents.
• Trace history on both source and XSLT/XQuery documents.
• Support for XPath expression evaluation during debugging.
• Step into imported/included stylesheets as well as included source entities.
• Available templates and hits count.
• Variables view.
• Dynamic output generation.

For even more information, watch our video demonstration:

https://www.youtube.com/embed/m9d8c4V-LJw

**Debugger Layout**

The XML and XSL files are displayed in **Text mode (on page 827)**. The other modes (**Author mode (on page 402)**, **Grid mode (on page 392)**) are available only in the **Editor perspective (on page 295)**.

The **XSLT/XQuery Debugger perspective (on page 3285)** contains the following components:

- **Source Document View (XML)** - Displays and allows the editing of XML files (documents).
- **XSLT/XQuery Document View (XSLT/XQuery)** - Displays and allows the editing of XSL files (stylesheets) or XQuery documents.
- **Output View** - Displays the output that results from inputting a document (XML) and a stylesheet (XSL) or XQuery document in the transformer. The transformation result is written dynamically while the transformation is processed (using the ➤ **Run** button on the Control toolbar (on page 2295)). Several actions are available in the contextual menu for this view, including **Find/Replace**, **Copy**, and **Format and Indent**. There are two types of output views: a **Text** view (with XML syntax highlights) and **XHTML** view. For large outputs, the XHTML view can be disabled (see **Debugger Settings (on page 212)**).
- **Control Toolbar (on page 2293)** - Contains a variety of actions to help you configure and control the debugging process.
- **Information Views (on page 2296)** - The information views at the bottom of the editor display various types of information to help you understand the transformation process.

**Tip:** The **Output** view and the various other information views are **dockable (on page 3281)** so that you can configure the workspace according to your preferences.

Figure 680. Debugger Interface
XML documents and XSL stylesheets or XQuery documents that were opened in the Editor perspective (on page 3285) are automatically sorted into the first two panes. When multiple files of each type are opened, the individual documents and stylesheets are separated using the familiar tab management system that you are used to in the Editor perspective. Selecting a tab brings the document or stylesheet into focus and enables editing without the need to go back to the Editor perspective.

In Debugger mode, the normal editor toolbar is not available. However, functions are still accessible from the Document menu and the contextual menus.

Bookmarks (on page 306) are replaced in the Debugger perspective by breakpoints (on page 2313).

During debugging, the current execution node is highlighted in both document (XML) and XSLT/ XQuery views.

Related Information:

- Steps in a Typical Debugging Process (on page 2309)
- Identify the XSLT / XQuery Expression that Generated Particular Output (on page 2310)
- Supported Processors for XSLT / XQuery Debugging (on page 2320)
Control Toolbar

The **Control** toolbar contains all the actions that you need to configure and control the debugging process. The following actions are described as they appear in the toolbar from left to right.

**Figure 681. Control Toolbar**

**XML source selector**

The current selection represents the source document used as input by the transformation engine. The selection list contains all opened files (XML files being emphasized). This option allows you to use other file types also as source documents. In an XQuery debugging session this selection field can be set to the default value *NONE*, because usually XQuery documents do not require an input source.

**XSL / XQuery selector**

The current selection represents the stylesheet or XQuery document to be used by the transformation engine. The selection list contains all opened files (XSLT / XQuery files being emphasized).

**Link with editor**

When selected, the XML and XSLT/XQuery selectors display the names of the files opened in the central editor panels. This button is toggled off by default.

**Output selector**

The selection represents the output file specified in the associated transformation scenario. You can specify the path by using the text field, the ![Insert Editor Variables](on page 276) button, or the ![Browse](button).

**Configure parameters**

Opens a dialog box that allows you to configure the XSLT / XQuery parameters to be used by the transformation.

**Edit extensions**

Allows you to add and remove the Java classes and *JARS (on page 3283)* used as XSLT extensions.
Turn on/off profiling

Enables / Disables current transformation profiling.

Enable XHTML output

Enables the rendering of the output in the [XHTML output view](on page 2291) during the transformation process. For performance issues, disable XHTML output when working with very large files. Note that only XHTML conformant documents can be rendered by this view. To view the output result of other formats, such as HTML, save the Text output area to a file and use an external browser for viewing.

When starting a debug session from the Editor perspective (on page 3285) by using the Debug Scenario action, the state of this toolbar button reflects the state of the Show as XHTML output option from the scenario.

Turn on/off output to source mapping

Enables or disables the output to source mapping between every line of output and the instruction element / source context that generated it.

Debugger preferences

Quick link to Debugger preferences page (on page 212).

XSLT / XQuery engine selector

Lists the processors available for debugging XSLT and XQuery transformations (on page 2320).

XSLT / XQuery engine advanced options

If Saxon HE/PE/EE is selected, you can click this button to open the Advanced Saxon Transformation Options page (on page 1679).

Step into

Starts the debugging process and runs until the next instruction is encountered.

Step over

Run until the current instruction and its sub-instructions are over. Usually this will advance to the next sibling instruction.

Figure 682. Step over
Step out

Run until the parent of the current instruction is over. Usually this will advance to the next sibling of the parent instruction.

Figure 683. Step out

Run Shift + F5

Starts the debugging process. The execution of the process is paused when a breakpoint (on page 2297) is encountered or the transformation ends.

Run to cursor

Starts the debugging process and runs until one of the following conditions occur: the line of cursor is reached, a valid breakpoint (on page 2313) is reached or the execution ends.

Run to end

Runs the transformation until the end, without taking into account enabled breakpoints (on page 2313), if any.

Pause

Request to pause the current transformation as soon as possible.

Stop

Request to stop the current transformation without completing its execution.

Show current execution nodes
Reveals the current debugger context showing both the current instruction and the current node in the XML source. Possible displayed states:

- Entering (↩) or leaving (↵) an XML execution node.
- Entering (↩) or leaving (↵) an XSL execution node.
- Entering (↩) or leaving (↵) an XPath execution node.

**Note:** When you set a MarkLogic server as a processor, the Show current execution nodes button is named Refresh current session context from server. Click this button to refresh the information in all the views.

**Note:** For some of the XSLT processors (Saxon-HE/PE/EE) the debugger could be configured to step into the XPath expressions affecting the behavior of the following debugger actions: Step into, Step over or Step Out.

Related Information:

- Advanced Saxon HE/PE/EE XQuery Transformation Options *(on page 1694)*

### Debugging Information Views

The information views at the bottom of the editor is comprised of two panes that are used to display various types of information used to understand the transformation process. For each information type there is a corresponding tab. While running a transformation, relevant events are displayed in the various information views. This enables the developer to obtain a clear view of the transformation progress. By using the debug controls, developers can easily isolate parts of stylesheet. Therefore, they may be more easily understood and modified.

The information types include the following:

Left side information views

- **Breakpoints** view *(on page 2297)*
- **XWatch** view *(on page 2299)*
- **Context** view *(on page 2298)*
- **Messages** view *(on page 2300)* (XSLT only)
- **Variables** view *(on page 2307)*
- **Invocation Tree** view *(on page 2316)*

Right side information views
- **Stack view** *(on page 2301)*
- **Output Mapping Stack view** *(on page 2302)*
- **Trace view** *(on page 2304)*
- **Templates view** *(on page 2305)* *(XSLT only)*
- **Nodes/Values Set view** *(on page 2306)*
- **Hotspots view** *(on page 2318)*

**Tip:** The information views are dockable *(on page 3281)* so that you can configure the workspace according to your preferences.

### Breakpoints View

The **Breakpoints** view lists all *breakpoints* *(on page 2313)* that are set on opened documents. If the view is not displayed, it can be opened by selecting it from the **Window > Show View** menu. *Breakpoints* can be inserted *(on page 2314)* in the XML source document or the XSLT/XQuery document in debugging sessions.

Once you insert a *breakpoint*, it is automatically added to the list in the **Breakpoints** view and you can edit its associated *condition*. A *breakpoint* can have an associated break condition that represents an XPath expression evaluated in the current debugger context. For them to be processed, their evaluation result should be a boolean value. A *breakpoint* with an associated condition only stops the execution of the Debugger if the *breakpoint condition* is evaluated as **true**.

**Figure 684. Breakpoints View**

The **Breakpoints** view contains the following columns:

- **Enabled** - If selected, the current condition is evaluated and taken into account.
- **Resource** - Resource file and number of the line where the *breakpoint* is set. The Entire path of resource file is available as tooltip.
- **Condition** - XSLT/XQuery expression to be evaluated during debugging. The expression will be evaluated at every debug step.
Clicking a record highlights the breakpoint line in the document.

**Note:** The breakpoints list is not deleted at the end of a transformation (it is preserved between debugging sessions).

The following actions are available in the contextual menu of the table:

**Go to**

Moves the cursor to the source of the breakpoint.

**Run to Breakpoint**

Runs the debugger up to the point of this particular breakpoint and ignores the others (regardless of whether they were previously enabled or disabled).

**Enable**

Enables the breakpoint.

**Disable**

Disables the breakpoint. A disabled breakpoint will not be evaluated by the Debugger.

**Add**

Allows you to add a new breakpoint and breakpoint condition.

**Edit**

Allows you to edit an existing breakpoint.

**Remove**

Deletes the selected breakpoint.

**Enable all**

Enables all breakpoints.

**Disable all**

Disables all breakpoints.

**Remove all**

Removes all breakpoints.

Related Information:

- Using Breakpoints *(on page 2313)*
Context View

The context node is valid only for XSLT debugging sessions and is a source node corresponding to the XSL expression that is evaluated. It is also called the context of execution. The context node implicitly changes as the processor hits various steps (at the point where XPath expressions are evaluated). This node has the same value as evaluating '.' (dot) XPath expression in XWatch view (on page 2299). The value of the context node is presented as a tree in the Context view. If the view is not displayed, it can be opened by selecting it from the Window > Show View menu.

Figure 685. Context node view

The context nodes are presented in a tree-like fashion. Nodes from a defined namespace bound to a prefix are displayed using the qualified name. If the namespace is not bound to a prefix, the namespace URI is presented before the node name. The value of the selected attribute or node is displayed in the right side panel. The Context view also presents the current mode of the XSLT processor if this mode differs from the default one.

The title bar displays the current element index and the number of elements that compose the current context (this information is not available if you choose Xalan or Saxon 6 as processing engine).

XPath Watch (XWatch) View

The XWatch view shows XPath expressions evaluated during the debugging process. If the view is not displayed, it can be opened by selecting it from the Window > Show View menu.

Expressions are evaluated dynamically as the processor changes its source context. When you type an XPath expression in the Expression column, Oxygen XML Editor supports you with syntax highlight and content completion assistance (on page 1192).

Figure 686. XPath Watch View
Table 73. XWatch columns

<table>
<thead>
<tr>
<th>Column</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Expression</td>
<td>XPath expression to be evaluated (XPath 1.0 or 2.0 / 3.0 compliant).</td>
</tr>
<tr>
<td>Value</td>
<td>Result of XPath expression evaluation. Value has a type (see the possible values (on page 2307) in the section Variables View (on page 2307)). For Node Set results, the number of nodes in the set is shown in parenthesis.</td>
</tr>
</tbody>
</table>

⚠️ Important: Notes about working with the XWatch view:

- Expressions that reference variable names are not evaluated.
- The expression list is not deleted at the end of the transformation (it is preserved between debugging sessions).
- To insert a new expression, click the first empty line of the Expression column and start typing. As an alternative, right-click and select the Add action. Press (Enter) on the cell to add and evaluate.
- To delete an expression, click its Expression column and delete its content. As an alternative, right-click and select the Remove action. Press (Enter) on the cell to commit changes.
- If the expression result type is a Node Set, click it (Value column) and its value is displayed in the Nodes/Values Set view (on page 2306).
- The Copy, Add, Remove and Remove All actions are available in every row's contextual menu.

Messages View

Using an xsl:message instruction is one way to signal special situations encountered during transformation as well as a raw way of doing the debugging. The Messages view is available only for XSLT debugging sessions and shows all xsl:message calls executed by the XSLT processor during transformation. If the view is not displayed, it can be opened by selecting it from the Window > Show View menu.

Figure 687. Messages View
Table 74. Messages columns

<table>
<thead>
<tr>
<th>Column</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Message</td>
<td>Message content.</td>
</tr>
<tr>
<td>Terminate</td>
<td>Signals whether or not the processor terminates the transformation once it encounters the message (yes/no respectively).</td>
</tr>
<tr>
<td>Resource</td>
<td>Resource file where \texttt{xsl:message} instruction is defined and the message line number. The complete path of the resource is available as tooltip.</td>
</tr>
</tbody>
</table>

The following actions are available in the contextual menu:

- **Go to**
  - Highlight the XSL fragment that generated the message.

- **Copy**
  - Copies to clipboard message details (system ID, severity info, description, start location, terminate state).

- **Clear all**
  - Removes all messages from the view.

**Important:**

- Clicking a record from the table highlights the \texttt{xsl:message} declaration line.
- Message table values can be sorted by clicking the corresponding column header. Clicking the column header switches the sorting order between: ascending, descending, no sort.

**Stack View**

The **Stack** view shows the current execution stack of both source and XSLT/XQuery nodes. If the view is not displayed, it can be opened by selecting it from the **Window > Show View** menu.

During the transformation, two stacks are managed. One for source nodes being processed and the other for XSLT/XQuery nodes being processed. Oxygen XML Editor shows both node types in one common stack. The source (XML) nodes are preceded by a red color icon while XSLT/XQuery nodes are preceded by a green color icon. The advantage of this approach is that you can always see the
source scope on which an XSLT/XQuery instruction is executed (the last red color node on the stack). The stack is oriented upside down.

Figure 688. Stack View

The contextual menu contains one action: Go to, which moves the selection in the editor panel to the line containing the XSLT element that is displayed on the selected line from the view.

Table 75. Stack Columns

<table>
<thead>
<tr>
<th>Column</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>#</td>
<td>Order number, represents the depth of the node (0 is the stack base).</td>
</tr>
<tr>
<td>XML/XSLT/XQuery Node</td>
<td>Node from source or stylesheet document currently being processed. One particular stack node is the document root, noted as #document.</td>
</tr>
<tr>
<td>Attributes</td>
<td>Attributes of the node (a list of id=&quot;value&quot; pairs).</td>
</tr>
<tr>
<td>Resource</td>
<td>Resource file where the node is located. The entire path is available as tooltip.</td>
</tr>
</tbody>
</table>

⚠️ Important: Remarks:

- Clicking a record from the stack highlights that node’s location inside resource.
- Using Saxon, the stylesheet elements are qualified with XSL proxy, while using Xalan you only see their names. (example: xsl:template using Saxon and template using Xalan).
- Only the Saxon processor shows element attributes.
- The Xalan processor shows also the built-in rules.

Output Mapping Stack View

The Output Mapping Stack view displays context data (on page 2310) and presents the XSLT templates/XQuery elements that generated specific areas of the output. If the view is not displayed, it can be opened by selecting it from the Window > Show View menu.

Figure 689. Output Mapping Stack view
The Go to action of the contextual menu takes you to the line that contains the XSLT element displayed in the Output Mapping Stack view.

### Table 76. Output Mapping Stack Columns

<table>
<thead>
<tr>
<th>Column</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>#</td>
<td>The order number in the stack of XSLT templates/XQuery elements. Number 0 corresponds to the bottom of the stack in the status of the XSLT/XQuery processor. The highest number corresponds to the top of the stack.</td>
</tr>
<tr>
<td>XSL/XQuery Node</td>
<td>The name of an XSLT template/XQuery element that participated in the generation of the selected output area.</td>
</tr>
<tr>
<td>Attributes</td>
<td>The attributes of the XSLT template/XQuery node.</td>
</tr>
<tr>
<td>Resource</td>
<td>The name of the file containing the XSLT template/XQuery element.</td>
</tr>
</tbody>
</table>

**Important:** Remarks:

- Clicking a record highlights that XSLT template definition/XQuery element inside the resource (XSLT stylesheet file/XQuery file).
- Saxon only shows the applied XSLT templates having at least one hit from the processor. Xalan shows all defined XSLT templates, with or without hits.
- The table can be sorted by clicking the corresponding column header. When clicking a column header the sorting order switches between: ascending, descending, no sort.
- Xalan shows also the built-in XSLT rules.

**Related Information:**

- Identify the XSLT / XQuery Expression that Generated Particular Output (on page 2310)
- Stack View (on page 2301)
- Trace View (on page 2304)
Trace View

Usually, the XSLT/XQuery processors signal the following events during transformation:

- Entering a source (XML) node.
- Leaving a source (XML) node.
- Entering an XSLT/XQuery node.
- Leaving an XSLT/XQuery node.

The Trace view catches all of these events, so you can see how the process evolved. If the view is not displayed, it can be opened by selecting it from the Window > Show View menu.

The red icon lines denote source nodes while the green icon lines denote XSLT/XQuery nodes. It is possible to save the element trace in a structured XML document (using the Export to XML action in the contextual menu). Thus, you have the possibility of comparing the trace results from multiple debug sessions.

Figure 690. Trace History View

The contextual menu contains the following actions:

- **Go to**
  
  Moves the selection in the editor panel to the line containing the XSLT element or XML element that is displayed on the selected line from the view;

- **Export to XML**
  
  Saves the entire trace list in XML format.
Table 77. Trace History Columns

<table>
<thead>
<tr>
<th>Column</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Depth</td>
<td>Shows you how deep the node is nested in the XML or stylesheet structure. The bigger the number, the more nested the node is. A depth 0 node is the document root.</td>
</tr>
<tr>
<td>XML/XSLT/XQuery Node</td>
<td>Represents the node from the processed source or stylesheet document. One particular node is the document root, noted as #document. Every node is preceded by an arrow that represents what action was performed on it (entering or leaving the node).</td>
</tr>
<tr>
<td>Attributes</td>
<td>Attributes of the node (a list of id=&quot;value&quot; pairs).</td>
</tr>
<tr>
<td>Resource</td>
<td>Resource file where the node is located. The complete path of the resource file is provided as tooltip.</td>
</tr>
</tbody>
</table>

⚠️ **Important**: Remarks:

- Clicking a record highlights that node's location inside the resource.
- Only the Saxon processor shows the element attributes.
- The Xalan processor shows also the built-in rules.

Templates View

The **xsl:template** is the basic element for stylesheets transformation. The **Templates** view is only available during XSLT debugging sessions and shows all **xsl:template** instructions used by the transformation. If the view is not displayed, it can be opened by selecting it from the **Window > Show View** menu.

Being able to see the number of hits for each of the templates allows you to get an idea of the stylesheet coverage by template rules with respect to the input source.

Figure 691. Templates view

The contextual menu contains one action: **Go to**, which moves the selection in the editor panel to the line that contains the XSLT template displayed on the selected line from the view.
### Table 78. Templates columns

<table>
<thead>
<tr>
<th>Column</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Match</td>
<td>The <code>match</code> attribute of the <code>xsl:template</code>.</td>
</tr>
<tr>
<td>Hits</td>
<td>The number of hits for the <code>xsl:template</code>. Shows how many times the XSLT processor used this particular template.</td>
</tr>
<tr>
<td>Priority</td>
<td>The template priority as established by XSLT processor.</td>
</tr>
<tr>
<td>Mode</td>
<td>The <code>mode</code> attribute of the <code>xsl:template</code>.</td>
</tr>
<tr>
<td>Name</td>
<td>The <code>name</code> attribute of the <code>xsl:template</code>.</td>
</tr>
<tr>
<td>Resource</td>
<td>The resource file where the template is located. The complete path of the resource file is available as tooltip.</td>
</tr>
</tbody>
</table>

**Important**

- Clicking a record highlights that template definition inside the resource.
- Saxon only shows the applied templates having at least one hit from the processor. Xalan shows all defined templates, with or without hits.
- Template table values can be sorted by clicking the corresponding column header. When clicking a column header the sorting order switches between: ascending, descending, no sort.
- Xalan shows also the built-in rules.

### Nodes/Values Set View

The **Nodes/Values Set** view is always used in relation with the [Variables view](on page 2307) and [XWatch view](on page 2299). If the view is not displayed, it can be opened by selecting it from the **Window > Show View** menu. It shows an XSLT node set value in a tree form. This view is updated as a response to the following events:

- You click a variable that has a node set value in the [Variables](on page 2307) or [XWatch](on page 2299).
- You click a tree fragment in the [Variables](on page 2307) or [XWatch](on page 2299).
- You click an XPath expression evaluated to a node set in the [Variables](on page 2307) or [XWatch](on page 2299).

Figure 692. Node Set view
The nodes / values set is presented in a tree-like fashion. The total number of items is presented in the title bar. Nodes from a defined namespace bound to a prefix are displayed using the qualified name. If the namespace is not bound to a prefix, the namespace URI is presented before the node name. The value of the selected attribute or node is displayed in the right side panel.

⚠️ Important: Remarks:

- For longer values in the right side panel, the interface displays it with an ellipsis (...) at the end. A more detailed value is available as a tooltip when hovering over it.
- Clicking a record highlights the location of that node in the source or stylesheet view.

Variables View

The Variables view displays variables and parameters (local and global), along with their values. If the view is not displayed, it can be opened by selecting it from the Window > Show View menu.

Variables and parameters play an important role during an XSLT/XQuery transformation. Oxygen XML Editor uses the following icons to differentiate variables and parameters:

- \( \boldsymbol{V} \) - Global variable.
- \( \{V\} \) - Local variable.
- \( \boldsymbol{P} \) - Global parameter.
- \( \{P\} \) - Local parameter.

The following value types are available:

- Boolean
- String
- Date - XSLT 2.0 / 3.0 only.
- Number
- Set
- Object
- **Fragment** - Tree fragment.
- **Any**
- **Undefined** - The value was not yet set, or it is not accessible.

![Note:]

When Saxon 6.5 is used, if the value is unavailable, then the following message is displayed in the **Value** field: "The variable value is unavailable".

When Saxon 9 is used:

- If the variable is not used, the **Value** field displays "The variable is declared but never used".
- If the variable value cannot be evaluated, the **Value** field displays "The variable value is unavailable".

- **Document**
- **Element**
- **Attribute**
- **ProcessingInstruction**
- **Comment**
- **Text**
- **Namespace**
- **Evaluating** - Value under evaluation.
- **Not Known** - Unknown types.

Figure 693. Variables View

![Variables View](image)

**Table 79. Variables Columns**

<table>
<thead>
<tr>
<th>Column</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>Name of variable / parameter.</td>
</tr>
<tr>
<td>Value Type</td>
<td>Type of variable/parameter.</td>
</tr>
<tr>
<td>Value</td>
<td>Current value of variable / parameter.</td>
</tr>
</tbody>
</table>
The value of a variable (the **Value** column) can be copied to the clipboard for pasting it to other editor areas with the **Copy value** action from the contextual menu. This is useful if you have long and complex values that cannot be easily remembered just by looking at them once.

⚠️ **Important:** Remarks:

- Local variables and parameters are the first entries presented in the table.
- Clicking a record highlights the variable definition line.
- Variable values could differ depending on the transformation engine used or stylesheet version set.
- If the value of the variable is a node set or a tree fragment, clicking it causes the **Node Set view** ([on page 2306](#)) to be shown with the corresponding set of values.
- Variable table values can be sorted by clicking the corresponding column header. Clicking the column header switches between the orders: ascending, descending, no sort.

### Multiple Output Documents in XSLT 2.0 and XSLT 3.0

For XSLT 2.0 and XSLT 3.0 stylesheets that store the output in multiple files by using the `xsl:result-document` instruction, the content of the file created in this way is displayed dynamically while the transformation is running in an output view. There is one view for each `xsl:result-document` instruction so that the output is not mixed while still being presented in multiple views.

### Steps in a Typical Debugging Process

Depending on your situation and needs, the debugging process might be more complex, but the following procedure is an example of a typical debugging process:

1. Open the source XML document ([on page 689](#)) and the XSLT/XQuery document. ([on page 689](#))

2. If you are in the Editor **perspective** ([on page 3285](#)), switch to the XSLT Debugger or XQuery Debugger **perspective** ([on page 3285](#)) with one of the following actions:
   - Select **Window > Open perspective > XSLT Debugger/XQuery Debugger** or the ![XSLT Debugger/XQuery Debugger button in the top-right corner of the interface.](#)
   - Select **Document > XML Document > Debug scenario** or use the ![Debug scenario action on the toolbar.](#). This action initializes the Debugger **perspective** ([on page 3285](#)) with the parameters of the transformation scenario. Any modification applied to the scenario parameters (the transformer engine, XSLT parameters, transformer extensions, etc.) will be saved back in the scenario when exiting from the Debugger **perspective**.
3. Select the source XML document in the XML source selector of the Control toolbar (on page 2293). In the case of XQuery debugging, if your XQuery document has no implicit source, set the source selector value to NONE.

4. Select the XSLT/XQuery document in the XSL/XQuery selector of the Control toolbar (on page 2293).

5. Set XSLT/XQuery parameters using the Configure parameters button on the Control toolbar (on page 2293).

6. Set one or more breakpoints (on page 2313).

7. Step through the stylesheet using the following buttons available on the Control toolbar (on page 2294):
   - Step into
   - Step over
   - Step out
   - Run
   - Run to cursor
   - Run to end
   - Pause
   - Stop

8. Examine the data in the information views to find the bug in the transformation process.
   For more information about fixing bugs in the transformation, see: Identify the XSLT / XQuery Expression that Generated Particular Output (on page 2310).

Related Information:

- Identify the XSLT / XQuery Expression that Generated Particular Output (on page 2310)

Identify the XSLT / XQuery Expression that Generated Particular Output

To quickly spot the XSLT templates or XQuery expressions with problems, it is important to know what XSLT template in the XSLT stylesheet (or XQuery expression in the XQuery document) and what element in the source XML document generated a specified area in the output.

Some of the debugging capabilities (for example, Step in) can be used for this purpose. Using Step in, you can see how output is generated and link it with the XSLT/XQuery element being executed in the
current source context. However, this can become difficult on complex XSLT stylesheets or XQuery documents that generate a large output.

You can click particular text in the Output view or XHTML output view and the editor will select the XML source context and the XSLT template/XQuery element that generated that text. Also, inspecting the whole stack of XSLT templates/XQuery elements that determined the state of the XSLT/XQuery processor at the moment of generating the specified output area speeds up the debugging process.

This is an example of a typical procedure for identifying an expression that generated particular output:

1. Switch to the XSLT Debugger or XQuery Debugger perspective (on page 3285) with one of the following actions:
   - Select Window > Open perspective > XSLT Debugger/XQuery Debugger or the XSLT Debugger/XQuery Debugger button in the top-right corner of the interface.
   - Select Document > XML Document > Debug scenario or use the Debug scenario action on the toolbar. This action initializes the Debugger perspective (on page 3285) with the parameters of the transformation scenario. Any modification applied to the scenario parameters (the transformer engine, XSLT parameters, transformer extensions, etc.) will be saved back in the scenario when exiting from the Debugger perspective.

2. Select the source XML document in the XML source selector of the Control toolbar (on page 2293). In the case of XQuery debugging, if your XQuery document has no implicit source, set the source selector value to NONE.

3. Select the XSLT/XQuery document in the XSL/XQuery selector of the Control toolbar (on page 2293).

4. Select the appropriate engine in the XSLT/XQuery engine selector of the Control toolbar (on page 2294).

5. Set XSLT/XQuery parameters using the Configure parameters button on the Control toolbar (on page 2293).

6. Apply the XSLT stylesheet or XQuery transformation using the Run to end button that is available on the Control toolbar (on page 2295).

7. Inspect the mapping by clicking a section of the output in either the Text tab or XHTML tab of the Output view (on page 298).

Figure 694. XHTML Output to Source Mapping
Figure 695. Text Output to Source Mapping
This action will highlight the XSLT / XQuery element and the XML source context. This XSLT template/XQuery element that is highlighted in the XSLT/XQuery editor represents only the top of the stack of XSLT templates/XQuery elements that determined the state of the XSLT/XQuery processor at the moment of generating the clicked output section. In the case of complex transformations, inspecting the whole stack of XSLT templates/XQuery elements speeds up the debugging process. This stack is available in the Output Mapping Stack view (on page 2302).

Related Information:

- Output Mapping Stack View (on page 2302)
- Trace View (on page 2304)
- Templates View (on page 2305)
Using Breakpoints

The Oxygen XML Editor XSLT/XQuery Debugger allows you to interrupt XSLT/XQuery processing to gather information about variables and processor execution at particular points. To ensure breakpoints are persistent between work sessions, they are saved at project level. You can set a maximum of 100 breakpoints per project.

Inserting Breakpoints

To insert a breakpoint, follow these steps:

1. Click the line where you want to insert the breakpoint in the XML source document or the XSLT/XQuery document. Breakpoints are automatically created on the ending line of a start tag, even if you click a different line.
2. Click the vertical stripe on the left side of the editor panel or use Shift+F7.

Result:

Once you insert a breakpoint, it is automatically added to the list in the Breakpoints view and you can edit its associated condition. A breakpoint can have an associated break condition that represents an XPath expression evaluated in the current debugger context. For them to be processed, their evaluation result should be a boolean value. A breakpoint with an associated condition only stops the execution of the Debugger if the breakpoint condition is evaluated as true.

![Example: Breakpoints](image)

Removing Breakpoints

To remove a breakpoint, click its icon (●) in the vertical stripe on the left side of the editor panel or right-click the breakpoint and select Remove or Remove all.

Related Information:

- Breakpoints View (on page 2297)
Performance Profiling of XSLT Stylesheets and XQuery Documents

Whether you are trying to identify a performance issue that is causing your production XSLT/XQuery transformation to not meet customer expectations or you are trying to proactively identify issues prior to deploying your XSLT/XQuery transformation, using the XSLT/XQuery profiler feature is essential to helping you save time and ultimately ensure a better performing, more scalable XSLT/XQuery transformation.

The XSLT/XQuery profiling feature can use any available XSLT/XQuery processor that can be used for debugging and it is available from the debugging perspective (on page 3285).

Enabling the Profiler

Enabling and disabling the profiler is controlled by the Profiler button from the debugger Control toolbar (on page 2294). The XSLT/XQuery profiler is off by default. This option is not available during a debugger session so you need to set it before starting the transformation. For information about a common debugging procedure, see Steps in a Typical Debugging Process (on page 2309).

Profiling Information Views

Immediately after enabling the profiler, two new information views are added to the current debugger information views (on page 2296):

- Invocation tree view (on page 2316) on left side
- Hotspots view (on page 2318) on right side

Profiling data is available only after the transformation ends successfully.

On the left side (Invocation tree view (on page 2316)), you can examine how style instructions are processed. This result view is also named call-tree, as it represents the order of style processing. The profiling result shows the duration time for each of the style-instruction including the time needed for its called children.

On the right side (Hotspots view (on page 2318)), you can immediately spot the time the processor spent in each instruction. As an instruction usually calls other instructions, the used time of the called instruction is extracted from the duration time of the caller (the hotspot only presents the inherent time of the instruction).

Source Backmapping

In either the Invocation tree (on page 2316) or Hotspots view (on page 2318), you can use the backmapping feature to find the XSLT stylesheet or XQuery expression definition. Clicking the
selected item causes Oxygen XML Editor to highlight the XSLT stylesheet or XQuery expression source line where the instruction is defined.

Figure 697. Source Backmapping

Saving and Customizing Profiling Data

The profiling data can be saved (exported) into XML and HTML format. In either the Invocation tree (on page 2316) or Hotspots view (on page 2318), right-click anywhere in the view and select Export to XML or Export to HTML. The HTML report can be customized based upon the profiling raw data. When you select Export to HTML, Oxygen XML Editor will save it as XML and apply an XSLT stylesheet to render the report as XML. You can customize these stylesheets to suit your needs. By default, they are located in: [OXYGEN_INSTALL_DIR]/frameworks/profiler/.

Other Profiling Notes

- If you want to change the XSLT/XQuery profiler settings (on page 213), use the contextual menu and choose the corresponding View settings entry.
- Profiling exhaustive transformations may run into an OutOfMemory error due to the large amount of information being collected. If this is the case, you can close unused projects when running the profiling or use high values for Java VM options -Xms and -Xmx. If this does not help you can shorten your source XML file and try again.
- For more information about the XSLT/XQuery Profiler, watch our video demonstration:

  https://www.youtube.com/embed/4ftHschjLgA
Invocation Tree View

The Invocation Tree view shows a top-down call tree that represents how XSLT instructions or XQuery expressions are processed. If the view is not displayed, it can be opened by selecting it from the Window > Show View menu.

Figure 698. Invocation Tree View

The entries in the invocation tree include a few possible icons that indicate the following:

- ▲ - Points to a call whose inherent time is insignificant compared to its total time.
- ● - Points to a call whose inherent time is significant compared to its total time (greater than 1/3rd of its total time).

Every entry in the invocation tree includes textual information that depends on the XSLT/XQuery profiler settings (on page 213):

- A percentage number of the total time that is calculated with respect to either the root of the tree or the calling instruction.
- A total time measurement in milliseconds or microseconds. This is the total execution time that includes calls into other instructions.
- A percentage number of the inherent time that is calculated with respect to either the root of the tree or the calling instruction.
- An inherent time measurement in milliseconds or microseconds. This is the inherent execution time of the instruction.
- An invocation count that shows how often the instruction has been invoked on this call-path.
- An instruction name that contains also the attributes description.

The Invocation Tree view also includes the following contextual menu actions:

Export to HTML

Selecting this option will save the profiling data as XML and then apply an XSLT stylesheet to render the report as HTML. These stylesheets are included in the
subfolder: \[OXYGEN_INSTALL_DIR\]/frameworks/profiler/. You can use them to customize your own report based on the profiling raw data.

**Export to XML**

Use this option to save the profiling data as an XML file in a specified location.

**View settings**

Opens the XSLT/XQuery Profiler preferences page (on page 213) that allows you to configure various profiling settings.

**Hotspots View**

The Hotspots view displays a list of all instruction calls that lie above the threshold defined in the XSLT/XQuery profiler settings (on page 213). If the view is not displayed, it can be opened by selecting it from the Window > Show View menu.

Figure 699. Hotspots View

By opening a hotspot instruction entry, the tree of back-traces leading to that instruction call are calculated and shown.

Every hotspot is described by the values from the following columns:

- **Instruction** - The name of the instruction.
- **Time** - The inherent time in milliseconds or microseconds of how much time has been spent in the hotspot, along with a bar whose length is proportional to this value. All calls into this instruction are summed up regardless of the particular call sequence.
- **Hits** - The invocation count of the hotspot entry.

If you click the handle on the left side of a hotspot, a tree of back-traces will be shown.

Every entry in the backtrace tree has textual information attached to it that depends on the XSLT/XQuery profiler settings (on page 213):
• A percentage number that is calculated with respect to either the total time or the called instruction.
• A time measured in milliseconds or microseconds of how much time has been contributed to the parent hotspot on this call-path.
• An invocation count that shows how often the hotspot has been invoked on this call-path.

Note: This is not the number of invocations of this instruction.
• An instruction name that also contains its attributes.

The Hotspots view also includes the following contextual menu actions:

Export to HTML
Selecting this option will save the profiling data as XML and then apply an XSLT stylesheet to render the report as HTML. These stylesheets are included in the subfolder: [OXYGEN_INSTALL_DIR]/frameworks/profiler/. You can use them to customize your own report based on the profiling raw data.

Export to XML
Use this option to save the profiling data as an XML file in a specified location.

View settings
Opens the XSLT/XQuery Profiler preferences page (on page 213) that allows you to configure various profiling settings.

Debugging XSLT that Call Java Extensions
It is possible to debug XSLT that call Java extensions. This is achieved through a transformation scenario in which the Java extensions are specified, and the debugging can be done based upon the same scenario.

To debug XSLT with Java extensions, follow this procedure:

1. Create an XSLT transformation scenario (on page 1722) for your XSLT document (select Configure Transformation Scenario(s) action from the toolbar, then click New, and select XSLT transformation).
2. In the New scenario dialog box, click the Extensions button (in the XSLT tab), specify the Java extensions (JAR libraries) that are needed, and click OK.
3. Once you are finished configuring the transformation scenario, click OK, then select Save and close.
4. Use the Debug scenario action on the toolbar and the debugging will be based upon the same transformation scenario you just configured and saved.
Tip: You could achieve this during a typical debugging process (on page 2309) by specifying the Java extensions using the Edit extensions button on the debugger control toolbar (on page 2293).

Related Information:

- Validating XSLT Stylesheets that Call Java Extensions (on page 1187)

Debugging Java Extensions

The XSLT/XQuery debugger does not step into Java classes that are configured as XSLT/XQuery extensions of the transformation. To step into Java classes, inspect variable values, and set breakpoints (on page 2313) in Java methods, you can set up a Java debug configuration in an IDE (such as the Eclipse SDK) as described in the following steps:

1. Create a debug configuration.
   a. Set at least 256 MB as heap memory for the Java virtual machine (recommended 1024 MB) by setting the -Xmx parameter in the debug configuration (for example, `-Xmx1024m`).
   b. Make sure the [OXYGEN_INSTALL_DIR]/lib/oxygen.jar file and your Java extension classes are on the Java classpath. The Java extension classes should be the same classes that were set as an extension (on page 2293) of the XSLT/XQuery transformation in the debugging perspective (on page 3285).
   c. Set the class ro.sync.exml.Oxygen as the main Java class of the configuration. The main Java class ro.sync.exml.Oxygen is located in the oxygen.jar file.

2. Start the debug configuration.
   Now you can set breakpoints and inspect Java variables as in any Java debugging process executed in the selected IDE (Eclipse SDK, and so on.).

Supported Processors for XSLT / XQuery Debugging

The following built-in XSLT processors are integrated in the debugger and can be selected in the Control Toolbar (on page 2293):

- Saxon 9.8.0.12 HE (Home Edition) - a limited version of the Saxon 9 processor, capable of running XSLT 1.0, XSLT 2.0 / 3.0 basic and XQuery 1.0 transformations, available in both the XSLT debugger and the XQuery one,
• **Saxon 9.8.0.12 PE (Professional Edition)** - capable of running XSLT 1.0 transformations, XSLT 2.0 basic ones and XQuery 1.0 ones, available in both the XSLT debugger and the XQuery one,

• **Saxon 9.8.0.12 EE (Enterprise Edition)** - a schema aware processor, capable of running XSLT 1.0 transformations, XSLT 2.0 / 3.0 basic ones, XSLT 2.0 / 3.0 schema aware ones and XQuery 1.0 / 3.0 ones, available in both the XSLT debugger and the XQuery debugger,

• **Saxon 6.5.5** - capable of running only XSLT 1.0 transformations, available only in the XSLT debugger,

• **Xalan 2.7.2** - capable of running only XSLT 1.0 transformations, available only in the XSLT debugger.
16.
Framework and Author Mode Customization

This section contains information and tutorials about customizing the authoring experience through custom frameworks and customizing the Author editing mode through CSS styling or API extensions.

Creating and Configuring Custom Frameworks

Oxygen XML Editor includes built-in, configured frameworks (on page 3282) for DocBook, DITA, TEI, XHTML, and JATS, but you can also create your own customization to handle other types of documents. A common use case is wanting to customize the interface to accommodate the needs of your authoring team.

Fully configuring a framework usually involves customizing CSS stylesheets, XML schemas, GUI components (menu actions, toolbars, inline components, content completion proposals, and more), configuring other more general settings, then bundling the framework to share with your team. The CSS and GUI components are used to customize the interface, while other general settings can be configured to accommodate custom document templates, XML catalogs, transformation scenarios, and more.

Advanced Framework Customization

Oxygen XML Editor supports individual document types and classes of document types through frameworks (on page 3282). A framework associates a document type or a class of documents with CSS stylesheets, validation schemas, catalog files, new files templates, transformation scenarios, content completion proposals, custom actions, and more.

This section includes information about numerous possibilities for creating and customizing a framework, and how to share your customization with others.

Tip: A sample framework customization package is available that you can dabble with and use to help you get started. It can be downloaded from: https://www.oxygenxml.com/php/get_oxygen_sample_framework.php. The package includes a sample CSS file, XSL file, schema files, document templates, an XML catalog file, custom icons, and other resources.
Creating/Extending a Custom Framework

The easiest way to create a custom framework (on page 3282) (document type) is by extending an existing built-in framework, such as DITA or DocBook, and then making modifications to it. You can then easily share the custom framework (on page 2371) with your team.

To create a custom framework by extending an existing one, follow these steps:

1. In a location where you have full write access, create a folder structure similar to this:
   
   `custom_frameworks/dita-extension`

2. Open the Preferences dialog box (Options > Preferences) (on page 79) and go to Document Type Association > Locations (on page 94). Add the path to your `custom_frameworks` folder in the Additional frameworks directories list and click OK or Apply to save your changes.

3. Go to the Document Type Association preferences page (on page 92) and select an existing framework configuration (for example, DITA) and use the Extend button to create an extension for it.

   **Step Result:** This opens the Document Type Configuration dialog box (on page 95) where you can define the set of rules and settings for your custom framework.

4. Give the extension an appropriate name, select External for the Storage option, click the browsing button (سبق) to specify the location of the custom directory you created in step 1.

5. Continue to configure the extension using the tabs on the bottom half of the dialog box. For details about each of those tabs, see the child topics in the Document Type Configuration dialog box (on page 95) section. For even more information about customizing the extended framework, see the various topics and tutorials in the Creating and Configuring Custom Frameworks (on page 2322) section. Make sure that you save any resources you reference in your framework configuration (CSS files, new document templates, schemas used for validation, catalogs, etc.) in your custom framework directory you created in step 1.

6. Click OK to close the configuration dialog box and then OK or Apply to save your changes.

   **Results:** You now have a fully functional framework that can be shared with others (on page 2371).

---

Related Information:

- Sharing a Custom Framework (on page 2371)

---

Configuring Actions, Menus, Toolbars, Content Completion for a Framework

You can configure actions, menus, toolbars, icons, and content completion proposals specifically for a particular framework (on page 3282) (document type) to customize your editing experience in Author.
mode by using the Document Type configuration dialog box (on page 95). Advanced users who are familiar with API development can also create custom Author mode operations for a particular framework.

Configuring Actions for a Framework

To add or configure actions for a framework (on page 3282) (document type), follow this procedure:

1. Open the Preferences dialog box (Options > Preferences) (on page 79), go to Document Types Association, and select the framework for which you want to create an action.
2. Click Edit and in the Document Type configuration dialog box (on page 95) go to the Author tab, then go to the Actions subtab.
3. To create a new action, click the New button. To edit an existing action, select the action and click the Edit button.

Result: In either case, this opens the Action configuration dialog box (on page 102) where you can configure numerous aspects of the action.

Example: Configure the Insert Section Action for a Framework

This topic describes the procedure for defining the Insert Section action for a custom framework (on page 3282). It is assumed that the icon files, § (Section16.gif) for the menu item and § (Section20.gif) for the toolbar, are already available. Although you could use the same icon size for both the menu and toolbar, usually the icons from the toolbars are larger than the ones found in the menus. These files should be placed in your custom framework directory (/OXYGEN_INSTALL_DIR/frameworks/[CUSTOM_FRAMEWORK_DIR]).

Figure 700. Action Dialog Box
1. Set the ID field to `insert_section`. This is a unique action identifier.

2. Set the Name field to `Insert Section`. This will be the action's name, displayed as a tooltip when the action is placed in the toolbar, or as the menu item name.

3. Set the Menu access key to `i`. On Windows, the menu items can be accessed using `Alt+letter` keys combination, when the menu is visible. The letter is visually represented by underlining the first letter from the menu item name having the same value.

4. Add a Description.

5. Set the Large icon (20x20) field to `${frameworks}/sdf/Section20.gif`. A good practice is to store the image files inside the framework directory and use editor variable (on page 276) `${framework}` to make the image relative to the framework location.
   If the images are bundled in a JAR (on page 3283) archive together with some Java operations implementation, for instance, it might be convenient for you to reference the images not by the file name, but by their relative path location in the class-path.
   
   If the image file `Section20.gif` is located in the images directory inside the JAR archive, you can reference it by using `/images/Section20.gif`. The JAR file must be added into the Classpath list.

6. Set the Small icon (16x16) field to `${frameworks}/sdf/Section16.gif`.

7. Click the text field next to Shortcut key and set it to `Ctrl+Shift+S` (Meta+Shift+S on Mac OS). This will be the key combination to trigger the action using the keyboard only.
The shortcut is enabled only by adding the action to the main menu of Author mode (on page 2327), which contains all the actions that the author will have in a menu for the current document type.

8. At this time the action has no functionality added to it. Next you must define how this action operates. An action can have multiple operation modes. The first action mode enabled by the evaluation of its associated XPath expression will be executed when the action is triggered by the user. The XPath expression needs to be version 2.0 and its scope must be only element and attribute nodes of the edited document. Otherwise, the expression will not return a match and will not trigger the action. If the expression is left empty, the action will be enabled anywhere in the scope of the root element. For this example, suppose you want the action to add a section only if the current element is either a book, article, or another section.

   a. Set the XPath expression field to:

   ```
   local-name()='section' or local-name()='book' or local-name()='article'
   ```

   b. Set the invoke operation field to InsertFragmentOperation built-in operation, designed to insert an XML fragment at cursor position. This belongs to a set of built-in operations, a complete list of which can be found in the Author Default Operations (on page 2451) section. This set can be expanded with your own Java operation implementations.

   c. Configure the arguments section as follows:

   ```
   <section xmlns="http://www.oxygenxml.com/sample/documentation">
   <title/>
   </section>
   ```

   insertLocation - leave it empty. This means the location will be at the cursor position.

   insertPosition - select "Inside".

Example: Configure the Insert Table Action for a Framework

This topic describes the procedure for defining the Insert Table action for a custom framework (on page 3282). Suppose that you want to create an action that inserts a table with three rows and three columns into a document and the first row is the table header. As with the insert section action (on page 2324), you will use the InsertFragmentOperation built-in operation.

Place the icon files for the menu item, and for the toolbar, in your custom framework directory (`{OXYGEN_INSTALL_DIR}\frameworks\{CUSTOM_FRAMEWORK_DIR}\`).
1. Set **ID** field to **insert_table**.
2. Set **Name** field to **Insert table**.
3. Set **Menu access key** field to **t**.
4. Set **Description** field to **Adds a table element**.
5. Set **Toolbar icon** to **${framework} / toolbarIcon.png**.
6. Set **Menu icon** to **${framework} / menuIcon.png**.
7. Set **Shortcut key** to **Ctrl + Shift + T (Command + Shift + T on OS X)**.
8. Set up the action's functionality:
   a. Set **XPath expression** field to **true()**. **true()** is equivalent with leaving this field empty.
   b. Set **Invoke operation** to use **InsertFragmentOperation** built-in operation that inserts an XML fragment to the cursor position.
   c. Configure operation's arguments as follows:
      - **fragment** - set it to:

```
<table xmlns="http://www.oxygenxml.com/sample/documentation">
  <header>
    <td/> <td/> <td/>
  </header>
  <tr>
    <td/> <td/> <td/>
  </tr>
  <tr>
    <td/> <td/> <td/>
  </tr>
</table>
```

- **insertLocation** - to add tables at the end of the section use the following code:

```
ancestor::section/*[last()]
```

- **insertPosition** - Select **After**.

**Configure the Main Menu for a Framework**

Defined actions can be grouped into customized menus in the Oxygen XML Editor menu bar.

1. Open the **Document Type** configuration dialog box (**on page 95**), select your custom **framework** (**on page 3282**), and go to the **Author** tab.

2. Go to the **Menu** subtab. In the left side you have the list of actions and some special entries:
   - **Submenu** - Creates a submenu. You can nest an unlimited number of menus.
   - **Separator** - Creates a separator into a menu. This way you can logically separate the menu entries.
3. The right side of the panel displays the current actions for that menu tree. To change its name, click this label to select it, then press the Edit button.

4. Select the Submenu label in the left panel section and the appropriate label in the right panel section, then press the Add as child button. Change the submenu name to Table, using the Edit button.

5. Select the Insert section action in the left panel section and the Table label in the right panel section, then press the Add as sibling button.

6. Now select the Insert table action in the left panel section and the Table in the right panel section. Press the Add as child button.

Figure 701. Configuring the Menu

When opening a test document for a custom framework in Author mode, the menu you created is displayed in the editor menu bar, between the Tools and the Document menus. The upper part of the menu contains generic Author mode actions (common to all document types) and the two actions created previously (with Insert table under the Table submenu).

Figure 702. Author Mode Menu
Configure the Contextual Menu for a Framework

The contextual menu is displayed when you right-click in the Author editing area. You can only configure the bottom part of the menu, since the top part is reserved for a list of generic actions (such as Copy, Paste, Undo, etc.)

1. Open the Document Type configuration dialog box (on page 95) for the particular framework (on page 3282) and go to the Author tab. Next, go to the Contextual Menu subtab.

2. Follow the same steps as explained in the Configuring the Main Menu (on page 2327), except changing the menu name because the contextual menu does not have a name.

   Note: You can choose to reuse a submenu that contains general authoring actions. In this case, all actions (both general and framework-specific ones) are grouped together under the same submenu.

Figure 703. Configuring the Contextual Menu
To test it, open the test file, and open the contextual menu. In the lower part there is shown the **Table** sub-menu and the **Insert section** action.

### Configure the Toolbars for a Framework

This procedure describes how to add defined actions to a toolbar for a custom [framework (on page 3282)](#). You can also create additional custom toolbars with existing or custom actions.

1. Open the **Document Type** configuration dialog box [on page 95](#) for your custom framework and select the **Author** tab.
2. Next, go to the **Toolbar** subtab.

![Figure 704. Configuring the Toolbar](#)

The panel is divided in two sections. The left side contains a list of actions, while the right side contains an action tree, displaying the list of actions added in the toolbar. The special entry called **Separator** allows you to visually separate the actions in the toolbar.

3. To add an action, select it in the left panel and select the particular toolbar label where you want it added in the right panel section, then click the **Add as child** or **Add as sibling** button.

**Result:** When opening a document for the particular framework in **Author** mode, the toolbar with the new buttons will be displayed in the toolbar area.

**Tip:** If you have many custom toolbar actions, or want to group actions according to their category, add more toolbars with custom names and split the actions to better suit your purpose. If your toolbar is not displayed when switching to the **Author** mode, right-click the main toolbar, select **Configure Toolbars**, and make sure the appropriate toolbar (such as the **Author Custom Actions** toolbar) is selected.
**Note:** A maximum of 16 toolbars can be added. If you add more, all extra toolbars will be automatically converted to sub-toolbars for the last added toolbar.

Configure Content Completion for a Framework

You can customize the content of the following **Author** controls, adding items (which, when invoked, perform custom actions) or filtering the default contributed ones:

- **Content Completion Assistant** ([on page 3280](#)) window
- **Elements** view ([on page 432](#))
- **Insert Element** menus (from the **Outline** view ([on page 347](#)) or breadcrumb ([on page 907](#)) contextual menus)

You can use the content completion customization support in a custom **framework** ([on page 3282](#)) by following this procedure:

1. Open the **Document type** configuration dialog box ([on page 95](#)) for your custom **framework** and select the **Author** tab. Next, go to the **Content Completion** tab.

The top side of the **Content Completion** section contains the list with all the actions defined within the custom **framework** and the list of actions that you decided to include in the **Content Completion Assistant** list of proposals. The bottom side contains the list with all the items that you decided to remove from the **Content Completion Assistant** list of proposals.
2. If you want to add a custom action to the list of current **Content Completion** proposals, select the action item from the **Available actions** list and press the **Add as child** or **Add as sibling** button to include it in the **Current actions** list. An **Insert Action** dialog box appears, giving you the possibility to select where to provide the selected action.

![Figure 706. Insert Action Dialog Box](image)

3. If you want to exclude a certain item from the **Content Completion** proposals, you can use the **Add** button from the **Filter - Remove content completion items** list. The **Remove item** dialog box is displayed, allowing you to input the item name and to choose the controls that filter it. The **Item name** combo box accepts wildcards.

![Figure 707. Remove Item Dialog Box](image)

**Adding Retina/HiDPI Icons in a Framework**

Higher resolution icons can also be included in customized frameworks (on page 3282) for rendering them in a Retina or HiDPI display. The icons can be referenced directly from the **Document Type Configuration** dialog box (on page 95) (from the **Action** dialog box (on page 102)) or from an API (ro.sync.exml.workspace.api.node.customizer.XMLNodeRendererCustomizer (on page 2431)).

As with any image, the higher resolution icons are stored in the same images folder as the normal resolution images and they are identified by a scaling factor that is included in the name of the image.
files. For instance, icons with a Retina scaling factor of 2 will include \( @2x \) in the name (for example, myIcon@2x.png).

Developers should not specify the path of the alternate icons (\( @2x \) or \( @3x \)) in the Action dialog box (on page 102) or the XMLNodeRendererCustomizer API (on page 2431). When using a Retina or HiDPI display, Oxygen XML Editor automatically searches the folder of the normal icon for a corresponding image file with a Retina scaling factor in the name. If the higher resolution icon file does not exist, the normal icon is scaled and used instead.

Related Information:
- Retina/HiDPI Images in Author Mode (on page 1028)

Localizing Frameworks

Oxygen XML Editor supports framework (on page 3282) localization (translating framework actions, buttons, and menu entries to various languages). This lets you develop and distribute a framework to users that speak other languages without changing the distributed framework. Changing the language used in Oxygen XML Editor in the Global preferences page is enough to set the right language for each framework.

To localize the content of a framework, create a translation.xml file that contains all the translation (key, value) mappings. The translation.xml has the following format:

```
<translation>
  <languageList>
    <language description="English" lang="en_US"/>
    <language description="German" lang="de_DE"/>
    <language description="French" lang="fr_FR"/>
  </languageList>
  <key value="list">
    <comment>List menu item name.</comment>
    <val lang="en_US">List</val>
    <val lang="de_DE">Liste</val>
    <val lang="fr_FR">Liste</val>
  </key>
  ......................
</translation>
```
Oxygen XML Editor matches the GUI language with the language set in the translation.xml file. If this language is not found, the first available language declared in the languagelist tag for the corresponding framework is used.

Add the directory where this file is located to the Classpath list corresponding to the edited document type.

After you create this file, you can use the keys defined in it to customize the name and description of the following:

- Actions
- Menu entries
- Contextual menus
- Toolbars
- Static CSS content

For example, if you want to localize the bold action, open the Preferences dialog box (Options > Preferences) (on page 79) and go to Document Type Association. Use the New or Edit button to open the Document type configuration dialog box (on page 95), go to Author > Actions, and rename the bold action to ${i18n(translation_key)}. Actions with a name format other than ${i18n(translation_key)} are not localized. Translation_key corresponds to the key from the translation.xml file.

Now open the translation.xml file and edit the translation entry if it exists or create one if it does not exist. This example presents an entry in the translation.xml file:

```xml
<key value="translation_key">
    <comment>Bold action name.</comment>
    <val lang="en_US">Bold</val>
    <val lang="de_DE">Bold</val>
    <val lang="fr_FR">Bold</val>
</key>
```

To use a description from the translation.xml file in the Java code used by your custom framework, use the new ro.sync.ecss.extensions.api.AuthorAccess.getAuthorResourceBundle() API method to request the associated value for a certain key. This allows all the dialog boxes that you present from your custom operations to have labels translated in multiple languages.

You can also reference a key directly in the CSS content:

```css
title:before{
    content: "${i18n(title.key)} : ";
}
```
Note: You can enter any language you want in the `languagelist` tag and any number of keys.

The `translation.xml` file for the DocBook framework is located here: `{OXYGEN_INSTALL_DIR}/frameworks/docbook/i18n/translation.xml`. In the Classpath list corresponding to the DocBook document type the following entry was added: `${framework}/i18n/`.

To see how the DocBook actions are defined to use these keys for their name and description, open the Preferences dialog box (Options > Preferences) (on page 79) and go to Document Type Association > Author > Actions. If you look in the Java class `ro.sync.ecss.extensions.docbook.table.SADocbookTableCustomizerDialog` available in the `oxygen-sample-framework` module of the Oxygen SDK Maven archetype, you can see how the new `ro.sync.ecss.extensions.api.AuthorResourceBundle` API is used to retrieve localized descriptions for various keys.

Creating New Document Templates for a Custom Framework

You can create your own custom document templates and attach them to a custom framework (on page 3282). You can then share the custom framework (on page 2371) so that all users will have access to the templates in the New document wizard (on page 676).

To create your own custom document template and have it appear in the new document wizard, follow these steps:

1. Create a new file and customize it to become a starting point for creating new files of this type.

   Tip: You can use editor variables (on page 276) in the template file content and they will be expanded when the files are opened. Also, see Customizing Document Templates (on page 685) for other template customization tips (for example, you could add placeholders or hints (on page 687) to assist authors).

2. Save the new template in a directory (for example, called `templates`) within your custom framework directory.

   Attention: The name that you use to save the template will be the name that appears in the new document wizard, including capitalization, space, and characters (for example, `My Custom Template1.xml` will appear in the new file wizard as `My Custom Template1`). You can also configure the displayed name in a properties file by following the procedure found in the Configure the Displayed Names for Document Templates (on page 686) section.

3. Open the Document Type configuration dialog box (on page 95) for that specific framework, go to the Templates tab (on page 118), and click the `+` button in the bottom-right corner to add your new directory to the list. It is recommended that the reference be made relative to the framework directory (for example, `${frameworkDir}/templates`). Binding to an absolute file (e.g., `C:\some_dir\templates`) makes the association difficult to share between users.

4. Click OK for all of the dialog boxes to save your changes.
5. To test the template, open the new document wizard (New toolbar button or File > New) and you should see your custom template in the folder for your custom framework (in the Framework templates section).

Related Information:

- Customizing Document Templates (on page 685)

Configuring XML Catalogs

For cases where you need to reference the location of a schema file from a remote web location and an Internet connection may not be available, an XML Catalog (on page 3289) may be used to map the web location to a local file system entry. The following procedure presents an example of using an XML catalog in a custom framework (on page 3282) by modifying an XML Schema file.

1. Create a catalog file that will help the parser locate the schema for validating the XML document. The file must map the location of the schema to a local version of the schema.

   **Example:**

   Create a new XML file called catalog.xml and save it in your custom framework directory (\OXYGEN_INSTALL_DIR\frameworks\CUSTOM_FRAMEWORK_DIR). The content of the file should look like this:

   ```xml
   <?xml version="1.0"?>
   <catalog xmlns="urn:oasis:names:tc:entity:xmlns:xml:catalog">
     <uri name="http://www.oxygenxml.com/SDF/abs.xsd" uri="schema/abs.xsd"/>
   </catalog>
   ```

2. Add catalog files to your custom framework using the Catalogs tab (on page 119) from the Document Type configuration dialog box (on page 95).

To test the catalog settings, restart Oxygen XML Editor and try to validate a new sample document for your custom framework. There should be no errors.

**Example:**

The schema that validates the document refers the other file abs.xsd through an import element:
The `schemaLocation` attribute references the `abs.xsd` file:

```xml
<xsi:schemaLocation="http://www.oxygenxml.com/sample/documentation/abstracts"
  http://www.oxygenxml.com/SDF/abs.xsd"/>
```

The catalog mapping is:

```xml
http://www.oxygenxml.com/SDF/abs.xsd -> schema/abs.xsd
```

This means that all the references to `http://www.oxygenxml.com/SDF/abs.xsd` must be resolved to the `abs.xsd` file located in the `schema` directory (note that the `schema` directory needs to be in the same folder as the XML Catalog). The URI element is used by URI resolvers (for example, to resolve a URI reference used in an XSLT stylesheet).

Configuring Transformation Scenarios for a Framework

When distributing a framework (on page 3282) to users, it is a good idea to have the transformation scenarios already configured. This helps the content authors publish their work in various formats. By being contained in the framework configuration, the scenarios can be distributed along with the actions, menus, toolbars, and catalogs.

These are the steps that allow you to create a transformation scenario for your framework.

1. Create an `xsl` folder inside your custom framework directory
   ```
   \{OXYGEN_INSTALL_DIR\}/frameworks/\{CUSTOM_FRAMEWORK_DIR\}/xsl
   ```

2. Create an `xsl` file and save it in the `xsl` folder. To help you get started, you can use the sample `sdf.xsl` file found in the sample framework customization package.

3. Open the Preferences dialog box (Options > Preferences) (on page 79) and go to Document Type Associations. Select the particular framework, click the Edit button to open Document Type...
Configuration dialog box (on page 95), and choose the Transformation tab. Click the - New button and choose the appropriate type of transformation (for example, XML transformation with XSLT).

In the New scenario dialog box, fill in the following fields:

- Fill in the Name field with the name of your transformation scenario.
- Set the XSL URL field to path of your custom stylesheet (for example, ${framework}/xsl/mycustom.xsl).

Figure 708. Configuring a New XSLT Transformation Scenario

4. Change to the Output tab. Configure the fields as follows:

- Set the Save as field to ${cfd}/${cfn}.html. This means the transformation output file will have the name of the XML file and the html extension and will be stored in the same folder.
- Select the Open in Browser/System Application option.

  Note: To set the browser or system application that will be used, open the Preferences dialog box (Options > Preferences) (on page 79), go to Global, and set it in the Default Internet browser field. This will take precedence over the default system application settings.
- Select the Saved file option.

5. Click the OK button to save the new scenario.

Now the scenario is listed in the Transformation tab:
To test the transformation scenario that you just created, you can use the sample `sdf.xml` file found in the sample framework customization package. Click the `Apply Transformation Scenario(s)` button to display the Transform with dialog box. The scenario list contains the scenario you defined earlier. Select the SDF to HTML scenario that you just defined and click the Apply associated button. The HTML file is saved in the same folder as the XML file and displayed in the browser.

Configuring Validation Scenarios for a Framework

You can distribute a framework (on page 3282) with a series of already configured validation scenarios. Also, this provides enhanced validation support that allows you to use multiple grammars to check the document. For example, you can use Schematron rules to impose guidelines that are otherwise impossible to enforce using conventional validation.

Note: If a master file is associated with the current file, the validation scenarios defined in the master file, along with any Schematron schema defined in the default scenarios for that particular framework, are used for the validation. These take precedence over other types of validation units defined in the default scenarios for the particular framework. For more information on master files, see Master Files Support (on page 726) or Working with Modular XML Files in the Master Files Context (on page 1126).

To associate a validation scenario with a specific framework, follow these steps:

1. Open the Preferences dialog box (Options > Preferences) (on page 79) and go to Document Type Association.

2. Select the document type and click the Edit button to open the Document Type Configuration dialog box (on page 95), then choose the Validation tab. This tab displays a list of document types in which you can define validation scenarios. To set one or more of the validation scenarios listed in this tab to be used as the default validation scenario (when another one is not specified in the validation process) for a specific document type, check the Default box for that specific document type.

3. To edit an existing scenario, select the scenario and click the Edit button. To add a new scenario, click the New button.

In either case, a scenario configuration dialog box is displayed. It lists all the validation units for the scenario.
This scenario configuration dialog box allows you to configure the following information and options:

**Name**

The name of the validation scenario.

**Storage**

You can choose between storing the scenario in the Project Options (on page 3286) or Global Options (on page 3283).

**URL of the file to validate**

The URL of the main module that includes the current module. It is also the entry module of the validation process when the current one is validated. To edit the URL, double-click its cell and specify the URL of the main module by doing one of the following:

- Enter the URL in the text field or select it from the drop-down list.
- Use the **Browse** drop-down button to browse for a local, remote, or archived file.
- Use the ❘ **Insert Editor Variable** button to insert an editor variable (on page 276) or a custom editor variable (on page 284).
File type

The type of the document that is validated in the current validation unit. Oxygen XML Editor automatically selects the file type depending on the value of the URL of the file to validate field.

Validation engine

You can select one of the engines available in Oxygen XML Editor for validation of the particular document type.

Default engine means that the default engine is used to run the validation for the current document type, as specified in the preferences page for that type of document (for example, XSLT preferences page (on page 200), XQuery preferences page (on page 208), XML Schema preferences page (on page 192)).

The DITA Validation engine performs DITA-specific checks in the context of the specifications (it is similar to the checks done with the DITA Maps Manager Validate and Check for Completeness action (on page 3036), but for a local file rather than an entire DITA map (on page 3281)).

The Table Layout Validation engine looks for table layout problems (for more information, see Report table layout problems (on page 3040)).

Automatic validation

If this option is selected, the validation operation defined by this row is also applied by the automatic validation feature (on page 1082). If the Automatic validation feature is disabled in the Document Checking preferences page (on page 180), then this option is ignored, as the preference setting has a higher priority.

Schema

This option becomes active when you set the File type to XML Document and allows you to specify the schema used for the validation unit.
**Specify Schema**

Opens the Specify Schema dialog box that allows you to set a schema to be used for validating XML documents.

Figure 712. Specify Schema Dialog Box

The Specify Schema dialog box contains the following options:

**Use detected schema**

Uses the schema detected for the particular document (on page 1113).

**Use custom schema**

Allows you to specify the schema using the following options:

- **URL** - Allows you to specify or select a URL for the schema. It also keeps a history of the last used schemas. The URL must point to the schema file that can be loaded from the local disk or from a remote server through HTTP(S), FTP(S) or a custom protocol (on page 2610). You can specify the URL by using the text field, the history drop-down, the Insert Editor Variables (on page 276) button, or the browsing actions in the Browse drop-down list.

- **Schema type** - Select a possible schema type from this combo box that is populated based on the extension of the schema file that was entered in the URL field. The possible schema types are: XML Schema, DTD, Relax NG, Relax NG Compact, Schematron, or NVDL.

- **Embedded Schematron rules** - If you have selected XML Schema or Relax NG schemas with embedded Schematron rules and you want to use those embedded rules, select this option.
- **Extensions**: Opens a dialog box that allows you to specify [Java extension JARs](on page 3283) to be used during the validation.
- **Public ID**: Allows you to specify a public ID if you have selected a DTD.
- **Schematron phase**: If you select a Schematron schema, this drop-down list allows you to select a Schematron phase that you want to use for validation. The listed phases are defined in the Schematron document.

**Move Up**
Moves the selected scenario up one spot in the list.

**Move Down**
Moves the selected scenario down one spot in the list.

**Add**
Adds a new validation unit to the list.

**Remove**
Removes an existing validation unit from the list.

4. Configure any of the existing validation units according to the information above, and you can use the buttons at the bottom of the table to add, remove, or move validation units. Note that if you add a Schematron validation unit, you can also select the validation phase.

5. Press **Ok**.
   The newly created validation scenario is now included in the list of scenarios in the **Validation tab (on page 121)**. You can use the Default checkbox to specify that the new scenario be used as the default validation scenario when another specific scenario is not specified in the validation process.

Customizing Smart Paste Support

The **Smart Paste feature (on page 918)** preserves certain style and structure information when copying content from some of the most common applications and pasting into frameworks (document types) that support Smart Paste (on page 919) in Oxygen XML Editor. For other document types, the default behavior of the paste operation is to keep only the text content without the styling.

The style of the pasted content can be customized by editing an XSLT stylesheet for a particular document type (framework (on page 3282)). The XSLT stylesheet must accept an XHTML flavor of the copied content as input, and transform it to the equivalent XML markup that is appropriate for the target document type of the paste operation.
How to Customize the Smart Paste Mapping

To customize the mapping between the markup of the copied content and the markup of the pasted content for a particular document type, follow these steps:

1. Make sure the particular framework contains a folder named resources in the following path structure:

   /frameworks/[Document Type]/resources

2. Create an XSLT file named xhtml2content.xsl and save it in the resources folder for the particular framework.

   For example: /frameworks/[Document Type]/resources/xhtml2content.xsl

3. Add your customized styling in the XSLT file. A list of supported parameters can be found in the Supported Parameters for the Custom Smart Paste XSLT (on page 2345) section below.

   Tip: The built-in DITA framework includes an xhtml2ditaDriver.xsl file (in [OXYGEN_INSTALL_DIR]/frameworks/dita/resources) that imports various other stylesheets that apply cleanup and handle the conversion from the pasted HTML content to DITA. If you are using a custom extension of the DITA framework, you can copy the entire contents of the built-in dita/resources folder and customize the stylesheets according to your needs.

4. You can test modifications done in the stylesheet by pasting content without having to restart Oxygen XML Editor.

Result: When you paste content from external applications (such as a web browser or an Office document) to a document that is opened in Author mode, and that matches the particular framework, the styling from the xhtml2content.xsl stylesheet will be applied on the clipboard contents.

Customized Smart Paste Stylesheet Sample:

```xml
<xsl:stylesheet version="1.0"
  xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
  xmlns:xhtml="http://www.w3.org/1999/xhtml"
  xmlns="urn:hl7-org:v3"
  exclude-result-prefixes="xsl xhtml">

  <xsl:output method="xml" indent="no" omit-xml-declaration="yes"/>

  <xsl:template match="xhtml:b | xhtml:strong">
    <content styleCode="bold">
      <xsl:apply-templates select="@* | node()"></xsl:apply-templates>
    </content>
  </xsl:template>

</xsl:stylesheet>
```
Supported Parameters for the Custom Smart Paste XSLT

The following parameters can be used in your XSLT stylesheet for customizing the Smart Paste mechanism:

**inTableContext**

The custom XSLT stylesheet receives this parameter with a value of `true` if the end user is pasting content inside a table.

**folderOfPasteTargetXml**

A URL pointing to the folder where the current edited XML document is located. This is used to save images relative to the current XML document.

**context.path.names**

A sequence of element names showing the current context in the XML document where the paste occurred.

**context.path.uris**

A sequence of namespaces, one for each context path name.

**context.path.separator**

The separator between the path names. Its value can be used to split the context path names to a sequence.

By default, there is an extra check in place to ensure that the applied XSLT does not remove the original text from the pasted content. If there is a file called `externalPasteOptions.xml` in the `resources` folder, you can use it to specify the default behavior for checking if the XSLT stylesheet loses content during conversion:

```xml
<!-- Options that control external paste
```
Customizing Author Mode Using CSS Files Associated with a Framework

The easiest way to customize the main (on page 3284) CSS stylesheet of a framework (on page 3282) is to create a new stylesheet, save it as an alternate (on page 3279) CSS file that will be applied as an additional layer to the main CSS, and then select it from the Styles drop-down menu in Author mode.

For example, suppose that you want to customize the main CSS for DITA documents. To do this, follow these steps:

1. First, create a new CSS stylesheet and save it in the /frameworks/dita/css/edit folder (where the default main stylesheet named style-basic.css is located).

2. Edit the DITA framework and go to the CSS subtab (on page 101):
   a. Open the Preferences dialog box (Options > Preferences) (on page 79) and go to Document Type Association.
   b. Select the DITA document type and press the Edit button.

   **Tip:** If you do not have write permissions to modify the document type, use the Extend button to create an extension of the framework.

   a. Go to the CSS subtab of the Author tab.

Figure 713. CSS Subtab of the Document Type Association Author Tab
3. Add the new stylesheet as an *alternate* CSS stylesheet:
   a. Click the **Add** button to open a dialog box that allows you to specify the URI and Title for your newly created stylesheet.
   b. Select the **Alternate** option to define it as an *alternate* stylesheet that will be applied as an additional layer to the *main* CSS.

![Figure 714. Add CSS Dialog Box](image)

4. Press **OK** in all the dialog boxes to validate the changes.

5. Select your newly created CSS stylesheet from the **Styles** drop-down menu on the toolbar in **Author** mode.
   
   You can now edit DITA documents based on the new CSS stylesheet. You can also edit the new CSS stylesheet itself and see its effects on rendering DITA documents in the **Author** mode by using the **Refresh** action that is available on the **Author** toolbar and in the **DITA** menu.

   **Related Information:**
   ```
   • Configuring and Managing Multiple CSS Styles for a Framework (on page 2348)
   ```
Configuring and Managing Multiple CSS Styles for a Framework

Oxygen XML Editor provides a Styles drop-down menu on the toolbar that allows you to select one main (non-alternate) CSS style and multiple alternate CSS styles. This makes it easy to change the look of the document as it appears in Author mode and the output without having to continually edit the CSS stylesheets.

An example of a common use case is when content authors want to use custom styling within a document. You can select a main CSS stylesheet that styles the whole document and then apply alternate styles, as layers, to specific parts of the document.

Managing the CSS Styles

The main and alternate styles that are listed in the Styles drop-down menu can be controlled in the Document Type configuration dialog box. To access it, follow these steps:

1. Open the Preferences dialog box.
2. Go to Document Type Association.
3. Select the appropriate document type and press the Edit button.

Important: If you do not have access rights to the folder where the framework files are stored, you can either elevate read/write permissions on that framework folder or you can extend the framework and customize the CSS stylesheets in the extension. If you want to share the customized extension with the rest of your team, see Sharing the Extended Framework.

The CSS styles (CSS files) associated with the particular document type are listed in the CSS subtab of the Author tab.

Figure 715. Main and Alternate CSS Styles in the Document Type Configuration Dialog Box
You can **Add**, **Edit**, or **Delete** styles from this dialog box to manage the *main (on page 3284)* and *alternate (on page 3279)* styles associated to the particular document type. You can also change the order of the styles by using the **Move Up** and **Move Down** buttons. This will also change the order that they appear in the **Styles** drop-down menu. The *alternate* styles are combined with the *main* CSS sequentially, in the order that they appear in this list. Therefore, if the same style rules are included in multiple CSS files, the rules that are defined in the last *alternate* style in this list will take precedence, since it is the last one to be combined (applied as a layer).

The **URI** column shows the path of each CSS file. The names listed in the **Styles** drop-down menu match the values in the **Title** column. The value in the **Alternate** column determines whether it is a *main* or *alternate* CSS. If the value is *no* it is a *main* CSS. If the value is *yes* it is an *alternate* CSS and the style can be combined with a *main* CSS or other *alternate* styles when using the **Styles** drop-down menu.

**Note:** To group alternate styles into categories (submenus), use a vertical bar character (|) in the **Title** column. You can use multiple vertical bars for multiple submenus. The text before each vertical bar will be rendered as the name of a submenu entry in the **Styles** drop-down menu, while the text after the final vertical bar will be rendered as the name of the style inside the submenu.
Example: Suppose that you want to add two alternate stylesheets in separate submenus, with the Title column set to My Styles|User Assistance|Hints and My Styles|User Actions|Inline Actions, respectively.

Oxygen XML Editor will add a My Styles submenu with two submenus (User Assistance that contains the Hints style, and User Actions that contains the Inline Actions style) in the Styles drop-down menu.

The Enable multiple selection of alternate CSSs checkbox (on page 101) at the bottom of the pane must be selected for the alternate CSS styles (on page 3279) to be combined. They are applied like layers and you can activate any number of them. If this option is not selected, the alternate styles are treated like main CSS styles (on page 3284) and you can only select one at a time. By default, this option is selected. There are also a few options that allow you to specify how to handle the CSS if there are CSS styles specified in the document. You can choose to ignore or merge them.

The following rules apply for merging CSS styles:

- CSS files with the same title will be merged.
- CSS files without a title will contribute to all others.
- They are merged sequentially, in the order that they appear in the list.

Using the Styles Drop-down Menu

You can use the Styles drop-down menu to select a main css style (on page 3284) that applies to the whole document and then select one or more alternate css styles (on page 3279) that behave like layers and are merged sequentially with the main style. Each of the styles that are listed in this drop-down menu have a corresponding CSS file that defines how your documents are rendered in Author mode and in the output. Also, the selections from this drop-down menu are persistent, meaning that Oxygen XML Editor will remember them when subsequent documents are opened.

Main CSS Style

The main styles are listed in the top section and each of their corresponding CSS files are primarily used to render basic things such as the font and background of the document. You can only select one main style at a time.

Alternate CSS Styles
The alternate styles are listed in the bottom section and their corresponding CSS files are used to render numerous different types of things in the document as they are merged with the selected main styles. You can select as many alternate styles as you wish. If you are unsure about how each of the styles with change the look of your documents based solely upon their name, there is no harm in selecting them to see the difference. You can simply deselect them to revert to the previous look.

**Note:** If you deselect the Enable multiple selection of alternate CSSs option (on page 101) in the CSS subtab of the Document Type configuration dialog box (on page 95), the alternate styles are treated like main CSS styles and you can only select one at a time.

**EXAMPLE: CSS Styles in DITA**

Oxygen XML Editor comes with a set of built-in CSS layer stylesheets for DITA documents (as well as some that are specifically for DITA maps (on page 3281)). In the subsequent figure, a DITA document has the Century style selected for the main CSS style and the alternate styles Full width, Show table column specification, Hints, and Inline actions are combined for additive styling to specific parts of the document.

**Tip:** The Hints style displays tooltips throughout DITA documents that offer additional information to help you with the DITA structure. The Inline actions style displays possible elements that are allowed to be inserted at various locations throughout DITA documents.

Figure 716. Styles Drop-down Menu in a DITA Document
Customizing the Content Completion Assistant

Oxygen XML Editor gathers information from the associated schemas (DTDs, XML Schema, RelaxNG) to determine the proposals that appear in the Content Completion Assistant (on page 3280). Oxygen XML Editor also includes support that allows you to customize the Content Completion Assistant to suit your specific needs.

There are two ways to customize the Content Completion Assistant in Oxygen XML Editor:

- You can add, modify, or remove actions that are proposed for each particular document type (framework (on page 3282)) by using the Content Completion subtab in the Document Type Association configuration dialog box (on page 116). To access this subtab, open the Preferences dialog box (Options > Preferences) (on page 79), go to Document Type Association, use the New, Edit, Duplicate, or Extend button (on page 92), click on the Author tab, and then the Content Completion subtab.

- You can use a cc_config.xml configuration file that is specific to each document type (framework) to configure the values that are proposed in certain contexts, to customize the attributes or elements that are proposed, or to customize how certain aspects of the proposals are rendered in the interface. The rest of the topics in this section explain how you can use this configuration file to customize the content completion.

Configuring the Proposals for Elements and Attributes

There are many cases where elements have a relaxed content model and can accept a large number of child elements. For example, the DITA list item element (li) accepts more than 60 child elements. Oxygen XML Editor includes support to allow the content architect to put some constraints on the possible elements or attributes, or to impose some best practices in the way content is edited.

For an example of a specific use-case, suppose that you want to restrict DITA list item elements (li) to only accept paragraph elements (p). In this case, the Content Completion Assistant (on page 3280) should not offer any element other than a paragraph (p) when a list item (li) is inserted into a document. It would also be helpful if the required child element (p) was automatically inserted whenever a list item (li) is inserted.
One method of changing the content model is to alter the element definition in the associated schema (XML Schema, DTD, RelaxNG), but this may be quite complicated in some cases. Fortunately, Oxygen XML Editor offers a simple, alternative method of using a configuration file to customize the content completion proposals for each element.

Setting up the Content Completion Configuration File

To customize the configuration file for the Content Completion Assistant (on page 3280), follow these steps:

1. Create a new resources folder (if it does not already exist) in the frameworks directory for the particular document type (for example, OXYGEN_INSTALL_DIR/frameworks/dita/resources).
2. Open the Preferences dialog box (Options > Preferences) (on page 79) and go to Document Type Association. Select the particular document type, click the Edit button, and in the Classpath tab (on page 99) add a link to that resources folder (if it does not already exist).
3. Create a new configuration file or edit an existing one.
   a. To easily create a new configuration file, you can use the Configuration document template that is included in Oxygen XML Editor (File > New > Framework templates > Oxygen Extensions > Content Completion Configuration). The document template includes details about how each element and attribute is used in the configuration file.
   b. If a configuration file (cc_config.xml) already exists for the particular document type (in the resources folder), you can modify this existing file.
4. Make the appropriate changes to your custom configuration file.
5. Save the file in the resources folder for the particular document type, using the fixed name: cc_config.xml (for example, OXYGEN_INSTALL_DIR/frameworks/dita/resources/cc_config.xml).
6. Restart the application and open an XML document. In the Content Completion Assistant you should see your customizations.

Tip: In some cases, you can simply use the Refresh (F5) action to test your customizations, without having to restart the application.

Configuring Elements or Attributes that are Proposed for Each Element

For the purposes of customizing the elements or attributes that are proposed for each individual element, the configuration file (cc_config.xml) uses elementProposals elements. This element allows you to customize or filter the child elements and attributes for an element.
Warning: Note that you can only choose elements or attributes that are already allowed by the schema in a particular context. For example, you cannot specify an element that is not allowed by the schema as a child of a particular node.

Elements:

To control the elements that are proposed for an element, you can use the following attributes for the `elementProposals` element:

- **path** - A path within the document that matches the element that will have its content completion proposals changed. For example, `"title"` matches all the `title` elements in the document, while `"chapter/title"` matches only the `title` elements that are direct children of the `chapter` element. You can use simplified forms of XPath in this attribute.

The XPath expressions can accept multiple attribute conditions and inside each condition you can use AND/OR boolean operators and parentheses to override the priority.

You can use one or more of the following attribute conditions (default attribute values are not taken into account):

- `element[@attr]` - Matches all instances of the specified element that include the specified attribute.
- `element[not(@attr)]` - Matches all instances of the specified element that do not include the specified attribute.
- `element[@attr = "value"]` - Matches all instances of the specified element that include the specified attribute with the given value.
- `element[@attr != "value"]` - Matches all instances of the specified element that include the specified attribute and its value is different than the one given.

Example: The following are examples of how you could use multiple boolean operators and parentheses inside an attribute condition:

```
*[@a and @b or @c and @d]
*[@a and (@b or @c) and @d]
```

The following are just examples of how simplified XPath expressions might look like:

- `elementName`
- `/elementName`
- `/elementName1/elementName2/elementName3`
- `//xs:localName`

Note: Using a namespace prefix requires that you declare it in the configuration file. For example:

```
<elementProposals xmlns:db5="http://docbook.org/ns/docbook"
    path="db5:listitem" insertElements="db5:para" />
```
- `//xs:documentation[@lang="en"]`
Note: If the path attribute is missing, the customization will apply to the proposals for all elements. You can intentionally omit this attribute and use possibleElements (on page 2355) or rejectElements (on page 2355) to specify or restrict particular elements for a framework (on page 3282).

For example, suppose that in your DITA documents, you want to restrict your users from using image and fig elements because you do not want images to be included in your output. The configuration file should look like this:

```
<elementProposals rejectElements="image fig" />
```

Since the path attribute is missing, the specified element will be filtered out from the proposals for the entire framework.

- insertElements - A space-separated sequence of child element names. Each time the element specified in the path attribute is inserted into the document, these child elements will also be inserted in the order that they are listed. For example, insertElements="b i" will insert exactly one b element, followed by an i element. An empty value ("") means that no child elements should be inserted.

  Note: If this attribute is missing, the default required child elements will be inserted, as specified in the associated schema for the document.

- possibleElements - A space-separated list of element names that will be shown in the content completion list when invoked inside an element that is specified in the path attribute. For example, "b i codeph ph" means that the Content Completion Assistant will contain these four elements when invoked on the element specified in the path attribute. The following other possible values are also supported:

  - **NONE** - There will be no proposals in the content completion list.
  - **ALL** - All the possible elements specified in the associated schema will be presented in the content completion list. This is also the default behavior if this attribute is missing.
  - **INSERTED** - The proposals will be the same list of elements that are defined in the insertElements attribute.

When using this attribute to specify multiple elements, only use one entry with the element names separated by a space:

```
<elementProposals possibleElements="b i codeph ph" />
```

- rejectElements - A space-separated list of element names that will be filtered out from the list of proposals that are presented in the content completion list. Each time the element specified in the path attribute is inserted into the document, the list of proposals in the Content Completion Assistant will include the entries that are defined in the associated schema, minus the elements specified in this attribute.
This setting also influences copy/paste and insertion behaviors. For example, if you reject the insertions of images in paragraphs and you try to paste an image inside a paragraph, by default the application will take your choice into account and try to insert the image in a place where it is allowed.

When using this attribute to specify multiple elements, only use one entry with the element names separated by a space:

```
<elementProposals rejectElements="image fig imagemap foreign" />
```

**Attributes:**

To control the attributes that are proposed for an element, you can use the following attributes for the `elementProposals` element:

- **path** - A path within the document that matches the element that will have its attribute proposals changed. For example, "title" matches all the `title` elements in the document, while "chapter/title" matches only the `title` elements that are direct children of the `chapter` element. You can use simplified forms of XPath in this attribute. For examples of such forms of XPath expressions, see the note in XML Preferences (on page 162).

  **Note:** If this attribute is missing, the customization will apply to the proposals for all elements. You can intentionally omit this attribute and use `possibleAttributes` (on page 2357) or `rejectAttributes` (on page 2357) to specify or restrict attributes for an entire framework.

For example, suppose that you only want to allow a limited set of attributes in a customized `framework`. The configuration file should look like this:

```
<elementProposals possibleAttributes=""
  id domains href scope format type conref
  props keyref class"/>
```

Since the `path` attribute is missing, this applies to the entire `framework` and only the specified attributes will be proposed.

- **insertAttributes** - A space-separated sequence of attribute names that will be inserted along with the element.

```
<elementProposals path="ol/li" insertAttributes="product platform"/>
```

- **insertAttribute** - This is similar to the preceding attribute, but this one also allows you to specify a value for the attribute that will be inserted. This attribute should be used like this:

```
<elementProposals path="ol/li">
  <insertAttribute name="platform" value="test"/>
```

• possibleAttributes - A space-separated list of attribute names that will be shown in the content completion list when invoked inside an element that is specified in the path attribute.

When using this attribute to specify multiple attributes, only use one entry with the attribute names separated by a space:

```xml
<elementProposals possibleAttributes="scope format type" />
```

• rejectAttributes - A space-separated list of attribute names that will be filtered out from the list of proposals that are presented in the content completion list. Each time the element specified in the path attribute is inserted into the document, the list of proposals in the Content Completion Assistant will include the entries that are defined in the associated schema, minus the attributes specified in this attribute.

When using this attribute to specify multiple attributes, only use one entry with the attribute names separated by a space:

```xml
<elementProposals rejectAttributes="importance platform product" />
```

### Other Important Notes About the Configuration File

⚠️ **Important:**

- By default, the element names that do not have a namespace prefix are considered from no-namespace. Consider declaring the namespace mapping on the root of the configuration file and prefixing the element names from the elementPath and model attributes.
- This configuration file only affects the content completion assistance. It has no effect on validation or operations invoked from other areas in the interface (such as the toolbar or menus).
- To test the effects of your changes, you should restart the application, although in some cases, you can simply use the **Refresh (F5)** action to test your customizations.
- When an XML element from the document is matched against a list of configured elementProposals, the first one in sequence takes precedence. Therefore, make sure you place the more specific elementProposals (those with a longer path) first in your configuration file.
- Regular expression patterns can be used in the following attributes: possibleElements, rejectElements, possibleAttributes, and rejectAttributes. For example, code*, *block, con*ref, _*.  
- Only simple recursion cases are detected and avoided by the editor, and logged to the console. Therefore, if complex elementProposals patterns are defined, you should avoid infinite recursions.
Examples: Configuring the Element Proposals

• Example 1: Automatically Insert Elements

Suppose that you want to automatically insert a paragraph element (p) whenever a DITA ordered list item element (ol/li) is inserted, and also to not allow any other element besides a paragraph inside the ordered list items.

To achieve this, the configuration file should include the following:

```xml
<elementProposals path="ol/li" insertElements="p"
    possibleElements="_INSERTED_"/>
```

Tip: This particular example modifies an action that inserts a list in a DITA document. There are several ways to invoke this action in the interface. For example, there is a toolbar button and an action in the DITA menu that inserts a list. However, since the configuration file only affects the Content Completion Assistant, this modification will have no effect on the behavior of the toolbar or menu action. Those actions would need to be configured separately if you want the result to be the same as the content completion proposal. For more information, see Configuring Actions, Menus, Toolbars, Content Completion for a Framework (on page 2323).

• Example 2: Insert Complex Element Structure

For a more complex example, suppose that you want to insert a complex structure whenever a DITA prolog element is inserted.

For instance, if you need to insert the following structure inside prolog elements:

```xml
<prolog>
    <author/>
    <metadata>
        <keywords>
            <keyword/>
            <keyword/>
        </keywords>
    </metadata>
</prolog>
```

The configuration file should include the following:

```xml
<elementProposals path="prolog" insertElements="author metadata"/>
<elementProposals path="prolog/metadata" insertElements="keywords"/>
<elementProposals path="prolog/metadata/keywords"
    insertElements="keyword, keyword"/>
```
Example 3: Limit Possible Elements

Suppose that you also want to limit the proposals for the `keywords` element to only allow the user to insert `audience` or `keyword` elements. The configuration file should include the following:

```xml
<elementProposals path="prolog/metadata" insertElements="keywords"
                  possibleElements="audience keywords"/>
```

Suppose that you want to simply restrict your users from inserting `image` elements inside DITA list item elements (`li`), but still propose all the other elements that are defined in the associated schema. The configuration file should look like this:

```xml
<elementProposals path="li" rejectElements="image"/>
```

Examples: Configuring the Attributes Proposals

Example 1: Automatically Insert Attributes

Suppose that you want to insert an `id` attribute (with an empty value) whenever a DITA list item element (`li`) is inserted. The configuration file should include the following:

```xml
<elementProposals path="li" insertAttributes="id"/>
```

Example 2: Limit Possible Attributes

Suppose that you also want to limit the number of choices for attributes that are presented to the user whenever a DITA list item element (`li`) is inserted. The configuration file should look like this:

```xml
<elementProposals path="li" insertAttributes="id"
                  possibleAttributes="id product platform audience"/>
```

Suppose that you want to simply restrict your users from inserting `conref` attributes inside DITA topics (`topic` element), but still propose all the other attributes that are defined in the associated schema. The configuration file should look like this:

```xml
<elementProposals path="topic" rejectAttributes="conref"/>
```

Related Information:

- Configuring the Proposals for Attribute and Element Values (on page 2360)
Configuring the Proposals for Attribute and Element Values

Oxygen XML Editor includes support for configuring the proposed values that appear in the Content Completion Assistant (on page 3280). To do so, a configuration file is used, along with the associated schema, to add or replace possible values for attributes or elements that are proposed in the Content Completion Assistant.

For an example of a specific use-case, suppose that you want the Content Completion Assistant to propose several possible values for the language code when you use an xml:lang attribute.

Setting up the Content Completion Configuration File

To customize the configuration file for the Content Completion Assistant (on page 3280), follow these steps:

1. Create a new resources folder (if it does not already exist) in the frameworks directory for the particular document type (for example, OXYGEN_INSTALL_DIR/frameworks/dita/resources).
2. Open the Preferences dialog box (Options > Preferences) (on page 79) and go to Document Type Association. Select the particular document type, click the Edit button, and in the Classpath tab (on page 99) add a link to that resources folder (if it does not already exist).
3. Create a new configuration file or edit an existing one.
   a. To easily create a new configuration file, you can use the Content Completion Configuration document template that is included in Oxygen XML Editor (File > New > Framework templates > Oxygen Extensions > Content Completion Configuration). The document template includes details about how each element and attribute is used in the configuration file.
   b. If a configuration file (cc_config.xml) already exists for the particular document type (in the resources folder), you can modify this existing file.
4. Make the appropriate changes to your custom configuration file.
5. Save the file in the resources folder for the particular document type, using the fixed name: cc_config.xml (for example, OXYGEN_INSTALL_DIR/frameworks/dita/resources/cc_config.xml).
6. Restart the application and open an XML document. In the Content Completion Assistant you should see your customizations.

Tip: In some cases, you can simply use the Refresh (F5) action to test your customizations, without having to restart the application.
**Configuring Proposed Values**

For the purposes of adding or replacing the values that are proposed, the configuration file (`cc_config.xml`) includes a series of `match` instructions that will match an element or attribute name. You also have the possibility of using an attribute called `editable` on the `match` element to specify the editable state of the attribute values, as reflected in the Attributes view (on page 426) and the In-place Attributes Editor (on page 429). The possible values for the `editable` attribute are:

- **true** - The attribute values can be edited by choosing from a combo box or manually providing a value.
- **false** - The attribute values cannot be edited.
- **onlyAllowedItems** - The attribute values can be edited, but only by choosing from a list of proposed values, in a non-editable combo box.

A new value is specified inside one or more `item` elements, which are grouped inside an `items` element. The behavior of the `items` element is specified with the help of the `action` attribute, which can have any of the following values:

- **append** - Adds new values to appear in the proposals list (default value).
- **addIfEmpty** - Adds new values to the proposals list only if no other values are contributed by the schema.
- **replace** - Replaces the values contributed by the schema with new values to appear in the proposals list.

The values in the configuration file can be specified either directly or by calling an external XSLT file that will extract data from an external source.

**Other Important Notes About the Configuration File**

⚠️ **Important:**

- This configuration file only affects the content completion assistance, not validation.
- To test the effects of your changes, you should restart the application.

**Example: Specifying Values Directly**

If you want to specify the values directly, the configuration file should look like this:

```xml
<match elementName="lg" elementNS="http://www.oxygenxml.com/ns/samples">
    <!-- Replaces the values for an element with the local name "lg",
    from the given namespace -->
</match>
```
Example: Calling an External XSLT Script

If you want to collect values from an external XSLT script, the configuration file should include something like this:

```xml
<xslt href="../xsl/get_values_from_db.xsl" useCache="false" action="replace"/>
```

In this example, the `get_values_from_db.xsl` is executed to extract values from a database.

**Tip:** You can use `xsl:message` as a debugging mechanism. These messages are presented in the results area at the bottom of the application whenever the Content Completion Assistant is invoked.

**Note:** A comprehensive XSLT sample is included in the Content Completion Configuration document template (in the Framework Templates > Oxygen Extensions section of the New document wizard (on page 676)).

Configuring Proposed Values in the Context Where the Content Completion was Invoked

**Web Author Customization Note:** This particular scenario is not supported for an Oxygen XML Web Author customization.

A more complex scenario is if you want to choose the possible values to propose, depending on the context of the element in which the content completion was invoked.
Suppose that you want to propose certain possible values for one property (for example, color) and other values for another property (for example, shape). If the property represents a color, then the values should represent applicable colors, while if the property represents a shape, then the values should represent applicable shapes. See the following code snippets:

Your main document:

```xml
<sampleArticle>
    <!-- The possible values for @value should be "red" and "blue" -->
    <property name="color" value=""/>
    <!-- The possible values for @value should be "square" and "rectangle" -->
    <property name="shape" value=""/>
</sampleArticle>
```

The content completion configuration file:

```xml
<config xmlns="http://www.oxygenxml.com/ns/ccfilter/config">
    <match elementName="property" attributeName="value">
        <xslt href="get_values.xsl" useCache="false" action="replace"/>
    </match>
</config>
```

The stylesheet that defines the possible values based on the context of the property on which the content completion was invoked:

```xml
<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
                 xmlns:xs="http://www.w3.org/2001/XMLSchema"
                 xmlns:saxon="http://saxon.sf.net/"
                 exclude-result-prefixes="xs"
                 version="2.0">

    <xsl:param name="documentSystemID" as="xs:string"/>
    <xsl:param name="contextElementXPathExpression" as="xs:string"/>

    <xsl:template name="start">
        <xsl:apply-templates select="doc($documentSystemID)/"/>
    </xsl:template>

    <xsl:template match="/">
        <xsl:variable name="propertyElement"
                      select="saxon:eval(saxon:expression($contextElementXPathExpression, ./*))"/>
    </xsl:template>
```
The **contextElementXPathExpression** parameter will be bound to an XPath expression that identifies the element in the context for which the content completion was invoked.

**Related Information:**

- Configuring the Proposals for Elements and Attributes *(on page 2352)*
- Customizing the Rendering of Elements *(on page 2364)*

**Customizing the Rendering of Elements**

In addition to the support for configuring the proposals that appear in the **Content Completion Assistant**(on page 3280), Oxygen XML Editor also includes support for customizing how the elements are rendered. You can do this by using the **XMLNodeRendererCustomizer** API extension *(on page 2431)*, but you can also use the same configuration file that is used to configure the content completion proposals.

For an example of a specific use-case, suppose that in DITA you want the names of paragraph elements (`p`) to be rendered as **“Paragraph”** instead of **“p”** in the various components in **Author** mode (such as in the **Outline view** *(on page 347)*, **Elements view** *(on page 432)*, **Attributes view** *(on page 426)*, and the breadcrumb navigation bar). To achieve this, you can use the **elementRenderings** element in the configuration file.

**Setting up the Content Completion Configuration File**

To customize the configuration file for the **Content Completion Assistant** *(on page 3280)*, follow these steps:
1. Create a new resources folder (if it does not already exist) in the frameworks directory for the particular document type (for example, OXYGEN_INSTALL_DIR/frameworks/dita/resources).

2. Open the Preferences dialog box (Options > Preferences) (on page 79) and go to Document Type Association. Select the particular document type, click the Edit button, and in the Classpath tab (on page 99) add a link to that resources folder (if it does not already exist).

3. Create a new configuration file or edit an existing one.
   a. To easily create a new configuration file, you can use the Content Completion Configuration document template that is included in Oxygen XML Editor (File > New > Framework templates > Oxygen Extensions > Content Completion Configuration). The document template includes details about how each element and attribute is used in the configuration file.
   b. If a configuration file (cc_config.xml) already exists for the particular document type (in the resources folder), you can modify this existing file.

4. Make the appropriate changes to your custom configuration file.

5. Save the file in the resources folder for the particular document type, using the fixed name: cc_config.xml (for example, OXYGEN_INSTALL_DIR/frameworks/dita/resources/cc_config.xml).

6. Restart the application and open an XML document. In the Content Completion Assistant you should see your customizations.

   **Tip:** In some cases, you can simply use the Refresh (F5) action to test your customizations, without having to restart the application.

### Changing the Rendering of Elements (Their Names, Annotations, and Icons)

For the purposes of customizing how the content completion elements are rendered, you can use the render element inside a elementRenderings element to specify how element names, their annotations, and their icons are rendered.

The elementRenderings element supports the platform attribute, which can have one of the following values:

- **webapp**
  
  The element renderings are only applied to Oxygen XML Web Author.

- **standalone**
  
  The element renderings are only applied to standalone distributions of Oxygen.

- **eclipse**
  
  The element renderings are only applied to Eclipse plugin distributions of Oxygen.
Note: If the platform attribute is missing, the element renderings are applied to all types of distributions.

You can use the following attributes for the render element:

element

Identifies the element to be customized, in the form of a qualified name. If it does not have a prefix, it is considered to be from noNamespace.

as

Provides the name (label) that will be displayed for the element in various components in Author mode (the Content Completion Assistant, the breadcrumb navigation bar, the Full Tags display mode (on page 441), and the Outline (on page 347), Elements (on page 432), and Attributes (on page 426) views). This attribute is optional. If it is missing, the name of the element is used.

If you want to translate this label into another language, use the $i18n(key_name) editor variable (on page 282). The following code snippet shows how the DITA paragraph elements (p) can be translated:

```xml
<elementRenderings>
  <render element="p" as="$i18n(cc_p)"/>
</elementRenderings>
```

Note: The cc_p id is a key that identifies the translations available for the paragraph element.

iconPath

Optional attribute that specifies the icon for the element. This is shown in the Content Completion Assistant and the Outline view (on page 347) in Author mode. If it is a relative path, the full path of the icon image file will be computed starting from the directory of the configuration file (for example, a value of "myImg.png" will cause Oxygen XML Editor to load "frameworks/$ {framework}/resources/myImg.png"). If you want to access a built-in resource, the value can begin with a forward slash "/", and the image file will be searched for in the Oxygen XML Editor classpath resources (for example, "/images/OrderedList16.png" will load an icon from the built-in Oxygen XML Editor JAR file resources.

xml:lang (Deprecated)

It is recommended to use the $i18n(key_name) editor variable (on page 282) instead. Optional attribute that could be used to render the same element differently, depending on the language. If there are multiple render elements for the same element attribute (element name) and the xml:lang attribute is missing on one of them, that one will
be considered the default fallback value to be used if none of the others match the language specified in the interface.

**Note:** The default entry should be listed first, since the application tries to match them in sequence and the last match found is the one that is used.

For example, suppose that you want the name of DITA paragraph elements (\texttt{p}) to be rendered as "Paragraphe" if the language is French, "Absatz" if the language is German, and "Paragraph" if the language is English (or any other language). Your configuration file should look something like this:

```xml
<elementRenderings>
  <render element="p" as="Paragraph"/>
  <render element="p" as="Paragraphe" xml:lang="fr"/>
  <render element="p" as="Absatz" xml:lang="de"/>
</elementRenderings>
```

You can also use the configuration file to customize the annotations for elements. For this purpose, the \texttt{render} element also accepts the following element to change the tooltip annotations for an element (in both \textbf{Author} mode and \textbf{Text} mode):

```xml
annotation
```

This element can be used within the \texttt{render} element to customize the tooltip annotations that are displayed for the element in various components in \textbf{Author} mode (such as tooltips shown in the \textit{Content Completion Assistant} documentation window, the breadcrumb navigation bar, the \textbf{Full Tags} display mode \textit{(on page 441)}, and the \textbf{Outline} \textit{(on page 347)}, \textbf{Elements} \textit{(on page 432)}, \textbf{Attributes} \textit{(on page 426)} views), as well as the tooltips that are displayed when you hover over elements in \textbf{Text} mode. You can use HTML content to style the annotations (see the example below \textit{(on page 2368)}).

**Note:** If this element is missing, the styling for the annotations for that element is collected from the associated schema \textit{(on page 925)}.

**Tip:** The annotations can also be translated in the configuration file. For example:

```xml
<elementRenderings>
  <render element="p" as="${i18n(cc_p)}">
    <annotation>${i18n(cc_p)}</annotation>
  </render>
</elementRenderings>
```
Other Important Notes About the Configuration File for Rendering Elements

⚠️ Important:

- This configuration file only affects the content completion assistance, not validation.
- To test the effects of your changes, you should restart the application, although in some cases, you can simply use the Refresh (F5) action to test your customizations.
- If the framework (on page 3282) has an associated style guide, then the annotations defined in the configuration file will take precedence over those defined in the style guide. To check to see if your framework uses a style guide, look for the following folder: ${oXygenInstallDir}frameworks/${framework}/styleguide/. If that folder exists, it is recommended that you make your annotation changes directly in the style guide, rather than in the configuration file.
- If an XMLNodeRendererCustomizer API extension (on page 2431) has been implemented for the framework and a configuration file is also used, the rendering customization for an element will be the result of merging the two. For example, if the XMLNodeRendererCustomizer implementation customizes the element name, while the configuration file specifies an icon for the element, the properties of both customizations will be rendered. However, if both implementations define the same property (for example, both specify the rendering of an element name), the customizations defined in the configuration file take precedence.
- The rendering customizations defined in the configuration file also apply to aspects of the Oxygen XML Web Author interface.

Example: Changing the Rendering of an Element

Suppose that you want to render the name of the DITA title element to begin with a capital letter, use a custom icon for it, and provide specific documentation for that element in the various components in Author mode. The configuration file should look like this:

```xml
<elementRenderings>
  <render element="title" as="Title" iconPath="cimg/AcceptAll16.png">
    <annotation>
      <html xmlns="http://www.w3.org/1999/xhtml">
        <head>
          <title>Documentation for the Title Element</title>
        </head>
        <body>
          <p>A <i>heading</i> or <b>label</b> for the main parts of a topic</p>
        </body>
      </html>
    </annotation>
  </render>
</elementRenderings>
```
Customizing Annotations in the Content Completion Assistant

Oxygen XML Editor gathers documentation from the associated schemas (DTD, XML Schema, RelaxNG) and presents it for each element or attribute. For example, if you open the Content Completion Assistant (on page 3280) for a recognized XML vocabulary, documentation is displayed for each element provided by the associated schema. Similar information is displayed when you hover over tag names presented in the Elements view (on page 432). If you hover over attributes in the Attributes view (on page 426) you also see information about each attribute, gathered from the same schema.

If you have a framework configuration (on page 95) set up for your XML vocabulary, there is a special XML configuration file that can be added to provide additional documentation information or links to additional information for certain elements and attributes.

To provide this additional information in the Content Completion Assistant, follow these steps:

1. Create a new folder in the configuration directory for the document type.  
   **Example:** OXYGEN_INSTALL_DIR/frameworks/dita/styleguide

2. Use the New document wizard to create a file using the Content Completion Styleguide document template (in the Framework Templates > Oxygen Extensions section).

3. Save the file in the folder created in step 1, using the fixed name: 
   contentCompletionElementsMap.xml.
4. Open the Preferences dialog box (Options > Preferences) (on page 79), go to Document Type Association, and edit the document type configuration for your XML vocabulary. Now you need to indicate where Oxygen XML Editor will locate your mapping file by doing one of the following:
   - In the Classpath tab add a link to the newly created folder.
   - In the Catalogs tab add a new catalog file (on page 1123). The selected file needs to contain the following:

   ```xml
   <?xml version="1.0" encoding="UTF-8"?>
   <!DOCTYPE catalog PUBLIC "-//OASIS//DTD XML Catalogs V1.1//EN" "http://www.oasis-open.org/committees/entity/release/1.1/catalog.dtd">
   <catalog xmlns="urn:oasis:names:tc:entity:xmlns:xml:catalog">
     <uri name="http://www.oxygenxml.com/{processed_dt_name}/styleguide/contentCompletionElementsMap.xml" uri="contentCompletionElementsMap.xml"/>
   </catalog>
   ```

   where `{processed_dt_name}` is the name of the document type in lower case and with spaces replaced by underscores.

   **Note:** If Oxygen XML Editor finds a mapping file in both locations, the one in the Catalogs tab takes precedence.

5. Make the appropriate changes to your custom mapping file.

   **Example:** You can look at how the DITA mapping file is configured: OXYGEN_INSTALL_DIR/frameworks/dita/styleguide/contentCompletionElementsMap.xml

   The associated XML Schema contains additional details about how each element and attribute is used in the mapping file.

6. Re-open the application and open an XML document.

   In the Content Completion Assistant (on page 3280), you should see the additional annotations for each element.

**Translating Annotations**

Annotations in the Content Completion Assistant can be displayed in various languages. Based on the language set for the interface, Oxygen XML Editor looks for several filename formats to determine the information to load for the content completion annotations. These files, that begin with the name `contentCompletionElementsMap`, are located in the styleguide folder for each built-in framework (for example, OXYGEN_INSTALL_DIR/frameworks/dita/styleguide).

For example, for English, the files are loaded in the following order (from specific to more general):
If you want the annotations to be displayed in another language, you need to create similar files for the particular language. For example, to show annotations in German, create a file with one of the following names (and store it in the styleguide folder for your framework):

• contentCompletionElementsMap_de_DE.xml
• contentCompletionElementsMap_de.xml

Related Information:

• Customizing the Rendering of Elements (on page 2364)

Sharing a Custom Framework

You can create a custom framework by extending a built-in document type (on page 2322) (such as DITA or DocBook) using the Document Type Association preferences page (on page 92), make modifications to it, and then share the extension with your team.

Sharing the Extended Framework

There are several ways that you can share the extended custom framework (on page 2322) with others:

• Distribute the extended framework along with a project by following these steps:
  1. In a location where you have full write access, create a folder for your project.
  2. Go to the Project view (on page 333) and create a project. Save it in the folder you created in step 1.
  3. Create a custom framework by extending an existing one (on page 2322), if you haven't already done so, and copy the custom framework directory to the folder you created in step 1. Make sure your custom framework directory includes any resources that are referenced in your framework (CSS files, new document templates, schemas used for validation, catalogs, etc.).
  4. Go to Options > Preferences > Document Type Association > Locations (on page 94) and select Project Options (on page 3286) at the bottom of the page.
5. In the **Additional frameworks directories** list, add an entry using the `${pd}` editor variable (*on page 282*) like this: `${pd}/custom_frameworks`.

6. You can then share the new project directory with other users. For example, you can commit it to your version control system and have them update their working copy. When they open the customized project file in their **Project view (on page 333)**, the new framework becomes available in the list of document types.

- **Pack and deploy the extended framework as an add-on (on page 2372).**
- **Distribute the directory of the extended framework (on page 2322)** to the other members of your team. They will simply copy that directory to their `/frameworks` directory. The new framework will be available in their list of document types when Oxygen XML Editor starts.

To test the extended framework, the other members of your team can check the list of document types in the **Document Type Association preferences page (on page 92)** to see if the framework is present and if it appears before the built-in frameworks (meaning that it has higher priority).

### Packing and Deploying Frameworks as Add-ons

#### Packing a Framework as an Add-on

This procedure is suitable for developers who want a better control over the **add-on (on page 3285)** package or those who want to automate some of the steps:

1. Pack the **full custom framework (on page 2322)** (or an extension of a framework) as a **ZIP file** or a **Java Archive (on page 3283)**. Note that you should pack the entire root directory not just its contents.

2. Digitally sign the package. Note that you can perform this step only if you have created a **Java Archive** at the previous step. You will need a certificate signed by a trusted authority. To sign the **JAR** you can either use the `jarsigner` command-line tool inside Oracle's Java Development Kit. ([JDK_DIR]/bin/jarsigner.exe) or, if you are working with **Apache Ant (on page 3279)**, you can use the `signjar` task (a front for the `jarsigner` command-line tool).

   **Note:** The benefit of having a signed add-on is that you can verify the integrity of the add-on issuer. If you do not have such a certificate you can generate one yourself using the `keytool` command-line tool. This approach is mostly recommended for tests since anyone can create a self signed certificate.

3. Create a descriptor file. You can use a template that Oxygen XML Editor provides. To use this template, go to **File > New** and select the **Oxygen add-ons update site** template. Once deployed, this descriptor file is referenced as **update site**.

   Alternatively, you can use the **Add-ons Packager** plugin by following this procedure:
1. Install the **Add-ons Packager** plugin following the procedure described in Installing Add-ons (on page 75).
2. Restart Oxygen XML Editor. If the add-on is correctly installed, the **Add-ons packager** toolbar action is available.
3. Invoke the **Add-ons packager** toolbar action and input the required information in the displayed dialog box.
4. Press **OK** to complete the packaging process.

**Deploying an Add-on**

To deploy an add-on, copy the ZIP or Java Archive (on page 3283) file and the descriptor file to an HTTP server. The URL to this location serves as the Update Site URL.

**Framework Customization Tutorial**

This section contains topics meant to provide a general tutorial for customizing a framework (on page 3282). It includes information about creating a basic document type association, some basic customizations, testing the configuration, packaging and deploying the custom framework, and more.

**Tip:** A sample framework customization package is available that you can dabble with and use to help you get started. It can be downloaded from: https://www.oxygenxml.com/php/get_oxygen_sample_framework.php. The package includes a sample CSS file, XSL file, schema files, document templates, an XML catalog file, custom icons, and other resources.

**Framework Customization Overview**

The most important elements of a document type customization are represented by an XML Schema to define the XML structure, the CSS to render the information and the XML instance template that links the first two together.

**XML Grammar**

To provide as-you-type validation and to compute valid insertion proposals, Oxygen XML Editor needs an XML grammar (XML Schema, DTD, or Relax NG) associated to the XML. The grammar specifies how the internal structure of the XML is defined. For information about associating a schema and how Oxygen XML Editor detects the schema, see Associating a Schema to XML Documents (on page 1112).

Consider a use-case in which several users are testing a system and must send report results to a content management system. The customization should provide a visual editor for this type of document. The following XML Schema, **test_report.xsd** defines a report with results of a testing
session. The report consists of a title, few lines describing the test suite that was run, and a list of test results (each with a name and a boolean value indicating if the test passed or failed).

```xml
<?xml version="1.0" encoding="UTF-8"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">
  <xs:element name="report">
    <xs:complexType>
      <xs:sequence>
        <xs:element ref="title"/>
        <xs:element ref="description"/>
        <xs:element ref="results"/>
      </xs:sequence>
    </xs:complexType>
  </xs:element>
  <xs:element name="title" type="xs:string"/>
  <xs:element name="description">
    <xs:complexType>
      <xs:sequence maxOccurs="unbounded">
        <xs:element name="line">
          <xs:complexType mixed="true">
            <xs:sequence minOccurs="0" maxOccurs="unbounded">
              <xs:element name="important" type="xs:string"/>
            </xs:sequence>
          </xs:complexType>
        </xs:element>
      </xs:sequence>
    </xs:complexType>
  </xs:element>
  <xs:element name="results">
    <xs:complexType>
      <xs:sequence maxOccurs="unbounded">
        <xs:element name="entry">
          <xs:complexType>
            <xs:sequence>
              <xs:element name="test_name" type="xs:string"/>
              <xs:element name="passed"/>
            </xs:sequence>
          </xs:complexType>
        </xs:element>
      </xs:sequence>
    </xs:complexType>
  </xs:element>
</xs:schema>
```
CSS Stylesheet

A set of rules must be defined for describing how the XML document is to be rendered in Author mode. This is done using Cascading Style Sheets (CSS). CSS is a language used to describe how an HTML or XML document should be formatted by a browser. CSS is widely used in the majority of websites.

The elements from an XML document are displayed in the layout as a series of boxes. Some of the boxes contain text and may flow one after the other, from left to right. These are called inline boxes. There are also other types of boxes that flow one below the other (such as paragraphs). These are called block boxes.

For example, consider the way a traditional text editor arranges the text. A paragraph is a block, because it contains a vertical list of lines. The lines are also blocks. However, blocks that contain inline boxes arrange its children in a horizontal flow. That is why the paragraph lines are also blocks, while the traditional "bold" and "italic" sections are represented as inline boxes.

The CSS allows us to specify that some elements are displayed as tables. In CSS, a table is a complex structure and consists of rows and cells. The table element must have children that have a table-row style. Similarly, the row elements must contain elements with a table-cell style.

To make it easy to understand, the following section describes how each element from a schema is formatted using a CSS file. Note that this is just one of infinite possibilities for formatting the content.

report

This element is the root element of a report document. It should be rendered as a box that contains all other elements. To achieve this the display type is set to block. Additionally, some margins are set for it. The CSS rule that matches this element is:

```css
report{
    display:block;
    margin:1em;
}
```
title

The title of the report. Usually titles have a large font. The block display is used so that the subsequent elements will be placed below it, and its font is changed to double the size of the normal text.

```css
title {
    display:block;
    font-size:2em;
}
```

description

This element contains several lines of text describing the report. The lines of text are displayed one below the other, so the description has the block display. Also, the background color is changed to make it standout.

```css
description {
    display:block;
    background-color:#EEEEFF;
    color:black;
}
```

line

A line of text in the description. A specific aspect is not defined and it just indicates that the display should be block style.

```css
line {
    display:block;
}
```

important

The important element defines important text from the description. Since it can be mixed with text, its display property must be set to inline. Also, the text is emphasized with bold to make it easier to spot.

```css
important {
    display:inline;
    font-weight:bold;
}
```

results
The `results` element displays the list of `test_names` and the results for each one. To make it easier to read, it is displayed as a `table`, with a green border and margins.

```css
results{
    display: table;
    margin: 2em;
    border: 1px solid green;
}
```

**entry**

An item in the `results` element. The results are displayed as a table so the entry is a row in the table. Thus, the display is `table-row`.

```css
entry {
    display: table-row;
}
```

**test_name, passed**

The name of the individual test, and its result. They are cells in the results table with the display set to `table-cell`. Padding and a border are added to emphasize the table grid.

```css
test_name, passed{
    display: table-cell;
    border: 1px solid green;
    padding: 20px;
}
passed{
    font-weight: bold;
}
```

The full content of the CSS file `test_report.css` is:

```css
report {
    display: block;
    margin: 1em;
}
description {
    display: block;
```
<table>
<thead>
<tr>
<th>test_name, passed</th>
</tr>
</thead>
<tbody>
<tr>
<td>display:table-cell;</td>
</tr>
<tr>
<td>border:1px solid green;</td>
</tr>
<tr>
<td>padding:20px;</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>passed</th>
</tr>
</thead>
<tbody>
<tr>
<td>font-weight:bold;</td>
</tr>
</tbody>
</table>
Note: You can edit attributes in-place in the Author mode using form-based controls (on page 915).

XML Instance Template

Based on the XML Schema and CSS file Oxygen XML Editor can help the content author in loading, editing, and validating the test reports. An XML document template must be created as a kind of skeleton that the users can use as a starting point for creating new test reports. The template must be generic enough and reference the XML Schema file and the CSS stylesheet.

This is an example:

```xml
<?xml version="1.0" encoding="UTF-8"?>
<report xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
    xsi:noNamespaceSchemaLocation="test_report.xsd">
    <title>Automated test report</title>
    <description>
        <line>This is the report of the test automatically ran. Each test suite is ran at 20:00h each day. Please <important>check</important> the failed ones!</line>
    </description>
    <results>
        <entry>
            <test_name>Database connection test</test_name>
            <passed>true</passed>
        </entry>
        <entry>
            <test_name>XSLT Transformation test</test_name>
            <passed>true</passed>
        </entry>
        <entry>
            <test_name>DTD validation test</test_name>
            <passed>false</passed>
        </entry>
    </results>
</report>
```
<entry>
  <test_name>XSLT Transformation test</test_name>
  <passed>true</passed>
</entry>

<entry>
  <test_name>DTD validation test</test_name>
  <passed>false</passed>
</entry>

</results>

The processing instruction `xml-stylesheet` associates the CSS stylesheet to the XML file. The `href` pseudo attribute contains the URI reference to the stylesheet file. In the example, the CSS is in the same directory as the XML file.

The next step is to place the XSD file and the CSS file on a web server and modify the template to use the HTTP URLs, like this:

```xml
<?xml version="1.0" encoding="UTF-8"?>
<report xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
    xsi:noNamespaceSchemaLocation="http://www.mysite.com/reports/test_report.xsd">
  <title>Test report title</title>
  <description>
      ...
  </description>
</report>
```

If you want to share the files with other team members, you could create an archive containing the `test_report.xml`, `test_report.css`, and `test_report.xsd` and send it to the other users.

Basic Tutorial: Creating and Configuring a Custom Framework

This basic tutorial is meant to provide an example of creating and configuring a custom document type (`framework (on page 3282)`). This basic tutorial offers examples for creating a custom schema, adjusting the authoring experience through custom CSS styling, and creating a custom action. For more advanced and other types of customizations, see the Advanced Framework Customization (`on page 2322`) section.
Step 1: Organize Framework Files

First, create a new folder for your customized framework (on page 3282). This folder will be used to store all files related to the documentation framework. The folder structure will look something like this:

```
oxygen
  frameworks
    sdf
      schema
      css
```

The frameworks directory is the container where all the Oxygen XML Editor framework customizations are located. Each subdirectory contains files related to a specific type of XML documents (schemas, catalogs, stylesheets, CSS stylesheets, etc.) Distributing a framework means delivering a framework directory.

It is assumed that you have the right to create files and folders inside the Oxygen XML Editor installation directory. If you do not have this right, you will have to install another copy of the program in a folder you have access to, the home directory for instance, or your desktop.

To test your framework distribution, copy it in the frameworks directory of the newly installed application and start Oxygen XML Editor by running the provided start-up script files.

You should copy the created schema files abs.xsd and sdf.xsd, sdf.xsd being the master schema, to the schema directory and the CSS file sdf.css to the css directory.

Step 2: Extend an Existing Framework

The easiest way to create a custom framework (on page 3282) (document type) is by extending an existing built-in framework, such as DITA or DocBook, and then making modifications to it.

1. Open the Preferences dialog box (Options > Preferences) (on page 79) and go to Document Type Association > Locations (on page 94). Add the path to your custom framework directory in the Additional frameworks directories list and click OK or Apply to save your changes.
2. Go to the Document Type Association preferences page (on page 92) and select an existing framework configuration (for example, DocBook) and use the Extend button to create an extension for it.

   **Step Result:** This opens the Document Type Configuration dialog box (on page 95) where you can define the set of rules and settings for your custom framework.
3. Give the extension an appropriate name, select External for the Storage option, click the browsing button (_AUDIO) to specify the location of your custom framework directory.
4. Click **OK** to close the configuration dialog box and then **OK** or **Apply** to save your changes.

**Results:** You now have a fully functional framework that you can continue to customize.

### Step 3: Create a Custom XML Schema

To illustrate an example of creating an XML Schema for a custom DocBook framework (on page 3282), suppose the documents are either articles or books, both composed of sections. The sections may contain titles, paragraphs, figures, tables, and other sections. To complete the picture, each section includes a def element from another namespace.

The first schema file:

```xml
<?xml version="1.0" encoding="UTF-8"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"
    targetNamespace="http://www.oxygenxml.com/sample/documentation"
    xmlns:doc="http://www.oxygenxml.com/sample/documentation"
    xmlns:abs="http://www.oxygenxml.com/sample/documentation/abstracts"
    elementFormDefault="qualified">

    <xs:import namespace="http://www.oxygenxml.com/sample/documentation/abstracts"
      schemaLocation="abs.xsd"/>

</xs:schema>
```


Next, the structure of the sections is defined. They all start with a title, then have the optional def element then either a sequence of other sections, or a mixture of paragraphs, images and tables.

```xml
<xs:element name="book" type="doc:sectionType"/>
<xs:element name="article" type="doc:sectionType"/>
<xs:element name="section" type="doc:sectionType"/>

<xs:complexType name="sectionType">
    <xs:sequence>
        <xs:element name="title" type="xs:string"/>
        <xs:element ref="abs:def" minOccurs="0"/>
        <xs:choice>
            <xs:sequence>
```

---

4. Click **OK** to close the configuration dialog box and then **OK** or **Apply** to save your changes.

**Results:** You now have a fully functional framework that you can continue to customize.

### Step 3: Create a Custom XML Schema

To illustrate an example of creating an XML Schema for a custom DocBook framework (on page 3282), suppose the documents are either articles or books, both composed of sections. The sections may contain titles, paragraphs, figures, tables, and other sections. To complete the picture, each section includes a def element from another namespace.

The first schema file:

```xml
<?xml version="1.0" encoding="UTF-8"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"
    targetNamespace="http://www.oxygenxml.com/sample/documentation"
    xmlns:doc="http://www.oxygenxml.com/sample/documentation"
    xmlns:abs="http://www.oxygenxml.com/sample/documentation/abstracts"
    elementFormDefault="qualified">

    <xs:import namespace="http://www.oxygenxml.com/sample/documentation/abstracts"
      schemaLocation="abs.xsd"/>

</xs:schema>
```


Next, the structure of the sections is defined. They all start with a title, then have the optional def element then either a sequence of other sections, or a mixture of paragraphs, images and tables.

```xml
<xs:element name="book" type="doc:sectionType"/>
<xs:element name="article" type="doc:sectionType"/>
<xs:element name="section" type="doc:sectionType"/>

<xs:complexType name="sectionType">
    <xs:sequence>
        <xs:element name="title" type="xs:string"/>
        <xs:element ref="abs:def" minOccurs="0"/>
        <xs:choice>
            <xs:sequence>
```
The paragraph contains text and other styling markup, such as bold ( `<b>` ) and italic ( `<i>` ) elements.

```xml
<xs:choice minOccurs="0" maxOccurs="unbounded">
  <xs:element name="b"/>
  <xs:element name="i"/>
</xs:choice>
</xs:complexType>
```

The `image` element has an attribute with a reference to the file containing image data.

```xml
<xs:complexType name="paragraphType" mixed="true">
  <xs:choice minOccurs="0" maxOccurs="unbounded">
    <xs:element name="b"/>
    <xs:element name="i"/>
  </xs:choice>
</xs:complexType>
```

The `table` contains a header row and then a sequence of rows (`<tr>` elements) each of them containing the cells. Each cell has the same content as the paragraphs.

```xml
<xs:complexType name="table">
  <xs:sequence>
    <xs:element name="header">
      <xs:complexType>
        <xs:sequence>
          <xs:element name="td" maxOccurs="unbounded" type="doc:paragraphType"/>
        </xs:sequence>
      </xs:complexType>
    </xs:element>
    <xs:element name="tr">
      <xs:complexType>
        <xs:sequence>
          <xs:element name="td" maxOccurs="unbounded" type="doc:paragraphType"/>
        </xs:sequence>
      </xs:complexType>
    </xs:element>
  </xs:sequence>
</xs:complexType>
```
The `def` element is defined as a text only element in the imported schema `abs.xsd`:

```xml
<?xml version="1.0" encoding="UTF-8"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"

targetNamespace="http://www.oxygenxml.com/sample/documentation/abstracts">
  <xs:element name="def" type="xs:string"/>
</xs:schema>
```

Now the XML data structure will be styled.

Step 4: Associate the Schema to the Framework

In the bottom section of the **Document Type** configuration dialog box *(on page 95)*, there are a series of tabs. The **Schema** tab refers to the schema that is used for validation of the documents that match the defined association rules.
Important: If the document references a schema directly (for example, using a `DOCTYPE` declaration, `xsi:schemaLocation` attribute, or a Relax NG `xml-model` processing instruction), the schema defined in this Schema tab will not be used for validation or content completion.

**Schema Type**

Select from the combo box the value XML Schema.

**Schema URI**

Enter the value of the schema location (for example, `${frameworks}/sdf/schema/sdf.xsd`). Use the `${frameworks}` editor variable (on page 282) in the schema URI path instead of a full path to be valid for multiple Oxygen XML Editor installations.

Important: The `${frameworks}` variable is expanded at the time of validation into the absolute location of the directory containing the framework (on page 3282).

**Step 5: Create a Custom CSS**

If you read the Framework Customization Overview (on page 2373) then you already have some basic knowledge about creating simple styles. The example document contains elements from various namespaces, so you need to use CSS Level 3 extensions (supported by the Author mode layout engine) to associate specific properties with that element.

**Defining the General Layout**

Now the basic layout of the rendered documents is created.

Elements that are stacked one on top of the other are: book, article, section, title, figure, table, image. These elements are marked as having block style for display. Elements that are placed one after the other in a flowing sequence are: b, i. These will have inline display.

```css
/* Vertical flow */
book,
section,
para,
title,
image,
ref {
    display:block;
}

/* Horizontal flow */
b,i {
```
Important: Having block display children in an inline display parent results in Oxygen XML Editor changing the style of the parent to block display.

Styling an Element

The title of any section must be bold and smaller than the title of the parent section. To create this effect, a sequence of CSS rules must be created. The * operator matches any element, it can be used to match titles having progressive depths in the document.

```css
title{
    font-size: 2.4em;
    font-weight: bold;
}
* * title{
    font-size: 2.0em;
}
* * * title{
    font-size: 1.6em;
}
* * * * title{
    font-size: 1.2em;
}
```

It is useful to have before the title a constant text, indicating that it refers to a section. This text can include also the current section number. The :before and :after pseudo elements will be used, plus the CSS counters.

First declare a counter named sect for each book or article. The counter is set to zero at the beginning of each such element:

```css
book,
article{
    counter-reset: sect;
}
```

The sect counter is incremented with each section, that is a direct child of a book or an article element.
The "static" text that will prefix the section title is composed of the constant "Section ", followed by the decimal value of the sect counter and a dot.

To make the documents easy to read, you add a margin to the sections. In this way the higher nesting level, the larger the left side indent. The margin is expressed relatively to the parent bounds:

Figure 718. A sample of nested sections and their titles.

In the above screenshot you can see a sample XML document rendered by the CSS stylesheet. The selection "avoids" the text that is generated by the CSS "content" property. This happens because the CSS generated text is not present in the XML document and is just a visual aid.
**Styling Inline Elements**

The "bold" style is obtained by using the `font-weight` CSS property with the value `bold`, while the "italic" style is specified by the `font-style` property:

```plaintext
b {
    font-weight: bold;
}

i {
    font-style: italic;
}
```

**Styling Images**

The CSS 2.1 does not specify how an element can be rendered as an image. To overpass this limitation, Oxygen XML Editor supports a CSS Level 3 extension allowing to load image data from a URL. The URL of the image must be specified by one of the element attributes and it is resolved through the catalogs specified in Oxygen XML Editor.

```plaintext
image{
    display: block;
    content: attr(href, url);
    margin-left: 2em;
}
```

The `image` element has the required attribute `href` of type `xs:anyURI`. The `href` attribute contains an image location so the rendered content is obtained by using the function:

```plaintext
attr(href, url)
```

The first argument is the name of the attribute pointing to the image file. The second argument of the `attr` function specifies the type of the content. If the type has the `url` value, then Oxygen XML Editor identifies the content as being an image. If the type is missing, then the content will be the text representing the attribute value.

Oxygen XML Editor handles both absolute and relative specified URLs. If the image has an `absolute` URL location (for example: "http://www.oasis-open.org/images/standards/oasis_standard.jpg") then it is loaded directly from this location. If the image URL is `relative` specified to the XML document (for example: "images/my_screenshot.jpg") then the location is obtained by adding this value to the location of the edited XML document.
An image can also be referenced by the name of a DTD entity that specifies the location of the image file. For example, if the document declares an entity `graphic` that points to a JPEG image file:

```xml
<!ENTITY graphic SYSTEM "depo/keyboard_shortcut.jpg" NDATA JPEG>
```

and the image is referenced in the XML document by specifying the name of the entity as the value of an attribute:

```xml
<mediaobject>
  <imageobject>
    <imagedata entityref="graphic" scale="50"/>
  </imageobject>
</mediaobject>
```

The CSS should use the functions `url`, `attr` and `unparsed-entity-uri` for displaying the image in the Author mode:

```css
imagedata[entityref] {
  content: url(unparsed-entity-uri(attr(entityref)));}
```

To take into account the value of the `width` attribute of the `imagedata` and use it for resizing the image, the CSS can define the following rule:

```css
imagedata[width] {
  width: attr(width, length);}
```

Figure 719. Samples of images in Author
Step 6: Associate the Custom CSS to the Framework

Once you have customized your framework through CSS styling rules, you then need to associate the custom CSS file.

Step 7: Testing the Framework Customization

To test the new framework (on page 3282) customization, create an XML instance that conforms with the association rules that you specified in your framework customization. You will not specify an XML Schema location directly in the document, using an xsi:schemaLocation attribute. Instead, Oxygen XML Editor will detect its associated document type and use the specified schema.

```xml
<book xmlns="http://www.oxygenxml.com/sample/documentation"
      xmlns:abs="http://www.oxygenxml.com/sample/documentation/abstracts">
  <title>My Technical Book</title>
  <section>
    <title>XML</title>
    <abs:def>Extensible Markup Language</abs:def>
    <para>In this section of the book I will explain different XML applications.</para>
  </section>
</book>
```

When trying to validate the document there should be no errors. Now modify the title to title2. Validate again. This time there should be as error.

```
Invalid content was found starting with element 'title2'. One of '{"http://www.oxygenxml.com/sample/documentation":title}' is expected.
```

Undo the tag name change, go to Author mode, and Oxygen XML Editor should load the CSS from the document type association (on page 3281) and create a layout similar to this:

Figure 720. Example: Testing a Framework Customization
Customizing Frameworks and Author Mode Using Extensions, Plugins, SDK

Advanced users can extend the functionality of custom frameworks and Author mode by using plugins (on page 3285), extensions, or the Oxygen SDK.

There is also an API Frequently Asked Questions section (on page 2633) that contains answers to common questions regarding API customizations.

---

**Related Information:**

- Extending Oxygen XML Editor with Plugins (on page 2580)
- Oxygen XML Author Component (on page 2618)
- SDK Common Use Cases (on page 2633)

---

Configuring Frameworks and Author Mode through Extensions

You can add extensions (on page 3285) to your custom framework (on page 3282) (document type) by using the Extensions tab from the Document Type configuration dialog box (on page 95).

**Note:** It is possible for a plugin to share the same classes with a framework. For further details, go to How to Share the Classloader Between a Framework and a Plugin (on page 2611).

---

Configuring an Extensions Bundle

All extensions (on page 3285) that are provided by Oxygen XML Editor are included in a single bundle.
Note: The individual extensions can still be set (open the Preferences dialog box (Options > Preferences) (on page 79), go to Document Type Association, double-click a document type, and go to the extension tab), and if present, they take precedence over the single provider. However, this practice is discouraged and the single provider should be used instead.

The extensions bundle is represented by the ro.sync.ecss.extensions.api.ExtensionsBundle class. The provided implementation of the ExtensionsBundle is instantiated when the Document Type Association (on page 3281) rules defined for the custom framework (on page 3282) matches a document opened in the editor. Therefore, references to objects that need to be persistent throughout the application running session must not be kept in the bundle because the next detection event can result in creating another ExtensionsBundle instance.

To configure an extensions bundle, follow this procedure:

1. Create a new Java project in your IDE. Create a lib folder in the Java project folder and copy in it the oxygen.jar file from the [OXYGEN_INSTALL_DIR]/lib folder.

2. Create the class (for example, simple.documentation.framework.SDFExtensionsBundle) to extend the abstract class ro.sync.ecss.extensions.api.ExtensionsBundle.
   For example:

   ```java
   public class SDFExtensionsBundle extends ExtensionsBundle {
   }
   ```

3. A Document Type ID and a short description should be defined first by implementing the methods getDocumentTypeID and getDescription. The Document Type ID is used to uniquely identify the current framework. Such an ID must be provided especially if options related to the framework need to be persistently stored and retrieved between sessions.
   For example:

   ```java
   public String getDocumentTypeID() {
   }

   public String getDescription() {
       return "A custom extensions bundle used for the Simple Document Framework document type";
   }
   ```

4. To be notified about the activation of the custom Author Extension in relation with an opened document, ro.sync.ecss.extensions.api.AuthorExtensionStateListener should be implemented. The activation and deactivation events received by this listener should be used to perform custom initializations and to register or remove listeners such as
ro.sync.ecss.extensions.api.AuthorListener, ro.sync.ecss.extensions.api.AuthorMouseListener, or ro.sync.ecss.extensions.api.AuthorCaretListener. The custom Author Extension state listener should be provided by implementing the createAuthorExtensionStateListener method. For example:

```java
public AuthorExtensionStateListener createAuthorExtensionStateListener() {
    return new SDFAuthorExtensionStateListener();
}
```

The AuthorExtensionStateListener is instantiated and notified about the activation of the framework when the rules of the Document Type Association match a document opened in the Author editing mode. The listener is notified about the deactivation when another framework is activated for the same document, the user switches to another mode or the editor is closed. A complete description and implementation of ro.sync.ecss.extensions.api.AuthorExtensionStateListener can be found in Implementing an Author Extension State Listener (on page 2406).

If Schema Aware mode (on page 137) is active in Oxygen XML Editor, all actions that can generate invalid content will be redirected toward the ro.sync.ecss.extensions.api.AuthorSchemaAwareEditingHandler. The handler can resolve a specific case, let the default implementation take place, or reject the edit entirely by throwing an ro.sync.ecss.extensions.api.InvalidEditException. The actions that are forwarded to this handler include typing, delete, or paste.

See Handling Schema-Aware Editing Events (on page 2434) for more details about this handler.

5. Customizations of the content completion proposals are permitted by creating a schema manager filter extension. The interface that declares the methods used for content completion proposals filtering is ro.sync.contentcompletion.xml.SchemaManagerFilter. The filter can be applied on elements, attributes, or on their values. The createSchemaManagerFilter method is responsible for creating the content completion filter. A new SchemaManagerFilter will be created each time a document matches the rules defined by the Document Type Association that contains the filter declaration.

For example:

```java
public SchemaManagerFilter createSchemaManagerFilter() {
    return new SDFSchemaManagerFilter();
}
```

A detailed presentation of the schema manager filter can be found in the Configuring a Content Completion Handler (on page 2399) section.
6. The **Author** mode supports link-based navigation between documents and document sections. Therefore, if the document contains elements defined as links to other elements (for example, links based on the `id` attributes), the extension should provide the means to find the referenced content. To do this, an implementation of the `ro.sync.ecss.extensions.api.link.ElementLocatorProvider` interface should be returned by the `createElementLocatorProvider` method. Each time an element pointed by a link needs to be located, the method is invoked.

For example:

```java
public ElementLocatorProvider createElementLocatorProvider() {
    return new DefaultElementLocatorProvider();
}
```

For more information on how to implement an element locator provider, see the Configuring a Link Target Element Finder (on page 2425) section.

7. The drag and drop functionality can be extended by implementing the `ro.sync.exml.editor.xmleditor.pageauthor.AuthorDnDListener` interface. Relevant methods from the listener are invoked when the mouse is dragged, moved over, or exits the **Author** editing mode, when the drop action changes, and when the drop occurs. Each method receives the `DropTargetEvent` containing information about the drag and drop operation. The drag and drop extensions are available in **Author** mode for both Oxygen XML Editor Eclipse plugin and standalone application. The **Text** mode corresponding listener is available only for Oxygen XML Editor Eclipse plugin. The methods corresponding to each implementation are: `createAuthorAWTDndListener`, `createTextSWTDndListener`, and `createAuthorSWTDndListener`.

```java
public AuthorDnDListener createAuthorAWTDndListener() {
    return new SDFAuthorDndListener();
}
```

For more details about the **Author** mode drag and drop listeners, see the Configuring a custom Drag and Drop Listener (on page 2401) section.

8. Another extension that can be included in the bundle is the reference resolver. For example, the references represented by the `ref` element and the attribute indicating the referenced resource is `location`. To be able to obtain the content of the referenced resources you will have to implement a Java extension class that implements `ro.sync.ecss.extensions.api.AuthorReferenceResolver`. The method responsible for creating the custom references resolver is `createAuthorReferenceResolver`. The method is called each time a document opened in an **Author** editing mode matches the Document Type Association where the extensions bundle is defined. The instantiated references resolver object is kept and used until
another extensions bundle corresponding to another document type is activated as result of the detection process.

For example:

```java
public AuthorReferenceResolver createAuthorReferenceResolver() {
    return new ReferencesResolver();
}
```

A more detailed description of the references resolver can be found in the Configuring a References Resolver (on page 2402) section.

9. To be able to dynamically customize the default CSS styles for a certain `ro.sync.ecss.extensions.api.node.AuthorNode`, an implementation of `ro.sync.ecss.extensions.api.StylesFilter` can be provided. The extensions bundle method responsible for creating the `StylesFilter` is `createAuthorStylesFilter`. The method is called each time a document opened in an Author editing mode matches the Document Type Association where the extensions bundle is defined. The instantiated filter object is kept and used until another extensions bundle corresponding to another document type is activated as a result of the detection process.

For example:

```java
public StylesFilter createAuthorStylesFilter() {
    return new SDFStylesFilter();
}
```

See the Configuring CSS Styles Filter (on page 2424) section for more details about the styles filter extension.

10. To edit data in custom tabular format, implementations of the `ro.sync.ecss.extensions.api.AuthorTableCellSpanProvider` and the `ro.sync.ecss.extensions.api.AuthorTableColumnWidthProvider` interfaces should be provided. The two methods from the ExtensionsBundle specifying these two extension points are `createAuthorTableCellSpanProvider` and `createAuthorTableColumnWidthProvider`.

For example:

```java
public AuthorTableCellSpanProvider createAuthorTableCellSpanProvider() {
    return new TableCellSpanProvider();
}
```

```java
public AuthorTableColumnWidthProvider createAuthorTableColumnWidthProvider() {
    return new TableColumnWidthProvider();
}
```
The two table information providers are not reused for different tables. The methods are called for each table in the document so new instances should be provided every time. Read more about the cell span and column width information providers in Configuring a Table Cell Span Provider (on page 2416) and Configuring a Table Column Width Provider (on page 2410) sections.

If the functionality related to one of the previous extension point does not need to be modified, then the developed ro.sync.ecss.extensions.api.ExtensionsBundle should not override the corresponding method and leave the default base implementation to return null.

11. An XML vocabulary can contain links to various areas of a document. If the document contains elements defined as links, you can choose to present a more relevant text description for each link. To do this, an implementation of the ro.sync.ecss.extensions.api.link.LinkTextResolver interface should be returned by the createLinkTextResolver method. This implementation is used each time the oxy_link-text() function (on page 2532) is encountered in the CSS styles associated with an element.

For example:

```java
public LinkTextResolver createLinkTextResolver() {
    return new DitaLinkTextResolver();
}
```


12. Pack the compiled class into a JAR (on page 3283) file.

13. Copy the JAR file into your custom framework directory (for example, frameworks/sdf).

14. Add the JAR file to the class path. To do this, open the Preferences dialog box (Options > Preferences) (on page 79), go to Document Type Association, select the document type (for example, SDF), press the Edit button, select the Classpath tab, and press the + Add button. In the displayed dialog box, enter the location of the JAR file relative to the Oxygen XML Editor frameworks folder.

15. Register the Java class by going to the Extensions tab. Press the Choose button and select the name of the class (for example, SDFExtensionsBundle).

Note: The complete source code for framework customization examples can be found in the oxygen-sample-framework module of the Oxygen SDK, available as a Maven archetype on the Oxygen XML Editor website.
Adding a Custom Image Decorator for Author Mode

The `AuthorImageDecorator` extension point allows you to add a custom decorator over images in Author mode. For example, you could use it to add a message over an image informing the user that they can double-click the image to edit it.

**How to Implement an `AuthorImageDecorator`**

To implement your own `AuthorImageDecorator`, follow this procedure:

1. Implement the `ro.sync.ecss.extensions.api.AuthorImageDecorator` interface.
2. To instruct Oxygen XML Editor to use this newly created implementation, use either of the following methods:
   a. If you have configured an extensions bundle (on page 2391), you can return the `AuthorImageDecorator` implementation using the `ro.sync.ecss.extensions.api.ExtensionsBundle.getAuthorImageDecorator()` method.
   b. Specify the `AuthorImageDecorator` in the Author image decorator individual extension in the `Extensions tab (on page 122)` of the Document Type configuration dialog box (on page 95) for your particular document type.

**Example**

The following example illustrates an implementation for presenting a simple message over an image that informs the user that they can double-click the image to edit it:

```java
/**
 * Custom Author image decorator for drawing string over images.
 */
public class CustomAuthorImageDecorator extends AuthorImageDecorator {

    /**
     * @see ro.sync.ecss.extensions.api.AuthorImageDecorator#paint
     * (ro.sync.exml.view.graphics.Graphics, int, int, int, int,
     * ro.sync.exml.view.graphics.Rectangle,
     * ro.sync.ecss.extensions.api.node.AuthorNode,
     */
```
Example result: In the top-left corner of the image, the following message will be displayed: [Double-click to edit image].

Adding Custom Persistent Highlights

The Author API includes a class that allows you to create or remove custom persistent highlights, set new properties for the highlights, and customize their appearance. An example of a possible use case would be if you want to implement your own way of editing review comments. The custom persistent highlights get serialized in the XML document as processing instructions, with the following format:

`<?oxy_custom_start prop1="val1"....?> xml content <?oxy_custom_end?>`

This functionality is available through the AuthorPersistentHighlighter class that is accessible through the AuthorEditorAccess#getPersistentHighlighter() method.

For more information, see the JavaDoc details for this class at https://www.oxygenxml.com/InstData/Editor/SDK/javadoc/ro/sync/ecss/extensions/api/highlights/AuthorPersistentHighlighter.html.

Configuring the Automatic ID Generation and Unique Attributes Recognizer

The ro.sync.ecss.extensions.api.UniqueAttributesRecognizer interface can be implemented if you want to provide for your framework (on page 3282) the following features:

- **Automatic ID generation** - You can automatically generate unique IDs for newly inserted elements. Implementations are already available for the DITA and DocBook frameworks (on page 3282). The following methods can be implemented to accomplish this: assignUniqueIDs(int startOffset, int endOffset), isAutoIDGenerationActive()
• **Avoiding copying unique attributes when "Split" is called inside an element** - You can split the current block element (on page 3280) by pressing the "Enter" key and then choosing "Split". This is a very useful way to create new paragraphs, for example. All attributes are by default copied on the new element but if those attributes are IDs you sometimes want to avoid creating validation errors in the editor. Implementing the following method, you can decide whether or not an attribute should be copied during the split: `boolean copyAttributeOnSplit(String attrQName, AuthorElement element)`

**Tip:** The `ro.sync.ecss.extensions.commons.id.DefaultUniqueAttributesRecognizer` class is an implementation of the interface that can be extended by your customization to provide easy assignment of IDs in your framework (on page 3282). You can also check out the DITA and DocBook implementations of `ro.sync.ecss.extensions.api.UniqueAttributesRecognizer` to see how they were implemented and connected to the extensions bundle.

**Note:** The complete source code for framework customization examples can be found in the `oxygen-sample-framework` module of the Oxygen SDK, available as a Maven archetype on the Oxygen XML Editor website.

### Configuring Content Completion Proposals

You can filter or contribute to proposals offered for content completion by implementing the `ro.sync.contentcompletion.xml.SchemaManagerFilter` interface.

```java
import java.util.List;
import ro.sync.contentcompletion.xml.CIAttribute;
import ro.sync.contentcompletion.xml.CIElement;
import ro.sync.contentcompletion.xml.CIValue;
import ro.sync.contentcompletion.xml.Context;
import ro.sync.contentcompletion.xml.SchemaManagerFilter;
import ro.sync.contentcompletion.xml.WhatAttributesCanGoHereContext;
import ro.sync.contentcompletion.xml.WhatElementsCanGoHereContext;
import ro.sync.contentcompletion.xml.WhatPossibleValuesHasAttributeContext;

public class SDFSchemaManagerFilter implements SchemaManagerFilter {

    // You can implement the various callbacks of the interface either by returning the default values given by Oxygen XML Editor or by contributing to the list of proposals. The filter can be applied on elements, attributes or on their values. Attributes filtering can be implemented using the filterAttributes method and changing the default content completion list of ro.sync.contentcompletion.xml.CIAttribute for the element provided by the current ro.sync.contentcompletion.xml.WhatAttributesCanGoHereContext
```
context. For example, the `SDFSchemaManagerFilter` checks if the element from the current context is the `table` element and adds the `frame` attribute to the `table` list of attributes.

```java
/**
 * Filter attributes of the "table" element.
 */
public List<CIAttribute> filterAttributes(List<CIAttribute> attributes, WhatAttributesCanGoHereContext context) {
    // If the element from the current context is the 'table' element add the
    // attribute named 'frame' to the list of default content completion proposals
    if (context != null) {
        ContextElement contextElement = context.getParentElement();
        if ("table".equals(contextElement.getQName())) {
            CIAttribute frameAttribute = new CIAttribute();
            frameAttribute.setName("frame");
            frameAttribute.setRequired(false);
            frameAttribute.setFixed(false);
            frameAttribute.setDefaultValue("void");
            if (attributes == null) {
                attributes = new ArrayList<CIAttribute>();
            }
            attributes.add(frameAttribute);
        }
    }
    return attributes;
}
```

The elements that can be inserted in a specific context can be filtered using the `filterElements` method. The `SDFSchemaManagerFilter` uses this method to replace the `td` child element with the `th` element when `header` is the current context element.

```java
public List<CIElement> filterElements(List<CIElement> elements, WhatElementsCanGoHereContext context) {
    // If the element from the current context is the 'header' element remove the
    // 'td' element from the list of content completion proposals and add the
    // 'th' element.
    if (context != null) {
        Stack<ContextElement> elementStack = context.getElementStack();
        if (elementStack != null) {
            ContextElement contextElement = context.getElementStack().peek();
            if ("header".equals(contextElement.getQName())) {
```

```java
```
```
if (elements != null) {
    for (Iterator<CIElement> iterator = elements.iterator(); iterator.hasNext();) {
        CIElement element = iterator.next();
        // Remove the 'td' element
        if ("td".equals(element.getQName())) {
            elements.remove(element);
            break;
        }
    }
} else {
    elements = new ArrayList<CIElement>();
}  
// Insert the 'th' element in the list of content completion proposals
CIElement thElement = new SDFElement();
thElement.setName("th");
elements.add(thElement);
}
else {
    // If the given context is null then the given list of content completion
    // elements contains global elements.
    return elements;
}

The elements or attributes values can be filtered using the \texttt{filterElementValues} or \texttt{filterAttributeValues} methods.

\begin{itemize}
\item \textbf{Note:} The complete source code for framework customization examples can be found in the \texttt{oxygen-sample-framework} module of the Oxygen SDK, available as a Maven archetype on the Oxygen XML Editor website.
\end{itemize}

Configuring a Custom Drag and Drop Listener

Sometimes it is useful to perform various operations when certain objects are dropped from outside sources in the editing area. You can choose from three interfaces to implement depending on whether you are using the Eclipse plugin or the standalone version of the application, or if you want to add the handler for the Text or Author modes.

\begin{itemize}
\item \textbf{Interfaces for the Drag and Drop Listener}
\end{itemize}
ro.sync.exml.editor.xmleditor.pageauthor.AuthorDnDListener

Receives callbacks from the standalone application for Drag And Drop in Author mode.

com.oxygenxml.editor.editors.author.AuthorDnDListener

Receives callbacks from the Eclipse plugin for Drag And Drop in Author mode.

com.oxygenxml.editor.editors.TextDnDListener

Receives callbacks from the Eclipse plugin for Drag And Drop in Text mode.

![Note:][1] The complete source code for framework customization examples can be found in the oxygen-sample-framework module of the Oxygen SDK, available as a Maven archetype on the Oxygen XML Editor website.

To configure how dropped URLs or XHTML fragments are handled in documents, see Handling When URLs or XHTML Fragments are Dropped or Pasted in Author Mode (on page 2437).

Related Information:

- Customizing Smart Paste Support (on page 2343)

Configuring a Reference Resolver

This information is helpful if you need to provide a handler for resolving references and obtain the content they reference. For example, suppose the element that has references is ref and the attribute indicating the referenced resource is location. You need to implement a Java extension class for obtaining the referenced resources.

1. Create the class simple.documentation.framework.ReferencesResolver. This class must implement the ro.sync.ecss.extensions.api.AuthorReferenceResolver interface.

```java
import ro.sync.ecss.extensions.api.AuthorReferenceResolver;
import ro.sync.ecss.extensions.api.AuthorAccess;
import ro.sync.ecss.extensions.api.node.AttrValue;
import ro.sync.ecss.extensions.api.node.AuthorElement;
import ro.sync.ecss.extensions.api.node.AuthorNode;

public class ReferencesResolver
        implements AuthorReferenceResolver {
```

2. The hasReferences method verifies if the handler considers the node to have references. It takes AuthorNode as an argument that represents the node that will be verified. The method will return

```java
```
true if the node is considered to have references. In the following example, to be a reference, the node must be an element with the name *ref* and it must have an attribute named *location*.

```java
public boolean hasReferences(AuthorNode node) {
    boolean hasReferences = false;
    if (node.getType() == AuthorNode.NODE_TYPE_ELEMENT) {
        AuthorElement element = (AuthorElement) node;
        if ("ref".equals(element.getLocalName())) {
            AttrValue attrValue = element.getAttribute("location");
            hasReferences = attrValue != null;
        }
    }
    return hasReferences;
}
```

3. The method `getDisplayName` returns the display name of the node that contains the expanded referenced content. It takes `AuthorNode` as an argument that represents the node for which the display name is needed. The referenced content engine will ask this `AuthorReferenceResolver` implementation for the display name for each node that is considered a reference. In the following example, the display name is the value of the *location* attribute from the *ref* element.

```java
public String getDisplayName(AuthorNode node) {
    String displayName = "ref-fragment";
    if (node.getType() == AuthorNode.NODE_TYPE_ELEMENT) {
        AuthorElement element = (AuthorElement) node;
        if ("ref".equals(element.getLocalName())) {
            AttrValue attrValue = element.getAttribute("location");
            if (attrValue != null) {
                displayName = attrValue.getValue();
            }
        }
    }
    return displayName;
}
```

4. The method `resolveReference` resolves the reference of the node and returns a `SAXSource` with the parser and its input source. It takes `AuthorNode` as an argument that represents the node for which the reference needs resolving, the `systemID` of the node, the `AuthorAccess` with access methods to the `Author` mode data model and a `SAX EntityResolver` that resolves resources that are already opened in another editor or resolve resources through the `XML Catalog (on page 3289)`. In the implementation, you need to resolve the reference relative to the `systemID`, and create a parser and an input source over the resolved reference.
public SAXSource resolveReference(
    AuthorNode node,
    String systemID,
    AuthorAccess authorAccess,
    EntityResolver entityResolver) {
SAXSource saxSource = null;

    if (node.getType() == AuthorNode.NODE_TYPE_ELEMENT) {
        AuthorElement element = (AuthorElement) node;
        if ("ref".equals(element.getLocalName())) {
            AttrValue attrValue = element.getAttribute("location");
            if (attrValue != null) {
                String attrStringVal = attrValue.getValue();
                try {
                    URL absoluteUrl = new URL(new URL(systemID),
                        authorAccess.getUtilAccess().correctURL(attrStringVal));

                    InputSource inputSource = entityResolver.resolveEntity(null,
                        absoluteUrl.toString());
                    if (inputSource == null) {
                        inputSource = new InputSource(absoluteUrl.toString());
                    }
                }
                catch (MalformedURLException e) {
                    logger.error(e, e);
                }
                catch (SAXException e) {
                    logger.error(e, e);
                }
                catch (IOException e) {
                    logger.error(e, e);
                }
            }
        }
    }

    saxSource = new SAXSource(xmlReader, inputSource);
}

return saxSource;
5. The method `getReferenceUniqueID` should return a unique identifier for the node reference. The unique identifier is used to avoid resolving the references recursively. The method takes `AuthorNode` as an argument that represents the node with the reference. In the following example, the unique identifier is the value of the `location` attribute from the `ref` element.

```java
public String getReferenceUniqueID(AuthorNode node) {
    String id = null;
    if (node.getType() == AuthorNode.NODE_TYPE_ELEMENT) {
        AuthorElement element = (AuthorElement) node;
        if ("ref".equals(element.getLocalName())) {
            AttrValue attrValue = element.getAttribute("location");
            if (attrValue != null) {
                id = attrValue.getValue();
            }
        }
    }
    return id;
}
```

6. The method `getReferenceSystemID` should return the `systemID` of the referenced content. It takes `AuthorNode` as an argument that represents the node with the reference and the `AuthorAccess` with access methods to the `Author` mode data model. For example, the value of the `location` attribute is used from the `ref` element and resolved relatively to the XML base URL of the node.

```java
public String getReferenceSystemID(AuthorNode node, AuthorAccess authorAccess) {
    String systemID = null;
    if (node.getType() == AuthorNode.NODE_TYPE_ELEMENT) {
        AuthorElement element = (AuthorElement) node;
        if ("ref".equals(element.getLocalName())) {
            AttrValue attrValue = element.getAttribute("location");
            if (attrValue != null) {
                String attrStringVal = attrValue.getValue();
                try {
                    URL absoluteUrl = new URL(node.getXMLBaseURL(),
                        authorAccess.getUtilAccess().correctURL(attrStringVal));
                    systemID = absoluteUrl.toString();
                } catch (MalformedURLException e) {
                    logger.error(e, e);
                }
            }
        }
    }
    return systemID;
}
```
In the listing below, the XML document contains the `ref` element:

```xml
<ref location="referenced.xml">Reference</ref>
```

When no reference resolver is specified, the reference has the following layout:

Figure 721. Reference with no specified reference resolver

![Reference without a reference resolver](image)

When the above implementation is configured, the reference has the expected layout:

Figure 722. Reference with reference resolver

![Reference with a reference resolver](image)

Note: The complete source code for `framework` customization examples can be found in the `oxygen-sample-framework` module of the Oxygen SDK, available as a Maven archetype on the Oxygen XML Editor website.

Configuring a State Listener for Author Mode

The `ro.sync.ecss.extensions.api.AuthorExtensionStateListener` implementation is notified when the `Author` mode extension (where the listener is defined) is activated or deactivated in the document type detection process.

```java
import ro.sync.ecss.extensions.api.AuthorAccess;
import ro.sync.ecss.extensions.api.AuthorExtensionStateListener;

public class SDFAuthorExtensionStateListener implements AuthorExtensionStateListener {
    private AuthorListener sdfAuthorDocumentListener;
    private AuthorMouseListener sdfMouseListener;
    private AuthorCaretListener sdfCaretListener;
```
private OptionListener sdfOptionListener;

When the association rules of the framework (on page 3282) (document type) configuration match that of a document opened in the Author editing mode, the activation event received by this listener should be used to perform custom initializations and to register listeners such as ro.sync.ecss.extensions.api.AuthorListener, ro.sync.ecss.extensions.api.AuthorMouseListener, or ro.sync.ecss.extensions.api.AuthorCaretListener.

public void activated(AuthorAccess authorAccess) {
    // Get the value of the option.
    String option = authorAccess.getOptionsStorage().getOption("sdf.custom.option.key", ";");
    // Use the option for some initializations...

    // Add an OptionListener.
    authorAccess.getOptionsStorage().addOptionListener(sdfOptionListener);

    // Add author DocumentListeners.
    sdfAuthorDocumentListener = new SDFAuthorListener();
    authorAccess.getDocumentController().addAuthorListener(sdfAuthorDocumentListener);

    // Add MouseListener.
    sdfMouseListener = new SDFAuthorMouseListener();
    authorAccess.getEditorAccess().addAuthorMouseListener(sdfMouseListener);

    // Add CaretListener.
    sdfCaretListener = new SDFAuthorCaretListener();
    authorAccess.getEditorAccess().addAuthorCaretListener(sdfCaretListener);

    // Other custom initializations...
}

The authorAccess parameter received by the activated method can be used to gain access to specific Author mode actions and informations related to components such as the editor, document, workspace, tables, or the change tracking manager.

If options specific to the custom developed Author Extension need to be stored or retrieved, a reference to the ro.sync.ecss.extensions.api.OptionsStorage can be obtained by calling the getOptionsStorage method from the authorAccess. The same object can be used to register
ro.sync.ecss.extensions.api.OptionListener listeners. An option listener is registered in relation with an option key and will be notified about the value changes of that option.

An AuthorListener can be used if events related to the Author mode document modifications are of interest. The listener can be added to the ro.sync.ecss.extensions.api.AuthorDocumentController. A reference to the document controller is returned by the getDocumentController method from the authorAccess. The document controller can also be used to perform operations involving document modifications.

To provide access to the Author mode component-related functionality and information, the authorAccess has a reference to the ro.sync.ecss.extensions.api.access.AuthorEditorAccess that can be obtained when calling the getEditorAccess method. At this level, AuthorMouseListener and AuthorCaretListener can be added to provide notification of mouse and cursor events that occur in the Author editor mode.

The deactivation event is received when another framework is activated for the same document, the user switches to another editor mode or the editor is closed. The deactivate method is typically used to unregister the listeners previously added on the activate method and to perform other actions. For example, options related to the deactivated Author Extension can be saved at this point.

```java
public void deactivated(AuthorAccess authorAccess) {
    // Store the option.
    authorAccess.getOptionsStorage().setOption("sdf.custom.option.key", optionValue);

    // Remove the OptionListener.
    authorAccess.getOptionsStorage().removeOptionListener(sdfOptionListener);

    // Remove DocumentListeners.
    authorAccess.getDocumentController().removeAuthorListener(sdfAuthorDocumentListener);

    // Remove MouseListener.
    authorAccess.getEditorAccess().removeAuthorMouseListener(sdfMouseListener);

    // Remove CaretListener.
    authorAccess.getEditorAccess().removeAuthorCaretListener(sdfCaretListener);

    // Other actions...
}
```
Note: The complete source code for framework customization examples can be found in the oxygen-sample-framework module of the Oxygen SDK, available as a Maven archetype on the Oxygen XML Editor website.

Configuring Tables

There are standard CSS properties used to indicate what elements are tables, table rows and table cells. What CSS is missing is the possibility to indicate the cell spanning, row separators or the column widths. Oxygen XML Editor offers support for adding extensions to solve these problems.

The table in this example is a simple one. The header must be formatted in a different way than the ordinary rows, so it will have a background color.

```css
table{
    display: table;
    border: 1px solid navy;
    margin: 1em;
    max-width: 1000px;
    min-width: 150px;
}

table[width]{
    width: attr(width, length);
}

tr, header{
    display: table-row;
}

header{
    background-color: silver;
    color: inherit
}

td{
    display: table-cell;
    border: 1px solid navy;
    padding: 1em;
}
```
Suppose that in the schema, the \texttt{td} tag has the attributes \texttt{row_span} and \texttt{column_span} that are not automatically recognized by Oxygen XML Editor, a Java extension will be implemented that will provide information about the cell spanning. See the section Configuring a Table Cell Span Provider (on page 2416).

Suppose the column widths are specified by the \texttt{width} attribute of the \texttt{customcol} elements that are not automatically recognized by Oxygen XML Editor. It is necessary to implement a Java extension that will provide information about the column widths. For more information, see Configuring a Table Column Width Provider (on page 2410).

The table from the example does not make use of the attributes \texttt{colsep} and \texttt{rowsep} (which are automatically recognized) but if you want the rows to be separated by horizontal lines, it is necessary to implement a Java extension that will provide information about the row and column separators. For more information, see Configuring a Table Cell Row and Column Separator Provider (on page 2419).

### Configuring a Table Column Width Provider

In a custom framework (on page 3282), the \texttt{table} element as well as the table columns can have specified widths. For these widths to be considered by Author mode, you need to provide the means for determining them. As explained in Configuring Tables (on page 2409), if you use the table element attribute \texttt{width} Oxygen XML Editor can determine the table width automatically. In this example the table has \texttt{col} elements with \texttt{width} attributes that are not recognized by default. You will need to implement a Java extension class to determine the column widths.

1. Create the class \texttt{simple.documentation.framework.TableColumnWidthProvider}. This class must implement the \texttt{ro.sync.ecss.extensions.api.AuthorTableColumnWidthProvider} interface.

   ```java
   import ro.sync.ecss.extensions.api.AuthorAccess;
   import ro.sync.ecss.extensions.api.AuthorOperationException;
   import ro.sync.ecss.extensions.api.AuthorTableColumnWidthProvider;
   import ro.sync.ecss.extensions.api.WidthRepresentation;
   import ro.sync.ecss.extensions.api.node.AuthorElement;

   public class TableColumnWidthProvider
   implements AuthorTableColumnWidthProvider {

   2. Method \texttt{init} is taking as argument an \texttt{ro.sync.ecss.extensions.api.node.AuthorElement} that represents the XML \texttt{table} element. In our case the column widths are specified in \texttt{col} elements from the \texttt{table} element. In such cases you must collect the span information by analyzing the \texttt{table} element.

   ```java
   public void init(AuthorElement tableElement) {
       this.tableElement = tableElement;
   ```
AuthorElement[] colChildren = tableElement.getElementsByLocalName("customcol");
   if (colChildren != null && colChildren.length > 0) {
      for (int i = 0; i < colChildren.length; i++) {
         AuthorElement colChild = colChildren[i];
         if (i == 0) {
            colsStartOffset = colChild.getStartOffset();
         }
         if (i == colChildren.length - 1) {
            colsEndOffset = colChild.getEndOffset();
         }
         // Determine the 'width' for this col.
         AttrValue colWidthAttribute = colChild.getAttribute("width");
         String colWidth = null;
         if (colWidthAttribute != null) {
            colWidth = colWidthAttribute.getValue();
            // Add WidthRepresentation objects for the columns this 'customcol'
            // specification spans over.
            colWidthSpecs.add(new WidthRepresentation(colWidth, true));
         }
      }
   }

3. The method isTableAcceptingWidth should check if the table cells are td.

   public boolean isTableAcceptingWidth(String tableCellsTagName) {
      return "td".equals(tableCellsTagName);
   }

4. The method isTableAndColumnsResizable should check if the table cells are td. This method determines if the table and its columns can be resized by dragging the edge of a column.

   public boolean isTableAndColumnsResizable(String tableCellsTagName) {
      return "td".equals(tableCellsTagName);
   }

5. Methods getTableWidth and getCellWidth are used to determine the table and column width. The table layout engine will ask this ro.sync.ecss.extensions.api.AuthorTableColumnWidthProvider implementation what is the table width for each table element and the cell width for each cell element from the table that was marked as cell in the CSS using the property display:table-cell. The implementation is simple and just parses the value of the width attribute. The methods must return null for the tables / cells that do not have a specified width.
public WidthRepresentation getTableWidth(String tableCellsTagName) {
    WidthRepresentation toReturn = null;
    if (tableElement != null && "td".equals(tableCellsTagName)) {
        AttrValue widthAttr = tableElement.getAttribute("width");
        if (widthAttr != null) {
            String width = widthAttr.getValue();
            if (width != null) {
                toReturn = new WidthRepresentation(width, true);
            }
        }
    }
    return toReturn;
}

public List<WidthRepresentation> getCellWidth(AuthorElement cellElement, int colNumberStart, int colSpan) {
    List<WidthRepresentation> toReturn = null;
    int size = colWidthSpecs.size();
    if (size >= colNumberStart && size >= colNumberStart + colSpan) {
        toReturn = new ArrayList<WidthRepresentation>(colSpan);
        for (int i = colNumberStart; i < colNumberStart + colSpan; i++) {
            toReturn.add(colWidthSpecs.get(i));
        }
    }
    return toReturn;
}

6. Methods `commitTableWidthModification` and `commitColumnWidthModifications` are used to commit changes made to the width of the table or its columns when using the mouse drag gestures.

public void commitTableWidthModification
(AuthorDocumentController authorDocumentController,
int newTableWidth, String tableCellsTagName) throws AuthorOperationException {
    if ("td".equals(tableCellsTagName)) {
        if (newTableWidth > 0) {
            if (tableElement != null) {
                String newWidth = String.valueOf(newTableWidth);
            }
        }
    }
}
authorDocumentController.setAttribute(
    "width",
    new AttrValue(newWidth),
    tableElement);
} else {
    throw new AuthorOperationException("Cannot find the table element.");
}
}

public void commitColumnWidthModifications
    (AuthorDocumentController authorDocumentController,
     WidthRepresentation[] colWidths, String tableCellsTagName)
        throws AuthorOperationException {
    if ("td".equals(tableCellsTagName)) {
        if (colWidths != null && tableElement != null) {
            if (colsStartOffset >= 0 && colsEndOffset >= 0
                && colsStartOffset < colsEndOffset) {
                authorDocumentController.delete(colsStartOffset,
                    colsEndOffset);
            }
            String xmlFragment = createXMLFragment(colWidths);
            int offset = -1;
            AuthorElement[] header = tableElement.getElementsByLocalName("header");
            if (header != null && header.length > 0) {
                // Insert the cols elements before the 'header' element
                offset = header[0].getStartOffset();
            }
            if (offset == -1) {
                throw new AuthorOperationException("No valid offset to insert column width");
            }
            authorDocumentController.insertXMLFragment(xmlFragment, offset);
        }
    }
}

private String createXMLFragment(WidthRepresentation[] widthRepresentations) {
    StringBuffer fragment = new StringBuffer();
    String ns = tableElement.getNamespace();
    for (int i = 0; i < widthRepresentations.length; i++) {
WidthRepresentation width = widthRepresentations[i];
fragment.append("<customcol");
String strRepresentation = width.getWidthRepresentation();
if (strRepresentation != null) {
    fragment.append(" width=" + width.getWidthRepresentation() + "\"");
}
if (ns != null && ns.length() > 0) {
    fragment.append(" xmlns=" + ns + "\"");
}
fragment.append("\/>")
return fragment.toString();
}

7. The following three methods are used to determine what type of column width specifications the table column width provider support. In our case all types of specifications are allowed:

```java
public boolean isAcceptingFixedColumnWidths(String tableCellsTagName) {
    return true;
}

public boolean isAcceptingPercentageColumnWidths(String tableCellsTagName) {
    return true;
}

public boolean isAcceptingProportionalColumnWidths(String tableCellsTagName) {
    return true;
}
```

**Note:** The complete source code for framework customization examples can be found in the oxygen-sample-framework module of the Oxygen SDK, available as a Maven archetype on the Oxygen XML Editor website.

In the listing below, the XML document contains the table element:

```xml
<table width="300">
    <customcol width="50.0px"/>
    <customcol width="1*"/>
    <customcol width="2*"/>
    <customcol width="20%"/>
    <header>
```
When no table column width provider is specified, the table has the following layout:

**Figure 723.** Table layout when no column width provider is specified

![Table layout](image)

When the above implementation is configured, the table has the correct layout:

**Figure 724.** Columns with custom widths
Configuring a Table Cell Span Provider

In a custom framework (on page 3282), the table element can have cells that span over multiple columns and rows. As explained in Configuring Tables (on page 2409), you need to indicate Oxygen XML Editor a method to determine the cell spanning. If you use the cell element attributes `rowspan` and `colspan` or `rows` and `cols`, Oxygen XML Editor can determine the cell spanning automatically. In the following example, the td element uses the attributes `row_span` and `column_span` that are not recognized by default. You will need to implement a Java extension class for defining the cell spanning.

1. Create the class `simple.documentation.framework.TableCellSpanProvider`. This class must implement the `ro.sync.ecss.extensions.api.AuthorTableCellSpanProvider` interface.

```java
import ro.sync.ecss.extensions.api.AuthorTableCellSpanProvider;
import ro.sync.ecss.extensions.api.node.AttrValue;
import ro.sync.ecss.extensions.api.node.AuthorElement;

public class TableCellSpanProvider
    implements AuthorTableCellSpanProvider {

```

2. The `init` method takes `ro.sync.ecss.extensions.api.node.AuthorElement` that represents the XML table element as its argument. In this example, the cell span is specified for each of the cells so you leave this method empty. However, there are cases (such as the CALS table model) when the cell spanning is specified in the table element. In such cases, you must collect the span information by analyzing the table element.

```java
public void init(AuthorElement table) {
```

Note: The complete source code for framework customization examples can be found in the oxygen-sample-framework module of the Oxygen SDK, available as a Maven archetype on the Oxygen XML Editor website.
3. The `getColSpan` method is taking as argument the table cell. The table layout engine will ask this `AuthorTableSpanSupport` implementation what is the column span and the row span for each XML element from the table that was marked as cell in the CSS using the property `display:table-cell`. The implementation is simple and just parses the value of `column_span` attribute. The method must return `null` for all the cells that do not change the span specification.

```java
public Integer getColSpan(AuthorElement cell) {
    Integer colSpan = null;

    AttrValue attrValue = cell.getAttribute("column_span");
    if (attrValue != null) {
        // The attribute was found.
        String cs = attrValue.getValue();
        if (cs != null) {
            try {
                colSpan = new Integer(cs);
            } catch (NumberFormatException ex) {
                // The attribute value was not a number.
            }
        }
    }
    return colSpan;
}
```

4. The row span is determined in a similar manner:

```java
public Integer getRowSpan(AuthorElement cell) {
    Integer rowSpan = null;

    AttrValue attrValue = cell.getAttribute("row_span");
    if (attrValue != null) {
        // The attribute was found.
        String rs = attrValue.getValue();
        if (rs != null) {
            try {
                rowSpan = new Integer(rs);
            } catch (NumberFormatException ex) {
                // The attribute value was not a number.
            }
        }
    }
    return rowSpan;
}
```
The method `hasColumnSpecifications` always returns `true` considering column specifications always available.

```java
public boolean hasColumnSpecifications(AuthorElement tableElement) {
    return true;
}
```

**Note:** The complete source code for framework customization examples can be found in the `oxygen-sample-framework` module of the Oxygen SDK, available as a Maven archetype on the Oxygen XML Editor website.

6. In the listing below, the XML document contains the table element:

```xml
<table>
   <header>
      <td>C1</td>
      <td>C2</td>
      <td>C3</td>
      <td>C4</td>
   </header>
   <tr>
      <td cs="1" rs="1">cs=1, rs=1</td>
      <td column_span="2" row_span="2" cs="2" rs="2">cs=2, rs=2</td>
      <td row_span="3" cs="1" rs="3">cs=1, rs=3</td>
   </tr>
   <tr>
      <td cs="1" rs="1">cs=1, rs=1</td>
   </tr>
   <tr>
      <td column_span="3" cs="3" rs="1">cs=3, rs=1</td>
   </tr>
</table>
```

When no table cell span provider is specified, the table has the following layout:

Figure 725. Table layout when no cell span provider is specified
When the above implementation is configured, the table has the correct layout:

Figure 726. Cells spanning multiple rows and columns.

**Note:** The complete source code for framework customization examples can be found in the oxygen-sample-framework module of the Oxygen SDK, available as a Maven archetype on the Oxygen XML Editor website.

Configuring a Table Cell Row and Column Separator Provider

In a custom framework (on page 3282), the table element has separators between rows. As explained in Configuring Tables (on page 2409), you need to indicate a method to determine the way
rows and columns are separated. If you use the `rowsep` and `colsep` cell element attributes, or your table is conforming to the CALS table model, Oxygen XML Editor can determine the cell separators. Even if there are no attributes that define the separators, you can still force a separator between rows by implementing a Java extension.

1. Create the class `simple.documentation.framework.TableCellSepProvider`. This class must implement the `ro.sync.ecss.extensions.api.AuthorTableCellSepProvider` interface.

   ```java
   import ro.sync.ecss.extensions.api.AuthorTableCellSepProvider;
   import ro.sync.ecss.extensions.api.node.AuthorElement;
   
   public class TableCellSepProvider implements AuthorTableCellSepProvider{
   
   2. The `init` method takes the `ro.sync.ecss.extensions.api.node.AuthorElement` interface that represents the XML `table` element as its argument. If the separator information is implicit, it does not depend on the current table, so you leave this method empty. However, there are cases (such as the CALS table model) when the cell separators are specified in the `table` element. In such cases, you should initialize your provider based on the given argument.

   ```java
   public void init(AuthorElement table) {
   }
   
   3. The `getColSep` method takes the table cell as its argument. The table layout engine will ask this `AuthorTableCellSepProvider` implementation if there is a column separator for each XML element from the table that was marked as cell in the CSS using the property `display:table-cell`. The following example returns `false`, meaning there will not be column separators.

   ```java
   /**
   * @return false - No column separator at the right of the cell.
   */
   @Override
   public boolean getColSep(AuthorElement cellElement, int columnIndex) {
     return false;
   }
   
   4. The row separators are determined in a similar manner. This time the example returns `true`, forcing a separator between the rows.

   ```java
   /**
   * @return true - A row separator below each cell.
   */
   @Override
   public boolean getRowSep(AuthorElement cellElement, int columnIndex) {
   ```
```java
return true;
}
```

**Note:** The complete source code for framework customization examples can be found in the `oxygen-sample-framework` module of the Oxygen SDK, available as a Maven archetype on the Oxygen XML Editor website.

5. In the example below, the XML document contains the table element:

```xml
<table>
  <header>
    <td>H1</td>
    <td>H2</td>
    <td>H3</td>
    <td>H4</td>
  </header>
  <tr>
    <td>C11</td>
    <td>C12</td>
    <td>C13</td>
    <td>C14</td>
  </tr>
  <tr>
    <td>C21</td>
    <td>C22</td>
    <td>C23</td>
    <td>C24</td>
  </tr>
  <tr>
    <td>C31</td>
    <td>C32</td>
    <td>C33</td>
    <td>C34</td>
  </tr>
</table>
```

When the borders for the `td` element are removed from the CSS, the row separators become visible:

Figure 727. Row separators provided by the Java implementation.
Note: The complete source code for framework customization examples can be found in the oxygen-sample-framework module of the Oxygen SDK, available as a Maven archetype on the Oxygen XML Editor website.

Customizing Attribute Value Editors

The CustomAttributeValueEditor extension point allows you customize the attribute value editing mechanisms in Oxygen XML Editor. It changes the Browse button found in the attribute editors to an Edit button. When a user clicks that Edit button, your custom attribute value editor will be presented.

The Edit button can be accessed in the following attribute editors:

- The Attributes view in Author mode (on page 426) (when the Expand button is used to reveal an expanded panel).
- The Attributes view in Text mode (on page 351) (when the Expand button is used to reveal an expanded panel).
- The In-place Attributes Editor (on page 429) when invoked in Author mode.
- The In-place Attributes Editor invoked in the Outline view (on page 347).

How to Implement a CustomAttributeValueEditor

To implement your own CustomAttributeValueEditor, follow this procedure:

1. Extend the ro.sync.ecss.extensions.api.CustomAttributeValueEditor abstract class.
2. To instruct Oxygen XML Editor to use this newly created implementation, use either of the following methods:
   a. If you have configured an extensions bundle (on page 2391), you can return the CustomAttributeValueEditor implementation using the ro.sync.ecss.extensions.api.ExtensionsBundle.createCustomAttributeValueEditor() method.
b. Specify the CustomAttributeValueEditor in the **Author custom attribute value editor** individual extension in the **Extensions tab (on page 122)** of the **Document Type configuration dialog box (on page 95)** for your particular document type.

**Example**

The following example creates a very simple custom attribute value editor:

```java
/**
 * A custom attribute value editor.
 */
public class MyCustomAttributeValueEditor extends CustomAttributeValueEditor {

/**
 * @see ro.sync.ecss.extensions.api.Extension#getDescription()
 */
@Override
public String getDescription() {
    return "My custom attribute value editor";
}

/**
 * @see ro.sync.ecss.extensions.api.CustomAttributeValueEditor#getAttributeValue
 * (ro.sync.ecss.extensions.api.EditedAttribute, java.lang.Object)
 */
@Override
public String getAttributeValue(EditedAttribute attribute, Object parentComponent)
    throws CancelledByUserException {
    // Show an input dialog for collecting the new value
    return JOptionPane.showInputDialog(
        "Set a new value for " + attribute.getAttributeQName() + ":");
}

/**
 * @see ro.sync.ecss.extensions.api.CustomAttributeValueEditor#shouldHandleAttribute
 * (ro.sync.ecss.extensions.api.EditedAttribute)
 */
@Override
public boolean shouldHandleAttribute(EditedAttribute attribute) {
    // Handle all attributes
    return true;
}
```
Example result: If a user were to click the `Edit` button in any of the attribute editors, the following dialog box would be displayed that allows the user to insert a value for the particular attribute:

Customizing the CSS Styles Filter

You can modify the CSS styles for each `ro.sync.ecss.extensions.api.node.AuthorNode` rendered in the Author mode using an implementation of `ro.sync.ecss.extensions.api.StylesFilter`. You can implement the various callbacks of the interface either by returning the default value given by Oxygen XML Editor or by contributing to the value. The received styles `ro.sync.ecss.css.Styles` can be processed and values can be overwritten with your own. For example, you can override the `KEY_BACKGROUND_COLOR` style to return your own implementation of `ro.sync.exml.view.graphics.Color` or override the `KEY_FONT` style to return your own implementation of `ro.sync.exml.view.graphics.Font`.

For instance, in this simple document example, the filter can change the value of the `KEY_FONT` property for the `table` element:

```java
package simple.documentation.framework;

import ro.sync.ecss.css.Styles;
import ro.sync.ecss.extensions.api.StylesFilter;
import ro.sync.ecss.extensions.api.node.AuthorNode;
import ro.sync.exml.view.graphics.Font;

public class SDFStylesFilter implements StylesFilter {

    public Styles filter(Styles styles, AuthorNode authorNode) {
        if (AuthorNode.NODE_TYPE_ELEMENT == authorNode.getType() && "table".equals(authorNode.getName())) {
            styles.setProperty(Styles.KEY_FONT, new Font(null, Font.BOLD, 12));
        }
        return styles;
    }
}
```
Customizing Elements that Wrap Profiled Content

For each framework (on page 3282) (document type), you can configure the phrase-type elements that wrap the profiled content by setting a custom ro.sync.ecss.extensions.api.ProfilingConditionalTextProvider. This configuration is set by default for DITA and DocBook frameworks.

Customizing the Link Target Reference Finder

The link target reference finder represents the support for finding references from links that indicate specific elements inside an XML document. This support will only be available if a schema is associated with the document type.

If you do not define a custom link target reference finder, the DefaultElementLocatorProvider implementation (on page 2426) will be used by default. The interface that should be implemented for a custom link target reference finder is ro.sync.ecss.extensions.api.link.ElementLocatorProvider. As an alternative, the ro.sync.ecss.extensions.commons.DefaultElementLocatorProvider implementation can also be extended.

The used ElementLocatorProvider will be queried for an ElementLocator when a link location must be determined (when a link is clicked). Then, to find the corresponding (linked) element, the obtained ElementLocator will be queried for each element from the document.

Creating a Custom Link Target Reference Finder

If you need to create a custom link target reference finder you can do so by creating the class that will implement the ro.sync.ecss.extensions.api.link.ElementLocatorProvider interface. As an alternative, your class could extend ro.sync.ecss.extensions.commons.DefaultElementLocatorProvider, the default implementation.
ro.sync.ecss.extensions.commons.XPointerElementLocator can be found in the oxygen-sample-framework project.

Default Link Target Reference Finder

The DefaultElementLocatorProvider implementation is used by default to find link target references. It offers support for the most common types of links:

- Links based on ID attribute values (on page 2426).
- XPointer element() scheme (on page 2427).

The method `getElementLocator` determines what `ElementLocator` should be used. In the default implementation, it checks if the link is an XPointer element() scheme. Otherwise, it assumes it is an ID. A non-null `IDTypeVerifier` will always be provided if a schema is associated with the document type.

The `link` string argument is the anchor (on page 3279) part of the of the URL that is composed from the value of the link property specified for the link element in the CSS.

```java
public ElementLocator getElementLocator(IDTypeVerifier idVerifier, String link) {
    ElementLocator elementLocator = null;
    try {
        if (link.startsWith("element()")) {
            // xpointer element() scheme
            elementLocator = new XPointerElementLocator(idVerifier, link);
        } else {
            // Locate link element by ID
            elementLocator = new IDElementLocator(idVerifier, link);
        }
    } catch (ElementLocatorException e) {
        logger.warn("Exception when create element locator for link: " + link + ". Cause: " + e, e);
    }
    return elementLocator;
}
```

ID Element Locator

The IDEElementLocator is an implementation of the abstract class ro.sync.ecss.extensions.api.link.ElementLocator for links that use an ID.
The constructor only assigns field values and the method `endElement` is empty for this implementation.

The method `startElement` checks each of the element's attribute values and when one matches the link, it considers the element found if one of the following conditions is satisfied:

- The qualified name of the attribute is `xml:id`.
- The attribute type is ID.

The attribute type is checked with the help of the method `IDTypeVerifier.hasIDType`.

```java
public boolean startElement(String uri, String localName, String name, Attr[] atts) {
    boolean elementFound = false;
    for (int i = 0; i < atts.length; i++) {
        if (link.equals(atts[i].getValue())) {
            if ("xml:id".equals(atts[i].getQName())) {
                // xml:id attribute
                elementFound = true;
            } else {
                // check if attribute has ID type
                String attrLocalName = ExtensionUtil.getLocalName(atts[i].getQName());
                String attrUri = atts[i].getNamespace();
                if (idVerifier.hasIDType(localName, uri, attrLocalName, attrUri)) {
                    elementFound = true;
                }
            }
        }
    }
    return elementFound;
}
```

**XPointer Element Locator**

`XPointerElementLocator` is an implementation of the abstract class `ro.sync.ecss.extensions.api.link.ElementLocator` for links that have one of the following XPointer element() scheme patterns:

**element (elementID)**

Locate the element with the specified ID.
element (/1/2/3)

A child sequence appearing alone identifies an element by means of stepwise navigation, which is directed by a sequence of integers separated by slashes (/). Each integer n locates the nth child element of the previously located element.

element (elementID/3/4)

A child sequence appearing after a NCName identifies an element by means of stepwise navigation, starting from the element located by the given name.

The constructor separates the ID/integers, which are delimited by slashes(/) into a sequence of identifiers (an XPointer path). It will also check that the link has one of the supported patterns of the XPointer element() scheme.

```java
public XPointerElementLocator(IDTypeVerifier idVerifier, String link) throws ElementLocatorException {
    super(link);
    this.idVerifier = idVerifier;

    link = link.substring("element(".length(), link.length() - 1);

    StringTokenizer stringTokenizer = new StringTokenizer(link, "/", false);
    xpointerPath = new String[stringTokenizer.countTokens()];
    int i = 0;
    while (stringTokenizer.hasMoreTokens()) {
        xpointerPath[i] = stringTokenizer.nextToken();
        boolean invalidFormat = false;

        // Empty xpointer component is not supported
        if(xpointerPath[i].length() == 0){
            invalidFormat = true;
        }

        if(i > 0){
            try {
                Integer.parseInt(xpointerPath[i]);
            } catch (NumberFormatException e) {
                invalidFormat = true;
            }
        }
    }

    if(invalidFormat){
```
throw new ElementLocatorException(
    "Only the element() scheme is supported when locating XPointer links."
+ "Supported formats: element(elementID), element(/1/2/3),
 element(elemID/2/3/4).";
}
i++;
}

if(Character.isDigit(xpointerPath[0].charAt(0))){
    // This is the case when xpointer have the following pattern /1/5/7
    xpointerPathDepth = xpointerPath.length;
} else {
    // This is the case when xpointer starts with an element ID
    xpointerPathDepth = -1;
    startWithElementID = true;
}

The method startElement will be invoked at the beginning of every element in the XML document (even when the element is empty). The arguments it takes are

uri

The namespace URI, or the empty string if the element has no namespace URI or if namespace processing is disabled.

localName

Local name of the element.

qName

Qualified name of the element.

atts

Attributes attached to the element. If there are no attributes, this argument will be empty.

The method returns true if the processed element is found to be the one indicated by the link.

The XPointerElementLocator implementation of the startElement will update the depth of the current element and keep the index of the element in its parent. If the xpointerPath starts with an element ID then the current element ID is verified to match the specified ID. If this is the case the depth of the XPointer is updated taking into account the depth of the current element.
If the XPointer path depth is the same as the current element depth then the kept indices of the current element path are compared to the indices in the XPointer path. If all of them match then the element has been found.

```java
public boolean startElement(String uri, String localName, String name, Attr[] atts) {
    boolean linkLocated = false;
    // Increase current element document depth
    startElementDepth ++;

    if (endElementDepth != startElementDepth) {
        // The current element is the first child of the parent
        currentElementIndexStack.push(new Integer(1));
    } else {
        // Another element in the parent element
        currentElementIndexStack.push(new Integer(lastIndexInParent + 1));
    }

    if (startWithElementID) {
        // This the case when xpointer path starts with an element ID.
        String xpointerElement = xpointerPath[0];
        for (int i = 0; i < atts.length; i++) {
            if (xpointerElement.equals(atts[i].getValue())) {
                if (idVerifier.hasIDType(localName, uri, atts[i].getQName(), atts[i].getNamespace())){
                    xpointerPathDepth = startElementDepth + xpointerPath.length - 1;
                    break;
                }
            }
        }

        if (xpointerPathDepth == startElementDepth){
            // check if xpointer path matches with the current element path
            linkLocated = true;
            try {
                int xpointerIdx = xpointerPath.length - 1;
                int stackIdx = currentElementIndexStack.size() - 1;
                int stopIdx = startWithElementID ? 1 : 0;
                while (xpointerIdx >= stopIdx && stackIdx >= 0) {
                    int xpointerIndex = Integer.parseInt(xpointerPath[xpointerIdx]);
                }
            } catch (Exception e) {
                // handle exception
            }
        }
    }
}```
```
int currentElementIndex =
   ((Integer)currentElementIndexStack.get(stackIdx)).intValue();
if(xpointerIndex != currentElementIndex) {
   linkLocated = false;
   break;
}
xpointerIdx--;
stackIdx--;
}
}
catch (NumberFormatException e) {
   logger.warn(e,e);
}
return linkLocated;
```

The method `endElement` will be invoked at the end of every element in the XML document (even when the element is empty).

The `XPointerElementLocator` implementation of the `endElement` updates the depth of the current element path and the index of the element in its parent.

```java
public void endElement(String uri, String localName, String name) {
   endElementDepth = startElementDepth;
   startElementDepth --;
   lastIndexInParent = ((Integer)currentElementIndexStack.pop()).intValue();
}
```

Customizing XML Node Rendering

You can use this API extension to customize the way an XML node is rendered in the Outline view (on page 347) in Author mode, breadcrumb navigation bar (on page 907) in Author mode, Outline view (on page 347) in Text mode, Content Completion Assistant (on page 3280) window, or DITA Maps Manager view (on page 2990).

There are two methods to provide an implementation of
ro.sync.exml.workspace.api.node.customizer.XMLNodeRendererCustomizer:

- As a part of a bundle, returning it from the createXMLNodeCustomizer() method of the
  ExtensionsBundle associated with your document type in the Document type configuration dialog
  box (on page 95) (Extensions bundle field in the Extensions tab).
- As an individual extension, associated with your document type in the Document type
  configuration dialog box (on page 95) (XML node renderer customizer field in the Individual
  extensions section of the Extensions tab).

Support for Retina/HiDPI Displays

To support Retina or HiDPI displays, the icons provided by the XMLNodeRendererCustomizer should
be backed up by a copy of larger size using the proper Retina/HiDPI naming convention (on page
1029).

For example, for the title element, if the XMLNodeRendererCustomizer returns the path
${framework}/images/myImg.png, then to support Retina images with a scaling factor of 2, an
extra file (myImg@2x.png) should be added to the same images directory (${framework}/images/
myImg@2x.png). If the higher resolution icon (the @2x file) does not exist, the normal icon is scaled
and used instead.

For more information about using Retina/HiDPI images, refer to the Using Retina/HiDPI Images in
Author Mode (on page 1028) section.

Note: The complete source code for framework customization examples can be found in the
oxygen-sample-framework module of the Oxygen SDK, available as a Maven archetype on the Oxygen
XML Editor website.

Related Information:

- Customizing the Rendering of Elements (on page 2364)

Handling Author Mode Action Events

The AuthorEventHandler extension point allows you to handle certain Author mode actions in a
special way. For example, a specific use-case would be if you want to insert new lines when you press
Enter instead of it opening the Content Completion Assistant (on page 3280).
How to Implement an *AuthorActionEventHandler*

To implement your own *AuthorActionEventHandler*, follow this procedure:

1. Implement the `ro.sync.ecss.extensions.api.AuthorActionEventHandler` interface.
2. To instruct Oxygen XML Editor to use this newly created implementation, use either of the following methods:
   a. If you have configured an extensions bundle *(on page 2391)*, you can return the *AuthorActionEventHandler* implementation using the `ro.sync.ecss.extensions.api.ExtensionsBundle.getAuthorActionEventHandler()` method.
   b. Specify the *AuthorActionEventHandler* in the *Author action event handler* individual extension in the *Extensions* tab *(on page 122)* of the *Document Type* configuration dialog box *(on page 95)* for your particular document type.

Example

The following example illustrates the use-case mentioned in the introduction, that is an implementation for inserting a new line when the user presses `Enter` in *Author* mode. It uses the `canHandleEvent` method to make sure the insertion will be performed in an element that will preserve the `new-line` character. Then the `handleEvent` method inserts the new line at the current cursor position.

```java
public class CustomAuthorActionEventHandler implements AuthorActionEventHandler {

    /**
     * @see ro.sync.ecss.extensions.api.AuthorActionEventHandler#canHandleEvent
     *(AuthorAccess, AuthorActionEventType)
     */
    @Override
    public boolean canHandleEvent(AuthorAccess authorAccess,
                                  AuthorActionEventType type) {
        boolean canHandle = false;

        if (type == AuthorActionEventType.ENTER) {
            AuthorDocumentController documentController =
                authorAccess.getDocumentController();
            int caretOffset = authorAccess.getEditorAccess().getCaretOffset();
            try {
                AuthorNode nodeAtOffset = documentController.getNodeAtOffset(caretOffset);
                if (nodeAtOffset instanceof AuthorElement) {

```
```java
AuthorElement elementAtOffset = (AuthorElement) nodeAtOffset;
AttrValue xmlSpace = elementAtOffset.getAttribute("xml:space");
if (xmlSpace != null && xmlSpace.getValue().equals("preserve")) {
    canHandle = true;
}
}

} catch (BadLocationException ex) {
    if (logger.isDebugEnabled()) {
        logger.error(ex.getMessage(), ex);
    }
}

return canHandle;

/**
 * @see ro.sync.ecss.extensions.api.AuthorActionEventHandler#handleEvent
 * (ro.sync.ecss.extensions.api.AuthorAccess,
 * ro.sync.ecss.extensions.api.AuthorActionEventHandler.AuthorActionEventType)
 */
@Override
public boolean handleEvent(AuthorAccess authorAccess,
AuthorActionEventType eventType) {
    int caretOffset = authorAccess.getEditorAccess().getcaretOffset();
    // Insert a new line
    authorAccess.getDocumentController().insertText(caretOffset, 
"
");
    return true;
}

/**
 * @see ro.sync.ecss.extensions.api.Extension#getDescription()
 */
@Override
public String getDescription() {
    return "Insert a new line";
}
```
Handling Schema-Aware Editing Events

The `AuthorSchemaAwareEditingHandlerAdapter` extension point allows you to handle certain Author mode actions in various ways. For example, implementing the `AuthorSchemaAwareEditingHandlerAdapter` makes it possible to handle events such as typing, the keyboard delete event at a given offset (using Delete or Backspace keys), delete element tags, delete selection, join elements, or paste fragment. It also makes it possible to improve solutions that are proposed by the paste mechanism in Oxygen XML Editor when pasting content (through the use of some specific methods (on page 2436)).

How to Implement an `AuthorSchemaAwareEditingHandlerAdapter`

For this handler to be called, the Schema Aware Editing option (on page 138) must be set to On or Custom in the Schema-Aware preferences page (on page 137). The handler can either resolve a specific case, let the default implementation take place, or reject the edit entirely by throwing an `InvalidEditException`.

To implement your own `AuthorSchemaAwareEditingHandlerAdapter`, follow this procedure:

1. Implement the `ro.sync.ecss.extensions.api.AuthorSchemaAwareEditingHandlerAdapter` extension.
2. To instruct Oxygen XML Editor to use this newly created implementation, configure an extensions bundle (on page 2391) and return the `AuthorSchemaAwareEditingHandlerAdapter` implementation using the `ro.sync.ecss.extensions.api.ExtensionsBundle.getAuthorSchemaAwareEditingHandlerAdapter()` method.

Example

Typing events can be handled using the `handleTyping` method. For example, the `AuthorSchemaAwareEditingHandler` checks if the schema is not a learned one, was loaded successfully, and if the Smart paste and drag and drop option (on page 138) is selected. If these conditions are met, the event will be handled.

```java
public class AuthorSchemaAwareEditingHandlerAdapter
        extends AuthorSchemaAwareEditingHandler {

        /**
         * @see AuthorSchemaAwareEditingHandler#handleTyping
         * (int, char, ro.sync.ecss.extensions.api.AuthorAccess)
         */

        public boolean handleTyping(int offset, char ch, AuthorAccess authorAccess)
```
```java
void InvalidEditException {
    boolean handleTyping = false;
    AuthorSchemaManager authorSchemaManager =
    authorAccess.getDocumentController().getAuthorSchemaManager();
    if (!authorSchemaManager.isLearnSchema() &&
        !authorSchemaManager.hasLoadingErrors() &&
        authorSchemaManager.getAuthorSchemaAwareOptions().isEnableSmartTyping()) {
        try {
            AuthorDocumentFragment characterFragment =
        authorAccess.getDocumentController().createNewDocumentTextFragment
            (String.valueOf(ch));
            handleTyping = handleInsertionEvent
                (offset, new AuthorDocumentFragment[] {characterFragment}, authorAccess);
        } catch (AuthorOperationException e) {
            throw new InvalidEditException
                (e.getMessage(), "Invalid typing event: " + e.getMessage(), e, false);
        }
    }
    return handleTyping;
}
```

**Note:** The complete source code for framework customization examples can be found in the oxygen-sample-framework module of the Oxygen SDK, available as a Maven archetype on the Oxygen XML Editor website.

### Methods for Improving the Paste Mechanism

**getAncestorDetectionOptions**

When pasting content in **Author** mode, if the result causes the document to become invalid, Oxygen XML Editor will propose solutions to make it valid. As a possible solution, Oxygen XML Editor might surround the pasted content in a sequence of ancestor elements. This `getAncestorDetectionOptions` method allows you to choose which parent elements might be a possible solution.

**canBeReplaced**

Allows you to improve solutions that might be proposed by the paste mechanism when pasting content in Oxygen XML Editor. For example, when pasting an element inside an empty element with the same name, this `canBeReplaced` method allows Oxygen XML Editor to replace the empty node rather than pasting it after or before the empty node. The callback could also reject this behavior if, for instance, the replacement node contains attributes.
Handling When URLs or XHTML Fragments are Dropped or Pasted in Author Mode

The AuthorExternalObjectInsertionHandler extension can be used to configure how URLs or XHTML fragments from external applications are handled when they are dropped or pasted in Author mode.

How to Implement an AuthorExternalObjectInsertionHandler

To implement your own AuthorExternalObjectInsertionHandler, follow this procedure:

1. Implement the ro.sync.ecss.extensions.api.AuthorExternalObjectInsertionHandler interface.
2. To instruct Oxygen XML Editor to use this newly created implementation, use either of the following methods:
   a. If your framework is an extension of DITA, DocBook, TEI, or XHTML, you can specify the AuthorExternalObjectInsertionHandler in the Author external object insertion handler individual extension in the Extensions tab (on page 122) of the Document Type configuration dialog box (on page 95) for your particular document type.
   b. Otherwise, you can configured an extensions bundle (on page 2391), then return the AuthorExternalObjectInsertionHandler implementation using the ro.sync.ecss.extensions.api.ExtensionsBundle.createAuthorExternalObjectInsertionHandler() method.
3. You can use a stylesheet to convert the pasted XHTML to your own XML vocabulary by overwriting the following method:

   ro.sync.ecss.extensions.api.AuthorExternalObjectInsertionHandler.getImporterStylesheetFileName(AuthorAccess)

   and return the file name of the stylesheet that will be applied. The path to the importer stylesheet must also be added in the Classpath tab (on page 99) in the Document Type configuration dialog box (on page 95) for your particular document type.

Example

The following example illustrates an implementation for the DITA framework:

```java
/**
 * @see ro.sync.ecss.extensions.api.ExtensionsBundle
 */
```
createExternalObjectInsertionHandler()
 */
@override
public AuthorExternalObjectInsertionHandler createExternalObjectInsertionHandler() {
    return new DITAExternalObjectInsertionHandler();
}

/**
 * @see ro.sync.ecss.extensions.api.AuthorExternalObjectInsertionHandler#
getImporterStylesheetFileName(ro.sync.ecss.extensions.api.AuthorAccess)
 */
@override
protected String getImporterStylesheetFileName(AuthorAccess authorAccess) {
    return "xhtml2ditaDriver.xsl";
}

Tip: For XHTML fragments, there is another method that you could use to configure how they are handled when they are pasted in Author mode. For more information, see Customizing Smart Paste Support (on page 2343).

Presenting an Edit Properties Dialog Box for Actions in Author Mode

The EditPropertiesHandler extension point allows you to present a specialized dialog box when the action of double-clicking an element tag is intercepted in Author mode. For example, you could use it to present a dialog box that allows the user to editing the properties of an image.

How to Implement an EditPropertiesHandler

To implement your own EditPropertiesHandler, follow this procedure:

1. Implement the ro.sync.ecss.extensions.api.EditPropertiesHandler interface.
2. To instruct Oxygen XML Editor to use this newly created implementation, use either of the following methods:
   a. If you have configured an extensions bundle (on page 2391), you can return the EditPropertiesHandler implementation using the ro.sync.ecss.extensions.api.ExtensionsBundle.createEditPropertiesHandler() method.
   b. Specify the EditPropertiesHandler in the Author edit properties handler individual extension in the Extensions tab (on page 122) of the Document Type configuration dialog box (on page 95) for your particular document type.
Example

The following example illustrates an implementation for presenting a simple properties editing dialog box when a user double-clicks an `image` tag in Author mode (with tags displayed from the Tags drop-down menu):

```java
public class CustomEditPropertiesHandler implements EditPropertiesHandler {

    /*
     * @see ro.sync.ecss.extensions.api.Extension#getDescription()
     */
    @Override
    public String getDescription() {
        return "Sample implementation that handles properties for a table element.";
    }

    /*
     * @see ro.sync.ecss.extensions.api.EditPropertiesHandler#canEditProperties
     * (ro.sync.ecss.extensions.api.node.AuthorNode)
     */
    @Override
    public boolean canEditProperties(AuthorNode authorNode) {
        // If this node is an image element we can edit its properties.
        return "image".equals(authorNode.getDisplayName());
    }

    /*
     * @see ro.sync.ecss.extensions.api.EditPropertiesHandler#editProperties
     * (ro.sync.ecss.extensions.api.node.AuthorNode,
     *  ro.sync.ecss.extensions.api.AuthorAccess)
     */
    @Override
    public void editProperties(AuthorNode authorNode, AuthorAccess authorAccess) {
        // If we receive this call then it surely an image.
        AuthorElement imageElement = (AuthorElement) authorNode;
        String currentValue = "";
        AttrValue altValue = imageElement.getAttribute("alt");
        if (altValue != null) {
            currentValue = altValue.getValue();
        }
    }
}
```
Example result: If a user were to double-click an image tag icon in Author mode, the following dialog box would be displayed that allows the user to edit the alternate text property for the image:

Java API - Extending Author Functionality through Java

Oxygen XML Editor Author mode has a built-in set of operations covering the insertion of text and XML fragments (see the Author Default Operations (on page 2451)) and the execution of XPath expressions on the current document edited in Author mode. However, there are situations in which you need to extend this set. The following examples are just a few of the possible situations:

- You need to enter an element whose attributes will be edited by the user through a graphical user interface.
- The user must send selected element content (or the whole document) to a server for some kind of processing.
- Content authors need to extract pieces of information from a server and insert it directly into the edited XML document.
- You need to apply an XPath expression on the current document and process the nodes of the resulting node set.

To extend the Oxygen XML Editor Author mode functionality through Java, you will need the Oxygen SDK available on the Oxygen XML Editor website. It includes the source code of the Author mode
operations in the built-in document types and the full documentation (in Javadoc format) of the public API available for Author mode custom actions.

The subsequent Java examples make use of AWT classes. If you are developing extensions for the Oxygen XML Editor XML Editor plugin for Eclipse, you will have to use their SWT counterparts.

⚠️ **Attention:** Make sure the Java classes of your custom Author mode operations are compiled with the same Java version used by Oxygen XML Editor. Otherwise, the classes may not be loaded by the Java virtual machine. For example, if you run Oxygen XML Editor with a Java 1.8 virtual machine but the Java classes of your custom Author mode operations are compiled with a Java 9 or later virtual machine then the custom operations cannot be loaded and used by the Java 1.8 virtual machine.

### Related Information:

- [https://www.oxygenxml.com/InstData/Editor/SDK/javadoc/ro/sync/ecss/extensions/api/AuthorOperation.html](https://www.oxygenxml.com/InstData/Editor/SDK/javadoc/ro/sync/ecss/extensions/api/AuthorOperation.html)

### Example 1- Simple Use of a Dialog Box from an Author Mode Operation

In this example, functionality is added for inserting images in a custom framework (on page 3282). The images are represented by the `image` element. The location of the image file is represented by the value of the `href` attribute. In the Java implementation, a dialog box will be displayed with a text field, in which the user can enter a full URL or browse for a local file.

1. Set up a sample project following this set of instructions. The framework project is `oxygen-sample-framework`.

2. Modify the `simple.documentation.framework.InsertImageOperation` class that implements the `ro.sync.ecss.extensions.api.AuthorOperation` interface. This interface defines three methods: `doOperation`, `getArguments` and `getDescription`.

A short description of these methods follows:

- The `doOperation` method is invoked when the action is performed either by pressing the toolbar button, by selecting the menu item or by pressing the shortcut key. The arguments taken by this method can be one of the following combinations:
  - An object of type `ro.sync.ecss.extensions.api.AuthorAccess` and a map.
  - Argument names and values.
- The `getArguments` method is used by Oxygen XML Editor when the action is configured. It returns the list of arguments (name and type) that are accepted by the operation.
• The `getDescription` method is used by Oxygen XML Editor when the operation is configured. It returns a description of the operation.

**Example:**

Here is the implementation of these three methods:

```java
/**
 * Performs the operation.
 */
public void doOperation(
    AuthorAccess authorAccess,
    ArgumentsMap arguments)
    throws IllegalArgumentException,
    AuthorOperationException {

    JFrame oxygenFrame = (JFrame) authorAccess.getWorkspaceAccess().getParentFrame();
    String href = displayURLDialog(oxygenFrame);
    if (href.length() != 0) {
        // Creates the image XML fragment.
        String imageFragment = "<image xmlns='http://www.oxygenxml.com/sample/documentation' href='"
                           + href + "'/>";

        // Inserts this fragment at the cursor position.
        int caretPosition = authorAccess.getEditorAccess().getCareOffset();
        authorAccess.getDocumentController().insertXMLFragment(imageFragment, caretPosition);
    }
}

/**
 * Has no arguments.
 *
 * @return null.
 */
public ArgumentDescriptor[] getArguments() {
    return null;
}
```
* @return A description of the operation.
 */

```java
public String getDescription() {
    return "Inserts an image element. Asks the user for a URL reference.";
}
```

**Note:** The complete source code for framework customization examples can be found in the oxygen-sample-framework module of the Oxygen SDK, available as a Maven archetype on the Oxygen XML Editor website.

**Important:**

Make sure you always specify the namespace of the inserted fragments.

```xml
<image xmlns="http://www.oxygenxml.com/sample/documentation"
       href="path/to/image.png"/>
```

3. Package the compiled class into a JAR (on page 3283) file. An example of an Ant script that packages the classes folder content into a JAR archive named sdf.jar is listed below:

```xml
<?xml version="1.0" encoding="UTF-8"?>
<project name="project" default="dist">
  <target name="dist">
    <jar destfile="sdf.jar" basedir="classes">
      <files dir="classes">
        <include name="**/*"/>
      </files>
    </jar>
  </target>
</project>
```

4. Copy the sdf.jar file into your custom framework directory

('{OXYGEN_INSTALL_DIR}\frameworks\{CUSTOM_FRAMEWORK_DIR}\').

5. Add the sdf.jar to the class path. To do this, open the Preferences dialog box (Options > Preferences) (on page 79), go to Document Type Association, select SDF, and press the Edit button.

6. Select the Classpath tab in the lower part of the Document Type configuration dialog box (on page 95) and press the + Add button. In the displayed dialog box, enter the location of the JAR file, relative to the Oxygen XML Editor frameworks folder.
7. Next, create the action that will use the defined operation. Go to the Actions subtab. Copy the icon files for the menu item and for the toolbar in your custom framework directory\((\text{OXYGEN}_{\text{INSTALL\_DIR}/}\text{frameworks/\{CUSTOM\_FRAMEWORK\_DIR\}})\).

8. Define the action's properties:
   - Set ID to \text{insert\_image}.
   - Set Name to \text{Insert image}.
   - Set Menu access key to letter i.
   - Set Toolbar action to $\{\text{framework}/\text{toolbarImage.png}\}$.
   - Set Menu icon to $\{\text{framework}/\text{menuImage.png}\}$.
   - Set Shortcut key to Ctrl (Meta on Mac OS)+Shift+i.

9. Next, set up the operation. You want to add images only if the current element is a section, book or article.
   - Set the value of XPath expression to
     \[
     \text{local-name()='section'} \text{ or local-name()='book'} \text{ or local-name()='article'}
     \]
   - Set the Invoke operation field to \text{simple.documentation.framework.InsertImageOperation}.

Figure 728. Selecting the Operation

10. Add the action to the toolbar, using the Toolbar panel.
To test the action, open or create an xml file and place the cursor at a valid location. Then press the button associated with the action from the toolbar. In the dialog box, select an image URL and press OK. The image is inserted into the document.

Example 2- Operations with Arguments. Report from Database Operation

In this example you will create an operation that connects to a relational database and executes an SQL statement. The result should be inserted in the edited XML document as a table. To make the operation fully configurable, it will have arguments for the database connection string, the user name, the password and the SQL expression.

1. Set up a sample project following this set of instructions. The framework project is oxygen-sample-framework.

2. Create the class simple.documentation.framework.QueryDatabaseOperation. This class must implement the ro.sync.ecss.extensions.api.AuthorOperation interface.

   ```java
   import ro.sync.ecss.extensions.api.ArgumentDescriptor;
   import ro.sync.ecss.extensions.api.ArgumentsMap;
   import ro.sync.ecss.extensions.api.AuthorAccess;
   import ro.sync.ecss.extensions.api.AuthorOperation;
   import ro.sync.ecss.extensions.api.AuthorOperationException;

   public class QueryDatabaseOperation implements AuthorOperation {

   3. Now define the operation's arguments. For each of them you will use a String constant representing the argument name:

   ```java
   private static final String ARG_JDBC_DRIVER = "jdbc_driver";
   private static final String ARG_USER = "user";
   private static final String ARG_PASSWORD = "password";
   private static final String ARG_SQL = "sql";
   private static final String ARG_CONNECTION = "connection";
   ```

   4. You must describe each of the argument name and type. To do this, implement the getArguments method that will return an array of argument descriptors:

   ```java
   public ArgumentDescriptor[] getArguments() {
       ArgumentDescriptor args[] = new ArgumentDescriptor[] {
           new ArgumentDescriptor( 
               ARG_JDBC_DRIVER,
   ```
These names, types and descriptions will be listed in the Arguments table when the operation is configured.

5. When the operation is invoked, the implementation of the doOperation method extracts the arguments, forwards them to the method that connects to the database and generates the XML fragment. The XML fragment is then inserted at the cursor position.

```java
public void doOperation(AuthorAccess authorAccess, ArgumentsMap map)
    throws IllegalArgumentException, AuthorOperationException {
    // Collects the arguments.
    String jdbcDriver =
        (String)map.getArgumentValue(ARG_JDBC_DRIVER);
    String connection =
        (String)map.getArgumentValue(ARG_CONNECTION);
    String user =
        (String)map.getArgumentValue(ARG_USER);
    String password =
        (String)map.getArgumentValue(ARG_PASSWORD);
```
String sql = (String)map.getArgumentValue(ARG_SQL);

int caretPosition = authorAccess.getCaretOffset();

try {
    authorAccess.getDocumentController().insertXMLFragment(  
        getFragment(jdbcDriver, connection, user, password, sql),  
        caretPosition);
} catch (SQLException e) {  
    throw new AuthorOperationException(  
            "The operation failed due to the following database error: "  
            + e.getMessage(), e);
} catch (ClassNotFoundException e) {  
    throw new AuthorOperationException(  
            "The JDBC database driver was not found. Tried to load ' "  
            + jdbcDriver + "', e);
}

6. The getFragment method loads the JDBC driver, connects to the database and extracts the data. The result is a table element from the http://www.oxygenxml.com/sample/documentation namespace. The header element contains the names of the SQL columns. All the text from the XML fragment is escaped. This means that the '<' and '&' characters are replaced with the '&lt;' and '&amp;' character entities to ensure the fragment is well-formed.

private String getFragment(  
    String jdbcDriver,  
    String connectionURL,  
    String user,  
    String password,  
    String sql) throws  
    SQLException,  
    ClassNotFoundException {

    Properties pr = new Properties();
    pr.put("characterEncoding", "UTF8");
    pr.put("useUnicode", "TRUE");
    pr.put("user", user);
    pr.put("password", password);

    // Loads the database driver.
Class.forName(jdbcDriver);
// Opens the connection
Connection connection =
    DriverManager.getConnection(connectionURL, pr);
java.sql.Statement statement =
    connection.createStatement();
ResultSet resultSet =
    statement.executeQuery(sql);

StringBuffer fragmentBuffer = new StringBuffer();
fragmentBuffer.append("<table xmlns=" +
    "http://www.oxygenxml.com/sample/documentation'">

    /*
    // Creates the table header.
    */
    fragmentBuffer.append("<header>");
    ResultSetMetaData metaData = resultSet.getMetaData();
    int columnCount = metaData.getColumnCount();
    for (int i = 1; i <= columnCount; i++) {
        fragmentBuffer.append("<td>");
        fragmentBuffer.append(xmlEscape(metaData.getColumnName(i)));
        fragmentBuffer.append("</td>");
    }
    fragmentBuffer.append("</header>");

    /*
    // Creates the table content.
    */
    while (resultSet.next()) {
        fragmentBuffer.append("<tr>");
        for (int i = 1; i <= columnCount; i++) {
            fragmentBuffer.append("<td>");
            fragmentBuffer.append(xmlEscape(resultSet.getObject(i)));
            fragmentBuffer.append("</td>");
        }
        fragmentBuffer.append("</tr>");
    }
fragmentBuffer.append("</table>");

// Cleanup
resultSet.close();
statement.close();
connection.close();
return fragmentBuffer.toString();
}

Note: The complete source code for framework customization examples can be found in the oxygen-sample-framework module of the Oxygen SDK, available as a Maven archetype on the Oxygen XML Editor website.

7. Package the compiled class into a JAR (on page 3283) file.

8. Copy the JAR file and the JDBC driver files into your custom framework directory (\OXYGEN_INSTALL_DIR\frameworks\CUSTOM_FRAMEWORK_DIR).

9. Add the JARS to the class path. To do this, open the Document Type Association preferences page (on page 92), select SDF and press the Edit button. Select the Classpath tab in the lower part of the Document Type configuration dialog box (on page 95) and press the Add button. In the displayed dialog box, enter the location of the JAR file, relative to the Oxygen XML Editor frameworks folder.

10. Go to the Actions subtab. The action properties are:
    • Set ID to clients_report.
    • Set Name to Clients Report.
    • Set Menu access key to letter r.
    • Set Description to Connects to the database and collects the list of clients.
    • Set Toolbar icon to ${framework}/TableDB20.png (image TableDB20.png is already stored in the frameworks/ sdf folder).
    • Leave empty the Menu icon.
    • Set shortcut key to Ctrl + Shift + C (Command + Shift + C on OS X).

11. The action will work only if the current element is a section. Set up the operation as follows:
    • Set XPath expression to:
      
      \local-name() = 'section'
      
    • Use the Java operation defined earlier to set the Invoke operation field. Press the Choose button, then select simple.documentation.framework.QueryDatabaseOperation. Once
selected, the list of arguments is displayed. In the figure below the first argument, `jdbc_driver`, represents the class name of the MySQL JDBC driver. The connection string has the URL syntax: `jdbc://<database_host>:<database_port>/<database_name>.

The SQL expression used in the example follows, but it can be any valid SELECT expression that can be applied to the database:

```
SELECT userID, email FROM users
```

12. Add the action to the toolbar, using the **Toolbar** panel.

Figure 729. Java Operation Arguments Setup

To test the action, open or create an **xml** file and place the cursor at a valid location. Then press the **Create Report** button from the toolbar. You can see below the toolbar with the action button and sample table inserted by the **Clients Report** action.

Figure 730. Table Content Extracted from the Database
Author Mode Operations

This topic lists the default operations for the **Author** mode.

**ChangeAttributeOperation**

This operation allows you to add/modify/remove an attribute. You can use this operation in your own custom **Author** mode action to modify the value for a certain attribute on a specific XML element. The arguments of the operation are:

* **name**
  The attribute local name.

* **namespace**
  The attribute namespace.

* **elementLocation**
  The XPath location that identifies the element.

* **value**
  The new value for the attribute. If empty or null the attribute will be removed.

* **editAttribute**
  If an in-place editor exists for this attribute, it will automatically activate the in-place editor and start editing.

* **removeIfEmpty**
The possible values are true and false. True means that the attribute should be removed if an empty value is provided. The default behavior is to remove it.

**ChangeAttributesOperation**

This operation allows you to add/modify/remove multiple attributes. You can use this operation in your own custom **Author** mode action to modify the value for one or more attributes for one or more XML elements. The arguments of the operation are:

- **elementLocations**
  The XPath location that identifies the elements whose attributes will be affected. If not defined, the element at the cursor location will be used.

- **attributeNames**
  The names of the attributes to add, modify, or remove. The values can be local names or Clark notations.

- **values**
  The new attributes values, each on a new line. An empty value will remove the attribute if `removeIfEmpty` is set to true.

- **removeIfEmpty**
  The possible values are true (default) and false. True means that the attribute will be removed if an empty value is provided.

**ChangePseudoClassesOperation**

Operation that sets a list of pseudo-class values to nodes identified by an XPath expression. It can also remove a list of values from nodes identified by an XPath expression. The operation accepts the following parameters:

- **setLocations**
  An XPath expression indicating a list of nodes for which the specified list of pseudo-classes will be set. If it is not defined, then the element at the cursor position will be used.

- **setPseudoClassNames**
  A space-separated list of pseudo-class names that will be set on the matched nodes.

- **removeLocations**
  An XPath expression indicating a list of nodes from which the specified list of pseudo-classes will be removed. If it is not defined, then the element at the cursor position will be used.
removePseudoClassNames

A space-separated list of pseudo-class names that will be removed from the matched nodes.

includeAllNodes

The possible values are yes and no. If set to yes, comments, CDATA, and text nodes are included when evaluating XPath expressions. If set to no, they are ignored.

DeleteElementOperation

Deletes the node indicated by the elementLocation parameter XPath expression. If missing, the operation will delete the node at the cursor location.

DeleteElementsOperation

Deletes the nodes indicated by the elementLocations parameter XPath expression. If missing, the operation will delete the node at the cursor location.

ExecuteCommandLineOperation

This operation allows you to start a process executing a given command line. It has the following arguments:

name

The name of the operation (or name of the console panel that corresponds to the process run by an action built over this operation).

workingDirectory

The path to the directory where the command line is executed. The default value is "." (current directory).

cmdLine

The command line to be executed (accepts editor variables (on page 2468)).

showConsole

If set to true, the console panel will be displayed in Oxygen XML Editor. The default value is false.
ExecuteMultipleActionsOperation

This operation allows the execution of a sequence of actions, defined as a list of action IDs. The actions must be defined by the corresponding framework, or one of the common actions for all frameworks supplied by Oxygen XML Editor.

actionIDs

The action IDs list that will be executed in sequence, the list must be a string sequence containing the IDs separated by commas or new lines.

ExecuteMultipleWebappCompatibleActionsOperation

An implementation of an operation that runs a sequence of Oxygen XML Web Author-compatible actions, defined as a list of IDs.

ExecuteTransformationScenariosOperation

This operation allows running one or more transformation scenarios defined in the current document type association (on page 3281). It is useful to add to the toolbar buttons that trigger publishing to various output formats. The argument of the operation is:

scenarioNames

The list of scenario names that will be executed, separated by new lines.

InsertEquationOperation

Inserts a fragment containing a MathML equation at the cursor offset. The argument of this operation is:

fragment

The XML fragment containing the MathML content that should be inserted.

InsertFragmentOperation

Inserts an XML fragment at the current cursor position. The selection, if there is one, remains unchanged. The fragment will be inserted in the current context of the cursor position meaning that if the current XML document uses some namespace declarations then the inserted fragment must use the same declarations. The namespace declarations of the inserted fragment will be adapted to the existing namespace declarations of the XML document. For more details about its list of parameters, see Arguments of InsertFragmentOperation Operation (on page 2472).
InsertOrReplaceFragmentOperation

Similar to InsertFragmentOperation (on page 2454), except it removes the selected content before inserting the fragment. Also, the insertPosition parameter has another possible value: Replace. If this value is used, the operation deletes the node selected by the XPath expression denoted by the insertLocation parameter. For more details about its list of parameters, see Arguments of InsertFragmentOperation Operation (on page 2472).

InsertOrReplaceTextOperation

Inserts a text at current position removing the selected content, if any. The argument of this operation is:

- text
  
  The text section to insert.

InsertXIncludeOperation

Insert an XInclude element at the cursor offset. Opens a dialog box that allows you to browse and select content to be included in your document and automatically generates the corresponding XInclude instruction.

JSOperation

Allows you to call the Java API from custom JavaScript content. For some sample JSOperation implementations, see https://github.com/oxygenxml/javascript-sample-operations.

Note: For the Oxygen XML Web Author, this operation cannot be invoked using the JavaScript API.

This operation accepts the following parameter:

- script
  
  The JavaScript content to execute. It must have a function called doOperation(), which can use the predefined authorAccess variable. The authorAccess variable has access to the entire ro.sync.ecss.extensions.api.AuthorAccess Java API.

The following example is a script that retrieves the current value of the type attribute on the current element, allows the end user to edit its new value and sets the new value in the document:

```javascript
function doOperation(){
  //...
The current node is either entirely selected...

```
currentNode = authorAccess.getEditorAccess().getFullySelectedNode();
if(currentNode != null){
    // or the cursor is placed in it
    caretOffset = authorAccess.getEditorAccess().getCaretOffset();
    currentNode = authorAccess.getDocumentController().getNodeAtOffset(caretOffset);
}
```

Get current value of the @type attribute

```
currentTypeValue = "";
currentTypeValueAttr = currentNode.getAttribute("type");
if(currentTypeValueAttr != null){
    currentTypeValue = currentTypeValueAttr.getValue();
}
```

Ask user for new value for attribute.

```
newTypeValue = javax.swing.JOptionPane.showInputDialog("Input @type value", currentTypeValue);
if(newTypeValue != null){
    // Create and set the new attribute value for the @type attribute.
    attrValue = new Packages.ro.sync.ecss.extensions.api.node.AttrValue(newTypeValue);
    authorAccess.getDocumentController().setAttribute("type", attrValue, currentNode);
}
```

Tip: You can call functions defined inside a script called commons.js from your custom script content so that you can use that external script file as a library of functions. Note that this commons.js file must be placed in the root of the framework directory (for example, \[OXYGEN_INSTALL_DIR\]/frameworks/dita/commons.js) because that is the only location where Oxygen XML Editor will look for it.

**MoveCaretOperation**

Flexible operation for moving the cursor within a document and it is also capable of performing a selection. The operation accepts the following arguments:

**xpathLocation**

An XPath expression that identifies the node relative to where the cursor will be moved. If the expression identifies more than one node, only the first one will be taken into account.
position

The position relative to the node obtained from the XPath expression where the cursor will be moved. When also choosing to perform a selection, you can use the following possible values:

- Before - Places the cursor at the beginning of the selection.
- Inside, at the beginning - Places the cursor at the beginning of the selection.
- After - Places the cursor at the end of the selection.
- Inside, at the end - Places the cursor at the end of the selection.

selection

Specifies if the operation should select the element obtained from the XPath expression, its content, or nothing at all. The possible values of the argument are: None, Element, and Content.

MoveElementOperation

Flexible operation for moving an XML element to another location from the same document. XPath expressions are used to identify the source element and the target location. The operation takes the following parameters:

sourceLocation

XPath expression that identifies the content to be moved.

deleteLocation

XPath expression that identifies the node to be removed. This parameter is optional. If missing, the sourceLocation parameter will also identify the node to be deleted.

surroundFragment

A string representation of an XML fragment. The moved node will be wrapped in this string before moving it in the destination.

targetLocation

XPath expression that identifies the location where the node must be moved to.

insertPosition

Argument that indicates the insert position.

moveOnlySourceContentNodes

When true, only the content of the source element is moved.

processTrackedChangesForXPathLocations
When nodes are located via an XPath expression and the nodes are deleted with Change Tracking (on page 3288) enabled, they are considered as being present by default (thus, the change tracking is ignored). If you set this argument to true and change tracking is enabled, deleted nodes will be ignored when the XPath locations are computed (thus, the change tracking is NOT ignored).

**OpenInSystemAppOperation**

Opens a resource in the system application that is associated with the resource in the operating system. The arguments of this operation are:

- **resourcePath**
  
  An XPath expression that, when executed, returns the path of the resource to be opened. Editor variables (on page 276) are expanded in the value of this parameter, before the expression is executed.

- **isUnparsedEntity**
  
  Possible values are true or false. If the value is true, the value of the resourcePath argument is treated as the name of an unparsed entity.

**ReloadContentOperation**

Reloads the content of the editor by re-reading the information from the URL used to open it. It accepts the following argument:

- **markAsNotModified**
  
  The possible values are true and false. After reloading the editor, the content may appear as modified and in some cases where the content is already present on the file server, you would not want the user to save it again. You can set this flag to true to prevent the editor from showing the content as modified.

**RemovePseudoClassOperation**

An operation that removes a pseudo-class from an element. Accepts the following parameters:

- **name**
  
  Name of the pseudo-class to be removed.

- **includeAllNodes**
  
  The possible values are yes and no. If set to yes, comments, CDATA, and text nodes are included when evaluating XPath expressions. If set to no, they are ignored.
The XPath location that identifies the element. Leave it empty for the current element. It can also identify multiple elements, in which case the pseudo class will be removed from all of them.

**Example:**

Suppose that there is a pseudo-class called `myClass` on the element `paragraph` and there are CSS styles matching the pseudo-class.

```xml
paragraph:myClass{
   font-size:2em;
   color:red;
}
paragraph{
   color:blue;
}
```

In the previous example, by removing the pseudo-class, the layout of the `paragraph` is rebuilt by matching the other rules (in this case, the foreground color of the `paragraph` element will become blue.

**RenameElementOperation**

This operation allows you to rename all occurrences of the elements identified by an XPath expression. The operation requires two parameters:

- **elementName**
  - The new element name.

- **elementLocation**
  - The XPath expression that identifies the element occurrences to be renamed. If this parameter is missing, the operation renames the element at current cursor position.

**SetPseudoClassOperation**

An operation that sets a pseudo-class to an element. The operation accepts the following parameters:

- **elementLocation**
  - An XPath expression indicating the element for which the pseudo-class will be set. If it is not defined, then the element at cursor position will be used.

- **name**
  - The pseudo-class local name.
includeAllNodes

The possible values are yes and no. If set to yes, comments, CDATA, and text nodes are included when evaluating XPath expressions. If set to no, they are ignored.

ShowElementDocumentationOperation

Opens the associated specification HTML page for the current element. The operation accepts as parameter a URL pattern that points to the HTML page containing the documentation.

SurroundWithFragmentOperation

Surrounds the selected content with a text fragment. Since the fragment can have multiple nodes, the surrounded content will be always placed in the first leaf element. If there is no selection, the operation will simply insert the fragment at the cursor position. For more details about the list of parameters go to: Arguments of SurroundWithFragmentOperation (on page 2475).

SurroundWithTextOperation

This operation has two arguments (two text values) that will be inserted before and after the selected content. If there is no selected content, the two sections will be inserted at the cursor position. The arguments of the operation are:

header

The text that is placed before the selection.

footer

The text that is placed after the selection.

TogglePseudoClassOperation

An implementation of an operation to toggle on/off the pseudo-class of an element. Accepts the following parameters:

name

Name of the pseudo-class to be toggled on/off.

includeAllNodes

The possible values are yes and no. If set to yes, comments, CDATA, and text nodes are included when evaluating XPath expressions. If set to no, they are ignored.

elementLocation
The XPath location that identifies one or more elements for which the pseudo class will be toggled. Leave it empty for the current element.

**Example:**

```xml
paragraph:myClass{
  color:red;
}
paragraph{
  color:blue;
}
```

By default, the paragraph content is rendered in blue. Suppose that you have a `TogglePseudoClassOperation` configured for the `myClass` pseudo-class. Invoking it the first time will set the `myClass` pseudo-class and the paragraph will be rendered in red. Invoking the operation again, will remove the pseudo-class and the visible result will be a blue rendered paragraph element.

**ToggleSurroundWithElementOperation**

This operation allows wrapping and unwrapping content in a specific wrapper element that can have certain attributes specified on it. It is useful to implement toggle actions such as highlighting text as bold, italic, or underline. The operation supports processing multiple selection intervals, such as multiple cells within a table column selection. The arguments of the operation are:

- **element**
  The element to wrap or unwrap content.
- **schemaAware**
  This argument applies only on the surround with element operation and controls whether or not the insertion is valid, based upon the schema. If the insertion is not valid, then wrapping action will be broken up into smaller intervals until the wrapping action is valid. For example, if you try to wrap a `paragraph` element with a `bold` element, it would not be valid, so the operation will wrap the text inside the paragraph instead, since it would be valid at that position.

**UnwrapTagsOperation**

This operation allows removing the element tags either from the current element or for an element identified with an XPath location. The argument of the operation is:

- **unwrapElementLocation**
An XPath expression indicating the element to unwrap. If it is not defined, the element at the cursor position is unwrapped.

**XQueryUpdateOperation**

Allows you to execute an XQuery Update script directly over content in Author mode.

**Note:** This operation is not applicable to the Oxygen XML Author Component or the Oxygen XML Web Author.

It supports the following arguments:

**script**

The XQuery Update script to be executed. The value can either be an XQuery script or a URL that points to the XQuery Update script. You can use the `${framework}` (on page 282) or `${frameworkDir}` (on page 282) editor variables to refer the scripts from the framework directory.

The script will be executed in the context of the node at the cursor position. If the script declares the following variable, it will also receive the selected nodes (assuming that entire nodes are selected):

```xml
declare variable $oxyxq:selection external;
```

In the example below (on page 2463), you can see how this argument is used.

**externalParams**

A string that can assign multiple key-value pairs separated by a comma or a new line character.

For example, if an XQuery script declares two external parameters like this:

```xml
declare variable $param1 external;
declare variable $param2 external;
```

You can pass custom values for each parameter by setting the `externalParams` to `param1=value1,param2=value2`.

**expandXincludeReferences**

Makes all Xinclude elements transparent to the XQuery transformer. When the Xinclude references are transparent, the `XQueryUpdateOperation` can use the referenced elements for further processing in the current document, but it cannot change their values in the original document. The default value is `false`, which means the Xinclude elements are not transparent.
An example of an XQuery Update Script that converts paragraphs to list items:

```xquery
declare namespace oxyxq = "http://www.oxygenxml.com/ns/xqu";

(: This variable will be linked to the selected nodes assuming that there are actually fully selected nodes. For example this selection will return null:
 <p>{SEL_START}text{SEL_END} in para</p>
 but this will give two "p" elements:
 {SEL_END}<p>text</p><p>text2</p>{SEL_END}

If a multiple selection exists it will also be processed and forwarded.
Again, only fully selected nodes will be passed.
:)

declare variable $oxyxq:selection external;

(: We will process either the selection or the context node :)
let $toProcess := if (empty($oxyxq:selection)) then
    (.)
else
    ($oxyxq:selection)
return if (not(empty($toProcess))) then
    {
        (: Create the list :) 
        let $ul :=
        <ul>
            {
                for $sel in $toProcess
                return
                <li>{$sel}</li>
            }
        </ul>

        return
        {
            (: Delete the processed nodes :) 
            for $sel in $toProcess
            return
            delete node $sel,
            (: Inserts the constructed list :) 
            insert node $ul
            before $toProcess[1]
        } 
    }
```
XSLTOperation and XQueryOperation

Applies an XSLT or XQuery script on a source element and then replaces or inserts the result in a specified target element.

**Note:** For the Oxygen XML Web Author, these operations cannot be invoked using the JavaScript API.

These operations accept the following parameters:

**sourceLocation**

An XPath expression indicating the element that the script will be applied on. If it is not defined, then the element at the cursor position will be used.

There may be situations in which you want to look at an ancestor of the current element and take decisions in the script based on this. To do this, you can set the sourceLocation to point to an ancestor node then use the oxy:current-element() function to access the current element, as in the following example:

```xml
<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/
Transform" version="2.0"
    xpath-default-namespace="http://docbook.org/ns/docbook"
    xmlns:oxygen="http://www.oxygenxml.com/ns/author/xpath-extension-functions"
    exclude-result-prefixes="oxy">

    <xsl:template match="/">
        <xsl:apply-templates select="oxy:current-element()"/>
    </xsl:template>

    <xsl:template match="para">
        <!-- And the context is again inside the current element, 
        but we can use information from the entire XML -->
        <xsl:variable name="keyImage" select="//imagedata[@fileref='images/lake.jpeg']/ancestor::inlinemediaobject/@xml:id[string()]"/>
        <xref linkend="{$keyImage}" role="key_include"
             xmlns="http://docbook.org/ns/docbook">
        </xref>
    </xsl:template>
</xsl:stylesheet>
```
targetLocation

An XPath expression indicating the insert location for the result of the transformation. If it is not defined then the insert location will be at the cursor location.

script

The script content (XSLT or XQuery). The base system ID for this will be the framework file, so any include/import reference will be resolved relative to the .framework file that contains this action definition.

For example, for the following script, the imported xslt_operation.xsl needs to be located in the current framework directory.

```
<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
    version="1.0">
    <xsl:import href="xslt_operation.xsl"/>
</xsl:stylesheet>
```

You can also use a path for an included or imported reference. When using a path, the following apply:

- A relative path is resolved to the framework directory.
- The $[framework] editor variable (on page 282) can also be used to reference resources from the framework directory.
- The path is passed through the catalog mappings. It helps to use an absolute URL (for instance, http://www.oxygenxml.com/fr/testy.xsl) and map it in the catalog.xml file from the framework directory to a resource from the framework.

action

The insert action relative to the node determined by the target XPath expression. It can be: Replace, At cursor position, Before, After, Inside as first child or Inside as last child.

caretPosition

The position of the cursor after the action is executed. It can be: Preserve, Before, Start, First editable position, End, or After. If this parameter is not set, you can still indicate the position of the cursor by using the $[caret] editor variable (on page 280) in the inserted content.
expandEditorVariables

Parameter controlling the expansion of editor variables (on page 276) returned by the script processing. Expansion is enabled by default.

suspendTrackChanges

It has 2 possible values (true and false). The default value is false. When set to true, the Track Changes (on page 3288) feature is deactivated. When using this argument, after the action is finished, the state of the Track Changes feature is restored to its initial value.

externalParams

A string that can assign multiple key-value pairs separated by a comma or a new line character.

For example, if an XQuery script declares two external parameters like this:

```xml
declare variable $param1 external;
declare variable $param2 external;
```

You can pass custom values for each parameter by setting the externalParams to param1=value1,param2=value2.

XSLTOperation Example: Sort a list with respect to the language declared on the root element:

Suppose you want an action that will sort a list with respect to the language declared on the root element and you have an XML file like this:

```xml
<article xml:lang="en">
  <ul>
    <li>B</li>
    <li>C</li>
    <li>A</li>
  </ul>
</article>
```

The XSLTOperation needs to be configured as follows:

- **sourceLocation** is set to /* so that the script has access to the root element and its children.
- **targetLocation** is left untouched (assuming that the action is active only when the cursor is inside the list).

The XSLT script would look like this:

```xml
<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
```
<?xml version="2.0"?>
           xmlns:xs="http://www.w3.org/2001/XMLSchema"
           exclude-result-prefixes="xs oxy" version="2.0">

<xsl:template match="/">
  <!-- sourceLocation parameter was set to /* to have a larger context. 
       We can pinpoint the element that contained the caret 
       using the oxy:current-element() function. -->
  <xsl:apply-templates select="oxy:current-element()"/>
</xsl:template>

<xsl:template match="ul">
  <!-- Because the sourceLocation parameter was set to /* we now have access to 
       the root element and its attributes. -->
  <xsl:variable name="lang" select="//@xml:lang"/>
  <xsl:variable name="collationURI">
    <xsl:value-of select="concat('http://www.w3.org/2013/collation/UCA?lang=',
                              $lang)"/>
  </xsl:variable>

  <xsl:copy>
    <xsl:copy-of select="@*"/>

    <!-- Copy the list items, but sorted. -->
    <xsl:apply-templates select="li">
      <xsl:sort collation="$collationURI" select="text()"/>
      <xsl:apply-templates/>
    </xsl:apply-templates>
  </xsl:copy>
</xsl:template>

<xsl:template match="@* | node()">
  <xsl:copy>
    <xsl:apply-templates select="@* | node()"/>
  </xsl:copy>
</xsl:template>

<!-- This copy template will handle the contents of the list items. -->
<xsl:template match="@* | node()">
  <xsl:copy>
    <xsl:apply-templates select="@* | node()"/>
  </xsl:copy>
</xsl:template>
</xsl:stylesheet>
Using Entities and Xincludes with the XSLTOperation

- **Entities** will be resolved in the result.
- **Xincludes** are also resolved in the result, and you can alter the XML obtained after the resolving using the XSLT/XQuery script of the operation, but you cannot alter the included document itself.

Editor Variables in Author Mode Operations

**Author** mode operations can include parameters that contain the following editor variables (on page 276):

- **${caret}** - The position where the cursor is located. This variable can be used in a code template, in **Author** mode operations, or in a selection plugin.
  
  **Note:** The `${caret}` editor variable is available only for parameters that take XML content as values. It is replaced with the `$UNIQUE_CARET_MARKER_FOR_AUTHOR` macro. The default Author operations process this macro and position the cursor at the designated offset.

- **${selection}** - The current selected text content in the current edited document. This variable can be used in a code template, in **Author** mode operations, or in a selection plugin.

- **${ask('message', type, ('real_value1':rendered_value1'; 'real_value2':rendered_value2'; ...), 'default-value', @id)}** - To prompt for values at runtime, use the `ask('message', type, ('real_value1':rendered_value1'; 'real_value2':rendered_value2'; ...), 'default_value')` editor variable. You can set the following parameters:
  - **message** - The displayed message. Note the quotes that enclose the message.
  - **default-value** - Optional parameter. Provides a default value.
  - **@id** - Optional parameter. Used for identifying the variable to reuse the answer using the `${answer(@id)}` editor variable.
  - **type** - Optional parameter, with one of the following values:

    **Note:** The title of the dialog box will be determined by the type of parameter and as follows:

    - For `url` and `relative_url` parameters, the title will be the name of the parameter and the value of the 'message'.
    - For the other parameters listed below, the title will be the name of that respective parameter.
    - If no parameter is used, the title will be "Input".

| Parameter | Format: ${ask('message', url, 'default_value')}
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>url</strong></td>
<td><strong>Description:</strong> Input is considered a URL. Oxygen XML Editor checks that the provided URL is valid.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td>Parameter</td>
<td>Description</td>
</tr>
<tr>
<td>---------------</td>
<td>------------------------------------------------------------------------------</td>
</tr>
<tr>
<td>password</td>
<td>Format: <code>$\{\text{ask('message', password, 'default')}\}</code></td>
</tr>
<tr>
<td></td>
<td>Description: The input is hidden with bullet characters.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
</tr>
<tr>
<td></td>
<td>${\text{ask('Input password', password)}}$ - The displayed dialog box</td>
</tr>
<tr>
<td></td>
<td>has the name 'Input password' and the input is hidden with bullet symbols.</td>
</tr>
<tr>
<td></td>
<td>${\text{ask('Input password', password, 'abcd')}}$ - The displayed dialog</td>
</tr>
<tr>
<td></td>
<td>box has the name 'Input password' and the input hidden with bullet symbols.</td>
</tr>
<tr>
<td></td>
<td>The input field already contains the default <code>abcd</code> value.</td>
</tr>
<tr>
<td>generic</td>
<td>Format: <code>$\{\text{ask('message', generic, 'default')}\}$</code></td>
</tr>
<tr>
<td></td>
<td>Description: The input is considered to be generic text that requires no</td>
</tr>
<tr>
<td></td>
<td>special handling.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
</tr>
<tr>
<td></td>
<td>${\text{ask('Hello world!')}}$ - The dialog box has a <code>Hello world!</code></td>
</tr>
<tr>
<td></td>
<td>message displayed.</td>
</tr>
<tr>
<td></td>
<td>${\text{ask('Hello world!', generic, 'Hello again!')}}$ - The dialog box</td>
</tr>
<tr>
<td></td>
<td>has a <code>Hello world!</code> message displayed and the value displayed in the input</td>
</tr>
<tr>
<td></td>
<td>box is <code>Hello again!</code>.</td>
</tr>
<tr>
<td>relative_url</td>
<td>Format: <code>$\{\text{ask('message', relative_url, 'default')}\}$</code></td>
</tr>
<tr>
<td></td>
<td>Description: Input is considered a URL. Oxygen XML Editor tries to make the</td>
</tr>
<tr>
<td></td>
<td>URL relative to that of the document you are editing.</td>
</tr>
<tr>
<td></td>
<td>Note: If the <code>$\text{ask}$</code> editor variable is expanded in content that is</td>
</tr>
<tr>
<td></td>
<td>not yet saved (such as an <code>untitled</code> file, whose path cannot be determined),</td>
</tr>
<tr>
<td></td>
<td>then Oxygen XML Editor will transform it into an absolute URL.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
</tr>
<tr>
<td></td>
<td>${\text{ask('File location', relative_url, 'C:/example.txt')}}$ - The</td>
</tr>
<tr>
<td></td>
<td>dialog box has the name 'File location'. The URL inserted in the input box</td>
</tr>
<tr>
<td></td>
<td>is made relative to the current edited document location.</td>
</tr>
<tr>
<td>combobox</td>
<td>Format: <code>$\{\text{ask('message', combobox, ('real_value1':rendered_value1';...;'real_valueN':rendered_valueN'), 'default'})\}$</code></td>
</tr>
</tbody>
</table>
| Parameter | Description: Displays a dialog box that offers a drop-down menu. The drop-down menu is populated with the given rendered_value values. Choosing such a value will return its associated value (real_value).  

Note: The 'default' parameter specifies the default selected value and can match either a key or a value.  

Example: |
| --- | --- |
| ${ask('Operating System', combobox, ('win':'Microsoft Windows';'osx':'Mac OS X';'lnx':'Linux/UNIX'), 'osx')} - The dialog box has the name 'Operating System'. The drop-down menu displays the three given operating systems. The associated value will be returned based upon your selection.  

Note: In this example, the default value is indicated by the osx key. However, the same result could be obtained if the default value is indicated by Mac OS X, as in the following example: ${ask('Operating System', combobox, ('win':'Microsoft Windows';'osx':'Mac OS X';'lnx':'Linux/UNIX'), 'Mac OS X')}  

- ${ask('Mobile OS', combobox, ('win':'Windows Mobile';'ios':'iOS';'and':'Android'), 'Android')} |
| editable_combobox Format: | ${ask('message', editable_combobox, ('real_value1':'rendered_value1';...;'real_valueN':'rendered_valueN'), 'default')} |
| Description: Displays a dialog box that offers a drop-down menu with editable elements. The drop-down menu is populated with the given rendered_value values. Choosing such a value will return its associated real value (real_value) or the value inserted when you edit a list entry.  

Note: The 'default' parameter specifies the default selected value and can match either a key or a value.  

Example: |
| --- | --- |
| ${ask('Operating System', editable_combobox, ('win':'Microsoft Windows';'osx':'Mac OS X';'lnx':'Linux/UNIX'), 'osx')} - The dialog box has the name 'Operating System'. The drop-down menu displays the three given operating systems and also allows you to edit the entry. The associated value will be returned based upon your selection or the text you input.  

Note: |
Parameter | Format: \$\{ask('message', radio, \\
\hspace{5mm} ('real_value1': 'rendered_value1'; ... ; 'real_valueN': 'rendered_valueN'), \\
\hspace{5mm} 'default')\}
---
radio

**Description:** Displays a dialog box that offers a series of radio buttons. Each radio button displays a 'rendered_value' and will return an associated 'real_value'.

**Note:** The 'default' parameter specifies the default selected value and can match either a key or a value.

**Example:**

\$\{ask('Operating System', radio, ('win': 'Microsoft Windows'; 'osx': 'Mac OS X'; 'inx': 'Linux/UNIX'), 'osx')\} - The dialog box has the name 'Operating System'. The radio button group allows you to choose between the three operating systems.

**Note:** In this example, Mac OS X is the default selected value and if selected, it would return osx for the output.

- \$\{timeStamp\} - Time stamp, that is the current time in Unix format. For example, it can be used to save transformation results in multiple output files on each transformation.
- \$\{uuid\} - Universally unique identifier, a unique sequence of 32 hexadecimal digits generated by the Java UUID class.
- \$\{id\} - Application-level unique identifier. It is a short sequence of 10-12 letters and digits that is not guaranteed to be universally unique.
- \$\{cfm\} - Current file name without extension and without parent folder. The current file is the one currently opened and selected.
- \$\{cfne\} - Current file name with extension. The current file is the one currently opened and selected.
- \$\{cf\} - Current file as file path, that is the absolute file path of the current edited document.
- \$\{cfd\} - Current file folder as file path, that is the path of the current edited document up to the name of the parent folder.
- \$\{frameworksDir\} - The path (as file path) of the frameworks directory.
- \$\{pd\} - The file path to the folder that contains the current project file (.xpr).
- \$\{oxygenInstallDir\} - Oxygen XML Editor installation folder as file path.
- \$\{homeDir\} - The path (as file path) of the user home folder.
- \$\{pn\} - Current project name.
- \$\{env(VAR_NAME)\} - Value of the VAR_NAME environment variable. The environment variables are managed by the operating system. If you are looking for Java System Properties, use the \$\{system(var.name)\} editor variable.
• \${system(var.name)} - Value of the var.name Java System Property. The Java system properties can be specified in the command-line arguments of the Java runtime as -Dvar.name=var.value. If you are looking for operating system environment variables, use the \${env(VAR_NAME)} editor variable instead.

• \${date(pattern)} - Current date. The allowed patterns are equivalent to the ones in the Java SimpleDateFormat class. Example: yyyy-MM-dd.

Note: This editor variable supports both the xs:date and xs:datetime parameters. For details about xs:date, go to: http://www.w3.org/TR/xmlschema-2/#date. For details about xs:datetime, go to: http://www.w3.org/TR/xmlschema-2/#dateTime.

How to Find More Information About the Arguments of an Operation

If you need to find more information about the arguments of an operation, there are several places where this information is available:

• In the API documentation for the particular operation.

• By invoking the getArguments() method on the operation.

• In the source code of the operation.

• In Oxygen XML Editor:
  1. Go to Options > Preferences > Document Type Association, select a document type and click the New, Edit, Duplicate, or Extend button (on page 92).
  2. Go to the Author tab and then the Actions subtab. At the bottom of this subtab, click New to open the Action dialog box (on page 102).
  3. Locate the Operation field and click the Choose button on the right side. This will open a dialog box that displays the default operations.
  4. Double-click the operation (or select it and click OK).

The arguments for the operation will now be displayed in the Action dialog box (on page 102).

Arguments of InsertFragmentOperation Operation

fragment

This argument has a textual value. This value is parsed by Oxygen XML Editor as it was already in the document at the cursor position. You can use entity references declared in the document and it is namespace aware. The fragment may have multiple roots.

You can even use namespace prefixes that are not declared in the inserted fragment, if they are declared in the document where the insertion is done. For the sake of clarity, you should always prefix and declare namespaces in the inserted fragment!
If the fragment contains namespace declarations that are identical to those found in the document, the namespace declaration attributes will be removed from elements contained by the inserted fragment.

There are two possible scenarios:

1. **Prefixes that are not bound explicitly**

   For instance, the fragment:

   ```xml
   <x:item id="dty2"/>
   &ent;
   <x:item id="dty3"/>
   ```

   Can be correctly inserted in the document: ('|' marks the insertion point):

   ```xml
   <?xml version="1.0" encoding="UTF-8"?>
   <!DOCTYPE x:root [ 
   <!ENTITY ent "entity">
   ]>
   <x:root xmlns:x="nsp">
   |
   </x:root>
   ```

   Result:

   ```xml
   <?xml version="1.0" encoding="UTF-8"?>
   <!DOCTYPE x:root [ 
   <!ENTITY ent "entity">
   ]>
   <x:root xmlns:x="nsp">
   <x:item id="dty2"/>
   &ent;
   <x:item id="dty3"/>
   </x:root>
   ```

2. **Default namespaces**

   If there is a default namespace declared in the document and the document fragment does not declare a namespace, the elements from the fragment are considered to be in **no namespace**.

   For instance, the fragment:

   ```xml
   <x:root xmlns:x="nsp">
   <x:item id="dty2"/>
   &ent;
   <x:item id="dty3"/>
   </x:root>
   ```
Inserted in the document:

```xml
<?xml version="1.0" encoding="UTF-8"?>
<root xmlns="nsp">
    <item xmlns="" id="dty2"/>
    <item xmlns="" id="dty3"/>
</root>
```

Gives the result document:

```xml
<?xml version="1.0" encoding="UTF-8"?>
<root xmlns="nsp">
    <item xmlns="" id="dty2"/>
    <item xmlns="" id="dty3"/>
</root>
```

**insertLocation**

An XPath expression that is relative to the current node. It selects the reference node for the fragment insertion. When missing, the fragment will be inserted at the cursor position.

**insertPosition**

Specifies where the insertion is made relative to the reference node selected by the `insertLocation`. It can be one of the following constants:

- **Inside as first child** (default value) - The fragment is inserted as first child of the reference node.
- **Inside as last child** - The fragment is inserted as the last child of the reference node.
- **After** - The fragment is inserted after the reference node.
- **Before** - The fragment is inserted before the reference node.

**goToNextEditablePosition**

After inserting the fragment, the first editable position is detected and the cursor is placed at that location. It handles any in-place editors used to edit attributes. It will be ignored if the fragment specifies a cursor position using the `$\text{caret}$` editor variable (on page 280). The possible values of this action are `true` and `false`.

**schemaAware**

This argument applies only on the surround with element operation and controls whether or not the insertion is valid, based upon the schema. If the insertion is not valid,
then wrapping action will be broken up into smaller intervals until the wrapping action is valid. For example, if you try to wrap a paragraph element with a bold element, it would not be valid, so the operation will wrap the text inside the paragraph instead, since it would be valid at that position.

Arguments of SurroundWithFragmentOperation

**fragment**

The XML fragment that will surround the selection. For example, consider the fragment:

```xml
<F>
  <A></A>
  <B>
    <C></C>
  </B>
</F>
```

and the document:

```xml
<doc>
  <X></X>
  <Y></Y>
  <Z></Z>
</doc>
```

Considering the selected content to be surrounded is the sequence of elements \( \text{x} \) and \( \text{y} \), then the result is:

```xml
<doc>
  <F>
    <A>
      <X></X>
      <Y></Y>
    </A>
    <B>
      <C></C>
    </B>
  </F>
  <Z></Z>
</doc>
```
Since the element $A$ was the first leaf in the fragment, it received the selected content. The fragment was then inserted in the place of the selection.

**schemaAware**

This argument applies only on the surround with element operation and controls whether or not the insertion is valid, based upon the schema. If the insertion is not valid, then wrapping action will be broken up into smaller intervals until the wrapping action is valid. For example, if you try to wrap a `paragraph` element with a `bold` element, it would not be valid, so the operation will wrap the text inside the paragraph instead, since it would be valid at that position.

Adding a Custom Operation to an Existing Framework

This task explains how to add a custom Author mode operation to an existing framework (on page 3282) (document type).

1. Setup a sample project by following the instructions for installing the SDK.
   
   **Tip:** The SDK contains a sample framework project called oxygen-sample-framework.

2. A variety of classes in the `simple.documentation.framework.operations` package implement the `ro.sync.ecss.extensions.api.AuthorOperation` interface. Depending on your use-case, modify one of these classes.

3. Pack the operation class inside a Java JAR library.

4. Copy the JAR library to your framework directory (for example, `{OXYGEN_INSTALL_DIR}/frameworks/{FRAMEWORK_DIR}`).

5. Open the Preferences dialog box (Options > Preferences) (on page 79), go to Document Type Association, and edit the document type (you need write access to the `{OXYGEN_INSTALL_DIR}`) to open the Document Type configuration dialog box (on page 95). 
   a. In the Classpath tab, add a reference to your JAR library (for example, `$\{framework\}/customAction.jar`).
   b. Go to the Author tab, then go to the Actions subtab.
   c. Click the + New button and use the Action dialog box (on page 102) to create a new action that uses your custom operation.
   d. Mount the action to the toolbars or menus. You can also define a shortcut key.

6. Share the modifications (on page 2371) with your colleagues. The files that should be shared are your customAction.jar library and the .framework configuration file from the `{OXYGEN_INSTALL_DIR}/frameworks/{FRAMEWORK_DIR}` directory.
Customizing Author Mode Through CSS

The visual Author editing mode can be customized by creating CSS files to define styles for the XML elements and other components. The Author editing mode supports most CSS 2.1 selectors, numerous CSS 2.1 properties, and some CSS 3 selectors. Oxygen XML Editor also supports stylesheets coded with the LESS dynamic stylesheet language. Also, Oxygen XML Editor has added some custom functions and properties that extend the W3C CSS specification and are useful for a wide range of use-cases for developers who customize Author mode through custom frameworks (on page 2322).

Associating a CSS with an XML Document

**Associating a Stylesheet with an XML Document**

The rendering of an XML document in the Author mode is driven by a CSS stylesheet that conforms to the version 2.1 of the CSS specification from the W3C consortium. Some CSS 3 features, such as namespaces and custom extensions, of the CSS specification are also supported. Oxygen XML Editor also supports stylesheets coded with the LESS dynamic stylesheet language.

There are several methods for associating a stylesheet (CSS or LESS) with an XML document:

1. Insert the `xml-stylesheet` processing instruction with the `type` attribute at the beginning of the XML document. If you do not want to alter your XML documents, you should create a new document type (framework) (on page 2322).

   **CSS example:**
   ```xml
   <?xml-stylesheet type="text/css" href="test.css"?>
   ```

   **LESS example:**
   ```xml
   <?xml-stylesheet type="text/css" href="test.less"?>
   ```

   **Note:** XHTML documents need a link element, with the `href` and `type` attributes in the head child element, as specified in the W3C stylesheet specification. XHTML example:
Tip: You can also insert the `xml-stylesheet` processing instruction by using the Associate XSLT/CSS Stylesheet action that is available on the toolbar or in the Document > XML Document menu.

2. Add a new CSS or LESS file to a framework (on page 3282) (document type). To do so, open the Preferences dialog box (Options > Preferences) (on page 79) and go to Document Type Association. Edit the appropriate framework, open the Author tab, then the CSS subtab. Press the New button to add a new CSS or LESS file.

Note: The built-in frameworks are read-only, so you need to Extend (on page 93) or Duplicate (on page 93) them to configure them as custom frameworks.

If a document has no CSS association or the referenced stylesheet files cannot be loaded, a default one is used. A warning message is also displayed at the beginning of the document, presenting the reason why the CSS cannot be loaded.

Figure 731. Document with no CSS association default rendering

For information about associating a CSS to a framework (document type), see Customizing Author Mode Using CSS Files Associated with a Framework (on page 2346).

Handling CSS Imports

When a CSS document contains imports to other CSS documents, the references are also passed through the XML Catalog (on page 3289) URI mappings to determine an indirect CSS referenced location.
Example: CSS Import

For example, if you can have a CSS import, such as:

```
@import "http://host/path/to/location/custom.css";
```

and then add your own XML Catalog (on page 3289) file that maps the location to a custom CSS in the XML Catalog preferences page (on page 189):

```
<uri name="http://host/path/to/location/custom.css"
    uri="path/to/custom.css"/>
```

Adding a Custom Default CSS for Every XML Document

To add a custom CSS that is applied to every XML document, add a mapping in your XML Catalog (on page 3289) file that looks like this:

```
<uri name="http://www.oxygenxml.com/extensions/author/css/userCustom.css"
    uri="path/to/custom.css"/>
```

This extra mapped CSS location will be parsed every time the application processes the CSS stylesheets used to render the opened XML document in the visual Author editing mode. This allows your custom CSS to be used without the need to modify all other CSS stylesheets contributed in the document type configuration.

Editor Variables in CSS Imports

You can use various editor variables (on page 276) in CSS imports. When editing an XML document with an associated CSS in Author mode, the editor variables will be expanded and resolved.

Example: Editor Variable in a CSS Import

For example, the following editor variable:

```
@import "${framework(DITA)}/custom.css";
```

is resolved in the DITA framework (on page 3282) folder where the custom.css is placed. In the Document Type Association preferences page (on page 92), you can see a list of document type. The name for your particular document type needs to be passed as a parameter to the framework() function.

Note: If you use editor variables like ${cfdu} (Current File Directory URL), it will be expanded to the URL of the current CSS document that contains the imports rather than the XML document that references the CSS.
Displaying Processing Instructions from Other XML Editors

By default, external processing instructions are hidden (for example, processing instructions used to store metadata in other XML editors). If you want them to be displayed (for example, to edit them), they must be associated with the current document using a CSS (on page 2477) like this:

```css
@namespace oxy "http://www.oxygenxml.com/extensions/author";

oxy|processing-instruction[Pub],
oxy|processing-instruction[PubTbl],
oxy|processing-instruction[xm-replace_text],
oxy|processing-instruction[xm-deletion_mark],
oxy|processing-instruction[xm-insertion_mark_start],
oxy|processing-instruction[xm-insertion_mark_end]
{
  display:block !important;
}
```

Specifying Media Types in the CSS

The CSS stylesheets can specify how a document is presented on different types of media (on the screen, paper, etc.) You can specify that some of the selectors from your CSS should be taken into account only in the Oxygen XML Editor Author mode and ignored in other media types. This can be accomplished by using the oxygen media type.

**Example: oxygen Media Type**

```css
ang
b{
  font-weight:bold;
  display:inline;
}

@media oxygen{
  b{
    text-decoration:underline;
  }
}
```

This example results in the text being bold if the document is opened in a web browser that does not recognize @media oxygen, while the text is bold and underlined when opened in Oxygen XML Editor Author mode.
You can also use the oxygen media type to specify CSS selectors to be applied in certain operating systems or platforms by using the os and platform properties. For example, you can specify one set of style rules for displaying Oxygen XML Editor in Windows, and another set of style rules for Mac OS. The supported properties are as follows:

- **os** - The possible values are: win, linux, or mac.
- **platform** - The possible values are: standalone, eclipse, or webapp.

**Example: os and platform Properties**

```css
@media oxygen AND (os:"win") AND (platform:"standalone") {
    p{
        content:"PPP"
    }
}
```

**Related Information:**

- [@media Rule (on page 2481)]

### CSS At-Rules

Oxygen XML Editor supports some of the standard at-rules specified by CSS Level 2.1 and 3. The @media rule also include support for some style rules that are specific to Oxygen XML Editor.

**@font-face At-Rule**

Oxygen XML Editor allows you to use custom fonts in the Author mode by specifying them in the CSS using the @font-face media type. Only the src and font-family CSS properties can be used for this media type.

**Example: @font-face Rule**

```css
@font-face{
    font-family:"Baroque Script";
    /*The location of the loaded TTF font must be relative to the CSS*/
    src:url("BaroqueScript.ttf");
}
```
@media Rule

The @media rule allows you to set different style rules for multiple types of media in the same stylesheet. For example, you can set the font size to be different on the screen than on paper. Oxygen XML Editor supports several media types, allowing you to set the style rules for presenting a document on various media (on screen, paper, etc.)

Supported Media Types

- **screen** - The styles marked with this media type are used only for rendering a document on screen.
- **print** - The styles marked with this media type are used only for printing a document.
- **all** - The styles marked with this media type are used for rendering a document in all supported types of media.
- **oxygen** - The styles marked with this media type are used only for rendering a document in the Oxygen XML Editor Author mode. For more information, see Specifying Media Types in the CSS (on page 2480).
- **oxygen-dark-theme** - The styles marked with this media type are used only for rendering a document in the Oxygen XML Editor Author mode when a dark theme is used (for example, Graphite).
- **oxygen-high-contrast-black** - The styles marked with this media type are used only for rendering a document in the Oxygen XML Editor Author mode on a Windows High Contrast Theme with a black background.
- **oxygen-high-contrast-white** - The styles marked with this media type are used only for rendering a document in the Oxygen XML Editor Author mode on a Windows High Contrast Theme with a white background.

Example: @media Rule

```xml
@media oxygen{
  b{
    text-decoration:underline;
  }
}
@media oxygen-high-contrast-white{
  b{
    font-weight:bold;
  }
}
```
Supported Properties

Oxygen XML Editor also supports a few properties to set specific style rules that depend upon the size of the visible area in Author mode. These supported properties are as follows:

- \textit{min-width} - The styles selected in this property are applied if the visible area in Author mode is equal to or greater than the specified value.
- \textit{max-width} - The styles selected in this property are applied if the visible area in Author mode is less than or equal to the specified value.

\textbf{Example: min-width and max-width Properties}

```css
@media (min-width: 500px) {
  p{
    content: 'XXX';
  }
}

@media (max-width: 700px) {
  p:after{
    content: 'yyy';
  }
}
```

Related Information:

- Specifying Media Types in the CSS (on page 2480)

Standard W3C CSS Supported Features

Oxygen XML Editor supports most of the CSS Level 3 selectors and most of the CSS Level 2.1 properties

Supported CSS Selectors

The following table lists the CSS selectors that are supported in Oxygen XML Editor:

<table>
<thead>
<tr>
<th>Expression</th>
<th>Name</th>
<th>CSS Level</th>
<th>Description / Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>*</td>
<td>Universal selector</td>
<td>CSS Level 2</td>
<td>Matches any element</td>
</tr>
<tr>
<td>$</td>
<td>Type selector</td>
<td>CSS Level 2</td>
<td>Matches any $ element (i.e. an element with the local name $)</td>
</tr>
<tr>
<td>Expression</td>
<td>Name</td>
<td>CSS Level</td>
<td>Description / Example</td>
</tr>
<tr>
<td>------------</td>
<td>-------------------------------------</td>
<td>-----------</td>
<td>-----------------------</td>
</tr>
<tr>
<td>E F</td>
<td>Descendant selector</td>
<td>CSS Level 2</td>
<td>Matches any F element that is a descendant of an E element.</td>
</tr>
<tr>
<td>E &gt; F</td>
<td>Child selectors</td>
<td>CSS Level 2</td>
<td>Matches any F element that is a child of an element E.</td>
</tr>
<tr>
<td>E:lang(c)</td>
<td>Language pseudo-class</td>
<td>CSS Level 2</td>
<td>Matches element of type E if it is in (human) language c (the document language specifies how language is determined).</td>
</tr>
<tr>
<td>E + F</td>
<td>Adjacent selector</td>
<td>CSS Level 2</td>
<td>Matches any F element immediately preceded by a sibling element E.</td>
</tr>
<tr>
<td>E ~ F</td>
<td>General sibling selector</td>
<td>CSS Level 3</td>
<td>Matches any F element preceded by a sibling element E.</td>
</tr>
<tr>
<td>E[foo]</td>
<td>Attribute selector</td>
<td>CSS Level 2</td>
<td>Matches any E element with the &quot;foo&quot; attribute set (whatever the value).</td>
</tr>
<tr>
<td>E[foo=&quot;warning&quot;]</td>
<td>Attribute selector with value</td>
<td>CSS Level 2</td>
<td>Matches any E element whose &quot;foo&quot; attribute value is exactly equal to &quot;warning&quot;.</td>
</tr>
<tr>
<td>E[foo=&quot;warning&quot;]</td>
<td>Attribute selector containing value</td>
<td>CSS Level 2</td>
<td>Matches any E element whose &quot;foo&quot; attribute value is a list of space-separated values, one of which is exactly equal to &quot;warning&quot;.</td>
</tr>
<tr>
<td>E[lang=&quot;en&quot;]</td>
<td>Attribute selector containing hyphen separated values</td>
<td>CSS Level 2</td>
<td>Matches any E element whose &quot;lang&quot; attribute has a hyphen-separated list of values beginning (from the left) with &quot;en&quot;.</td>
</tr>
<tr>
<td>E:before and E:after</td>
<td>Pseudo elements</td>
<td>CSS Level 2</td>
<td>The ':before' and ':after' pseudo-elements can be used to insert generated content before or after an element's content.</td>
</tr>
<tr>
<td>E:before(n) and E:after(n)</td>
<td>Pseudo elements</td>
<td>CSS Level 3</td>
<td>Multiple ':before(n)' and ':after(n)' pseudo-elements can be used to insert content before or after the content of an element (or other pseudo-element).</td>
</tr>
<tr>
<td>Expression</td>
<td>Name</td>
<td>CSS Level</td>
<td>Description / Example</td>
</tr>
<tr>
<td>------------</td>
<td>------</td>
<td>-----------</td>
<td>-----------------------</td>
</tr>
<tr>
<td>E:first-child</td>
<td>The first-child pseudo-class</td>
<td>CSS Level 2</td>
<td>Matches element E when E is the first child of its parent.</td>
</tr>
<tr>
<td>E:not(s)</td>
<td>Negation pseudo-class</td>
<td>CSS Level 2</td>
<td>An E element that does not match simple selector s.</td>
</tr>
<tr>
<td>E:has</td>
<td>Relational pseudo-class</td>
<td>CSS Level 4</td>
<td>The :has() relational pseudo-class is a functional pseudo-class that takes a relative selector as an argument. For more information, see :has Relational Pseudo-Class (on page 2489).</td>
</tr>
<tr>
<td>E:hover</td>
<td>The hover pseudo-class</td>
<td>CSS Level 2</td>
<td>The :hover pseudo-class applies while the user designates an element with a pointing device, but does not necessarily activate it. When moving the pointing device over an element, all the parent elements up to the root are taken into account.</td>
</tr>
<tr>
<td>E:focus</td>
<td>The focus pseudo-class</td>
<td>CSS Level 2</td>
<td>The :focus pseudo-class applies while an element has the focus (accepts keyboard input).</td>
</tr>
<tr>
<td>E:focus-within</td>
<td>The generalized input focus pseudo-class</td>
<td>CSS Level 4</td>
<td>The :focus-within pseudo-class applies to elements for which the :focus pseudo-class applies. Additionally, the ancestors of an element that matches :focus-within also match.</td>
</tr>
<tr>
<td>E#$myid</td>
<td>The ID selector</td>
<td>CSS Level 2</td>
<td>Matches any E element with ID equal to &quot;myid&quot;. <strong>Important:</strong> Limitation: In Oxygen XML Editor the match is performed only taking into account the attributes with the exact name: &quot;id&quot;.</td>
</tr>
<tr>
<td>Expression</td>
<td>Name</td>
<td>CSS Level</td>
<td>Description / Example</td>
</tr>
<tr>
<td>------------------</td>
<td>----------------------------------------------</td>
<td>-----------</td>
<td>---------------------------------------------------------------------------------------</td>
</tr>
<tr>
<td>E[att^=&quot;val&quot;]</td>
<td>Substring matching attribute selector</td>
<td>CSS Level 3</td>
<td>An E element whose <code>att</code> attribute value begins exactly with the string <code>val</code>.</td>
</tr>
<tr>
<td>E[att$=&quot;val&quot;]</td>
<td>Substring matching attribute selector</td>
<td>CSS Level 3</td>
<td>An E element whose <code>att</code> attribute value ends exactly with the string <code>val</code>.</td>
</tr>
<tr>
<td>E[att=&quot;val&quot;]</td>
<td>Substring matching attribute selector</td>
<td>CSS Level 3</td>
<td>An E element whose <code>att</code> attribute value contains the substring <code>val</code>.</td>
</tr>
<tr>
<td>E:root</td>
<td>Root pseudo-class</td>
<td>CSS Level 3</td>
<td>Matches the root element of the document. In HTML, the root element is always the HTML element.</td>
</tr>
<tr>
<td>E:empty</td>
<td>Empty pseudo-class</td>
<td>CSS Level 3</td>
<td>An E element that has no text or child elements.</td>
</tr>
<tr>
<td>E:nth-child(n)</td>
<td>The nth-child pseudo-class</td>
<td>CSS Level 3</td>
<td>An E element, the nth child of its parent.</td>
</tr>
<tr>
<td>E:nth-last-child(n)</td>
<td>The nth-last-child pseudo-class</td>
<td>CSS Level 3</td>
<td>An E element, the nth child of its parent, counting from the last one.</td>
</tr>
<tr>
<td>E:nth-of-type(n)</td>
<td>The nth-of-type pseudo-class</td>
<td>CSS Level 3</td>
<td>An E element, the nth sibling of its type.</td>
</tr>
<tr>
<td>E:nth-last-of-type(n)</td>
<td>The nth-last-of-type pseudo-class</td>
<td>CSS Level 3</td>
<td>An E element, the nth sibling of its type, counting from the last one.</td>
</tr>
<tr>
<td>E:last-child</td>
<td>The last-child pseudo-class</td>
<td>CSS Level 3</td>
<td>An E element, last child of its parent.</td>
</tr>
<tr>
<td>E:first-of-type</td>
<td>The first-of-type pseudo-class</td>
<td>CSS Level 3</td>
<td>An E element, first sibling of its type.</td>
</tr>
<tr>
<td>E:last-of-type</td>
<td>The last-of-type pseudo-class</td>
<td>CSS Level 3</td>
<td>An E element, last sibling of its type.</td>
</tr>
<tr>
<td>E:only-child</td>
<td>The only-child pseudo-class</td>
<td>CSS Level 3</td>
<td>An E element, only child of its parent.</td>
</tr>
<tr>
<td>E:only-of-type</td>
<td>The only-of-type pseudo-class</td>
<td>CSS Level 3</td>
<td>An E element, only sibling of its type.</td>
</tr>
<tr>
<td>ns</td>
<td>E</td>
<td>Element namespace selector</td>
<td>CSS Level 3</td>
</tr>
</tbody>
</table>
### Namespace Selector

In the CSS 2.1 standard, the element selectors ignore the namespaces of the elements they are matching. Only the local name of the elements are considered in the selector matching process.

Oxygen XML Editor uses a different approach that is similar to the CSS Level 3 specification. If the element name from the CSS selector is not preceded by a namespace prefix it is considered to match an element with the same local name as the selector value and ANY namespace. Otherwise, the element must match both the local name and the namespace.

In CSS up to version 2.1, the name tokens from selectors match all elements from ANY namespace that have the same local name. Example:

```
<x:b xmlns:x="ns_x"/>
<y:b xmlns:y="ns_y"/>
```

Are both matched by the rule:

```
b {font-weight:bold}
```

Starting with CSS Level 3, you can create selectors that are namespace aware.

**Example: Defining prefixed and default namespaces**

Given the namespace declarations:

```
@namespace sync "http://sync.example.org";
@namespace "http://example.com/foo";
```

Then:

```
sync|A
```

Represents the name A in the [http://sync.example.org](http://sync.example.org) namespace.

```
*B
```
Represents the name B in ANY namespace, including NO NAMESPACE.

C

Represents the name C in ANY namespace, including NO NAMESPACE.

**Example: Defining prefixed namespaces combined with pseudo-elements**

To match the `def` element its namespace declares, bind it to the `abs` prefix and then write a CSS rule:

```css
@namespace abs "http://www.oxygenxml.com/sample/documentation/abstracts";
```

Then:

```
abs|def
```

Represents the name "def" in the `http://www.oxygenxml.com/sample/documentation/abstracts` namespace.

```
abs|def:before
```

Represents the :before pseudo-element of the "def" element from the `http://www.oxygenxml.com/sample/documentation/abstracts` namespace.

**Subject Selector**

Oxygen XML Editor supports the subject selector described in CSS Level 4 (currently a working draft at W3C [http://www.w3.org/TR/selectors4/]). This selector matches a structure of the document, but unlike a compound selector, the styling properties are applied to the subject element (the one marked with "!") instead of the last element from the path.

*The subject of the selector can be explicitly identified by appending an exclamation mark (!) to one of the compound selectors in a selector. Although the element structure that the selector represents is the same with or without the exclamation mark, indicating the subject in this way can change which compound selector represents the subject in that structure.*

**Example:**

```css
table! > caption {
  border: 1px solid red;
}
```

A border will be drawn to the table elements that contain a caption, as direct child.

This is different from:

```css
table > caption {
  border: 1px solid red;
}
```
This draws a border around the caption.

**Taking Processing Instructions into Account in CSS Subject Selectors**

You can test for the existence of specific processing instructions (\texttt{PI}) in the child hierarchy of a subject selector.

For example:

```css
@namespace oxy "http://www.oxygenxml.com/extensions/author";

chapter! > oxy|processing-instruction[important][level="high"]{
  color:red;
}
```

This would change the color of a DocBook chapter to red if it contains the `important` processing instruction:

```xml
<chapter>
  <title>A title</title>
  <?important level='high'?>
</chapter>
```

**Descendant Selectors Limitation**

\textbf{Important:} The current implementation has a known limitation. The general descendant selectors are taken into account as direct child selectors. For example, the following two CSS selectors are considered equivalent:

```css
a:has(b c)
```

and:

```css
a:has(b>c)
```

**Related Information:**

- :has Relational Pseudo-Class \textit{(on page 2489)}
Oxygen XML Editor supports the CSS Level 4 subject selector (currently a working draft at W3C [http://www.w3.org/TR/selectors4/]), as described in Subject Selector (on page 2488). Oxygen XML Editor also supports the :has relational pseudo-class that has similar functionality and it can match an element by taking its child elements into account. For more information, see [https://drafts.csswg.org/selectors-4/#relational](https://drafts.csswg.org/selectors-4/#relational).

You can create conditions that take into account the structure of the matching element.

**Example: has Pseudo Class**

```css
table:has( tbody > thead){
  border: 1px solid red;
}
```

This example will result in a border being drawn for the table elements that contain at least a `thead` element in the `tbody` element.

**Taking Processing Instructions into Account in CSS Subject Selectors**

You can test for the existence of specific processing instructions (PI) in the child hierarchy of a subject selector.

For example:

```css
@namespace oxy "http://www.oxygenxml.com/extensions/author";

chapter! > oxy|processing-instruction[important][level="high"]{
  color:red;
}
```

This would change the color of a DocBook chapter to red if it contains the `important` processing instruction:

```xml
<chapter>
  <title>A title</title>
  <?important level='high'?>
</chapter>
```
Descendant Selectors Limitation

⚠️ **Important:** The current implementation has a known limitation. The general descendant selectors are taken into account as direct child selectors. For example, the following two CSS selectors are considered equivalent:

```css
a:has(b c)
```

and:

```css
a:has(b>c)
```

Supported CSS Properties

Oxygen XML Editor validates all CSS 2.1 properties, but does not render *aural* and *paged* categories properties in **Author** mode, as well as some of the values of the *visual* category that are listed below under the **Ignored Values** column. For the Oxygen XML Editor-specific (extension) CSS properties, see [Oxygen CSS Extensions](on page 2501).

<table>
<thead>
<tr>
<th>Name</th>
<th>Rendered Values</th>
<th>Ignored Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>'background-attachment'</td>
<td>NONE</td>
<td></td>
</tr>
<tr>
<td>'background-color'</td>
<td>&lt;color&gt;</td>
<td>inherit</td>
</tr>
<tr>
<td>'background-image'</td>
<td>&lt;uri&gt;</td>
<td>none</td>
</tr>
<tr>
<td>'background-position'</td>
<td>top</td>
<td>right</td>
</tr>
<tr>
<td>'background-repeat'</td>
<td>repeat</td>
<td>repeat-x</td>
</tr>
<tr>
<td>'background'</td>
<td>background-color</td>
<td>background-image</td>
</tr>
<tr>
<td>'border-collapse'</td>
<td>NONE</td>
<td></td>
</tr>
<tr>
<td>'border-color'</td>
<td>&lt;color&gt;</td>
<td>inherit</td>
</tr>
<tr>
<td>'border-spacing'</td>
<td>NONE</td>
<td></td>
</tr>
<tr>
<td>'border-style'</td>
<td>&lt;border-style&gt;</td>
<td>inherit</td>
</tr>
<tr>
<td>'border-top' 'border-right'</td>
<td>[ &lt;border-width&gt;</td>
<td></td>
</tr>
<tr>
<td>'border-bottom' 'border-left'</td>
<td>[ &lt;border-width&gt;</td>
<td></td>
</tr>
<tr>
<td>'border-top-color' 'border-right-color' 'border-bottom-color' 'border-left-color'</td>
<td>&lt;color&gt;</td>
<td>inherit</td>
</tr>
<tr>
<td></td>
<td>transparent</td>
<td></td>
</tr>
<tr>
<td>Name</td>
<td>Rendered Values</td>
<td>Ignored Values</td>
</tr>
<tr>
<td>-------------------------------------------</td>
<td>---------------------------------------------------------------------------------</td>
<td>----------------------</td>
</tr>
<tr>
<td>'border-top-style' 'border-right-style'</td>
<td>&lt;border-style&gt;</td>
<td>inherit</td>
</tr>
<tr>
<td>'border-bottom-style' 'border-left-style'</td>
<td></td>
<td></td>
</tr>
<tr>
<td>'border-top-width' 'border-right-width'</td>
<td>&lt;border-width&gt;</td>
<td>inherit</td>
</tr>
<tr>
<td>'border-bottom-width' 'border-left-width'</td>
<td></td>
<td></td>
</tr>
<tr>
<td>'border-width'</td>
<td>&lt;border-width&gt;</td>
<td>inherit</td>
</tr>
<tr>
<td>'border'</td>
<td>[ &lt;border-width&gt;</td>
<td></td>
</tr>
<tr>
<td>'bottom'</td>
<td>&lt;length&gt;</td>
<td>(on page 2495)</td>
</tr>
<tr>
<td>'caption-side'</td>
<td>NONE</td>
<td></td>
</tr>
<tr>
<td>'clear'</td>
<td>NONE</td>
<td></td>
</tr>
<tr>
<td>'clip'</td>
<td>NONE</td>
<td></td>
</tr>
<tr>
<td>'color'</td>
<td>&lt;color&gt;</td>
<td>inherit</td>
</tr>
<tr>
<td>'content'</td>
<td>normal</td>
<td>none</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td><strong>Tip:</strong> Also see CSS Level 3 target-counter() and target-counters() Functions (on page 2499)</td>
<td></td>
</tr>
<tr>
<td>'counter-increment'</td>
<td>[ &lt;identifier&gt; &lt;integer&gt; ? ]+</td>
<td></td>
</tr>
<tr>
<td></td>
<td>none</td>
<td>inherit</td>
</tr>
<tr>
<td>'counter-reset'</td>
<td>[ &lt;identifier&gt; &lt;integer&gt; ? ]+</td>
<td></td>
</tr>
<tr>
<td></td>
<td>none</td>
<td>inherit</td>
</tr>
<tr>
<td>'cursor'</td>
<td>NONE</td>
<td></td>
</tr>
<tr>
<td>'direction'</td>
<td>ltr</td>
<td>rtl</td>
</tr>
<tr>
<td>'display'</td>
<td>inline</td>
<td>block</td>
</tr>
<tr>
<td></td>
<td>run-in</td>
<td>inline-block</td>
</tr>
<tr>
<td>Name</td>
<td>Rendered Values</td>
<td>Ignored Values</td>
</tr>
<tr>
<td>---------------------</td>
<td>-----------------</td>
<td>----------------</td>
</tr>
<tr>
<td>'empty-cells'</td>
<td>show</td>
<td>hide</td>
</tr>
<tr>
<td>'float'</td>
<td>NONE</td>
<td></td>
</tr>
<tr>
<td>'font-family'</td>
<td>[ [ &lt;family-name&gt;</td>
<td>&lt;generic-family&gt; ] [, &lt;family-name&gt;</td>
</tr>
<tr>
<td>'font-size'</td>
<td>&lt;absolute-size&gt;</td>
<td>&lt;relative-size&gt;</td>
</tr>
<tr>
<td>'font-style'</td>
<td>normal</td>
<td>italic</td>
</tr>
<tr>
<td>'font-variant'</td>
<td>NONE</td>
<td></td>
</tr>
<tr>
<td>'font-weight'</td>
<td>normal</td>
<td>bold</td>
</tr>
<tr>
<td>'font'</td>
<td>[ [ 'font-style'</td>
<td></td>
</tr>
<tr>
<td>'height'</td>
<td>NONE</td>
<td></td>
</tr>
<tr>
<td>'left'</td>
<td>&lt;length&gt; (on page 2495)</td>
<td>&lt;percentage&gt;</td>
</tr>
<tr>
<td>'letter-spacing'</td>
<td>normal</td>
<td>&lt;length&gt; (on page 2495)</td>
</tr>
<tr>
<td>'line-height'</td>
<td>normal</td>
<td>&lt;number&gt;</td>
</tr>
<tr>
<td>'list-style-image'</td>
<td>NONE</td>
<td></td>
</tr>
<tr>
<td>'list-style-position'</td>
<td>NONE</td>
<td></td>
</tr>
<tr>
<td>'list-style-type'</td>
<td>disc</td>
<td>circle</td>
</tr>
<tr>
<td>Name</td>
<td>Rendered Values</td>
<td>Ignored Values</td>
</tr>
<tr>
<td>------------------</td>
<td>-----------------</td>
<td>----------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>'list-style-position'</td>
</tr>
<tr>
<td>'list-style'</td>
<td>[ 'list-style-type' ]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>inherit</td>
<td></td>
</tr>
<tr>
<td>'margin-right' 'margin-left'</td>
<td>&lt;margin-width&gt;</td>
<td>inherit</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>'margin-top' 'margin-bottom'</td>
<td>&lt;margin-width&gt;</td>
<td>inherit</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>'margin'</td>
<td>&lt;margin-width&gt;</td>
<td>inherit</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>'max-height'</td>
<td>NONE</td>
<td></td>
</tr>
<tr>
<td>'max-width'</td>
<td>&lt;length&gt; (on page 2495)</td>
<td>inherit</td>
</tr>
<tr>
<td></td>
<td>&lt;percentage&gt;</td>
<td>none</td>
</tr>
<tr>
<td></td>
<td></td>
<td>supported for <strong>inline</strong>, <strong>block-level</strong>, and replaced elements (such as images, tables, table cells)</td>
</tr>
<tr>
<td>'min-height'</td>
<td>Absolute values, such as 230px, 1in, 7pt, 12em.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Values proportional to the parent element height, such as 30%</td>
</tr>
<tr>
<td>'min-width'</td>
<td>&lt;length&gt; (on page 2495)</td>
<td>inherit</td>
</tr>
<tr>
<td></td>
<td>&lt;percentage&gt;</td>
<td>supported for <strong>inline</strong>, <strong>block-level</strong>, and replaced elements (such as images, tables, table cells)</td>
</tr>
<tr>
<td>'outline-color'</td>
<td>[ &lt;color&gt;</td>
<td>invert</td>
</tr>
<tr>
<td>'outline-style'</td>
<td>[ &lt;border-style&gt;</td>
<td>inherit</td>
</tr>
<tr>
<td>'outline-width'</td>
<td>[ &lt;border-width&gt;</td>
<td>inherit</td>
</tr>
<tr>
<td>'outline'</td>
<td>[ &lt;outline-width&gt;</td>
<td>[ &lt;outline-style&gt;</td>
</tr>
<tr>
<td>'overflow'</td>
<td>NONE</td>
<td></td>
</tr>
<tr>
<td>'padding-top' 'padding-right'</td>
<td>&lt;padding-width&gt;</td>
<td>inherit</td>
</tr>
<tr>
<td>'padding-bottom' 'padding-left'</td>
<td>&lt;padding-width&gt;</td>
<td>inherit</td>
</tr>
<tr>
<td>'padding'</td>
<td>&lt;padding-width&gt;</td>
<td>inherit</td>
</tr>
<tr>
<td>'position'</td>
<td>absolute</td>
<td>fixed - supported for <strong>block display elements</strong>, relative - supported for <strong>block and inline display elements</strong></td>
</tr>
<tr>
<td>Name</td>
<td>Rendered Values</td>
<td>Ignored Values</td>
</tr>
<tr>
<td>----------------------</td>
<td>---------------------------------------------------------------------------------</td>
<td>----------------------------------</td>
</tr>
<tr>
<td>'quotes'</td>
<td>NONE</td>
<td></td>
</tr>
<tr>
<td>'right'</td>
<td><code>&lt;length&gt; (on page 2495)</code></td>
<td>auto</td>
</tr>
<tr>
<td>'table-layout'</td>
<td>auto</td>
<td>fixed</td>
</tr>
<tr>
<td>'text-align'</td>
<td>left</td>
<td>right</td>
</tr>
<tr>
<td>'text-decoration'</td>
<td>none</td>
<td>[ underline</td>
</tr>
<tr>
<td>'text-decoration-style'</td>
<td>solid</td>
<td>double</td>
</tr>
<tr>
<td>'text-indent'</td>
<td><code>&lt;length&gt; (on page 2495)</code></td>
<td>`&lt;percentage&gt;</td>
</tr>
<tr>
<td>'text-transform'</td>
<td>none</td>
<td>capitalize</td>
</tr>
<tr>
<td>'top'</td>
<td><code>&lt;length&gt; (on page 2495)</code></td>
<td>`&lt;percentage&gt;</td>
</tr>
<tr>
<td>'unicode-bidi'</td>
<td>bidi-override</td>
<td>normal</td>
</tr>
<tr>
<td>'vertical-align'</td>
<td>baseline</td>
<td>sub</td>
</tr>
<tr>
<td>'visibility'</td>
<td>visible</td>
<td>hidden</td>
</tr>
<tr>
<td>'white-space'</td>
<td>normal</td>
<td>pre</td>
</tr>
<tr>
<td>'width'</td>
<td><code>&lt;length&gt; (on page 2495)</code></td>
<td>`&lt;percentage&gt;</td>
</tr>
<tr>
<td>'word-spacing'</td>
<td>NONE</td>
<td></td>
</tr>
<tr>
<td>'z-index'</td>
<td>NONE</td>
<td></td>
</tr>
</tbody>
</table>

`<length>` - Refers to distance measurements and is expressed in units such as mm, cm, in, em, rem, ex, pc, pt, px. For more information, see the W3 CSS Level 3 length type specifications.

Related Information:
Transparent Colors

CSS3 supports RGBA colors. The RGBA declaration allows you to set opacity (via the Alpha channel) as part of the color value. A value of 0 corresponds to a completely transparent color, while a value of 1 corresponds to a completely opaque color. To specify a value, you can use either a real number between 0 and 1, or a percent.

**Example: RGBA Color**

```css
personnel:before {
    display:block;
    padding: 1em;
    font-size: 1.8em;
    content: "Employees";
    font-weight: bold;
    color:#EEEEEE;
    background-color: rgba(50, 50, 50, 0.6);
}
```

**attr() Function: Properties Values Collected from the Edited Document**

In CSS Level 2.1 you may collect attribute values and use them as content only for the pseudo-elements. For instance, the :before pseudo-element can be used to insert some content before an element. This is valid in CSS 2.1:

```css
title:before{
    content: "[Audience Level: " attr(audience) "]";
}
```

If the `title` element from the XML document is:

```xml
<title audience="Expert">Changing the Timing Belt</title>
```

Then the title will be displayed as:

```
[Audience Level: Expert] Changing the Timing Belt
```

In Oxygen XML Editor, the use of `attr()` function is available not only for the `content` property, but also for any other property. This is similar to the CSS Level 3 working draft: `http://www.w3.org/TR/2006/WD-css3-values-20060919/#functional`. The arguments of the function are:
`attr (attribute_name, attribute_type, default_value)`

**attribute_name**

The attribute name. This argument is required.

**attribute_type**

The attribute type. This argument is optional. If it is missing, argument's type is considered `string`. This argument indicates what is the meaning of the attribute value and helps to perform conversions of this value. Oxygen XML Editor accepts one of the following types:

**color**

The value represents a color. The attribute may specify a color in various formats. Oxygen XML Editor supports colors specified either by name (`red`, `blue`, `green`, etc.) or as an RGB hexadecimal value `#FFEEFF`.

**url**

The value is a URL pointing to a media object. Oxygen XML Editor supports only images. The attribute value can be a complete URL, or a relative one to the XML document. Note that this URL is also resolved through the catalog resolver.

**integer**

The value must be interpreted as an integer.

**number**

The value must be interpreted as a float number.

**length**

The value must be interpreted as an integer.

**percentage**

The value must be interpreted relative to another value (length, size) expressed in percents.

**em**

The value must be interpreted as a size. 1 em is equal to the `font-size` of the relevant font.

**ex**
The value must be interpreted as a size. 1 ex is equal to the *height* of the x character of the relevant font.

**px**

The value must be interpreted as a size expressed in pixels relative to the viewing device.

**mm**

The value must be interpreted as a size expressed in millimeters.

**cm**

The value must be interpreted as a size expressed in centimeters.

**in**

The value must be interpreted as a size expressed in inches. 1 inch is equal to 2.54 centimeters.

**pt**

The value must be interpreted as a size expressed in points. The points used by CSS2 are equal to 1/72th of an inch.

**pc**

The value must be interpreted as a size expressed in picas. 1 pica is equal to 12 points.

**default_value**

This argument specifies a value that is used by default if the attribute value is missing. This argument is optional.

**Example: attr Function**

Consider the following XML instance:

```xml
<sample>
  <para bg_color="#AAAAFF">Blue paragraph.</para>
  <para bg_color="red">Red paragraph.</para>
  <para bg_color="red" font_size="2">Red paragraph with large font.</para>
  <para bg_color="#00AA00" font_size="0.8" space="4">Green paragraph with small font and margin.</para>
</sample>
```
The `para` elements have `bg_color` attributes with RGB color values (such as `#AAAAFF`). You can use the `attr()` function to change the elements appearance in the editor based on the value of this attribute:

```css
background-color: attr(bg_color, color);
```

The attribute `font_size` represents the font size in `em` units. You can use this value to change the style of the element:

```css
font-size: attr(font_size, em);
```

The complete CSS rule is:

```css
para{
  display: block;
  background-color: attr(bg_color, color);
  font-size: attr(font_size, em);
  margin: attr(space, em);
}
```

The document is rendered as:

![CSS Level 3 target-counter() and target-counters() Functions](image)

The CSS Level 3 functions `target-counter` and `target-counters` can be used as values for the `content` property to retrieve counter values and display information obtained from a target at the end of a link.
**target-counter Function**

This function retrieves the value of the innermost counter with a given name.

\[
\text{target-counter ( } \text{url} \text{, } \text{custom-ident} [\text{, } \text{counter-style} ] ? \text{)}
\]

**url**

The URL of the target. This argument is required.

**custom-ident**

The name of the counter. This argument is required.

**counter-style**

This argument can be used to format the result. This argument is optional.

**Example:**

**HTML:**

```html
<nav>
  <ol>
    <li class="frontmatter"><a href="#pref_01">Preface</a></li>
    <li class="frontmatter"><a href="#intr_01">Introduction</a></li>
    <li class="bodymatter"><a href="#chap_01">Chapter One</a></li>
  </ol>
</nav>
```

**CSS:**

```css
.frontmatter a::after { content: leader(\'.\') target-counter(attr(href url), page, lower-roman) }
.bodymatter a::after { content: leader(\'.\') target-counter(attr(href url), page, decimal) }
```

**Result:**

```
Preface..........v11
Introduction........xi
Chapter One........1
```
**target-counters Function**

This function fetches the value of all counters of a given name from the end of a link, and formats them by inserting a given string between the value of each nested counter.

```
target-counter ( <url> , <custom-ident> , <string> [ , <counter-style> ] ? )
```

**url**

The URL of the target. This argument is required.

**custom-ident**

The name of the counter. This argument is required.

**string**

The string to be inserted between the value of each nested counter. This argument is required.

**counter-style**

This argument can be used to format the result. This argument is optional.

---

**Related Information:**

- [https://www.w3.org/TR/css-gcpm-3/#target-counter](https://www.w3.org/TR/css-gcpm-3/#target-counter)
- [https://www.w3.org/TR/css-gcpm-3/#target-counters](https://www.w3.org/TR/css-gcpm-3/#target-counters)

---

**Oxygen CSS Extensions**

CSS stylesheets provide support for displaying documents. When editing non-standard documents, Oxygen XML Editor CSS extensions are useful.

Examples of how they can be used:

- Property for marking foldable elements (on page 3282) in large files.
- Enforcing a display mode for the XML tags, regardless of the current mode selected by the user.
- Constructing a URL from a relative path location.
- String processing functions.
Built-in CSS Selectors

When Oxygen XML Editor renders content in the Author mode, it adds built-in CSS selectors (in addition to the CSS stylesheets linked in the XML or specified in the document type associated to the XML document). These built-in CSS selectors are processed before all other CSS content, but they can be overwritten if the CSS developer wants to modify a default behavior.

List of CSS Selector Contributed by Oxygen XML Editor

```css
@namespace oxy "http://www.oxygenxml.com/extensions/author";
@namespace xi "http://www.w3.org/2001/XInclude";
@namespace xlink "http://www.w3.org/1999/xlink";
@namespace svg "http://www.w3.org/2000/svg";
@namespace mml "http://www.w3.org/1998/Math/MathML";

oxy|document {
    display:block !important;
}

oxy|cdata {
    display:-oxy-morph !important;
    white-space:pre-wrap !important;
    border-width:0px !important;
    margin:0px !important;
    padding:0px !important;
}

oxy|processing-instruction {
    display:-oxy-morph !important;
    color:rgb(139,38,201) !important;
    white-space:pre-wrap !important;
    border-width:0px !important;
    margin:0px !important;
    padding:0px !important;
}

/*EXM-33415 Avoid showing other editor PIs in content, not useful when editing in Oxygen*/
oxxy|processing-instruction[Pub],
oxxy|processing-instruction[PubTbl],
oxxy|processing-instruction[xm-replace_text],
oxy|processing-instruction[xm-deletion_mark],
oxy|processing-instruction[xm-insertion_mark_start],
oxy|processing-instruction[xm-insertion_mark_end],
oxy|processing-instruction[xml-model],
oxy|processing-instruction[xml-stylesheet]
{
  display:none !important;
}

oxy|comment {
  display:-oxy-morph !important;
  background-color:#f7f7f7;
  color: #707070 !important;
  white-space:pre-wrap !important;
  border-width:0px !important;
  margin:0px !important;
  padding: 0px !important;
}

oxy|reference:before,
oxy|entity[href]:before{
  link: attr(href) !important;
  text-decoration: underline !important;
  color: navy !important;

  margin: 2px !important;
  padding: 0px !important;
  margin-right:0px !important;
  padding-right:2px !important;
}

oxy|reference:before {
  display:-oxy-morph !important;
  content: url(../images/EditContent16.png) !important;
}

oxy|entity[href]:before{
  display:-oxy-morph !important;
  content: url(../images/EditContent16.png) !important;
}
oxy|reference,

oxy|entity {
  -oxy-editable:false !important;
  background-color: rgb(240, 240, 240) !important;
  margin:0px !important;
  padding: 0px !important;
}

oxy|reference {
  display:-oxy-morph !important;
  /*EXM-28674 No need to present tags for these artificial references.*/
  -oxy-display-tags: none;
}

oxy|entity {
  display:-oxy-morph !important;
}

oxy|entity[name='amp'],
oxy|entity[name='lt'],
oxy|entity[name='gt'],
oxy|entity[name='quot'],
oxy|entity[name='apos']{
  /*EXM-32236, EXM-37026 Do not present tags for simple character entity
  references.*/
  -oxy-display-tags: none;
}

oxy|entity[href] {
  border: 1px solid rgb(175, 175, 175) !important;
  padding: 0.2em !important;
}

xi|include {
  display:-oxy-morph !important;
  margin-bottom: 0.5em !important;
  padding: 2px !important;
}
xi|include:before,
xi|include:after{
    display:inline !important;
    background-color: inherit !important;
    color:#444444 !important;
    font-weight:bold !important;
}

xi|include:before {
    content:url(../images/link.png) attr(href) !important;
    link: attr(href) !important;
}

xi|include[parse="text"]:before {
    content:url(../images/link.png) !important;
}

xi|include[xpointer]:before {
    content:url(../images/link.png) attr(href) " " attr(xpointer) !important;
    link: oxy_concat(attr(href), "#", attr(xpointer)) !important;
}

xi|fallback {
    display:-oxy-morph !important;
    margin: 2px !important;
    border: 1px solid #CB0039 !important;
}

xi|fallback:before {
    display:-oxy-morph !important;
    content:"XInclude fallback: " !important;
    color:#CB0039 !important;
}

oxy|doctype {
    display:block !important;
    background-color: transparent !important;
    color:blue !important;
    border-width:0px !important;
    margin:0px !important;
    padding: 2px !important;
}
@media oxygen-high-contrast-black, oxygen-dark-theme{
  oxy|doctype {
      color:#D0E2F4 !important;
  }
}

oxy|error {
  display:-oxy-morph !important;
  -oxy-editable:false !important;
  white-space:pre !important;
  font-weight:bold !important;
  color: rgb(178, 0, 0) !important;
  -oxy-display-tags: none;
}

oxy|error:before {
  content:url(../images/ReferenceError12.png) "[" !important;
  color: rgb(178, 0, 0) !important;
}

oxy|error[level='warn']:before {
  content:url(../images/ReferenceError12.png) "[" !important;
  color: rgb(200, 185, 0) !important;
}

oxy|error[level='warn'] {
  color: rgb(200, 185, 0) !important;
}

oxy|error:after {
  content:"]" !important;
}

*[xlink:href]:before {
  content:url(../images/link.png);
  link: attr(xlink:href) !important;
}
/*No direct display of the MathML and SVG images.*/

svg|svg{
  display:inline !important;
  white-space:-oxy-trim-when-ws-only !important;
}

/*EXM-28827 SVG can contain more than one namespace in it*/

svg|svg * {
  display: none !important;
  white-space: normal !important;
}

mml|math{
  display:inline !important;
  white-space:-oxy-trim-when-ws-only !important;
}

mml|math mml|*{
  display: none !important;
  white-space: normal !important;
}

/*Text direction attributes*/

*[dir='rtl'] { direction:rtl; unicode-bidi:embed; }

*[dir='rlo'] { direction:rtl; unicode-bidi:bidi-override; }

*[dir='ltr'] { direction:ltr; unicode-bidi:embed; }

*[dir='lro'] { direction:ltr; unicode-bidi:bidi-override; }

@media oxygen-high-contrast-black, oxygen-dark-theme{
  xi|include:before,
  xi|include:after{
    color:#808080 !important;
  }
}

/*
  * EXM-40349
  *
  * In DIFF these place holder PIs are not handled so we treat them as normal PIs with a
  * bit of styling.
  *
  */
Example:

To show all entities in the Author mode as transparent, without a gray background, first define in your CSS after all imports the namespace:
@namespace oxy "http://www.oxygenxml.com/extensions/author";

and then add the following selector:

```
oxy|entity {
  background-color: inherit !important;
}
```

**Additional CSS Selectors**

Oxygen XML Editor provides support for selecting additional types of nodes. These custom selectors apply to: `document`, `doctype`, `processing-instruction`, `comment`, `CDATA sections`, `entities`, and `reference sections`. `Processing-instructions` are not displayed by default. To display them, open the Preferences dialog box (Options > Preferences) (on page 79), go to Editor > Author, and select Show processing instructions.

**Note:** The custom selectors are presented in the default CSS for Author mode and all of their properties are marked with an `!important` flag. For this reason, you have to set the `!important` flag on each property of the custom selectors from your CSS to be applicable.

For the custom selectors to work in your CSS stylesheets, declare the Author mode extensions namespace at the beginning of the stylesheet documents:

```
@namespace oxy url('http://www.oxygenxml.com/extensions/author');
```

- **oxy|document** - The `oxy|document` selector matches the entire document:

```
oxy|document {
  display:block !important;
}
```

- **oxy|doctype** - The following example changes the rendering of doctype sections:

```
oxy|doctype {
  display:block !important;
  color:blue !important;
  background-color:transparent !important;
}
```

- **oxy|processing-instruction** - To match the processing instructions, you can use the `oxy|processing-instruction` selector:

```
oxy|processing-instruction {
  display:block !important;
  color:purple !important;
```
A processing instruction usually has a target and one or more pseudo attributes:

```xml
<?target_name data="b"/>
```

You can match a processing instruction with a particular target from the CSS using the construct:

```css
oxy|processing-instruction[target_name]
```

You can also match the processing instructions having a certain target and pseudo attribute value, such as:

```css
oxy|processing-instruction[target_name][data="b"]
```

- **oxy|comment** - The XML comments display in **Author** mode can be changed using the `oxy|comment` selector:

  ```css
  oxy|comment {
    display:block !important;
    color:green !important;
    background-color:transparent !important;
  }
  ```

- **oxy|cdata** - The `oxy|cdata` selector matches CDATA sections:

  ```css
  oxy|cdata {
    display:block !important;
    color:gray !important;
    background-color:transparent !important;
  }
  ```

- **oxy|entity** - The `oxy|entity` selector matches the entities content:

  ```css
  oxy|entity {
    display:morph !important;
    editable:false !important;
    color:orange !important;
    background-color:transparent !important;
  }
  ```

To match particular entities, use the `oxy|entity` selector in expressions such as:

```css
oxy|entity[name='amp'],
oxy|entity[name='lt'],
oxy|entity[name='gt'],
oxy|entity[name='quot'],
```
The references to entities, XInclude, and DITA conrefs and conkeyrefs are expanded by default in Author mode and the referenced content is displayed. The referenced resources are displayed inside the element or entity that refers to them.

You can use the `reference` property to customize the way these references are rendered in Author mode:

```xml
oxy|reference {
    border: 1px solid gray !important;
}
```

In the Author mode, content is highlighted when text contains comments (on page 941) and changes (if Track Changes (on page 941) was active when the content was modified).

If this content is referenced, the Author mode does not display the highlighted areas in the new context. If you want to mark the existence of this comments and changes you can use the `oxy|reference[comments]`, `oxy|reference[changeTracking]`, and `oxy|reference[changeTracking][comments]` selectors.

**Note:** Two artificial attributes (`comments` and `changeTracking`) are set on the reference node, containing information about the number of comments and tracked changes in the content.

The following example represents the customization of the reference fragments that contain comments:

```xml
oxy|reference[comments]:before {
    content: "Comments: " attr(comments) !important;
}
```

To match reference fragments based on the fact that they contain tracked changes inside, use the `oxy|reference[changeTracking]` selector.

```xml
oxy|reference[changeTracking]:before {
    content: "Change tracking: " attr(changeTracking) !important;
}
```

Here is an example of how you can set a custom color to the reference containing both tracked changes and comments:

```xml
oxy|reference[changeTracking][comments]:before {
    content: "Change tracking: " attr(changeTracking)
```
Additional CSS Properties

Oxygen XML Editor provides various additional CSS properties to extend the standard CSS properties.

Append Content Properties: -oxy-append-content / -oxy-prepend-content

Used to append specified content.

oxy-append-content Property

This property appends the specified content to the content generated by other matching CSS rules of lesser specificity. Unlike the content property, where only the value from the rule with the greatest specificity is taken into account, the oxy-append-content property adds content to that generated by the lesser specificity rules into a new compound content.

Example:
The content shown before the `element` will be `Hello World`.

**-oxy-prepend-content Property**

 Prepends the specified content to the content generated by other matching CSS rules of lesser specificity. Unlike the `content` property, where only the value from the rule with the greatest specificity is taken into account, the `-oxy-prepend-content` prepends content to that generated by the lesser specificity rules into a new compound content.

**Example:**

```
.element:before{
    content: "Hello!";
}
.element:before{
    -oxy-prepend-content: "said: ";
}
.element:before{
    -oxy-prepend-content: "I ";
}
```

The content shown before the `element` will be `I said: Hello!`.

**Collapse Text: -oxy-collapse-text Property Value**

Used to collapse the content of an element.

Oxygen XML Editor allows you to set the value of the `visibility` property to `-oxy-collapse-text`, meaning that the content of that element is not rendered. If an element is marked as `-oxy-collapse-text`, you are not able to position the cursor inside it and edit it. The purpose of `-oxy-collapse-text` is to make the text value of an element editable only through a form control.

**Example: visibility Property**

The text value of an XML element will be edited using a text field form control. In this case, the text content is not directly present in the **Author** visual editing mode:
Cyrillic Counters: -oxy-lower-cyrillic Property Values

Used to style lists with Cyrillic counters.

Oxygen XML Editor allows you to set the value of the list-style-type property to Cyrillic counters. For example, -oxy-lower-cyrillic-ru, -oxy-lower-cyrillic-uk, -oxy-upper-cyrillic-ru or -oxy-upper-cyrillic-uk, meaning that you can have Russian and Ukrainian counters.

Example: Cyrillic Counters

Counting list items with Cyrillic symbols:

```html
li{
  display:list-item;
  list-style-type:-oxy-lower-cyrillic-ru;
}
```

Display Tag Markers: -oxy-display-tags Property

Used to specify whether or not tag markers are displayed.

Oxygen XML Editor allows you to choose whether tag markers of an element should never be presented or the current display mode should be respected. This is especially useful when working with :before and :after pseudo-elements, in which case the element range is already visually defined so the tag markers are redundant.

The property is named -oxy-display-tags, with the following possible values:

- **none** - Tags markers will not be presented regardless of the current display mode. (on page 441).
- **default** - The tag markers will be created depending on the current display mode. (on page 441).
- **inherit** - The value of the property is inherited from an ancestor element.

-oxy-display-tags
  Value: none | default | inherit
  Initial: default
  Applies to: all nodes (comments, elements, CDATA, etc.)
  Inherited: false
  Media: all
Example: -oxy-display-tags Property

In this example, the para element from DocBook uses a :before and :after element and its tag markers will not be visible.

```xml
para:before{
    content: "{";
}
para:after{
    content: "}";
}
para{
    -oxy-display-tags: none;
    display: block;
    margin: 0.5em 0;
}
```

Editable: -oxy-editable Property

Used to inhibit the content of a particular element.

If you want to inhibit editing a certain element's content, you can set the -oxy-editable CSS property (deprecated property editable is also supported) to false.

Folding Elements: -oxy-foldable Property

Used to configure whether or not the content of an element can be expanded or collapsed.

Oxygen XML Editor allows you to declare some elements to be foldable (on page 3282). This is especially useful when working with large documents organized in logical blocks, editing a large DocBook article or book, for instance. Oxygen XML Editor marks the foldable content with a small blue triangle. When you hover with your mouse pointer over this marker, a dotted line borders the collapsible content. The following actions are available in the Folding submenu of the contextual menu:

- **Toggle Fold**
  Toggles the state of the current fold.

- **Collapse Other Folds (Ctrl + NumPad/ (Command + NumPad/ on OS X))**
  Folds all the elements except the current element.

- **Collapse Child Folds (Ctrl + NumPad. (Command + NumPad. on OS X))**
Folds the elements indented with one level inside the current element.

Expand Child Folds

Unfolds all child elements of the currently selected element.

Expand All (Ctrl + NumPad* (Command + NumPad* on OS X))

Unfolds all elements in the current document.

To define the element whose content can be folded by the user, you must use the property: -oxy-foldable:true; . To define the elements that are folded by default, use the -oxy-folded:true property.

Note: The -oxy-folded property works in conjunction with the -oxy-foldable property. Thus, the folded property is ignored if the -oxy-foldable property is not set on the same element.

When collapsing an element, it is useful to keep some of its content visible (for example, a short description of the collapsed region). The property -oxy-not-foldable-child is used to identify the child element that is kept visible. It accepts as value an element name or a list of comma-separated element names. The first child element from the XML document that appears in the list of element names will be identified as the not foldable child and displayed. If the element is marked as foldable (-oxy-foldable:true; ) but it doesn't have the property -oxy-not-foldable-child or none of the specified non-foldable children exists, then the element is still foldable. In this case the element kept visible when folded will be the before pseudo-element.

Note: Deprecated properties foldable, not-foldable-child, and folded are also supported.

Example: Folding DocBook Elements

All the elements below can have a title child element and are considered to be logical sections. You mark them as being foldable leaving the title element visible.

```
set,
book,
part,
reference,
chapter,
preface,
article,
sect1,
sect2,
sect3,
sect4,
section,
appendix,
```
Links: -oxy-link Property

Used to specify that a particular element should be considered a link.

Oxygen XML Editor allows you to declare some elements to be links. This is especially useful when working with many documents that reference each other. The links allow for an easy way to get from one document to another. Clicking the link marker will open the referenced resource in an editor.

To define the element that should be considered a link, you must use the link property on the before or after pseudo element. The value of the property indicates the location of the linked resource. Since links are usually indicated by the value of an attribute in most cases it will have a value similar to attr(href)

**Example: DocBook Link Elements**

The following elements are defined to be links on the before pseudo element and their values are defined by the value of an attribute.

```
*[href]:before{
    -oxy-link:attr(href);
    content: "Click " attr(href) " for opening" ;
}

ulink[url]:before{
    -oxy-link:attr(url);
    content: "Click to open: " attr(url);
}

olink[targetdoc]:before{
    -oxy-link: attr(targetdoc);
    content: "Click to open: " attr(targetdoc);
}
```

**Morph Elements: -oxy-morph Property Value**

Used to specify that an element should be displayed inline.
Oxygen XML Editor allows you to specify that an element has an `-oxy-morph` display type (deprecated `morph` property is also supported), meaning that the element is inline (on page 3283) if all its children are inline.

**Example: -oxy-morph Property Value**

Suppose you have a `wrapper` XML element that allows users to set a number of attributes on all sub-elements. This element should have an inline (on page 3283) or block (on page 3280) behavior, depending on the behavior of its child elements:

```xml
wrapper{
  display:-oxy-morph;
}
```

**Placeholders for Empty Elements: -oxy-placeholder-content Property**

Used to configure placeholders for empty elements.

Oxygen XML Editor displays the element name as pseudo-content for empty elements if the Show placeholders for empty elements option (on page 132) is selected in the Author preferences page and there is no before or after content set in the CSS for this type of element. There are two CSS properties that can be used to control the placeholders (`-oxy-placeholder-content` and `-oxy-show-placeholder`).

**-oxy-placeholder-content CSS Property**

To control the displayed pseudo-content for empty elements, you can use the `-oxy-placeholder-content` CSS property.

The following example would change the `keyword` element to be displayed as `key`:

```css
keyword{
  -oxy-placeholder-content:"key";
}
```

**Note:** This CSS property accepts the `$(i18n(key))` (on page 282) localization editor variable, as in the following example:

```css
-oxy-placeholder-content:"$(i18n(id))";
```

**-oxy-show-placeholder CSS Property**

The `-oxy-show-placeholder` property allows you to decide whether or not the placeholder will be shown. The possible values are:
- always - Always display placeholders.
- default - Always display placeholders if before or after content is not set in the CSS.
- inherit - The placeholders are displayed according to the Show placeholders for empty elements option (on page 132) (if before and after content is not declared).
- no - Never display placeholders.

**Note:** Deprecated properties show-placeholder and placeholder-content are also supported.

Related Information:

- Using Placeholders in Document Templates (on page 685)

**Style Elements:** -oxy-style Property

Used to configure the style of particular elements.

Oxygen XML Editor allows you to specify the style for an XML element. This is helpful if you want to embed CSS styling to XML elements directly in the XML file you are editing without having to edit the CSS files that are normally attached to the XML files. The property should have an XPath function for the value.

**Example: -oxy-style Property**

The following code snippet should be added in the CSS file that renders the files for your framework customization:

```css
*{
    -oxy-style:attr(style);
}
```

Suppose you want to display the title elements in your XML document in the color red. You could add the following snippet directly in the XML document:

```xml
<title style="color:red;">My Memoirs</title>
```

**Tip:** The style attribute is supported by default in HTML5 documents.

**Tags Color:** -oxy-tags-color Property

Used to configure the background or foreground colors of tags.
By default, Oxygen XML Editor does not display element tags. You can use the Partial Tags button from the Author toolbar to control the amount of displayed markup. (on page 441)

To configure the default background and foreground colors of the tags, open the Preferences dialog box (Options > Preferences) (on page 79), go to Editor > Edit modes > Author, and set the desired colors in the Tags background color (on page 134) and Tags foreground color (on page 134) options.

If you want to be more specific and configure the colors using a CSS, the -oxy-tags-background-color and -oxy-tags-color properties allow you to control the background and foreground colors for any particular XML element.

Example:

```css
para {
  -oxy-tags-color:white;
  -oxy-tags-background-color:green;
}

.title {
  -oxy-tags-color:yellow;
  -oxy-tags-background-color:black;
}
```

Custom CSS Functions

Oxygen XML Editor provides a wide range of custom CSS extension functions that can be used to customize the visual Author editing mode.

**Arithmetic Functions**

Arithmetic Functions that are supported.

You can use any of the arithmetic functions implemented in the java.lang.Math class (http://download.oracle.com/javase/6/docs/api/java/lang/Math.html).

In addition, the following functions are available:

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>oxy_add (param1, ..., paramN, returnType)</td>
<td>Adds the values of all parameters from param1 to paramN.</td>
</tr>
<tr>
<td>oxy_subtract (param1, param2, ..., paramN, returnType)</td>
<td>Subtracts the values of parameters param2 to paramN from param1.</td>
</tr>
<tr>
<td>oxy_multiply (param1, ..., paramN, returnType)</td>
<td>Multiplies the values of parameters from param1 to paramN.</td>
</tr>
<tr>
<td>oxy_divide (param1, param2, returnType)</td>
<td>Performs the division of param1 to param2.</td>
</tr>
</tbody>
</table>
### Syntax

**oxy_modulo (param1, param2, returnType)** Returns the reminder of the division of `param1` to `param2`.

#### Note:
The `returnType` can be 'integer', 'number', or any of the supported CSS measuring types.

### Example: oxy_multiply Function

If you have an image with **width** and **height** specified on it, this will compute the number of pixels on it:

```css
element:before{
  content: "Number of pixels: " oxy_multiply(attr(width), attr(height), "px");
}
```

### Actions: oxy_action() Function

This function allows you to define actions directly in the CSS, rather than referencing them from the associated framework.

The `oxy_action()` function is frequently used from the `oxy_button()` function (on page 2547) that provides a graphical button for invoking a custom action. The action is normally defined in the associated Document Type (framework configuration) but the `oxy_action()` function allows you to define it directly in the CSS instead of the framework configuration.

The arguments received by the `oxy_action()` function are a list of properties that define an action. The following properties are supported:

- **name** - The name of the action. It will be displayed as the label for the button or menu item.
- **description** (optional) - A short description with details about the result of the action.
- **icon** (optional) - A path relative to the CSS pointing to an image (the icon for the action). The path can point to resources that are packed in Oxygen XML Editor (`oxygen.jar`) by starting its value with `/` (for example, `/images/Remove16.png`). It can also be expressed using an editor variable (on page 276).
- **operation** - The name of the Java class implementing the `ro.sync.ecss.extensions.api.AuthorOperation` interface. There is also a variety of predefined operations (on page 2451) that can be used.

#### Note:
If the name of the operation specified in the CSS is not qualified (has no Java package name), then it is considered to be one of the built-in Oxygen XML Editor operations from `ro.sync.ecss.extensions.commons.operations` package. If the class is not found in this package, then it will be loaded using the specified name.

- **arg-string** - All arguments with the `arg-` prefix are passed to the operation (the string that follows the `arg-` prefix is passed).
• **ID** - (optional) - The ID of the action from the *framework*. If this is specified, all others parameters are disregarded.

**Example: oxy_action function inside an oxy_button form control (on page 2547):**

```xml
oxy_button{
  action, oxy_action(
    name, 'Insert',
    description, 'Insert an element after the current one',
    icon, url('insert.png'),
    operation,
    'InsertFragmentOperation',
    arg-fragment, '<element>${caret}</element>',
    arg-insertLocation, '.',
    arg-insertPosition, 'After'),
  showIcon, true)
```

**Example: oxy_action Function**

You can also create a button form control directly from an *oxy_action* function:

```xml
oxy_action{
  name, 'Insert',
  description, 'Insert an element after the current one',
  operation, 'InsertFragmentOperation',
  arg-fragment, '<element>${caret}</element>',
  arg-insertLocation, '.',
  arg-insertPosition, 'After')
```

**Tip:** A code template is available to make it easy to add the *oxy_action* function with the *Content Completion Assistant (on page 3280)* by pressing **Ctrl + Space (Command + Space on OS X)** and select the `.! oxy_action` code template.

**Related Information:**

- **Button Form Control (on page 2547)**

**Action Lists: oxy_action_list() Function**

This function allows you to define a sequential list of actions directly in the CSS, rather than referencing them from the associated framework.
The `oxy_action_list()` function is used from the `oxy_buttonGroup()` function (on page 2550) that provides a graphical group of buttons with multiple custom actions. These actions are normally defined in the associated Document Type (framework configuration) but the `oxy_action_list()` function allows you to define the actions directly in the CSS instead of the framework configuration.

The arguments received by the `oxy_action_list()` function are a list of actions (executed sequentially) that are defined with the `oxy_action()` function (on page 2521). The following properties are supported in the `oxy_action()` function:

- **name** - The name of the action. The name of the first defined action will be displayed as the label for the button or menu item.
- **description** (optional) - A short description with details about the result of the action. The description of the first defined action will be displayed in a tooltip.
- **icon** (optional) - A path relative to the CSS pointing to an image (the icon for the action). The path can point to resources that are packed in Oxygen XML Editor (`oxygen.jar`) by starting its value with `/` (for example, `/images/Remove16.png`). It can also be expressed using an editor variable (on page 276).
- **operation** - The name of the Java class implementing the `ro.sync.ecss.extensions.api.AuthorOperation` interface. There is also a variety of predefined operations (on page 2451) that can be used.

**Note:** If the name of the operation specified in the CSS is not qualified (has no Java package name), then it is considered to be one of the built-in Oxygen XML Editor operations from `ro.sync.ecss.extensions.commons.operations` package. If the class is not found in this package, then it will be loaded using the specified name.

- **arg-*string*** - All arguments with the `arg-` prefix are passed to the operation (the string that follows the `arg-` prefix is passed).
- **ID** - (optional) - The ID of the action from the framework. If this is specified, all others parameters are disregarded.

**Example: oxy_action_list Function**

```css
p:after {
  content: oxy_buttonGroup(
    label, 'A group of actions',
    icon, url('http://www.oxygenxml.com/img/icn_oxy20.png'),
    actions,
    oxy_action_list(
      oxy_action{
        name, 'Insert a new paragraph',
        description, 'Insert an element after the current one',
      }
    )
  )
}
```
Tip: A code template is available to make it easy to add the `oxy_action_list` function with the *Content Completion Assistant (on page 3280)* by pressing **Ctrl + Space (Command + Space on OS X)** and select the `.! oxy_action_list` code template.

Related Information:

- Actions: `oxy_action()` Function *(on page 2521)*
- Button Group Form Control *(on page 2550)*

Attributes Concatenation: `oxy_attributes()` Function

This function concatenates the attributes for an element and returns the serialization.

**Syntax:**

```
oxy_attributes ()
```

**Example: `oxy_attributes` Function**

```
element{
    content: oxy_attributes();
}
```

For instance, if you have the following XML fragment: `<element att1="x" xmlns:a="2" x="&quot;"/>`, the CSS function will display:

```
att1="x" xmlns:a="2" x=""
```
**Base URL:** `oxy_base-uri()` Function

This function evaluates the base URL in the context of the current node.

It does not have any arguments and takes into account the `xml:base` context of the current node. See the [XML Base specification](#) for more details.

**Example: `oxy_base-uri` Function**

Suppose you have some image references but you want to see other thumbnail images that reside in the same folder (in **Author** mode):

```xml
image[href]{
    content: oxy_url(oxy_base-uri(), oxy_replace(attr(href), '.jpeg', 'Thumbnail.jpeg'));
}
```

**Capitalization:** `oxy_capitalize()` Function

This function capitalizes the first letter of the text received as argument.

**Syntax:**

```xml
oxy_capitalize ( text )
```

- **text**
  - The text in which the first letter will be capitalized.

**Example: `oxy_capitalize` Function**

```xml
*:before{
    content: oxy_capitalize(oxy_name()) " : ";
}
```

This would insert the capitalized qualified name as static text content before the element.

**Compound Actions:** `oxy_compound_action()` Function

This function allows you to define multiple actions that will be executed sequentially.

The `oxy_compound_action()` function is used from the `oxy_button()` form control function (on page 2547) or the `oxy_buttonGroup()` form control function (on page 2550).

The arguments received by the `oxy_compound_action()` function are a list of actions (executed sequentially) that are defined with the `oxy_action()` function (on page 2521).
You can use three optional properties (name, description, icon) in the oxy_compound_action() function to provide labels for the compound action. If you do not specify these three properties, those same properties defined in the first oxy_action function will be used for the labels.

- **name** - The name of the action. It will be displayed as the label for the action. If you want to reuse the name of an action already defined in your framework, you can use the oxy_getActionName function.

- **description** - A short description with details about the result of the action. It will be displayed in a tooltip when hovering over the button linked to this action. If you want to reuse the description of an action already defined in your framework, you can use the oxy_getActionDescription function.

- **icon** - A path relative to the CSS pointing to an image (the icon for the action). The path can point to resources that are packed in Oxygen XML Editor (oxygen.jar) by starting its value with / (for example, /images/Remove16.png). It can also be expressed as an editor variable (on page 276). If you want to reuse the icon of an action already defined in your framework, you can use the oxy_getActionIcon function.

The oxy_getActionName, oxy_getActionDescription, and oxy_getActionIcon functions accept the following 2 parameters:

- **framework.defined.action.id** (required) - The ID of an action defined in the current framework that gets the name, description, or icon for that action.

- **fallback** (optional) - A fallback value in case the ID value provided in the framework.defined.action.id parameter is not found.

**Example: oxy_compound_action Function**

```xml
oxy_button{
  action,
    oxy_compound_action{
      name, oxy_getActionName('framework.id', 'Fallback'),
      description, 'Inserts a paragraph and uses form controls to edit its audience attribute',
      icon, url('http://www.oxygenxml.com/img/icn_oxy20.png'),
      oxy_action{
        name, 'Insert',
        description, 'Insert an element after the current one',
        operation, 'ro.sync.ecss.extensions.commons.operations.InsertFragmentOperation',
        icon, url('insert.png'),
        arg-fragment, "<p audience=''></p>'
    }},
}
arg-insertLocation, '.',
arg-insertPosition, 'After'
),
oxy_action(
    name, 'Activate edit mode',
    description, 'Sets a pseudo class that will activate a CSS rule that will present a text field form control for the @audience attribute',
    operation, 'SetPseudoClassOperation',
    arg-name, 'edit-mode-on',
    arg-elementLocation, '
)
,
showIcon, true)

Tip: A code template is available to make it easy to add the oxy_compound_action function with the Content Completion Assistant (on page 3280) by pressing Ctrl + Space (Command + Space on OS X) and select the .! oxy_action_list code template.

Related Information:

- Actions: oxy_action() Function (on page 2521)
- Button Form Control (on page 2547)

Concatenation: oxy_concat() Function

This function concatenates the received string arguments.

Syntax:

oxy_concat ( str_1, str_2 )

    str_1 ... str_n

    The string arguments to be concatenated.

Example: oxy_concat Function

If an XML element has an attribute called padding-left:

<p padding-left="20">...
and you want to add a padding before it with that specific amount specified in the attribute value:

```css
*{padding-left} {
    padding-left: oxy_concat(attr(padding-left), "px");
}
```

**Get Text: oxy_getSomeText(text, length) Function**

This function allows you to truncate a long string and to set a maximum number of displayed characters.

**Syntax:**

```javascript
oxy_getSomeText ( text, length, endsWithPoints )
```

- `text`
  Displays the actual text.

- `length`
  Sets the maximum number of characters that are displayed.

- `endsWithPoints`
  Specifies if the truncated text ends with ellipsis.

**Example: oxy_getSomeText Function**

If an attribute value is very large, you can trim its content before it is displayed as static content:

```css
*{longdesc}:before{
    content: oxy_getSomeText(attr(longdesc), 200);
}
```

**Indexing: oxy_indexof() Function**

This function is used to define searches.

The `oxy_indexof()` function has two signatures:

**Syntax 1:**

```javascript
oxy_indexof ( text, toFind )
```

Returns the index within `text` string of the first occurrence of the `toFind` substring.

- `text`
  Text to search in.
toFind

The searched substring.

Syntax 2:

```
oxy_indexof ( text , toFind , fromOffset )
```

Returns the index within `text` string of the first occurrence of the `toFind` substring. The search starts from `fromOffset` index.

- **text**
  Text to search in.

- **toFind**
  The searched substring.

- **fromOffset**
  The index to start the search from.

**Example: oxy_indexof Function**

```
oxy_indexof('abcd', 'bc') returns 1.
oxy_indexof('abcdbc', 'bc', 2) returns 4.
```

If you only want to display part of an attribute value, for instance the part that comes before an `Appendix` string:

```
image[longdesc]({
  content: oxy_substring(attr(longdesc), 0,
    oxy_indexof(attr(longdesc), "Appendix"));
})
```

**Label: oxy_label() Function**

This function can be used in conjunction with the CSS `content` property to change the style of generated text.

The arguments of the function are `property name - property value` pairs. The following properties are supported:

- **text** - This property specifies the built-in form control you are using.
- **width** - Specifies the width of the content area using relative (em, ex), absolute (in, cm, mm, pt, pc, px), and percentage (followed by the % character) length units. The `width` property takes precedence over the `columns` property (if the two are used together).
• color - Specifies the foreground color of the form control. If the value of the color property is inherit, the form control has the same color as the element in which it is inserted.

• background-color - Specifies the background color of the form control. If the value of the background-color property is inherit, the form control has the same color as the element in which it is inserted.

• styles - Specifies styles for the form control. The values of this property are a set of CSS properties:
  ◦ font-weight, font-size, font-style, font
  ◦ text-align, text-decoration
  ◦ width
  ◦ color, background-color
  ◦ link - For more information about this property, see the link property section (on page 2517).

```xml
element{
  content: oxy_label(text, "Label Text", styles,
    "font-size:2em;color:red;link:attr(href);" );
}
```

Instead of using the values of the styles property individually, you can define them in a CSS file as in the following example:

```css
* {
  width: 40%;
  text-align: center;
}
```

Then refer that file with an @import directive, as follows:

```xml
elem {
  content: oxy_label(text, 'my_label', styles, '@import 'labels.css';")
}
```

⚠️ CAUTION: Extensive use of the styles property may lead to performance issues.

If the text from an oxy_label() function contains new lines, for example oxy_label(text, 'LINE1\A LINE2', width, 100px), the text is split in two. Each of the two new lines has the specified width of 100 pixels.

⚠️ Note: The text is split after \A, which represents a new line character.

You can use the oxy_label() function together with a built-in form control (on page 2541) function to create a form control based layouts.
Example: *oxy_label* Function

An example of a use case is if you have multiple attributes on a single element and you want use form controls on separate lines and style them differently. Consider the following CSS rule:

```css
person:before {  
  content: "Name:*" oxy_textfield(edit, '@name', columns, 20)  
  "\A Address:" oxy_textfield(edit, '@address', columns, 20)  
}
```

Suppose you only want the **Name** label to be set to **bold**, while you want both labels aligned to look like a table (the first column with labels and the second with a text field). To achieve this, you can use the `oxy_label()` to style each label differently.

```css
person:before {  
  content: oxy_label(text, "Name:*", styles, "font-weight:bold;width:200px")  
  oxy_textfield(edit, '@name', columns, 20) "\A  
  oxy_label(text, "Address:", styles, "width:200px")  
  oxy_textfield(edit, '@address', columns, 20)  
}
```

**Tip:** A code template is available to make it easy to add the `oxy_label` function with the [Content Completion Assistant](on page 3280) by pressing **Ctrl + Space (Command + Space on OS X)** and select the `. oxy_label` code template.

Last Occurrence: *oxy_lastindexof()* Function

This function is used to define last occurrence searches.

The `oxy_lastindexof()` function has two signatures:

**Syntax 1:**

```javascript
oxy_lastindexof (text, toFind )
```

Returns the index within `text` string of the rightmost occurrence of the `toFind` substring.

- **text**
  - Text to search in.

- **toFind**
  - The searched substring.

**Syntax 2:**

```javascript
oxy_lastindexof (text, toFind, fromOffset )
```
The search starts from \texttt{fromOffset} index. Returns the index within \texttt{text} string of the last occurrence of the \texttt{toFind} substring, searching backwards starting from the \texttt{fromOffset} index.

\begin{description}
\item [text] Text to search in.
\item [toFind] The searched substring.
\item [fromOffset] The index to start the search backwards from.
\end{description}

\textbf{Example: \texttt{oxy_lastindexOf} Function}

\begin{verbatim}
oxy_lastindexOf('abcdbc', 'bc') returns 4.
oxy_lastindexOf('abcdbccdbc', 'bc', 2) returns 1.
\end{verbatim}

If you only want to display part of an attribute value, for instance the part that comes before an \texttt{Appendix} string:

\begin{verbatim}
image[longdesc] {
    content: oxy_substring(attr(longdesc), 0, 
                 oxy_lastindexOf(attr(longdesc), "Appendix"));
}
\end{verbatim}

\textit{Link Text: \texttt{oxy_link-text()} Function}

You can use this function on the CSS \texttt{content} property to obtain a text description from the source of a reference.

By default, the \texttt{oxy_link-text()} function resolves DITA and DocBook references. For further details about how you can also extend this functionality to other frameworks (on page 3282), go to Configuring an Extensions Bundle (on page 2391).

\textbf{DITA Support}

For DITA, the \texttt{oxy_link-text()} function resolves the \texttt{xref} element and the elements that have a \texttt{keyref} attribute. The text description is the same as the one presented in the final output for those elements. If you use this function for a \texttt{topicref} element that has the \texttt{navtitle} and \texttt{locktitle} attributes set, the function returns the value of the \texttt{navtitle} attribute.
DocBook Support

For DocBook, the oxy_link-text() function resolves the xref element that defines a link in the same document. The text description is the same as the one presented in the final output for those elements.

**Example: oxy_link-text Function**

For the following XML and associated CSS fragments the oxy_link-text() function is resolved to the value of the xreflabel attribute.

```xml
<para>
  <code id="para.id" xreflabel="The reference label">my code</code>
</para>

<para><xref linkend="para.id"/></para>

xref {
  content: oxy_link-text();
}
```

If the text from the target cannot be extracted (for instance, if the href is not valid), you can use an optional argument to display fallback text.

```css
*[class~="map/topicref"]:before{
  content: oxy_link-text("Cannot find the topic reference");
  link:attr(href);
}
```

**Local Name: oxy_local-name() Function**

This function evaluates the local name of the current node.

It does not have any arguments.

**Example: oxy_local-name Function**

To insert the local name as static text content before the element, use this CSS selector:

```css
*:before{
  content: oxy_local-name() ": ";
}
```

**Lowercase: oxy_lowercase() Function**

This function transforms the text received as argument to lower case.
Syntax:

```xml
oxy_lowercase ( text )
```

text

The text to be lower cased.

**Example: oxy_lowercase Function**

To insert a lower-cased qualified name as static text content before the element, use this CSS selector:

```css
*:before{
    content: oxy_lowercase(oxy_name()) "": ";
}
```

**Name: oxy_name() Function**

This function evaluates the qualified name of the current node.

It does not have any arguments.

**Example: oxy_name Function**

To insert a qualified name as static text content before the element, use this CSS selector:

```css
*:before{
    content: oxy_name() "": ";
}
```

**Parent URL: oxy_parent-url() Function**

This function evaluates the parent URL of a URL received as string.

**Syntax:**

```xml
oxy_parent-url ( URL )
```

URL

The URL as string.

**Replace: oxy_replace() Function**

This function is used to replace a string of text.

The *oxy_replace()* function has two signatures:
Syntax 1:

\texttt{oxy\_replace(\texttt{text}, \texttt{target}, \texttt{replacement})}

This function replaces each substring of the text that matches the literal target string with the specified literal replacement string.

\textbf{text}

The text in which the replace will occur.

\textbf{target}

The target string to be replaced.

\textbf{replacement}

The string replacement.

**Example:** Suppose that you have image references but you want to see other thumbnail images that reside in the same folder in the visual Author editing mode:

```plaintext
image[href] {
    content: oxy_url(oxy_base-uri(), oxy_replace(attr(href), '.jpeg', 'Thumbnail.jpeg'));
}
```

Syntax 2:

\texttt{oxy\_replace(\texttt{text}, \texttt{target}, \texttt{replacement}, \texttt{isRegExp})}

This function replaces each substring of the text that matches the target string with the specified replacement string.

\textbf{text}

The text in which the replace will occur.

\textbf{target}

The target string to be replaced.

\textbf{replacement}

The string replacement.

\textbf{isRegExp}

If \texttt{true} the target and replacement arguments are considered regular expressions, if \texttt{false} they are considered literal strings.

**Example:** Suppose that you want to use a regular expression to replace all space sequences with an underscore:
Substring of Text: oxy_substring() Function

This function is used to return a string of text.

The `oxy_substring()` function has two signatures:

**Syntax 1:**

```plaintext
oxy_substring ( text, startOffset )
```

Returns a new string that is a substring of the original `text` string. It begins with the character at the specified index and extends to the end of `text` string.

- **text**
  - The original string.
- **startOffset**
  - The beginning index, inclusive.

**Syntax 2:**

```plaintext
substring ( text, startOffset, endOffset )
```

Returns a new string that is a substring of the original `text` string. The substring begins at the specified `startOffset` and extends to the character at index `endOffset` - 1.

- **text**
  - The original string.
- **startOffset**
  - The beginning index, inclusive.
- **endOffset**
  - The ending index, exclusive.

**Example: oxy_substring Function**

- `oxy_substring('abcd', 1)` returns the string `bcd`.
- `oxy_substring('abcd', 4)` returns an empty string.
- `oxy_substring('abcd', 1, 3)` returns the string `bc`. 
If you only want to display part of an attribute value, for instance the part that comes before an 
Appendix string:

```xml
image[longdesc]{
    content: oxy_substring(attr(longdesc), 0, oxy_indexof(attr(longdesc), "Appendix"));
}
```

**Unescape URL Value: oxy_unescapeURLValue(string) Function**

This function returns the unescaped value of a URL-like string given as a parameter.

For example, if the value contains `%20` it will be converted to a simple space character.

**Example: oxy_unescapeURLValue Function**

```xml
oxy_unescapeURLValue("http://www.example.com/a%20simple%20example.html") returns the following value:
```

| http://www.example.com/a simple example.html |

**Unparsed Entity URI: oxy_unparsed-entity-uri() Function**

This function returns the URI value of an unparsed entity name.

**Syntax:**

```xml
oxy_unparsed-entity-uri ( unparsedEntityName )
```

```
unparsedEntityName
```

The name of an unparsed entity defined in the DTD.

This function can be useful to display images that are referenced with unparsed entity names.

**Example: oxy_unparsed-entity-uri Function**

CSS for displaying the image in Author for an `imagedata` with `entityref` to an unparsed entity:

```xml
imagedata[entityref]{
    content: oxy_url(oxy_unparsed-entity-uri(attr(entityref)));
}
```

**Uppercase: oxy_uppercase() Function**

This function transforms the text received as argument to upper case.
Syntax:

oxy_uppercase ( text )

text

The text to be capitalized.

Example: oxy_uppercase Function

To insert the upper-cased qualified name as static text content before the element, use this CSS selector:

```css
*:before{
    content: oxy_uppercase(oxy_name()) ": ";
}
```

URL: oxy_url() Function

This function extends the standard CSS url() function by allowing you to specify additional relative path components (parameters loc_1 to loc_n).

Oxygen XML Editor uses all these parameters to construct an absolute location. Note that any of the parameters that are passed to the function can be either relative or absolute locations. These locations can be expressed as String objects, functions, or editor variables (on page 276) (built-in or custom).

Syntax:

oxy_url ( base_location , loc_1 , loc_2 )

base_location

String representing the base location. If not absolute, will be solved relative to the CSS file URL.

loc_1 ... loc_n (optional)

Strings representing relative location path components.

Examples: oxy_url Function

The following function receives String objects as input parameters:

```html
```

and returns:

'http://www.oxygenxml.com/dir1/dir4/dir5/test.xml'
The following function receives the result of the evaluation of two other functions as parameters (for instance, this is useful if you have image references and you want to see thumbnail images stored in the same folder):

```xml
image[href]{
  content:oxy_url(oxy_base-uri(), oxy_replace(attr(href), '.jpeg', 'Thumbnail.jpeg'));
}
```

The following function uses an editor variable (on page 276) as the first parameter to point to the Oxygen XML Editor installation location:

```xml
image[href] {
  content: oxy_url('${oxygenHome}', 'logo.png');
}
```

Related Information:
- Editor Variables (on page 276)

**XPath: oxy_xpath() Function**

This function is used to evaluate XPath expressions.

**Syntax:**

```xml
oxy_xpath ( XPathExpression [, processChangeMarkers , value ] [, evaluate , value ] )
```

It evaluates the given XPath 2.0 expression using Saxon 9 and returns the result. XPath expressions that depend on the cursor location can be successfully evaluated only when the cursor is located in the actual XML content. Evaluation fails when the current editing context is inside a referenced `xi:include` section or inside artificially referenced content (for example, DITA `conref` or `topicref` references).

The parameters of the function are as follows:

- A required `expression` parameter, which is the XPath expression to be evaluated.
- An optional `processChangeMarkers` parameter, followed by its value, which can be either `true` or `false` (default value). When you set the parameter to `true`, the function returns the resulting text with all the change markers accepted (delete changes are removed and insert changes are preserved).
- An optional `evaluate` parameter, followed by its value, which can be one of the following:
- **dynamic** - Evaluates the XPath each time there are changes in the document.
- **dynamic-once** - Separately evaluates the XPath for each node that matches the CSS selector. It will not re-evaluate the expression when changes are made to other nodes in the document. This will lead to improved performance, but the displayed content may not be updated to reflect the actual document content.
- **static** - If the same XPath is evaluated on several nodes, the result for the first evaluation will be used for all other matches. Use this only if the XPath does not contain a relationship with the node on which the CSS property is evaluated. This will lead to improved performance, but the static displayed content may not be updated to reflect the actual document content.

**Note:** When XPath expressions are evaluated, the entities and `xi:include` elements are replaced with the actual content that is referenced. For example, consider the following code snippet:

```xml
<article>
  <xi:include href="section1.xml" xmlns:xi="http://www.w3.org/2001/XInclude"/>
</article>
```

where `section1.xml` contains the following content:

```xml
<section>
  <p>Referenced content</p>
</section>
```

The latter will be the actual content in which the XPath expression is executed.

**Example: oxy_xpath Function**

The following example counts the number of words from a paragraph (including tracked changes (on page 3288)) and displays the result in front of it:

```xml
para:before{  
  content:    
    concat("|Number of words:"  
          oxy_xpath({    
            "count(tokenize(normalize-space(string-join(text(), '')), ' '))",    
            processChangeMarkers,    
            true),$| "});
}
Note: The `oxy_xpath()` function supports editor variables (on page 276), as in the following example:

```xml
* {
    content: oxy_concat("Result: ", oxy_xpath('count(collection($cfdu/?select=*.xml))'))
}
```

Form Controls

Oxygen XML Editor provides a variety of built-in form controls that allow users to interact with documents with familiar user interface objects. These form controls are defined in CSS stylesheets that are used to render Author mode. For customization purposes, Oxygen XML Editor also supports custom form controls in Java (on page 2573).

How to Add a Built-in Form Control in Author Mode

Form controls can be added by defining them in the CSS associated with the XML document.

1. Create a custom CSS file.
2. Define the form control in the CSS using its dedicated CSS function. For example, to add a date picker form control (on page 2558), its dedicated function is `oxy_datePicker`.
3. Associate the CSS file with the XML document in one of the following ways:
   - If you have a framework (document type) already created for this XML vocabulary, create a CSS in the framework directory and associate the CSS with the framework (on page 2346). This approach is recommended if you intend on sharing the customization with others.
   - If you do not have a framework, you can associate the CSS to the XML document through a Processing Instruction (on page 2477).

For more information about form controls, watch our video demonstration:

https://www.youtube.com/embed/-WY3wzKMSLM

Related Information:

- Custom CSS Functions (on page 2520)
- Label: `oxy_label()` Function (on page 2529)
Audio File Player Form Control

The oxy_audio built-in form control is used for providing a mechanism to play audio clips.

The oxy_audio form control supports the following properties:

- **href** - The absolute or relative location of a resource. This property is mandatory. Relative values are resolved relative to the CSS. If you have media resources relative to the XML document, you can specify their paths like this:

  ```xml
  oxy_audio(href, oxy_url(oxy_base-uri(), 'ex.mp3')), width, 400px)
  ```

- **width** - Specifies the width of the content area using relative (em, ex), absolute (in, cm, mm, pt, pc, px), and percentage (followed by the % character) length units.

**Example: oxy_audio Form Control**

```xml
object {
  content:
    oxy_audio(
      href, '/resources/audio.mp3',
      width, 200px),
  }
```

**Tip:** To insert a sample of the oxy_audio form control in a CSS file (or LESS file), invoke the Content Completion Assistant (on page 3280) by pressing Ctrl + Space (Command + Space on OS X) and select the .oxy_audio code template.

To see more detailed examples and more information about how form controls work in Oxygen XML Editor, see the sample files in the following directory: [OXYGEN_INSTALL_DIR]/samples/form-controls.

For more information about form controls, watch our video demonstration:

https://www.youtube.com/embed/-WY3wzkMSLM

**Related Information:**

- Custom CSS Functions (on page 2520)
Browser Form Control

The oxygen_browser built-in form control is used for providing a mechanism to integrate HTML frames or interact with SVG documents directly in the Author mode editor. It can also be used to load HTML that executes JavaScript and from that JavaScript you can access the Oxygen XML Editor workspace.

The oxygen_browser form control supports the following properties:

- **href** - The absolute or relative location of a resource. This property is mandatory. Relative values are resolved relative to the CSS. If you have media resources relative to the XML document, you can specify their paths like this:

  ```javascript
  oxy_browser(href, oxy_url(oxy_base-uri(), 'ex.svg'), width, 50%, height, 50%)
  ```

- **width** - Specifies the width of the content area using relative (em, ex), absolute (in, cm, mm, pt, pc, px), and percentage (followed by the % character) length units.

- **height** - Specifies the height of the form control area using relative (em, ex), absolute (in, cm, mm, pt, pc, px), and percentage (followed by the % character) length units.

**Example: oxygen_browser Form Control**

```javascript
object {
  content:
    oxygen_browser{
      href, 'http://example.page',
      width, 600px,
      height, 400px,
    }
}
```

**Tip:** To insert a sample of the oxygen_browser form control in a CSS file (or LESS file), invoke the Content Completion Assistant (on page 3280) by pressing Ctrl + Space (Command + Space on OS X) and select the .oxygen_browser code template.

To see more detailed examples and more information about how form controls work in Oxygen XML Editor, see the sample files in the following directory: [OXYGEN_INSTALL_DIR]/samples/form-controls.

**Interacting with the Oxygen XML Editor Workspace**

The oxygen_browser form control also provides the possibility of creating custom form control without having to use the Java-based API. You can use the oxygen_browser form control to load HTML that
executes JavaScript. In the JavaScript, you can use some predefined global variables that provide a gateway between the JavaScript and the Oxygen XML Editor Java API. This allows you to perform changes in the document, open resources, and more, solely from the JavaScript.

⚠️ **Important:** This will only work if the loaded HTML is located inside a framework or plugin directory (on page 94), such as: `[OXYGEN_INSTALL_DIR]/frameworks/` or `[OXYGEN_INSTALL_DIR]/plugins/`.

The following global variables can be used:

- **authorAccess** - This object is an instance of `ro.sync.ecss.extensions.api.AuthorAccess`.
- **contextElement** - An instance of `ro.sync.ecss.extensions.api.node.AuthorNode`. The form control is added over this node.
- **fcArguments** - A `java.util.Map` implementation with the properties (name and value pairs) passed on the form control function.
- **apiHelper** - A helper object for creating Java objects. It allows you to create Java objects from within the JavaScript code. These objects can then be passed to the Java methods as in the following example:

```javascript
var newAttrValue = apiHelper.newInstance(
  "ro.sync.ecss.extensions.api.node.AttrValue",
  ["normalizedValue", "rawValue", true]);
authorAccess.getDocumentController().setAttribute(
  "counter", newAttrValue, contextElement);
```

You can also specify the constructor signature:

```javascript
var newAttrValue = apiHelper.newInstance(
  "ro.sync.ecss.extensions.api.node.AttrValue",
  (java.lang.String, java.lang.String, boolean),
  ["normalizedValue", "rawValue", true]);
authorAccess.getDocumentController().setAttribute(
  "counter", newAttrValue, contextElement);
```

For more information, open the `form-controls.xml` file in the `[OXYGEN_INSTALL_DIR]/samples/form-controls` directory and go to section 11.1 - Interacting with the Oxygen Workspace.
Warning: On Mac OS X, you need to use asynchronous calls to the API, due to the following JDK bug: https://bugs.openjdk.java.net/browse/JDK-8087465. By default, the API is called synchronously, but you can change this behavior for each API object by calling two methods: `sync()` and `async()`.

---

// By default, the methods are invoke synchronously.
var ctrl = authorAccess.getDocumentController();
try {
  // On Mac, methods that change the document must be executed asynchronously.
  ctrl.async();
  ctrl.setAttribute("counter", newAttrValue, contextElement);
} finally {
  ctrl.sync();
}

---

### Listening for Changes in the Document

If the form control presents some information from the document (for example, the value of an attribute), then it needs to be notified on changes in the document so that it can update that information. To do this, follow these steps:

1. In the JavaScript, the `bridgeReady()` method is invoked as soon as the form control is loaded and the API bridge is installed. This is where you can add a listener:

```javascript
function bridgeReady () {
  // We declare a member function for each method of the
  // ro.sync.ecss.extensions.api.AuthorListener interface (same function signature)
  var handler = {
    attributeChanged : function(event) {
      var node = event.getOwnerAuthorNode();
      var attrName = event.getAttributeName();
      if (node.equals(contextElement) && attrName === "counter") {
        init();
      }
    },
    contentDeleted : function(event) {},
    contentInserted : function(event) {}
  };

  // We create a proxy over an ro.sync.ecss.extensions.api.AuthorListener that
```
// delegate its methods to the JS object's functions.
// We assign the listener to a global variable so that we can remove it later
on,
// on the dispose() method.
authorDocumentListener = apiHelper.createProxyListener(
    "ro.sync.ecss.extensions.api.AuthorListener", handler);

var ctrl = authorAccess.getDocumentController();

// Add the proxy listener.
ctrl.addAuthorListener(authorDocumentListener);
}

2. Since a listener was added on the document, it is important to remove it once the form control is
not used anymore. When a form control is discarded, you can call the dispose() method from
the JavaScript. This is where the previously created listener can be removed:

```javascript
/**
 * The form control will not be used anymore. Clean up.
 */
function dispose() {
    // Dispose all added listeners.
    var ctrl = authorAccess.getDocumentController();
    ctrl.removeAuthorListener(authorDocumentListener);
}
```

**Debugging JavaScript Used for Custom Form Controls**

If you encounter unexpected results when using the method described above (on page 2543), you
can debug the script by using the following guidelines:

- **Calls to** `alert("message.to.present")` or `console.log("message.to.present")` will be
  presented in the Results panel (on page 357).
- **You can install the Firebug extension** by executing the following script:

```javascript
{code:javascript}
function installFB() {
    if (!document.getElementById('FirebugLite')) {
        E = document.createElementNS('NS') && document.documentElement.namespaceURI;
        E = E ? document.createElementNS('NS')('script')
                  : document.createElement('script');
        E['setAttribute']('id', 'FirebugLite');
```
E['setAttribute']('src',
    'https://getfirebug.com/' + 'firebug-lite.js'
+ '#startOpened');
E['setAttribute']('FirebugLite', '4');
(document['getElementsByTagName']('head')[0]
    || document['getElementsByTagName']('body')[0]).appendChild(E);
E = new Image;
E['setAttribute']('src', 'https://getfirebug.com/' + '#startOpened');
}
}
{code}

Note: To force the Browser Form Control to reload after making changes to the JavaScript file, you need to use the Reload page action from the form control's contextual menu.

For more information about form controls, watch our video demonstration:

https://www.youtube.com/embed/-WY3wzkMSLM

Related Information:

- Custom CSS Functions (on page 2520)
- URL: oxy_url() Function (on page 2538)

Button Form Control

The oxy_button built-in form control is used for graphical user interface objects that invoke a custom Author mode action (defined in the associated Document Type) referencing it by its ID, or directly in the CSS.

The oxy_button form control supports the following properties:

- fontInherit - This value specifies whether or not the form control inherits its font from its parent element. The values of this property can be true or false (default value). To make the form control inherit its font from its parent element, set the fontInherit property to true.
- color - Specifies the foreground color of the form control. If the value of the color property is inherit, the form control has the same color as the element in which it is inserted.
- visible - Specifies whether or not the form control is visible. The possible values of this property are true (default value) and false.
• **transparent** - Flattens the aspect of the button form control, removing its border and background. The values of this property can be **true** or **false** (default value).

• **showText** - Specifies if the action text should be displayed on the button form control. If this property is missing then the button displays the icon only if it is available, or the text if the icon is not available. The values of this property can be **true** or **false**.

```xml
element {
    content: oxy_button(actionID, 'remove.attribute', showText, true);
}
```

• **showIcon** - Specifies if the action icon should be displayed on the button form control. If this property is missing then the button displays the icon only if it is available, or the text if the icon is not available. The values of this property can be **true** or **false**.

```xml
element {
    content: oxy_button(actionID, 'remove.attribute', showIcon, true);
}
```

• **enableInReadOnlyContext** - To enable button form controls (on page 2547) or groups of buttons form controls (on page 2550) this property needs to be set to **true**. This property can be used to specify areas as read-only (by setting the -oxy-editable property to **false**). This is useful when you want to use an action that does not modify the context.

• **hoverPseudoclassName** - Allows you to change the way an element is rendered when you hover over a form control. The value is the name of a CSS pseudo-class. When you hover over the form control, the specified pseudo-class will be set on the element that contains the form control.

```xml
p:before {
    content: oxy_button(hoverPseudoclassName, 'showBorder')
}
p:showBorder {
    border: 1px solid red;
}
```

• **actionContext** - Specifies the context in which the action associated with the form control is executed. Its possible values are **element** (default value) and **caret**. If you select the **element** value, the context is the element that holds the form control. If you select the **caret** value, the action is invoked at the cursor location. If the cursor is not inside the element that holds the form control, the **element** value is selected automatically.

• **actionID** - The ID of the action, specified in the document type association (on page 102), that is invoked when you click the button.

**Note:** The element that contains the form control represents the context where the action is invoked.
• **action** - Defines an action directly, rather than using the `actionID` parameter to reference an action from the *document type association (on page 102)*. This property is defined using the `oxy_action` function (on page 2521).

**Tip:** You can also create a button form control directly from an `oxy_action` function (on page 2522).

```xml
oxy_button(action, oxy_action(
    name, 'Insert',
    description, 'Insert an element after the current one',
    icon, url('insert.png'),
    operation, 'InsertFragmentOperation',
    arg-fragment, '{@element>${caret}</element>'
    arg-insertLocation, '.',
    arg-insertPosition, 'After'
))
```

**Tip:** To execute multiple actions sequentially, you can use the `oxy_compound_action` function (on page 2525).

**Example: oxy_button Form Control**

```css
button:before {
    content: "Label:" 
    oxy_button{
        /* This action is declared in the document type 
        associated with the XML document. */
        actionID, "insert.popupWithMultipleSelection";
    }
}
```

**Tip:** To insert a sample of the `oxy_button` form control in a CSS file (or LESS file), invoke the *Content Completion Assistant (on page 3280)* by pressing `Ctrl + Space (Command + Space on OS X)` and select the `.oxy_button` code template. Also, an `.oxy_button_in_place_action` code template is available that inserts an `oxy_button` function that includes an `action` parameter.

To see more detailed examples and more information about how form controls work in Oxygen XML Editor, see the sample files in the following directory: `OXYGEN_INSTALL_DIR/samples/form-controls`.

For more information about form controls, watch our video demonstration:

https://www.youtube.com/embed/-WY3wzkMSLM
Button Group Form Control

The oxy_buttonGroup built-in form control is used for a graphical user interface group of buttons that invokes one of several custom Author mode actions (defined in the associated Document Type) referencing it by its ID, or directly in the CSS.

The oxy_buttonGroup form control supports the following properties:

- label - Specifies the label to be displayed on the button. This label can be translated using the $i18n() editor variable (on page 282).
- icon - The path to the icon to be displayed on the button.
- visible - Specifies whether or not the form control is visible. The possible values of this property are true (default value) and false.
- tooltip - Specifies a tooltip to be displayed when you hover over the form control.
- transparent - Makes the button transparent without any borders or background colors. The values of this property can be true or false.
- fontInherit - This value specifies whether or not the form control inherits its font from its parent element. The values of this property can be true or false (default value). To make the form control inherit its font from its parent element, set the fontInherit property to true.
- enableInReadOnlyContext - To enable button form controls (on page 2547) or groups of buttons form controls (on page 2550) this property needs to be set to true. This property can be used to specify areas as read-only (by setting the oxy-editable property to false). This is useful when you want to use an action that does not modify the context.
- hoverPseudoclassName - Allows you to change the way an element is rendered when you hover over a form control. The value is the name of a CSS pseudo-class. When you hover over the form control, the specified pseudo-class will be set on the element that contains the form control.

```html
p:before {
  content: oxy_buttonGroup(hoverPseudoclassName, 'showBorder')
}
p:showBorder {
  border: 1px solid red;
}
```

- actionIDs - The IDs of the actions that will be presented in the group of buttons.
• **actionID** - The ID of the action, specified in the *document type association (on page 102)*, that is invoked when you click the button.

**Note:** The element that contains the form control represents the context where the action is invoked.

• **actions** - Defines a sequential list of actions directly, rather than using the **actionID** parameter to reference actions from the *document type association (on page 102)*. This property is defined using the **oxy_action_list** function (on page 2522).

```xml
oxy_buttonGroup(
    label, 'A group of actions',
    icon, url('http://www.oxygenxml.com/img/icn_oxy20.png'),
    actions,
    oxy_action_list(
       oxy_action(
            name, 'Insert',
            description, 'Insert an element after the current one',
            operation, 'InsertFragmentOperation',
            arg-fragment, '<element></element>',
            arg-insertLocation, '.',
            arg-insertPosition, 'After'
        ),
        oxy_action(
            name, 'Delete',
            description, 'Deletes the current element',
            operation, 'DeleteElementOperation'
        )
    )
)
```

**Tip:** To execute multiple actions sequentially, you can use the **oxy_compound_action** function (on page 2525) in the **oxy_action_list** function (on page 2522).

```xml
p:before {
    content:
        oxy_buttonGroup(
            label, 'A group of actions',
            icon, url('http://www.oxygenxml.com/img/icn_oxy20.png'),
            actions,
            oxy_action_list(
                oxy_compound_action(
                    oxy_action(
                        name, 'Insert',
                        description, 'Insert an element after the current one',
                        operation, 'InsertFragmentOperation',
                        arg-fragment, '<element></element>',
                        arg-insertLocation, '.',
                        arg-insertPosition, 'After'
                    ),
                    oxy_action(
                        name, 'Delete',
                        description, 'Deletes the current element',
                        operation, 'DeleteElementOperation'
                    )
                )
            )
        )
    )
}
```
name, oxy_getActionName('framework.id', 'Fallback'),
description, 'Inserts a paragraph and uses form controls to edit its @audience attribute',
icon, url('http://www.oxygenxml.com/img/icn_oxy20.png'),
oxy_action(
    name, 'Insert',
    description, 'Insert an element after the current one',
    operation, 'ro.sync.ecss.extensions.commons.operations.InsertFragmentOperation',
    icon, url('insert.png'),
    arg-fragment, '<p audience=""></p>',
    arg-insertLocation, '.',
    arg-insertPosition, 'After'
),
oxy_action(
    name, 'Activate edit mode',
    description, 'Sets a pseudo class that will activate a CSS rule that will present a text field form control for the @audience attribute',
    operation, 'SetPseudoClassOperation',
    arg-name, 'edit-mode-on',
    arg-elementLocation , '.'
)
}
}
oxy_action(
    name, 'Delete',
    description, 'Deletes the current element',
    operation, 'DeleteElementOperation'
)}

**actionContext** - Specifies the context in which the action associated with the form control is executed. Its possible values are **element** (default value) and **caret**. If you select the **element** value, the context is the element that holds the form control. If you select the **caret** value, the action is invoked at the cursor location. If the cursor is not inside the element that holds the form control, the **element** value is selected automatically.

**actionStyle** - Specifies what to display for an action in the form control. The values of this property can be **text** (default value), **icon**, or **both**.

**Example: oxy_buttonGroup Form Control**
buttongroup:before {
  
  content:
  oxy_label(text, "Button Group:", width, 150px, text-align, left)
  oxy_buttonGroup{
    label, 'A group of actions',
    /* The action IDs are declared in the document type
       associated with the XML document. */
    actionIDs,
    "insert.popupWithMultipleSelection,insert.popupWithSingleSelection",
    actionStyle, "both";
  }
}

Tip: To insert a sample of the oxy_buttonGroup form control in a CSS file (or LESS file), invoke the Content Completion Assistant (on page 3280) by pressing Ctrl + Space (Command + Space on OS X) and select the .oxy_buttonGroup code template. Also, an oxy_buttonGroup_in_place_action code template is available that inserts an oxy_buttonGroup function that includes an oxy_action_list function.

To see more detailed examples and more information about how form controls work in Oxygen XML Editor, see the sample files in the following directory: [OXYGEN_INSTALL_DIR]/samples/form-controls.

For more information about form controls, watch our video demonstration:

https://www.youtube.com/embed/-WY3wzkMSLM

Related Information:

- Custom CSS Functions (on page 2520)
- Actions: oxy_action() Function (on page 2521)
- Action Lists: oxy_action_list() Function (on page 2522)
- Compound Actions: oxy_compound_action() Function (on page 2525)
- Label: oxy_label() Function (on page 2529)
Checkbox Form Control

The `oxy_checkbox` built-in form control is used for a graphical user interface box that you can click to enable or disable an option. A single checkbox or multiple checkboxes can be used to present and edit the value on an attribute or element.

The `oxy_checkbox` form control supports the following properties:

- **edit** - Lets you edit the value of an attribute, the text content of an element, or Processing Instructions (PI). This property can have the following values:
  - `@attribute_name` - The name of the attribute whose value is being edited. If the attribute is in a namespace, the value of the property must be a QName (on page 3286) and the CSS must have a namespace declaration for the prefix.
  - `#text` - Specifies that the presented/edited value is the simple text value of an element.

  **Note:** You can set the value of the `visibility` property to `-oxy-collapse-text` (on page 2513) to render the text only in the form control that the `oxy_editor` function specifies.

- **resultSeparator** - If multiple check-boxes are used, the separator is used to compose the final result. If not specified, the space character is used.

- **tooltips** - Associates tooltips to each value in the `values` property. The value of this property is a list of tooltip messages separated by commas. If you want the tooltip to display a comma, use the `{$comma}` variable (on page 281).

- **visible** - Specifies whether or not the form control is visible. The possible values of this property are `true` (default value) and `false`.

- **values** - Specifies the values that are committed when check-boxes are selected. If these values are not specified in the CSS, they are collected from the associated XML Schema.

  **Note:** Typically, when you use a comma in the values of a form control, the content that follows a comma is considered a new value. If you want to include a comma in the values, precede the comma with two backslashes. For example, `{values, '1\, 2\, 3, 4, edit, false}` will display a form control that has 1, 2, 3 for the first value and 4 for the second value.

- **fontInherit** - This value specifies whether or not the form control inherits its font from its parent element. The values of this property can be `true` or `false` (default value). To make the form control inherit its font from its parent element, set the `fontInherit` property to `true`.

- **uncheckedValues** - Specifies the values that are committed when check-boxes are not selected.

- **labels** - This property must have the same number of items as the `values` property. Each item provides a literal description of the items listed in the `values` property. These labels can be translated using the `{$i18n()}` editor variable (on page 282). If this property is not specified, the `values` property is used as the label.

- **columns** - Controls the layout of the form control. The check boxes will be grouped in a number of columns equal to the given value.
• **color** - Specifies the foreground color of the form control. If the value of the `color` property is `inherit`, the form control has the same color as the element in which it is inserted.

• **hoverPseudoclassName** - Allows you to change the way an element is rendered when you hover over a form control. The value is the name of a CSS pseudo-class. When you hover over the form control, the specified pseudo-class will be set on the element that contains the form control.

```css
p:before {
  content: oxy_checkbox(hoverPseudoclassName, 'showBorder')
}
p:showBorder {
  border: 1px solid red;
}
```

**Example: Single oxy_checkbox Form Control**

```css
checkBox[attribute]:before {
  content: "A check box editor that edits a two valued attribute (On/Off)
  The values are specified in the CSS:"
  oxy_checkbox{
    edit, "@attribute",
    values, "On",
    uncheckedValues, "Off",
    labels, "On/Off";
  }
}
```

**Example: Multiple oxy_checkbox Form Controls**

```css
multipleCheckBox[attribute]:before {
  content: "Multiple checkboxes editor that edits an attribute value.
  Depending whether the check-box is selected,
  a different value is committed:"
  oxy_checkbox{
    edit, "@attribute",
    values, "true, yes, on",
    uncheckedValues, "false, no, off",
    resultSeparator, ",",
    labels, "Present, Working, Started";
  }
}
```

**Tip:** To insert a sample of the `oxy_checkbox` form control in a CSS file (or LESS file), invoke the *Content Completion Assistant (on page 3280)* by pressing **Ctrl + Space (Command + Space on OS X)** and select the `.i` `oxy_checkbox` code template.
To see more detailed examples and more information about how form controls work in Oxygen XML Editor, see the sample files in the following directory: [OXYGEN_INSTALL_DIR]/samples/form-controls.

For more information about form controls, watch our video demonstration:

https://www.youtube.com/embed/-WY3wzkMSLM

### Related Information:

- Custom CSS Functions *(on page 2520)*
- Collapse Text: -oxy-collapse-text Property Value *(on page 2513)*

### Combo Box Form Control

The `oxy_combobox` built-in form control is used for providing a graphical user interface object that is a drop-down menu of proposed values. This form control can also be used for a combination of a drop-down menu and an editable single-line text field.

The `oxy_combobox` form control supports the following properties:

- **edit** - Lets you edit the value of an attribute, the text content of an element, or Processing Instructions (PI). This property can have the following values:
  - @attribute_name - The name of the attribute whose value is being edited. If the attribute is in a namespace, the value of the property must be a QName *(on page 3286)* and the CSS must have a namespace declaration for the prefix.
  - #text - Specifies that the presented/edited value is the simple text value of an element. **Note:** You can set the value of the visibility property to -oxy-collapse-text *(on page 2513)* to render the text only in the form control that the oxy_editor function specifies.

- **columns** - Controls the width of the form control. The unit size is the width of the `w` character.

- **width** - Specifies the width of the content area using relative `{em, ex}`, absolute `{in, cm, mm, pt, pc, px}`, and percentage (followed by the `%` character) length units. The `width` property takes precedence over the `columns` property (if the two are used together).

- **visible** - Specifies whether or not the form control is visible. The possible values of this property are `true` (default value) and `false`.

- **editable** - This property accepts the `true` and `false` values. In addition to a drop-down menu, the `true` value also generates an editable text field box that allows you to insert other values than the proposed ones. The `false` value generates a drop-down menu that only accepts the proposed values.
• tooltips - Associates tooltips to each value in the values property. The value of this property is a list of tooltip messages separated by commas. If you want the tooltip to display a comma, use the ${comma} variable (on page 281).

• values - Specifies the values that populate the list of proposals. If these values are not specified in the CSS, they are collected from the associated XML Schema.

  Note: Typically, when you use a comma in the values of a form control, the content that follows a comma is considered a new value. If you want to include a comma in the values, precede the comma with two backslashes. For example, (values, '1\, 2\, 3, 4, edit, false) will display a form control that has 1, 2, 3 for the first value and 4 for the second value.

• fontInherit - This value specifies whether or not the form control inherits its font from its parent element. The values of this property can be true or false (default value). To make the form control inherit its font from its parent element, set the fontInherit property to true.

• labels - This property must have the same number of items as the values property. Each item provides a literal description of the items listed in the values property. These labels can be translated using the $\{i18n()\} editor variable (on page 282).

  Note: This property is only available for read-only combo boxes (the editable property is set to false).

• color - Specifies the foreground color of the form control. If the value of the color property is inherit, the form control has the same color as the element in which it is inserted.

• hoverPseudoclassName - Allows you to change the way an element is rendered when you hover over a form control. The value is the name of a CSS pseudo-class. When you hover over the form control, the specified pseudo-class will be set on the element that contains the form control.

```css
p:before {
  content: oxy_combobox(hoverPseudoclassName, 'showBorder')
}
p:showBorder {
  border: 1px solid red;
}
```

• canRemoveValue - If the value is set to true and the combo box is not editable, then a new <Empty> value is added in that combo box. This clears or removes the value being edited, depending on if it edits an element or attribute.

• onChange - Can be used to invoke an action when the value of the combo box changes. The action can be created in the CSS using the oxy_action() function (on page 2521) or referenced from the framework (on page 3282) by its ID. After the action is executed, the cursor remains in the combo box. Note that this property does not support actions defined by JavaScript code.

Example: oxy_combobox Form Control

```css
comboBox:before {
```

**content:** "A combo box that edits an attribute value. The possible values are provided from CSS:"

```javascript
oxy_combobox(
    edit, "@attribute",
    editable, false,
    values, "value1, value2, value3",
    labels, "Value no1, Value no2, Value no3",
    onChange, oxy_action(
        name, 'Insert',
        operation, 'XQueryUpdateOperation',
        arg-script, '
            insert node <product>{xs:string(@attribute)}</product>
            as last into .');
    );
```

**Tip:** To insert a sample of the `oxy_combobox` form control in a CSS file (or LESS file), invoke the *Content Completion Assistant* ([on page 3280](#)) by pressing **Ctrl + Space (Command + Space on OS X)** and select the `.oxy_combobox` code template.

To see more detailed examples and more information about how form controls work in Oxygen XML Editor, see the sample files in the following directory: `[OXYGEN_INSTALL_DIR]/samples/form-controls`.

For more information about form controls, watch our video demonstration:

[https://www.youtube.com/embed/-WY3wzkMSLM](https://www.youtube.com/embed/-WY3wzkMSLM)

**Related Information:**

- Custom CSS Functions ([on page 2520](#))
- Actions: `oxy_action()` Function ([on page 2521](#))
- Collapse Text: `-oxy-collapse-text Property Value ([on page 2513](#))

**Date Picker Form Control**

The `oxy_datePicker` built-in form control is used for offering a text field with a calendar browser that allows the user to choose a certain date in a specified format.

The `oxy_datePicker` form control supports the following properties:
• **edit** - Lets you edit the value of an attribute, the text content of an element, or Processing Instructions (PI). This property can have the following values:
  - **@attribute_name** - The name of the attribute whose value is being edited. If the attribute is in a namespace, the value of the property must be a QName (on page 3286) and the CSS must have a namespace declaration for the prefix.
  - **#text** - Specifies that the presented/edited value is the simple text value of an element.

  **Note:** You can set the value of the visibility property to -oxy-collapse-text (on page 2513) to render the text only in the form control that the oxy_editor function specifies.

• **columns** - Controls the width of the form control. The unit size is the width of the w character.

• **width** - Specifies the width of the content area using relative (em, ex), absolute (in, cm, mm, pt, pc, px), and percentage (followed by the % character) length units. The width property takes precedence over the columns property (if the two are used together).

• **color** - Specifies the foreground color of the form control. If the value of the color property is inherit, the form control has the same color as the element in which it is inserted.

• **fontInherit** - This value specifies whether or not the form control inherits its font from its parent element. The values of this property can be true or false (default value). To make the form control inherit its font from its parent element, set the fontInherit property to true.

• **format** - This property specifies the format of the inserted date. The pattern value must be a valid Java date (or date-time) format. If this property is missing, the format of the date is determined from the associated schema.

• **visible** - Specifies whether or not the form control is visible. The possible values of this property are true (default value) and false.

• **validateInput** - Specifies if the form control is validated. If you introduce a date that does not respect the format, the datePicker form control is rendered with a red foreground. By default, the input is validated. To disable the validation, set this property to false.

• **hoverPseudoclassName** - Allows you to change the way an element is rendered when you hover over a form control. The value is the name of a CSS pseudo-class. When you hover over the form control, the specified pseudo-class will be set on the element that contains the form control.

```xml
p:before {
  content: oxy_datePicker(edit, "@attribute", hoverPseudoclassName, 'showBorder')
}
p:showBorder {
  border: 1px solid red;
}
```

**Example:** oxy_datePicker Form Control

```xml
date {
```
content:
    oxy_label(text, "Date time attribute with format defined in CSS: ", width, 300px)
    oxy_datePicker(
        columns, 16,
        edit, "@attribute",
        format, "yyyy-MM-dd");
}

Tip: To insert a sample of the oxy_datePicker form control in a CSS file (or LESS file), invoke the Content Completion Assistant (on page 3280) by pressing Ctrl + Space (Command + Space on OS X) and select the oxy_datePicker code template.

To see more detailed examples and more information about how form controls work in Oxygen XML Editor, see the sample files in the following directory: [OXYGEN_INSTALL_DIR]/samples/form-controls.

For more information about form controls, watch our video demonstration:

https://www.youtube.com/embed/-WY3wzkMSLM

Related Information:

- Custom CSS Functions (on page 2520)
- Label: oxy_label() Function (on page 2529)

**HTML Content Form Control**

The oxy_htmlContent built-in form control is used for rendering HTML content. This HTML content is displayed as a graphical element shaped as a box. The shape of the box is determined by a given width and the height is computed based upon the length of the text.

The oxy_htmlContent form control supports the following properties:

- href - The absolute or relative location of a resource. The resource needs to be a well-formed HTML file.
- id - The unique identifier of an item. This is a div element that has a unique id and is a child of the body element. The div element is the container of the HTML content to be rendered by the form control.
- content - An alternative to the href and id pair of elements. It provides the HTML content that will be displayed in the form control.
• width - Specifies the width of the content area using relative (em, ex), absolute (in, cm, mm, pt, pc, px), and percentage (followed by the % character) length units. The width property takes precedence over the columns property (if the two are used together).

• hoverPseudoclassName - Allows you to change the way an element is rendered when you hover over a form control. The value is the name of a CSS pseudo-class. When you hover over the form control, the specified pseudo-class will be set on the element that contains the form control.

```html
p:before {
  content: oxy_htmlContent(hoverPseudoclassName, 'showBorder')
}
p:showBorder {
  border: 1px solid red;
}
```

You can customize the style of the content using CSS that is either referenced by the file identified by the href property or is defined inline. If you change the HTML content or CSS and you want your changes to be reflected in the XML that renders the form control, then you need to refresh the XML file. If the HTML does not have an associated style, then a default text and background color will be applied.

**Example: oxy_htmlContent Form Control**

In the following example, the form control collects the content from the p_description div element found in the descriptions.html file. The box is 400 pixels wide and is displayed before a paragraph identified by the intro_id attribute value.

```html
p#intro_id:before {
  content: oxy_htmlContent{
    href, "descriptions.html",
    id, "p_description",
    width, 400px);
}
```

An alternative example, using the content property:

```html
p#intro_id:before {
  content: oxy_htmlContent{
    content, "<div style='font-weight:bold;'>My content</div>",
    width, 400px);
}
```
Tip: To insert a sample of the oxy_htmlContent form control in a CSS file (or LESS file), invoke the Content Completion Assistant (on page 3280) by pressing Ctrl + Space (Command + Space on OS X) and select the .oxy_htmlContent code template.

To see more detailed examples and more information about how form controls work in Oxygen XML Editor, see the sample files in the following directory: [OXYGEN_INSTALL_DIR]/samples/form-controls.

For more information about form controls, watch our video demonstration:

https://www.youtube.com/embed/-WY3wzkMSLM

Related Information:

• Custom CSS Functions (on page 2520)

Pop-up Form Control

The oxy_popup built-in form control is used to offer a contextual menu that provides quick access to various actions. A pop-up form control can display single or multiple selections.

The oxy_popup form control supports the following properties:

• edit - Lets you edit the value of an attribute, the text content of an element, or Processing Instructions (PI). This property can have the following values:
  • @attribute_name - The name of the attribute whose value is being edited. If the attribute is in a namespace, the value of the property must be a QName (on page 3286) and the CSS must have a namespace declaration for the prefix.
  • #text - Specifies that the presented/edited value is the simple text value of an element.

  Note: You can set the value of the visibility property to -oxy-collapse-text (on page 2513) to render the text only in the form control that the oxy_editor function specifies.

• rows - This property specifies the number of rows that the form control presents.

  Note: If the value of the rows property is not specified, the default value of 12 is used.

• color - Specifies the foreground color of the form control. If the value of the color property is inherit, the form control has the same color as the element in which it is inserted.

  Note: This property is used for rendering in the Author mode.

• visible - Specifies whether or not the form control is visible. The possible values of this property are true (default value) and false.
• **tooltips** - Associates tooltips to each value in the **values** property. The value of this property is a list of tooltip messages separated by commas. If you want the tooltip to display a comma, use the **${comma}** variable [on page 281].

**Example:**

```css
link:before{
  content: oxy_popup{
    edit, '@href',
    values, "Spring, Summer, Autumn, Winter",
    tooltips, "Iris${comma}Snowdrop, Gardenia${comma}Liliac,
    Chrysanthemum${comma}Salvia, Gerbera",
    selectionMode, single);
}
```

• **values** - Specifies the values that populate the list of proposals. If these values are not specified in the CSS, they are collected from the associated XML Schema.

**Note:** Typically, when you use a comma in the values of a form control, the content that follows a comma is considered a new value. If you want to include a comma in the values, precede the comma with two backslashes. For example, `(values, '1\, 2\, 3, 4, edit, false)` will display a form control that has 1, 2, 3 for the first value and 4 for the second value.

• **resultSeparator** - If multiple check-boxes are used, the separator is used to compose the final result. If not specified, the **space** character is used.

**Note:** The value of the **resultSeparator** property cannot exceed one character.

• **selectionMode** - Specifies whether the form control allows the selection of a single value or multiple values. The predefined values of this property are **single** (default value) and **multiple**.

• **labels** - Specifies the label associated with each entry used for presentation. If this property is not specified, the **values** property is used instead.

• **columns** - Controls the width of the form control. The unit size is the width of the **w** character. This property is used for the visual representation of the form control.

• **width** - Specifies the width of the content area using relative (em, ex), absolute (in, cm, mm, pt, pc, px), and percentage (followed by the % character) length units. The **width** property takes precedence over the **columns** property (if the two are used together).

• **rendererSort** - Specifies the sorting of the values (labels) displayed on the form control before clicking the popup control. The possible values of this property are **ascending** and **descending**.

• **editorSort** - Specifies the sorting of the values displayed after clicking the popup control (for example, clicking a drop-down arrow button). The possible values of this property are **ascending** and **descending**.

• **rendererSeparator** - Defines a separator used when multiple values are rendered. If not specified, the value of the **resultSeparator** property is used.
sort - Specifies the default sorting of the form control values (the values displayed before and after clicking the popup control). However, the editorSort and rendererSort properties have a higher priority. The possible values of this property are ascending and descending.

fontInherit - This value specifies whether or not the form control inherits its font from its parent element. The values of this property can be true or false (default value). To make the form control inherit its font from its parent element, set the fontInherit property to true.

hoverPseudoclassName - Allows you to change the way an element is rendered when you hover over a form control. The value is the name of a CSS pseudo-class. When you hover over the form control, the specified pseudo-class will be set on the element that contains the form control.

```css
p:before {
    content: oxy_popup(hoverPseudoclassName, 'showBorder')
}
p:showBorder {
    border: 1px solid red;
}
```

**Example: oxy_popup Form Control**

```css
popupWithMultipleSelection:before {
    content: "This editor edits an attribute value. The possible values are specified inside the CSS:"
    oxy_popup(
        edit, "@attribute",
        values, "value1, value2, value3, value4, value5",
        labels, "Value no1, Value no2, Value no3, Value no4, Value no5",
        resultSeparator, "|",
        columns, 10,
        selectionMode, "multiple",
        color, "blue",
        fontInherit, true);
    font-size:30px;
}
```

**Tip:** To insert a sample of the oxy_popup form control in a CSS file (or LESS file), invoke the Content Completion Assistant (on page 3280) by pressing Ctrl + Space (Command + Space on OS X) and select the `oxy_popup` code template.

To see more detailed examples and more information about how form controls work in Oxygen XML Editor, see the sample files in the following directory: `[OXYGEN_INSTALL_DIR]/samples/form-controls`.
Text Area Form Control

The `oxy_textArea` built-in form control is used for entering multiple lines of text in a graphical user interface box. A text area may include optional syntax highlight capabilities to present the form control.

The `oxy_textArea` form control supports the following properties:

- **edit** - Lets you edit the value of an attribute, the text content of an element, or Processing Instructions (PI). This property can have the following values:
  - `@attribute_name` - The name of the attribute whose value is being edited. If the attribute is in a namespace, the value of the property must be a `QName (on page 3286)` and the CSS must have a namespace declaration for the prefix.
  - `#text` - Specifies that the presented/edited value is the simple text value of an element.
  - `#content` - This parameter is useful when an element has mixed or element-only content and you want to edit its content inside a text area form control.

  **Note:** You can set the value of the `visibility property to oxy-collapse-text (on page 2513)` to render the text only in the form control that the `oxy_editor` function specifies.

For example, if you have the following XML content:

```xml
<codeblock outputclass="language-xml">START_TEXT<ph>phase</ph>
<apiname><text>API</text></apiname></codeblock>
```

and your CSS includes the following snippet:

```css
codeblock:before{
  content:oxy_textArea{
    edit, '#content',
    contentType, 'text/xml'};
```
then the text area form control will edit the following fragment:

```
<codeblock outputclass="language-xml">
<co:output><co:code><co:codeblock>
</co:output><co:codeblock></co:codeblock></co:output></co:output>
```

Note: When the value of the `edit` property is `#content`, the text area form control will also offer content completion proposals.

- **#content** - This parameter is useful when an element has mixed or element-only content and you want to edit its content inside a text area form control.

For example, if you have the following XML content:

```
<codeblock outputclass="language-xml">
<co:output><co:code><co:codeblock>
</co:output><co:codeblock></co:codeblock></co:output></co:output>
```

and your CSS includes the following snippet:

```
codeblock:before {
  content: {
    oxy_textArea{
      edit, '#content',
      contentType, 'text/xml'
    }
  }
}
```

then the text area form control will edit the following fragment:

```
<codeblock outputclass="language-xml">
<co:output><co:code><co:codeblock>
</co:output><co:codeblock></co:codeblock></co:output></co:output>
```

Note: When the value of the `edit` property is `#content`, the text area form control will also offer content completion proposals.

- **columns** - Controls the width of the form control. The unit size is the width of the `w` character.
- **width** - Specifies the width of the content area using relative (`em`, `ex`), absolute (`in`, `cm`, `mm`, `pt`, `pc`, `px`), and percentage (followed by the `%` character) length units. The `width` property takes precedence over the `columns` property (if the two are used together).
- **fontInherit** - This value specifies whether or not the form control inherits its font from its parent element. The values of this property can be `true` or `false` (default value). To make the form control inherit its font from its parent element, set the `fontInherit` property to `true`.
- **visible** - Specifies whether or not the form control is visible. The possible values of this property are `true` (default value) and `false`.
- **rows** - This property specifies the number of rows that the form control presents. If the form control has more lines, you can scroll and see them all.
- **contentType** - Specifies the type of content for which the form control offers syntax highlighting. The following values are supported: `text/css`, `text/shell`, `text/cc`, `text/xquery`, `text/xml`,...
• **indentOnTab** - Specifies the behavior of the **Tab** key. If the value of this property is set to *true* (default value), the **Tab** key inserts characters. If it is set to *false*, **Tab** is used for navigation, jumping to the next editable position in the document.

• **white-space** CSS property influences the value that you edit, as well as the form control size:
  - *pre* - The whitespaces and new lines of the value are preserved and edited. If the **rows** and **columns** properties are not specified, the form control calculates its size on its own so that all the text is visible.
  - *pre-wrap* - The long lines are wrapped to avoid horizontal scrolling.

  ![Note:](image) The **rows** and **columns** properties must be specified. If these are not specified, the form control considers the value to be **pre**.

  - *normal* - The white spaces and new lines are normalized.

• **hoverPseudoclassName** - Allows you to change the way an element is rendered when you hover over a form control. The value is the name of a CSS pseudo-class. When you hover over the form control, the specified pseudo-class will be set on the element that contains the form control.

```javascript
p:before {
  content: oxy_textArea(hoverPseudoclassName, 'showBorder')
}
p:showBorder {
  border: 1px solid red;
}
```

**Example: oxy_textArea Form Control**

The following example presents a text area with CSS syntax highlighting that calculates its own dimension, and a second one with XML syntax highlighting with defined dimension.

```javascript
textArea {
  visibility: -oxy-collapse-text;
  white-space: pre;
}
textArea[language="CSS"]:before {
  content: oxy_textArea(
    edit, '#text',
    contentType, 'text/css');
}
```
Text Field Form Control

The oxy_textfield built-in form control is used for entering a single line of text in a graphical user interface box. A text field may include optional content completion capabilities, used to present and edit the value of an attribute or an element.

The oxy_textfield form control supports the following properties:

- **edit** - Lets you edit the value of an attribute, the text content of an element, or Processing Instructions (PI). This property can have the following values:
  - [@attribute_name] - The name of the attribute whose value is being edited. If the attribute is in a namespace, the value of the property must be a QName (on page 3286) and the CSS must have a namespace declaration for the prefix.
  - [#text] - Specifies that the presented/edited value is the simple text value of an element.
Note: You can set the value of the visibility property to -oxy-collapse-text (on page 2513) to render the text only in the form control that the oxy_editor function specifies.

- columns - Controls the width of the form control. The unit size is the width of the w character.
- width - Specifies the width of the content area using relative (em, ex), absolute (in, cm, mm, pt, pc, px), and percentage (followed by the % character) length units. The width property takes precedence over the columns property (if the two are used together).
- fontInherit - This value specifies whether or not the form control inherits its font from its parent element. The values of this property can be true or false (default value). To make the form control inherit its font from its parent element, set the fontInherit property to true.
- visible - Specifies whether or not the form control is visible. The possible values of this property are true (default value) and false.
- values - Specifies the values that populate the list of proposals. If these values are not specified in the CSS, they are collected from the associated XML Schema.
- tooltips - Associates tooltips to each value in the values property. The value of this property is a list of tooltip messages separated by commas. If you want the tooltip to display a comma, use the ${comma} variable (on page 281).
- tooltip - Specifies a tooltip to be displayed when you hover over the form control.
- color - Specifies the foreground color of the form control. If the value of the color property is inherit, the form control has the same color as the element in which it is inserted.
- hasMultipleValues - Specifies if the text field allows multiple values separated by spaces or just a single value.

Note: If the value is false, the Content Completion Assistant (on page 3280) considers the entire text as the prefix for its proposals. If the value is true (the default value), the space is the delimiter for the values and thus it is not included in the prefix (the prefix will be whatever comes after the space).

For example, suppose the possible values for your text field are: value a, value b, and other values. If the hasMultipleValues property is set to true and the user enters "value " (notice the space character after 'value') in the text field, the Content Completion Assistant will suggest all three values because the prefix is whatever comes after the space, and in this case the user did not enter anything after the space. If the hasMultipleValues property was set to false, the Content Completion Assistant would only suggest value a and value b because the space is considered part of the prefix.

• hoverPseudoclassName - Allows you to change the way an element is rendered when you hover over a form control. The value is the name of a CSS pseudo-class. When you hover over the form control, the specified pseudo-class will be set on the element that contains the form control.

```css
p:before {
    content: oxy_textfield(hoverPseudoclassName, 'showBorder')
}
Example: oxy_textfield Form Control

element {
  content: "Label: "
  oxy_textfield{
    edit, "@my_attr",
    values, "value1, value2",
    color, "red",
    columns, 40);
}

Tip: To insert a sample of the oxy_textfield form control in a CSS file (or LESS file), invoke the Content Completion Assistant (on page 3280) by pressing Ctrl + Space (Command + Space on OS X) and select the oxy_textfield code template.

To see more detailed examples and more information about how form controls work in Oxygen XML Editor, see the sample files in the following directory: \[OXYGEN_INSTALL_DIR\]/samples/form-controls.

For more information about form controls, watch our video demonstration:

https://www.youtube.com/embed/-WY3wzkMSLM

Related Information:

• Custom CSS Functions (on page 2520)

• Collapse Text: -oxy-collapse-text Property Value (on page 2513)

URL Chooser Form Control

The oxy_urlChooser built-in form control is used for a dialog box that allows you to select the location of local or remote resources. The inserted reference is made relative to the URL of the currently opened editor.

The oxy_urlChooser editor supports the following properties:
• edit - Lets you edit the value of an attribute, the text content of an element, or Processing Instructions (PI). This property can have the following values:
  ◦ @attribute_name - The name of the attribute whose value is being edited. If the attribute is in a namespace, the value of the property must be a QName (on page 3286) and the CSS must have a namespace declaration for the prefix.
  ◦ #text - Specifies that the presented/edited value is the simple text value of an element.

  Note: You can set the value of the visibility property to oxy-collapse-text (on page 2513) to render the text only in the form control that the oxy_editor function specifies.

• columns - Controls the width of the form control. The unit size is the width of the w character.
• width - Specifies the width of the content area using relative (em, ex), absolute (in, cm, mm, pt, pc, px), and percentage (followed by the % character) length units. The width property takes precedence over the columns property (if the two are used together).
• color - Specifies the foreground color of the form control. If the value of the color property is inherit, the form control has the same color as the element in which it is inserted.
• visible - Specifies whether or not the form control is visible. The possible values of this property are true (default value) and false.
• fontInherit - This value specifies whether or not the form control inherits its font from its parent element. The values of this property can be true or false (default value). To make the form control inherit its font from its parent element, set the fontInherit property to true.
• fileFilter - string value that holds comma-separated file extensions. The URL chooser uses these extensions to filter the displayed files. A value such as "jpg,png,gif" is mapped to a single filter that will display all jpg, png, and gif files.
• hoverPseudoclassName - Allows you to change the way an element is rendered when you hover over a form control. The value is the name of a CSS pseudo-class. When you hover over the form control, the specified pseudo-class will be set on the element that contains the form control.

```
p:before {
  content: oxy_urlChooser(hoverPseudoclassName, 'showBorder')
}
p:showBorder {
  border: 1px solid red;
}
```

Example: oxy_urlChooser Form Control

```
urlChooser[file]:before {
  content: "A URL chooser editor that allows browsing for a URL.

  The selected URL is made relative to the currently edited file:"
  oxy_urlChooser{
    edit, '@file',
  }
```

Tip: To insert a sample of the oxy_urlChooser form control in a CSS file (or LESS file), invoke the Content Completion Assistant (on page 3280) by pressing Ctrl + Space (Command + Space on OS X) and select the .: oxy_urlChooser code template.

To see more detailed examples and more information about how form controls work in Oxygen XML Editor, see the sample files in the following directory: [OXYGEN_INSTALL_DIR]/samples/form-controls.

For more information about form controls, watch our video demonstration:

https://www.youtube.com/embed/-WY3wzkMSLM

Related Information:

• Custom CSS Functions (on page 2520)

• Collapse Text: -oxy-collapse-text Property Value (on page 2513)

Video Player Form Control

The oxy_video built-in form control is used for providing a mechanism to play videos.

The oxy_video form control supports the following properties:

• href - The absolute or relative location of a resource. This property is mandatory. Relative values are resolved relative to the CSS. If you have media resources relative to the XML document, you can specify their paths like this:

  oxy_video(href, oxy_url(oxy_base-uri(), 'ex.mp4')), width, 400px, height, 300px)

• width - Specifies the width of the content area using relative (em, ex), absolute (in, cm, mm, pt, pc, px), and percentage (followed by the % character) length units.

• height - Specifies the height of the form control area using relative (em, ex), absolute (in, cm, mm, pt, pc, px), and percentage (followed by the % character) length units.

Example: oxy_video Form Control

object {
  content:
    oxy_video(
      href, 'resources/video.mp4',
    ),
  }
Implementing Custom Form Controls

If the built-in form controls are not sufficient for your needs, you can implement custom form controls in Java.

**Custom Form Controls Implementation**

You can specify custom form controls using the following properties:

- **rendererClassName** - The name of the class that draws the edited value. It must be an implementation of `ro.sync.ecss.extensions.api.editor.InplaceRenderer`. The renderer has to be a SWING implementation and can be used both in the standalone and Eclipse distributions.
- **swingEditorClassName** - You can use this property for the standalone (Swing-based) distribution to specify the name of the class used for editing. It is a Swing implementation of `ro.sync.ecss.extensions.api.editor.InplaceEditor`.
- **swtEditorClassName** - You can use this property for the Eclipse plugin distribution to specify the name of the class used for editing. It is a SWT implementation of the `ro.sync.ecss.extensions.api.editor.InplaceEditor`.

Tip: To insert a sample of the `oxy_video` form control in a CSS file (or LESS file), invoke the **Content Completion Assistant (on page 3280)** by pressing **Ctrl + Space (Command + Space on OS X)** and select the `.oxy_video` code template.

To see more detailed examples and more information about how form controls work in Oxygen XML Editor, see the sample files in the following directory: `[OXYGEN_INSTALL_DIR]/samples/form-controls`.

For more information about form controls, watch our video demonstration:

https://www.youtube.com/embed/-WY3wzkMSLM

**Related Information:**

- Custom CSS Functions *(on page 2520)*
- URL: `oxy_url()` Function *(on page 2538)*
Note: If the custom form control is intended to work in the Oxygen XML Editor standalone distribution, the declaration of `swtEditorClassName` is not required. The `renderer` (the class that draws the value) has different properties from the `editor` (the class that edits the value) because you can present a value in one way and edit it in another.

- **classpath** - You can use this property to specify the location of the classes used for a custom form control. The value of the `classpath` property is an enumeration of URLs separated by comma.

- **edit** - If your form control edits the value of an attribute or the text value of an element, you can use the `@attribute_name` and `#text` predefined values and Oxygen XML Editor will perform the commit logic by itself. You can use the `custom` value to perform the commit logic yourself.

- **saHeavyFormControlClassName** - This type of form control is effectively present at all times at its allocated bounds. This is useful if you need a form control that renders dynamic or interactive SVG documents (for example, if you have an SVG document that displays tooltips when hovering over certain areas). It is also helpful if you want to use JavaFX, since JavaFX-based form controls are not compatible with the classic form control architecture.

The value of this property is a class name that must implement the `ro.sync.ecss.extensions.api.editor.InplaceHeavyEditor` method. The JAR (on page 3283) that contains this implementation can either be added in the Classpath tab in the Document Type Configuration dialog box (on page 99) for your particular framework (on page 3282) or specified with the `classpath` property (on page 2574).

Example: Java Code

The following is a sample Java code for implementing a custom combo box form control that inserts an XML element in the content when the editing stops:

```java
public class ComboBoxEditor extends AbstractInplaceEditor {
   /**
    * @see ro.sync.ecss.extensions.api.editor.InplaceEditor#stopEditing()
    */
   @Override
   public void stopEditing() {
      Runnable customCommit = new Runnable() {
         @Override
         public void run() {
            AuthorDocumentController documentController = context.getAuthorAccess().getDocumentController();
            documentController.insertXMLFragment("<custom/>", offset);
         }
      }
```
The custom form controls can use any of the predefined properties of the built-in form controls (on page 2541), as well as specified custom properties.

**Example: CSS**

The following is an example of how to specify a custom form control in the CSS:

```css
myElement {

  content: oxy_editor(
    rendererClassName, "com.custom.editors.CustomRenderer",
    swingEditorClassName, "com.custom.editors.SwingCustomEditor",
    swtEditorClassName, "com.custom.editors.SwtCustomEditor",
    edit, "@my_attr",
    customProperty1, "customValue1",
    customProperty2, "customValue2"
  )
}
```

**How to Implement Custom Form Controls**

To implement a custom form control, follow these steps:

1. Download the Oxygen XML Editor SDK at: https://www.oxygenxml.com/oxygen_sdk.html
2. Implement the custom form control by extending `ro.sync.ecss.extensions.api.editor.InplaceEditorRendererAdapter`. You could also use `ro.sync.ecss.extensions.api.editor.AbstractInplaceEditor`, which offers some default implementations and listeners management.
3. Pack the previous implementation in a Java JAR (on page 3283) library.
4. Copy the JAR library to the `OXYGEN_INSTALL_DIR/frameworks/[FRAMEWORK_DIR]` directory.
5. In Oxygen XML Editor, open the Preferences dialog box (Options > Preferences) (on page 79), go to Document Type Association, edit the appropriate framework, and add the JAR library in the Classpath tab.
6. Specify the custom form control in your CSS, as described above.
Tip: To see more detailed examples and more information about how form controls work in Oxygen XML Editor, see the sample files in the following directory: `[OXYGEN_INSTALL_DIR]/samples/form-controls`.

For more information about form controls, watch our video demonstration:

https://www.youtube.com/embed/-WY3wzkMSLM

**Editing Processing Instructions Using a Form Control**

Oxygen XML Editor allows you to edit processing instructions, comments, and CDATA by using CSS extensions.

**Note:** You can edit both the content and the attribute value from a processing instruction.

**Example: Editing an Attribute from a Processing Instruction**

PI content:

```xml
<?pi_target attr="val"?>
```

CSS:

```css
@namespace oxy "http://www.oxygenxml.com/extensions/author";

oxy|processing-instruction:before {
  display:inline;
  content:
    "EDIT attribute: " oxytextfield(edit, '@attr', columns, 15);
  visibility:visible;
}
oxy|processing-instruction{
  visibility:-oxy-collapse-text;
}
```

**Related Information:**

- Text Field Form Control *(on page 2568)*

- Collapse Text: -oxy-collapse-text Property Value *(on page 2513)*

- Displaying Processing Instructions from Other XML Editors *(on page 2480)*
Custom CSS Pseudo-classes

You can set your custom CSS pseudo-classes on the nodes from the AuthorDocument model. These are similar to the normal XML attributes, with the important difference that they are not serialized, and by changing them, the document does not create undo and redo edits (the document is considered unmodified). You can use custom pseudo-classes for changing the style of an element (and its children) without altering the document.

In Oxygen XML Editor they are used to hide/show the colspec elements from CALS tables. To take a look at the implementation, see:

1. \([OXYGEN_INSTALL_DIR]/frameworks/docbook/css/cals_table.css\) (Search for -oxy-visible-colspecs)
2. The definition of action table.toggle.colspec from the DocBook framework (on page 3282) makes use of the pre-defined TogglePseudoClassOperation Author mode operation.

Here are some examples:

**Example: Controlling the visibility of a section using a pseudo-class**

You can use a non standard (custom) pseudo-class to impose a style change on a specific element. For instance, you can have CSS styles matching the custom pseudo-class access-control-user, like the one below:

```css
section {
    display:none;
}

section:access-control-user {
    display:block;
}
```

By setting the pseudo-class access-control-user, the element section will become visible by matching the second CSS selector.

**Example: Coloring the elements at the current cursor location**

You could create an AuthorCaretListener that sets the caret-visited pseudo-class to the element at the cursor location. The effect will be that all the elements traversed by the cursor become red.

```css
*:caret-visited {
    color:red;
}
```

The API that you can use from the CaretListener:
### Predefined Pseudo-Class Author Mode Operations

Pre-defined **Author mode operations** can be used directly in your framework to work with custom pseudo-classes:

1. *TogglePseudoClassOperation*
2. *SetPseudoClassOperation*
3. *RemovePseudoClassOperation*

### Debugging CSS Stylesheets

To assist you with debugging and customizing CSS stylesheets the **Author** mode includes a [CSS Inspector view](on page 439) to examine the CSS rules that match the currently selected element.

This tool is similar to the Inspect Element development tool that is found in most browsers. The **CSS Inspector** view allows you to see how the CSS rules are applied and the properties defined. Each rule that is displayed in this view includes a link to the line in the CSS file that defines the styles for the element that matches the rule. You can use the link to open the appropriate CSS file and edit the style rules. Once you have found the rule you want to edit, you can click the link in the top-right corner of that rule to open the CSS file in the editor.

**Figure 733. CSS Inspector View**

There are two ways to open the CSS Inspector view:

1. Select **CSS Inspector** from the **Window > Show View** menu.
2. Select the **Inspect Styles** action from the contextual menu in **Author** mode.

**Related Information:**
• CSS Inspector View (on page 439)
17.

Using the Oxygen XML SDK

Oxygen XML Editor has an SDK that can be used as a base to develop frameworks (on page 3282) and plugins (on page 3285). It can be also used to create projects that use the Oxygen XML Author Component or Oxygen XML Web Author. The SDK is a Java library available under the Oxygen XML SDK licensing terms and is delivered with a set of examples that demonstrate how to extend Oxygen XML functionality through API calls. The SDK is available at https://www.oxygenxml.com/oxygen_sdk.html.

Extending Oxygen XML Editor with Plugins

A plugin (on page 3285) is a software component that adds extra functionality to the standalone version of the application using a series of application-provided extension points.

This chapter explains how to write and install a plugin for the standalone version of Oxygen XML Editor. The Plugins Development Kit contains sample plugins (source and compiled Java code) and the Javadoc API necessary for developing custom plugins.

If you want to customize the Oxygen XML Editor Eclipse plugin you can look at the Eclipse IDE Integration Sample Project to see how an Eclipse plugin can interact with the Oxygen XML Editor APIs.

General Configuration of an Oxygen XML Editor Plugin

The Oxygen XML Editor functionality can be extended with plugins (on page 3285) that implement a clearly specified API. On the Oxygen XML Editor website, there is an SDK with sample plugins (source and compiled Java code) and the Javadoc API necessary for developing custom plugins.

The minimal implementation of a plugin must provide:

- A Java class that extends the ro.sync.exml.plugin.Plugin class.
- A Java class that implements the ro.sync.exml.plugin.PluginExtension interface.
- A plugin descriptor file called plugin.xml.

A ro.sync.exml.plugin.PluginDescriptor object is passed to the constructor of the subclass of the ro.sync.exml.plugin.Plugin class. It contains the following data items about the plugin:

- basedir (File object) - The base directory of the plugin.
- description (String object) - The description of the plugin.
Oxygen XML Editor 21.1 User Guide | 17 - Using the Oxygen XML SDK | 2581

- **name** *(String object)* - The name of the plugin.
- **vendor** *(String object)* - The vendor name of the plugin.
- **version** *(String object)* - The plugin version.
- **id** *(String object)* - A unique identifier.
- **classLoaderType** - You can choose between `preferOxygenResources` (default value) and `preferReferencedResources`. When choosing `preferOxygenResources`, the libraries that are referenced in the Oxygen XML Editor `lib` directory will have precedence over those referenced in the `plugin.xml` configuration file, if they have the same package names. When choosing `preferReferencedResources`, the libraries that are referenced in the `plugin.xml` configuration file will have precedence over those found in the Oxygen XML Editor `lib` directory, if they have the same package names.

The plugin descriptor is an XML file that defines how the plugin is integrated in Oxygen XML Editor and what libraries are loaded. The structure of the plugin is integrated in Oxygen XML Editor descriptor file is fully described in a DTD grammar located in `[OXYGEN_INSTALL_DIR]/plugins/plugin.dtd`. Here is a sample plugin descriptor used by the Capitalize Lines sample plugin:

```xml
<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE plugin SYSTEM "../plugin.dtd">
<plugin
    name="Capitalize Lines"
    description="Capitalize the first character on each line"
    version="1.0.0"
    vendor="SyncRO"
    class="ro.sync.sample.plugin.caplines.CapLinesPlugin">
  <runtime>
    <library name="lib/caplines.jar"/>
  </runtime>
  <extension type="selectionProcessor"
    class="ro.sync.sample.plugin.caplines.CapLinesPluginExtension"
    keyboardShortcut="ctrl shift EQUALS"/>
</plugin>
```

If your plugin is of the Selection, Document or General types, and thus contributes an action either to the contextual menu or to the main menu of the Text editing mode, then you can assign a keyboard shortcut for it. You can use the `keyboardShortcut` attribute for each `extension` element to specify the desired shortcut.

**Tip:** To compose string representations of the desired shortcut keys you can go to the Oxygen XML Editor Menu Shortcut Keys preferences page, press Edit on any action, press the desired key sequence and use the representation that appears in the Edit dialog box.
Referencing Libraries

To reference libraries, use either of the following elements:

- `<library name="path/libraryName" scope="global"/>` - To point to specific libraries. Notice that the value of `library name` includes the path (relative or absolute) to the library.

  **Note:** You can use the `${oxygenInstallDir}` editor variable (on page 282) as part of the value of the `name` attribute. You can also use a system variable (`${system(var.name)}`) or environment variable (`${env(VAR_NAME)}`).

- `<librariesFolder name="path/libraryFolderPath" scope="global"/>` - To point to multiple libraries located in the specified folder. Notice that the value of `libraryFolderPath` includes the path (relative or absolute) to the library folder.

Both elements support the `scope` attribute that defines the loading priority. It can have one of the following three values:

- **local** - The library is loaded in the plugin's own class loader. This is the default behavior.
- **global** - The library is loaded in the main application class loader as the last library in the list (as if it would be present in the application `lib` directory).
- **globalHighPriority** - The library is loaded in the main application class loader as the first library in the list (useful to patch certain resources located in other JARs (on page 3283) of the application).

Installing an Oxygen XML Editor Plugin

Choose one of the following methods to install a plugin (on page 3285) in Oxygen XML Editor:

**Manual Method**

To manually install a plugin in Oxygen XML Editor, follow these steps:

1. Go to the Oxygen XML Editor installation directory and locate the `plugins` directory.

   **Note:** The `plugins` directory contains all the plugins available to Oxygen XML Editor.

2. In the `plugins` directory, create a subfolder to store the `plugin` files (for example, `[OXYGEN_INSTALL_DIR]/plugins/myPlugin`).

3. In the new folder, place the `plugin` descriptor file (`plugin.xml`), the Java classes of the `plugin`, and the other files that are referenced in the descriptor file.

4. Restart Oxygen XML Editor.
Automatic Method

To install an add-on that is hosted on a remote update site, follow these steps:

1. Go to Help > Install new add-ons.
2. In the displayed dialog box, enter or paste the update site that hosts the add-on in the Show add-ons from field (or select it from the drop-down menu, if applicable). The default add-ons are hosted on https://www.oxygenxml.com/InstData/Addons/default/updateSite.xml. If you want to see a list of all the default and sample add-ons that are available on the Oxygen remote update sites, choose ALL AVAILABLE SITES from the drop-down menu. The add-ons list contains the name, status, update version, Oxygen XML Editor version, and the type of the add-on (either framework, or plugin). A short description of each add-on is presented under the add-ons list.

   **Note:** To see all the versions of the add-ons, deselect Show only compatible add-ons and Show only the latest version of the add-ons. Incompatible add-ons are shown only to acknowledge their presence on the remote update site, but you cannot install an incompatible add-on.

3. Choose the add-ons you want to install, press the Next button, then follow the on-screen instructions.

   **Note:** Accepting the license agreement of the add-on is a mandatory step in the installation process.

   **Note:** All add-ons are installed in the extensions directory inside the Oxygen XML Editor preferences directory (on page 80).

Types of Plugin Extensions Available with the SDK

A plugin (on page 3285) can have one or more defined plugin extensions that provide functionality to the application. This section presents the plugin extensions that are available.

Workspace Access Plugin Extension

This type of plugin (on page 3285) allows you to contribute actions to the main menu and toolbars, create custom views, interact with the application workspace, make modifications to opened documents, and add listeners for various events.

Many complex integrations (such as integrations with Content Management Systems) usually requires access to some workspace resources such as toolbars, menus, views, and editors. This type of plugin is also useful because it allows you to make modifications to the XML content of an opened editor.
The plugin must implement the `ro.sync.exml.plugin.workspace.WorkspaceAccessPluginExtension` interface. The callback method `applicationStarted` of this interface allows access to a parameter of the `ro.sync.exml.workspace.api.standalone.StandalonePluginWorkspace` type (allows for API access to the application workspace).

The `StandalonePluginWorkspace` interface has three methods that can be called to customize toolbars, menus, and views:

### `addToolbarComponentsCustomizer`

Contributes to or modifies existing toolbars. You can specify additional toolbar IDs in the associated `plugin.xml` descriptor file using the following construct:

```xml
<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE plugin SYSTEM "../plugin.dtd">
<plugin name="CustomWorkspaceAccess" ............>
  <runtime>
    ........
  </runtime>

  <extension type="WorkspaceAccess" ............/>
  ........
  <toolbar id="SampleID" initialSide="NORTH" initialRow="1"/>
</plugin>
```

The `toolbar` element adds a toolbar in the Oxygen XML Editor interface and allows you to contribute your own plugin-specific actions. The following attributes are supported:

- **id** - Unique identifier for the toolbar.
- **initialSide** - Specifies the place where the toolbar is initially displayed. The allowed values are `NORTH` and `SOUTH`.
- **initialRow** - Specifies the initial row on the specified side where the toolbar is displayed. For example, the first toolbar has an initial row of `0` and the next toolbar has an initial row of `1`.

The `ro.sync.exml.workspace.api.standalone.ToolbarInfo` toolbar component information with the specified ID will be provided to you by the customizer interface. Therefore, you will be able to provide Swing components that will appear on the toolbar when the application starts.

### `addViewComponentCustomizer`


Contributes to or modifies existing views, or contributes to the reserved custom view. You can specify additional view IDs in the associated plugin.xml descriptor using the following construct:

```xml
<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE plugin SYSTEM "../plugin.dtd">
<plugin name="CustomWorkspaceAccess">
    <runtime>..........

    <extension type="WorkspaceAccess">

    <view id="SampleID" initialSide="WEST" initialRow="0"/>
</view>

</extension>
</runtime>
</plugin>
```

The `view` element adds a view in the Oxygen XML Editor interface and allows you to contribute your own plugin-specific UI components. The following attributes are supported:

- **id** - Unique identifier of the view component.
- **initialSide** - Specifies the place where the view is initially displayed. The allowed values are: NORTH, SOUTH, EAST, and WEST.
- **initialRow** - Specifies the initial row on the specified side where the view is displayed. For example, in Oxygen XML Editor, the Project view (on page 333) has an initial row of 0 and the Outline view (on page 347) has an initial row of 1. Both views are in the WEST part of the workbench.
- **initialState** - Specifies the initial state of the view. The allows values are: hidden, docked, autohide, and floating. By default, the view is visible and docked.

The `ro.sync.exml.workspace.api.standalone.ViewInfo` view component information with the specified ID will be provided to you by the customizer interface. Therefore, you will be able to provide Swing components that will appear on the view when the application starts.

**addMenuBarCustomizer**

Contributes to or modifies existing menu components.

Access to the opened editors can be done by first getting access to all URLs opened in the workspace using the `StandalonePluginWorkspace.getAllEditorLocations(int editingArea)` API method. There are two available editing areas: the DITA Maps Manager editing area and the
main editing area. Using the URL of an opened resource, you can gain access to it using the `StandalonePluginWorkspace.getEditorAccess(URL location, int editingArea)` API method. A `ro.sync.exml.workspace.api.editor.WSEditor` then allows access to the current editing page.

A special editing API is supported for the **Text** mode (`ro.sync.exml.workspace.api.editor.page.text.WSTextEditorPage`) and the **Author** mode (`ro.sync.exml.workspace.api.editor.page.author.WSAuthorEditorPage`).

To be notified when editors are opened, selected, and closed, you can use the `StandalonePluginWorkspace.addEditorChangeListener` API method to add a listener.

**Examples:**

- A simple Maven-based sample of a workspace access plugin is available here: [https://github.com/oxygenxml/sample-plugin-workspace-access](https://github.com/oxygenxml/sample-plugin-workspace-access).
- A more complex sample of a workspace access plugin mimicking a CMS integration is available in the Author SDK: [https://www.oxygenxml.com/oxygen_sdk.html](https://www.oxygenxml.com/oxygen_sdk.html).

### Adding a Custom View in Oxygen XML Editor

To add a custom view in Oxygen XML Editor, follow this procedure:

1. Locate the `plugin.xml` descriptor file for your plugin (should be located inside the `plugins` folder, for example, `[OXYGEN_INSTALL_DIR]/plugins/myPlugin`). Define the ID of the view you want to add and specify the location where it will be placed:

   ```xml
   <view id="SampleWorkspaceAccessID" initialSide="WEST" initialRow="0"/>
   ```

2. In your **Workspace Access Plugin Extension** implementation, where the `applicationStarted` callback is received, add a view component customizer like this:

   ```java
   pluginWorkspaceAccess.addViewComponentCustomizer(new ViewComponentCustomizer() { 
       public void customizeView(ViewInfo viewInfo) {
           if (
               //The view ID defined in the "plugin.xml"
               "SampleWorkspaceAccessID".equals(viewInfo.getViewID())) {
               cmsMessagesArea = new JTextArea("CMS Session History: ");
               viewInfo.setComponent(new JScrollPane(cmsMessagesArea));
               viewInfo.setTitle("CMS Messages");
               viewInfo.setIcon(Icons.getIcon(Icons.CMS_MESSAGES_CUSTOM_VIEW_STRING));
           }
       }
   });
   ```
Oxygen XML Editor 21.1 User Guide | 17 - Using the Oxygen XML SDK | 2587

3. Define the cmsMessagesArea as a static field (if you can access the messages area from
anywhere in your code).

Related Information:
• https://www.oxygenxml.com/oxygen_sdk/oxygen_standalone_plugins.html

Workspace Access Plugin Extension (JavaScript-Based)
This is a JavaScript-based plugin (on page 3285) extension that allows you to contribute actions
to the main menu and toolbars, create custom views, interact with the application workspace, make
modifications to opened documents, and add listeners for various events.
This extension can use the same API as the Workspace Access plugin extension (on page 2583), but
the implementation is JavaScript-based and uses the bundled Rhino library to create and work with
Java API from the JavaScript code.
First, you need to create a custom plugin folder inside the plugins folder (for example,
[OXYGEN_INSTALL_DIR]/plugins/myPlugin). This folder will contain your custom plugin
descriptor file (plugin.xml) and all other resources for the plugin.
The plugin descriptor file (named plugin.xml) needs to reference a JavaScript file, as in the
following example:
<!DOCTYPE plugin PUBLIC "-//Oxygen Plugin" "../plugin.dtd">
<plugin
id="unique.id.value"
name="Add Action To DITA Maps Manager popup-menu"
description="Plugin adds action to DITA Maps Manager contextual menu."
version="1.0"
vendor="Syncro Soft"
class="ro.sync.exml.plugin.Plugin"
classLoaderType="preferReferencedResources">
<extension type="WorkspaceAccessJS" href="wsAccess.js"/>
</plugin>

In the example above, the JavaScript file wsAccess.js (located in your custom plugin folder (on
page 2587)) will be called. This JavaScript file needs to have two JavaScript methods defined inside.
Methods that will be called when the application starts and when it ends:
function applicationStarted(pluginWorkspaceAccess) {
..........


function applicationClosing(pluginWorkspaceAccess) {
    ..........
}

With regard to the `applicationStarted` callback, besides using the `ro.sync.exml.workspace.api.standalone.StandalonePluginWorkspace` API with the `pluginWorkspaceAccess` parameter, you can also use a globally defined field called `jsDirURL` that points to the folder where the JavaScript file is located.

Below is a much larger example with a JavaScript Workspace Access plugin extension implementation that adds a new action in the contextual menu of the DITA Maps Manager view (on page 2990). The action starts the `notepad.exe` application and passes the reference to the currently selected `topicref` to it.

```javascript
function applicationStarted(pluginWorkspaceAccess) {
    Packages.java.lang.System.err.println("Application started "+ pluginWorkspaceAccess);
    edChangedListener = {
        /*Called when a DITA Map is opened*/
        editorOpened: function (editorLocation) {
            Packages.java.lang.System.err.println("running " + editorLocation);
            /*Get the opened DITA Map*/
            editor = pluginWorkspaceAccess.getEditorAccess(editorLocation,
            Packages.ro.sync.exml.workspace.api.PluginWorkspace.DITA_MAPS_EDITING_AREA);
            ditaMapPage = editor.getCurrentPage();
            /*Add listener called when right-click is done in the DITA Maps manager*/
            customizerObj = {
                customizePopUpMenu: function (popUp, ditaMapDocumentController) {
                    Packages.java.lang.System.err.println("RIGHT CLICK" + popUp);
                    tree = ditaMapPage.getDITAMapTreeComponent();
                    /*Selected tree path*/
                    sel = tree.getSelectionPath();
                    if (sel != null) {
                        selectedElement = sel.getLastPathComponent();
                        /*Reference attribute*/
                        href = selectedElement.getAttribute("href");
                        if (href != null) {
                            try {
                                /*Create absolute reference*/
```
absoluteRef = new Packages.java.net.URL(selectedElement.getXMLBaseURL(), href.getValue());
Packages.java.lang.System.err.println("Computed absolute reference "+ absoluteRef);
mi = new Packages.java.swing.JMenuItem("Run notepad");
popUp.add(mi);
actionPerfObj = {
  actionPerformed: function (e) {
    try {
      Packages.java.lang.Runtime.getRuntime().exec("notepad.exe "+ pluginWorkspaceAccess.getUtilAccess().locateFile(absoluteRef));
    } catch (e1) {
      e1.printStackTrace();
    }
  }
}
mi.addActionListener(new JavaAdapter(Packages.java.awt.event.ActionListener, actionPerfObj));

function applicationClosing(pluginWorkspaceAccess) {
  ditaMapPage.setPopUpMenuCustomizer(new Packages.ro.sync.exml.workspace.api.editor.page.ditamap.DITAMapPopupMenuCustomizer(customizerObj));
}
edChangedListener = new JavaAdapter(Packages.ro.sync.exml.workspace.api.listeners.WSEditorChangeListener, edChangedListener);
pluginWorkspaceAccess.addEditorChangeListener(edChangedListener, Packages.ro.sync.exml.workspace.api.PluginWorkspace.DITA_MAPS_EDITING_AREA);

def function applicationClosing(pluginWorkspaceAccess) {
Declaring Multiple Modules

JavaScript-based plugins can include multiple modules of JavaScript files in the plugin. In those files, you can declare functions that can be used in the main `WorkspaceAccessJS` JavaScript file. Thus, you can use those external script files as a library of functions. The modules must be declared in the plugin descriptor file (`plugin.xml`).

For example:

```xml
<!DOCTYPE plugin PUBLIC "-//Oxygen Plugin" "../plugin.dtd">
<plugin
  id="unique.id.value"
  name="Add Action To DITA Maps Manager popup-menu"
  description="Plugin adds action to DITA Maps Manager contextual menu."
  version="1.0"
  vendor="Syncro Soft"
  class="ro.sync.exml.plugin.Plugin"
  classLoaderType="preferReferencedResources">
  <extension type="WorkspaceAccessJS" href="wsAccess.js"/>
  <extension type="WorkspaceAccessJSModule" href="wsAccessModule1.js"/>
  <extension type="WorkspaceAccessJSModule" href="wsAccessModule2.js"/>
</plugin>
```

For more information and some samples, see GitHub Project with Multiple Workspace Access JavaScript-Based Plugin Samples.

Author Stylesheet Plugin Extension

This type of plugin (on page 3285) allows you to add a stylesheet (CSS or LESS) that renders elements in Author mode.

To specify additional stylesheets, edit the plugin descriptor and add extension elements that point to them, as in the following example:

```xml
<extension type="AuthorStylesheet" href="showTables.css"/>
<extension type="AuthorStylesheet" href="hideButtons.css"/>
```
Using this mechanism, you can add one or more CSS stylesheets to merge with the existing ones. Whenever you add a new stylesheet using this plugin, it will have priority over all other stylesheets applied on the file edited in Author mode.

If your implementation requires more flexibility (such as a dynamic change of the stylesheet), you should consider using the StylesFilter plugin extension (on page 2598).

**Additional Framework Plugin Extension**

This type of plugin (on page 3285) allows you to add a new framework straight from the plugin.

To specify additional frameworks, edit the plugin descriptor and add `extension` elements that point to them, as in the following example:

```xml
<extension type="AdditionalFrameworks" path="framework_directory"/>
```

The path attribute should be a sub-directory of the plugin. If the plugin is installed as an add-on (on page 75), the new framework will be set as read-only and editing it will only be possible if you duplicate it (on page 93). If the plugin is installed in the \{OXYGEN_INSTALL_DIR\}/plugins directory, the new frameworks will be editable.

**Additional XProc Engine Plugin Extension**

This type of plugin (on page 3285) contributes a folder that contains an external XProc engine. The name of the plugin extension is **AdditionalXProcEngine** and it makes it easier to integrate an external XProc engine (on page 1747). After the plugin is installed, when you run an XProc transformation scenario, your external XProc engine can be selected from the Processor drop-down menu in the XProc tab.

An example of the plugin.xml file looks like this:

```xml
<plugin
  id="morgana.xproc.addon"
  name="Contribute Morgana XProc"
  description="Contribute Morgana XProc"
  version="1.0"
  vendor="Syncro Soft"
  class="ro.sync.exml.plugin.Plugin"
  classLoaderType="preferReferencedResources">
  <extension type="AdditionalXProcEngine" path="MorganaXProcEngine/"/>
</plugin>
```

The `path` attribute points to the XProc engine folder that contains the `engine.xml` and all the libraries necessary to run it.
Components Validation Plugin Extension

This type of plugin (on page 3285) allows you to customize the menus, toolbars, and other components by enabling or filtering them from the user interface.

This plugin provides the following API:

**ComponentsValidatorPluginExtension interface**

There is one method that must be implemented:

```java
getComponentsValidator()
```

Returns a `ro.sync.exml.ComponentsValidator` implementation class used for validating the menus, toolbars, and their actions.

**ComponentsValidator interface**

Provides methods to filter various features from being added to the GUI of Oxygen XML Editor:

```java
validateMenuOrTaggedAction(String[] menuOrActionPath)
```

Checks if a menu or a tag action from a menu is allowed and returns a `boolean` value. A tag is used to uniquely identifying an action. The `String[]` argument is the tag of the menu / action and the tags of its parent menus if any.

```java
validateToolbarTaggedAction(String[] toolbarOrAction)
```

Checks if an action from a toolbar is allowed and returns a `boolean` value. The `String[]` argument is the tag of the action from a toolbar and the tag of its parent toolbar if any.

```java
validateComponent(String key)
```

Checks if the given component is allowed and returns a `boolean` value. The `String` argument is the tag identifying the component. You can remove toolbars entirely using this callback.

```java
validateAccelAction(String category, String tag)
```

Checks if the given accelerator action is allowed to appear in the GUI and returns a `boolean` value. An accelerator action can be uniquely identified so it will be removed both from toolbars or menus. The first argument represents the action category, the second is the tag of the action.

```java
validateContentType(String contentType)
```

Checks if the given content type is allowed and returns a `boolean` value. The `String` argument represents the content type. You can instruct Oxygen
XML Editor to ignore content types such as `text/xsl` or `text/xquery`.

`validateOptionPane(String optionPaneKey)`

Checks if the given options page can be added in the preferences option tree and returns a `boolean` value. The `String` argument is the option pane key.

`validateOption(String optionKey)`

Checks if the given option can be added in the option page and returns a `boolean` value. The `String` argument is the option key. This method is mostly used for internal use and it is not called for each option in a preferences page.

`validateLibrary(String library)`

Checks if the given library is allowed to appear listed in the `About` dialog box and returns a `boolean` value. The `String` argument is the library. This method is mostly for internal use.

`validateNewEditorTemplate(EditorTemplate editorTemplate)`

Checks if the given template for a new editor is allowed and returns a `boolean` value. The `EditorTemplate` argument is the editor template. An `EditorTemplate` is used to create an editor for a given extension. You can thus filter what appears in the list of the `New` dialog box.

`isDebuggerperspectiveAllowed()`

Checks if the debugger `perspective` (on page 3285) is allowed and returns a `boolean` value.

`validateSHMarker(String marker)`

Checks if the given marker is allowed and returns a `boolean` value. The `String` argument represents the syntax highlight marker to be checked. If you decide to filter certain content types, you can also filter the syntax highlight options so that the content type is no longer present in the Preferences options tree.

`validateToolbarComposite(String toolbarCompositeTag)`

Checks if the toolbar composite is available. A toolbar composite is a toolbar component such as a drop-down menu.

**Tip:** The best way to decide what to filter is to observe the values that Oxygen XML Editor passes when these callbacks are called. You have to create an implementation for this interface that lists in the console all values received by each function. Then you can decide on the values to filter and act accordingly.
Contribute Additional Languages Plugin Extension

This type of plugin allows you to contribute new translation languages to the Oxygen XML Editor UI.

The AdditionalUITranslation plugin extension provides the ability to contribute new translation languages to the interface in Oxygen XML Editor.

A sample plugin.xml file looks like this:

```xml
<plugin id="romanian.i18n.provider"
       name="Add Romanian as an user interface language"
       description="Add Romanian as an user interface language"
       version="1.0"
       vendor="Syncro Soft"
       class="ro.sync.exml.plugin.Plugin">
  <extension type="AdditionalUITranslation" href="translation.xml"/>
</plugin>
```

where the translation.xml has a structure like this:

```xml
<translation>
  <languageList>
    <language description="Romanian" lang="ro_RO" localeDescription="Romana"/>
  </languageList>
  <key value="Error">
    <val lang="ro_RO">Eroare</val>
  </key>
.........................
</translation>
```

If all error keys are not translated in the custom translation.xml contributed by the plugin, the fallback is the default English translation. Once this plugin is installed, the Languages drop-down menu in the Options > Preferences > Global will be updated to include the newly added languages. The end user will still need to select that language in the drop-down menu to use it.

Contribute External DITA-OT Distribution Plugin Extension

This type of plugin allows you to contribute an external DITA-OT distribution to Oxygen XML Editor.
Oxygen XML Editor comes bundled with DITA-OT version 3.3.1. If you want to use a different DITA-OT version, the `AdditionalDITAOT` plugin extension provides the ability to contribute an external distribution of the *DITA Open Toolkit* to Oxygen XML Editor.

**Example**

For instance, if you wanted to use a DITA-OT version 1.8, your `plugin.xml` file might look like this:

```xml
<plugin
  id="dita-ot-18"
  name="Contribute DITA OT 1.8"
  description="Contributes DITA OT 1.8"
  version="1.0"
  vendor="Syncro Soft"
  class="ro.sync.exml.plugin.Plugin">
  <extension type="AdditionalDITAOT"
              path="DITA-OT1.8.5"
              description="DITA OT 1.8"/>
</plugin>
```

The `path` attribute points to a folder located relative to the `plugin.xml` file and this folder is where the additional distribution of DITA-OT would be located.

When Oxygen XML Editor is started with this plugin enabled, that addition DITA-OT version can now be selected in the *DITA Open Toolkit* option in the *DITA preferences page* (on page 225).

**Custom Protocol Plugin Extension**

This type of plugin (on page 3285) allows you to work with a custom designed protocol for retrieving and storing files.

It provides the following API:

**`URLStreamHandlerPluginExtension` interface**

There is one method that must be implemented:

```java
getURLStreamHandler(String protocol)
```

It takes as an argument the name of the protocol and returns a `URLStreamHandler` object, or null if there is no URL handler for the specified protocol.

This type of `plugin` extension can be usually combined with a *Workspace Access plugin extension* (on page 2583) that can add a custom toolbar with custom actions for opening documents from a certain source.
As an alternative, two older plugin extensions can also be used to add a toolbar action for showing a custom URL chooser:

**URLChooserPluginExtension2 interface**

Makes it possible to create your own dialog box that works with the custom protocol. This interface provides two methods:

*chooseURLs(StandalonePluginWorkspace workspaceAccess)*

Returns a URL[] object that contains the URLs the user decided to open with the custom protocol. You can invoke your own URL chooser dialog box here and then return the chosen URLs having your own custom protocol. You have access to the workspace of Oxygen XML Editor.

*getMenuName()*

Returns a String object that is the name of the entry added in the File menu.

**URLChooserToolbarExtension interface**

Makes it possible to provide a toolbar entry that is used for launching the custom URLs chooser from the URLChooserPluginExtension implementation. This interface provides two methods:

*getToolbarIcon()*

Returns the javax.swing.Icon image used on the toolbar.

*getToolbarTooltip()*

Returns a String that is the tooltip used on the toolbar button.

Lock Handler Plugin Extension

This type of plugin extension (on page 3285) is used for locking resources from a specific protocol. It provides the following API:

**LockHandlerFactoryPluginExtension interface**

You need to implement the following two methods:

*LockHandler getLockHandler()*

Gets the lock handler for the current handled protocol. Might be null if not supported.

*boolean isLockingSupported(String protocol)*

Checks if a lock handler can be provided for a specific protocol.
To use this type of extension in your plugin, create an extension of LockHandlerFactory type in your plugin.xml file and specify the class implementing LockHandlerFactoryPluginExtension:

```xml
<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE plugin SYSTEM "../plugin.dtd">
<plugin name="CustomLockHandler" ..............>
  <runtime>........</runtime>
  <extension type="LockHandlerFactory" class="LockHandlerFactoryPluginExtensionImpl"/>
  ............
</plugin>
```

Open Redirect Plugin Extension

This type of plugin (on page 3285) is useful for opening multiple files with only one open action.

For example, when a zip archive or an ODF file or an OOXML file is open in the Archive Browser view (on page 2191) a plugin of this type can decide to open a file also from the archive in an XML editor panel. This file can be the document.xml main file from an OOXML file archive or a specific XML file from a zip archive.

The plugin must implement the interface OpenRedirectExtension. It only has one callback: redirect(URL) that receives the URL of the file opened by the Oxygen XML Editor user. If the plugin decides to open also other files it must return an array of information objects (OpenRedirectInformation[]) that correspond to these files. Such an information object must contain the URL that is opened in a new editor panel and the content type (for example, text/xml). The content type is used for determining the type of editor panel. A null content type allows auto-detection of the file type.

Option Page Plugin Extension

This type of plugin extension (on page 3285) allows you to add custom Preferences pages.

The extension must implement the ro.sync.exml.plugin.option.OptionPagePluginExtension class. The provided callbacks allow you to create a custom Swing component that will be added to the page and to react to various calls to persistently save the page settings using the OptionsStorage API.
All preferences pages that are contributed by a plugin are listed in the Preferences dialog box in the Plugins category. As long as the added preferences page has the same name as its plugin, it will be promoted to the first level of the hierarchy within the Plugins category.

The plugin.xml configuration file can specify one or more such extensions using constructs like this:

```xml
<extension type="OptionPage" class="my.pack.CustomOptionPagePluginExtension"/>
```

Resource Locking Custom Protocol Plugin Extension

This type of plugin (on page 3285) allows you to work with a custom designed protocol for retrieving and storing files and it can lock a resource when opening it in Oxygen XML Editor.

This type of plugin extends the custom protocol plugin type with resource locking support and provides the following API:

**URLStreamHandlerWithLockPluginExtension interface**

The plugin receives callbacks following the simple protocol for resource locking and unlocking imposed by Oxygen XML Editor.

There are two additional methods that must be implemented:

- **getLockHandler()**
  
  Returns a LockHandler implementation class with the implementation of the lock specific methods from the plugin.

- **isLockingSupported(String protocol)**
  
  Returns a boolean that is true if the plugin accepts to manage locking for a certain URL protocol scheme (such as ftp, http, https, or customName).

Styles Filter Plugin Extension

This type of plugin (on page 3285) allows you to dynamically modify the CSS styles used to render elements in the Author mode.

The plugin must extend the ro.sync.exml.plugin.author.css.filter.GeneralStylesFilterExtension class. This class has a callback on which you can alter the styles for an Author mode element.

This extension point is similar with the Styles Filter that you set at the framework (on page 3282) level. The only difference is that the plugin filters styles are used for any opened XML document, regardless of the document type. The changes made by this plugin are prioritized over the changes made by the framework-level filter.
Note: Alternatively, you can use the AuthorStylesheet plugin extension (on page 2590), which does not require any additional Java development and is compatible with Oxygen XML Web Author.

Related Information:

- Customizing the CSS Styles Filter (on page 2424)

Targeted URL Stream Handler Plugin Extension

This type of plugin (on page 3285) can be used when it is necessary to impose custom URL stream handlers for specific URLs.

This plugin extension can handle the following protocols: http, https, ftp or sftp, for which Oxygen XML Editor usually provides specific fixed URL stream handlers. If it is set to handle connections for a specific protocol, this extension will be asked to provide the URL stream handler for each opened connection of a URL having that protocol.

To use this type of plugin, you have to implement the ro.sync.exml.plugin.urlstreamhandler.TargetedURLStreamHandlerPluginExtension interface, that provides the following methods:

```java
boolean canHandleProtocol(String protocol)
```

This method checks if the plugin can handle a specific protocol. If this method returns true for a specific protocol, the getURLStreamHandler(URL) method will be called for each opened connection of a URL having this protocol.

```java
URLStreamHandler getURLStreamHandler(URL url)
```

This method provides the URL handler for the specified URL and it is called for each opened connection of a URL with a protocol for which the canHandleProtocol(String) method returns true.

If this method returns null, the default Oxygen XML Editor URLStreamHandler is used.

To use this type of extension in your plugin, create an extension of TargetedURLHandler type in your plugin.xml file and specify the class that implements TargetedURLStreamHandlerPluginExtension:

```xml
<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE plugin SYSTEM "../plugin.dtd">
<plugin name="CustomTargetedURLStreamHandlerPlugin" ...........
    <runtime>
        .......
    </runtime>
```
This extension can be useful in situations when connections opened from a specific host must be handled in a particular way. For example, the Oxygen XML Editor HTTP URLStreamHandler may not be compatible for sending and receiving SOAP using the SUN Web Services implementation. In this case, you can override the stream handler (set by Oxygen XML Editor) to use the default SUN URLStreamHandler, since it is more compatible with sending and receiving SOAP requests.

```java
public class CustomTargetedURLStreamHandlerPluginExtension
    implements TargetedURLStreamHandlerPluginExtension {

    @Override
    public boolean canHandleProtocol(String protocol) {
        boolean handleProtocol = false;
        if ("http".equals(protocol) || "https".equals(protocol)) {
            // This extension handles both HTTP and HTTPS protocols
            handleProtocol = true;
        }
        return handleProtocol;
    }

    @Override
    public URLStreamHandler getURLStreamHandler(URL url) {
        // This method is called only for the URLs with a protocol
        // where canHandleProtocol(String) method returns true (HTTP and HTTPS)

        URLStreamHandler handler = null;

        String host = url.getHost();
        String protocol = url.getProtocol();
        if ("some_host".equals(host)) {
            // When there are connections opened from some_host, the SUN HTTP(S)
            // handlers are used
            if ("http".equals(protocol)) {
            }
        }
        return handler;
    }
```
} else {
    handler = new sun.net.www.protocol.https.Handler();
}
}
return handler;

XML Refactoring Operations Plugin Extension

This type of plugin allows you to specify one or more directories where the XML Refactoring operation resources are loaded.

The RefactoringOperationsProvider extension can be used to specify the location where custom XML Refactoring operation resources (XQuery Update script or XSLT stylesheet and Operation Descriptor files) are stored. Oxygen XML Editor will scan the specified locations to load the custom operations when the XML Refactoring tool is opened, and allows you to share your custom refactoring operations.

**Example: XML Refactoring Operations Plugin Extension**

```xml
<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE plugin PUBLIC "-/Oxygen Plugin" ".../plugin.dtd">

<plugin
    id="refactoring.operations"
    name="Refactoring operations plugin"
    description="Contains operation descriptors and related scripts"
    version="1.0">
    <extension type="RefactoringOperationsProvider">
        <folder path="customDir/"/>
        <folder path="customDir2"/>
    </extension>
</plugin>
```

Plugin Extensions Designed to Work only in the Text Editing Mode

These plugin extensions operate only when editing documents in the Text mode. They are mounted automatically by the application on the contextual menu in the Plugins submenu.
General Plugin Extension

This type of plugin (on page 3285) allows you to invoke custom code to interact with the workspace in Text mode.

This plugin is the most general plugin type and provides a limited API:

**GeneralPluginExtension interface**

Intended for general-purpose plugins, kind of external tools but triggered from the Plugins menu. The implementing classes must provide the method process(GeneralPluginContext), which must provide the plugin processing. This method takes as a parameter a GeneralPluginContext object.

**GeneralPluginContext class**

Represents the context in which the general plugin extension does its processing. The getPluginWorkspace() method allows you access to the workspace of Oxygen XML Editor.

Selection Plugin Extension

This type of plugin (on page 3285) allows you to manage selections of text.

A selection plugin can be applied to both XML and non-XML documents. The plugin is started by making a selection in the editor, then selecting the corresponding menu item from the Plugins submenu in the contextual menu of Text mode.

This plugin type provides the following API:

**SelectionPluginExtension interface**

The context containing the selected text is passed to the extension and the processed result is going to replace the initial selection. The process(GeneralPluginContext) method must return a SelectionPluginResult object that contains the result of the processing. The String value returned by the SelectionPluginResult object can include editor variables (on page 276) such as ${caret} and ${selection}.

**SelectionPluginContext object**

Represents the context and provides four methods:

- getSelection() - Returns a String that is the current selection of text.
- getFrame() - Returns a Frame that is the editing frame.
- getPluginWorkspace() - Returns access to the workspace of Oxygen XML Editor.
- getDocumentURL() - Returns the URL of the current edited document.

Related Information:
Example - Uppercase Plugin

The following plugin is called UppercasePlugin and is an example of a Selection plugin. It is used in Oxygen XML Editor for capitalizing the characters in the current selection. This example consists of two Java classes and the plugin descriptor file:

• **UppercasePlugin.java**:

```java
package ro.sync.sample.plugin.uppercase;

import ro.sync.exml.plugin.Plugin;
import ro.sync.exml.plugin.PluginDescriptor;

public class UppercasePlugin extends Plugin {

  /**
   * Plugin instance.
   */
  private static UppercasePlugin instance = null;

  /**
   * UppercasePlugin constructor.
   *
   * @param descriptor Plugin descriptor object.
   */
  public UppercasePlugin(PluginDescriptor descriptor) {
    super(descriptor);

    if (instance != null) {
      throw new IllegalStateException("Already instantiated!");
    }
    instance = this;
  }

  /**
   * Get the plugin instance.
   */
  @return the shared plugin instance.
```
```java
public static UppercasePlugin getInstance() {
    return instance;
}
}

package ro.sync.sample.plugin.uppercase;

import ro.sync.exml.plugin.selection.SelectionPluginContext;
import ro.sync.exml.plugin.selection.SelectionPluginExtension;
import ro.sync.exml.plugin.selection.SelectionPluginResult;
import ro.sync.exml.plugin.selection.SelectionPluginResultImpl;

public class UppercasePluginExtension implements SelectionPluginExtension {
    /**
     * Convert the text to uppercase.
     *
     * @param  context  Selection context.
     * @return          Uppercase plugin result.
     */
    public SelectionPluginResult process(SelectionPluginContext context) {
        return new SelectionPluginResultImpl(
                context.getSelection().toUpperCase());
    }
}

• plugin.xml:

<!--DOCTYPE plugin SYSTEM ".//plugin.dtd"-->
<plugin
    name="UpperCase"
    description="Convert the selection to uppercase"
    version="1.0.0"
    vendor="SyncRO"
    class="ro.sync.sample.plugin.uppercase.UppercasePlugin">
    <runtime>
        <library name="lib/uppercase.jar"/>
    </runtime>
</plugin>
```
Document Plugin Extension

This type of plugin (on page 3285) allows you to manage the current document.

The document plugin type can only be applied to an XML document. It can modify the current document that is received as a callback parameter.

The plugin is started by selecting the corresponding menu item from the Plugins submenu in the contextual menu of Text mode. It provides the following API:

**DocumentPluginExtension interface**

Receives the context object containing the current document. The `process(GeneralPluginContext)` method can return a `DocumentPluginResult` object containing a new document.

**DocumentPluginContext object**

Represents the context and provides three methods:

- `getDocument()` - Returns a `javax.swing.text.Document` object that represents the current document.
- `getFrame()` - Returns a `java.awt.Frame` object that represents the editing frame.
- `getPluginWorkspace()` - Returns access to the workspace of Oxygen XML Editor.

How to Write a CMS Integration Plugin

To have a complete integration between Oxygen XML Editor and a CMS, you usually have to write a plugin (on page 3285) that combines the following two available plugin extensions:

- **Workspace Access** (on page 2583)
- **Custom protocol** (on page 2610)

The usual set of requirements for an integration between Oxygen XML Editor and the CMS are as follows:

1. Contribute to the Oxygen XML Editor toolbars and main menu with your custom Check Out and Check In actions:
   - **Check Out** triggers your custom dialog boxes that allow you to browse the remote CMS and choose the resources you want to open.
   - **Check In** allows you to send the modified content back to the server.
You can use the **Workspace Access plugin extension** (and provided sample Java code) for all these operations.

2. When **Check Out** is called, use the Oxygen XML Editor API to open your custom URLs (URLs created using your custom protocol). It is important to implement and use a **Custom Protocol** extension to be notified when the files are opened and saved and to be able to provide the content for the relative references the files may contain to Oxygen XML Editor. Your custom `java.net.URLStreamHandler` implementation checks out the resource content from the server, stores it locally and provides its content. Sample **Check Out** implementation:

```java
/**
 * Sample implementation for the "Check Out" method.
 * @param pluginWorkspaceAccess (Workspace Access plugin).
 * @throws MalformedURLException
 */
private void checkOut(StandalonePluginWorkspace pluginWorkspaceAccess)
    throws MalformedURLException {
    //TODO Show the user a custom dialog box for browsing the CMS
    //TODO after user selected the resource create a URL with a custom protocol
    //which will uniquely map to the resource on the CMS using the URLHandler
    //something like:
    URL customURL = new URL("mycms://host/path/to/file.xml");
    //Ask Oxygen to open the URL
    pluginWorkspaceAccess.open(customURL);
    //Oxygen will then your custom protocol handler to provide the contents for
    //the resource "mycms://host/path/to/file.xml"
    //Your custom protocol handler will check out the file in a temporary
    //directory, for example, and provide the content from it.
    //Oxygen will also pass through your URLHandler if you have any relative
    //references which need to be opened/obtained.
}
```

Figure 734. Check Out Process Diagram
The phases are:

- 1 - Browse CMS repository
- 2 - User chooses a resource
- 3 - Use API to open custom URL: `mycms://path/to/file.xml`
- 4 - Get content of URL: `mycms://path/to/file.xml`
- 5 - Get content of resource
- 6 - Store on disk for faster access
- 7 - Retrieve content from disk if already checked out
- 8 - Retrieved content

3. Contribute a special **Browse CMS** action to every dialog box in Oxygen XML Editor where a URL can be chosen to perform a special action (such as the **Reuse Content** or **Insert Image** action).

Sample code:

```java
//Add an additional browse action to all dialog boxes/places
//where Oxygen allows selecting a URL.
pluginWorkspaceAccess.addInputURLChooserCustomizer
(new InputURLChooserCustomizer() {

    public void customizeBrowseActions
    (List<Action> existingBrowseActions, final InputURLChooser chooser) {
        //IMPORTANT, you also need to set a custom icon on the action
        //for situations when its text is not used for display.
        Action browseCMS = new AbstractAction("CMS") {

            public void actionPerformed(ActionEvent e) {
```

```java
```
When inserting references to other resources using the actions already implemented in Oxygen XML Editor, the reference to the resource is made by default relative to the absolute location of the edited XML file. You can gain control over the way in which the reference is made relative for a specific protocol like this:

```java
pluginWorkspaceAccess.addRelativeReferencesResolver(
    //Your custom URL protocol for which you already have a
    //custom URLStreamHandlerPluginExtension set up.
    "mycms",
    //The relative references resolver
    new RelativeReferenceResolver()
)
```

4. Write the `plugin.xml` descriptor file. Your `plugin` combines the two extensions using a single set of libraries. The descriptor would look like this:
5. Create a `cmsaccess.jar` **JAR (on page 3283)** archive containing your implementation classes.
6. Copy your new `plugin` directory in the `plugins` subfolder of the Oxygen XML Editor install folder (for example, `[OXYGEN_INSTALL_DIR]/plugins/myPlugin`) and start Oxygen XML Editor.

Class Loading Issues

It is possible that the Java libraries you have specified in the `plugin` libraries list conflict with the ones already loaded by Oxygen XML Editor. To instruct the `plugin` to prefer its libraries over the ones used by Oxygen XML Editor, you can add the following attribute on the `<plugin>` root element:

```
classLoaderType="preferReferencedResources" from the plugin.xml descriptor file.
```

A **Late Delegation Class Loader** (the main class loader in Oxygen XML Editor) is a `java.net.URLClassLoader` extension that prefers to search classes in its own libraries list and only if a class is not found there to delegate to the parent class loader.

The main Oxygen XML Editor Class Loader uses as libraries all **JARS** specified in the `[OXYGEN_INSTALL_DIR]/lib` directory. Its parent class loader is the default JVM Class loader. For each `plugin` instance, a separate class loader is created having as parent the Oxygen XML Editor Class Loader.
The plugin class loader can be either a standard java.net.URLClassLoader or a LateDelegationClassLoader (depending on the attribute classLoaderType in the plugin.xml). Its parent class loader is always the Oxygen XML Editor LateDelegationClassLoader.

If you experience additional problems, such as:

```java
java.lang.LinkageError: ClassCastException:
attempting to cast
jar:file:/C:/jdk1.6.0_06/jre/lib/rt.jar!/javax/xml/ws/spi/Provider.class
to jar:file:/D:/Program Files/Oxygen XML Editor 12/plugins/wspcaccess/../../../xdocs/lib/jaxws/jaxws-api.jar!/javax/xml/ws/spi/Provider.class
javax.xml.ws.spi.Provider.provider(Provider.java:94)
javax.xml.ws.Service.<init>(Service.java:56)
```

The cause could be the fact that some classes are instantiated using the context class loader of the current thread. The most straightforward fix is to write your code in a try/finally statement:

```java
ClassLoader oldClassLoader = Thread.currentThread().getContextClassLoader();
try {
    //This is the implementation of the WorkspaceAccessPluginExtension plugin interface.
    Thread.currentThread().setContextClassLoader(
        CustomWorkspaceAccessPluginExtension.
        this.getClass().getClassLoader());
    //WRITE YOUR CODE HERE
} finally {
    Thread.currentThread().setContextClassLoader(oldClassLoader);
}
```

How to Write A Custom Protocol Plugin

To create a custom protocol plugin (on page 3285), follow these steps:

1. Write the handler class for your protocol that implements the java.net.URLStreamHandler interface.
Be careful to provide ways to encode and decode the URLs of your files.

2. Write the plugin class by extending ro.sync.exml.plugin.Plugin.

3. Write the plugin extension class that implements the ro.sync.exml.plugin.urlstreamhandler.URLStreamHandlerPluginExtension interface.

It is necessary that the plugin extension for the custom protocol implements the URLStreamHandlerPluginExtension interface. Without it, you cannot use your plugin, because Oxygen XML Editor is not able to find the protocol handler.

You can choose also to implement the URLChooserPluginExtension interface. It allows you to write and display your own customized dialog box for selecting resources that are loaded with the custom protocol.

An implementation of the extension URLHandlerReadOnlyCheckerExtension allows you to:

• Mark a resource as read-only when it is opened.
• Switch between marking the resource as read-only and read-write while it is edited.

It is useful when opening and editing CMS resources.

4. Write the plugin.xml descriptor file.

Remember to set the name of the plugin class to the one from the second step and the plugin extension class name with the one you have chosen at step 3.

5. Create a JAR (on page 3283) archive with all these files.

6. Create a custom plugin folder inside the plugins folder (for example, [OXYGEN_INSTALL_DIR]/plugins/myPlugin) that contains your new plugin.

How to Share a Class Loader Between a Framework and Plugin

In some cases you may need to extend the functionality of Oxygen XML Editor both through a framework (on page 3282) and through a plugin (on page 3285). Normally, a framework and a plugin both run in their own private classloader. If the framework and the plugin use the same JAVA extensions/classes, it is recommended that they share the same classloader. This way, the common classes are loaded by only one Class Loader and they will both use the same static objects and have the ability to cast objects between one another.

To do this, open the Preferences dialog box (Options > Preferences) (on page 79), go to Document Type Association, select the document type, go to the Classpath tab, and in the Use parent classloader from plugin with ID fields introduce the ID of the plugin. This ID is declared in the configuration file of the plugin (on page 2581).
Important: The shared classes must be specified only in the configuration files of the plugin, and not in the configuration file and the document type class path at the same time.

Packing and Deploying Plugins as Add-ons

Packing a Plugin as an Add-on

This first procedure is suitable for developers who want a better control over the add-on (on page 3285) package or those who want to automate some of the steps:

1. Pack the plugin (on page 3285) as a ZIP file or a Java Archive (on page 3283). Note that you should pack the entire root directory not just its contents.
2. Digitally sign the package. Note that you can perform this step only if you have created a Java Archive at the previous step. You will need a certificate signed by a trusted authority. To sign the JAR you can either use the jarsigner command-line tool inside Oracle's Java Development Kit. ([JDK_DIR]/bin/jarsigner.exe) or, if you are working with Apache Ant (on page 3279), you can use the signjar task (a front for the jarsigner command-line tool).

Note: The benefit of having a signed add-on is that you can verify the integrity of the add-on issuer. If you do not have such a certificate you can generate one yourself using the keytool command-line tool. This approach is mostly recommended for tests since anyone can create a self signed certificate.
3. Create a descriptor file. You can use a template that Oxygen XML Editor provides. To use this template, go to File > New and select the Oxygen add-ons update site template. Once deployed, this descriptor file is referenced as update site.

Alternatively, you can use the Add-ons Packager plugin by following this procedure:

1. Install the Add-ons Packager plugin following the procedure described in Installing Add-ons (on page 75).
2. Restart Oxygen XML Editor. If the add-on is correctly installed, the Add-ons packager toolbar action is available.
3. Invoke the Add-ons packager toolbar action and input the required information in the displayed dialog box.
4. Press OK to complete the packaging process.

Deploying an Add-on

To deploy an add-on, copy the ZIP or Java Archive (on page 3283) file and the descriptor file to an HTTP server. The URL to this location serves as the Update Site URL.
Testing Plugins and Java Extensions

In the various procedures for creating a plugin (on page 3285), you are usually instructed to copy your plugin folder to the \[OXYGEN_INSTALL_DIR]/plugins/ directory. If you want to test the code in your plugin without copying it to that folder, follow this procedure:

1. Create a file called plugin.redirect that contains the full file path references to your project (for example, C:\Users\john_doe\Documents\sample-plugin-folder).
2. Save that file in any folder (for example, called sample_test_folder) inside the \[OXYGEN_INSTALL_DIR]/plugins/ directory.

**Step Result:** Oxygen XML Editor will automatically load the plugin from your project location.

3. Now you can modify the Java code, the IDE will automatically compile it, and if the plugin.xml file has a classpath reference to the compiled classes folder, you can restart Oxygen XML Editor and test your changes.

Creating and Running Automated Tests

If you have developed complex custom plugins (on page 3285) or frameworks (on page 3282) (document types), the best way to test your implementation and ensure that further changes will not interfere with the current behavior is to make automated tests for your customization.

An Oxygen XML Editor standalone installation includes a main oxygen.jar library located in the \[OXYGEN_INSTALL_DIR]. That JAR (on page 3283) library contains a base class for testing developer customizations named: ro.sync.exml.workspace.api.PluginWorkspaceTCBase.

To develop JUnit tests for your customizations using the Eclipse workbench, follow these steps:

1. Create a new Eclipse Java project and copy the entire contents of the \[OXYGEN_INSTALL_DIR] folder to the new project.
2. Add all JAR libraries present in the \[OXYGEN_INSTALL_DIR]/lib directory to the Java Build Path->Libraries tab. Make sure that the main JAR library oxygen.jar or oxygenAuthor.jar is the first one in the Java classpath by moving it up in the Order and Export tab.
3. Click Add Library and add the JUnit and JFCUnit libraries.
4. Create a new Java class that extends ro.sync.exml.workspace.api.PluginWorkspaceTCBase.
5. Pass the following parameters to the constructor of the super class:
• File installationFolder - The file path to the main application installation directory. If not specified, it defaults to the folder where the test is started.
• File frameworksFolder - The file path to the frameworks directory. It can point to a custom framework directory where it resides.
• File pluginsFolder - The file path to the plugins directory. It can point to a custom plugin directory where it resides.
• File optionsFolder - The folder that contains the application options. If not specified, the application will auto-detect the location based on the started product ID.
• String licenseKey - The license key used to license the test class.
• int productID - The ID of the product and should be one of the following: PluginWorkspaceTCBase.XML_AUTHOR_PRODUCT, PluginWorkspaceTCBase.XML_EDITOR_PRODUCT, or PluginWorkspaceTCBase.XML_DEVELOPER_PRODUCT.

6. Create test methods that use the API in the base class to open XML files and perform various actions on them. Your test class could look something like this:

```java
public class MyTestClass extends PluginWorkspaceTCBase {

/**
 * Constructor.
 */

public MyTestClass() throws Exception {
    super(null, new File("frameworks"), new File("plugins"), null,
    "------START-LICENSE-KEY------
    "
    "Registration_Name=Developer"
    "Company="
    "Category=Enterprise"
    "Component=XML-Editor, XSLT-Debugger, Saxon-SA"
    "Version=14"
    "Number_of_Licenses=1"
    "Date=09-04-2012"
    "Trial=31"
    
```
public void testOpenFileAndBoldEXM_20417() throws Exception {
    WSEditor ed = open(new File("D:/projects/eXml/test/authorExtensions/dita/sampleSmall.xml").toURL());
    // Move caret
    moveCaretRelativeTo("Context", 1, false);
    // Insert <b>
    invokeAuthorExtensionActionForID("bold");
    assertEquals("<?xml version="1.0" encoding="utf-8"?>
    <!DOCTYPE task PUBLIC "-//OASIS//DTD DITA Task//EN" "http://docs.oasis-open.org/dita/v1.1/OS/dtd/task.dtd">
    <task id="taskId">
        <title>Task title</title>
        <prolog/>
        <taskbody>
            <context>
                <p>Context for the current task</p>
            </context>
            <steps>
                <step>
                    <cmd>Task step.</cmd>
                </step>
            </steps>
        </taskbody>
    </task>
    ", getCurrentEditorXMLContent());
}
Debugging a Plugin Using IntelliJ IDEA

To use *IntelliJ IDEA* to debug problems in the code of a *plugin* without having to re-bundle the plugin's Java classes in a *JAR* library, follow these steps:

1. Download and install Oxygen XML Editor.
2. Set up the *Oxygen SDK* following this set of instructions.
3. Create a Java Project (for example, *MyPluginProject*) from one of the sample plugins (for example, the Workspace Access plugin).
4. In the *MyPluginProject* folder, create a folder called *myPlugin*. In this new folder, copy the *plugin.xml* file from the sample plugin. Modify the added *plugin.xml* to add a library reference to the directory where IntelliJ IDEA copies the compiled output. To find out where this directory is located, go to *File > Project Structure*. Then select the *Modules* category and inspect the value of the *Output path* text box from the *Path* tab.

   Example: If the output path is `C:/Users/myUser/Documents/MyPluginProject/target/classes`, then in the *plugin.xml*, you need to add the following library reference in the *runtime* element:

   ```xml
   <library name="../target/classes"/>
   ```

5. Copy the *plugin.dtd* from the *{OXYGEN_INSTALL_DIR}/plugins* folder in the root *MyPluginProject* folder.
6. In the *MyPluginProject* dependences (*File > Project Structure > Modules > Dependences*), add external *JAR* references to all the *JAR* libraries in the *{OXYGEN_INSTALL_DIR}/lib* folder. Now your *MyPluginProject* should compile successfully.
7. In IntelliJ IDEA, create a new *Java Application* configuration for debugging (*Run > Edit Configurations... > + > Application*). Set the *Main class* box to *ro.sync.exml.Oxygen* and add the following code snippet in the *VM options* input box, making sure that the path to the *plugins* directory is the correct one:

   ```bash
   -Dcom.oxygenxml.app.descriptor=ro.sync.exml.EditorFrameDescriptor -Xmx1024m
   -XX:MaxPermSize=384m -Dcom.oxygenxml.editor.plugins.dir=D:\projects\MyPluginProject
   ```

8. Add a *breakpoint* in the source of one of your Java classes.
9. Debug the created configuration. When the code reaches your breakpoint, the IntelliJ IDEA debugging view should take over.
Debugging a Plugin Using the Eclipse Workbench

To use the Eclipse workbench to debug problems in the code of a plugin (on page 3285) without having to re-bundle the plugin's Java classes in a JAR (on page 3283) library, follow these steps:

1. Download and install Oxygen XML Editor.
2. Set up the Oxygen SDK following this set of instructions.
3. Create an Eclipse Java Project (for example, MyPluginProject) from one of the sample plugins (for example, the Workspace Access plugin).
4. In the MyPluginProject folder, create a folder called myPlugin. In this new folder, copy the plugin.xml file from the sample plugin. Modify the added plugin.xml to add a library reference to the directory where Eclipse copies the compiled output. To find out where this directory is located, invoke the contextual menu of the project (in the Project view (on page 333)), and go to Build Path > Configure Build Path. Then inspect the value of the Default output folder text box.

Example: If the compiled output folder is classes, then in the plugin.xml, you need to add the following library reference:

```xml
<library name="../classes"/>
```

5. Copy the plugin.dtd from the [OXYGEN_INSTALL_DIR]/plugins folder in the root MyPluginProject folder.
6. In the MyPluginProject build path, add external JAR references to all the JAR libraries in the [OXYGEN_INSTALL_DIR]/lib folder. Now your MyPluginProject should compile successfully.
7. In the Eclipse IDE, create a new Java Application configuration for debugging. Set the Main class box to ro.sync.exml.Oxygen. Click the Arguments tab and add the following code snippet in the VM arguments input box, making sure that the path to the plugins directory is the correct one:

```bash
-Dcom.oxygenxml.app.descriptor=ro.sync.exml.EditorFrameDescriptor -Xmx1024m
-XX:MaxPermSize=384m -Dcom.oxygenxml.editor.plugins.dir=D:\projects\MyPluginProject
```
8. Add a breakpoint (on page 2314) in the source of one of your Java classes.
9. Debug the created configuration. When the code reaches your breakpoint (on page 2313), the Eclipse IDE debugging perspective should take over.

Debugging an Oxygen SDK Extension Using the Eclipse Workbench

To use the Eclipse workbench to debug problems in the code of an extension (on page 3285) without having to bundle its Java classes in a JAR (on page 3283) library, perform the following steps:

1. Download and install Oxygen XML Editor.
2. Create an Eclipse Java Project (for example, `MySDKProject`) with the corresponding Java sources (for example, a custom implementation of the `ro.sync.ecss.extensions.api.stylesFilter` interface).

3. In the Project build path, add external JAR references to all the JAR libraries in the `{OXYGEN_INSTALL_DIR}/lib` folder. In the build path Order and Export panel, make sure that the `oxygen.jar` entry is before all other libraries. Now your Project should compile successfully.

4. Start the standalone version of Oxygen XML Editor from the `{OXYGEN_INSTALL_DIR}` and in the Document Type Association preferences page (on page 92), edit the document type (for example, DITA) to open the Document Type configuration dialog box (on page 95). In the Classpath tab, add a reference to your Project's classes directory and in the Extensions tab, select your custom `StylesFilter` extension as a value for the CSS styles filter property. Close the application to save your changes.

5. Create a new Java Application configuration for debugging. The Main Class should be `ro.sync.exml.Oxygen`. The given VM Arguments should be:

   ```
   -Dcom.oxygenxml.app.descriptor=ro.sync.exml.EditorFrameDescriptor -Xmx1024m
   ```

6. Add a breakpoint (on page 2314) in one of the source Java classes.

7. Debug the created configuration. When the code reaches your breakpoint (on page 2313), the Eclipse IDE debugging perspective should take over.

Disabling a Plugin

To disable a plugin (on page 3285), use one of the following two methods:

- Open the Preferences dialog box (Options > Preferences) (on page 79), go to Plugins, and deselect the plugin that you want to disable.
- Create an empty file called `plugin.disable` next to the plugin configuration file (`plugin.xml`). The plugin will be disabled and will no longer be loaded by the application on startup.

**Note:** This is useful if you want to temporarily stop work on a plugin and use the application without it.

Oxygen XML Author Component

The Oxygen XML Author Component was designed as a subset of Oxygen XML Editor that can be integrated into another application under the terms of the Oxygen XML Editor SDK agreement to provide functionality for editing and authoring XML documents. The component can be embedded in a third-party standalone Java application to provide WYSIWYG-like XML editing directly in your application.
More information about the setup for the Oxygen XML Author Component can be found on the Oxygen SDK page.

Licensing

The licensing terms and conditions for the Oxygen XML Author Component are defined in the Oxygen SDK License Agreement. To obtain the licensing terms and conditions and other licensing information as well, you can also contact the support team at support@oxygenxml.com. You may also obtain a free of charge evaluation license key for development purposes, subject to registration. Any deployment of an application developed using the Oxygen XML Author Component is also subject to the terms of the SDK agreement.

There are two main categories of Oxygen XML Author Component integrations:

- **Integration for internal use.**
  
  You develop an application that embeds the Author Component to be used internally (in your company or by you). You can buy and use previously purchased Oxygen XML Editor floating licenses to enable the runtime usage of the Oxygen XML Author Component as it was integrated into the application.

- **Integration for external use.**
  
  Using the Oxygen XML Author Component, you create an application that you distribute to other users outside your company (with a CMS for example). In this case, you should apply for a Value Added Reseller (VAR) partnership by contacting the Oxygen Sales Team (https://www.oxygenxml.com/sales_support.html).

From a technical point of view, the Oxygen XML Author Component provides the Java API to:

- Inject floating license server details in the Java code.

  The following link provides details about how to configure an HTTP floating license server: https://www.oxygenxml.com/license_server.html#floating_license servlet.

```java
AuthorComponentFactory.getInstance().init(frameworkZips, 
    optionsZipURL, codeBase, appID,
    //The servlet URL
    "http://www.host.com/servlet",
    //The HTTP credentials user name
    "username",
    //The HTTP credentials password
    "password"); 
```
• Display the license registration dialog box, where the user will paste their license key.

This is the default behavior if a null license key is set using the API (as in the following example). This transfers the licensing responsibility to the end user. The user can license an Oxygen XML Author Component using standard, named-user based Oxygen XML Editor license keys. The license key will be saved to the local user's disk and on subsequent runs, the user will not be asked again to provide a license key.

```java
AuthorComponentFactory.getInstance().init(
    frameworkZips, optionsZipURL, codeBase, appID,
    //Null license key, will ask the user.
    null);
...
```

• Inject the licensing information key directly in the component's Java code.

Note that this method can only be used for evaluation and site license keys. For example:

```java
AuthorComponentFactory.getInstance().init(
    frameworkZips, optionsZipURL, codeBase, appID,
    //The license key if it is a fixed license.
    licenseKey);
...
```

Related Information:

- https://www.oxygenxml.com/sdk_agreement.html

Installation Requirements

Running the Oxygen XML Author Component embedded in a third-party Java/Swing application requires:

• Oracle (Sun) Java JRE version 1.8.
• At least 100 MB disk space and 100MB free memory.

Customization

For a special type of XML, you can create a custom framework (on page 3282) (which also works in a standalone version of Oxygen XML Editor). Oxygen XML Editor already has frameworks for editing
DocBook, DITA, TEI, and so on. Their sources are available in the Oxygen SDK. This custom framework is then packed in a zip archive and used to deploy the component.

Figure 735. Components of a Custom Framework

![Diagram showing components of a custom framework]

Multiple frameworks can coexist in the same component and can be used at the same time for editing XML documents.

Figure 736. Multiple Frameworks
You can add on your custom toolbar all actions available in the standalone Oxygen XML Editor application for editing in the **Author** mode. You can also add custom actions defined in the **framework** customized for each XML type.

The Oxygen XML Author Component can also provide the **Outline** (on page 347), **Model** (on page 353), **Elements** (on page 432), and **Attributes** (on page 426) views, which can be added to your own developed containers.

The main entry point for the Oxygen XML Author Component Java API is the **AuthorComponentFactory** class.

**Related Information:**

- Creating and Configuring Custom Frameworks (on page 2322)

- Oxygen XML Author Component (on page 2618)

- AuthorComponentFactory API
Example - Customizing the DITA Framework

If you look inside the bundle-frameworks\oxygen-frameworks folder distributed with the Oxygen XML Author Component sample project, it contains a frameworks folder. Customizations that affect the framework configuration for the component should first be done in a standalone installation of Oxygen XML Editor.

An Oxygen XML Editor standalone installation also includes a frameworks folder that contains the dita framework located in \[OXYGEN_INSTALL_DIR]\frameworks\dita. The dita framework contains a bundled DITA-OT distribution that contains the DTDs used for DITA editing. If your DTD specialization is a DITA OT plugin, it should be installed (on page 3256) in the DITA-OT-DIR\plugins folder.

To make changes to the DITA framework configuration, open the Preferences dialog box (Options > Preferences) (on page 79), go to Document Type Association, and edit or extend the framework. These changes will affect the \[OXYGEN_INSTALL_DIR]\frameworks\dita\dita.framework configuration file.

After you do this, you can re-pack the Oxygen XML Author Component following the instructions from the README.html file located in the Oxygen XML Author Component sample project. The Author Component sample project and the Oxygen XML Editor standalone installation should be of the same version.

Related Information:

• Advanced Framework Customization (on page 2322)

Packing a Fixed Set of Options

The Oxygen XML Author Component shares a common internal architecture with the standalone application, although it does not have Preferences dialog boxes. However, the Author Component can be configured to use a fixed set of user options on startup.

The sample project contains a module called bundle-options. The module contains a file called options.xml in the oxygen-options folder. Such an XML file can be obtained by exporting the options to an XML format from an installation of Oxygen XML Editor.

To create an options file in the Oxygen XML Editor:

• Make sure the options that you want to set are not stored at project level (on page 265).
• Set the values you want to impose as defaults in the Preferences pages (on page 79).
• Select Options > Export Global Options.
Adding MathML support in the Oxygen XML Author Component

By default, the Oxygen XML Author Component does not come with the libraries necessary for viewing and editing MathML equations in the Author mode. You can view and edit MathML equations either by adding support for JEuclid (on page 2624) or by adding support for MathFlow (on page 2624).

Adding MathML Support Using JEuclid

By default, the JEuclid library is excluded from the Oxygen SDK artifact dependencies. To enable it, comment the following lines in the pom.xml file:

```xml
<exclusion>
  <artifactId>jeuclid-core</artifactId>
  <groupId>net.sourceforge.jeuclid</groupId>
</exclusion>
```

To edit specialized DITA Composite documents with MathML content, include the entire MathML2 framework directory (for example, the default location is: 
\[OXYGEN_INSTALL_DIR\]/frameworks/mathml2) in the frameworks (on page 3282) bundled with the component in the bundle-frameworks module. This directory is used to solve references to MathML DTDs.

Adding MathML Support Using MathFlow

In the pom.xml file, add dependencies to the following additional libraries used by the MathFlow library to parse MathML equations:

1. MFComposer.jar
2. MFExtraSymFonts.jar
3. MFSimpleEditor.jar
4. MFStructureEditor.jar
5. MFStyleEditor.jar

**Note:** For MathFlow 2.1, all of these JAR (on page 3283) files are packaged into one file called MathFlow.jar.

You can reference these additional libraries from the MathFlow SDK as in the example below:

```xml
<dependency>
  <groupId>com.dessci</groupId>
  <artifactId>MFComposer</artifactId>
</dependency>
```
In addition, you must obtain fixed MathFlow license keys for editing and composing MathML equations and register them using these API methods: `AuthorComponentFactory.setMathFlowFixedLicenseKeyForEditor` and `AuthorComponentFactory.setMathFlowFixedLicenseKeyForComposer`.

To edit specialized DITA Composite with MathML content, include the entire `${OXYGEN_INSTALL_DIR}/frameworks/mathml2` Mathml2 framework directory in the frameworks (on page 3282) bundled with the component in the bundle-frameworks module. This directory is used to solve references to MathML DTDs.

More documentation is available on the Design Science MathFlow website.

Adding Support to Insert References from a WebDAV Connection

Predefined actions that insert references, such as the Insert Image action, includes a URL chooser field with a drop-down menu that allows you to select a Browse Data Source Explorer action. This action opens the Data Source Explorer (on page 2198) that allows you to view a WebDAV connection.

To use a WebDAV connection in the Oxygen XML Author Component, follow these steps:

1. Open a standalone Oxygen XML Editor 21.1 and configure a WebDAV connection (on page 2254).
2. Pack the fixed set of options (on page 2623) from the standalone application to use them with the Oxygen XML Author Component project.
3. In the Oxygen XML Author Component, the defined connection still does not work when expanded because the additional JAR libraries used to browse the WebDAV repository are missing. By default, the httpclient dependency of the Oxygen SDK artifact is excluded. You can enable it by commenting the following lines:

```xml
<exclusion>
  <artifactId>httpclient</artifactId>
  <groupId>org.apache.httpcomponents</groupId>
</exclusion>
```

If you want to have multiple WebDAV connection URLs, user names, and passwords (depending on the user who started the component), you can use a more flexible approach by using the following API:
Using Plugins with the Oxygen XML Author Component

To bundle Workspace Access plugins (on page 3285) that are developed for the standalone application with the Oxygen XML Author Component, follow these steps:

- The bundle-plugins module must contain the additional plugin directories in the dropins subdirectory. The content must also contain a plugin.dtd file. Copy the plugin.dtd file from an \{OXYGEN_INSTALL_DIR\}\plugins folder.
- In the class that instantiates the AuthorComponentFactory (for example the ro.sync.ecss.samples.AuthorComponentSample class), call the methods AuthorComponentFactory.getPluginToolbarCustomizers(), AuthorComponentFactory.getPluginViewCustomizers(), and AuthorComponentFactory.getMenubarCustomizers(), obtain the customizers that have been added by the plugins and call them to obtain the custom swing components that they contribute. There is a commented-out example for this in the AuthorComponentSample.reconfigureActionsToolbar() method for adding the toolbar from the Acrolinx plugin.

⚠️ Important: As the Oxygen XML Author Component is just a subset of the entire application, there is no guarantee that all the functionality of the plugin will work.

Frequently Asked Questions

Installation and Licensing

1. Are there any client requirements beyond the Java VM?

   Oracle (formerly Sun) Java JRE version 1.8. At least 200 MB disk space and 200MB free memory is necessary for the Oxygen XML Author Component.

2. Does the Oxygen XML Author Component support multiple documents being open simultaneously? What are the licensing ramifications?
A single AuthorComponentFactory instance can create multiple EditorComponentProvider editors that can then be added and managed by the developer who customizes the component in a Swing JTabbedPane. A single license (floating or user-based) is enough for this.

If you need to run multiple distinct Java processes using the Oxygen XML Author Component, the current floating license model allows for only two concurrent components from the same computer when using the HTTP floating license server. An additional started component will take an extra license seat.

**Functionality**

1. What graphic formats can be directly rendered in the Oxygen XML Author Component?

   GIF, JPEG, PNG, BMP and SVG.

2. Can links be embedded to retrieve (from the server) and “play” other types of digital assets, such as audio or video files?

   You could add listeners to intercept clicks and open the clicked links. This would require a good knowledge of the Oxygen SDK. The Oxygen XML Author Component can only render static images (no GIF animations).

3. Does the Oxygen XML Author Component provide methods for uploading ancillary files (new graphics, for instance) to the hosting server?

   No.

4. Does the Oxygen XML Author Component provide any type of autosave functionality?

   By default no, but you could customize it to save its content periodically to a file on disk.

5. Assuming multiple documents can be edited simultaneously, can content be copied, cut, and pasted from one Oxygen XML Author Component “instance” to another?

   Yes.

6. Does the Oxygen XML Author Component support pasting content from external sources (such as a web page or a Microsoft Word document and, if so, to what extent?

   If no customizations are available, the content is pasted as simple text. Customizations are provided for the major frameworks (DITA, DocBook, TEI, etc.) that use a conversion XSLT stylesheet to convert HTML content from clipboard to the target XML.

7. Can UTF-8 characters (such as Greeks, mathematical symbols, etc.) be inserted and rendered?

   Any UTF-8 character can be inserted and rendered, provided that the font used for editing supports rendering the characters. The font can be changed by developers but not by the users. When using a logical font (by default, Serif for the Oxygen XML Author Component), the JVM will
know how to map all characters to glyphs. There is no character map available but you could implement one.

Customization

1. Describe, in general terms, the menus, toolbars, contextual menu options, helper panes, and so on, that are available for the Oxygen XML Author Component out-of-the-box.

You can mount all actions available in the standalone Oxygen XML Editor application on your custom toolbar. This includes custom actions defined in the framework customized for each XML type.

The Oxygen XML Author Component also can provide the Outline (on page 347), Model (on page 353), Elements (on page 432), and Attributes (on page 426) views that can be added to your own panels.

2. Describe, in general terms, the actions, project resources (for example, DTD/Schema for validation purposes, CSS/XSL for styling, etc.) and typical level of effort that would be required to deploy a Oxygen XML Author Component solution for a customer with a proprietary DTD.

The Author mode internal engine uses CSS to render XML.

For a special type of XML, you can create a custom framework (which also works in an Oxygen XML Editor standalone version) that would also contain default schemas and custom actions. A simple framework would probably need 2-3 weeks development time. For a complex framework with many custom actions, it could take a long time. Oxygen XML Editor already has frameworks for editing (DocBook, DITA, TEI, etc.) and sources for them are available in the Oxygen SDK.

Multiple frameworks can co-exist in the same Oxygen XML Editor instance and can be used at the same time for editing XML documents.

3. Many customers desire a very simplistic interface for contributors (with little or no XML expertise) but a more robust XML editing environment for editors (or other users with more advanced XML expertise). How well does the Oxygen XML Author Component support varying degrees of user interface complexity and capability?

• Showing/hiding menus, toolbars, helpers, etc.

You assemble all the UI parts from the Oxygen XML Author Component. For example, you could provide two implementations: one for advanced users and one for content authors.

• Forcing behaviors (for example, ensuring change tracking (on page 3288) is on and preventing it from being shut down).

You could avoid placing the change tracking toolbar actions in the UI. You could also use the API to turn change tracking ON when the content has been loaded.
• Preventing access to "privileged" editor processes (for example, accept/reject changes).

You can remove the change tracking actions completely in a custom implementation, including the ones from the contextual menu.

• Presenting and/or describing XML constructs (for example, tags) in "plain-English".

Using our API, you can customize what the Outline view or Breadcrumb displays for each XML tag. You can also customize the in-place content completion list.

• Presenting a small subset of the overall XML tag set (rather than the full tag set) for use by contributors (for example, allowing an author to only insert Heading, Para, and inline emphasis).

The API allows for a content completion filter that also affects the Elements view.

4. Does the Oxygen XML Author Component API provide access to the XML document, for manipulation purposes, using common XML syntax (such as DOM, XPath, etc.)?

Yes, using the Oxygen XML Author Component API.

5. Can custom dialog boxes be developed and launched to collect information in a "form" (with scripting behind to push tag the collection information and embed it in the XML document)?

Yes.

6. Can project resources and customizations be readily shared between the desktop and component versions of your Oxygen XML Author Component product line?

A framework developed for the standalone version of the Oxygen XML Editor application can then be bundled with the Oxygen XML Author Component. For example, you could use the same framework that you use in the Oxygen XML Editor standalone distribution.

A custom editing solution can deploy one or more frameworks that can be used at the same time.

Print Document Within the Oxygen XML Author Component

Question

Can a document be printed within the Oxygen XML Author Component?

Answer

You can use the following API method to either print the document content to the printer or to show the Print Preview dialog box, depending on the preview parameter value:

AuthorComponentProvider.print(boolean preview)
Here is the online Javadoc for this method: https://www.oxygenxml.com/InstData/Editor/SDK/javadoc/ro/sync/ecss/extensions/api/component/AuthorComponentProvider.html#print(boolean)

Oxygen XML Web Author Component

The **Oxygen SDK** provides the ability to integrate the Oxygen XML Web Author into your existing content ecosystem and it allows anyone in your organization to access your content from anywhere they have an internet connection. Oxygen XML Web Author is highly versatile and can be customized to work with any XML vocabulary, most file repository systems, and virtually any type of workflow.

**Web Author Component Integration**

For information about integrating Oxygen XML Web Author into your environment, see [Web Author Integration](#).

**Web Author Customization**

For detailed information about customizing Web Author, see the [Oxygen XML Web Author Customization Guide](#).

**Using Web Author**

For information about using the Web Author product, see the [Oxygen XML Web Author User Manual](#).

**Web Author vs. Web Author Component**

The purpose of this topic is to help you choose which distribution of Oxygen XML Web Author is appropriate for your particular use-case.

Oxygen XML Web Author has two distributions:

1. **Oxygen XML Web Author** (product) - This version can be downloaded from the Oxygen website and is licensed according to the [Web Author License Agreement](#).
2. **Web Author Component** - Provided as a Maven artifact (according to the [SDK Agreement](#)) that is used in the [Web Author Component integration project](#). This project can be used as a starting point for your integration.

**Note:** The formal definition for Web Author Component inside the SDK agreement is: "Web Author Component is a subset of Software composed of a server component operating as a service application and a client component deployed to a web browser, such as an [HTML5](#)."
Based application, where the client component is not installed on the client machine but is in use by the client machine while the browser is connected to the server component."

For End Users

For end users, the recommended distribution is Oxygen XML Web Author (product).

For Plugin and Framework Developers

If you develop frameworks or plugins that provides enhanced functionality for Oxygen XML Web Author, it is recommended to distribute the plugin or framework separately from Web Author. They will work with both types of distributions and the end users can choose:

- To install your plugin or framework in Web Author.
- To use a solution based on Web Author that has the plugin or framework installed by default.
- To use a solution based on Web Author and install the plugin or framework themselves.

Example of such plugins/frameworks:

- Integration with a terminology database.
- Adding support to edit embedded SVG snippets.
- Providing support for a specific XML language.

For Integration Developers

If you want to integrate Oxygen XML Web Author into another application (for example, a CMS), that you distribute to your end users, there are several aspects to consider when choosing between the two distributions:

**Functionality**

Both versions have the same features.

**Legal**

If you want to use the Web Author Component, you must have your own application that is not called Oxygen XML Web Author, but will contain Web Author as a software component provided by Syncro Soft. Hence, Syncro Soft does not have a direct legal link with your users, you will handle the licensing of your application to your end users.

For the official details, you can consult the license agreements for both distributions:
2. Web Author Component: https://www.oxygenxml.com/sdk_agreement.html

Financial


If you choose to use the Web Author product to distribute as a plugin or framework, then you act as a channel reseller, basically reselling Oxygen XML Web Author to your end users and you must pay Syncro Soft the corresponding cost of the license.

The Web Author Component is available with more flexible pricing alternatives that are negotiated for each contract and include:

- Subscription packages similar to the ones used for the Web Author product, but you may get a discount depending on the partnership level (Gold, Silver, Bronze).
- Solution OEM license.

If you choose to integrate the Web Author Component into your application, the cost is based on royalties, rather than a cost for the license. That means you do not need to pay for the ability to include the component in your application, but when you distribute your application you must pay a royalty to Syncro Soft.

Customization

It is strongly recommended to implement any customization as a combination of plugins, frameworks, and options. If you are using Web Author Component, you can also alter the Web Author files, but this is discouraged since those files are not considered API and may change in a future version.

Deployment

If you want to use Oxygen XML Web Author (product), you can install it using the installation kits, then configure the plugins, frameworks, and options using a browser-based UI. Alternatively, you can configure Oxygen XML Web Author to load the configuration from a custom directory (Oxygen Data Directory) along with desired plugins, frameworks, and options.

If you want to use Web Author Component, you can use the Web Author Component integration project to build a custom WAR file with plugins, frameworks, and options bundled. This WAR file can be deployed in any Servlet container (for example, Tomcat).
Distribution

If you want to use Oxygen XML Web Author (product), your users must download Oxygen XML Web Author from the Oxygen website, while you will distribute your plugins/frameworks to your users. You should provide instructions on how to deploy and use Oxygen XML Web Author. Alternatively, you can install and configure it for them.

If you want to use Web Author Component, you will distribute the customized WAR file.

SDK Common Use Cases

This section contains details for specific use cases regarding customizations using the Oxygen SDK, Author Component (on page 2618), or plugins (on page 2580).

For additional questions, contact the Oxygen support team. The preferred approach is via email because these types of questions must be analyzed thoroughly. The Oxygen support team also provides code snippets, if applicable.

To stay up-to-date with the latest changes, discuss issues, and ask for solutions from other developers working with the Oxygen SDK, register on the Oxygen-SDK mailing list.

Add Custom Actions to the Contextual Menu?

Question

How do I add my own custom actions to the contextual menu using an API?

Answer

The WSAuthorEditorPageBase.addPopUpMenuCustomizer and WSTextEditorPage.addPopUpMenuCustomizer API methods allow you to customize the contextual menu shown either in the Author or Text modes. The API is available both in the standalone application and in the Eclipse plugin.

Here is an elegant way to add actions to the Author page from your Eclipse plugin extension:

1. Create a pop-up menu customizer implementation:

```java
import org.eclipse.jface.action.ContributionManager;
import org.eclipse.ui.PlatformUI;
import org.eclipse.ui.menus.IMenuService;
import org.eclipse.ui.menus.IMenuContributionBuilder;
import org.eclipse.ui.menus.MenuContributionBuilder;
import org.eclipse.ui.menus.MenuManager;
import org.eclipse.ui.menus.MenuManagerFactory;
import org.eclipse.ui.menus.MenuPart;
import org.eclipse.ui.menus.MenuPartManager;
import org.eclipse.ui.menus.MenuPartManagerFactory;
import org.eclipse.ui.menus.MenuItem;
import org.eclipse.ui.menus.MenuItemFactory;
import org.eclipse.ui.menus.WorkspaceMenuFactory;
import ro.sync.ecss.extensions.api.AuthorAccess;
```
import ro.sync.ecss.extensions.api.structure.AuthorPopupMenuCustomizer;

/**
 * This class is used to create the possibility to attach certain
 * menuContributions to the {\link ContributionManager}, which is used for the
 * popup menu in the Author Page of the Oxygen Editor.<br />
 * You just need to use the org.eclipse.ui.menus extension and add a
 * menuContribution with the locationURI: <b>menu:oxygen.authorpage</b>
 */
public class OxygenAuthorPagePopupMenuCustomizer implements AuthorPopupMenuCustomizer {

    @Override
    public void customizePopUpMenu(Object menuManagerObj, AuthorAccess authoraccess) {
        if (menuManagerObj instanceof ContributionManager) {
            ContributionManager contributionManager = (ContributionManager) menuManagerObj;
            IMenuService menuService = (IMenuService) PlatformUI.getWorkbench().getService(IMenuService.class);

            menuService.populateContributionManager(contributionManager,
                    "menu:oxygen.authorpage");
            contributionManager.update(true);
        }
    }
}

2. Add a workbench listener and add the pop-up customizer when an editor is opened in the Author page:

    Workbench.getInstance().getActiveWorkbenchWindow().getPartService().addPartListener(
        new IPartListener() {
            @Override
            public void partOpened(IWorkbenchPart part) {
                if (part instanceof ro.sync.xml.workspace.api.editor.WSEditor) {
                    WSEditorPage currentPage = ((WSEditor)part).getCurrentPage();
                    if (currentPage instanceof WSAuthorEditorPage) {
                        ((WSAuthorEditorPage)currentPage).addPopUpMenuCustomizer(new OxygenAuthorPagePopupMenuCustomizer());
                    }
                }
            }
        });
Add Custom Callouts

**Question**

I want to highlight validation errors, instead of underlining them (for example, changing the text background color to red or yellow). Also, I want a message displayed directly at the error position that describes the problem. Is this possible using the API?

**Answer**

The Plugins API allows you to set a `ValidationProblemsFilter` that gets notified when automatic validation errors are available. Then you can map each of the problems to an offset range in the **Author** mode using the API `WSTextBasedEditorPage.getStartEndOffsets(DocumentPositionedInfo)`. For each of those offsets, you can add either persistent or non-persistent highlights. If you add persistent highlights, you can also customize callouts to appear for each of them. The downside is that they need to be removed before the document gets saved. The result would look something like this:

*Figure 737. Custom Callouts with Persistent Highlights*
Here is a working example:

```java
/**
 * Plugin extension - workspace access extension.
 */

public class CustomWorkspaceAccessPluginExtension
    implements WorkspaceAccessPluginExtension {

    /**
     * @see ro.sync.exml.plugin.workspace.WorkspaceAccessPluginExtension
     * applicationStarted(
     * ro.sync.exml.workspace.api.standalone.StandalonePluginWorkspace)
     */

    public void applicationStarted(
        final StandalonePluginWorkspace pluginWorkspaceAccess)
    {
        pluginWorkspaceAccess.addEditorChangeListener(
            new WSEditorChangeListener() {
                /**
                 * @see WSEditorChangeListener#editorOpened(java.net.URL)
                 */
                @Override
                public void editorOpened(URL editorLocation) {
                    final WSEditor currentEditor = pluginWorkspaceAccess.getEditorAccess( editorLocation, StandalonePluginWorkspace.MAIN_EDITING_AREA);
                    WSEditorPage currentPage = currentEditor.getCurrentPage();
                    if(currentPage instanceof WSAuthorEditorPage) {
                        final WSAuthorEditorPage currentAuthorPage =
```
currentAuthorPage.getPersistentHighlighter().setHighlightRenderer(new PersistentHighlightRenderer() {
    @Override
    public String getTooltip(AuthorPersistentHighlight highlight) {
        return highlight.getClonedProperties().get("message");
    }
    @Override
    public HighlightPainter getHighlightPainter(AuthorPersistentHighlight highlight) {
        //Depending on severity could have different color.
        ColorHighlightPainter painter = new ColorHighlightPainter(Color.COLOR_RED, -1, -1);
        painter.setBgColor(Color.COLOR_RED);
        return painter;
    }
});
currentAuthorPage.getReviewController().getAuthorCalloutsController().setCalloutsRenderingInformationProvider(new CalloutsRenderingInformationProvider() {
    @Override
    public boolean shouldRenderAsCallout(AuthorPersistentHighlight highlight) {
        //All custom highlights are ours
        return true;
    }
    @Override
    public AuthorCalloutRenderingInformation getCalloutRenderingInformation(final AuthorPersistentHighlight highlight) {
        final AuthorPersistentHighlight highlight =
        return new AuthorCalloutRenderingInformation() {
            @Override
            public long getTimestamp() {
                //Not interesting
                return -1;
            }
            @Override
            public String getContentFromTarget(int limit) {
                return ""
            }
            @Override
            public String getComment(int limit) {
```java
return highlight.getClonedProperties().get("message");
}

@Override
public Color getColor() {
    return Color.COLOR_RED;
}

@Override
public String getCalloutType() {
    return "Problem";
}

@Override
public String getAuthor() {
    return "";
}

@Override
public Map<String, String> getAdditionalData() {
    return null;
}

currentEditor.addValidationProblemsFilter(new ValidationProblemsFilter() {
    List<int[]> lastStartEndOffsets = new ArrayList<int[]>();
    
    @Override
    public void filterValidationProblems(ValidationProblems validationProblems) {
        List<int[]> startEndOffsets = new ArrayList<int[]>();
        List<DocumentPositionedInfo> problemsList = validationProblems.getProblemsList();
        if (problemsList != null) {
            for (int i = 0; i < problemsList.size(); i++) {
                try {
                    startEndOffsets.add(currentAuthorPage.getStartEndOffsets(problemsList.get(i)));
                } catch (BadLocationException e) {
                    e.printStackTrace();
                }
            }
        }
    }

    @Override
    public ValidationProblems filterValidationProblems(ValidationProblems validationProblems) {
        List<int[]> startEndOffsets = new ArrayList<int[]>();
        List<DocumentPositionedInfo> problemsList = validationProblems.getProblemsList();
        if (problemsList != null) {
            for (int i = 0; i < problemsList.size(); i++) {
                try {
                    startEndOffsets.add(currentAuthorPage.getStartEndOffsets(problemsList.get(i)));
                } catch (BadLocationException e) {
                    e.printStackTrace();
                }
            }
        }
    }
```

if (lastStartEndOffsets.size() != startEndOffsets.size()) {
    //Continue
} else {
    boolean equal = true;
    for (int i = 0; i < startEndOffsets.size(); i++) {
        int[] o1 = startEndOffsets.get(i);
        int[] o2 = lastStartEndOffsets.get(i);
        if (o1 == null && o2 == null) {
            //Continue
        } else if (o1 != null && o2 != null
            && o1[0] == o2[0] && o1[1] == o2[1]) {
            //Continue
        } else {
            equal = false;
            break;
        }
    }
    if (equal) {
        //Same list of problems already displayed.
        return;
    }
}

//Keep last used offsets.
lastStartEndOffsets = startEndOffsets;

try {
    if (!SwingUtilities.isEventDispatchThread()) {
        SwingUtilities.invokeLater(new Runnable() {
            @Override
            public void run() {
                //First remove all custom highlights.
                currentPage.getPersistentHighlighter().removeAllHighlights();
            }
        });
    }
} catch (InterruptedException e1) {
    e1.printStackTrace();
} catch (InvocationTargetException e1) {
    e1.printStackTrace();
}
catch (InterruptedException e1) {
    e1.printStackTrace();
} catch (InvocationTargetException e1) {
    e1.printStackTrace();
}
if (problemsList != null) {
    for (int i = 0; i < problemsList.size(); i++) {
        DocumentPositionedInfo dpi = problemsList.get(i);
        try {
            final int[] currentOffsets = startEndOffsets.get(i);
            if (currentOffsets != null) {
                // These are offsets in the Author content.
                final LinkedHashMap<String, String> highlightProps = new LinkedHashMap<String, String>();
                highlightProps.put("message", dpi.getMessage());
                highlightProps.put("severity", dpi.getSeverityAsString());
                if (!SwingUtilities.isEventDispatchThread()) {
                    SwingUtilities.invokeLater(new Runnable() {
                        @Override
                        public void run() {
                            currentAuthorPage.getPersistentHighlighter().addHighlight(
                                currentOffsets[0], currentOffsets[1] - 1, highlightProps);
                        }
                    });
                }
            }
        } catch (InterruptedException e) {
            e.printStackTrace();
        } catch (InvocationTargetException e) {
            e.printStackTrace();
        }
    }
}
}
currentEditor.addEditorListener(new WSEditorListener() {
    /**
     * @see WSEditorListener#editorAboutToBeSavedVeto(int)
     */
    @Override
    public boolean editorAboutToBeSavedVeto(int operationType) {
        try {
            if (!SwingUtilities.isEventDispatchThread()) {
                e.printStackTrace();
            }
        } catch (InterruptedException e) {
            e.printStackTrace();
        } catch (InvocationTargetException e) {
            e.printStackTrace();
        }
    }
});
Add Custom Highlights to Content

**Question**

How can I add custom highlights to the document content in **Author** mode?

**Answer**

There are two types of highlights you can add:
1. **Non-Persistent Highlights** - Such highlights are removed when the document is closed and then re-opened.

You can use the following API method:

```java
ro.sync.exml.workspace.api.editor.page.author.WSAuthorEditorPageBase.getHighlighter()
```

to obtain an `AuthorHighlighter` that allows you to add a highlight between certain offsets with a specified painter.

For example, you can use this support to implement your own spell checker with a custom highlight for the unrecognized words.

2. **Persistent Highlights** - Such highlights are saved in the XML content as processing instructions.

You can use the following API method:

```java
ro.sync.exml.workspace.api.editor.page.author.WSAuthorEditorPageBase.getPersistentHighlighter()
```

to obtain an `AuthorPersistentHighlighter` class that allows you to add a persistent highlight between certain offsets, set new properties for a specific highlight, and render it with a specified painter.

For example, you can use this support to implement your own way of adding review comments.

**Related Information:**

- [Adding Custom Persistent Highlights (on page 2398)](on_page)

**Auto-Generate an ID When a Document is Opened or Created**

**Question**

Is it possible to configure how the application generates IDs? For project compliance, I need IDs that have a certain format for each created topic.

**Answer**

This could be done implementing a [plugin (on page 3285)](on_page) for Oxygen XML Editor using the Plugins SDK:
There is a type of plugin called "Workspace Access" that can be used to add a listener to be notified when an editor is opened.

The implemented plugin would intercept the opened editor and editor page change events (which occur when a new editor is created) and generate a new ID attribute value on the root element.

The Java code would look like this:

```java
pluginWorkspaceAccess.addEditorChangeListener(new WSEditorChangeListener() {
    /**
     * @see WSEditorChangeListener#editorOpened(java.net.URL)
     */
    @Override
    public void editorOpened(URL editorLocation) {
        WSEditor ed = pluginWorkspaceAccess.getEditorAccess(editorLocation, PluginWorkspace.MAIN_EDITING_AREA);
        generateID(ed);
    }
    /**
     * @see WSEditorChangeListener#editorPageChanged(java.net.URL)
     */
    @Override
    public void editorPageChanged(URL editorLocation) {
        WSEditor ed = pluginWorkspaceAccess.getEditorAccess(editorLocation, PluginWorkspace.MAIN_EDITING_AREA);
        generateID(ed);
    }

    private void generateID(WSEditor ed) {
        if(ed.getCurrentPage() instanceof WSAuthorEditorPage) {
            WSAuthorEditorPage authorEditPage = (WSAuthorEditorPage) ed.getCurrentPage();
            AuthorDocumentController ctrl = authorEditPage.getDocumentController();
            AuthorElement root = ctrl.getAuthorDocumentNode().getRootElement();
            if(root.getAttribute("id") == null || !root.getAttribute("id").getValue().startsWith("generated_")) {
                ctrl.setAttribute("id", new AttrValue("generated_" + Math.random()), root);
            }
        }
    }

}, PluginWorkspace.MAIN_EDITING_AREA);
```
Change the Default Track Changes (Review) Author Name

**Question**

How can I change the default author name used for Track Changes (on page 3288) in the Author Component?

**Answer**

The Track Changes (Review) author name is determined in the following order:

1. **API** - The review user name can be imposed through the following API:

   ```java
   ro.sync.ecss.extensions.api.AuthorReviewController.setReviewerAuthorName(String)
   ```

2. **Options** - If the author name was not imposed from the API, it is determined from the Author option set in the Review preferences page (on page 141).

3. **System properties** - If the author name was not imposed from the API or from the application options then the following system property is used:

   ```java
   System.getProperty("user.name")
   ```

So, to impose the Track Changes author, use one of the following approaches:

1. Use the API to impose the reviewer author name. Here is the online Javadoc of this method:
   https://www.oxygenxml.com/InstData/Editor/SDK/javadoc/ro/sync/ecss/extensions/api/AuthorReviewController.html#setReviewerAuthorName(java.lang.String)

2. Customize the default options and set a specific value for the Author name option set in the Review preferences page (on page 141).

3. Set the value of user.name system property when the Author Component is initializing and before any document is loaded.

---

Change the DOCTYPE of an Opened XML Document

**Question**

How to change the DOCTYPE of a document opened in the Author mode?

**Answer**

The following API:
ro.sync.ecss.extensions.api.AuthorDocumentController.getDoctype()

allows you to get the **DOCTYPE** of the current XML file opened in the **Author** mode.

There is also an API method available that would allow you to set the **DOCTYPE** back to the XML:

```
ro.sync.ecss.extensions.api.AuthorDocumentController.setDoctype(AuthorDocumentType)
```

Here is an example of how this solution would work:

```java
AuthorDocumentType
dt = new AuthorDocumentType("article", "testSystemID", "testPublicID",
                      "<!DOCTYPE article PUBLIC "testPublicID" "testSystemID">");
docController.setDoctype(dt);
```

Basically, you could take the entire content from the existing **DOCTYPE**, modify it to your needs, and create another **AuthorDocumentType** object with the new content and with the same public, system IDs.

For example, you could use this API is you want to add unparsed entities in the XML **DOCTYPE**.

### Control XML Serialization in the Oxygen XML Author Component

#### Question

How can I force the Oxygen XML Author Component to save the XML with zero indent size and not to break the line inside `block elements` **(on page 3280)**?

#### Answer

Usually, in a standalone version of Oxygen XML Editor, the `Editor > Format` and `Editor > Format > XML` preferences pages allow you to control the way the XML is saved on the disk after you edit it in the **Author** mode.

Also, the `APIAccessibleOptionTags` interface contains a list of all accessible keys that can be read or set from the options.

In the Oxygen XML Editor application, you can either bundle a default set of options **(on page 262)** or use the `PluginWorkspace.setGlobalObjectProperty(String, Object)` API:

```java
//For not breaking the line
//Long line
```
In the Oxygen XML Author Component, you can either bundle a fixed set of options (on page 2661), or use the Java API to set properties that overwrite the default options.

```java
pluginWorkspace.setObjectProperty
    (APIAccessibleOptionTags.EDITOR_LINE_WIDTH, new Integer(100000));
//Do not break before inline elements
pluginWorkspace.setObjectProperty
    (APIAccessibleOptionTags.EDITOR_FORMAT_INDENT_INLINE_ELEMENTS, false);
//For forcing zero indent
//Force indent settings to be controlled by us
pluginWorkspace.setObjectProperty
    (APIAccessibleOptionTags.EDITOR_DETECT_INDENT_ON_OPEN, false);
//Zero indent size
pluginWorkspace.setObjectProperty
    (APIAccessibleOptionTags.EDITOR_INDENT_SIZE, 0);
```

Related Information:

- API Interface Documentation: APIAccessibleOptionTags
Customize the Default Icons for Toolbars/Menus

**Question**

How can I change the default icons used for the built-in actions?

**Answer**

If you look inside the main JAR library \[OXYGEN\_INSTALL\_DIR\lib\oxygen.jar \text{ or } \[OXYGEN\_INSTALL\_DIR\lib\author.jar\], it contains an images folder that contains all the images used for buttons, menus, and toolbars.

To overwrite them with your own creations, follow these steps:

1. In the \[OXYGEN\_INSTALL\_DIR\lib\ directory create a folder called endorsed.
2. In the endorsed folder create another folder called images.
3. Add your own images in the images folder.

You can use this mechanism to overwrite any kind of resource located in the main Oxygen JAR library. The folder structure in the endorsed directory and in the main Oxygen JAR must be identical.

Customize the Outline View in Text Mode?

**Question**

How do I customize the Outline view (on page 347) in Text mode?

**Answer**

Suppose that you have the following XML document:

```xml
<doc startnumber="15">
    <sec counter="no">
        <info/>
        <title>Introduction</title>
    </sec>
    <sec>
        <title>Section title</title>
        <para>Content</para>
    </sec>
</doc>
```
and you want to display the XML content in a simplified Outline view like this:

```
<doc>
  <sec>
    <title>Section title</title>
    <para>Content</para>
  </sec>
  <sec>
    <title>Section title</title>
    <para>Content</para>
  </sec>
<sec>
  <title>Section title</title>
  <para>Content</para>
</sec>
</doc>
```

Usually, an Outline view should have the following characteristics:

1. Double-clicking a node in the Outline view would select the corresponding XML content in the editor.
2. When the cursor moves in the opened XML document, the Outline view would select the proper entry.
3. When modifications occur in the document, the Outline view would refresh.

A simple implementation using a Workspace Access plugin type could be something like this:

```java
/**
 * Simple Outline for Text mode based on executing XPaths over the text content.
 */
public class CustomWorkspaceAccessPluginExtension implements WorkspaceAccessPluginExtension {
    /**
     * The custom outline list.
     */
    private JList customOutlineList;

    /**
     * Maps outline nodes to ranges in document
     */
    private WSXMLTextNodeRange[] currentOutlineRanges;
```
/**
 * The current text page
 */
private WSXMLTextEditorPage currentTextPage;

/**
 * Disable CaretListener when we select from the CaretListener.
 */
private boolean enableCaretListener = true;

/**
 * @see WorkspaceAccessPluginExtension#applicationStarted
 * (ro.sync.exml.workspace.api.standalone.StandalonePluginWorkspace)
 */
@Override
public void applicationStarted
(final StandalonePluginWorkspace pluginWorkspaceAccess) {
pluginWorkspaceAccess.addViewComponentCustomizer
(new ViewComponentCustomizer() {
/**
 * @see ViewComponentCustomizer#customizeView
 * (ro.sync.exml.workspace.api.standalone.ViewInfo)
 */
@Override
public void customizeView(ViewInfo viewInfo) {
    if(
        //The view ID defined in the "plugin.xml"
        "SampleWorkspaceAccessID".equals(viewInfo.getViewID())) {
        customOutlineList = new JList();
        //Render the content in the Outline.
        customOutlineList.setCellRenderer(new DefaultListCellRenderer() {
/**
 * @see javax.swing.DefaultListCellRenderer#getListCellRendererComponent
 * (javax.swing.JList, java.lang.Object, int, boolean, boolean)
 */
@Override
public Component getListCellRendererComponent
(JList<?> list, Object value, int index,
    boolean isSelected, boolean cellHasFocus) {
    //
JLabel label = (JLabel) super.getListCellRendererComponent(list, value, index, isSelected, cellHasFocus);

String val = null;

if(value instanceof Element) {
    Element element = ((Element)value);
    val = element.getNodeName();
    if(!"".equals(element.getAttribute("startnumber"))) {
        val += " + " + element.getAttribute("startnumber") + "';
    }
    NodeList titles = element.getElementsByTagName("title");
    if(titles.getLength() > 0) {
        val += " '" + titles.item(0).getTextContent() + "';
    }
}

label.setText(val);

return label;

//When we click a node, select it in the text page.
customOutlineList.addMouseListener(new MouseAdapter() {
    @Override
    public void mouseClicked(MouseEvent e) {
        if(SwingUtilities.isLeftMouseButton(e) && e.getClickCount() == 2) {
            int sel = customOutlineList.getSelectedIndex();
            enableCaretListener = false;
            try {
                currentTextPage.select(currentTextPage.getOffsetOfLineStart(currentOutlineRanges[sel].getStartLine()) + currentOutlineRanges[sel].getStartColumn() - 1,
                currentTextPage.getOffsetOfLineStart(currentOutlineRanges[sel].getEndLine()) + currentOutlineRanges[sel].getEndColumn());
            } catch (BadLocationException e1) {
                e1.printStackTrace();
            }
            enableCaretListener = true;
        }
    }
});

viewInfo.setComponent(new JScrollPane(customOutlineList));
viewInfo.setTitle("Custom Outline");
}
}
});

pluginWorkspaceAccess.addEditorChangeListener(new WSEditorChangeListener() {
    /**
     * @see WSEditorChangeListener#editorOpened(java.net.URL)
     */
    @Override
    public void editorOpened(URL editorLocation) {
        // An editor was opened
        WSEditor editorAccess = pluginWorkspaceAccess.getEditorAccess(editorLocation, StandalonePluginWorkspace.MAIN_EDITING_AREA);
        if(editorAccess != null) {
            WSEditorPage currentPage = editorAccess.getCurrentPage();
            if(currentPage instanceof WSXMLTextEditorPage) {
                // User editing in Text mode an opened XML document.
                final WSXMLTextEditorPage xmlTP = (WSXMLTextEditorPage) currentPage;
                // Reconfigure outline on each change.
                xmlTP.getDocument().addDocumentListener(new DocumentListener() {
                    @Override
                    public void removeUpdate(DocumentEvent e) {
                        reconfigureOutline(xmlTP);
                    }
                    @Override
                    public void insertUpdate(DocumentEvent e) {
                        reconfigureOutline(xmlTP);
                    }
                    @Override
                    public void changedUpdate(DocumentEvent e) {
                        reconfigureOutline(xmlTP);
                    }
                });
                JTextArea textComponent = (JTextArea) xmlTP.getTextComponent();
                textComponent.addCaretListener(new CaretListener() {
                    @Override
                    public void caretUpdate(CaretEvent e) {
                        if(currentOutlineRanges != null && currentTextPage != null && enableCaretListener) {
                            reconfigureOutlineRanges();
                        }
                    }
                });
            }
        }
    }
});
enableCaretListener = false;

// Find the node to select in the outline.
try {
    int line = xmlTP.getLineOfOffset(e.getDot());
    for (int i = currentOutlineRanges.length - 1; i >= 0; i--) {
        if (line > currentOutlineRanges[i].getStartLine() &&
            line < currentOutlineRanges[i].getEndLine()) {
            customOutlineList.setSelectedIndex(i);
            break;
        }
    }
} catch (BadLocationException e1) {
    e1.printStackTrace();
}
enableCaretListener = true;

/**
 * @see WSEditorChangeListener#editorActivated(java.net.URL)
 */
@Override
public void editorActivated(URL editorLocation) {
    // An editor was selected, reconfigure the common outline
    WSEditor editorAccess = pluginWorkspaceAccess.getEditorAccess
    (editorLocation, StandalonePluginWorkspace.MAIN_EDITING_AREA);
    if (editorAccess != null) {
        WSEditorPage currentPage = editorAccess.getCurrentPage();
        if (currentPage instanceof WSXMLTextEditorPage) {
            // User editing in Text mode an opened XML document.
            WSXMLTextEditorPage xmlTP = (WSXMLTextEditorPage) currentPage;
            reconfigureOutline(xmlTP);
        }
    }
}, StandalonePluginWorkspace.MAIN_EDITING_AREA);
/**
 * Reconfigure the outline
 *
 * @param xmlTP The XML Text page.
 */

protected void reconfigureOutline(final WSXMLTextEditorPage xmlTP) {
    try {
        // These are DOM nodes.
        Object[] evaluateXPath = xmlTP.evaluateXPath("//doc | //sec");
        // These are the ranges each node takes in the document.
        currentOutlineRanges = xmlTP.findElementsByXPath("//doc | //sec");
        currentTextPage = xmlTP;
        DefaultListModel listModel = new DefaultListModel();
        if (evaluateXPath != null) {
            for (int i = 0; i < evaluateXPath.length; i++) {
                listModel.addElement(evaluateXPath[i]);
            }
        }
        customOutlineList.setModel(listModel);
    } catch (XPathException ex) {
        ex.printStackTrace();
    }
}

/**
 * @see WorkspaceAccessPluginExtension#applicationClosing()
 */

@Override
public boolean applicationClosing() {
    return true;
}
}
Difference Between a Framework (Document Type) and a Plugin Extension

Question

What is the difference between a Framework (on page 3282) and a Plugin (on page 3285) Extension?

Answer

There are two possible ways to customize the application:

1. Implement a plugin.

   A plugin serves a general purpose and influences any type of XML file that you open in Oxygen XML Editor.
   
   For the Oxygen XML Editor Plugins API, Javadoc, samples, and documentation, go to https://www.oxygenxml.com/oxygen_sdk.html#Developer_Plugins

2. Create or modify the document type (on page 2322) that is associated to your specific XML vocabulary.

   This document type can be used, for instance, to provide custom actions for your type of XML files and to mount them on the toolbar, menus, and contextual menus.

   For example, if the end users are editing DITA documents, all the toolbar actions that are specific for DITA are provided by the DITA framework. If you look in the Document Type Association preferences page (on page 92) there is a DITA document type. If you edit that document type you will see that it has an Author tab in the Document Type Configuration dialog box (on page 95). The subtabs in this tab can be used to define custom DITA actions and add them to the toolbars, main menus, or contextual menus.

   For information about developing your own document types (frameworks), see the Advanced Framework Customization (on page 2322) section.

   If you look on disk in the [OXYGEN_INSTALL_DIR]\frameworks\dita folder, there is a file called dita.framework. That file gets updated when you edit a document type from the Document Type Association preferences page (on page 92). Then you can share that updated file with all users.

   The same folder contains some JAR (on page 3283) libraries. These libraries contain custom Java operations that are called when the user presses certain toolbar actions.
The Oxygen SDK contains the Java sources from all the DITA Java customizations:

https://www.oxygenxml.com/oxygen_sdk.html#XML_Editor_Authoring_SDK

⚠️ **Important:** It is possible for a plugin to share the same classes with a framework. For further details, go to How to Share the Classloader Between a Framework and a Plugin (on page 2611).

**Related Information:**

- Adding a Custom Operation to an Existing Framework (on page 2476)

---

**Disable Context-Sensitive Menu Items for Custom Author Actions**

**Question**

Is there a way to disable menu items for custom Author mode actions depending on the cursor context?

**Answer**

By default, Oxygen XML Editor does not toggle the enabled/disabled states for actions based on whether or not the activation XPath expressions for that certain Author mode action are fulfilled. This is done because the actions can be many and evaluating XPath expression on each cursor move can lead to performance problems. However, if you have your own ro.sync.ecss.extensions.api.ExtensionsBundle implementation you can overwrite the method:

ro.sync.ecss.extensions.api.ExtensionsBundle.createAuthorExtensionStateListener()

and when the extension state listener gets activated, you can use the API like this:

```java
/**
 * @see ro.sync.ecss.extensions.api.AuthorExtensionStateListener#activated
 * (ro.sync.ecss.extensions.api.AuthorAccess)
 */

public void activated(final AuthorAccess authorAccess) {
    //Add a caret listener to enable/disable extension actions:
    authorAccess.getEditorAccess().addAuthorCaretListener(new AuthorCaretListener())
}
```java
@Override
public void caretMoved(AuthorCaretEvent caretEvent) {
    try {
        Map<String, Object> authorExtensionActions =
            authorAccess.getEditorAccess().getActionsProvider().getAuthorExtensionActions();

        //Get the action used to insert a paragraph. It's ID is "paragraph"
        AbstractAction insertParagraph = (AbstractAction) authorExtensionActions.get("paragraph");

        //Evaluate an XPath expression in context of the current node
        Object[] evaluateXPath = authorAccess.getDocumentController().evaluateXPath
            ("*[ancestor-or-self::p]", false, false, false, false);

        if (evaluateXPath != null && evaluateXPath.length > 0 &&
            evaluateXPath[0] != null) {
            //We are inside a paragraph, disable the action.
            insertParagraph.setEnabled(false);
        } else {
            //Enable the action
            insertParagraph.setEnabled(true);
        }
    } catch (AuthorOperationException e) {
        e.printStackTrace();
    }
}
```

When the extension is deactivated, you should remove the `CaretListener` to avoid adding multiple listeners that perform the same functionality.

### Dynamically Add Form Controls Using a Styles Filter

**Question**

How do I add form controls using an API?

**Answer**

Usually, a form control is added from the CSS using one of the built-in form controls *(on page 2541)*. However, in some cases you do not have all the information you need to properly initialize the form control at CSS level. In these cases you can add the form controls by using the API, more specifically `ro.sync.ecss.extensions.api.StylesFilter`. 
For instance, if you want a combo box form control and the values to populate the combo are specified inside a file (or they come from a database). Here is how to add the form control from the API:

```java
public class SDFStylesFilter implements StylesFilter {

    public Styles filter(Styles styles, AuthorNode authorNode) {
        if (authorNode.getType() == AuthorNode.NODE_TYPE_PSEUDO_ELEMENT
                && "before".equals(authorNode.getName())) {
            authorNode = authorNode.getParent();
        }
        if ("country".equals(authorNode.getName())) {
            // This is the BEFORE pseudo element of the "country" element.
            // Read the supported countries from the configuration file.
            Map<String, Object> formControlArgs = new HashMap<String, Object>();
            formControlArgs.put(InplaceEditorArgumentKeys.PROPERTY_EDIT, "#text");
            formControlArgs.put(InplaceEditorArgumentKeys.PROPERTY_TYPE, InplaceEditorArgumentKeys.TYPE_COMBOBOX);
            String countries = readCountriesFromFile();
            formControlArgs.put(InplaceEditorArgumentKeys.PROPERTY_VALUES, countries);
            formControlArgs.put(InplaceEditorArgumentKeys.PROPERTY_EDITABLE, "false");

            // We also add a label in form of the form control.
            Map<String, Object> labelProps = new HashMap<String, Object>();
            labelProps.put("text", "Country: ");
            labelProps.put("styles", "* {width: 100px; color: gray;}");
            StaticContent[] mixedContent = new StaticContent[]{
                new LabelContent(labelProps),
                new EditorContent(formControlArgs)
            };
            styles.setProperty(Styles.KEY_MIXED_CONTENT, mixedContent);
        }

        // The added form control is the only way the element can be edited.
        if ("country".equals(authorNode.getName())) {
            styles.setProperty(Styles.KEY_VISIBITY, "-oxy-collapse-text");
        }

        return styles;
    }
}
```
If the execution of the `formControlArgs.put(InplaceEditorArgumentKeys.PROPERTY_VALUES, countries);` line consumes too much execution time (for example, if it connects to a database or if it needs to extract data from a very large file), you can choose to delay it until the values are actually needed by the form control. This approach is called *lazy evaluation* and can be implemented as follows:

```java
formControlArgs.put(InplaceEditorArgumentKeys.PROPERTY_VALUES,
    new LazyValue<List<CIValue>>() {
        public java.util.List<CIValue> get() {
            // We avoid reading the possible values until they are actually requested.
            // This will be a List with CIValues created over countries:
            // France, Spain, Great Britain
            return readCountriesFromFile();
        }
    });
```

The lazy evaluation approach can be used for the following form controls properties:

- `InplaceEditorArgumentKeys.PROPERTY_VALUES`
- `InplaceEditorArgumentKeys.PROPERTY_LABELS`
- `InplaceEditorArgumentKeys.PROPERTY_TOOLTIPS`

The full source code for this example is available inside the *Oxygen SDK*.

**Dynamically Modify the Content Inserted by the Author**

**Question**

Is there a way to insert typographic quotation marks instead of double quotes?

**Answer**

By using the API you can set a document filter to change the text that is inserted in the document in *Author* mode. You can use this method to change the insertion of double quotes with the typographic quotes.

Here is some sample code:

```java
authorAccess.getDocumentController().setDocumentFilter(new AuthorDocumentFilter() {
    /**
     * @see ro.sync.ecss.extensions.api.AuthorDocumentFilter#insertText
     */
    @Override
    public void insertText(TextContent textContent, InsertionPosition insertionPosition) { /* implementation */ }
});
```
```java
@Override
public void insertText(AuthorDocumentFilterBypass filterBypass,
        int offset, String toInsert) {
    if(toInsert.length() == 1 && toInsert.equals("\"\") {  // User typed a quote but he actually needs a smart quote.
        // So we either have to add \u201E (start smart quote)
        // Or we add \u201C (end smart quote)
        // Depending on whether there's already a start smart quote inserted in the current paragraph.
        try {
            AuthorNode currentNode = authorAccess.getDocumentController().getNodeAtOffset(offset);
            int startOfTextInCurrentNode = currentNode.getStartOffset();
            if(offset > startOfTextInCurrentNode) {
                Segment seg = new Segment();
                authorAccess.getDocumentController().getChars(startOfTextInCurrentNode,
                        offset - startOfTextInCurrentNode, seg);
                String previousTextInNode = seg.toString();
                boolean insertStartQuote = true;
                for (int i = previousTextInNode.length() - 1; i >= 0; i--) {
                    char ch = previousTextInNode.charAt(i);
                    if('\u201C' == ch) {
                        // Found end of smart quote, so yes, we should insert a start one
                        break;
                    } else if('\u201E' == ch) {
                        // Found start quote, so we should insert an end one.
                        insertStartQuote = false;
                        break;
                    }
                }
                if(insertStartQuote) {
                    toInsert = \u201E;
                } else {
                    toInsert = \u201C;
                }
            }
        }
```
catch (BadLocationException e) {
    e.printStackTrace();
}
} System.err.println("INSERT TEXT |" + toInsert + "|");
    super.insertText(filterBypass, offset, toInsert);
});

You can find the online Javadoc for AuthorDocumentFilter API here: https://www.oxygenxml.com/InstData/Editor/SDK/javadoc/ro-sync/ecss/extensions/api/AuthorDocumentFilter.html

An alternative to using a document filtering is the use of a ro.sync.ecss.extensions.api.AuthorSchemaAwareEditingHandlerAdapter, which has clear callbacks indicating the source from where the API is called (Paste, Drag and Drop, Typing).

Extend the Java Functionality of an Existing Framework (Document Type)

Question

How can I change the way a DocBook 4 xref displays in Author mode based on what element is at the linkend?

Answer

Follow these steps:

1. Create a Maven Java project and add a dependency on the Oxygen XML Editor classes:

   <dependency>
   <groupId>com.oxygenxml</groupId>
   <artifactId>oxygen-sdk</artifactId>
   <version>${oxygen.version}</version>
   </dependency>

   where ${oxygen.version} is the version of Oxygen XML Editor.

   Alternatively, if the project does not use Maven, all the transitive dependencies of the above Maven artifact need to be added to the classpath of the project.

2. Also add the [OXYGEN_INSTALL_DIR]\frameworks\docbook\docbook.jar to the classpath of the project.

4. For your custom resolver implementation you can start from the Java sources of the `ro.sync.ecss.extensions.docbook.link.DocbookLinkTextResolver` (the Java code for the entire DocBook customization is present in a subfolder in the Oxygen SDK).

5. Pack your extension classes in a JAR (on page 3283) file. Copy the JAR to: `{OXYGEN_INSTALL_DIR}\frameworks\docbook\custom.jar`.


7. Open the Preferences dialog box (Options > Preferences) (on page 79) and go to Document Type Association. Edit the DocBook 4 document type. In the Classpath list add the path to the new JAR. In the extensions list select your custom extension instead of the regular DocBook one.

8. You can rename the document type and the docbook framework folder to something else (such as custom_docbook) and share it with others. A document type can also be installed using the add-on support (on page 2372).

### Impose Custom Options for Authors

#### Question

How to enable Track Changes (on page 3288) at startup?

#### Answer

There are two ways to enable Track Changes for every document that you open:

1. You could customize the default options (on page 262) that are used by your authors and set the Track Changes - Initial State option (on page 140) to Always On.

2. Use an API to toggle the Track Changes state after a document is opened in Author mode:

```java
// Check the current state of Track Changes
boolean trackChangesOn = authorAccess.getReviewController().isTrackingChanges();
if (!trackChangesOn) {
    // Set Track Changes state to On
    authorAccess.getReviewController().toggleTrackChanges();
}
```
Insert an Element with all the Required Content

Question

I am inserting a DITA image element using the API that points to a certain resource and has required content. Can the required content be automatically inserted by the application?

Answer

The API ro.sync.ecss.extensions.api.AuthorSchemaManager can propose valid elements that can be inserted at the specific offset. Using the method AuthorSchemaManager.createAuthorDocumentFragment(CIElement), you can convert the proposed elements to document fragments (on page 3281) (which have all the required content filled in) that can then be inserted in the document.

```java
ing AuthorSchemaManager schemaManager =
      this.authorAccess.getDocumentController().getAuthorSchemaManager();

    WhatElementsCanGoHereContext context =
      schemaManager.createWhatElementsCanGoHereContext (
      this.authorAccess.getEditorAccess().getCaretOffset());

    List<CIElement> possibleElementsAtCaretPosition =
      schemaManager.whatElementsCanGoHere(context);

    loop: for (int i = 0; i < possibleElementsAtCaretPosition.size(); i++) {
        CIElement possibleElement = possibleElementsAtCaretPosition.get(i);
        List<CIAttribute> attrs = possibleElement.getAttributes();
        if (attrs != null) {
            for (int j = 0; j < attrs.size(); j++) {
                CIAttribute ciAttribute = attrs.get(j);
                if (ciAttribute.getName().equals("class") ) {
                    if (ciAttribute.getDefaultValue() != null &&
                        ciAttribute.getDefaultValue().contains("  topic/image ") ) {
                        //Found a CIElement for image
                        //Create a fragment that contains all required child elements already built.
                        AuthorDocumentFragment frag =
                          schemaManager.createAuthorDocumentFragment(possibleElement);
                        //Now set the @href to it.
                        //Ask the user and obtain a value for the @href
                        //Then:
```
String href = "test.png";
List<AuthorNode> nodes = frag.getContentNodes();
if (!$nodes.isEmpty()) {
    AuthorElement imageEl = (AuthorElement) nodes.get(0);
    imageEl.setAttribute("href", new AttrValue(href));
}
//And insert the fragment.
this.authorAccess.getDocumentController().insertFragment
(this.authorAccess.getEditorAccess().getCaretOffset(), frag);
break loop;
}
/**
 * @see WSEditorChangeListener#editorOpened(java.net.URL)
 */

@Override
public void editorOpened(URL editorLocation) {
    WSEditor openedEditor = pluginWorkspaceAccess.getCurrentEditorAccess
            (StandalonePluginWorkspace.MAIN_EDITING_AREA);
    if (openedEditor.getCurrentPage() instanceof WSAuthorEditorPage) {
        WSAuthorEditorPage authPage = (WSAuthorEditorPage)
                openedEditor.getCurrentPage();
        WSEditorDocumentController docController =
                authPage.getDocumentController();
        try {
            //All changes will be undone by pressing Undo once.
            docController.beginCompoundEdit();
            fixupImageRefs(docController,
                    docController.getAuthorDocumentNode());
        } finally {
            docController.endCompoundEdit();
        }
    }

    private void fixupImageRefs
            (AuthorDocumentController docController, AuthorNode authorNode) {
        if (authorNode instanceof AuthorParentNode) {
            //Recurse
            List<AuthorNode> contentNodes =
                    ((AuthorParentNode)authorNode).getContentNodes();
            if (contentNodes != null) {
                for (int i = 0; i < contentNodes.size(); i++) {
                    fixupImageRefs(docController, contentNodes.get(i));
                }
            }
        }
        if (authorNode.getType() == AuthorNode.NODE_TYPE_ELEMENT) {
            AuthorElement elem = (AuthorElement) authorNode;
            if ("image".equals(elem.getLocalName())) {
                if (elem.getAttribute("href") != null) {
                    String originalHref = elem.getAttribute("href").getValue();
                }
            }
        }
    }
}
2. An API to open XML documents in the application:

```java
ro.sync.exml.workspace.api.Workspace.open(URL)
```

So you can create a plugin that automatically opens XML documents one at a time from a certain folder in the application, makes modifications to them, and saves the content by calling:

```java
ro.sync.exml.workspace.api.editor.WSEditorBase.save()
```

then closes the editor by calling:

```java
ro.sync.exml.workspace.api.Workspace.close(URL)
```

Modify the XML Content on Save

**Question**

Is it possible to get Oxygen XML Editor to update the revised date on a DITA document when it is saved?

**Answer**

The Plugins SDK contains a sample plugin type called **WorkspaceAccess**. Such a plugin is notified when the application starts.

You can add a listener that notifies you before the user saves an XML document. Then if the XML document is opened in the **Author** visual editing mode you can use the **Author API** to change attributes before the save takes place:

```java
@Override
public void applicationStarted(final StandalonePluginWorkspace pluginWorkspaceAccess) {
    pluginWorkspaceAccess.addEditorChangeListener
```
```java
(new WSEditorChangeListener(){
    //An editor was opened
    @Override
    public void editorOpened(URL editorLocation) {
        final WSEditor editorAccess = pluginWorkspaceAccess.getEditorAccess(editorLocation, PluginWorkspace.MAIN_EDITING_AREA);
        if(editorAccess != null){
            editorAccess.addEditorListener(new ro.sync.exml.workspace.api.listeners.WSEditorListener(){
                //Editor is about to be saved
                @Override
                public boolean editorAboutToBeSavedVeto(int operationType) {
                    if(EditorPageConstants.PAGE_AUTHOR.equals(editorAccess.getCurrentPageID())){
                        WSAuthorEditorPage authorPage = (WSAuthorEditorPage) editorAccess.getCurrentPage();
                        AuthorDocumentController controller = authorPage.getDocumentController();
                        try {
                            //Find the revised element
                            AuthorNode[] nodes = controller.findNodesByXPath("//revised", true, true, true);
                            if(nodes != null && nodes.length > 0){
                                AuthorElement revised = (AuthorElement) nodes[0];
                                //Set the modified attribute to it...
                                controller.setAttribute("modified", new AttrValue(new Date().toString()), revised);
                            }
                        } catch (AuthorOperationException e) {
                            e.printStackTrace();
                        }
                    }
                }
            });
        }
    }
}, PluginWorkspace.MAIN_EDITING_AREA);
```
Multiple Rendering Modes for the Same Document in Author Mode

**Question**

How can I add multiple buttons, each showing a different visualization mode of the same document in Author mode?

**Answer**

In the toolbar in Author mode, there is a Styles drop-down menu that contains alternate CSS styles (on page 3279) for the same document. To add an alternate CSS stylesheet, open the Preferences dialog box (Options > Preferences) (on page 79), go to Document Type Association, select the document type associated with your documents and press Edit. In the Document Type configuration dialog box (on page 95) that appears, go to the Author tab, and in the CSS subtab add references to alternate CSS stylesheets.

For example, one of the alternate CSS stylesheets offered for the DITA document type is located here (by default):

```
[OXYGEN_INSTALL_DIR]/frameworks/dita/css_classed/hideColspec.css
```

If you open it, you will see that it imports the main CSS (on page 3284) and then adds selectors of its own.

Obtain a DOM Element from AuthorNode or AuthorElement

**Question**

Can a DOM Element be obtained from an AuthorNode or an AuthorElement?

**Answer**

No, a DOM Element cannot be obtained from an AuthorNode or an AuthorElement. The AuthorNode structure is also hierarchical but the difference is that all the text content is kept in a single text buffer instead of having individual text nodes.

There is an image in the Javadoc documentation that explains this situation: https://www.oxygenxml.com/InstData/Editor/SDK/javadoc/ro/sync/ecss/extensions/api/node/AuthorDocumentFragment.html
Obtain the Currently Selected Element Using the Author API

Question

In Author mode, if an element is fully selected, I want to perform an action on it. If not, I want to perform an action on the node that is located at the cursor position. Is this possible via the API?

Answer

When an element is fully selected by the user the selection start and end offsets are actually outside of the node's offset bounds. So using AuthorDocumentController.getNodeAtOffset will actually return the parent of the selected node. A special API is available that makes it easier for you to determine this situation: WSAuthorEditorPageBase.getFullySelectedNode().

```java
AuthorDocumentController controller = authorPageAccess.getDocumentController();
AuthorAccess authorAccess = authorPageAccess.getAuthorAccess();

int caretOffset = authorAccess.getEditorAccess().getCaretOffset();

AuthorElement nodeAtCaret = (AuthorElement) authorAccess.getEditorAccess().getFullySelectedNode();

if (nodeAtCaret == null) {
    // We have no fully selected node. We can look at the cursor offset.
    nodeAtCaret = (AuthorElement) authorAccess.getDocumentController().getNodeAtOffset(caretOffset);
    // Or we could look at the selection start and end, see which node is the parent of each offset and get the closest common ancestor.
}
```

Open a Document in Oxygen from Another Application

⚠️ Restriction: This feature is currently only available for Mac OS X users.

The Oxygen XML Editor installation kit for Mac OS X comes with a special protocol handler that can be used if you want to open remote resources in the application (for example, opening a file from a CMS). The protocol is edit-in-oxygen and you can use it from a command line like this:

```
open edit-in-oxygen:protocol://host/path/file.xml
```

For example, if you start the following from the command line:
Run XSLT or XQuery Transformations

Question

Can I run XSL 2.0 / 3.0 transformation with Saxon EE using the Oxygen SDK?

Answer

The API class `ro.sync.exml.workspace.api.util.XMLUtilAccess` allows you to create an XSLT Transformer that implements the JAXP interface `javax.xml.transform.Transformer`. Then this type of transformer can be used to transform XML. Here's just an example of transforming when you have an `AuthorAccess` API available:

```java
InputSource is = new org.xml.sax.InputSource
(URLUtil.correct(new File("test/personal.xsl")).toString());
xslSrc = new SAXSource(is);
javax.xml.transform.Transformer transformer =
authorAccess.getXMLUtilAccess().createXSLTTransformer(xslSrc, null, AuthorXMLUtilAccess.TRANSFORMER_SAXON.EnterpriseEdition);
transformer.transform(new StreamSource(new File("test/personal.xml")),
new StreamResult(new File("test/personal.html")));
```

If you want to create the transformer from the plugin side, you can use this method instead: `ro.sync.exml.workspace.api.PluginWorkspace.getXMLUtilAccess()`.

Save a New Document with a Predefined File Name Pattern

Question

Is it possible to get Oxygen XML Editor to automatically generate a file name comprising a UUID plus file extension using the SDK?

Answer

This could be done implementing a plugin (on page 3285) for Oxygen XML Editor using the Plugins SDK.
There is a type of plugin called *Workspace Access* that can be used to add a listener to be notified before an opened editor is saved. The implemented plugin would intercept the save events when a newly created document is untitled and display an alternative chooser dialog box, then save the topic with the proper name.

The Java code would look like this:

```java
private static class CustomEdListener extends WSEditorListener{
    private final WSEditor editor;
    private final StandalonePluginWorkspace pluginWorkspaceAccess;
    private boolean saving = false;

    public CustomEdListener(StandalonePluginWorkspace pluginWorkspaceAccess, WSEditor editor) {
        this.pluginWorkspaceAccess = pluginWorkspaceAccess;
        this.editor = editor;
    }

    @Override
    public boolean editorAboutToBeSavedVeto(int operationType) {
        if (!saving &&
            editor.getEditorLocation().toString().contains("Untitled") ) {
            File chosenDir = pluginWorkspaceAccess.chooseDirectory();
            if(chosenDir != null) {
                final File chosenFile =
                    new File(chosenDir, UUID.randomUUID().toString() + ".dita");
                SwingUtilities.invokeLater(new Runnable() {
                    @Override
                    public void run() {
                        try {
                            saving = true;
                            editor.saveAs(new URL(chosenFile.toURI().toASCIIString()));
                        } catch (MalformedURLException e) {
                            e.printStackTrace();
                        } finally {
                            saving = false;
                        }
                    }
                });
        }
        //Reject the original save request.
    }
}
```
    return false;
}
    return true;
}

@Override
    public void applicationStarted
        (final StandalonePluginWorkspace pluginWorkspaceAccess) {
            pluginWorkspaceAccess.addEditorChangeListener(new WSEditorChangeListener() {
                @Override
                public void editorOpened(URL editorLocation) {
                    final WSEditor editor = pluginWorkspaceAccess.getEditorAccess(editorLocation, PluginWorkspace.MAIN_EDITING_AREA);
                    if(editor != null && editor.getEditorLocation().toString().contains("Untitled")) {
                        //Untitled editor
                        editor.addEditorListener(new CustomEdListener(pluginWorkspaceAccess, editor));
                    }
                }
            }, PluginWorkspace.MAIN_EDITING_AREA);
        ................................................................................................

Split Paragraph on Enter (Instead of Showing Content Completion List)

**Question**

Is it possible to split the paragraph on Enter instead of showing the content completion list?

**Answer**

Yes, it is possible by creating your own custom operation.

To obtain this behavior, follow this procedure:

1. Create a custom **Author mode operation** *(on page 2476)* that handles the split. You can use the `AuthorDocumentController.split` API to achieve this.
2. Create a JAR library that contains its compiled version.
3. **Open the Preferences dialog box (Options > Preferences) (on page 79), go to Document Types Association, and select your framework.**

4. **Click Edit and in the Document Type configuration dialog box (on page 95), go to the Classpath tab (on page 99) and add a reference to the JAR library for your custom operation.**

5. Go to the Author tab, then go to the Actions subtab.

6. Click the **New** button and use the Action dialog box (on page 102) to create your own paragraph split action.

7. Make sure you assign **Enter** as the **Shortcut Key** and specify your custom operation in the Operations section.

---

**Result:** Now, when you press **Enter**, your Java operation will be invoked to split the paragraph instead of opening the **Content Completion Assistant**.

**Tip:** The **Content Completion Assistant** can still be invoked by using the **Ctrl+Space** keyboard shortcut.

---

**Use Custom Rendering Styles for Entity References, Comments, or PIs**

**Problem**

Is there a way to display entity references in the **Author** mode without the distinct gray background and tag markers?

**Solution**

There is a built-in CSS stylesheet in the Oxygen XML Editor libraries that is used when styling content in the **Author** mode, no matter what CSS you use. This CSS has the following content:

```css
@namespace oxy url('http://www.oxygenxml.com/extensions/author');
@namespace xi "http://www.w3.org/2001/XInclude";
@namespace xlink "http://www.w3.org/1999/xlink";
@namespace svg "http://www.w3.org/2000/svg";
@namespace mml "http://www.w3.org/1998/Math/MathML";

oxy|document {
    display:block !important;
}

oxy|cdata {
    display:morph !important;
    white-space:pre-wrap !important;
}
```
border-width: 0px !important;
margin: 0px !important;
padding: 0px !important;
}

oxy|processing-instruction {
    display: block !important;
    color: rgb(139, 38, 201) !important;
    white-space: pre-wrap !important;
    border-width: 0px !important;
    margin: 0px !important;
    padding: 0px !important;
}

oxy|comment {
    display: morph !important;
    color: rgb(0, 100, 0) !important;
    background-color: rgb(255, 255, 210) !important;
    white-space: pre-wrap !important;
    border-width: 0px !important;
    margin: 0px !important;
    padding: 0px !important;
}

oxy|reference:before,
oxy|entity[href]:before{
    link: attr(href) !important;
    text-decoration: underline !important;
    color: navy !important;

    margin: 2px !important;
    padding: 0px !important;
}

oxy|reference:before {
    display: morph !important;
    content: url(../images/editContent.gif) !important;
}

oxy|entity[href]:before{
display: morph !important;
content: url(../images/editContent.gif) !important;
}

oxy|reference,
oxy|entity {
  editable:false !important;
  background-color: rgb(240, 240, 240) !important;
  margin:0px !important;
  padding: 0px !important;
}

oxy|reference {
  display:morph !important;
}

oxy|entity {
  display:morph !important;
}

oxy|entity[href] {
  border: 1px solid rgb(175, 175, 175) !important;
  padding: 0.2em !important;
}

xi|include {
  display:block !important;
  margin-bottom: 0.5em !important;
  padding: 2px !important;
}

xi|include:before,
xi|include:after{
  display:inline !important;
  background-color:inherit !important;
  color:#444444 !important;
  font-weight:bold !important;
}

xi|include:before {
  content:url(../images/link.gif) attr(href)  !important;
In the CSS used for rendering the XML in Author mode, do the following:

1. Import the special Author mode namespace.
2. Use a special selector to customize the entity node.

Example:

```css
@namespace oxy url('http://www.oxygenxml.com/extensions/author');

oxy|entity {
    background-color: inherit !important;
    margin: 0px !important;
    padding: 0px !important;
    -oxy-display-tags:none;
}
```

You can overwrite styles in the predefined CSS to customize style comments, processing instructions, and CDATA sections. You can also customize the way xi:include elements are rendered.
18. Add-ons

Oxygen XML Editor offers various default add-ons that can be installed to provide additional functionality to Oxygen XML Editor. Some additional community submissions are also available, although community add-ons are not officially supported or endorsed. For more information see the Oxygen XML SDK Add-on Repositories web page.

This chapter contains information about the default add-ons that are available to install directly from Oxygen XML Editor.

To install one of the default add-ons, follow this procedure:

1. Go to Help > Install new add-ons to open an add-on selection dialog box.
2. Enter or paste `https://www.oxygenxml.com/InstData/Addons/default/updateSite.xml` in the Show add-ons from field or select it from the drop-down menu.
3. Select the add-on you want to install and click Next.
4. Restart the application.

Batch Converter Add-on

Oxygen XML Editor offers an add-on that contributes actions in the Tools menu and contextual menu to enable batch conversion between various formats. You can convert between the following formats:

- HTML to XHTML
- HTML to DITA
- Markdown to XHTML
- Markdown to DITA
- XML to JSON
- JSON to XML
- HTML to DocBook4
- HTML to DocBook5
- Markdown to DocBook4
- Markdown to DocBook5
- Excel to DITA

To install it the add-on, follow these instructions:
1. Go to **Help > Install new add-ons** to open an add-on selection dialog box.
2. Enter or paste `https://www.oxygenxml.com/InstData/Addons/default/updateSite.xml` in the **Show add-ons from** field or select it from the drop-down menu.
3. Select the **Batch Converter** add-on and click **Next**.
4. Select the **I accept all terms of the end user license agreement** option and click **Finish**.
5. Restart the application.

**Result:** A Batch Converter submenu will now be available in the **Tools** menu and in the contextual menu of the **Project** view. This submenu will contain a list of the various types of available conversions. Selecting one of the types of conversions will open a dialog box where you can configure options for the conversion.

For more information, see the details for this Batch Converter add-on in GitHub.

### CGM Image Support Add-on

Oxygen XML Editor offers two add-ons that provide experimental support for CGM 1.0 images. To allow the rendering of CGM images in **Author** mode, follow this procedure:

1. Go to **Help > Install new add-ons** to open an add-on selection dialog box.
2. Enter or paste `https://www.oxygenxml.com/InstData/Addons/default/updateSite.xml` in the **Show add-ons from** field or select it from the drop-down menu.
3. Select the **Oxygen CGM support** add-on and click **Next**.
4. Select the **I accept all terms of the end user license agreement** option and click **Finish**.
5. Restart the application.

**Result:** You should be able to see CGM images in **Author** mode.

For more information, see the details about this CGM Support add-on in GitHub.

### Alternate Method Using the ISOView Active X Component

⚠️ **Restriction:** This support will only work on 32 bit versions of Oxygen XML Editor.

If you already have the **ISOView Active X** component for Internet Explorer installed, you may want to use it to render CGM images instead of the components provided in the plugin described above.

To use your existing ISOView Active X component to render CCM images, follow these steps:

1. Go to **Help > Install new add-ons** to open an add-on selection dialog box.
2. Enter or paste `https://www.oxygenxml.com/InstData/Addons/default/updateSite.xml` in the **Show add-ons from** field or select it from the drop-down menu.
3. Select **CGM Form control (Active X-based)** plugin and click **Next**.
4. Select the **I accept all terms of the end user license agreement** option and click **Finish**.
5. Restart the application.
6. The **CGM Form Control** plugin automatically renders CGM files in DITA, DocBook, and XHTML, so for those **frameworks**, this step is not necessary. For other **frameworks (on page 3282)**, modify your CSS according to your particular **framework**.

If you have an XML:

```xml
<image href="MyCGMFile.cgm"/>
```

You need a CSS rule like this:

```css
image[href$=".cgm"],
image[href$=".CGM"]{
  content: oxy_editor(
    saHeavyFormControlClassName , "com.oxygenxml.activex.fctrl.ActiveXFormControl",
    href, oxy_url(oxy_base-uri() , attr(href)));
}
```

**Result:** After performing these steps, you should now be able to see CGM images in **Author** mode.

### Content Fusion Connector Add-on

Oxygen XML Editor includes an **Oxygen Content Fusion Connector** add-on that comes bundled and pre-installed. **Oxygen Content Fusion** is a flexible, intuitive collaboration platform designed to adapt to virtually any type of workflow that a collaborative team may use for their documentation review process. The add-on provides access to the **Show Content Fusion Tasks Manager** toolbar button. Clicking this button will open the **Content Fusion Tasks Manager** view where you can create tasks, manage them, attach documents, and upload them to the **Content Fusion** server. You can also go to **Window > Show View > Content Fusion Tasks Manager** to open the view. If the button is not displayed on the toolbar or the view is not listed in the **Show View** menu, see **Re-installing the Content Fusion Connector Add-on**.

To fully take advantage of all of the benefits and features, your organization will need an **Oxygen Content Fusion Enterprise Server**. This solution allows you to host, setup, and configure your own server and control your data. With this model, you are also able to upload custom frameworks and plugins, and to configure various settings. It is possible to evaluate **Content Fusion** free of charge, for a limited time. For more information, see the **Oxygen Content Fusion website**.
For more information about using Content Fusion in Oxygen XML Editor, see the Oxygen Content Fusion User Guide.

DITA Prolog Updater Add-on

Oxygen XML Editor offers an add-on that contributes a preferences page (Options > Preferences > Plugins > DITA Prolog Updater) that includes various options for updating the prolog section of a DITA topic or map.

Installing the Add-on

To install it the add-on, follow these instructions:

1. Go to Help > Install new add-ons to open an add-on selection dialog box.
2. Enter or paste https://www.oxygenxml.com/InstData/Addons/default/updateSite.xml in the Show add-ons from field or select it from the drop-down menu.
3. Select the DITA Prolog Updater add-on and click Next.
4. Select the I accept all terms of the end user license agreement option and click Finish.
5. Restart the application.

Result: The DITA Prolog Updater preferences page will now be available in Options > Preferences > Plugins.

DITA Prolog Updater Preferences Page

The contributed preferences page includes the following general options:

Author

Specifies the name of the author. By default, it is the system user name.

Date format

Specifies the format of the date that will be added in the prolog section. If the date format entered is invalid, the yyyy/MM/dd format is used by default.

These options are followed by the following options that can be set for DITA topics or maps (or both):

Enable automatic prolog update on save

When this option is selected, the prolog is updated anytime the document is saved.

Set creator name

When this option is selected, the author is set as the document’s creator in the prolog when the document is saved. This option is only applicable for new documents.
Set created date

When this option is selected, a created date is added to the prolog when the document is saved. This option is only applicable for new documents.

Update contributor names

When this option is selected, the author is set as a contributor in the prolog when the document is saved. This option is only applicable for already existing documents.

Update revised dates

When this option is selected, a revised date is added to the prolog when the document is saved. This option is only applicable for already existing documents.

For more information, see the details for this DITA Prolog Updater add-on in GitHub.

DITA OT 3.x Publishing Engine Add-on

Oxygen XML Editor offers an add-on that contributes an option in the DITA preferences page (Options > Preferences > DITA) to provide the ability to publish DITA content using DITA-OT 3.x, by default.

To install it the add-on, follow these instructions:

1. Go to Help > Install new add-ons to open an add-on selection dialog box.
2. Enter or paste https://www.oxygenxml.com/InstData/Addons/default/updateSite.xml in the Show add-ons from field or select it from the drop-down menu.
3. Select the DITA OT 3.x Publishing Engine add-on and click Next.
4. Select the I accept all terms of the end user license agreement option and click Finish.
5. Restart the application.

Result: The DITA preferences page will now include a radio button where you can select DITA-OT 3.x as the default publishing engine.

For more information, see the details for this DITA OT 3.x Publishing Engine add-on in GitHub.

DITA Translation Package Builder Add-on

Oxygen XML Editor offers an add-on that contributes contextual menu actions that help you build a translation package for DITA files that can be sent to translators. You can also extract the changed files back into your project once you receive the package back from the translators.

To install it the add-on, follow these instructions:

1. Go to Help > Install new add-ons to open an add-on selection dialog box.
2. Enter or paste https://www.oxygenxml.com/InstData/Addons/default/updateSite.xml in the Show add-ons from field or select it from the drop-down menu.
3. Select the Translation Package Builder add-on and click Next.
4. Select the I accept all terms of the end user license agreement option and click Finish.
5. Restart the application.

**Result:** A Translation Package Builder submenu will now be available in the contextual menu of the DITA Maps Manager. This submenu includes actions to generate a package of modified files that can be sent to translators, as well as an action to extract translated files back into your DITA project.

For more information, see the details for this Translation Package Builder add-on in GitHub.

---

**DocBook Checker Add-on**

Oxygen XML Editor offers an add-on that allows you to validate DocBook files. It reports issues such as broken internal and external links, problems with images, or profiling conditions that conflict with profiling preferences.

To install the add-on, follow these instructions:

1. Go to Help > Install new add-ons to open an add-on selection dialog box.
2. Enter or paste https://www.oxygenxml.com/InstData/Addons/default/updateSite.xml in the Show add-ons from field or select it from the drop-down menu.
3. Select the DocBook Checker add-on and click Next.
4. Select the I accept all terms of the end user license agreement option and click Finish.
5. Restart the application.

**Result:** A Check DocBook for Completeness action will now be available on the toolbar and in the contextual menu. This action opens a dialog box that offers various validation options for running a completeness check on the current DocBook document.

For more information, see the details for this DocBook Checker add-on in GitHub.

---

**Embed Images Add-on**

Oxygen XML Editor offers an add-on that contributes a contextual menu action to embed all images referenced in a DITA, DocBook, or XHTML document as base 64 encoded. This is helpful if you want to transfer a document with image references over media designed to deal with textual data (for example, uploading as a blog post or sending via email) and you want to ensure the data remains intact.

To install the add-on, follow these instructions:
1. Go to Help > Install new add-ons to open an add-on selection dialog box.
2. Enter or paste https://raw.githubusercontent.com/oxygenxml/oxygen-embed-images/master/addon.xml in the Show add-ons from field or select it from the drop-down menu.
3. Select the Oxygen Embed Images add-on and click Next.
4. Select the I accept all terms of the end user license agreement option and click Finish.
5. Restart the application.

**Result:** An **Embed all referenced images as Base64-encoded** action will now be available in the contextual menu when editing DITA, DocBook, or XHTML documents in **Author** mode.

---

**Excel XLSX Libraries Add-on**

To import spreadsheet data from Excel 2007 or newer (.xlsx), Oxygen XML Editor needs additional libraries from the Apache POI project. Oxygen XML Editor offers an add-on that provides this support.

To add this support, follow this procedure:

1. Go to Help > Install new add-ons to open an add-on selection dialog box.
2. Enter or paste https://www.oxygenxml.com/InstData/Addons/default/updateSite.xml in the Show add-ons from field or select it from the drop-down menu.
3. Select Excel XLSX libraries add-on and click Next.
4. Select the I accept all terms of the end user license agreement option and click Finish.
5. Restart the application.

**Result:** You can now use the **Import wizard** (on page 2279) to import data from Excel 2007 or newer.

---

**Related Information:**

- Exporting XML Content to Excel (on page 892)

---

**Git Support Add-on**

Oxygen XML Editor offers an add-on that contributes a built-in Git client directly into Oxygen XML Editor. Once this add-on is installed, a **Git Staging** view is available that includes various actions that perform common Git commands, such as push, pull, change branch, commit, and more. It also includes a built-in tool for comparing and merging changes.

To install it the add-on, follow these instructions:
1. Go to Help > Install new add-ons to open an add-on selection dialog box.
2. Enter or paste https://www.oxygenxml.com/InstData/Addons/default/updateSite.xml in the Show add-ons from field or select it from the drop-down menu.
3. Select the Git Support (Experimental) add-on and click Next.
4. Select the I accept all terms of the end user license agreement option and click Finish.
5. Restart the application.

Result: A Git Staging view will now be available in Oxygen XML Editor. If it is not visible, go to Window > Show View and select Git Staging. This view acts as a basic Git client integrated directly into Oxygen XML Editor and it provides support for committing changes to a Git repository, comparing and merging changes, and other Git commands.

For more information, see the details for this Git Support add-on in GitHub.

ICU4J Library Add-on

Oxygen XML Editor offers an add-on that provides the entire ICU4J JAR library used for sorting and collations with XSLT processors. The Saxon 9 XSLT processor has an xsl:sort element that can be used to sort elements based on their text content. If the XML elements contain text in exotic languages, Saxon needs a more powerful sort algorithm and this JAR library adds this capability.

To install it the add-on, follow these instructions:

1. Go to Help > Install new add-ons to open an add-on selection dialog box.
2. Enter or paste https://www.oxygenxml.com/InstData/Addons/default/updateSite.xml in the Show add-ons from field or select it from the drop-down menu.
3. Select the Contribute ICU4J Library add-on and click Next.
4. Select the I accept all terms of the end user license agreement option and click Finish.
5. Restart the application.

Result: The ICU4J library is now contributed to the Oxygen installation directory.

For more information, see the details for this Contribute ICU4J Library add-on in GitHub.

PDF Image Rendering Add-on

Starting with Oxygen XML Editor version 20.0, PDF images are rendered in Author mode and PDF output. For previous versions, they are not rendered by default. However, Oxygen XML Editor does provide an add-on that contributes the Apache PDFBox library to offer support for rendering of PDF images.
Installing the PDF Image Rendering Add-on

Oxygen XML Editor offers an add-on that contributes the Apache PDFBox library for you. To install this add-on, follow these steps:

1. Go to Help > Install new add-ons to open an add-on selection dialog box.
2. Enter or paste https://www.oxygenxml.com/InstData/Addons/default/updateSite.xml in the Show add-ons from field or select it from the drop-down menu.
3. Select the PDF Image Rendering add-on and click Next.
4. Select the I accept all terms of the end-user license agreement option and click Finish.
5. Restart the application.

Result: The Apache PDFBox libraries are now contributed to the Oxygen installation directory and you should be able to see PDF images in Author mode.

For more information, see the details about this PDF Image Rendering add-on in GitHub.

Saxon XSLT and XQuery Transformer Add-on

Oxygen XML Editor offers an add-on that installs an external Saxon XSLT and XQuery processor and allows you to validate and transform XSLT and XQuery documents with that external processor. The default add-on update site includes versions for Saxon 9.6, 9.7, 9.8, and 9.9.

To install it the add-on, follow these instructions:

1. Go to Help > Install new add-ons to open an add-on selection dialog box.
2. Enter or paste https://www.oxygenxml.com/InstData/Addons/default/updateSite.xml in the Show add-ons from field or select it from the drop-down menu.
3. Select one of the versions of the Saxon XSLT and XQuery Transformer add-on (9.6, 9.7, 9.8, or 9.9) and click Next.
4. Select the I accept all terms of the end user license agreement option and click Finish.
5. Restart the application.

Result: When you configure the validation or transformation scenario, you will now have the option to choose the particular Saxon transformer.

⚠️ Restriction: Debugging XSLT/XQuery transformations based on this engine is NOT supported.
XSpec Helper View Add-on

Oxygen XML Editor offers an add-on that contributes an **XSpec Test Results** view, that provides the ability to run XSpec test scenarios and view the results directly in the application.

To install the add-on, follow these instructions:

1. Go to **Help > Install new add-ons** to open the add-on selection dialog box.
2. Paste **https://www.oxygenxml.com/InstData/Addons/community/updateSite.xml** in the **Show add-ons from** field (or select it from the drop-down menu).
3. Select the **XSpec Helper View** and **XSpec Framework** add-ons (both are required), and click **Next**.
4. Select the **I accept all terms of the end user license agreement** option and click **Finish**.
5. Restart the application.

The add-on contributes a **Run XSpec test scenarios** button on the main toolbar. Click that button to execute an XSpec file and open its results in the **XSpec Test Results** view. At this point you can do the following:

- Switch to the XSLT and use the **Run** buttons in this view to execute a particular scenario.
- For each test, there is also a **Show** button that selects the corresponding test in the main editing area.
- For failed tests, you can click a particular test to open a diff comparison between the expected and actual results.

For more information, see the details for this **Oxygen XSpec Helper View** add-on in GitHub.
19.

Tools

Oxygen XML Editor includes a variety of helpful tools to help you accomplish XML-related tasks. This section presents many of those tools. These tools are available in the Tools menu and some of them can be launched through keyboard shortcuts or command-line scripts.

Refactoring XML Documents

In the life cycle of XML documents there are instances when the XML structure needs to be changed to accommodate various needs. For example, when an associated schema is updated, an attribute may have been removed, or a new element added to the structure.

These types of situations cannot be resolved with a traditional Find/Replace tool, even if the tool accepts regular expressions. The problem becomes even more complicated if an XML document is computed or referenced from multiple modules, since multiple resources need to be changed.

To assist you with these types of refactoring tasks, Oxygen XML Editor includes a specialized XML Refactoring tool that helps you manage the structure of your XML documents.

XML Refactoring Tool

The XML Refactoring tool is presented in the form of an easy to use wizard that is designed to reduce the time and effort required to perform various structure management tasks. For example, you can insert, delete, or rename an attribute in all instances of a particular element that is found in all documents within your project.

To access the tool, select the XML Refactoring action from one of the following locations:

- The Tools menu.
- The Refactoring submenu from the contextual menu in the Project view (on page 333).
- The Refactoring submenu from the contextual menu in the DITA Maps Manager view (on page 2990).

Note: The built-in refactoring operations are also available from the Refactoring submenu in the contextual menu of Author or Text mode. This is useful because by selecting the operations from the contextual menu, Oxygen XML Editor considers the editing context to skip directly to the wizard page of the appropriate operation and to help you by preconfiguring some of the parameter values.
For your convenience, the last 5 operations that were finished (on page 1142) or previewed (on page 1142) also appear in the Refactoring submenu of the contextual menu in the Project view and the DITA Maps Manager.

**XML Refactoring Wizard**

The XML Refactoring tool includes the following wizard pages:

**Refactoring operations**

The first wizard page presents the available operations, grouped by category. To search for an operation, you can use the filter text box at the top of the page.

![XML Refactoring Wizard](image)

**Configure Operation Parameters**

The next wizard page allows you to specify the parameters for the refactoring operation. The parameters are specific to the type of refactoring operation that is being performed. For example, to delete an attribute you need to specify the parent element and the qualified name of the attribute to be removed.
Scope and Filters

The last wizard page allows you to select the set of files that represent the input of the operation.

Scope section

In the Scope section, you can select from predefined resource sets (such as the current file, your whole project, the current DITA map (on page 3281) hierarchy for DITA projects, etc.) or you can define your own set of resources by creating a working set (on page 3288).

Filters
The Filters section includes the following options:

- **Include files** - Allows you to filter the selected resources by using a file pattern. For example, to restrict the operation to only analyze build files you could use `build*.xml` for the file pattern.
- **Restrict only to known XML file types** - When selected, only resources with a known XML file type will be affected by the operation.
- **Look inside archives** - When selected, the resources inside archives will also be affected.

**Preview**

You can use the Preview button to open a comparison panel where you can review all the changes that will be made by the refactoring operation before applying the changes.

**Finish**

After clicking the Finish button, the operation will be processed and Oxygen XML Editor provides no automatic means for reverting the operations. Any Undo action will only revert changes on the current document.

**Troubleshooting:** If an operation fails, a notification will be displayed in the Results panel with some information about the error. For example, if the operation was invoked on a read-only resource, the error will indicate that a read-only file cannot be converted.

**Tip:** If an operation takes longer than expected you can use the Stop button in the progress bar to cancel the operation.

**Restriction:** XML refactoring operations cannot preserve CDATA sections. If your document contains XML CDATA sections, the refactoring operations will convert them to plain text nodes.

**Built-in Refactoring Operations**

The XML Refactoring tool includes a variety of built-in operations that can be used for common refactoring tasks. They are grouped by category in the Refactoring operations wizard page. You can also access the operations from the Refactoring submenu in the contextual menu of Author or Text mode. The operations are also grouped by category in this submenu. When selecting the operations from the contextual menu, Oxygen XML Editor considers the editing context to get the names and namespaces of the current element or attribute, and uses this information to preconfigure some of the parameter values for the selected refactoring operation.
Tip: Each operation includes a link in the lower part of the wizard that opens the XML / XSLT-FO-XQuery / XPath preferences page where you can configure XPath options and declare namespace prefixes.

The following built-in operations are available:

**Refactoring Operations for Attributes**

**Add/Change attribute**

Use this operation to change the value of an attribute or insert a new one. This operation allows you to specify the following parameters:

**Parent element section**

- **Element**
  
  The parent element of the attribute to be changed, in the form of a local name from any namespace, a local name with a namespace prefix, or an XPath expression.

**Attribute section**

- **Local name**
  
  The local name of the affected attribute.

- **Namespace**
  
  The namespace of the affected attribute.

- **Value**
  
  The value for the affected attribute.

**Options section**

You can choose between one of the following options for the Operation mode:

- **Add the attribute in the parent elements where it is missing**
  
  Adds the attribute to all instances of the specified parent element.

- **Change the value in the parent elements where the attribute already exists**
  
  Replaces the value of the already existing attribute in all instance of the specified parent element.

- **Both**
Adds the attributes to the instances where it is missing and replaces the value in instances where the attribute already exists.

**Convert attribute to element**

Use this operation to convert a specified attribute to an element. This operation allows you to specify the following parameters:

**Parent element section**

**Element**

The parent element of the attribute to be converted, in the form of a local name from any namespace, a local name with a namespace prefix, or an XPath expression.

**Attribute section**

**Local name**

The local name of the affected attribute.

**Namespace**

The namespace of the affected attribute.

**New element section**

**Local name**

The local name of the new element.

**Namespace**

The namespace of the new element.

**Delete attribute**

Use this operation to remove one or more attributes. This operation requires you to specify the following parameters:

**Element**

The parent element of the attribute to be deleted, in the form of a local name from any namespace, a local name with a namespace prefix, or an XPath expression.

**Attribute**

The name of the attribute to be deleted.

**Rename attribute**
Use this operation to rename an attribute. This operation requires you to specify the following parameters:

**Element**

The parent element of the attribute to be renamed, in the form of a local name from any namespace, a local name with a namespace prefix, or an XPath expression.

**Attribute**

The name of the attribute to be renamed.

**New local name**

The new local name of the attribute.

**Replace in attribute value**

Use this operation to search for a text fragment inside an attribute value and change the fragment to a new value. This operation allows you to specify the following parameters:

**Target attribute section**

**Element**

The parent element of the attribute to be modified, in the form of a local name from any namespace, a local name with a namespace prefix, or an XPath expression.

**Attribute**

The name of the attribute to be modified.

**Find / Replace section**

**Find**

The text fragments to find. You can use Perl-like regular expressions.

**Replace with**

The text fragment to replace the target with. This parameter can bind regular expression capturing groups ($1, $2, etc.) from the find pattern.

**Refactoring Operations for Comments**

**Delete comments**
Use this operation to delete comments from one or more elements. This operation requires you specify the following parameter:

**Element**

The target element (or elements) for which comments will be deleted, in the form of a local name from any namespace, a local name with a namespace prefix, or an XPath expression.

**Note:** Comments that are outside the root element will not be deleted because the serializer preserves the content before and after the root.

---

**Refactoring Operations for DITA**

**Change topic ID to file name**

Use this operation to change the ID of a topic to be the same as its file name.

**Convert CALS tables to simple tables**

Use this operation to convert DITA CALS tables to simple tables.

**Convert conrefs to conkeyrefs**

Use this operation to convert `conref` attributes to `conkeyref` attributes. For more information and instructions for using this operation, see Converting Conrefs to Conkeyrefs (on page 3133).

**Convert simple tables to CALS tables**

Use this operation to convert DITA simple tables to CALS tables.

**Convert Nested Topics to New Topics (Available from the contextual menu of editable maps/nodes in the DITA Maps Manager (on page 2990))**

Use this operation on topics that contain nested `<topic>` elements to convert each nested topic to a new topic. Also, the new topics are added in the DITA Maps Manager as the first child topics of the original topic.

**Convert Sections to New Topics (Available from the contextual menu of editable maps/nodes in the DITA Maps Manager (on page 2990))**

Use this operation on topics that contain multiple sections to convert each section to a new topic. Also, the new topics are added in the DITA Maps Manager as the first child topics of the original topic.

**Convert to Concept**

Use this operation to convert a DITA topic (of any type) to a DITA Concept topic type (for example, Topic to Concept). For more information, see Converting DITA Topics to Another Type (on page 3059).
Convert to General Task

Use this operation to convert a DITA topic (of any type) to a DITA General Task topic type (for example, Task to General Task). For more information, see Converting DITA Topics to Another Type (on page 3059).

Convert to Reference

Use this operation to convert a DITA topic (of any type) to a DITA Reference topic type (for example, Topic to Reference). For more information, see Converting DITA Topics to Another Type (on page 3059).

Convert to Task

Use this operation to convert a DITA topic (of any type) to a DITA Task topic type (for example, Topic to Task). For more information, see Converting DITA Topics to Another Type (on page 3059).

Convert to Topic

Use this operation to convert a DITA topic (of any type) to a DITA Topic (for example, Task to Topic). For more information, see Converting DITA Topics to Another Type (on page 3059).

Convert to Troubleshooting

Use this operation to convert a DITA topic (of any type) to a DITA Troubleshooting topic type (for example, Topic to Troubleshooting). For more information, see Converting DITA Topics to Another Type (on page 3059).

Rename Key

Use this operation to rename a key. It also updates all references to it. Note that it does not work on DITA 1.3 key scopes.

All of these DITA refactoring actions allow you to choose a scope for the operation and some filters:

Scope

Select from a variety of options to define the scope for which resources will be affected by the operation. For example, you can choose to affect all resources in the Project, All opened files, Current DITA map hierarchy, or just the Current file.

Filters section

Include files

Specifies files to be excluded from the operation. You can specify multiple files by separating them with commas and the patterns can include wildcards (such as * or ?).

Restrict to known XML file types only
Excludes non-XML file types from the operation.

**Look inside archives**

If this option is selected, the scope of the operation will include files inside archives.

### Refactoring Operations for *Elements*

#### Delete element

Use this operation to delete elements. This operation requires you to specify the following parameter:

**Element**

The target element to be deleted, in the form of a local name from any namespace, a local name with a namespace prefix, or an XPath expression.

#### Delete element content

Use this operation to delete the content of elements. This operation requires you to specify the following parameter:

**Element**

The target element whose content is to be deleted, in the form of a local name from any namespace, a local name with a namespace prefix, or an XPath expression.

#### Insert element

Use this operation to insert new elements. This operation allows you to specify the following parameters:

**Element section**

**Local name**

The local name of the element to be inserted.

**Namespace**

The namespace of the element to be inserted.

**Location section**

**XPath**
An XPath expression that identifies an existing element to which the new element is relative, in the form of a local name from any namespace, a local name with a namespace prefix, or other XPath expressions.

**Position**

The position where the new element will be inserted, in relation to the specified existing element. The possible selections in the drop-down menu are: **After**, **Before**, **First child**, or **Last child**.

**Rename element**

Use this operation to rename elements. This operation requires you to specify the following parameters:

**Target elements (XPath)**

The target elements to be renamed, in the form of a local name from any namespace, a local name with a namespace prefix, or other XPath expressions.

**New local name**

The new local name of the element.

**Unwrap element**

Use this operation to remove the surrounding tags of elements, while keeping the content unchanged. This operation requires you to specify the following parameter:

**Target elements (XPath)**

The target elements whose surrounding tags will be removed, in the form of a local name from any namespace, a local name with a namespace prefix, or other XPath expressions.

**Wrap element**

Use this operation to surround elements with element tags. This operation allows you to specify the following parameters:

**Target elements (XPath)**

The target elements to be surrounded with tags, in the form of a local name from any namespace, a local name with a namespace prefix, or other XPath expressions.

**Wrapper element section**
Local name
The local name of the Wrapper element.

Namespace
The namespace of the Wrapper element.

Wrap element content
Use this operation to surround the content of elements with element tags. This operation allows you to specify the following parameters:

Target elements (XPath)
The target elements whose content will be surrounded with tags, in the form of a local name from any namespace, a local name with a namespace prefix, or other XPath expressions.

Wrapper element section

Local name
The local name of the Wrapper element that will surround the content of the target.

Namespace
The namespace of the Wrapper element that will surround the content of the target.

Refactoring Operations for Fragments

Insert XML fragment
Use this operation to insert an XML fragment. This operation allows you to specify the following:

XML Fragment
The XML fragment to be inserted.

Location section

XPath
An XPath expression that identifies an existing element to which the inserted fragment is relative, in the form of a local name from any namespace, a local name with a namespace prefix, or other XPath expressions.

Position
The position where the fragment will be inserted, in relation to the specified existing element. The possible selections in the drop-down menu are: After, Before, First child, or Last child.

Replace element content with XML fragment

Use this operation to replace the content of elements with an XML fragment. This operation allows you to specify the following parameters:

**Target elements (XPath)**

The target elements whose content will be replaced, in the form of a local name from any namespace, a local name with a namespace prefix, or other XPath expressions.

**XML Fragment**

The XML fragment with which to replace the content of the target element.

Replace element with XML fragment

Use this operation to replace elements with an XML fragment. This operation allows you to specify the following parameters:

**Target elements (XPath)**

The target elements to be replaced, in the form of a local name from any namespace, a local name with a namespace prefix, or other XPath expressions.

**XML Fragment**

The XML fragment with which to replace the target element.

Refactoring Operations for **JATSKit**

**Add BITS DOCTYPE - NLM/NCBI Book Interchange 2.0**

Use this operation to add an NLM 'BITS' 2.0 DOCTYPE declaration.

**Add Blue DOCTYPE - NISO JATS Publishing 1.1**

Use this operation to add a JATS 'Blue' 1.1 DOCTYPE declaration.

**Normalize IDs**

Use this operation to normalize assigned IDs and assigned IDs to elements that are missing them.

All of these JATSKit refactoring actions allow you to choose a scope for the operation and some filters:
Scope

Select from a variety of options to define the scope for which resources will be affected by the operation. For example, you can choose to affect all resources in the Project, All opened files, or just the Current file.

Filters section

Include files

Specifies files to be excluded from the operation. You can specify multiple files by separating them with commas and the patterns can include wildcards (such as * or ?).

Restrict to known XML file types only

Excludes non-XML file types from the operation.

Look inside archives

If this option is selected, the scope of the operation will include files inside archives.

Refactoring Operations for Publishing Template

These operations are for those who use Oxygen Publishing Templates for WebHelp Responsive output customization.

Migrate HTML Page Layout Files to v21

Use this operation to convert custom HTML page layout files (on page 1909) that are included in a custom Publishing Template that was created in Oxygen XML Editor version 20.0 or 20.1 so that they will be compatible with Oxygen XML Editor version 21.0.

Update HTML Pages

⚠️ Attention: This operation is only used by Oxygen XML Editor and should not be used manually.

Additional Notes

فاقيت: There are some operations that allow <ANY> for the local name and namespace parameters. This value can be used to select an element or attribute regardless of its local name or namespace. Also, the <NO_NAMESPACE> value can be used to select nodes that do not belong to a namespace.

فاقيت: Some operations have parameters that accept XPath expressions to match elements or attributes. In these XPath expressions you can only use the prefixes declared in the Options >
Preferences > XML > XSLT-FO-XQUERY > XPath (on page 214) page. This preferences page can be easily opened by clicking the link in the note *(Each prefix used in an XPath expression must be declared in the Default prefix-namespace mappings section)* at the bottom of the Configure Operation Parameters wizard page.

Custom Refactoring Operations

While Oxygen XML Editor includes a variety of built-in XML refactoring operations to help you accomplish particular tasks, you can also create custom operations according to your specific needs. For example, you could create a custom refactoring operation to convert an attribute to an element and insert the element as the first child of the parent element.

An XML Refactoring operation is defined as a pair of resources:

- An *XQuery Update script* or *XSLT stylesheet* that Oxygen XML Editor will run to refactor the XML files.
- An *XML Operation Descriptor* file that contains information about the operation (such as the name, description, and parameters).

Figure 741. Diagram of an XML Refactoring Operation

All the defined custom operations are loaded by the XML Refactoring Tool and presented in the Refactoring Operations wizard page (on page 1140), along with the built-in operations.
After the user chooses an operation and specifies its parameters, Oxygen XML Editor processes an XQuery Update or XSLT transformation over the input file. This transformation is executed in a **safe mode**, which implies the following:

- **When loading the document:**
  - The **XInclude** mechanism is disabled. This means that the resources included by using XInclude will not be visible in the transformation.
  - The DTD entities will be processed without being expanded.
  - The associated DTD will be not loaded, so the default attributes declared in the DTD will not be visible in the transformation.

- **When saving the updated XML document:**
  - The **DOCTYPE** will be preserved.

  **Note:** This can be changed using **Saxon extension functions in XSLT (on page 1170)**.
  - The DTD entities will be preserved as they are in the original document when the document is saved.
  - The attribute values will be kept in their original form without being normalized.
  - The spaces between attributes are preserved. Basically, the spaces are lost by a regular XML serialization since they are not considered important.

The result of this transformation overrides the initial input file.

**Note:** To achieve some of the previous goals, the XML Refactoring mechanism adds several attributes that are interpreted internally. The attributes belong to the `http://www.oxygenxml.com/ns/xmlRefactoring/additional_attributes` namespace. These attributes should not be taken into account when processing the input XML document since they are discarded when the transformed document is serialized.

**Restriction:** **Comments or processing instructions** that are in any node before or after the root element cannot be modified by an XML Refactoring operation. In other words, XML Refactoring operations can only be applied on the root element and the nodes inside it. However, as a work around to this limitation, you can use **Saxon extension functions and the XSLT stylesheet method (on page 1170)** to implement the new custom XML refactoring operation.

### Creating a Custom Refactoring Operation

To create a custom refactoring operation, follow these steps:

1. Create an **XQuery Update script (on page 1160)** or **XSLT stylesheet file (on page 1165)**.
2. Create an **XML Refactoring Operation Descriptor** file contains the path to the **XQuery Update script (on page 1163)** or **XSLT stylesheet (on page 1168)**.
3. Store both files in one of the locations that Oxygen XML Editor (on page 1172) scans when loading the custom operations.

**Result:** Once you run the XML Refactoring tool again, the custom operation appears in the Refactoring Operations wizard page (on page 1140).

### Related Information:
- Storing and Sharing Refactoring Operations (on page 1172)

### Custom Refactoring Script

The first step in creating a custom refactoring operation is to create an XQuery Update script (on page 1160) or XSLT stylesheet (on page 1165) that is needed to process the refactoring operations. The easiest way to create this script file is to use the New document wizard to create a new XQuery or XSLT file and you can use the XQuery method example (on page 1160) or XSLT method example (on page 1165) to help you with the content.

There are cases when it is necessary to add parameters in the XQuery script (on page 1160) or XSLT stylesheet (on page 1165). For instance, if you want to rename an element, you may want to declare an external parameter associated with the name of the element to be renamed. To allow you to specify the value for these parameters, they need to be declared in the refactoring operation descriptor file that is associated with this operation.

**Note:** The XQuery Update processing is disabled by default in Oxygen XML Editor. Thus, if you want to create or edit an XQuery Update script you have to enable this mechanism by creating an XQuery transformation scenario (on page 1749) and choose Saxon EE as the transformation engine. Also, you need to make sure the Enable XQuery update option is selected in the Saxon processor advanced options (on page 1696).

**Note:** If you are using an XSLT file, XPath expressions that are passed as parameters will automatically be rewritten to conform with the mapping of the namespace prefixes declared in the XML /XSLT-FO-XQuery / XPath preferences page (on page 214).

The next step in creating a custom refactoring operation is to create an XML Refactoring Operation Descriptor file contains the path to the XQuery Update script (on page 1163) or XSLT stylesheet (on page 1168).

### Related Information:
- XQuery Update Script for Creating a Custom Operation (on page 1160)
Custom Refactoring Operation Descriptor File

The second step in creating a custom refactoring operation is to create an operation descriptor file. The easiest way to do this is to use the New document wizard and choose the XML Refactoring Operation Descriptor template.

Introduction to the Descriptor File

This file contains information (such as name, description, and id) that is necessarily when loading an XML Refactoring operation. It also contains the path to the XQuery Update script (on page 1160) or XSLT stylesheet (on page 1165) that is associated with the particular operation through the script element.

You can specify a category for your custom operations to logically group certain operations. The category element is optional and if it is not included in the descriptor file, the default name of the category for the custom operations is Other operations.

The descriptor file is edited and validated against the following schema: frameworks/xml_refactoring/operation_descriptor.xsd.

Declaring Parameters in the Descriptor File

If the XQuery Update script or XSLT stylesheet includes parameters, they should be declared in the parameters section of the descriptor file. All the parameters specified in this section of the descriptor file will be displayed in the XML Refactoring tool within the Configure Operation Parameters wizard page (on page 1140) for that particular operation.

The value of the first description element in the parameters section will be displayed at the top of the Configure Operation Parameters wizard page (on page 1140).

To declare a parameter, specify the following information:

- **label** - This value is displayed in the user interface for the parameter.
- **name** - The parameter name used in the XQuery Update script or XSLT stylesheet and it should be the same as the one declared in the script.
- **type** - Defines the type of the parameter and how it will be rendered. There are several types available:
  - **TEXT** - Generic type used to specify a simple text fragment.
**XPATH** - Type of parameter whose value is an XPATH expression. For this type of parameter, Oxygen XML Editor will use a text input with corresponding content completion and syntax highlighting.

**Note:** The value of this parameter is transferred as plain text to the XQuery Update or XSLT transformation without being evaluated. You should evaluate the XPath expression inside the XQuery Update script or XSLT stylesheet. For example, you could use the `saxon:evaluate` Saxon extension function.

**Note:** A relative XPath expression is converted to an absolute XPath expression by adding `//` before it (`//XPathExp`). This conversion is done before transferring the XPath expression to the XML refactoring engine.

**Note:** When writing XPath expressions, you can only use prefixes declared in the Options > Preferences > XML > XSLT-FO-XQUERY > XPath (on page 214) options page.

- **NAMESPACE** - Used for editing namespace values.
- **REG_EXP_FIND** - Used when you want to match a certain text by using Perl-like regular expressions.
- **REG_EXP_REPLACE** - Used along with **REG_EXP_FIND** to specify the replacement string.
- **XML_FRAGMENT** - This type is used when you want to specify an XML fragment. For this type, Oxygen XML Editor will display a text area specialized for inserting XML documents.
- **NC_NAME** - The parameter for NC_NAME values. It is useful when you want to specify the local part of a QName (on page 3286) for an element or attribute.
- **BOOLEAN** - Used to edit boolean parameters.
- **TEXT_CHOICE** - It is useful for parameters whose value should be from a list of possible values. Oxygen XML Editor renders each possible value as a radio button option.

- **description** - The description of the parameter. It is used by the application to display a tooltip when you hover over the parameter.
- **possibleValues** - Contains the list with possible values for the parameter and you can specify the default value, as in the following example:

```xml
<possibleValues onlyPossibleValuesAllowed="true">
    <value name="before">Before</value>
    <value name="after" default="true">After</value>
    <value name="firstChild">First child</value>
    <value name="lastChild">Last child</value>
</possibleValues>
```
Specialized Parameters to Match Elements or Attributes

If you want to match elements or attributes, you can use some specialized parameters, in which case Oxygen XML Editor will propose all declared elements or attributes based on the schema associated with the currently edited file. The following specialized parameters are supported:

**elementLocation**

This parameter is used to match elements. For this type of parameter, the application displays a text field where you can enter the element name or an XPath expression. The text from the `label` attribute is displayed in the application as the label of the text field. The `name` attribute is used to specify the name of the parameter from the XQuery Update script or XSLT stylesheet. If the value of the `useCurrentContext` attribute is set to `true`, the element name from the cursor position is used as proposed values for this parameter.

Example of an `elementLocation`:

```xml
<elementLocation name="elem_loc" useCurrentContext="false">
  <element label="Element location">
    <description>Element location description.</description>
  </element>
</ElementLocation>
```

**attributeLocation**

This parameter is used to match attributes. For this type of parameter, the application displays two text fields where you can enter the parent element name and the attribute name (both text fields accept XPath expressions for a finer match). The text from the `label` attributes is displayed in the application as the label of the associated text fields. The `name` attribute is used to specify the name of the parameter from the XQuery Update script or XSLT stylesheet. The value of this parameter is an XPath expression that is computed by using the values of the expression from the `element` and `attribute` text fields. For example, if `section` is entered for the element and a `title` is entered for the attribute, the XPath expression would be computed as `//section/@title`. If the value of the `useCurrentContext` attribute is set to `true`, the element and attribute name from the cursor position is used as proposed values for the operation parameters.

Example of an `attributeLocation`:

```xml
<attributeLocation name="attr_xpath" useCurrentContext="true">
  <element label="Element path"/>
</attributeLocation>
```
<description>Element path description.</description>
</element>

<attribute label="Attribute">
  <description>Attribute path description.</description>
</attribute>
</AttributeLocation>

elementParameter

This parameter is used to specify elements by local name and namespace. For this type of parameter, the application displays two combo boxes with elements and namespaces collected from the associated schema of the currently edited file. The text from the label attribute is displayed in the application as label of the associated combo. The name attribute is used to specify the name of the parameter from the XQuery Update script or XSLT stylesheet. If you specify the allowsAny attribute, the application will propose <ANY> as a possible value for the Name and Namespace combo boxes. You can also use the useCurrentContext attribute and if its value is set to true, the element name and namespace from the cursor position is used as proposed values for the operation parameters.

Example of an elementParameter:

```xml
<elementParameter id="elemID" useCurrentContext="true">
  <localName label="Name" name="element_localName" allowsAny="true">
    <description>Local name of the parent element.</description>
  </localName>

  <namespace label="Namespace" name="element_namespace" allowsAny="true">
    <description>Local name of the parent element</description>
  </namespace>
</elementParameter>
```

attributeParameter

This parameter is used to specify attributes by local name and namespace. For this type of parameter, the application displays two combo boxes with attributes and their namespaces collected from the associated schema of the currently edited file. The text from the label attribute is displayed in the application as the label of the associated combo box. You can also use the useCurrentContext attribute and if its value is set to true, the attribute name and namespace from the cursor position is used as proposed values for the operation parameters.
**Note:** An attributeParameter is dependant upon an elementParameter. The list of attributes and namespaces are computed based on the selection in the elementParameter combo boxes.

Example of an attributeParameter:

```xml
<attributeParameter dependsOn="elemID" useCurrentContext="true">
  <localName label="Name" name="attribute_localName">
    <description>The name of the attribute to be converted.</description>
  </localName>

  <namespace label="Namespace" name="attribute_namespace" allowsAny="true">
    <description>Namespace of the attribute to be converted.</description>
  </namespace>
</attributeParameter>
```

**Note:** All built-in operations are loaded from the `[OXYGEN_INSTALL_DIR]/refactoring` folder.

**Related Information:**

- Example of an Operation Descriptor File with an XSLT Stylesheet *(on page 1168)*
- Example of an Operation Descriptor File with an XQuery Update script *(on page 1163)*

**XSLT Stylesheet for Creating a Custom Operation**

To demonstrate creating a custom operation, suppose that you have a task where you need to convert an attribute into an element and insert it inside another element. A specific example would be if you have a project with a variety of image elements where a deprecated alt attribute was used for the description and you want to convert all instances of that attribute into an element with the same name and insert it as the first child of the image element.

Thus, the task is to convert this attribute into an element with the same name and insert it as the first child of the image element.

Figure 742. Example: Custom XML Refactoring Operation
An XSLT stylesheet can be used to implement the new custom XML refactoring operation. The second requirement is an XML Refactoring operation descriptor file (on page 1168) that contains the path to the XSLT stylesheet.

Example of an XSLT Script for Creating a Custom Operation to Convert an Attribute to an Element

The XSLT stylesheet does the following:

- Iterates over all elements from the document that have the specified local name and namespace.
- Finds the attribute that will be converted to an element.
- Adds the new element as the first child of the parent element.

```xml
<?xml version="1.0" encoding="UTF-8"?>
<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
xmlns:xs="http://www.w3.org/2001/XMLSchema"
exclude-result-prefixes="xs"
xmlns:xr="http://www.oxygenxml.com/ns/xmlRefactoring"
version="2.0">


<xsl:param name="element_localName" as="xs:string" required="yes"/>
<xsl:param name="element_namespace" as="xs:string" required="yes"/>
<xsl:param name="attribute_localName" as="xs:string" required="yes"/>
<xsl:param name="attribute_namespace" as="xs:string" required="yes"/>
```
<xsl:template match="node() | @*">
  <xsl:copy>
    <xsl:apply-templates select="node() | @*"/>
  </xsl:copy>
</xsl:template>

<xsl:template match="/*[xr:check-local-name($element_localName, ., true())
and
xr:check-namespace-uri($element_namespace, .)]">
  <xsl:variable name="attributeToConvert" select="@*[xr:check-local-name($attribute_localName, ., true())
and
xr:check-namespace-uri($attribute_namespace, .)]"/>

  <xsl:choose>
    <xsl:when test="empty($attributeToConvert)"
    >
      <xsl:copy>
        <xsl:apply-templates select="node() | @*"/>
      </xsl:copy>
    </xsl:when>
    <xsl:otherwise>
      <xsl:copy>
        <xsl:for-each select="@*[empty(. intersect $attributeToConvert)]"/>
        <xsl:copy-of select="."/>
      </xsl:copy>
    </xsl:otherwise>
  </xsl:choose>

  <!-- The new element namespace -->
  <xsl:variable name="nsURI" as="xs:string" select="$new_element_namespace as $new_element_namespace eq $xr:NO-NAMESPACE">
    <xsl:choose>
      <xsl:when test="$new_element_namespace eq $xr:NO-NAMESPACE">
        <xsl:value-of select="''"/>
      </xsl:when>
      <xsl:otherwise>
        <xsl:value-of select="$new_element_namespace"/>
      </xsl:otherwise>
    </xsl:choose>
  </xsl:variable>

  <xsl:element name="{$new_element_localName}" namespace="{$nsURI}"

Note: The XSLT stylesheet imports a module library that contains utility functions and variables. The location of this module is resolved via an XML Catalog (on page 3289) set in the XML Refactoring framework (on page 3282).

Example of an Operation Descriptor File That References the XSLT Stylesheet for Creating a Custom Operation to Convert an Attribute to an Element

After you have developed the XSLT stylesheet, you have to create an XML Refactoring operation descriptor. This descriptor is used by the application to load the operation details such as name, description, or parameters.

```xml
<?xml version="1.0" encoding="UTF-8"?>
<refactoringOperationDescriptor

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xmlns="http://www.oxygenxml.com/ns/xmlRefactoring"

id="convert-attribute-to-element"

name="Convert attribute to element">

<description>Converts the specified attribute to an element. The new element will be inserted as first child of the attribute’s parent element.</description>

<!-- For the XSLT stylesheet option uncomment the following line and comment the line referring the XQuery Update script -->

<!-- <script type="XSLT" href="convert-attribute-to-element.xsl"/> -->

<script type="XQUERY_UPDATE" href="convert-attribute-to-element.xq"/>

<parameters>

<description>Specify the attribute to be converted to element.</description>

<section label="Parent element">

<elementParameter id="elemID">

<localName label="Name" name="element_localName" allowsAny="true">

<description>Local name of the parent element.</description>

</localName>

```
Note: If you are using an XSLT file, the line with the `script` element would look like this:

```xml
<script type="XSLT" href="convert-attribute-to-element.xsl"/>
```

Results

After you have created these files, copy them into a folder scanned by Oxygen XML Editor when it loads the custom operation (on page 1172). When the XML Refactoring tool is started again, you will see the created operation.

Since various parameters can be specified, this custom operation can also be used for other similar tasks. The following image shows the parameters that can be specified in the example of the custom operation to convert an attribute to an element:
Using Saxon Extension Functions to Allow Custom Refactoring Operations to Read and Modify Content Outside the Root Node

One advantage to using an XSLT stylesheet is that there is limitation when using an XQuery Update script (on page 1160) in that refactoring operations can only be performed on comments or processing instructions that are inside the root element. Thus, using the XQuery method, comments or processing instructions that are in any node before or after the root element cannot be modified by an XML Refactoring operation.

The XSLT stylesheet method offers a work-around to this limitation through the use of some Saxon extension functions.

To illustrate the use of these functions, consider the following sample XML file:

```xml
<?xml version="1.0" encoding="UTF-8"?>
<!-- comment before root -->
<?pi before root ?>
<root>
    <child>
        <!-- comment before root -->
        <!-- comment after root -->
    </child>
</root>
```

The following Saxon extension functions can be used to read and modify content outside the root node:

**Note:** They belong to the [http://www.oxygenxml.com/ns/xmlRefactoring/functions](http://www.oxygenxml.com/ns/xmlRefactoring/functions) namespace.
• **get-content-after-root()** - Returns the content after root as `xs:string`.

For the XML above, the call of this function will return the following string value:

```xml
<!-- comment after root -->
<?pi after root ?>
```

• **set-content-after-root(xs:string)** - Updates the content that will be serialized in the refactored document after the root node.

The function call `set-content-after-root('<!-- Inserted comment -->')` will result in replacing the nodes after the root element with the comment passed as string argument. The XML document will be modified as follows:

```xml
<?xml version="1.0" encoding="UTF-8"?>
<!-- comment before root -->
<?pi before root ?>
<root>
  <child/>
</root>
<!-- Inserted comment -->
```

• **get-content-before-root()** - Returns the content before root as `xs:string`.

For the XML above, the call of this function will return the following string value:

```xml
<?xml version="1.0" encoding="UTF-8"?>
<!-- comment before root -->
<?pi before root ?>
```

• **set-content-before-root(xs:string)** - Updates the content that will be serialized in the refactored document after the root node.

The function call `set-content-before-root('<!-- Inserted comment -->')` will result in replacing the nodes before the root element with the comment passed as string argument. The XML document will be modified as follows:

```xml
<!-- Inserted comment -->
<root>
  <child/>
</root>
<!-- comment after root -->
<?pi after root ?>
```

**XSLT Example:**

To process content after the root node, the XSLT would look like this:
<?xml version="1.0" encoding="UTF-8"?>
<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
xmlns:xs="http://www.w3.org/2001/XMLSchema" exclude-result-prefixes="xs"
xmlns:xrf="http://www.oxygenxml.com/ns/xmlRefactoring/functions" version="3.0">
  <xsl:template match="/">
    <!-- The comment content that will be inserted after the root element -->
    <xsl:variable name="commentAsText">&lt;!-- COMMENT ADDED FROM XR OPERATION--&gt;</xsl:variable>
    <!-- Retrieve the content after the root element as is -->
    <xsl:variable name="after-root-content" as="xs:string"
      select="xrf:get-content-after-root()"/>
    <xsl:variable name="processedContent"
      select="concat($after-root-content, $commentAsText)"/>
    <!-- Update the content after the root element -->
    <xsl:value-of select="xrf:set-content-after-root($processedContent)"/>
  </xsl:template>
</xsl:stylesheet>

**Note:** The above XSLT retrieves the nodes after the root element as string, appends a new comment, and then sets back the updated content into the XML document.

### Storing and Sharing Refactoring Operations

Oxygen XML Editor scans the following locations when looking for XML Refactoring operations to provide flexibility:

- A *refactoring* folder, created inside a directory that is associated to a *framework* you are customizing. To associate the parent directory to the *framework*, you need to add it in the **Classpath** tab of the **Document type** configuration dialog box *(on page 99)*.
• A folder that you specify in the Load additional refactoring operations from text box (on page 224) in the XML Refactoring preferences page (on page 224).

Note: If you share a project with your team, you can also share the custom operation by doing the following:
1. Save the custom operation in a folder that is part of your project.
2. Switch the XML Refactoring option page to project level (on page 3286):
   a. Open the Preferences dialog box (Options > Preferences) (on page 79) and go to XML > XML Refactoring (on page 224).
   b. Select Project Options (on page 3286) at the bottom of the dialog box.
3. In the Load additional refactoring operations from text box (on page 224), use the $pd editor variable (on page 282) so that the folder path is declared relative to the project.
• A folder specified by the XML Refactoring Operations Plugin Extension (on page 2601).
• The refactoring folder from the Oxygen XML Editor installation directory ([OXYGEN_INSTALL_DIR]/refactoring/).

Sharing Custom Refactoring Operations

The purpose of Oxygen XML Editor scanning multiple locations for the XML Refactoring operations is to provide more flexibility for developers who want to share the refactoring operations with the other team members. Depending on your particular use case, you can attach the custom refactoring operations to other resources, such as framework (on page 3282) or projects.

After storing custom operations, you can share them with other users by sharing the resources.

Localizing XML Refactoring Operations

Oxygen XML Editor includes localization support for the XML refactoring operations.

The translation keys for the built-in refactoring operations are located in [OXYGEN_INSTALL_DIR]/refactoring/i18n/translation.xml.

The localization support is also available for custom refactoring operations. The following information can be translated:

• The operation name, description, and category.
• The description of the parameters element.
• The label, description, and possibleValues for each parameter.

Translated refactoring information uses the following form:

${i18n(translation_key)}
Oxygen XML Editor scans the following locations to find the translation.xml files that are used to load the translation keys:

- A refactoring/i18n folder, created inside a directory that is associated to a customized framework.
- A i18n folder, created inside a directory that is associated to a customized framework.
- An i18n folder inside any specified folder. In this case, you need to open the Preferences dialog box (Options > Preferences) (on page 79), go to XML > XML Refactoring, and specify the folder in the Load additional refactoring operations from text box.
- An i18n folder located in directories specified through the XML Refactoring Operations Plugin Extension (on page 2601).
- The refactoring/i18n folder from the Oxygen XML Editor installation directory ({OXYGEN_INSTALL_DIR}/refactoring/i18n).

Example: Refactoring Operation Descriptor File with i18n Support

```xml
<?xml version="1.0" encoding="UTF-8"?>

<refactoringOperationDescriptor
  xmlns="http://www.oxygenxml.com/ns/xmlRefactoring" id="remove_text_content"
  name="$i18n(Remove_text_content)">
  <description>$i18n(Remove_text_content_description)</description>
  <script type="XQUERY_UPDATE" href="remove_text_content.xq"/>
  <parameters>
    <description>$i18n(parameters_description)</description>
    <parameter label="$i18n(Element_name)" name="element_localName"
      type="NC_NAME">
      <description>$i18n(Element_name_descriptor)</description>
      <possibleValues>
        <value default="true" name="value1">$i18n(value_1)</value>
        <value name="value2">$i18n(value_2)</value>
      </possibleValues>
    </parameter>
  </parameters>
</refactoringOperationDescriptor>
```

Generating Sample XML Files

Oxygen XML Editor offers support to generate sample XML files both from XML schema 1.0 and XML schema 1.1, depending on the XML schema version set in XML Schema preferences page (on page 193).
To generate sample XML files from an XML Schema, use the Generate Sample XML Files action from the Tools menu. This action is also available in the contextual menu of the schema Design mode (on page 1252). The action opens the Generate Sample XML Files dialog box that allows you to configure a variety of options for generating the files.

The Generate Sample XML Files dialog box contains three tabs with various configurable options. Default values for these options can be set in the Sample XML Files Generator preferences page (on page 196). You can also run the tool from the command line using exported options.

Schema Tab (Generate Sample XML Files Tool)

The Generate Sample XML Files tool includes a dialog box that allows you to configure a variety of options for generating the XML files. The first set of options are found in the Schema tab.

Figure 744. Generate Sample XML Files Dialog Box (Schema Tab)

This tab includes the following options:

**URL**

- Specifies the URL of the Schema location. You can specify the path by using the text field, the history drop-down menu, or the browsing actions in the Browse drop-down list.

**Namespace**

- Displays the namespace of the selected schema.

**Root Element**
After the schema is selected, this drop-down menu is populated with all root candidates gathered from the schema. Choose the root of the output XML documents.

**Output folder**

Path to the folder where the generated XML instances will be saved.

**Filename prefix and Extension**

You can specify the prefix and extension for the file name that will be generated. Generated file names have the following format: `prefixN.extension`, where `N` represents an incremental number from 0 up to the specified **Number of instances** (on page 1307).

**Number of instances**

The number of XML files to be generated.

**Open first instance in editor**

When selected, the first generated XML file is opened in the editor.

**Namespaces section**

You can specify the **Default Namespace**, as well as the prefixes for the namespaces.

**Export settings**

Use this button to save the current settings for future use.

**Import settings**

Use this button to load previously exported settings.

You can click **OK** at any point to generate the sample XML files.

**Options Tab (Generate Sample XML Files Tool)**

The **Generate Sample XML Files** tool includes a dialog box that allows you to configure a variety of options for generating the XML files. The **Options** tab allows you to set specific options for namespaces and elements.

Figure 745. Generate Sample XML Files Dialog Box (Options Tab)
This tab includes the following options:

**Namespace / Element table**

 Allows you to set a namespace for each element name that appears in an XML document instance. The following prefix-to-namespace associations are available:

- All elements from all namespaces ( `<ANY>` - `<ANY>` ). This is the default setting.
- All elements from a specific namespace.
- A specific element from a specific namespace.

**Settings subtab**

**Namespace**

 Displays the namespace specified in the table at the top of the dialog box.

**Element**

 Displays the element specified in the table at the top of the dialog box.

**Generate optional elements**

 When selected, all elements are generated, including the optional ones (having the `minOccurs` attribute set to 0 in the schema).
Generate optional attributes

When selected, all attributes are generated, including the optional ones (having the `use` attribute set to `optional` in the schema).

Values of elements and attributes

Controls the content of generated attribute and element values. The following choices are available:

- **None** - No content is inserted.
- **Default** - Inserts a default value depending on the data type descriptor of the particular element or attribute. The default value can be either the data type name or an incremental name of the attribute or element (according to the global option from the Sample XML Files Generator preferences page). Note that type restrictions are ignored when this option is selected. For example, if an element is of a type that restricts an `xs:string` with the `xs:maxLength` facet to allow strings with a maximum length of 3, the XML instance generator tool may generate string element values longer than 3 characters.
- **Random** - Inserts a random value depending on the data type descriptor of the particular element or attribute.

⚠️ **Important**: If all of the following are true, the Generate Sample XML Files tool outputs invalid values:

- At least one of the restrictions is a `regexp`.
- The value generated after applying the regexp does not match the restrictions imposed by one of the facets.

Preferred number of repetitions

Allows you to set the preferred number of repeating elements related to `minOccurs` and `maxOccurs` facets defined in the XML Schema.

- If the value set here is between `minOccurs` and `maxOccurs`, then that value is used.
- If the value set here is less than `minOccurs`, then the `minOccurs` value is used.
- If the value set here is greater than `maxOccurs`, then `maxOccurs` is used.

Maximum recursion level

If a recursion is found, this option controls the maximum allowed depth of the same element.
Type alternative strategy

Used for the `xs:alternative` element from XML Schema 1.1. The possible strategies are:

- **First** - The first valid alternative type is always used.
- **Random** - A random alternative type is used.

Choice strategy

Used for `xs:choice` or `substitutionGroup` elements. The possible strategies are:

- **First** - The first branch of `xs:choice` or the head element of `substitutionGroup` is always used.
- **Random** - A random branch of `xs:choice` or a substitute element or the head element of a `substitutionGroup` is used.

Generate the other options as comments

If selected, generates the other possible choices or substitutions (for `xs:choice` and `substitutionGroup`). These alternatives are generated inside comments groups so you can uncomment and use them later. Use this option with care (for example, on a restricted namespace and element) as it may generate large result files.

Element values subtab

Allows you to add values that are used to generate the content of elements. If there are multiple values, then the values are used in a random order.

Attribute values subtab

Allows you to add values that are used to generate the content of attributes. If there are multiple values, then the values are used in a random order.

Export settings

Use this button to save the current settings for future use.

Import settings

Use this button to load previously exported settings.

You can click **OK** at any point to generate the sample XML files.
Advanced Tab (Generate Sample XML Files Tool)

The Generate Sample XML Files tool includes a dialog box that allows you to configure a variety of options for generating the XML files. The Advanced tab allows you to set some options regarding output values and performance.

Figure 746. Generate Sample XML Files Dialog Box (Advanced Tab)

This tab includes the following options:

**Use incremental attribute / element names as default**

If selected, the value of an element or attribute starts with the name of that element or attribute. For example, for an `a` element the generated values are: `a1`, `a2`, `a3`, and so on. If not selected, the value is the name of the type of that element / attribute (for example: `string`, `decimal`, etc.)

**Maximum length**

The maximum length of string values generated for elements and attributes.

**Discard optional elements after nested level**

The optional elements that exceed the specified nested level are discarded. This option is useful for limiting deeply nested element definitions that can quickly result in very large XML documents.

**Export settings**

Use this button to save the current settings for future use.

**Import settings**

Use this button to load previously exported settings.

Running the Generate Sample XML Files Tool from the Command Line

The Generate Sample XML Files tool can be also used from command line by running the script called `xmlGenerator.bat` (on Windows) / `xmlGenerator.sh` (on Mac OS X / Unix / Linux) located in the Oxygen XML Editor installation folder. The parameters can be set in the dialog box, exported to
an XML file on disk with the **Export settings** button, and then reused from command line. With the exported settings file, you can generate the same XML instances from the command line as from the dialog box. For example:

```
xmlGenerator.bat path_of_CFG_file
```

The script can be integrated in an external batch process launched from the command line. The command-line parameter of the script is the relative path to the exported XML settings file. The files specified with relative paths in the exported XML settings will be made absolute relative to the folder where the script is run.

The following example shows such an XML configuration file:

```xml
<settings>
  <schemaSystemId>http://www.w3.org/2001/XMLSchema.xsd</schemaSystemId>
  <documentRoot>schema</documentRoot>
  <outputFolder>D:\projects\output</outputFolder>
  <filenamePrefix>instance</filenamePrefix>
  <filenameExtension>xml</filenameExtension>
  <noOfInstances>1</noOfInstances>
  <openFirstInstance>true</openFirstInstance>
  <defaultNamespace>&lt;NO_NAMESPACE&gt;</defaultNamespace>
  <element namespace="&lt;ANY>" name="&lt;ANY>">
    <generateOptionalElements>false</generateOptionalElements>
    <generateOptionalAttributes>false</generateOptionalAttributes>
    <valuesForContentType>DEFAULT</valuesForContentType>
    <preferredNumberOfRepetitions>2</preferredNumberOfRepetitions>
    <maximumRecursivityLevel>1</maximumRecursivityLevel>
    <choicesAndSubstitutions strategy="RANDOM"
      generateOthersAsComments="false"/>
    <attribute namespace="&lt;ANY>" name="&lt;ANY>">
      <attributeValue>attrValue1</attributeValue>
      <attributeValue>attrValue2</attributeValue>
    </attribute>
  </element>
</settings>
```
Generate Sample JSON Files

Oxygen XML Editor includes a tool for generating sample JSON files. To generate sample JSON files from a JSON Schema, select Generate Sample JSON Files from the Tools menu. The action opens a dialog box where you can configure a variety of options for generating the files.

Figure 747. Generate Sample JSON Files Dialog Box

The Generate Sample JSON Files dialog box includes the following fields and options:

**Schema URL**

The URL of the Schema location. You can specify the path by using the text field, the history drop-down menu, or the browsing actions in the Browse drop-down list.

**Output folder**
Path to the folder where the generated JSON instances will be saved.

**File name**

The name of the instance(s) that will be generated. By default, `instance.json` is used.

**Number of instances**

The desired number of JSON instances to be generated. When more than one instance is generated, the index of the instance will be added to its file name.

**Property Value**

You can specify the way the values of the properties are generated. The following options are available:

- **None** - Assigns empty values for properties (a template file will be generated). This is the default value.
- **Default** - Assigns the name of the property as the value (for strings) or assigns the specified minimum value (for numbers).
- **Random** - Assigns random values according to schema restrictions.

**Generate optional properties**

If selected, the JSON instance will be generated with optional properties that are defined in the JSON schema. Otherwise, only the required properties will be generated.

**Generate additional content**

If selected, the JSON instance will be generated with additional properties that are defined in the JSON schema as `additionalProperties` and additional items that are defined as `additionalItems` (in the case of an Array).

**Choice strategy**

You can specify the way an instance will be generated from a schema that contains a `CombinedSchema` (with either `oneOf` or `anyOf`). The following options are available:

- **First** - The first defined schema in `oneOf` or `anyOf` will be used.
- **Random** - A random schema defined in `oneOf` or `anyOf` will be used.

**Recursion level**

This option controls the maximum allowed depth (must be a number), in case the selected schema contains recursive calls of `$ref` schemas referencing one another. By default, it is set to 1, meaning that the generation for the recursive calls will stop after the first iteration.

**Open first instance in editor**

If selected, the first generated instance is opened in the editor.
You can click **OK** at any point to generate the sample JSON files.

## Converting Schema to Another Schema Language

The **Generate/Convert Schema** tool allows you to convert a DTD or Relax NG (full or compact syntax) schema or a set of XML files to an equivalent XML Schema, DTD or Relax NG (full or compact syntax) schema. Where perfect equivalence is not possible due to limitations of the target language, Oxygen XML Editor generates an approximation of the source schema. Oxygen XML Editor uses **Trang multiple format converter** to perform the actual schema conversions.

To use this tool, select the **Generate/Convert Schema (Alt + Shift + C (Command + Alt + C on OS X))** action from the **Tools** menu or from the **Open with** submenu when invoking the contextual menu in the **Project view** (on page 333). This action opens the **Generate/Convert Schema** dialog box that allows you to configure various options for conversion.

### Figure 748. Generate/Convert Schema Dialog Box

The **Generate/Convert Schema** dialog box includes the following options:

**Input section**

- **Input** allows you to select the language of the source schema. If the conversion is based on a set of XML files, rather than just a single XML file, select the **XML Documents** option and use the file selector to add the XML files involved in the conversion.

**Output section**
Allows you to select the language of the target schema.

**Options**

You can choose the **Encoding**, the maximum **Line width**, and the **Indent size** (in number of spaces) for one level of indentation.

**Output file**

Specifies the path for the output file that will be generated.

**Close dialog when finished**

If you deselect this option, the dialog box will remain opened after the conversion so that you can easily continue to convert more files.

**Advanced options**

If you select **XML 1.0 DTD** for the input, you can click this button to access more advance options to further fine-tune the conversion. The following advanced options are available:

**XML 1.0 DTD Input section**

These options apply to the source DTD:

- **xmlns** - Specifies the default namespace, that is the namespace used for unqualified element names.
- **attlist-define** - Specifies how to construct the name of the definition representing an attribute list declaration from the name of the element. The specified value must contain exactly one percent character. This percent character is replaced by the name of element (after colon replacement) and the result is used as the name of the definition.
- **colon-replacement** - Replaces colons in element names with the specified chars when constructing the names of definitions used to represent the element declarations and attribute list declarations in the DTD.
- **any-name** - Specifies the name of the definition generated for the content of elements declared in the DTD as having a content model of ANY.
- **element-define** - Specifies how to construct the name of the definition representing an element declaration from the name of the element. The specified value must contain exactly one percent character. This percent character is replaced by the name of element (after colon replacement) and the result is used as the name of the definition.
• **annotation-prefix** - Default values are represented using an annotation attribute prefixed with `prefix:defaultValue` where prefix is the specified value and is bound to `http://relaxng.org/ns/compatibility/annotations/1.0` as defined by the RELAX NG DTD Compatibility Committee Specification. By default, the conversion engine will use a prefix unless that conflicts with a prefix used in the DTD.

• **inline-attlist** - Instructs the application not to generate definitions for attribute list declarations, but instead move attributes declared in attribute list declarations into the definitions generated for element declarations. This is the default behavior when the output language is XSD.

• **strict-any** - Preserves the exact semantics of ANY content models by using an explicit choice of references to all declared elements. By default, the conversion engine uses a wildcard that allows any element.

• **generate-start** - Specifies whether or not the conversion engine should generate a start element. DTD's do not indicate what elements are allowed as document elements. The conversion engine assumes that all elements that are defined but never referenced are allowed as document elements.

• **xmlns mappings** table - Each row specifies the prefix used for a namespace in the input schema.

**W3C XML Schema Output section**

This section is available if you select **W3C XML Schema** for the output.

• **disable-abstract-elements** - Disables the use of abstract elements and substitution groups in the generated XML Schema. This can also be controlled using an annotation attribute.

• **any-process-contents** - One of the values: strict, lax, skip. Specifies the value for the `processContents` attribute of any elements. The default is skip (corresponding to RELAX NG semantics) unless the input format is DTD, in which case the default is strict (corresponding to DTD semantics).

• **any-attribute-process-contents** - Specifies the value for the `processContents` attribute of anyAttribute elements. The default is skip (corresponding to RELAX NG semantics).
Converting Database to XML Schema

Oxygen XML Editor includes a tool that allows you to create an XML Schema from the structure of a database.

To convert a database structure to an XML Schema, use the following procedure:

1. Select the Convert DB Structure to XML Schema action from the Tools menu.
   
   Result: The Convert DB Structure to XML Schema dialog box is opened and your current database connections are displayed in the Connections section.

2. If the database source is not listed, click the Configure Database Sources button to open the Data Sources preferences page (on page 229) where you can configure data sources and connections.

3. In the Format for generated schema section, select one of the following formats:
   - Flat schema - A flat structure that resembles a tree-like view of the database without references to elements.
   - Hierarchical schema - Display the table dependencies visually, in a type of tree view where dependent tables are shown as indented child elements in the content model. Select this option if you want to configure the database columns of the tables to be converted.

4. Click Connect.
   
   Result: The database structure is listed in the Select database tables section according to the format you chose.

5. Select the database tables that you want to be included in the XML Schema.

6. If you selected Hierarchical schema for the format, you can configure the database columns.
   a. Select the database column you want to configure.
   b. In the Criterion section you can choose to convert the selected database column as an Element, Attribute, or to be Skipped in the resulting XML Schema.
   c. You can also change the name of the selected database column by changing it in the Name text field.

7. Click Generate XML Schema.
   
   Result: The database structure is converted to an XML Schema and it is opened for viewing and editing.

Flatten an XML Schema

You can organize an XML schema linked by xs:include and xs:import statements on several levels. In some cases, working on such a schema as if it were a single file is more convenient than working on multiple files separately. The Flatten Schema operation allows you to flatten an entire hierarchy of XML schemas. Starting with the main XML schema, Oxygen XML Editor calculates its hierarchy by processing the xs:include and xs:import statements.
The Flatten Schema action is available from the Tools menu or the contextual menu in Text mode. The action opens the Flatten Schema dialog box that allows you to configure the operation.

Figure 749. Flatten Schema Dialog Box

For the main schema file and for each imported schema, a new flattened schema is generated in the specified output folder. These schemas have the same name as the original ones.

Note: If necessary, the operation renames the resulted schemas to avoid duplicated file names.

A flattened XML schema is obtained by recursively adding the components of the included schemas into the main one. This means Oxygen XML Editor replaces the xs:include, xs:redefine, and xs:override elements with the ones coming from the included files.

Options in the Flatten Schema Dialog Box

The following options are available in the Flatten Schema dialog box:

File name

The name of the output file.

Output directory

The path of the output directory where the flattened schema file will be saved.

Open the flattened XML Schema file in editor
Opens the main flattened schema in the editing area after the operation completes.

**Use the XML Catalogs when collecting the referenced XML Schemas**

Enables the imported and included schemas to be resolved through the available XML Catalogs (on page 3289).

*Note:* Changing this option triggers the recalculation of the dependencies graph for the main schema.

**Process the imported XML Schemas resolved through the XML Catalogs**

Specifies whether or not the imported schemas that were resolved through an XML Catalog (on page 3289) are also processed.

**Flatten the imported XML Schema(s)**

Specifies whether or not the imported schemas are flattened.

*Note:* For the schemas skipped by the flatten operation, no files are created in the output folder and the corresponding import statements remain unchanged.

**Flatten Schema from the Command Line**

The Flatten Schema tool can be also ran from command line by using the following command:

- `flattenSchema.bat` on Windows
- `sh flattenSchema.sh` on OS X and Linux

The command line accepts the following parameters:

- `-in:inputSchemaURL` - The input schema URL.
- `-outDir:outputDirectory` - The directory where the flattened schemas should be saved.
- `-flattenImports:<boolean_value>` - Controls whether or not the imported XML Schemas should be flattened. The default value is `true`.
- `-useCatalogs:<boolean_value>` - Controls if the references to other XML Schemas should be resolved through the available XML Catalogs (on page 3289). The default value is `false`.
- `-flattenCatalogResolvedImports:<boolean_value>` - Controls whether or not the imported schemas that were resolved through the XML Catalogs (on page 3289) should be flattened. The default value is `true`.

*Note:* This option is used only when `-useCatalogs` is set to `true`.
- `-verbose` - Provides information about the current flatten XML Schema operation.
- `--help` - Prints the available parameters for the operation.
flattenSchema.bat -in:http://www.w3.org/MarkUp/SCHEMA/xhtml11.xsd
   -outDir:mySchemas/flattened/xhtml -flattenImports:true -useCatalogs:true
   -flattenCatalogResolvedImports:true -verbose

Example: Command-Line Example for OS X

sh flattenSchema.sh -in:http://www.w3.org/MarkUp/SCHEMA/xhtml11.xsd
   -outDir:mySchemas/flattened/xhtml -flattenImports:true -useCatalogs:true
   -flattenCatalogResolvedImports:true -verbose

Example: Command-Line Example for Unix/Linux

sh flattenSchema.sh -in:http://www.w3.org/MarkUp/SCHEMA/xhtml11.xsd
   -outDir:mySchemas/flattened/xhtml -flattenImports:true -useCatalogs:true
   -flattenCatalogResolvedImports:true -verbose

JSON to XML Converter

Oxygen XML Editor includes a useful and simple tool for converting JSON files to XML. It can be found in the Tools menu.

To convert a JSON document to XML, follow these steps:

1. Select the JSON to XML action from the Tools menu. The JSON to XML dialog box is displayed:

   ![JSON to XML Dialog Box](image)

2. Choose or enter the Input URL of the JSON document.
3. Choose the path of the Output file that will contain the resulting XML document.
4. Select the Open in Editor option to open the resulting XML document in the main editing pane.
5. Click the Convert button.

The original JSON document is now converted to an XML document.

![Example: XML to JSON Operation Result](image)
Conversion Details

- If the JSON document has more than one property on the first level, the converted XML document will have an additional root element called `<JSON>`.

For example, the following JSON document:

```json
{
  "personnel": {
    "person": [
      { "name": "Boss" },
      { "name": "Worker" }
    ],
  },
  "id": "personnel-id"
}
```

It is converted to:

```xml
<?xml version="1.0" encoding="UTF-8"?>
<JSON>
  <personnel>
```
• If the JSON document is an array, the converted XML document will have a root element called `<array>` and for each item within the array, another `<array>` is created.

```json
[
   {"name": "Boss"},
   {"name": "Worker"}
]
```

it is converted to:

```xml
<?xml version="1.0" encoding="UTF-8"?>
<array>
   <array>
      <name>Boss</name>
   </array>
   <array>
      <name>Worker</name>
   </array>
</array>
```

• If the name of a JSON property contains characters that are not valid in XML element names (for example, $), then the invalid characters will be escaped as its hexadecimal equivalent in the converted XML.

```json
{"$id": "personnel-id"}
```

is converted to:

```xml
<_X24_id>personnel-id</_X24_id>
```

### Online JSON to XML Converter

For a simple ONLINE tool for converting a single JSON file to XML, or vice versa, go to: [https://www.oxygenxml.com/xml_json_converter.html](https://www.oxygenxml.com/xml_json_converter.html).
XML to JSON Converter

Oxygen XML Editor includes a useful and simple tool for converting XML files to JSON. It can be found in the Tools menu.

To convert an XML document to JSON, follow these steps:

1. Select the XML to JSON action from the Tools menu. The XML to JSON dialog box is displayed:

   ![Figure 752. XML to JSON Dialog Box](image)

2. Choose or enter the Input URL of the XML document.
3. Choose the path of the Output file that will contain the resulting JSON document.
4. Select the Open in Editor option to open the resulting JSON document in the main editing pane.
5. Click the Convert button.

The original XML document is now converted to a JSON document.

![Figure 753. Example: XML to JSON Operation Result](image)
Conversion Details

- If any elements contain attributes in the XML document, the attributes are converted to properties in the converted JSON document. If the XML document contains more than one element with the same name, they will be converted into an array of object in the converted JSON document.

For example, the following XML document:

```xml
<personnel>
  <person id="person.one">
    <name>Boss</name>
  </person>
  <person id="person.two">
    <name>Worker</name>
  </person>
</personnel>
```

it is converted to:

```json
{
  "personnel": [],
  "person": [
    {
      "id": "person.one",
      "name": "Boss"
    },
    {
      "id": "person.two",
      "name": "Worker"
    }
  ]
}
```
• If the XML document contains elements with mixed content (text plus elements), the converted JSON document will contain a `content` property with its value set as the text content.

```xml
<person>
  <name>Boss <i>One</i></name>
</person>
```

is converted to:

```json
"person": {
  "name": {
    "content": "Boss",
    "i": "One"
  }
}
```

• If the XML document contains element names that contain hexadecimal codes (for example, if they were escaped during a JSON to XML conversion (on page 1438)), it will be converted to the normal character value in the converted JSON document.

```xml
<_%24_id>personnel-id</_%24_id>
```

is converted to:

```json
{"$id": "personnel-id"}
```

**Online XML to JSON Converter**

For a simple ONLINE tool for converting a single XML file to JSON, or vice versa, go to: [https://www.oxygenxml.com/xml_json_converter.html](https://www.oxygenxml.com/xml_json_converter.html).
Related Information:

• JSON to XML Converter (on page 1437)

Compiling an XSL Stylesheet for Saxon

As of Saxon 9.7, it is possible to export a compiled form of a stylesheet as an XML file (called a stylesheet export file or SEF). Oxygen XML Editor includes a simple tool called Compile XSL Stylesheet for Saxon (found in the Tools menu) that does this for you.

Use-Cases for a Stylesheet Export File (SEF)

• Use Saxon-JS to run transformations in a browser - A stylesheet export file (SEF) is needed if you want to use the Saxon-JS product to run transformations in a browser, as in the following example:

```html
<script type="text/javascript" src="SaxonJS/SaxonJS.min.js"></script>
<script>
    window.onload = function() {
        SaxonJS.transform({
            stylesheetLocation: "books.sef",
            sourceLocation: "books.xml"
        });
    }
</script>
```

• Use SEF to run transformations in Oxygen XML Editor - You can also use a stylesheet export file (SEF) in Oxygen XML Editor to apply an XSLT transformation over an XML file. This requires Saxon-EE or Saxon-PE versions of the Saxon product and you must select one of those two versions for the Target when you configure the SEF file (on page 1234). When configuring the XSLT transformation, you will specify the SEF file in the XSL URL field (on page 1675).

Compiling an SEF File

The Compile XSL Stylesheet for Saxon tool can be found in the Tools menu and it compiles a specified stylesheet as an XML file (stylesheet export file with a file extension of .sef).

Selecting this tool opens the Compile XSL Stylesheet for Saxon dialog box that allows you to configure some options for conversion.
This dialog box includes the following options:

**XSL URL**

Allows you to select URL of the source XSL stylesheet. You can specify the URL by using the text field, the history drop-down, or the browsing actions in the `Browse` drop-down list.

**Target**

Allows you to select the type of Saxon product that the export file will be used with. You can choose Saxon-JS, Saxon-EE, Saxon-PE, or Saxon-HE.

**Relocatable**

Can be used to control the Saxon `-relocate` parameter. You can select this option to produce a relocatable export package (SEF) that can be deployed to a different location, with a different base URI.

**Output file**

You can specify the path where the output file will be saved by entering it in the text field, using the `Insert Editor Variables` button, or using the browsing actions in the `Browse` drop-down list.

**Open in Editor**

Select this option to open the resulting stylesheet export file in the main Oxygen XML Editor editing pane.

**Use a configuration file ("-config")**

Select this option if you want to use a Saxon 9.8.0.12 configuration file that will be executed for the XSLT transformation and validation processes. You can specify the path to the configuration file by entering it in the URL field, or by using the `Insert Editor Variables` button, or using the browsing actions in the `Browse` drop-down list.
Compile

Use this button to generate the stylesheet export file according the options selected in this dialog box.

Format and Indent (Pretty-Print) Multiple Files

Oxygen XML Editor provides support for formatting and indenting (pretty-print (on page 3286)) multiple files at once. This action is available for any document in XML format, as well as for XQuery, CSS, JavaScript, and JSON documents.

To format and indent multiple files, use the Format and Indent Files action that is available in the contextual menu of the Project view (on page 333) or from the Tools menu. This opens the Format and Indent Files dialog box that allows you to configure options for the action.

Figure 755. Format and Indent Files Dialog Box

The Scope section allows you choose from the following scopes:

- **All opened files** - The pretty-print (on page 3286) is performed in all opened files.
- **Directory of the current file** - All the files in the folder of the current edited file.
- **Project files** - All files from the current project.
- **Selected project files** - The selected files from the current project.
- **Specified path** - the pretty-print (on page 3286) is performed in the files located at a specified path.

The Options section includes the following options:
• **File filter** - Allow you to filter the files from the selected scope.
• **Recurse subdirectories** - When selected, the *pretty-print (on page 3286)* is performed recursively for the specified scope. The one exception is that this option is ignored if the scope is set to **All opened files**.
• **Include hidden files** - When selected, the *pretty-print (on page 3286)* is also performed in the hidden files.
• **Make backup files with extension** - When selected, Oxygen XML Editor makes backup files of the modified files. The default extension is `.bak`, but you can change the extension as you prefer.

### Generate Documentation

Oxygen XML Editor includes a tool for generating documentation for XSLT, XML Schema, XQuery, and WSDL documents.

### Generating Documentation for an XML Schema

Oxygen XML Editor can generate detailed documentation for the components of an XML Schema in HTML, PDF, DocBook, or other custom formats. You can select the components and the level of detail. The components are hyperlinked in both HTML and DocBook documents.

**Note:** You can generate documentation for both XML Schema version 1.0 and 1.1.

To generate documentation for an XML Schema document, select **XML Schema Documentation** from the **Tools > Generate Documentation** menu or from the **Generate Documentation** submenu in the contextual menu of the **Project view (on page 333)**.

Figure 756. XML Schema Documentation Dialog Box
The **Schema URL** field of the dialog box must contain the full path to the XML Schema (XSD) file for which you want to generate documentation. The schema may be a local or a remote file. You can specify the path to the schema by entering it in the text field, or by using the **Insert Editor Variables** button or the options in the **Browse** drop-down menu.

**Output Tab**

The following options are available in the **Output** tab:

- **Format** - Allows you to choose between the following formats:
  - **HTML** - The documentation is generated in HTML output format *(on page 1318).*
  - **PDF** - The documentation is generated in PDF output format *(on page 1321).*
  - **DocBook** - The documentation is generated in DocBook output format *(on page 1321).*
  - **DITA** - The documentation is generated in DITA output format *(on page 1321).*
  - **Custom** - The documentation is generated in a custom output format *(on page 1321)*, allowing you to control the output. Click the **Options** button to open a **Custom format options** dialog box where you can specify a custom stylesheet for creating the output. There is also an option to **Copy additional resources to the output folder** and you can select the path to the additional **Resources** that you want to copy. You can also choose to keep the
intermediate XML files created during the documentation process by deselecting the Delete intermediate XML file option.

- **Output file** - You can specify the path of the output file by entering it in the text field, or by using the Insert Editor Variables button or the options in the Browse drop-down menu.
- **Split output into multiple files** - Instructs the application to split the output into multiple files. You can choose to split them by namespace, location, or component name.
- **Open in Browser/System Application** - Opens the result in the system application associated with the output file type. For DITA and DocBook documents, this option appears as Open in Editor and the result will be opened in Oxygen XML Editor (in the current editor).

**Note:** To set the browser or system application that will be used, open the Preferences dialog box (Options > Preferences) (on page 79), go to Global, and set it in the Default Internet browser field. This will take precedence over the default system application settings.

- **Keep only the annotations with xml:lang set to** - The generated output will contain only the annotations with the xml:lang attribute set to the selected language. If you choose a primary language code (for example, en for English), this includes all its possible variations (en-us, en-uk, etc.).

**Settings Tab**

When you generate documentation for an XML schema you can choose what components to include in the output and the details to be included in the documentation.

Figure 757. Settings Tab of the XML Schema Documentation Dialog Box
The **Settings** tab allows you to choose whether or not to include the following components: **Global elements**, **Global attributes**, **Local elements**, **Local attributes**, **Simple Types**, **Complex Types**, **Groups**, **Attribute Groups**, **Redefines**, **Referenced schemas**, **Include notations**.

You can choose whether or not to include the following other details:

- **Diagram** - Displays the diagram for each component. You can choose the image format (JPEG, PNG, GIF, SVG) to use for the diagram section. The generated diagrams are dependent on the options from the **Schema Design Properties (on page 154)** page.

- **Diagram annotations** - This option controls whether or not the annotations of the components presented in the diagram sections are included.

- **Namespace** - Displays the namespace for each component.

- **Location** - Displays the schema location for each component.

- **Type** - Displays the component type if it is not an anonymous one.

- **Type hierarchy** - Displays the types hierarchy.

- **Model** - Displays the model (sequence, choice, all) presented in BNF form. The separator characters that are used depend upon the information item used:
  - **xs:all** - Its children will be separated by space characters.
  - **xs:sequence** - Its children will be separated by comma characters.
  - **xs:choice** - Its children will be separated by / characters.
- **Children** - Displays the list of component's children.
- **Instance** - Displays an XML instance generated based on each schema element.
- **Used by** - Displays the list of all the components that reference the current one. The list is sorted by component type and name.
- **Properties** - Displays some of the component's properties.
- **Facets** - Displays the facets for each simple type
- **Identity constraints** - Displays the identity constraints for each element. For each constraint there are presented the name, type (unique, key, keyref), reference attribute, selector and field(s).
- **Attributes** - Displays the attributes for the component. For each attribute there are presented the name, type, fixed or default value, usage and annotation.
- **Asserts** - Displays the assert elements defined in a complex type. The test, XPath default namespace, and annotation are presented for each assert.
- **Annotations** - Displays the annotations for the component. If you choose **Escape XML Content**, the XML tags are present in the annotations.
- **Source** - Displays the text schema source for each component.
- **Generate index** - Displays an index with the components included in the documentation.
  - **Include local elements and attributes** - If selected, local elements and attributes are included in the documentation index.
  - **Include resource hierarchy** - Specifies whether or not the resource hierarchy for an XML Schema documentation is generated. It is deselected by default.

**Export settings** - Save the current settings in a settings file for further use (for example, with the exported settings file you can generate the same documentation from the command line interface (on page 1323).)

**Import settings** - Reloads the settings from the exported file.

**Generate** - Use this button to generate the XML Schema documentation.

**Related Information:**

- Customizing PDF or DocBook Output of Generated XML Schema Documentation (on page 1322)

**Generating Documentation for an XSLT Stylesheet**

You can use Oxygen XML Editor to generate detailed documentation in HTML format for the elements (top-level elements whose names are in the XSLT namespace) of an XSLT stylesheet. You can select what XSLT elements to include in the generated documentation and also the level of details to present for each of them. The elements are hyperlinked. To generate documentation in a custom output
format (on page 1229), you can edit the XSLT stylesheet used to generate the documentation, or create your own stylesheet.

To open the XSLT Stylesheet Documentation dialog box, select XSLT Stylesheet Documentation from the Tools > Generate Documentation menu or from the Generate Documentation submenu in the contextual menu of the Project view (on page 333).

Figure 758. XSLT Stylesheet Documentation Dialog Box

The XSL URL field of the dialog box must contain the full path to the XSL Stylesheet file you want to generate documentation for. The stylesheet may be a local or a remote file. You can specify the path to the stylesheet by entering it in the text field, or by using the Insert Editor Variables button or the options in the Browse drop-down menu.

Output Tab

The following options are available in the Output tab:

- **Format** - Allows you to choose between the following formats:
  - **HTML** - The documentation is generated in HTML output format (on page 1227).
  - **Custom** - The documentation is generated in a custom output format (on page 1229), allowing you to control the output. Click the Options button to open a Custom format options dialog box (on page 1230) where you can specify a custom stylesheet for creating the output. There is also an option to Copy additional resources to the output folder and you can select the path to the additional Resources that you want to copy. You can also choose to keep the intermediate XML files created during the documentation process by deselecting the Delete intermediate XML file option.
• **Output file** - You can specify the path of the output file by entering it in the text field, or by using the Insert Editor Variables button or the options in the Browse drop-down menu.

• **Split output into multiple files** - Instructs the application to split the output into multiple files. For large XSLT stylesheets, choosing another split criterion may generate smaller output files, providing faster documentation browsing. You can choose to split them by namespace, location, or component name.

• **Open in Browser/System Application** - Opens the result in the system application associated with the output file type.

**Note:** To set the browser or system application that will be used, open the Preferences dialog box (Options > Preferences) (on page 79), go to Global, and set it in the Default Internet browser field. This will take precedence over the default system application settings.

**Settings Tab**

When you generate documentation for an XSLT stylesheet you can choose what XSLT elements to include in the output (templates, functions, global parameters, global variables, attribute sets, character maps, keys, decimal formats, output formats, XSLT elements from referenced stylesheets) and the details to include in the documentation.

**Figure 759. Settings Tab of the XSLT Stylesheet Documentation Dialog Box**

The **Settings** tab allows you to choose whether or not to include the following components: Templates, Functions, Global parameters, Global variables, Attribute sets, Character maps, Keys, Decimal formats, Output formats, Referenced stylesheets.

You can choose whether or not to include the following other details:
• **Documentation** - Shows the documentation for each XSLT element. For HTML format, the user-defined data elements that are recognized and transformed in documentation blocks of the XSLT elements they precede, are the ones from the following schemas:
  ◦ Oxygen XML Editor built-in XSLT documentation schema.
  ◦ A subset of DocBook 5 elements. The recognized elements are: `section`, `sect1` to `sect5`, `emphasis`, `title`, `ulink`, `programlisting`, `para`, `orderedlist`, `itemizedlist`.
  ◦ A subset of DITA elements. The recognized elements are: `concept`, `topic`, `task`, `codeblock`, `p`, `b`, `i`, `ul`, `ol`, `pre`, `sl`, `sli`, `step`, `steps`, `li`, `title`, `xref`.
  ◦ Full XHTML 1.0 support.
  ◦ XSLStyle documentation environment. XSLStyle uses DocBook or DITA languages inside its own user-defined data elements. The supported DocBook and DITA elements are the ones mentioned above.
  ◦ DOXSL documentation framework (on page 3282). Supported elements are: `codefrag`, `description`, `para`, `docContent`, `documentation`, `parameter`, `function`, `docSchema`, `link`, `list`, `listitem`, `module`, `parameter`, `template`, `attribute-set`.

Other XSLT documentation blocks that are not recognized will just be serialized inside an HTML `pre` element. You can change this behavior by using a custom format (on page 1229) instead of the built-in HTML format (on page 1227) and providing your own XSLT stylesheets.

• **Use comments** - Controls whether or not the comments that precede an XSLT element is treated as documentation for the element they precede. Comments that precede or succeed the `xsl:stylesheet` element, are treated as documentation for the whole stylesheet. Note that comments that precede an import or include directive are not collected as documentation for the imported/included module. Also, comments from within the body of the XSLT elements are not collected at all.

• **Namespace** - Shows the namespace for named XSLT elements.

• **Location** - Shows the stylesheet location for each XSLT element.

• **Parameters** - Shows parameters of templates and functions.

• **References** - Shows the named XSLT elements that are referenced from within an element.

• **Used by** - Shows the list of all the XSLT elements that reference the current named element.

• **Supersedes** - Shows the list of all the XSLT elements that are superseded the current element.

• **Overriding** - Shows the list of all the XSLT elements that override the current element.

• **Return type** - Shows the return type of the function.

• **Source** - Shows the text stylesheet source for each XSLT element.

• **Import precedence** - Shows the computed import precedence as declared in the XSL transformation specifications.

• **Generate index** - Creates an index with all the XSLT elements included in the documentation.
Export settings - Save the current settings in a settings file for further use (for example, with the exported settings file you can generate the same documentation from the command-line interface (on page 1230).)

Import settings - Reloads the settings from the exported file.

Generate - Use this button to generate the XSLT documentation.

Related Information:
- XSLT Stylesheet Component Documentation Support (on page 1210)

Generating HTML Documentation for an XQuery Document

To generate HTML documentation for an XQuery document, use the XQuery Documentation dialog box. It is opened with the XQuery Documentation action that is available from the Tools > Generate Documentation menu or from the Generate Documentation submenu in the contextual menu of the Project view (on page 333).

The dialog box allows you to configure a set of parameters for the process of generating the HTML documentation.

Figure 760. XQuery Documentation Dialog Box

The following options are available:
• **Input** - The full path to the XQuery file must be specified in one of the two fields in this section:
  ◦ **URL** - The URL of the file in which you want to generate the documentation.
  ◦ **Folder** - The directory that contains the files for which you want to generate the documentation. You can also specify the XQuery file extensions to be searched for in the specified directory.

• **Default function namespace** - Optional URI for the default namespace for the submitted XQuery.

• **Predefined function namespaces** - Optional, engine-dependent, predefined namespaces that the submitted XQuery refers to. They allow the conversion to generate annotation information to support the presentation component hypertext linking (only if the predefined modules have been loaded into the local xqDoc XML repository).

• **Open in Browser/System Application** - Select this option if you want the result to be opened in the system application associated with that file type.

  **Note:** To set the browser or system application that will be used, open the Preferences dialog box (Options > Preferences) (on page 79), go to **Global**, and set it in the **Default Internet browser** field. This will take precedence over the default system application settings.

• **Output** - Allows you to specify where the generated documentation is saved on disk.

### Generating Documentation for WSDL Documents

You can use Oxygen XML Editor to generate detailed documentation for the components of a WSDL document in HTML format. You can select the WSDL components to include in your output and the level of details to present for each of them. Also, the components are hyperlinked. You can also generate the documentation in a custom output format (on page 1375) by using a custom stylesheet.

**Note:** The WSDL documentation includes the XML Schema components that belong to the internal or imported XML schemas.

To generate documentation for a WSDL document, select **WSDL Documentation** from the **Tools > Generate Documentation** menu or from the **Generate Documentation** submenu in the contextual menu of the **Project view** (on page 333).

Figure 761. WSDL Documentation Dialog Box
The Input URL field of the dialog box must contain the full path to the WSDL document that you want to generate documentation for. The WSDL document may be a local or a remote file. You can specify the path to the WSDL file by entering it in the text field, or by using the Insert Editor Variables button or the options in the Browse drop-down menu.

Output Tab

The following options are available in the Output tab:

- **Format** - Allows you to choose between the following formats:
  - HTML - The documentation is generated in HTML output format (on page 1374).
  - Custom - The documentation is generated in a custom output format (on page 1375), allowing you to control the output. Click the Options button to open a Custom format options dialog box where you can specify a custom stylesheet for creating the output. There is also an option to Copy additional resources to the output folder and you can select the path to the additional Resources that you want to copy. You can also choose to keep the intermediate XML files created during the documentation process by deselecting the Delete intermediate XML file option.

- **Output file** - You can specify the path of the output file by entering it in the text field, or by using the Insert Editor Variables button or the options in the Browse drop-down menu.

- **Split output into multiple files** - Instructs the application to split the output into multiple files. For large WSDL documents, choosing a different split criterion may generate smaller output files providing a faster documentation browsing. You can choose to split them by namespace, location, or component name.
• **Open in Browser/System Application** - Opens the result in the system application associated with the output file type.

  **Note:** To set the browser or system application that will be used, open the Preferences dialog box (Options > Preferences) (on page 79), go to Global, and set it in the Default Internet browser field. This will take precedence over the default system application settings.

• **Keep only the annotations with xml:lang set to** - The generated output will contain only the annotations with the \texttt{xml:lang} attribute set to the selected language. If you choose a primary language code (for example, \texttt{en} for English), this includes all its possible variations (\texttt{en-us}, \texttt{en-uk}, etc.).

### Setting Tab

When you generate documentation for a WSDL document, you can choose what components to include in the output and the details to be included in the documentation.

**Figure 762. Settings Tab of the WSDL Documentation Dialog Box**

The **Settings** tab allows you to choose whether or not to include the following:

• **Components**
  
  ◦ **Services** - Specifies whether or not the generated documentation includes the WSDL services.

  ◦ **Bindings** - Specifies whether or not the generated documentation includes the WSDL bindings.
• **Port Types** - Specifies whether or not the generated documentation includes the WSDL port types.
• **Messages** - Specifies whether or not the generated documentation includes the WSDL messages.
• **XML Schema Components** - Specifies whether or not the generated documentation includes the XML Schema components.
• **Only global elements and types** - Specifies whether or not the generated documentation includes only global elements and types.
• **Component Details**
  • **Namespace** - Presents the namespace information for WSDL or XML Schema components.
  • **Location** - Presents the location information for each WSDL or XML Schema component.
  • **Used by** - Presents the list of components that reference the current one.
  • **Documentation** - Presents the component documentation. If you choose **Escape XML Content**, the XML tags are presented in the documentation.
  • **Source** - Presents the XML fragment that defines the current component.
  • **Instance** - Generates a sample XML instance for the current component.

**Note:** This option applies to the XML Schema components only.
  • **XML Schema Diagram** - Displays the diagram for each XML Schema component. You can choose the image format (JPEG, PNG, GIF, SVG) to use for the diagram section.
  • **Diagram annotations** - Specifies whether or not the annotations of the components presented in the diagram sections are included.

• **Generate index** - Displays an index with the components included in the documentation.
  • **Include local elements and attributes** - If selected, local elements and attributes are included in the documentation index.
  • **Include resource hierarchy** - Specifies whether or not the resource hierarchy for an XML Schema documentation is generated. It is deselected by default.

**Export settings** - Save the current settings in a settings file for further use (for example, with the exported settings file you can generate the same documentation from the command-line interface (**on page 1376**)).

**Import settings** - Reloads the settings from the exported file.

**Generate** - Use this button to generate the WSDL documentation.

### Canonicalizing Files

You can select the **canonicalization (**on page 3280**) algorithm to be used for a document from the dialog box that is displayed by using the **Canonicalize** action that is available from the **Source** submenu when invoking the contextual menu in **Text** mode or from the **Tools** menu.
The **Canonicalize** dialog box allows you to set the following options:

- **Input URL** - Available if the **Canonicalize** action was selected from the **Tools** menu. It allows you to specify the location of the input file.
- **Exclusive** - If selected, the exclusive (uncommented) canonicalization (on page 3280) method is used.

   **Note:** *Exclusive Canonicalization* just copies the namespaces you are actually using (the ones that are a part of the XML syntax). It does not look into attribute values or element content, so the namespace declarations required to process these are not copied. This is useful if you have a signed XML document that you want to insert into other XML documents (or you need self-signed structures that support placement within various XML contexts), as it will ensure the signature is verified correctly each time.

- **Exclusive with comments** - If selected, the exclusive with comments canonicalization (on page 3280) method is used.

- **Inclusive** - If selected, the inclusive (uncommented) canonicalization (on page 3280) method is used.

   **Note:** *Inclusive Canonicalization* copies all the declarations, even if they are defined outside of the scope of the signature, and all the declarations you might use will be unambiguously specified. Inclusive **Canonicalization** is useful when it is less likely that the signed data will be inserted in other XML document and it is the safer method from the security standpoint because it requires no knowledge of the data that are to be secured to safely sign them. A problem may
occur if the signed document is moved into another XML document that has other declarations because the Inclusive Canonicalization will copy them and the signature will be invalid.

- **Inclusive with comments** - If selected, the inclusive with comments canonicalization (on page 3280) method is used.
- **XPath** - The XPath expression provides the fragments of the XML document to be signed.
- **Output** - Available if the Canonicalize action was selected from the Tools menu. It allows you to specify the output file path where the signed XML document will be saved.
- **Open in editor** - If selected, the output file will be opened in the editor.

Related Information:

- Digital Signatures Overview (on page 1174)

### Signing Files

You can select the type of signature to be used for documents from a signature settings dialog box. To open this dialog box, select the **Sign** action from the **Source** submenu when invoking the contextual menu in **Text** mode or from the **Tools** menu.

**Figure 764. Signature Settings Dialog Box**

![Signature Settings Dialog Box](image-url)
The following options are available:

**Note:** If Oxygen XML Editor could not find a valid certificate, a link is provided at the top of the dialog box that opens the [XML Signing Certificates preferences page](on page 223) where you can configure a valid certificate.

- **Input** - Available if the Sign action was selected from the Tools menu. Specifies the location of the input URL.

- **Transformation Options** - See the [Digital Signature Overview](on page 1174) section for more information about these options.
  - **None** - If selected, no canonicalization (on page 3280) algorithm is used.
  - **Exclusive** - If selected, the exclusive (uncommented) canonicalization (on page 3280) method is used.
    
    **Note:** *Exclusive Canonicalization* just copies the namespaces you are actually using (the ones that are a part of the XML syntax). It does not look into attribute values or element content, so the namespace declarations required to process these are not copied. This is useful if you have a signed XML document that you want to insert into other XML documents (or you need self-signed structures that support placement within various XML contexts), as it will ensure the signature is verified correctly each time.
  
  - **Exclusive with comments** - If selected, the exclusive with comments canonicalization (on page 3280) method is used.
  
  - **Inclusive** - If selected, the inclusive (uncommented) canonicalization (on page 3280) method is used.
    
    **Note:** *Inclusive Canonicalization* copies all the declarations, even if they are defined outside of the scope of the signature, and all the declarations you might use will be unambiguously specified. Inclusive Canonicalization is useful when it is less likely that the signed data will be inserted in other XML document and it is the safer method from the security standpoint because it requires no knowledge of the data that are to be secured to safely sign them. A problem may occur if the signed document is moved into another XML document that has other declarations because the Inclusive Canonicalization will copy them and the signature will be invalid.
  
  - **Inclusive with comments** - If selected, the inclusive with comments canonicalization (on page 3280) method is used.

- **XPath** - The XPath expression provides the fragments of the XML document to be signed.

- **ID** - Provides ID of the XML element to be signed.

- **Envelope** - If selected, the *enveloped* signature is used. See the [Digital Signature Overview](on page 1174) for more information.
- **Detached** - If selected, the detached signature is used. See the Digital Signature Overview (on page 1174) for more information.
- **Append KeyInfo** - If this option is selected, the ds:KeyInfo element will be added in the signed document.
- **Signature algorithm** - The algorithm used for signing the document. The following options are available: RSA with SHA1, RSA with SHA256, RSA with SHA384, and RSA with SHA512.
- **Output** - Available if the Sign action was selected from the Tools menu. Specifies the path of the output file where the signed XML document will be saved.
- **Open in editor** - If selected, the output file will be opened in Oxygen XML Editor.

**Related Information:**

- Digital Signatures Overview (on page 1174)
- Verifying Signature (on page 1181)
- Example of How to Digitally Sign XML Files or Content (on page 1182)

**Verifying Signature**

You can verify the signature of a file by selecting the Verify Signature action from the Source submenu when invoking the contextual menu in Text mode or from the Tools menu. The Verify Signature dialog box then allows you to specify the location of the file whose signature is verified.

If the signature is valid, a dialog box displays the name of the signer. Otherwise, an error shows details about the problem.

**Related Information:**

- Digital Signatures Overview (on page 1174)
- Signing Files (on page 1179)
- Example of How to Digitally Sign XML Files or Content (on page 1182)
WSDL SOAP Analyzer

WSDL SOAP Analyzer is a tool that helps you test if the messages defined in a Web Service Descriptor (WSDL) are accepted by a Web Services server.

After you edit and validate your Web service descriptor against a mix of the XML Schemas for WSDL and SOAP, it is easy to check if the defined SOAP messages are accepted by the remote Web Services server by using the integrated WSDL SOAP Analyzer tool (available from the toolbar or Tools menu).

Oxygen XML Editor provides two ways of testing, one for the currently edited WSDL document and another for the remote WSDL documents that are published on a web server. To open the WSDL SOAP Analyzer tool for the currently edited WSDL document do one of the following:

- Click the WSDL SOAP Analyzer toolbar button.
- Use the WSDL SOAP Analyzer action from the Tools menu.
- Go to Open with > WSDL SOAP Analyzer in the contextual menu of the Project (on page 333) view.

Figure 765. WSDL SOAP Analyzer Dialog Box
This tool contains a SOAP analyzer and sender for Web Services Description Language file types. The analyzer fields are as follows:

- **Services** - The list of services defined by the WSDL file.
- **Ports** - The ports for the selected service.
- **Operations** - The list of available operations for the selected service.
- **Action URL** - The script that serves the operation.
- **SOAP Action** - Identifies the action performed by the script.
- **Version** - Choose between 1.1 and 1.2. The SOAP version is selected automatically depending on the selected port.
- **Request Editor** - It allows you to compose the web service request. When an action is selected, Oxygen XML Editor tries to generate as much content as possible for the SOAP request. The envelope of the SOAP request has the correct namespace for the selected SOAP version, that is http://schemas.xmlsoap.org/soap/envelope/ for SOAP 1.1 or http://www.w3.org/2003/05/soap-
envelope for SOAP 1.2. Usually you just have to change a few values for the request to be valid.
The Content Completion Assistant (on page 3280) is available for this editor and is driven by the
schema that defines the type of the current message. While selecting various operations, Oxygen
XML Editor remembers the modified request for each one. You can press the Regenerate button
to overwrite your modifications for the current request with the initial generated content.
- **Attachments List** - You can define a list of file URLs to be attached to the request.
- **Response Area** - Initially it displays an auto generated server sample response so you can
  have an idea about how the response looks like. After pressing the Send button, it presents the
  message received from the server in response to the Web Service request. It may show also error
  messages. If the response message contains attachments, Oxygen XML Editor prompts you to
  save them, then tries to open them with the associated system application.
- **Errors List** - There may be situations where the WSDL file is respecting the WSDL XML Schema,
  but it fails to be valid (for example, in the case of a message that is defined by means of an
  element that is not found in the types section of the WSDL). In such a case, the errors are listed
  here. This list is presented only when there are errors.
- **Send Button** - Executes the request. A status dialog box is displayed when Oxygen XML Editor is
  connecting to the server.

The testing of a WSDL file is straight-forward: click the WSDL analysis button, then select the service,
the port, and the operation. The editor generates the skeleton for the SOAP request. You can edit
the request, eventually attach files to it and send it to the server. Watch the server response in the
response area. You can find more details in the Testing Remote WSDL Files (on page 1379) section.

Note: SOAP requests and responses are automatically validated in the WSDL SOAP Analyzer
using the XML Schemas specified in the WSDL file.

Once defined, a request derived from a Web Service descriptor can be saved with the Save button to a
Web Service SOAP Call (WSSC) file for later reuse. In this way, you save time in configuring the URLs
and parameters.

You can open the result of a Web Service call in an editor panel using the Open button.

Testing Remote WSDL Files

To open and test a remote WSDL file the steps are the following:

1. Go to Tools > WSDL SOAP Analyzer.

2. On the WSDL File tab enter the URL of the remote WSDL file.
   You enter the URL:
   - by typing
   - by browsing the local file system
• by browsing a remote file system
• by browsing a UDDI Registry (on page 1379)

3. Press the OK button.
This will open the WSDL SOAP Analyzer tool (on page 1376). In the Saved SOAP Request tab you can open directly a previously saved Web Service SOAP Call (WSSC) file, thus skipping the analysis phase.

UDDI Registry Browser

Pressing the button in the WSDL File Opener dialog box (menu Tools > WSDL SOAP Analyzer) opens the UDDI Registry Browser dialog box.

Figure 766. UDDI Registry Browser Dialog Box

The fields of the dialog box are as follows:

• URL - Type the URL of an UDDI registry or choose one from the default list.
• Keywords - Enter the string you want to be used when searching the selected UDDI registry for available Web services.
• Rows to fetch - The maximum number of rows to be displayed in the result list.
• Search by - You can choose to search either by company or by provided service.
• Case sensitive - When selected, the search takes into account the keyword case.
• Search - The WSDL files that matched the search criteria are added in the result list.

When you select a WSDL from the list and click the OK button, the UDDI Registry Browser dialog box is closed and you are returned to the WSDL File Opener dialog box.

XML Schema Regular Expressions Builder

The XML Schema regular expressions builder allows you to test regular expressions on a fragment of text as they are applied to an XML instance document. Start the tool by selecting XML Schema Regular Expressions Builder from the Tools menu.

Figure 767. XML Schema Regular Expressions Builder Dialog Box

The dialog box contains the following:

Regular expressions editor

Allows you to edit the regular expression to be tested and used. Content completion is available and presents a list with all the predefined expressions. It is triggered by pressing Ctrl + Space (Command + Space on OS X).

Error display area
If the edited regular expression is incorrect, an error message will be displayed here. The message contains the description and the exact location of the error. Also, clicking the quick navigation button (↩) highlights the error inside the regular expression.

Category

You can choose from several categories of predefined expressions. The selected category influences the displayed expressions in the Available expressions table.

Available expressions

This table includes the available regular expressions and a short description for each of them. The set of expressions depends on the category selected in the previous Category combo box. You can add an expression in the Regular expressions editor by double-clicking the expression row in the table. You will notice that in the case of Character categories and Block names, the expressions are also listed in complementary format.

Evaluate expression on

You can choose between two options:

- **Evaluate expression on each line** - The edited expression will be applied on each line in the Test area.
- **Evaluate expression on all text** - The edited expression will be applied on the whole text.

Test

A text editor that allows you to enter a text sample for which the regular expression will be applied. All matches of the edited regular expression will be highlighted.

After editing and testing your regular expression you can insert it in the current editor. The Insert button will become active when an editor is opened in the background and there is an expression in the Regular expressions editor.

The regular expression builder cannot be used to insert regular expressions in the Grid mode (on page 392) or schema Design mode (on page 623). Accordingly, the Insert button will be not available if the current document is edited in these modes.

**Note:** Some regular expressions may indefinitely block the Java Regular Expressions engine. If the execution of the regular expression does not end in about five seconds, the application displays a dialog box that allows you to interrupt the operation.
Large File Viewer

XML files tend to become larger and larger mostly because they are frequently used as a format for database export or for porting between multiple database formats. Traditional XML text editors simply cannot handle opening these huge export files, some having sizes exceeding one gigabyte, because all of the file content must be loaded in memory before the user can actually view it.

The best performance of the viewer is obtained for encodings that use a fixed number of bytes per character (such as UTF-16 or ASCII). The performance for UTF-8 is very good for documents that use mostly characters of the European languages. For the same encoding, the rendering performance is higher for files consisting of long lines (up to few thousands characters) and may degrade for short lines. In fact, the maximum size of a file that can be rendered in the Large File Viewer decreases when the total number of the text lines of the file increases. Trying to open a very large file (for example, a file of 4 GB) with a very high number of short lines (100 or 200 characters per line) may produce an out of memory error (OutOfMemoryError) that would require either increasing the Java heap memory with the -Xmx startup parameter or decreasing the total number of lines in the file.

The powerful Large File Viewer is available from the Tools menu or as a standalone application. You can also right-click a file in your project and choose to open it with the viewer. It uses an efficient structure for indexing the opened document. No information from the file is stored in the main memory, just a list of indexes in the file. In this way the viewer can open very large files, up to 10 gigabytes. If the opened file is XML, the encoding used to display the text is detected from the XML prolog of the file. For other file types, the encoding is taken from the Oxygen XML Editor options. See Encoding for non-XML files (on page 123).

Figure 768. Large File Viewer
Large File Viewer components:

- The menu bar provides menu driven access to all the features and functions that are available in Large File Viewer:

  **File > Open**

  Opens files in the viewer (also available in the contextual menu).

  **File > Exit**

  Closes the viewer.

  **Edit > Copy**

  Copies the selected text to clipboard (also available in the contextual menu).

  **Find > Find**

  Opens a reduced **Find** dialog box that provides some basic search options, such as:

  ◦ **Case sensitive** - When selected, operations are case-sensitive.

  ◦ **Regular Expression** - When selected, allows you to use any regular expression in Perl-like syntax *(on page 753).*

  ◦ **Wrap around** - Continues the find operation from the start/end of the document after reaching the end/., depending on whether the search is in forward or backward direction.

  **Help > Help**
Provides access to the User Manual.

- The status bar provides information about the current opened file path, the Unicode representation of the character at cursor position and the line and column in the opened document where the cursor is located.

⚠️ **Attention:** For faster computation the **Large File Viewer** uses a fixed font (plain, monospace font of size 12) to display characters. The font is not configurable from the **Preferences page (on page 79)**.

ℹ️ **Tip:** The best performance of the viewer is accomplished for encodings that use a fixed number of bytes per character (such as UTF-16 or ASCII). The performance for UTF-8 is very good for documents that use mostly characters of the European languages. For the same encoding the rendering performance is high for files consisting of short lines (up to a few thousand characters) and may degrade for long lines.

**Hex Viewer**

When the Unicode characters that are visible in a text viewer or editor are not enough and you need to see the byte values of each character of a document, you can start the **Hex Viewer** that is available on the **Tools menu**. It has two panels: the characters are rendered in the right panel and the bytes of each character are displayed in the left panel. There is a 1:1 correspondence between the characters and their byte representation: the byte representation of a character is displayed in the same matrix position of the left panel as the character in the matrix of the right panel.

Figure 769. Hex Viewer
To open a file in **Hex Viewer** use the **File > Open** action. Alternatively, you can drag a file and drop it in the **Hex Viewer** panel.

**Standalone SVG Viewer**

Oxygen XML Editor includes a simple **SVG Viewer** that allows you to work with SVG images.

To open the viewer, select **SVG Viewer** from the **Tools** menu.

**Figure 770. SVG Viewer**

You can browse for and open any SVG file that has the `.svg` or `.svgz` extension.
If the file is included in the current project, you can open it in the viewer by right-clicking the image file in the Project view (on page 333) and selecting Open with > SVG Viewer.

**Actions Available in the SVG Viewer**

The following actions are available in the SVG Viewer:

**Zoom in**

To zoom in on an image, use any of the following methods:

- Scroll forward with the mouse wheel.
- Select Zoom in from the contextual menu.
- Use the \(\text{Ctrl} + \text{I} \ (\text{Command} + \text{I} \text{ on OS X})\) keyboard shortcut.

**Zoom out**

To zoom in on an image, use any of the following methods:

- Scroll backward with the mouse wheel.
- Use the \(\text{Ctrl} + \text{O} \ (\text{Command} + \text{O} \text{ on OS X})\) keyboard shortcut.
- Select Zoom out from the contextual menu.

**Rotate**

To rotate an image, use either of the following methods:

- Use the \(\text{Ctrl} + \text{Right-Click} + \text{Drag} \ (\text{Command} + \text{Right-Click} + \text{Drag on OS X})\) shortcut.
- Select Rotate from the contextual menu. This rotates the image exactly 90 degrees clockwise.

**Refresh**

To refresh (or reset) an image, use either of the following methods:

- Use the \(\text{Ctrl} + \text{T} \ (\text{Command} + \text{T} \text{ on OS X})\) keyboard shortcut.
- Select Refresh from the contextual menu.

**Move**

To move an image, use either of the following methods:

- Use the Arrow Keys on your keyboard.
- Use the \(\text{Shift} + \text{Left-Click} + \text{Drag}\) shortcut.

**Pan**
To pan an image, **click and drag** the image with your mouse.

Related Information:

- Editing SVG Files *(on page 1499)*

## Tree Editor

The **Tree Editor** *(Tools > Tree Editor)* is used for editing the content of a document displayed as an XML tree. The workspace offers the following functional areas:

- **Main menu** - Provides access to all the features and functions available in Oxygen XML Editor Tree Editor.
- **Toolbar** - Provides easy access to common and frequently used functions. Each icon is a button that acts as a shortcut to a related function.
- **Editor panel** - Easy editing of structured mark-up documents. Each token has an associated icon for easier visual identification.
- **Message panel** - Displays messages returned from user operations.
- **Model view** - Shows the detailed information about the attribute or element that you are working on.
- **All Elements panel** - Presents a list of all defined elements that can be inserted within your document.

The tree editor does not offer entity support. Entities are not presented with a special type of node in the tree and new entity nodes cannot be inserted in the document.

## Compare Files

The **Compare Files** tool can be used to compare files or XML file fragments. The tool provides a mechanism for comparing two files or fragments, as well as the mechanism for a three-way comparison. The utility is available from the **Tools** menu or can be opened as a stand-alone application from the Oxygen XML Editor installation folder *(diffFiles.exe)*.

Figure 771. Compare Files Tool
Two-Way Comparisons

The **Compare Files** tool can be used to compare the differences between two files or XML fragments.

**Compare Files**

To perform a two-way comparison, follow these steps:

1. Open a file in the left panel and the file you want to compare it to in the right panel. You can specify the path by using the text field, the history drop-down, or the browsing actions in the **Browse** drop-down menu.

   **Step Result:** The selected files are opened in the two side-by-side editors. A text editing mode is used to offer a better view of the differences.

2. To highlight the differences between the two files, click the **Perform File Differencing** button from the toolbar.

3. You can use the drop-down menu on the left side of the toolbar to change the **algorithm** (on page 2773) for the operation.

4. You can also use the **Diff Options** button to access the **Files Comparison** preferences page where you can choose to ignore certain types of markup and configure various options.
5. If you are comparing XML documents using the XML Fast or XML Accurate algorithms, you can enter an XPath 2.0 expression in the Ignore nodes by XPath text field to ignore certain nodes from the comparison.

The resulting comparison will show you differences between the two files. The line numbers on each side and colored marks on the right-side vertical stripe help you to quickly identify the locations of the differences. Adjacent changes are grouped into blocks of changes. This layout allows you to easily identify and focus on a group of related changes.

Figure 772. Two-Way Differences

Highlighting Colors

The differences are also highlighted in several colors, depending on the type of change, and dynamic lines connect the compared fragments in the middle section between the two panes. The highlighting colors can be customized in the Files Comparison / Appearance preferences page (on page 242), but the default colors and their shades mean the following:

- **Pink** - Identifies modifications on either side.
- **Gray** - Identifies an addition of a node in the left side (your outgoing changes).
- **Blue** - Identifies an addition of a node in the right side (incoming changes).
- **Lighter Shade** - Identifies blocks of changes that can be merged in their entirety.
- **Darker Shade** - Identifies specific changes within the blocks that can be merged more precisely.

Comparing Fragments (Copy/Paste)

To compare XML file fragments, you need to copy and paste the fragments you want to compare into each side, without selecting a file. If a file is already selected, you need to close it using the Close (Ctrl + W (Command + W on OS X)) button, before pasting the fragments. Other notes for pasting fragments:

- As long as the fragment is more than 10 characters, the application will attempt to automatically detect the content type. It can detect the following types: XML, DTD, CSS, JSON, and Markdown (if it starts with #). If one of those content types is detected, the fragments will be displayed with syntax highlights.
- If you save modified fragments, a dialog box opens that allows you to save the changes as a new document.

Navigate Differences

To navigate through differences, do one of the following:
• Use the navigation buttons on the toolbar (or in the Compare menu).
• Select a block of differences by clicking its small colored marker in the overview ruler located in the right-most part of the window. At the top of the overview ruler there is a success indicator that turns green where there are no differences, or red if differences are found.
• Click a colored area in between the two text editors.

Editing Actions

You can edit the files directly in either editing pane. The two editors are constantly synchronized and the differences are refreshed when you save the modified document or when you click the Perform File Differencing button.

A variety of actions are available on the toolbar (on page 2783) and in the various menus (on page 2787) (these same actions are also available in the contextual menu in both editing panes). The tool also includes some inline actions to help you merge, copy, or remove changes. When you select a change, the following inline action widgets are available, depending on the type of change:

- Append left change to right and Append right change to left
  Copies the content of the selected change from one side and appends it on the other, according to the content of the corresponding change. As a result, the side where the arrow points to will contain the changes from both sides.

- Copy change from left to right and Copy change from right to left
  Replaces the content of a change from one side with the content of the corresponding change from the other side.

- Remove change
  Rejects the change on the particular side and preserves the particular content on the other side.

Two-Way Diff Algorithms

Oxygen XML Editor offers the following two-way diff algorithms to compare files or fragments:

- **Auto** - Selects the most appropriate algorithm, based on the compared content and its size (selected by default).
- **Characters** - Computes the differences at character level, meaning that it compares two files or fragments looking for identical characters. This algorithm is not available when the file comparison is in Author mode.
- **Words** - Computes the differences at word level, meaning that it compares two files or fragments looking for identical words. This algorithm is not available when the file comparison is in Author mode.
• **Lines** - Computes the differences at line level, meaning that it compares two files or fragments looking for identical lines of text. This algorithm is not available when the file comparison is in **Author** mode.

• **Syntax Aware** - Computes differences for known file types or fragments. This algorithm splits the files or fragments into sequences of *tokens* and computes the differences between them. The meaning of a *token* depends on the type of compared files or fragments.

Known file types include those listed in the **New** dialog box, such as XML file types (XSLT files, XSL-FO files, XSD files, RNG files, NVDL files, etc.), XQuery file types (*.xquery, .xq, .xqy, .xqm extensions), DTD file types (*.dtd, .ent, .mod extensions), TEXT file type (*.txt extension), or PHP file type (*.php extension).

For example:

- When comparing XML files or fragments, a token can be one of the following:
  - The name of an XML tag
  - The `<` character
  - The `>` sequence of characters
  - The name of an attribute inside an XML tag
  - The `=` sign
  - The `"` character
  - An attribute value
  - The text string between the start tag and the end tag (a text node that is a child of the XML element corresponding to the XML tag that encloses the text string)

- When comparing plain text, a token can be any continuous sequence of characters or any continuous sequence of whitespaces, including a new line character.

• **XML Fast** - Comparison that works well on large files or fragments, but it is less precise than **XML Accurate**.

• **XML Accurate** - Comparison that is more precise than **XML Fast**, at the expense of speed. It compares two XML files or fragments looking for identical XML nodes.

### Three-Way Comparisons

Oxygen XML Editor also includes a three-way comparison feature to help you solve conflicts and merge changes between multiple modifications. It is especially helpful for teams who have multiple authors editing and committing the same documents. It provides a comparison between a local change, another change, and the original base revision. Some additional advantages include:

- **Visualize and merge content that was modified by you and another member of your team.**
- **Marks differences correctly even when the document structure is rearranged.**
- **Allows you to merge XML-relevant modifications.**
To perform a three-way comparison, follow these steps:

1. Open a file in the left panel and the file you want to compare it to in the right panel. You can specify the path by using the text field, the history drop-down, or the browsing actions in the ✓ - Browse drop-down menu.

   **Step Result:** The selected files are opened in the two side-by-side editors. A text editing mode is used to offer a better view of the differences.

2. Click the ⚡ Three-Way Comparison button on the toolbar and select the base file in the Base field. You can specify the path by using the text field, the history drop-down, or the browsing actions in the ✓ - Browse drop-down menu.

3. To highlight the differences, click the 🔍 Perform File Differencing button on the toolbar.

4. You can use the drop-down menu on the left side of the toolbar to change the algorithm (on page 2773) for the operation.

5. You can also use the ⚙ Diff Options button to access the Files Comparison preferences page where you can choose to ignore certain types of markup and configure various options.

The resulting comparison will show you differences between the two files, as well as differences between either of them and the base (ancestor) file. The line numbers on each side and colored marks on the right-side vertical stripe help you to quickly identify the locations of the differences. Adjacent changes are grouped into blocks of changes.

Figure 774. Three-Way Differences

<table>
<thead>
<tr>
<th>7</th>
<th>&lt;given&gt;Robert&lt;/given&gt;</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>&lt;family&gt;Taylor&lt;/family&gt;</td>
</tr>
<tr>
<td>9</td>
<td>&lt;/name&gt;</td>
</tr>
<tr>
<td>10</td>
<td>&lt;email&gt;robert.taylor@example&lt;/email&gt;</td>
</tr>
<tr>
<td>8</td>
<td>&lt;given&gt;Helen&lt;/given&gt;</td>
</tr>
<tr>
<td>9</td>
<td>&lt;family&gt;Jackson&lt;/family&gt;</td>
</tr>
<tr>
<td>10</td>
<td>&lt;/name&gt;</td>
</tr>
<tr>
<td>11</td>
<td>&lt;email&gt;helen.jackson@example&lt;/email&gt;</td>
</tr>
</tbody>
</table>

**Highlighting Colors**
The differences are also highlighted in several colors, depending on the type of change, and dynamic lines connect the compared fragments in the middle section between the two panes. The highlighting colors can be customized in the Files Comparison / Appearance preferences page (on page 242), but the default colors and their shades mean the following:

- **Pink** - Identifies blocks of changes that include conflicts.
- **Gray** - Identifies your outgoing changes that do not include conflicts.
- **Blue** - Identifies incoming changes that do not include conflicts.
- **Lighter Shade** - Identifies blocks of changes that can be merged in their entirety.
- **Darker Shade** - Identifies specific changes within the blocks that can be merged more precisely.

**Navigate Differences**

To navigate through differences, do one of the following:

- Use the navigation buttons on the toolbar (or in the Compare menu).
- Select a block of differences by clicking its small colored marker in the overview ruler located in the right-most part of the window. At the top of the overview ruler there is a success indicator that turns green where there are no differences, or red if differences are found.
- Click a colored area in between the two text editors.

**Editing Actions**

You can edit the files directly in either editing pane. The two editors are constantly synchronized and the differences are refreshed when you save the modified document or when you click the **Perform File Differencing** button.

A variety of actions are available on the toolbar (on page 2783) and in the various menus (on page 2787) (these same actions are also available in the contextual menu in both editing panes). The tool also includes some inline actions to help you merge, copy, or remove changes. When you select a change, the following inline action widgets are available, depending on the type of change:

- **Append left change to right and Append right change to left**
  
  Copies the content of the selected change from one side and appends it on the other, according to the content of the corresponding change. As a result, the side where the arrow points to will contain the changes from both sides.

- **Copy change from left to right and Copy change from right to left**

  Replaces the content of a change from one side with the content of the corresponding change from the other side.

- **Remove change**
Rejects the change on the particular side and preserves the particular content on the other side.

**Three-Way Diff Algorithms**

Oxygen XML Editor offers the following three-way diff algorithms to compare files:

- **Auto** - Selects the most appropriate algorithm, based on the compared content and its size (selected by default).
- **Lines** - Computes the differences at line level, meaning that it compares two files or fragments looking for identical lines of text. This algorithm is not available when the file comparison is in Author mode.
- **XML Fast** - Comparison that works well on large files or fragments, but it is less precise than **XML Accurate**.
- **XML Accurate** - Comparison that is more precise than **XML Fast**, at the expense of speed. It compares two XML files or fragments looking for identical XML nodes.

**Second-Level Comparisons**

For both two-way and three-way comparisons, Oxygen XML Editor automatically performs a second-level comparison for the **Lines**, **XML Fast**, and **XML Accurate** algorithms. After the first comparison is finished, the second-level comparisons for the **Lines** algorithm is processed on text nodes using a word level comparison, meaning that it looks for identical words. For the **XML Fast** and **XML Accurate** algorithms, the second-level comparison is processed using a syntax-aware comparison (on page 2774), meaning that it looks for identical tokens. This second-level comparison makes it easier to spot precise differences and you can merge or reject the precise modifications.

Figure 775. Second-Level Diff Comparison

Note: If a modified text fragment contains XML markup (such as processing instructions, XML comments, CData, or elements), the second-level comparison will not automatically be performed. In this case you can manually select a second-level comparison by doing a word level or character level comparison.

To do a word level comparison, select **Show word level details** from the contextual menu or **Compare** menu.

Figure 776. Word Level Comparison
To do a character level comparison, select **Show Character Level details** from the contextual menu or **Compare** menu.

Figure 777. Character Level Comparison

**Author Visual Mode**

The **Compare Files** tool includes an **Author** mode that displays the files in a visual mode similar to the **Author** editing mode in *Oxygen XML Editor/Author*. This makes it easier to see how the compared changes will look in the final output. This visual mode is available when the compared files are detected as being XML. To determine whether the files are initially opened in the merge tool's **Text** or **Author** mode, it detects the **Initial Edit Mode** in the **Document Type Association** configuration (on page 96) and the mode the files were last opened in *Oxygen XML Editor/Author*.

**Note:** This mode is not available if the **Enable file comparison in Author mode** option (on page 239) is not selected in the **Diff > Files Comparison** preferences page.

This visual mode includes unique features such as a **Tags Display Mode** drop-down button (on page 2785) on the toolbar that allows you to select the amount of tags to display in this visual mode. This mode also presents differences that were made using the **Track Changes** feature (although the **Track Changes** feature is not available in the comparison tool).

Figure 778. File Comparison Tool - Author Mode
Author Mode Algorithms

The visual **Author** mode offers the following diff algorithms to compare files:

- **Auto** - Selects the most appropriate algorithm, based on the compared content and its size (selected by default).
- **XML Fast** - Comparison that works well on large files or fragments, but it is less precise than **XML Accurate**.
- **XML Accurate** - Comparison that is more precise than **XML Fast**, at the expense of speed. It compares two XML files or fragments looking for identical XML nodes.

Author Mode Second-Level Comparisons

The visual **Author** mode automatically performs a second-level comparison for the **XML Fast** and **XML Accurate** algorithms. After the first comparison is finished, the second-level comparisons is processed on text nodes using a word level comparison, meaning that it looks for identical words. This second-level comparison makes it easier to spot precise differences and you can merge or reject the precise modifications.

Related Information:

- [Files Comparison Preferences Page (on page 239)](on page 239)
Starting File Comparison Tool from a Command Line

The file comparison tool can be started by using command-line arguments. In the installation folder there is an executable shell (\textit{diffFiles.bat} on Windows, \textit{diffFiles.sh} on OS X and Linux). To specify the files to compare, you can pass command-line arguments using the following construct:

\texttt{diffFiles.bat/diffFiles.sh [path to left file] [path to right file] [path to 3-way base file]}

If three files are specified, the tool will start in the \textit{3-way comparison mode} (on page 2774). If only two files are specified, the tool will start in the \textit{2-way comparison mode} (on page 2771). The first specified file will be added to the left panel in the comparison tool, the second file to the right panel, and the optional third file will be the base (ancestor) file used for a 3-way comparison. If you pass only one argument, you are prompted to manually choose another file.

If you want to launch the file comparison tool from an external application with specified files and you want the file browsing buttons at the top of both panels to be hidden, you should use the \texttt{-ext} argument as the first command. There are some additional arguments that are allowed and to see all the details for the command-line construct, type \texttt{diffFiles.bat --help} in the command line.

\textbf{Example:}

To do a 3-way comparison, the command line might look like this:

\begin{itemize}
  \item \textbf{Windows}
    \begin{verbatim}
    diffFiles.bat "c:\docs\file 1" "c:\docs\file 2" c:\docs\basefile
    \end{verbatim}
  \end{itemize}

\textbf{Tip:} If there are spaces in the path names, surround the paths with quotes.

\begin{itemize}
  \item \textbf{Linux}
    \begin{verbatim}
    diffFiles.sh home/file1 home/file2 home/basefile
    \end{verbatim}
  \end{itemize}

\begin{itemize}
  \item \textbf{Mac OS X}
    \begin{verbatim}
    diffFiles.sh documents/file1 documents/file2 documents/basefile
    \end{verbatim}
  \end{itemize}

How to Integrate the File Comparison Tool with Git

The file comparison tool can be integrated with Git clients. It requires that you configure your \texttt{.gitconfig} file and then you can simply start the tool from the command line.
To integrate the **Compare Files** tool with your Git client, follow this procedure:

1. Use one of the following methods to instruct your Git client to use the **Oxygen Compare Files** tool:
   - **Manual Configuration** - Locate your Git user-specific configuration file (.gitconfig) and edit it with a text editor (for example, in Windows, the .gitconfig file is most likely located in your user home directory). Add (or replace) the following lines:
     ```
     [diff]
     tool = oxygendiff
     [merge]
     tool = oxygendiff
     [difftool "oxygendiff"]
     cmd = '{pathToOxygenInstallDir}/diffFiles.exe' -ext $REMOTE $LOCAL $LOCAL
     [mergetool "oxygendiff"]
     cmd = '{pathToOxygenInstallDir}/diffFiles.exe' -ext $LOCAL $REMOTE $BASE
     trustExitCode = true
     [difftool]
     prompt = false
     ```
   - **Command Line Configuration** - To automatically configure the .gitconfig file, you can run the following commands from a command line:
     ```
     git config --global diff.tool oxygendiff
     git config --global difftool.oxygendiff.cmd '{Oxygen install dir}/diffFiles.exe -ext $REMOTE $LOCAL $LOCAL'
     git config --global merge.tool oxygendiff
     git config --global mergetool.oxygendiff.cmd '{Oxygen install dir}/diffFiles.exe -ext $LOCAL $REMOTE $BASE $MERGED'
     git config --global mergetool.oxygendiff.trustExitCode true
     ```
   - **Note**: For Mac OS X, the cmd lines would start with something like: `sh "Applications/Oxygen XML Editor/diffFiles.sh"`. For Linux, the cmd lines would start with something like: `sh "/Oxygen XML Editor/diffFiles.sh"`.

2. To start the **Compare Files** tool and see a comparison of changes for a particular file, run the following command from a command line:

git difftool [PathToFile]

**Tip:** If the file you want to compare has conflicts, you can start the Compare Files tool as a merge conflict resolution tool by running the following command:

git mergetool [PathToFile]

For more information about the Git `difftool` syntax, see [https://git-scm.com/docs/git-difftool](https://git-scm.com/docs/git-difftool).

For more information about the Git `mergetool` syntax, see [https://git-scm.com/docs/git-mergetool](https://git-scm.com/docs/git-mergetool).

### How to Integrate the File Comparison Tool with SourceTree

The file comparison tool can be integrated with SourceTree so that you can use it to compare changes. The advantages of doing this include:

- The *Oxygen Compare Files* tool presents the files side-by-side and makes it much easier to determine real changes.
- The *Oxygen Compare Files* tool includes XML comparison algorithms.
- The *Oxygen Compare Files* tool includes various options for configuring the comparison.
- The *Oxygen Compare Files* tool allows you to navigate through changes.

To integrate the Compare Files tool with SourceTree, follow this procedure, depending on your operating system:

**Windows**

1. In SourceTree, go to Tools > Options.
2. Go to the Diff tab.
3. In the External Diff/Merge section, configure the settings as follows:
   - **External Diff Tool** - Select Custom.
   - **Diff Command** - Enter the path of the *Oxygen diffFile.exe* file (for example: `c:\Programs\Oxygen XML Editor 19\diffFiles.exe`).
   - **Arguments** - Enter `-ext $REMOTE $LOCAL $LOCAL`.
   - **Merge Tool** - Select Custom.
   - **Diff Command** - Enter the path of the *Oxygen diffFile.exe* file (for example: `c:\Programs\Oxygen XML Editor 19\diffFiles.exe`).
   - **Arguments** - Enter `-ext $LOCAL $REMOTE $BASE $MERGED`.
4. Click OK.
Result: In SourceTree, you can now compare file changes with the Oxygen Compare Files tool by simply selecting External Diff from the contextual menu, Actions menu, or Ctrl+D.

Mac OS X

1. In SourceTree, go to SourceTree > Preferences.
2. Go to the Diff tab.
3. In the External Diff/Merge section, configure the settings as follows:
   - External Diff Tool - Select Custom.
   - Diff Command - Enter a command-line argument to launch the Oxygen diffFiles.sh file (for example: sh "/Applications/Oxygen XML Editor/diffFiles.sh").
   - Arguments - Enter -ext $REMOTE $LOCAL $LOCAL.
   - Merge Tool - Select Custom.
   - Diff Command - Enter a command-line argument to launch the Oxygen diffFiles.sh file (for example: sh "/Applications/Oxygen XML Editor/diffFiles.sh").
   - Arguments - Enter -ext $LOCAL $REMOTE $BASE $MERGED.
4. Close the preferences dialog box.

Result: In SourceTree, you can now compare file changes with the Oxygen Compare Files tool by simply selecting External Diff from the contextual menu or Actions menu.

Toolbar and Contextual Menu Actions of the Compare Files Tool

The toolbar of the Compare Files tool contains operations that can be performed on the source and target files or XML fragments. Many of the actions are also available in the contextual menu.

Figure 779. Compare Toolbar

The following actions are available:

Algorithm

This drop-down menu allows you to select one of the following diff algorithms (depending on whether it is a two-way or three-way comparison):
• **Auto** - Selects the most appropriate algorithm, based on the compared content and its size (selected by default).

• **Characters** - Computes the differences at character level, meaning that it compares two files or fragments looking for identical characters. This algorithm is not available when the file comparison is in **Author** mode.

• **Words** - Computes the differences at word level, meaning that it compares two files or fragments looking for identical words. This algorithm is not available when the file comparison is in **Author** mode.

• **Lines** - Computes the differences at line level, meaning that it compares two files or fragments looking for identical lines of text. This algorithm is not available when the file comparison is in **Author** mode.

• **Syntax Aware** - Computes differences for the file types or fragments known by Oxygen XML Editor, taking the syntax (the specific types of tokens) into consideration. This algorithm is not available when the file comparison is in **Author** mode.

• **XML Fast** - Comparison that works well on large files or fragments, but it is less precise than **XML Accurate**.

• **XML Accurate** - Comparison that is more precise than **XML Fast**, at the expense of speed. It compares two XML files or fragments looking for identical XML nodes.

**Diff Options**

Opens the **Files Comparison preferences page (on page 239)** where you can configure various options.

**Three-Way Comparison**

Toggle action that allows you to perform a three-way comparison between the two files displayed in the two editing panes and a base (ancestor) file.

**Perform Files Differencing**

Looks for differences between the two files displayed in the left and right side panels.

**Synchronized scrolling**

Toggles synchronized scrolling on or off so that a selected difference can be seen on both sides of the application window. This option is on by default.

**Ignore Whitespaces**

Enables or disables the whitespace ignoring feature. Ignoring whitespace means that before performing the comparison, the application normalizes the content and trims its leading and trailing whitespaces. This option is not available when the file comparison is in **Author** mode.
Format and Indent Both Files (Ctrl + Shift + P (Command + Shift + P on OS X))

Formats and indents both files before comparing them. Use this option for comparisons that contain long lines that make it difficult to spot differences. This option is not available when the file comparison is in Author mode.

Note: When comparing two JSON files, the Format and Indent Both Files action will automatically sort the keys in both files the same to make it easier to compare.

Tags Display Mode

Allows you to select the amount of markup to be displayed in the Author visual mode (on page 2778). You can choose between: Full Tags with Attributes, Full Tags, Block Tags, Inline Tags, Partial Tags, or No Tags.

Copy Change from Right to Left

Copies the selected difference from the file in the right panel to the file in the left panel.

Copy All Changes from Right to Left

Copies all changes from the file in the right panel to the file in the left panel.

Next Block of Changes (Ctrl + Period (Command + Period on OS X))

Jumps to the next block of changes. This action is not available when the cursor is positioned on the last change block or when there are no changes.

Note: A change block groups one or more consecutive lines that contain at least one change.

Previous Block of Changes (Ctrl + Comma (Command + Comma on OS X))

Jumps to the previous block of changes. This action is not available when the cursor is positioned on the first change block or when there are no changes.

Next Change (Ctrl + Shift + Period (Command + Shift + Period on OS X))

Jumps to the next change from the current block of changes. When the last change from the current block of changes is reached, it highlights the next block of changes. This action is not available when the cursor is positioned on the last change or when there are no changes.

Previous Change (Ctrl + Shift + Comma (Command + Shift + M on OS X))

Jumps to the previous change from the current block of changes. When the first change from the current block of changes is reached, it highlights the previous block of changes. This action is not available when the cursor is positioned on the first change or when there are no changes.
Copy All Changes from Left to Right

Copies all changes from the file in the left panel to the file in the right panel.

Copy Change from Left to Right

Copies the selected difference from the file in the left panel to the file in the right panel.

Ignore Nodes by XPath

You can use this text field to enter an XPath expression (on page 2182) to ignore certain nodes from the comparison. It will be processed as XPath version 2.0. You can also enter the name of the node to ignore all nodes with the specified name (for example, if you want to ignore all ID attributes from the document, you could simply enter \@id). This field is only available when comparing XML documents using the XML Fast or XML Accurate algorithms.

Note: If an XPath expression is specified in the Ignore nodes by XPath option (on page 241) in the Diff / File Comparison preferences page, that one is used as a default when the application is started. If you then enter an expression in this field on the toolbar, this one will be used instead of the default. If you delete the expression from this field, neither will be used.

First Change (Ctrl + B (Command + B on OS X))

Jumps to the first change.

Base

Available for three-way comparisons (on page 2774). It is the base file that will be compared with the files opened in the left and right editors. You can specify the path to the file by using the text field, its history drop-down, or the browsing actions in the Browse drop-down menu.

Left-Side (Source) File

You can specify the path to the file to be compared on the left side (source) by using the text field, its history drop-down, or the browsing actions in the Browse drop-down menu.

Save

Saves the changes made in the source (left-side) file.

Reload

Reloads the source (left-side) file.

Close

Closes the source (left-side) file.
Right-Side (Target) File

You can specify the path to the file to be compared on the right side (target) by using the text field, its history drop-down, or the browsing actions in the · Browse drop-down menu.

 Lawson Save

Saves the target (right-side) file.

 Reload

Reloads the target (right-side) file.

 Close

Closes the target (right-side) file.

Compare Files Tool Menus

The menus in the Compare Files tool contain some of the same actions that are on the toolbar, as well as some common actions that are identical to the same actions in the Oxygen XML Editor menus. The menu actions include:

 File Menu

Source > Open

Browses for a file that will be displayed in the left panel.

Source > Open URL

Browses for a remote file that will be displayed in the left panel.

Source > Open File from Archive

Browses an archive for a file that will be displayed in the left panel.

Source > Reload

Reloads the file in the left panel.

Source > Save

Saves the changes made to the file in the left panel.

Source > Save As

Allows you to choose a destination to save the file in the left panel.

Source > Close

Closes the file in the left panel.
Target > Open

Browses for a file that will be displayed in the right panel.

Target > Open URL

Browses for a remote file that will be displayed in the right panel.

Target > Open File from Archive

Browses an archive for a file that will be displayed in the right panel.

Target > Reload

Reloads the file in the right panel.

Target > Save

Saves the changes made to the file in the right panel.

Target > Save As

Allows you to choose a destination to save the file in the right panel.

Target > Close

Closes the file in the right panel.

Base > Open

Browses for a file that will be compared with both files in a three-way comparison (on page 2774).

Base > Open URL

Browses for a remote file that will be compared with both files in a three-way comparison (on page 2774).

Base > Open File from Archive

Browses an archive for a file that will be compared with both files in a three-way comparison (on page 2774).

Close (Ctrl + W (Command + W on OS X))

Closes the application.

Edit Menu

Cut

Cut the selection from the currently focused editor panel to the clipboard.

Copy

Copy the selection from the currently focused editor panel to the clipboard.
Paste
Paste content from the clipboard into the currently focused editor panel.

Select all
Selects all content in the currently focused editor panel.

Undo
Undo changes in the currently focused editor panel.

Redo
Redo changes in the currently focused editor panel.

Find Menu

Find/Replace
Perform find/replace operations in the currently focused editor panel.

Find Next
Go to the next match using the same options as the last find operation. This action runs in both editor panels.

Find Previous
Go to the previous match using the same options as the last find operation. This action runs in both editor panels.

Compare Menu

Three-Way Comparison
Toggle action that allows you to perform a three-way comparison between the two files displayed in the two editing panes and a base (ancestor) file.

Perform Files Differencing
Looks for differences between the two files displayed in the left and right side panels.

Next Block of Changes (Ctrl + Period (Command + Period on OS X))
Jumps to the next block of changes. This action is not available when the cursor is positioned on the last change block or when there are no changes.

Note: A change block groups one or more consecutive lines that contain at least one change.

Previous Block of Changes (Ctrl + Comma (Command + Comma on OS X))
Jumps to the previous block of changes. This action is not available when the cursor is positioned on the first change block or when there are no changes.

**Next Change (Ctrl + Shift + Period (Command + Shift + Period on OS X))**

Jumps to the next change from the current block of changes. When the last change from the current block of changes is reached, it highlights the next block of changes. This action is not available when the cursor is positioned on the last change or when there are no changes.

**Previous Change (Ctrl + Shift + Comma (Command + Shift + M on OS X))**

Jumps to the previous change from the current block of changes. When the first change from the current block of changes is reached, it highlights the previous block of changes. This action is not available when the cursor is positioned on the first change or when there are no changes.

**Last Change (Ctrl + E (Command + E on OS X))**

Jumps to the last change.

**First Change (Ctrl + B (Command + B on OS X))**

Jumps to the first change.

**Copy All Changes from Right to Left**

Copies all changes from the file in the right panel to the file in the left panel.

**Copy All Changes from Left to Right**

Copies all changes from the file in the left panel to the file in the right panel.

**Copy Change from Right to Left**

Copies the selected difference from the file in the right panel to the file in the left panel.

**Copy Change from Left to Right**

Copies the selected difference from the file in the left panel to the file in the right panel.

**Show Word Level Details**

Provides a word-level comparison of the selected change.

**Show Character Level Details**

Provides a character-level comparison of the selected change.

**Format and Indent Both Files (Ctrl + Shift + P (Command + Shift + P on OS X))**

Formats and indents both files before comparing them. Use this option for comparisons that contain long lines that make it difficult to spot differences.
**Note:** When comparing two JSON files, the **Format and Indent Both Files** action will automatically sort the keys in both files the same to make it easier to compare.

### Options Menu

**Preferences**

Opens the preferences dialog box that includes numerous pages of options that can be configured.

**Menu Shortcut Keys**

Opens the **Menu Shortcut Keys** option page where you can configure keyboard shortcuts available for menu items.

**Reset Global Options**

Resets options to their default values. Note that this option appears only when the tool is executed as a stand-alone application.

**Import Global Options**

Allows you to import an options set that you have previously exported.

**Export Global Options**

Allows you to export the current options set to a file.

### Help Menu

**Help (F1)**

Opens a **Help** dialog box that displays the User Manual at a section that is appropriate for the context of the current cursor position.

**Use Online Help**

If this option is selected, when you select Help or press F1 while hovering over any part of the interface, Oxygen XML Editor attempts to open the help documentation in online mode. If this option is not selected or an internet connection fails, the help documentation is opened in offline mode.

**Report problem**

Opens a dialog box that allows the user to write the description of a problem that was encountered while using the application. You can change the URL where the reported problem is sent by using the `com.oxygenxml.report.problems.url` system property. The report is sent in XML format through the `report` parameter of the POST HTTP method.

**Support Center**
Opens the Oxygen XML Editor Support Center web page in a browser.

## Compare Directories

The **Compare Directories** tool can be used to compare and manage changes to files and folders within the structure of your directories. The utility is available from the **Tools** menu or can be opened as a stand-alone application from the Oxygen XML Editor installation folder (*diffDirs.exe*).

![Compare Directories Tool](image)

### Starting the Tool from a Command Line

The directory comparison tool can also be started by using command-line arguments. In the installation folder there is an executable shell (*diffDirs.bat* on Windows, *diffDirs.sh* on OS X and Linux). To specify the directories to compare, you can pass command-line arguments using the following construct: `diffDirs.bat/diffDirs.sh [directory path 1] [directory path 2]`.

If you pass only one argument, you are prompted to manually choose the second directory or archive.

**Example:**

To do a comparison between two directories, the command line would look like this:

**Windows**
Directory Comparisons

To perform a directory comparison, follow these steps:

1. Select a folder in the left panel and the folder you want to compare it to in the right panel. You can specify the path by using the text field, the history drop-down, or the **Browse for local directory** action in the ➔ · **Browse** drop-down menu.

   **Step Result:** The selected directory structures are opened in the two side-by-side panels.

2. To highlight the differences between the two folders, click the 📀 **Perform Directories Differencing** button from the toolbar.

3. You can also use the ⚙ **Diff Options** button to access the **Directories Comparison preferences page** (on page 242) where you can configure various options.

To compare the content of two archives, follow these steps:

1. Use the **Browse for archive file** action in the ➔ · **Browse** drop-down menu to select the archives in the left and right panels.

2. By default, the supported archives are not treated as directories and the comparison is not performed on the files inside them. To make Oxygen XML Editor treat supported archives as directories, select the **Look in archives** option (on page 243) in the **Directories Comparison preferences page**.

3. To highlight the differences, click the 📂 **Perform Directories Differencing** button from the toolbar.

The directory comparison results are presented using two tree-like structures showing the files and folders, including their name, size, and modification date. A column that contains graphic symbols separates the two tree-like structures. The graphic symbols can be one of the following:

- An **X** symbol, when a file or a folder exists in only one of the compared directories.
• A ≠ symbol, when a file exists in both directories but the content differs. The same sign appears when a collapsed folder contains differing files.

The color used for the symbol and the directory or file name can be customized in the Directories Comparison / Appearance preferences page (on page 244). You can double-click lines marked with the ≠ symbol to open a Compare Files window, which shows the differences between the two files.

The directories that contain files that differ are expanded automatically so that you can focus directly on the differences. You can merge the contents of the directories by using the copy actions. If you double-click (or press Enter) on a line with a pair of files, Oxygen XML Editor starts a file comparison (on page 2770) between the two files, using the Compare Files tool.

Related Information:

• Compare Files (on page 2770)

Toolbar and Contextual Menu Actions of the Compare Directories Tool

The toolbar of the Compare Directories tool contains operations that can be performed on the compared directory structure. Some of the toolbar actions are also available in the contextual menu.

Figure 781. Compare toolbar

<table>
<thead>
<tr>
<th>Toolbar Actions</th>
</tr>
</thead>
<tbody>
<tr>
<td><img src="image" alt="Perform Directories Differencing" /></td>
</tr>
<tr>
<td><img src="image" alt="Perform Files Differencing" /></td>
</tr>
<tr>
<td><img src="image" alt="Copy Change from Right to Left" /></td>
</tr>
<tr>
<td><img src="image" alt="Copy Change from Left to Right" /></td>
</tr>
</tbody>
</table>
Copies the selected change from the left side to the right side (if there is no file/folder in the left side, the right file/folder is deleted).

### Binary Compare

Performs a byte-level comparison on the selected files.

### Diff Options

Opens the [Directory Comparison preferences page](on page 242) where you can configure various options.

### Show Only Modifications

Displays a more uncluttered file structure by hiding all identical files.

#### File and folder filters

Differences can be filtered using three combo boxes: **Include files**, **Exclude files**, and **Exclude folders**. They come with predefined values and are editable to allow custom values. All of them accept multiple comma-separated values and the * and ? wildcards. For example, to filter out all JPEG and GIF image files, edit the **Exclude files** filter box to read `*.jpeg, *.png`. Each filter includes a drop-down menu with the latest 15 filters applied.

### Contextual Menu Actions

#### Perform Files Differencing

Opens the [Compare Files tool](on page 2770) that allows you to compare the currently selected files.

#### Binary Compare

Performs a byte-level comparison on the selected files.

#### Copy Change from Right to Left

Copies the selected difference from the file in the right panel to the file in the left panel.

#### Copy Change from Left to Right

Copies the selected difference from the file in the left panel to the file in the right panel.

**Open**

If the action is invoked on a file, the selected file is opened in Oxygen XML Editor. If the action is invoked on a directory, the selected directory is opened in the default file browser for your particular operating system.

**Open in System Application**
Opens the selected file in the system application that is associated with that type of file. The action is available when launching the Compare Directories tool from the Tools menu in Oxygen XML Editor.

Show in Explorer

Opens the default file browser for your particular operating system with the selected file highlighted.

Compare Directories Tool Menus

The menus in the Compare Directories tool contain some of the same actions that are on the toolbar, as well as some common actions that are identical to the same actions in the Oxygen XML Editor menus. The menu actions include:

File Menu

Close (Ctrl + W (Command + W on OS X))

Closes the application.

Compare Menu

Perform Directories Differencing

Looks for differences between the two directories displayed in the left and right side of the application window.

Perform Files Differencing

Opens the Compare Files tool (on page 2770) that allows you to compare the currently selected files.

Copy Change from Right to Left

Copies the selected change from the right side to the left side (if there is no file/folder in the right side, the left file/folder is deleted).

Copy Change from Left to Right

Copies the selected change from the left side to the right side (if there is no file/folder in the left side, the right file/folder is deleted).

Options Menu

Preferences
Opens the preferences dialog box that includes numerous pages of options that can be configured.

**Menu Shortcut Keys**

Opens the **Menu Shortcut Keys** option page where you can configure keyboard shortcuts available for menu items.

**Reset Global Options**

Resets options to their default values. Note that this option appears only when the tool is executed as a stand-alone application.

**Import Global Options**

Allows you to import an options set that you have previously exported.

**Export Global Options**

Allows you to export the current options set to a file.

**Help Menu**

**Help (F1)**

Opens a **Help** dialog box that displays the User Manual at a section that is appropriate for the context of the current cursor position.

**Use Online Help**

If this option is selected, when you select Help or press F1 while hovering over any part of the interface, Oxygen XML Editor attempts to open the help documentation in online mode. If this option is not selected or an internet connection fails, the help documentation is opened in offline mode.

**Report problem**

Opens a dialog box that allows the user to write the description of a problem that was encountered while using the application. You can change the URL where the reported problem is sent by using the `com.oxygenxml.report.problems.url` system property. The report is sent in XML format through the `report` parameter of the POST HTTP method.

**Support Center**

Opens the Oxygen XML Editor Support Center web page in a browser.

**Compare Images**

You can use the **Compare Directories** tool to compare images. If you double-click a line that contains two different images, the **Compare images** window is displayed. This dialog box presents the images
in the left and right sides, scaled to fit the available view area. You can use the contextual menu actions to scale the images to their original size or scale them down to fit in the view area.

The supported image types are: GIF, JPG, JPEG, PNG, and BMP.

**Compare Directories Against a Base (3-Way)**

The *Compare Directories Against a Base (3-way)* tool allows you to perform three-way comparisons on directories to help you identify and merge changes between multiple modifications of the same directory structure. It is especially helpful for teams that have multiple authors contributing documents to the same directory system. It offers information about conflicts and changes, and includes actions to easily merge, accept, overwrite, or ignore changes to the directory system.

**How to Perform 3-Way Directory Comparisons**

To perform a 3-way directories comparison, follow these steps:

1. Select **Compare Directories Against a Base (3-way)** from the **Tools** menu.

   **Step Result:** This opens a dialog box that allows you to select the 3 file sets that will be used for the comparison.

   **Figure 782. Compare Directories Against a Base File Set Chooser**

2. Select the file sets to be compared:
   - **Base directory** - This is the original (base) file set before any modifications were made by your or others.
   - **Directory with your changes** - This is the file set with changes that you have made. This file set will be displayed in the left panel in the comparison tool.
   - **Directory with changes made by others** - This is the file set with changes made by others that you want to merge with your changes. This file set will be displayed in the right panel in the comparison tool.
3. Click the **Compare** button to compare the file sets and open the comparison and merge tool.

4. Use the features and actions described in the next section to identify and merge the changes.

### 3-Way Directory Comparison and Merge Tool

![Comparison and Merge Tool](image)

The 3-way directory comparison and merge tool includes the following information, features, and actions:

**Number of Changes and Conflicts**

The first thing you see in top-left corner of the tool is grand total of all the changes made by others, changes made by you, and the number of conflicts.

**Filter Buttons**

In the top-right corner you can use the toggle buttons to filter the list of modifications:

- **Show all files**
  
  Use this button to show all modified and unmodified files, as well as conflicts.

- **Show only files modified by you and others**
Filters the list to show all files that have been modified, including conflicts.

- **Show only files modified by others**
  Filters the list to only show the files that were modified by others.

- **Show only files modified by you**
  Filters the list to only show the files that were modified by you.

- **Show only conflicting files**
  Filters the list to only show files that contain conflicts.

**List of Files Panel**
This panel shows the list of files in the compared file sets based upon the filter button that is selected. This panel includes the following sortable columns:

- **Name** - The file names.
- **Status** - An icon that represents the file status. Red icons indicate some sort of conflict. Gray icons indicate modifications made by you. Blue icons indicate modifications made by others.
- **Description** - A description of the file status.
- **Merge Action** - This column provides a drop-down menu for each file that allows you to choose some merge actions depending upon its status. A default action is always set to **Automatically merge** the changes made by others with your changes. If there is a conflict, the default is **<Select action>** and you are required to make a selection. Click this column to access the drop-down menu where you can make a selection. The same actions are available in the contextual menu.

You can click a file to open it in the file comparison panel (the file from your file set is shown in the left panel while the file from the file set with changes made by others is shown in the right panel). For image files, the comparison panel shows a preview of the image. For other binary files, a preview is not available and you will just see its status.

**File Comparison Panels**
If you click a file in the top panel, the file is opened in this file comparison section. The file from your file set is shown in the left panel and the file from the other file set is shown in the right panel.

**Note:** If Oxygen XML Editor does not recognize the file type, a dialog box will be displayed that allows you to select the type of editor you want it to be associated with for this comparison (if you want Oxygen XML Editor to remember this association, you can select the **Associate file type with editor** option at the bottom of the dialog box).

This panel includes the following information and toolbar actions:
File Path

The first thing you see in this panel is the file path where merge actions will be applied if you make changes.

× Close

Closes the file comparison panel.

Algorithm Drop-Down Menu

This drop-down menu allows you to select one of the following diff algorithms to be used for file comparisons:

• **Auto** - Selects the most appropriate algorithm, based on the compared content and its size (selected by default).
• **Lines** - Computes the differences at line level, meaning that it compares two files or fragments looking for identical lines of text. This algorithm is not available when the file comparison is in **Author** mode.
• **XML Fast** - Comparison that works well on large files or fragments, but it is less precise than **XML Accurate**.
• **XML Accurate** - Comparison that is more precise than **XML Fast**, at the expense of speed. It compares two XML files or fragments looking for identical XML nodes.

Diff Options

Opens the **Files Comparison preferences page (on page 239)** where you can configure various options.

Perform Files Differencing

Looks for differences between the two files displayed in the left and right side panels.

Synchronized scrolling

Toggles synchronized scrolling. When toggled on, a selected difference can be seen in both panels.

Ignore Whitespaces

Enables or disables the whitespace ignoring feature. Ignoring whitespace means that before performing the comparison, the application normalizes the content and trims its leading and trailing whitespaces. This option is not available when the file comparison is in **Author** mode.
**Tags Display Mode**

Allows you to select the amount of markup to be displayed in the **Author** visual mode. You can choose between: **Full Tags with Attributes**, **Full Tags**, **Block Tags**, **Inline Tags**, **Partial Tags**, or **No Tags**.

**Copy Change from Right to Left**

Copies the selected difference from the file in the right panel to the file in the left panel.

**Copy All Changes from Right to Left**

Copies all changes from the file in the right panel to the file in the left panel.

**Next Block of Changes (Ctrl + Period (Command + Period on OS X))**

Jumps to the next block of changes. This action is not available when the cursor is positioned on the last change block or when there are no changes.

**Note:** A change block groups one or more consecutive lines that contain at least one change.

**Previous Block of Changes (Ctrl + Comma (Command + Comma on OS X))**

Jumps to the previous block of changes. This action is not available when the cursor is positioned on the first change block or when there are no changes.

**Next Change (Ctrl + Shift + Period (Command + Shift + Period on OS X))**

Jumps to the next change from the current block of changes. When the last change from the current block of changes is reached, it highlights the next block of changes. This action is not available when the cursor is positioned on the last change or when there are no changes.

**Previous Change (Ctrl + Shift + Comma (Command + Shift + M on OS X))**

Jumps to the previous change from the current block of changes. When the first change from the current block of changes is reached, it highlights the previous block of changes. This action is not available when the cursor is positioned on the first change or when there are no changes.

**First Change (Ctrl + B (Command + B on OS X))**

Jumps to the first change.

Left-Side File (Your changes)
Above the panel you can see the file path and the following two buttons:

- **Save**
  Saves changes made to the file.

- **Reload**
  Reloads the file.

**Right-Side File (Changes made by others)**

Above the panel you can see the file path and the following two buttons:

- **Reload**
  Reloads the file.

**Displaying Changes in the File Comparison Panels**

The line numbers on each side and colored marks on the right-side vertical stripe help you to quickly identify the locations of the differences. Adjacent changes are grouped into blocks of changes.

![File Comparison Panels](image)

The differences are also highlighted in several colors, depending on the type of change, and dynamic lines connect the compared fragments in the middle section between the two panes. The highlighting colors can be customized in the **Files Comparison / Appearance preferences page (on page 242)**, but the default colors and their shades mean the following:

- **Pink** - Identifies modifications on either side.
- **Gray** - Identifies an addition of a node in the left side (your outgoing changes).
- **Blue** - Identifies an addition of a node in the right side (incoming changes).
- **Lighter Shade** - Identifies blocks of changes that can be merged in their entirety.
- **Darker Shade** - Identifies specific changes within the blocks that can be merged more precisely.

**Direct Editing Actions in the File Comparison Panels**

In addition to selecting merge actions from the drop-down menus in the **Merge Action** column in the top panel, you can also edit the files directly in the left pane (your local changes). The two editors are constantly synchronized and the differences are refreshed.
when you save the modified document (Save button or Ctrl+S) or when you click the Perform File Differencing button.

A variety of actions are available in the contextual menu in both editing panes. The tool also includes some inline actions to help you merge, copy, or remove changes. When you select a change, the following inline action widgets are available, depending on the type of change:

- **Append right change to left**
  Copies the content of the selected change from the right side and appends it on the left side.

- **Copy change from right to left**
  Replaces the content of a change in the left side with the content of the change in the right side.

- **Remove change**
  Removes the change from the left side.

Any time you save manual changes (Save button or Ctrl+S), the selection in the Merge Action column in the top panel automatically changes to Use merged and a copy of the original file is kept so that you can revert to the original file if necessary. To discard your manual changes and revert to your original changes, select a different action in the Merge Action drop-down menu.

**Open Merged Files**

If you select this option, all the files that will be modified by the merge operation will be opened in the editor after the operation is finished.

**Applying Changes**

When you click the Apply button, all the merge actions you have selected and the changes you have made will be processed.

If there are unresolved conflicts (conflicts where no merge action is selected in the Merge Action drop-down menu), a dialog box will be displayed that allows you to choose how to solve the conflicts. You can choose between the following:

- **Keep your changes** - If you select this option and then click Apply, your local changes will be preserved for the unresolved conflicts.
- **Overwrite your changes** - If you select this option and then click Apply, your local changes will be overwritten with the changes made by others, for the unresolved conflicts.
Cancel - You can click the Cancel button to go back to the merge tool to resolve the conflicts individually.

Cancelling Changes

If you click the Cancel button at the bottom of the merge tool, all the changes you made in the tool will be lost.

Author Visual Mode

The Comparison and Merge tool includes an Author mode that displays the files in a visual mode similar to the Author editing mode in Oxygen XML Editor/Author. This makes it easier to see how the compared changes will look in the final output. This visual mode is available when the compared files are detected as being XML. To determine whether the files are initially opened in the merge tool’s Text or Author mode, it detects the Initial Edit Mode in the Document Type Association configuration (on page 96) and the mode the files were last opened in Oxygen XML Editor/Author.

Note: This mode is not available if the Enable file comparison in Author mode option (on page 239) is not selected in the Diff > Files Comparison preferences page.

This visual mode includes unique features such as a Tags Display Mode drop-down button (on page 818) on the toolbar that allows you to select the amount of tags to display in this visual mode. This mode also presents differences that were made using the Track Changes feature (although the Track Changes feature is not available in the comparison tool).

Figure 785. File Comparison Tool - Author Mode
Author Mode Algorithms

The visual Author mode offers the following diff algorithms to compare files:

- **Auto** - Selects the most appropriate algorithm, based on the compared content and its size (selected by default).
- **XML Fast** - Comparison that works well on large files or fragments, but it is less precise than **XML Accurate**.
- **XML Accurate** - Comparison that is more precise than **XML Fast**, at the expense of speed. It compares two XML files or fragments looking for identical XML nodes.

Author Mode Second Level Comparisons

The visual Author mode automatically performs a second level comparison for the **XML Fast** and **XML Accurate** algorithms. After the first comparison is finished, the second level comparisons is processed on text nodes using a word level comparison, meaning that it looks for identical words. This second level comparison makes it easier to spot precise differences and you can merge or reject the precise modifications.

Related Information:

- Compare Directories (on page 808)
- Compare Files (on page 2770)

Syncro SVN Client (Deprecated)

The Syncro SVN Client is a client application for the Apache Subversion™ version control system, compatible with Subversion 1.6, 1.7, and 1.8 servers. It manages files and directories that change over time and are stored in a central repository. The version control repository is much like an ordinary file server, except that it remembers every change ever made to your files and directories. This allows you to access older versions of your files and examine the history of how and when your data changed.

To start Syncro SVN Client, go to Tools > SVN Client.

⚠️ **Attention:** The Syncro SVN Client that comes bundled with Oxygen XML Editor is considered deprecated as of version 21.0.
Main Window

This section explains the main window of Syncro SVN Client.

Views

The main window consists of the following views:

- **Repositories view (on page 2897)** - Allows you to define and manage Apache Subversion™ repository locations.
- **Working Copy view (on page 2902)** - Allows you to manage with ease the content of the working copy.
- **History view (on page 2917)** - Displays information (author name, revision number, commit message) about the changes made to a resource during a specified period of time.
- **Editor view (on page 2923)** - Allows you to edit various types of text files, with full syntax-highlight.
- **Annotations view (on page 2924)** - Displays a list with information regarding the structure of a document (author and revision for each line of text).
- **Compare view (on page 2926)** - Displays the differences between two revisions of a text file from the working copy.
- **Image Preview panel (on page 2930)** - Allows you to preview standard image files supported by Syncro SVN Client: JPG, GIF and PNG.
- **Compare Images view (on page 2930)** - Displays two images side by side.
- **Properties view (on page 2930)** - Displays the SVN properties of a resource under version control.
- **Console view (on page 2932)** - Displays information about the currently running operation, similar with the output of the Subversion command-line client.
- **Dynamic Help view (on page 2932)** - Shows information about the currently selected view.

The main window's status bar presents in the left side the operation in progress or the final result of the last performed action. In the right side there is a progress bar for the running operation and a stop button to cancel the operation.

SVN Main Menu

The main menu of the Syncro SVN Client is composed of the following menus:

**File Menu**

- **New submenu:**
  - **New File**
This operation creates a new file as a child of the selected folder from the Repositories view (on page 2897) tree or the Working Copy view (on page 2902) tree, depending on the view that was last used. Note that for the Working Copy view (on page 2902), the file is added to version control only if the selected folder is under version control.

**New Folder (Ctrl (Command on OS X) + Shift + F)**

This operation creates a new folder as a child of the selected folder from the Repositories view (on page 2897) tree or the Working Copy view (on page 2902) tree, depending on the view that was last used. Note that for the Working Copy view (on page 2902), the file is added to version control only if the selected folder is under version control.

**New External Folder (Ctrl (Command on OS X) + Shift + W)**

This operation allows you to add a new external definition on the selected folder. An external definition is a mapping of a local directory to a URL of a versioned directory (on page 2938), and ideally a particular revision, stored in the svn:externals property of the selected folder.

**Tip:** You can specify a particular revision of the external item by using a peg revision (on page 2940) at the end of the URL (for example, URL@rev1234). You can also use peg revisions to access external items that were deleted, moved, or replaced.

The URL used in the external definition format can be relative. You can specify the repository URL that the external folder points to by using one of the following relative formats:

- ../ - Relative to the URL of the directory that the svn:externals property is set.
- ^/ - Relative to the root of the repository in which the svn:externals property is versioned.
- // - Relative to the scheme of the URL of the directory that the svn:externals property is set.
- / - Relative to the root URL of the server in which the svn:externals property is versioned.
Important: To change the target URL of an external definition, or to delete an external item, do the following:

1. Modify or delete the item definition found in the svn:externals property that is set on the parent folder.
2. For the change to take effect, use the Update operation on the parent folder of the external item.

Note: Syncro SVN Client does not support definitions of local relative external items.

Open (Ctrl (Command on OS X) + O)
This action opens the selected file in an editor where you can modify it. The action is active only when a single item is selected. The action opens a file with the internal editor or the external application associated with that file type. This action works on any file selection from the Repositories view (on page 2897), Working Copy view (on page 2902), History view (on page 2917), or Directory Change Set view (on page 2921), depending on the view that was last used to invoke it. In the case of a folder, the action opens the selected folder with the system application for folders (for example, Windows Explorer on Windows or Finder on OS X, etc). Note that opening folders is available only for folders selected in the Working Copy view (on page 2902).

Open with(Ctrl (Command on OS X) + Shift + O)
Displays the Open with dialog box for specifying the editor in which the selected file is opened. If multiple files are selected only external applications can be used to open the files. This action works on any file selection from Repositories view (on page 2897), Working Copy view (on page 2902), History view (on page 2917), or Directory Change Set view (on page 2921), depending on the view that was last used to invoke it.

Show in Explorer/Show in Finder
Opens the parent directory of the selected working copy file and selects the file.

Save (Ctrl (Command on OS X) + S)
Saves the local file currently opened in the editor or the Compare view.

Save as
Saves any file selected in the Repositories, History, or Directory Change Set view.
Copy URL Location (Ctrl (Command on OS X) + Alt + U)

Copies the URL location of the resource currently selected in the Repositories view to clipboard.

Copy to

Copies the currently selected resource, either in Repositories or Working copy view, to a specified location.

Note: This action can also be used from History and Directory Change Set views to recover older versions of a repository item.

Move to (Ctrl (Command on OS X) + M)

Moves the currently selected resource, either in Repositories or Working copy view, to a specified location.

Rename (F2)

Renames the resource currently selected, either in Repositories or Working copy view.

Delete (Delete)

Deletes the resource currently selected either, in Repositories or Working copy view.

Locking:

- Scan for locks (Ctrl (Command on OS X) + L) - Contacts the repository and recursively obtains the list of locks for the selected resources. A dialog box containing the locked files and the lock description will be displayed. This is only active for resources under version control. For more details see Scanning for locks (on page 2839).
- Lock (Ctrl (Command on OS X) + K) - Allows you to lock certain files that need exclusive access. You can write a comment describing the reason for the lock and you can also force (steal) the lock. This action is active only on files under version control. For more details on the use of this action see Locking a file (on page 2840).
- Unlock (Ctrl (Command on OS X) + Alt + K) - Releases the exclusive access to a file from the repository. You can also choose to unlock it by force (break the lock).

Show SVN Properties (Ctrl (Command on OS X) + P)

Opens the Properties view (on page 2930) and displays the SVN properties for a selected resource from Repositories view (on page 2897).
or Working Copy view (on page 2902), depending on the view that was last used to invoke it.

Show SVN Information (Ctrl (Command on OS X) + I)

Provides additional information for a selected resource. For more details, go to Obtain information for a resource (on page 2856).

Exit (Ctrl (Command on OS X) + Q)

Closes the application.

Edit Menu

Undo (Ctrl (Command on OS X) + Z)

Undo edit changes in the local file that is currently opened in the editor or the Compare view.

Redo (Ctrl (Command on OS X) + Y)

Redo edit changes in the local file that is currently opened in the editor or the Compare view.

Cut (Ctrl (Command on OS X) + X)

Cut selection from the local file that is currently opened in the editor view or the Compare view to clipboard.

Copy (Ctrl (Command on OS X) + C)

Copy selection from the local file that is currently opened in the editor or the Compare view to clipboard.

Paste (Ctrl (Command on OS X) + V)

Paste selection from clipboard into the local file that is currently opened in editor or the Compare view.

Find/Replace (Ctrl (Command on OS X) + F)

Perform find and replace operations in the local file that is currently opened in the editor or the Compare view.

Find Next (F3)

Go to the next match using the same find options of the last find operation. This action runs in the editor panel and in any non-editable text area (for example, the Console view).

Find Previous (Shift + F3)
Go to the previous match using the same find options of the last find operation. This action runs in the editor panel and in any non-editable text area (for example, the Console view).

Repository Menu

New Repository Location (Ctrl + Alt + N (Command + Alt + N on OS X))
Displays the Add SVN Repository dialog box. This dialog box allows you to define a new repository location.

Figure 786. Add SVN Repository Dialog Box

![Add SVN Repository Dialog Box](image)

If the Validate repository connection option is selected, the URL connection is validated before being added to the Repositories view.

Edit Repository Location (Ctrl + Alt + E (Command + Alt + E on OS X))
Context-dependent action that allows you to edit the selected repository location using the Edit SVN Repository dialog box. It is active only when a repository location root is selected.

Change the Revision to Browse (Ctrl + Alt + B (Command + Alt + B on OS X))
Context-dependent action that allows you to change the selected repository revision using the Change the Revision to Browse dialog box. It is active only when a repository location root is selected.

Remove Repository Location (Ctrl + Alt + R (Command + Alt + R on OS X))
Allows you to remove the selected repository location from the view. It shows you a confirmation dialog box before removal. It is active only when a repository location root is selected.

Refresh (F5)
Refreshes the resource selected in the Repositories view.

Check out (Ctrl + Alt + O (Command + Alt + O on OS X))
Allows you to create a working copy from a repository directory, on your local file system. To read more about this operation, see the section Check out a working copy (on page 2829).
Export

Opens the Export dialog box (on page 2892) that allows you to configure options for exporting a folder from the repository to the local file system.

Import:

**Import folder (Ctrl + Shift + L (Command + Shift + L on OS X))**

Allows you to import the contents of a specified folder from the file system into the selected folder in a repository. To read more about this operation, see the section Importing resources into a repository (on page 2890).

ℹ️ Note: The difference between the Import folder and Share project actions is that the latter also converts the selected directory into a working copy.

**Import Files (Ctrl + Shift + I (Command + Shift + I on OS X))**

Imports the files selected from the file system into the selected folder in the repository.

Working Copy Menu

 мн Working Copies Manager ( on OS X)

Opens a dialog box with a list of working copies that the Apache Subversion™ client is aware of. In this dialog box you can add existing working copies or remove those that are no longer needed.

Switch to

Selects one of the following view modes: ℹ️ All Files, ➯ Modified, ➪ Incoming, ➜ Outgoing, or ➚ Conflicts.

 мн Refresh (F5)

Refreshes the state of the selected resources or of the entire working copy (if there is no selection).

 мн Synchronize (Ctrl (Command on OS X) + Shift + S)

Connects to the repository and determines the working copy and repository changes made to the selected resources. The application switches to Modified view mode if the Always switch to 'Modified' mode option (on page 236) is selected.

Update (Ctrl (Command on OS X) + U)
Updates all the selected resources that have incoming changes to the HEAD revision. If one of the selected resources is a directory then the update for that resource will be recursive.

**Update to revision/depth**

Allows you to update the selected resources from the working copy to an earlier revision from the repository. You can also select the update *depth* for the current folder. You can find out more about the *depth* term in the sparse checkouts (on page 2895) section.

**Commit**

Collects the outgoing changes from the selected resources in the working copy and allows you to choose exactly what resources to commit. A directory will always be committed recursively. Unversioned resources will be deselected by default. In the **Commit** dialog box you can also enter a comment before sending your changes to the repository.

**Update all**(Ctrl (Command on OS X) + Shift + U)

Updates all resources from the working copy that have incoming changes. It performs a recursive update on the synchronized resources.

**Commit all**

Commits all the resources with outgoing changes. It is disabled when *Incoming* mode is selected or the synchronization result does not contain resources with outgoing changes. It performs a recursive commit on the synchronized resources.

**Revert** (Ctrl (Command on OS X) + Shift + V)

Undoes all local changes for the selected resources. It does not contact the repository and the files are obtained from Apache Subversion™ pristine copy. It is available only for modified resources. See Revert your changes (on page 2847) for more information.

**Edit conflict** (Ctrl (Command on OS X) + E)

Opens the Compare editor, allowing you to modify the content of the currently conflicting resources. For more information about editing conflicts, see Edit conflicts (on page 2845).

**Mark Resolved** (Ctrl (Command on OS X) + Shift + R)

Instructs the Subversion system that you resolved a conflicting resource. For more information, see Merge conflicts (on page 2849).

**Mark as Merged** (Ctrl (Command on OS X) + Shift + M)
Instructs the Subversion system that you resolved the pseudo-conflict by merging the changes and you want to commit the resource. Read the Merge conflicts (on page 2849) section for more information about how you can solve the pseudo-conflicts.

**Override and Update**

Drops any outgoing change and replaces the local resource with the HEAD revision. This action is available on resources with outgoing changes, including conflicting ones. See the Revert your changes (on page 2847) section.

**Override and Commit**

Drops any incoming changes and sends your local version of the resource to the repository. This action is available on conflicting resources. For more information see Drop incoming modifications (on page 2849).

**Mark as copied**

You can use this action to mark an item from the working copy as a copy of an other item under version control, when the copy operation was performed outside of an SVN client. The Mark as copied action is available when you select two items (both the new item and source item), and it depends on the state of the source item.

**Mark as moved**

You can use this action to mark an item from the working copy as being moved from another location of the working copy, when the move operation was performed outside of an SVN client. The Mark as moved action is available when you select two items from different locations (both the new item and the source item that is usually reported as missing), and it depends on the state of the source item.

**Mark as renamed**

You can use this action to mark an item from the working copy as being renamed outside of an SVN client. The Mark as renamed action is available when you select two items from the same directory (both the new item and the source item that is usually reported as missing), and it depends on the state of the source item.

**Add to "svn:ignore" (Ctrl (Command on OS X) + Alt + I)**

Allows you to add files that should not participate in the version control operations inside your working copy. This action can only be performed on resources not under version control. It actually modifies the value of the svn:ignore property in the parent directory of the resource. Read more
about this in the Ignore Resources Not Under Version Control (on page 2835) section.

Add to version control (Ctrl (Command on OS X) + Alt + V)

Allows you to add resources that are not under version control. For further details, see Add Resources to Version Control (on page 2833) section.

Remove from version control

Schedules selected items for deletion from repository upon the next commit. The items are not removed from the file system after committing.

Clean up (Ctrl (Command on OS X) + Shift + C)

Performs a maintenance cleanup operation on the selected resources from the working copy. This operation removes the Subversion maintenance locks that were left behind. This is useful when you already know where the problem originated and want to fix it as quickly as possible. It is only active for resources under version control.

Expand All (Ctrl (Command on OS X) + Alt + X)

Displays all descendants of the selected folder. The same behavior is obtained by double-clicking a collapsed folder.

Collapse all (Ctrl (Command on OS X) + Alt + Z)

Collapses all descendants of the selected folder. The same behavior is obtained by double-clicking a expanded folder.

Compare Menu

Perform Files Differencing

Looks for differences between the two files displayed in the left and right side panels.

Next Block of Changes (Ctrl + Period (Command + Period on OS X))

Jumps to the next block of changes. This action is not available when the cursor is positioned on the last change block or when there are no changes.

Note: A change block groups one or more consecutive lines that contain at least one change.

Previous Block of Changes (Ctrl + Comma (Command + Comma on OS X))
Jumps to the previous block of changes. This action is not available when the cursor is positioned on the first change block or when there are no changes.

Next Change (Ctrl + Shift + Period (Command + Shift + Period on OS X))

Jumps to the next change from the current block of changes. When the last change from the current block of changes is reached, it highlights the next block of changes. This action is not available when the cursor is positioned on the last change or when there are no changes.

Previous Change (Ctrl + Shift + Comma (Command + Shift + M on OS X))

Jumps to the previous change from the current block of changes. When the first change from the current block of changes is reached, it highlights the previous block of changes. This action is not available when the cursor is positioned on the first change or when there are no changes.

Last Change (Ctrl + E (Command + E on OS X))

Jumps to the last change.

First Change (Ctrl + B (Command + B on OS X))

Jumps to the first change.

Copy All Changes from Right to Left

Copies all changes from the file in the right panel to the file in the left panel.

Copy Change from Right to Left

Copies the selected difference from the file in the right panel to the file in the left panel.

Show Word Level Details

Provides a word-level comparison of the selected change.

Show Character Level Details

Provides a character-level comparison of the selected change.

Format and Indent Both Files (Ctrl + Shift + P (Command + Shift + P on OS X))

Formats and indents both files before comparing them. Use this option for comparisons that contain long lines that make it difficult to spot differences.
**Note:** When comparing two JSON files, the Format and Indent Both Files action will automatically sort the keys in both files the same to make it easier to compare.

**Ignore Whitespaces**

Enables or disables the whitespace ignoring feature. Ignoring whitespace means that before performing the comparison, the application normalizes the content and trims its leading and trailing whitespaces.

**History Menu**

**Show History** *(Ctrl (Command on OS X) + H)*

Displays the history for a SVN resource at a given revision. The resource can be one selected from the Repositories view, Working Copy view, or from the Affected Paths table from the History view, depending on which view was last focused when this action was invoked.

**Show Annotation** *(Ctrl + Shift + A (Command + Shift + A on OS X))*

Opens the Show Annotation dialog box that computes the annotations for a file and displays them in the Annotations view (on page 2924), along with the history of the file in the History view.

**Repositories**

This operation is available for any resource selected from view, Working Copy view, History view or Directory Change Sets view, depending on which view was last focused when this action was invoked.

**Revision Graph** *(Ctrl (Command on OS X) + G)*

This action allows you to see the graphical representation of a resource’s history. For more details about a resource’s revision graph see the section Revision Graph (on page 2933). This operation is available for any resource selected in the Repositories view or Working Copy view.

**Tools Menu**

**Share project**

Allows you to share a new project (on page 2826) using an SVN repository. The local project is automatically converted into an SVN working copy.

**Branch / Tag**

Allows you to copy the selected resource from the Repositories view or Working Copy view to a branch or tag into the repository. To read more
about this operation, see the section Creating a Branch / Tag (on page 2858).

Merge (Ctrl (Command on OS X) + J)

Allows you to merge the changes made on one branch back into the trunk, or vice versa, using the selected resource from the working copy. To read more about this operation, see the section Merging (on page 2860).

Switch (Ctrl (Command on OS X) + Alt + W)

Allows you to change the repository location of a working copy, or only of a versioned item of the working copy, within the same repository. It is available when the selected item of the working copy is a versioned resource, except for external items. To read more about this action, see the Switching the Repository Location (on page 2875) section.

Relocate

Allows you to change the base URL of the root folder of the working copy to a new URL when the base URL of the repository changed. For example, if the repository itself was moved to a different server. This operation is only available for the root item of the working copy. To read more about this operation, see the Relocate a Working Copy (on page 2877) section.

Create patch (Ctrl (Command on OS X) + Alt + P)

Allows you to create a file containing all the differences between two resources, based on the `svn diff` command. To read more about creating patches, see the section about patches (on page 2880).

Working copy format

This submenu contains the following two operations:

Upgrade

Upgrades the format of the currently loaded working copy to the newest one known by Syncro SVN Client. This allows you to benefit of all the new features of the client.

Downgrade

Downgrades the format of the currently loaded working copy to SVN 1.7 format. This is useful if you want to use older SVN clients with the current working copy, or, by mistake, you have upgraded the format of an older working copy to SVN 1.8.

Note: SVN 1.7 working copies cannot be downgraded to older formats.
See the section Working Copy Format (on page 2909) to read more about this subject.

Options Menu

Preferences

Opens the Preferences dialog box.

Menu Shortcut Keys

Opens the Menu Shortcut Keys preferences page (on page 248), where users can configure in one place the keyboard shortcuts available for menu items available in Syncro SVN Client.

Global Run-Time Configuration

Allows you to configure SVN general options, that should be used by all the SVN clients you may use:

- **Edit 'config' file** - In this file you can configure various SVN client-side behaviors.
- **Edit 'servers' file** - In this file you can configure various server-specific protocol parameters, including HTTP proxy information and HTTP timeout settings.

Export Options

Allows you to export the current options to an XML file.

Import Options

Allows you to import options you have previously exported.

Reset Options

Resets all your options to the default ones.

Reset Authentication

Resets the Subversion authentication information.

Window Menu

Show View

Allows you to select the view you want to bring to front.

Show Toolbar

Allows you to select the toolbar you want to be visible.

Enable flexible layout
Toggles between a fixed and a flexible layout. When the flexible layout is enabled, you can move and dock the internal views to adapt the application to various viewing conditions and personal requirements.

**Reset Layout**

Resets all the views to their default position.

**Help Menu**

**Help (F1)**

Opens the Help dialog box.

**Use online help (selected by default)**

If this option is selected, when you select Help or press F1 while hovering over any part of the interface, Oxygen XML Editor attempts to open the help documentation in online mode. If this option is not selected or an internet connection fails, the help documentation is opened in offline mode.

**Show Dynamic Help view**

Displays the Dynamic Help view.

**Report Problem**

Opens a dialog box that allows you to write the description of a problem that was encountered while using the application.

**Support Center**

Opens the Support Center web page in a browser.

**About**

Opens the About dialog box.

**SVN Main Toolbar**

The toolbar of the Syncro SVN Client SVN Repositories window contains the following actions:

**Check out**

Checks out a working copy from a repository. The repository URL and the working copy format must be specified.

**Synchronize**

Synchronizes the current working copy with the repository.
Update All
Updates all resources of the working copy that have an older revision that repository.

Commit All
Commits all resources of working copy that have a newer version compared to that of the repository.

Refresh
Refreshes the whole content of the current working copy from disk starting from the root folder. At the end of the operation, the modified files and folders that were not committed to repository yet, are displayed in the Working Copy view.

Compare
The selected resource is compared with:

- The BASE revision, when the selected resource is:
  - Locally modified and the All Files view mode is currently selected (no matter if there are incoming changes).
  - Locally modified and there are no incoming changes when any other view mode is selected.
- The remote version of the same resource, when remote information is available after a Synchronize operation (only when one of Modified, Incoming, Outgoing and Conflicts view modes is selected).
- The working copy revision, when the selected resource is from the History view.

Show History
Displays the history of the selected resource (from the Working Copy or Repository views) in the History view.

Show Annotation
Displays the annotations of the selected resource. The selected resource can be in the Working Copy or the History views.

Revision Graph
Displays the revision graph of the selected resource. The selected resource can be in the Working Copy or the Repositories views.
Enable/Disable flexible layout

Toggles between a fixed and a flexible layout. When the flexible layout is enabled, you can move and dock the internal views to adapt the application to various viewing conditions and personal requirements.

Status Bar

The status bar of the Syncro SVN Client window displays important details of the current status of the application. This information is available only in the Working Copy view.

Figure 787. Status bar

The status bar is composed of the following areas:

- The path of the currently processed file from the current working copy (during an operation such as Check out or Synchronize) or the result of the last operation.
- The current status of the following working copy options:
  - Show ignored files ( ).
  - Show deleted files ( ).
  - Process svn:externals definitions ( ).
  The options for ignored and deleted files are switched on and off from the Settings menu (on page 2908) of the Working Copy panel:
- The format of the currently loaded working copy.
- The current numbers of incoming changes ( ), outgoing changes ( ) and conflicting changes ( ).
- A progress bar for the currently running SVN operation and a button ( ) that allows you to stop it.

Getting Started

This section explains the basic operations that can be done in Syncro SVN Client.

SVN Repository Location

This section explains how to add and edit the repository locations in Syncro SVN Client.
Add / Edit / Remove Repository Locations

Usually, team members do all of their work separately, in their own working copy, and then must share their work by committing their changes. This is done using an Apache Subversion™ repository. Oxygen XML Editor supports versions 1.4, 1.5, 1.6, 1.7, and 1.8 of the SVN repository format.

Before you can begin working with a Subversion repository, you must define a repository location in the Repositories view (on page 2897).

To create a repository location, use the New Repository Location action that is available in the Repository menu, the Repositories view toolbar, and in the contextual menu. This action opens the New Repository Location dialog box, which prompts you for the URL of the repository (on page 2938) you want to connect to. You can also use peg revisions at the end of the URLs (on page 2940) (for example, URL@rev1234) to browse only that specific revision. No authentication information is requested at the time the location is defined. It is left to the Subversion client to request the user and password information when it is needed. The main benefit of allowing Subversion to manage your password is that it prompts you for a new password only when your password changes.

Once you enter the repository URL, Oxygen XML Editor tries to contact the server to get the content of the repository for displaying it in the Repositories view (on page 2897). If the server does not respond in the timeout interval set in the preferences, an error is displayed. If you do not want to wait until the timeout expires, you can use the Stop button from the toolbar of the view.

To edit a repository location, use the Edit Repository Location action that is available in the Repository menu and in the contextual menu. This action opens the Edit Repository Location dialog box, which prompts you for the URL of the repository (on page 2938) you want to connect to. You can also use peg revisions at the end of the URLs (on page 2940) (for example, URL@rev1234) to browse only that specific revision.

To remove a repository location, use the Remove Repository Location action that is available in the Repository menu and in the contextual menu. A confirmation dialog box is displayed to make sure that you do not accidentally remove the wrong locations.

The order of the repositories can be changed in the Repositories view at any time with the Up arrow and Down arrow buttons on the toolbar of the view. For example, pressing the up arrow once moves the selected repository in the list up one position.

To set the reference revision number of an SVN repository use the Change the Revision to Browse action that is available in the Repository menu and in the contextual menu. The revision number of the repository is used for displaying the contents of the repository when it is viewed in the Repositories view (on page 2897). Only the files and folders that were present in the repository at the moment when this revision number was generated in the repository are displayed as contents of the repository.
tree. Also, this revision number is used for all the operations executed directly from the Repositories view (on page 2897).

**Authentication**

Five protocols are supported: HTTP, HTTPS, SVN, SVN + SSH and FILE. If the repository that you are trying to access is password protected, the **Enter authentication data** dialog box requests a user name and a password. If the **Store authentication data** checkbox is selected, the credentials are stored in Apache Subversion™ default directory:

- **Windows** - `%HOME%\Application Data\Subversion\auth`. Example: `C:\Documents and Settings\John\Application Data\Subversion\auth`
- **Linux and OS X** - `$HOME/.subversion/auth`. Example: `/home/John/.subversion/auth`

There is one file for each server that you access. If you want to make Subversion forget your credentials, you can use the **Reset authentication** command from the **Options** menu. This causes Subversion to forget all your credentials. When you reset the authentication data, restart Oxygen XML Editor for the change to take effect.

**Tip:** The **FILE** protocol is recommended if the SVN repository and Oxygen XML Editor are located on the same computer as it ensures faster access to the SVN repository compared with other protocols.

For HTTPS connections where client authentication is required by your SSL server, you must choose the certificate file and enter the corresponding certificate password that is used to protect your certificate.

When using a secure HTTP (HTTPS) protocol for accessing a repository, a **Certificate Information** dialog box is displayed and asks you whether you want to accept the certificate permanently, temporarily, or simply deny it.

If the repository has SVN+SSH protocol, the SSH authentication can also be made with a private key and a pass phrase.

Figure 788. SSH Authentication Dialog Box
After the SSH authentication dialog box, another dialog box appears for entering the SVN user name that accesses the SVN repository. The SVN user name is recorded as the *committer* in SVN operations.

When connecting for the first time to a Subversion repository through SVN+SSH protocol, you will be asked to confirm if you trust the SSH host. The same dialog box is also displayed when the server changed the SSH key or when the key was deleted from the local Subversion cache folder.

Figure 789. SSH server name and key fingerprint

**Share a Project**

Even if you start developing a new project, or you want to migrate an existing one to Subversion, the Syncro SVN Client allows you to easily share it with the rest of your team. The shared project directory is automatically converted to a working copy and added under Syncro SVN Client management. The **Share project** action is available in the **Tools** menu and the contextual menu of the **Repositories** view.
The following options can be configured in the **Share project** dialog box:

**Project**

*The location of the project folder ([on page 2938](#)) on the local disk by using the text box or the **Browse** button. This folder should not be empty or already under version control.*

⚠️ **Important**: By default, the SVN system only imports the content of the specified folder, and not the root folder itself. Therefore, it is recommended to use the **Browse** button to select the project folder so that the client will automatically append the name of it to the specified URL.

**URL**

*The new location of the project ([on page 2938](#)) (inside the repository) that will be used to access it.*

🔍 **Note**: **Peg revisions** have no effect for this operation since it is used to send information to the repository.

⚠️ **Attention**: If the new location already exists, make sure that it is an empty directory to avoid mixing your project content with other files (if items exist with the same name, an error will occur and the operation will not proceed). Otherwise, if the address does not exist, it is created automatically.

**Format**

*The SVN format of the working copy. You can choose between **SVN 1.8** or **SVN 1.7**.*

**Share files matching global ignore patterns**
When selected, the file names that match the patterns defined in either of the following locations are also imported into the repository:

- The global-ignores property in the SVN configuration file (on page 2937).
- The File name ignore patterns option (on page 237) in the SVN > Working Copy preferences page (on page 236).

**Enable automatic properties/Disable automatic properties**

Enables or disables automatic property assignment (per runtime configuration rules), overriding the enable-auto-props runtime configuration directive, defined in the SVN configuration file (on page 2937).

**Note:** This option is available only when there are defined properties to be applied automatically for newly added items under version control. You can define these properties in the SVN config file (in the auto-props section). Based on the value of the enable-auto-props runtime configuration directive, the presented option is either Enable automatic properties, or Disable automatic properties.

**Defining a Working Copy**

An Apache Subversion™ working copy is an ordinary directory tree on your local system, containing a collection of files. You can edit these files however you want, your working copy being your private work area. To make your own changes available to others or incorporate changes made by others, you must explicitly tell Subversion to do so. You can even have multiple working copies of the same project.

**Figure 791. Working Copy View**
A Subversion working copy also contains some extra files, created and maintained by Subversion, to help it keep track of your files. In particular, each directory in your working copy contains a subdirectory named `.svn`, also known as the working copy administrative directory. This administrative directory contains an unaltered copy of the last updated files from the repository. This copy is usually referred to as the pristine copy or the BASE revision of the working copy. These files help Subversion recognize which files contain unpublished changes, and which files are out-of-date with respect to others' work.

A typical Subversion repository often holds the files (or source code) for several projects. Usually each project is a subdirectory in the repository's file system tree. In this arrangement, a user's working copy usually corresponds to a particular sub-tree of the repository.

Check Out a Working Copy

_Ccheck out_ means to make a copy of a project from a repository to your local file system. This copy is called a working copy. An Apache Subversion™ working copy is a specially formatted directory structure that contains additional `.svn` directories that store Subversion information, as well as a pristine copy of each item that is checked out.

To check out a working copy, locate and select the desired directory in the Repositories view and select the Check out action from the contextual menu, the toolbar, or the Repository menu.
The following options can be configured in the **Check out** dialog box:

**URL**

The location of the repository directory *(on page 2938)* to be **checked out**.

**Note:** To check out an item that was deleted, moved, or replaced, you need to specify the original URL (before the item was removed) and use a *peg revision* *(on page 2940)* at the end (for example, `URL@rev1234`).

**Revision**

You can choose between the **HEAD** or **Other** revision. If you need to check out a specific revision, specify it in the **Other** text box or use the **History** button and choose a revision from the **History** dialog box *(on page 2831)*.

**Check out to**

Specify the **location where you want to check out** *(on page 2938)* the new working copy by typing the local path in the text box or by using the **Browse** button. If the specified local path does not point to an existing directory, it will automatically be created.

**Important:** By default, the SVN system only checks out the content of the directory specified by the URL, and not the directory itself. Therefore, it is recommended to use the **Browse** button to select the **check out** location so that the client will automatically append the name of the remote directory to the path of the selected directory.

**Warning:** The destination directory should be empty. If files exist, they are skipped (left unchanged) by the **check out** operation and displayed as **modified** *(on page 2905)* after the operation has finished. Also, the destination directory must not already be under version control.

**Format**
The SVN format of the working copy. You can choose between SVN 1.8 or SVN 1.7.

**Depth**

The depth is useful if you want to check out only a part of the selected repository directory and bring the rest of the files and subdirectories in a future update. You can find out more about the checkout depth in the sparse checkouts (on page 2895) section. You can choose between the following depths:

- **Recursive (infinity)** - Checks out all the files and folders contained in the selected folder.
- **Immediate children (immediates)** - Checks out only the child files and folders without recursing subfolders.
- **File children only (files)** - Checks out only the child files.
- **This folder only (empty)** - Checks out only the selected folder (no child file or folder is included).

**Ignore “svn:externals” definitions**

When selected, external items are ignored in the check out operation. This option is only available if you choose the Recursive (infinity) depth.

After a check out, the new working copy is added to the list in the Working Copy view (on page 2902) and loaded automatically.

**History Dialog Box**

The History dialog box presents a list of revisions for a resource. It is opened from the dialog boxes that require setting an SVN revision number, such as the Check Out dialog box (on page 2829) or the Branch / Tag dialog box (on page 2858). It presents information about revision, commit date, author, and commit comment.

Figure 793. History Dialog Box
The initial number of entries in the list is 50. Additional revisions can be added to the list using the 
[Get next 50](#) and [Get all](#) buttons. The list of revisions can be refreshed at any time with the [Refresh](#) button. You can group revisions in predefined time frames (today, yesterday, this week, this month), by pressing the [Group by date](#) button from the toolbar.

The **Affected Paths** area displays all paths affected by the commit of the revision selected in history. You can see the changes between the selected revision and the file's previous state using the [Compare with previous version](#) action, available in the contextual menu.

**Use an Existing Working Copy**

Using an existing working copy is the process of taking a working copy that exists on your file system and connecting it to Apache Subversion™ repository. If you have a brand new project that you want to import into your repository, then see the section [Import resources into the repository](on page 2890). The following procedure assumes that you have an existing valid working copy on your file system.

1. Click the [Working Copies Manager](#) toolbar button ![on Mac OS X](#) in the [Working Copy view](on page 2902).

   This action opens the **Working copies list** dialog box.
2. Press the Add button.
3. Select the working folder copy from the file system. The name is useful to differentiate between working copies located in folders with the same name. The default name is the name of the root folder of the working copy.

**Note:** For SVN 1.7 and newer working copies, all the internal information is kept only in the root directory. Thus, Syncro SVN Client needs to load the whole working copy.

4. Press the OK button.

The selected working copy is loaded and presented in the **Working Copy view (on page 2902)**.

**Note:** You can add working copies older than SVN 1.7. However, to load any of them, Syncro SVN Client will require to upgrade the working copy to SVN 1.8 format.

Manage Working Copy Resources

This section explains how to work with the resources that are displayed in the **Working Copy view**.

**Edit Files**

You can edit files from the **Working Copy view (on page 2902)** by double clicking them or by right clicking them and choosing Open from the contextual menu.

Note that only one file can be edited at a time. If you try to open another file, it is opened in the same editor window. The editor has syntax highlighting for known file types, meaning that a different color is used for each type of recognized token in the file. If the selected file is an image, then it is previewed in the editor, with no access to modifying it.

After modifying and saving a file from a working copy, a modified marker - an asterisk (*) - will be added to the file's icon in the **Working Copy view (on page 2902)**. The asterisk marks the files that have local modifications that were not committed to the repository.

**Add Resources to Version Control**

To share new files and folders (created in your working copy), add them to version control using the Add to version control option from the **Working Copy view (on page 2902)**.

You can easily spot resources not under version control by the unversioned () icon displayed in the **Local file status** column. Resources scheduled for addition are displayed with this added () icon in the **Working Copy view** and are added in the repository after you commit them.

**Note:** Do not make a confusion between  and  icons. The former icon stands for resources that are actually copies of resources already committed in the repository, meaning they are scheduled for addition with history.
When you use the Add to version control option on a directory, its entire structure is scanned and all the resources that can be added under version control are presented.

Although it is not mandatory to add resources under version control explicitly, it is recommended. If you forgot to add a resource, when you commit your changes (on page 2851), the resource is presented in the commit dialog box, but not selected. When you commit and unversioned resource, it is automatically added under version control before starting the commit operation.

Figure 794. Add to Version Control Dialog Box

![Add to Version Control Dialog Box](image)

**Note:** Ignored items can also be added under version control.

The Depth column is displayed only when directories are also presented in the dialog box. For any directory, you can use one of the available values to instruct Subversion to limit the scope of the operation to a particular tree depth.

**Note:** The initial value of the Depth field can have the following values, depending on the listing mode of the items in the working copy view (on page 2908):

- **infinity** - When the working copy items are presented as a tree.
- **files** - When the working copy items are presented compressed.
- **empty** - When the working copy items are presented flat.

When you add unversioned or ignored directories, the initial value of the Depth field also depends on the state of the Show unversioned directories content and Show ignored directories content options. If these options are selected, the value is based on the listing mode of the items in the working copy view. When they are not selected, the value is empty.

The following options are available in this dialog box:
• **Enable automatic properties** or **Disable automatic properties** - enables or disables automatic property assignment (per runtime configuration rules), overriding the `enable-auto-props` runtime configuration directive, defined in the `config` file of the Subversion configuration directory.

**Note:** This option is available only when there are defined properties to be applied automatically for resources newly added under version control. You can define these properties in the `config` file of the Subversion configuration directory, in the `auto-props` section. Based on the value of the `enable-auto-props` runtime configuration directive, the presented option is either **Enable automatic properties**, or **Disable automatic properties**.

• **No ignore** - when you select this option, file-name patterns defined to ignore unversioned resources do not apply. Resources that are located inside an unversioned directory selected for addition, and match these patterns, are also scheduled for addition in the repository.

**Note:** This option is available only when directories are also presented in the dialog box.

You can define file-name patterns to ignore unversioned resources in one of the following locations:

- In the `config` file of the Subversion configuration directory (the `global-ignores` option from the `miscellany` section).
- In the Oxygen XML Editor options (open the Preferences dialog box (Options > Preferences) (on page 79) and go to SVN > Working copy > Application global ignores).

Each of the above two options is activated only when you select an item for which the option can be applied.

**Ignore Resources Not Under Version Control**

Some resources inside your working copy do not need to be subject to version control. These resources can be files created by the compiler, `*.obj`, `*.class`, `*.lst`, or output folders used to store temporary files. Whenever you commit changes (on page 2851), Apache Subversion™ shows your modified files in the commit dialog box, but the unversioned files are also listed. Since the unversioned files are committed unless otherwise specified, it is difficult to see exactly what you are committing.

The best way to avoid these problems is to add the derived files to the Subversion ignore list. That way they are never displayed in the commit dialog box and only genuine unversioned files that must be committed are displayed.

You can choose to ignore a resource by using the Add to `svn:ignore` action in the contextual menu of the Working Copy view (on page 2902).
In the **Add to svn:ignore** dialog box, you can specify the resource to be ignored by name or by a custom pattern. The custom pattern can contain the following wildcard characters:

- `*` - Matches any string of characters of any size, including the empty string.
- `?` - Matches any single character.

For example, you can choose to ignore all text documents by using the pattern: `*.txt`.

The action **Add to svn:ignore** adds a predefined Subversion property called `svn:ignore` to the parent directory of the specified resource. In this property, there are specified all the child resources of that directory that must be ignored. The result is visible in the **Working Copy** view. The ignored resources are represented with gray icons.

### Delete Resources

The **Delete** action is available in the contextual menu of the **Working Copy** view ([on page 2902](#)). When you delete an item from the working copy, it is marked as deleted (scheduled for deletion from repository upon the next commit) and removed from the file system. Depending on the state of each item, you are prompted to confirm the operation.

If a resource is deleted from the file system without Subversion's knowledge, the resource is marked as **missing** ([ ] ) in your working copy. You can decide what you want to do with a **missing** item:

- In the case of a commit, any **missing** item is first automatically deleted and then committed.

  **Note:** Not any **missing** item can be committed as **deleted**, and removed from the repository. For example, you cannot commit an item that no longer exists on the disk and that was scheduled for addition ([ ] ) previously, since this item does not exist in the repository, but you can use the **Delete** action instead.

- If you want to recover **missing** items, either update ([on page 2850](#)) the items themselves or one of their parent directories. This fetches their latest version from the repository.

You can also delete conflicting items (file content conflicts, property conflicts, tree-conflicts) and Syncro SVN Client automatically marks them as resolved.

  **Note:** It is recommended that you resolve conflicts manually to avoid losing any important remote modifications.

Finally, you can change your mind and **revert** ([on page 2847](#)) the deleted items to their initial, pristine, state.
Copy Resources

You can copy resources from various locations of the working copy. You select them in the Working Copy view (on page 2902) and then use Copy to from the contextual menu. This is not a simple file system copy, but an Apache Subversion™ command. It will copy the resource and the copy will also have the original history. This is one of the important features of Subversion, as you can keep track of where the copied resources originated.

Based on the selected items, the Copy to action is available only if it can be performed. Even if the operation would not normally be possible in SVN (due to some invalid local file states against copy), Oxygen XML Editor performs the copy operation as a simple file system operation. This means no SVN versioning meta-data is affected.

Note:

- If you copy an item to a directory that is not under version control (on page 2905) (unversioned or ignored), the history of the item is not preserved. For example, when copying directories, all items inside them will also be copied without history.
- If you copy a directory that contains external (on page 2904) items, these are not copied. This is specific for SVN 1.7 working copies only. To fetch the external items, use the Update operation on the copied directory.

In the Copy to dialog box, you can navigate through the working copy directories to choose a target directory, to copy inside it. If you try to copy a single resource you are also able to change that resource's name. For versioned items, you can select Ignore resource history to copy them without their history (similar to a simple file system copy).

Note: The Copy to dialog box only presents all the local directories that are a valid destination against the copy operation, based on their local file status. Also, the working copy settings (on page 2908) are taken into account.

In the Commit dialog box, only the directory in question will appear without its children.

Move Resources

As in the case of the copy command, you can move several resources at once. Select the resources in the Working Copy view (on page 2902) and choose the Move to action from the contextual menu. The move command actually behaves as if a copy followed by a delete command were issued. You will find the moved resources at the desired destination and also at their original location, but marked as deleted.

Note: External items cannot be moved using the Move to action, because they cannot be deleted. Instead, you should edit the svn:externals property defining the external item and use the Update operation on the item's parent folder for the change to take effect.
Attention: For SVN 1.8 working copies: when committing items that were moved and/or renamed, make sure you select both the source and the destination. Otherwise, the commit operation will fail.

Rename Resources

The Rename action is available in the contextual menu of the Working Copy view (on page 2902) and can be performed on a single resource. This action acts as a move command with the destination directory being the same as the original location of the resource. A copy of the original item is created with the new name, also keeping its history. The original item is marked as deleted.

Note: External items cannot be renamed using the Rename action because they cannot be deleted. Instead, you should edit the svn:externals property defining the external item, then use the Update operation on the item’s parent folder for the change to take effect.

Attention: For SVN 1.8 working copies: when committing items that were moved and/or renamed, make sure you select both the source and the destination. Otherwise, the commit operation will fail.

Lock / Unlock Resources

The idea of version control is based on the copy-modify-merge model of file sharing. This model states that each user contacts the repository and creates a local working copy (check out). Users can then work independently and modify their working copies according to their needs. When their goal has been accomplished, it is time for the users to share their work with the others, to send them to the repository (commit). When a user has modified a file that has been also modified on the repository, the two files will have to be merged. The version control system assists the user with the merging as much as it can, but in the end the user is the one that must make sure it is done correctly.

The copy-modify-merge model only works when files are contextually mergeable: this is usually the case of line-based text files (such as source code). However this is not always possible with binary formats, such as images or sounds. In these situations, the users must each have exclusive access to the file, ending up with a lock-modify-unlock model. Without this, one or more users could end up wasting time on changes that cannot be merged.

An SVN lock is a piece of metadata that grants exclusive access to a user. This user is called the lock owner. A lock is uniquely identified by a lock token (a string of characters). If someone else attempts to commit the file (or delete a parent of the file), the repository demands two pieces of information:

- User authentication - the user performing the commit must be the lock owner
- Software authorization - the user's working copy must have the same lock token as the one from the repository, proving that it is the same working copy where the lock originated from.
Scanning for Locks

When starting to work on a file that is not contextually mergeable (usually a binary file), it is better to verify if someone else is not already working on that file. You can do this in the Working Copy view (on page 2902) by selecting one or more resources, then right-clicking them and choosing the Scan for Locks action from the contextual menu.

Figure 795. Locked Items Dialog Box

The Locked items dialog box contains a table with all the resources that were found locked on the repository. For each resource there are specified: resource path, state of the lock, owner of the lock, lock comment, creation and expiration date for the lock (if any).

The state of the lock can be one of the following:

- 🗝️ - Appears when one of the following conditions apply:
  - Another user has locked the file in the repository.
  - The file was locked by the same user from another working copy.
  - The file was locked from the Repositories view.
- 🗝️ - Displayed after you have locked a file from the current working copy.
- 🗝️ - A file already locked from your working copy is no longer locked in the repository (it was unlocked by another user).
- 🗝️ - A file already locked from your working copy is being locked by another user. Now the owner of the file lock is the user who stole the lock from you.

You can unlock a resource by selecting it and pressing the Unlock button.

Related Information:

- Working Copy Locks (on page 2906)
Locking a File

By locking a file, you have exclusive write access to it in the repository.

You can lock a file from your working copy or directly from the Repositories view.

⚠️ **Note:** You can only lock files (not directories). This is a restriction imposed by Apache Subversion™.

The Lock dialog box allows you to write a comment when you set a lock or when you steal an existing one. Note that you should steal a lock only after you made sure that the previous owner no longer needs it. Otherwise, you may cause an unsolvable conflict, which could be the reason the lock was put there in the first place. The Subversion server can have a policy concerning lock stealing, as it may not allow you to do this if certain conditions are not met.

The lock stays in place until you unlock the file or until someone breaks it. There is also the possibility that the lock expires after a period of time specified in the Subversion server policy.

Unlocking a File

A file can be unlocked from the contextual menu of the Working Copy view (on page 2902). A dialog box will prompt you to confirm the unlocking and it will also allow you to break the lock (unlock it by force).

Synchronize with Repository

In the work cycle you will need to incorporate other people's changes (update) and to make your own work available to others (commit). This is what the Incoming and Outgoing modes of the Working Copy view (on page 2902) was designed for, to help you send and receive modifications from the repository.

The Incoming and Outgoing modes of this view focus on incoming and outgoing changes. The incoming changes are the changes that other users have committed in the repository since you last updated your working copy. The outgoing changes are the modifications you made to your working copy as a result of editing, removing or adding resources.

The view presents the status of the working copy resources against the BASE revision after a Refresh operation. You can view the state of the resources versus a repository HEAD revision by using the Synchronize action from the Working Copy view (on page 2902).
View Differences

One of the most common requirements in project development is to see what changes have been made to the files from your Working Copy or to the files from the repository. You can examine these changes after a synchronize operation with the repository, by using the Open in compare editor action from the contextual menu.

The text files are compared using a built-in Compare view (on page 2926) that uses a line differencing algorithm or a specified external diff application (if such an application is set in the SVN Diff preferences page (on page 237)). When a file with outgoing status is involved, the compare is performed between the file from the working copy and the BASE revision of the file. When a file with incoming or conflict status is involved, the differences are computed using a three-way algorithm that means that the local file and the repository file are each compared with the BASE revision of the file. The results are displayed in the same view. The differences obtained from the local file comparison are considered outgoing changes and the ones obtained from the repository file comparison are considered incoming changes. If any of the incoming changes overlap outgoing changes then they are in conflict.

A special case of difference is a diff pseudo-conflict. This is the case when the left and the right sections are identical but the BASE revision does not contain the changes in that section. By default, this type of changes are ignored. If you want to change this, you can go to the SVN preferences page and select the Allow unversioned obstructions option (on page 235).

The right editor of the internal compare view presents either the BASE revision or a revision from the repository of the file so its content cannot be modified. By default, when opening a synchronized file in the Compare view, a compare is automatically performed. After modifying and saving the content of the local file presented in the left editor, another compare is performed. You will also see the new refreshed status in the Working Copy view (on page 2902).

Figure 796. Compare View
At the top of each of the two editors, there are presented the name of the opened file, the corresponding SVN revision number (for remote resources) and the author who committed the associated revision.

There are three types of differences:

- **Incoming changes** - Changes committed by other users and not present yet in your working copy file. They are marked with a blue highlight and on the middle divider the arrows point from right to left.
- **Outgoing changes** - Changes you have done in the content of the working copy file. They are marked with a gray highlight and the arrows on the divider are pointing from left to right.
- **Conflicting changes** - This is the case when the same section of text that you already modified in the local file has been modified and committed by some other person. They are marked with a red highlight and red diamonds on the divider.

There are numerous actions and options available in the Compare View toolbar (on page 2928) or in the Compare menu from the main menu. You can decide that some changes need adjusting or that new ones must be made. After you perform the adjustments, you may want to perform a new compare between the files. For this case there is an action called Perform files differencing.
After each files differencing operation the first found change will be selected. You can navigate from one change to another by using the actions **Go to first**, **Go to previous**, **Go to next** and **Go to last modification**. If you decide that some incoming change needs to be present in your working file you can use the action **Copy change from right to left**. This is useful also when you want to override the outgoing modifications contained in a conflicting section. The **Copy all non-conflicting changes from right to left** action copies all incoming changes that are not contained inside a conflicting section in your local file.

Suppose that only a few words or letters are changed. Considering that the differences are performed taking whole lines of text into account, the change will contain all the lines involved. To find exactly what words or letters have changed, the **Word Details** and **Character Details** dialog boxes are available. They present a more detailed comparison result when you double-click the middle divider of a difference.

When you want to examine only the changes in the real text content of the files, while disregarding the changes in the number of white spaces between words or lines, there is an option available in the **SVN Preferences** (on page 234) that allows you to enable or disable the white space ignoring feature of the compare algorithm.

**Conflicts**

A file conflict occurs when two or more developers have changed the same few lines of a file or the properties of the same file. As Subversion knows nothing of your project, it leaves resolving the conflicts to the developers. Whenever a conflict is reported, you should open the file in question, and try to analyze and resolve the conflicting situation.

**Real Conflicts vs Mergeable Conflicts**

There are two types of conflicts:

- **real conflict** (icon in **Name** column) - Syncro SVN Client considers the following resource states to be real conflicts:
  - **conflicted state** - A file reported by SVN as being in this state is obtained after it was updated/merged while having incoming and outgoing content or property changes at the same time, changes that could not be merged. A content conflict (icon in **Local file status** column) is reported when the modified file has binary content or it is a text file and both local and remote changes were found on the same line. A properties conflict (icon in **Local properties status** column) is reported when a property's value was modified both locally and remotely.
  - **tree conflicted state** (icon in **Local file status** column) - Obtained after an update or merge operation, while having changes at the directory structure level (for example, file is locally modified and remotely deleted or locally scheduled for deletion and remotely modified).
- **obstructed state** ( november in Local file status column) - Obtained after a resource was versioned as one kind of object (file, directory, symbolic link), but has been replaced outside Syncro SVN Client by a different kind of object.

- **pseudo-conflict** ( icon in Name column) - A file is considered to be in pseudo-conflict when it contains both incoming and outgoing changes. When incoming and outgoing changes do not intersect, an update operation may automatically merge the incoming file content into the existing locally one. In this case, the pseudo-conflict marker is removed. This marker is used only as a warning that should prevent you to run into a real conflict.

**Note:**

- A conflicting resource cannot be committed to repository. You have to resolve it first, by using Mark Resolved action (after manually editing/merging file contents) or by using Mark as Merged action (for pseudo-conflicts).
- and icons are presented only when one of the following view modes is selected: Modified, Incoming, Outgoing, Conflicts.
- The icon is used also for folders to signal that they contain a file in real conflict or pseudo-conflict state.

**Content Conflicts vs Property Conflicts**

A Content conflict appears in the content of a file. A merge occurs for every inbound change to a file that is also modified in the working copy. In some cases, if the local change and the incoming change intersect each other, Apache Subversion™ cannot merge these changes without intervention. So if the conflict is real when updating the file in question the conflicting area is marked like this:

```
<<<<<<< filename
your changes
<br><br>code merged from repository
>>>>>> revision
```

Also, for every conflicted file Subversion places three additional temporary files in your directory:

- `filename.ext.mine` - This is your file as it existed in your working copy before you updated your working copy, that is without conflict markers. This file has your latest changes in it and nothing else.
- `filename.ext.rOLDREV` - This is the file that was the BASE revision before you updated your working copy, that is the file revision that you updated before you made your latest edits.
• `filename.ext.rNEWREV` - This is the file that Subversion client just received from the server when you updated your working copy. This file corresponds to the HEAD revision of the repository.

OLDREV and NEWREV are revision numbers. If you have conflicts with binary files, Subversion does not attempt to merge the files by itself. The local file remains unchanged (exactly as you last changed it) and you will get `filename.ext.r*` files also.

A Property conflict is obtained when two people modify the same property of the same file or folder. When updating such a resource a file named `filename.ext.prej` is created in your working copy containing the nature of the conflict. Your local file property that is in conflict will not be changed. After resolving the conflict, you should use the Mark resolved action to commit the file. Note that the Mark resolved action does not really resolve the conflict. It just removes the conflicted flag of the file and deletes the temporary files.

Edit Real Content Conflicts

The conflicts of a file in the conflicted state (a file with the red double arrow icon) can be edited visually with the Compare view (the built-in file comparison tool) or with an external diff application (on page 234). Resolving the conflict means deciding for each conflict if the local version of the change will remain or the remote one instead of the special conflict markers inserted in the file by the SVN server.

The Compare view (or the external diff application set in Preferences (on page 234)) is opened with the Edit Conflict action, which is available on the contextual menus of the Working Copy view (on page 2902) for files in the conflicted state (an update operation was executed but the differences could not be merged without conflicts). The external diff application is called with 3 parameters because it is a 3-way diff operation between the local version of the file from the working copy and the HEAD version from the SVN repository with the BASE version from the working copy as common ancestor.

If the Show warning dialog when edit conflicts option (on page 238) is selected, you will be warned at the beginning of the operation that the operation will overwrite the conflict version of the file received from the SVN server (the version that contains the conflict markers <<<<<<<<, =======, >>>>>>>) with the original local version of the file that preceded the update operation. If you press the OK button the visual conflict editing will proceed and a backup file of the conflict version received from the SVN server is created in the same working copy folder as the file with the edited conflicts. The name of the backup file is obtained by appending the extension `.sync.bak` to the file as stored on the SVN server. If you press the Cancel button the visual editing will be aborted.

The usual actions on the differences between two versions of a file are available on the toolbar of this view:
Save

Saves the modifications of the local version of the file displayed in the left side of the view.

Perform Files Differencing

Looks for differences between the two files displayed in the left and right side panels.

Ignore Whitespaces

Enables or disables the whitespace ignoring feature. Ignoring whitespace means that before performing the comparison, the application normalizes the content and trims its leading and trailing whitespaces.

Synchronized scrolling

Toggles synchronized scrolling. When toggled on, a selected difference can be seen in both panels.

Format and Indent Both Files (Ctrl + Shift + P (Command + Shift + P on OS X))

Formats and indents both files before comparing them. Use this option for comparisons that contain long lines that make it difficult to spot differences.

Note: When comparing two JSON files, the Format and Indent Both Files action will automatically sort the keys in both files the same to make it easier to compare.

Copy Change from Right to Left

Copies the selected difference from the file in the right panel to the file in the left panel.

Copy All Changes from Right to Left

Copies all changes from the file in the right panel to the file in the left panel.

Next Block of Changes (Ctrl + Period (Command + Period on OS X))

Jumps to the next block of changes. This action is not available when the cursor is positioned on the last change block or when there are no changes.

Note: A change block groups one or more consecutive lines that contain at least one change.

Previous Block of Changes (Ctrl + Comma (Command + Comma on OS X))

Jumps to the previous block of changes. This action is not available when the cursor is positioned on the first change block or when there are no changes.

Next Change (Ctrl + Shift + Period (Command + Shift + Period on OS X))
Jumps to the next change from the current block of changes. When the last change from the current block of changes is reached, it highlights the next block of changes. This action is not available when the cursor is positioned on the last change or when there are no changes.

**Previous Change (Ctrl + Shift + Comma (Command + Shift + M on OS X))**

Jumps to the previous change from the current block of changes. When the first change from the current block of changes is reached, it highlights the previous block of changes. This action is not available when the cursor is positioned on the first change or when there are no changes.

**First Change (Ctrl + B (Command + B on OS X))**

Jumps to the first change.

The operation begins by overwriting the conflict version of the file received from the SVN server (the version that contains the conflict markers <<<<<<<<, =======, >>>>>>>) with the original local version of the file before running the update action that created the conflict. After that the differences between this original local version and the repository version are displayed in the Compare view.

If you want to edit the conflict version of the file directly in a text editor instead of the visual editing offered by the Compare view you should work on the local working copy file after the update operation without running the action Edit Conflict. If you decide that you want to edit the conflict version directly after running the action Edit Conflict you have to work on the .sync.bak file.

If you did not finish editing the conflicts in a file at the first run of the action Edit Conflict you can run the action again and you will be prompted to choose between resuming the editing where the previous run left it and starting again from the conflict file received from the SVN server.

After the conflicts are edited and saved in the local version of the file you should run one of the following:

- The **Mark Resolved** action on the file so that the result of the conflict editing process can be committed to the SVN repository.
- The **Revert** action so that the repository version overwrites all the local modifications.

Both actions remove the backup file and other temporary files created with the conflict version of the local file.

**Revert Your Changes**

If you want to undo changes made in your working copy, since the last update, select the items you are interested in, right-click to display the contextual menu and select **Revert**. A dialog box will open that shows you the files and folders that you have changed and can be reverted. Select those you
want to revert and click the **OK** button. Revert will undo only your local changes. It does not undo any changes that have already been committed. If you choose to revert a conflicting item to its pristine copy, then the eventual conflict is solved by losing your outgoing modifications. If you try to revert a resource not under version control, the resource will be deleted from the file system.

**Note:** By default, a directory will be recursively reverted (including any other modified item it contains). However, if the directory has only property changes, you need to explicitly choose if the operation will include any modified items found inside it.

If you want some of your outgoing changes to be overridden you must first open the file in **Compare view (on page 2926)** and choose the sections to be replaced with ones from the repository file. This can be achieved either by editing directly the file or by using the action **Copy change from right to left** from the **Compare view toolbar (on page 2928)**. After editing the conflicting file you have to run the action **Mark as merged** before committing it.

If you want to drop all local changes and bring all incoming changes into your working copy resource, you can use the **Override and update** action. It discards the changes in the local file and updates it from the repository. A dialog box will display the files that will be affected.

Figure 797. Override and Update Dialog Box
In the first table of the dialog box you will be able to see the resources that will be overridden. In the second table you will find the list of resources that will be updated. Only resources that have an incoming status are updated.

**Tip:** If you want to roll-back out of your working copy changes that have already been committed to the repository, see [Merge Revisions (on page 2865)]().

### Merge Conflicted Resources

Before you can safely commit your changes to the repository you must first resolve all conflicts. In the case of pseudo-conflicts they can be resolved in most cases with an update operation that will merge the incoming modifications into your working copy resource. In the case of real conflicts, conflicts that persist after an update operation, it is necessary to resolve the conflict using the built-in compare view and editor or, in the case of properties conflict, the [Properties view (on page 2930)](). Before you can commit you must *mark as resolved* the affected files.

Both pseudo and real conflicts can be resolved without an update. You should open the file in the compare editor and decide which incoming changes need to be copied locally and which outgoing changes must be overridden or modified. After saving your local file you have to use the *Mark as merged* action from the contextual menu before committing.

### Drop Incoming Modifications

In the situation when your file is in conflict but you decide that your working copy file and its content is the correct one, you can decide to drop some or all of the incoming changes and commit afterwards. The action *Mark as merged* proves to be useful in this case too. After opening the conflicting files with [Compare view (on page 2926)](), [Editor (on page 2923)]() or editing their properties in the [Properties view](#) and deciding that your file can be committed in the repository replacing the existing one, you should use the *Mark as merged* action. When you want to override completely the remote file with the local file you should run the *Override and commit* action, which drops any remote changes and commits your file.

In general it is much safer to analyze all incoming and outgoing changes using the [Compare view](#) and only after to update and commit.

### Tree Conflicts

A *tree conflict* is a conflict at the directory tree structure level and occurs when the user runs an update action on a resource that has the following conditions:

- It is locally modified and the same resource was deleted from the repository (or deleted as a result of being renamed or moved).
• It was locally deleted (or deleted as a result of being renamed or moved) and the same resource is incoming as modified from the repository.

The same conflict situation can occur after a merge or a switch action. The action ends with an error and the folder containing the file that is now in the tree conflict state is also marked with a conflict icon.

Such a conflict can be resolved in one of the following ways that are available when the user double clicks on the conflicting resource or when running the **Edit conflict** action:

**Figure 798. Resolve a tree conflict**

![Tree conflict window](image)

• **Keep local change (delete resource)** - Keeps the incoming change that comes from the repository.

• **Keep incoming modified resource** - If there is a renamed version of the file committed by other user that will be added to the working copy too.

**Update the Working Copy**

While you are working on a project, other members of your team may be committing changes to the project repository. To get these changes, you have to **update** your working copy. Updating may be done on single files, a set of selected files, or recursively on entire directory hierarchies. The update operation can be performed from **Working Copy view (on page 2902)**. It updates the selected resources to the last synchronized revision (if remote information is available) or to the **HEAD** revision of the repository.

There are three different kinds of incoming changes:
• **Non-conflicting** - A non-conflicting change occurs when a file has been changed remotely but has not been modified locally.

• **Conflicting, but auto-mergeable** - An auto-mergeable conflicting change occurs when a text file has been changed both remotely and locally (for example, has non-committed local changes) but the changes are on different lines of text. Not applicable to binary resources (for example, multimedia files, PDFs, executable program files)

• **Conflicting** - A conflicting change occurs when one or more of the same lines of a text file have been changed both remotely and locally.

If the resource contains only incoming changes or the outgoing changes do not intersect with incoming ones then the update will end normally and the Subversion system will merge incoming changes into the local file. In the case of a conflicting situation the update will have as result a file with conflict status.

The Oxygen XML Editor allows you to update your working copy files to a specific revision, not only the most recent one. This can be done by using the Update to revision/depth action from the Working Copy view (All Files view mode) or the Update to revision action from the History view (on page 2917) contextual menu.

If you select multiple files and folders and then you perform an Update operation, all of those files and folders are updated one by one. The Subversion client makes sure that all files and folders belonging to the same repository are updated to the exact same revision, even if between those updates another commit occurred.

When the update fails with a message saying that there is already a local file with the same name Subversion tried to check out a newly versioned file, and found that an unversioned file with the same name already exists in your working folder. Subversion will never overwrite an unversioned file unless you specifically do this with an Override and update action. If you get this error message, the solution is simply to rename the local unversioned file. After completing the update, you can check to see if the renamed file is still needed.

### Send Your Changes to the Repository

Sending the changes you made to your working copy is known as committing the changes. If your working copy is up-to-date and there are no conflicts, you are ready to commit your changes.

The Commit action sends the changes from your local working copy to the repository. The Commit dialog box presents all the items that you can commit.

Figure 799. Commit dialog box
Enter a message to associate with the commit, or choose a previous message from the Previous messages list (the last 10 commit messages will be remembered even after restarting the SVN client application).

An item that can be committed has one of the following states: added, modified (content or properties), replaced, and deleted. All items that have one of these states are selected in the dialog box by default. If you do not want to commit one of the items, deselect it.

⚠️ **Attention:** For SVN 1.8 working copies: when committing items that were moved and/or renamed, make sure you select both the source and the destination. Otherwise, the commit operation will fail.

Besides the items that have one of the mentioned states, Syncro SVN Client also includes the files being unversioned or missing and these items are handled automatically:

- **Unversioned** items are added under version control.
- **Missing** items are deleted.

_NOTE:_ If the Show unversioned directories content option is not selected, the Commit dialog box does not display the items inside an unversioned directory.
Unversioned or missing items are not selected by default in the Commit dialog box, unless you have selected them explicitly when issuing the commit command.

**Note:** In some cases, items that have one of the above states are not presented in the Commit dialog box.

For example:

- Items that have been added or replaced previously, but now are presented as missing after being removed from the file system, outside of an SVN client. Such items do not exist in the repository and you should use the Delete action to remove them from your working copy.
- Items that have incoming changes from the repository, after a synchronization. You need to have your working copy up-to-date before committing your changes.
- Files that, after a synchronization, appear as locked by other users or from other locations than the current working copy.

**Note:** Due to dependencies between items, when you select or clear an unversioned (unversioned) or added (added) item in the Commit dialog box, other items with one of these states can be selected or cleared automatically.

The modifications that will be committed for each file can be reviewed in the compare editor window by double clicking a file in the Commit dialog box, or by right clicking and selecting the Show Modifications action from the contextual menu. This option is available to review only file content changes, not property changes.

The **Local file status** column indicates the actual state of the items and the **Local properties status** column indicates whether or not the properties of an item are modified.

The **Lock information** column is displayed if at least one of the files in the Commit dialog box has lock information associated with it, valid against the commit operation.

The following options are available in this dialog box:

- **Enable automatic properties** or **Disable automatic properties** - enables or disables automatic property assignment (per runtime configuration rules), overriding the enable-auto-props runtime configuration directive, defined in the config file of the Subversion configuration directory.

  **Note:** This option is available only when there are defined properties to be applied automatically for resources newly added under version control. You can define these properties in the config file of the Subversion configuration directory, in the auto-props section. Based on the value of the enable-auto-props runtime configuration directive, the presented option is either Enable automatic properties, or Disable automatic properties.

- **Keep locks** - selecting the Keep locks option preserves any locks you set on various files.
Note: This option is available only when files that you locked are presented in the dialog box.

Each of the above options is activated only when you select an item for which the option can be applied.

Your working copy must be up-to-date with respect to the resources you commit. This is ensured by using the Update action prior to committing, resolving conflicts and re-testing as needed. If your working copy resources you are trying to commit are out of date you will get an appropriate error message.

Committing to Multiple Locations

Although Subversion does not support committing to multiple locations at once, Syncro SVN Client offers this functionality regarding external items.

If items to be committed belong to different external definitions than those found in the working copy, they are grouped under the corresponding item that indicates their repository origin. Each parent item is rendered bold and its corresponding repository location is presented when hovering it. Parent items are decorated with a small arrow (▲) if they are external definitions. The working copy root directory is never decorated and is not presented if there are no external items listed (all items belong to the main working copy). Each child item is presented relative to the parent item.

Note: When an external directory has modifications of its own, it is presented both as a parent item and as an item that you can select and commit. This is always the case for external files.

The sets of items belonging to external definitions from the same repository are committed together, resulting a single revision. So, the number of revisions can be smaller than the number of externals. External definitions are considered from the same repository if they have the same protocol, server address, port, and repository address within the server.

Note: External files are always from the same repository as the parent directory that defines them, so they are always committed together with the changes from their parent directory.

Integration with Bug Tracking Tools

Users of bug tracking systems can associate the changes they make in the repository resources with a specific ID in their bug tracking system. The only requirement is that the user includes the bug ID in the commit message that they enter in the Commit dialog box. The format and the location of the ID in the commit message are configured with SVN properties.

To make the integration possible Syncro SVN Client needs some data about the bug tracking tool used in the project. You can configure this using the following SVN properties (on page 2857) that must be
set on the folder that contains resources associated with the bug tracking system (usually they are set recursively on the root folder of the working copy):

- **bugtraq:message** - A string property. If it is set the Commit dialog box (on page 2851) will display a text field for entering the bug ID. It must contain the string %BUGID%, which is replaced with the bug number on commit.

- **bugtraq:label** - A string property that sets the label for the text field configured with the **bugtraq:message** property.

- **bugtraq:url** - A string property that is the URL pointing to the bug tracking tool. The URL string should contain the substring %BUGID% which Syncro SVN Client replaces with the issue number. That way the resulting URL will point directly to the correct issue.

- **bugtraq:warnifnoissue** - A boolean property with the values true/yes or false/no. If set to true, the Syncro SVN Client will warn you if the bug ID text field is left empty. The warning will not block the commit, only give you a chance to enter an issue number.

- **bugtraq:number** - A boolean property with the value true or false. If this property is set to false, then any character can be entered in the bug ID text field. If the property is set to true or is missing then only numbers are allowed as the bug ID.

- **bugtraq:append** - A boolean property. If set to false, then the bug ID is inserted at the beginning of the commit message. If yes or not set, then it is appended to the commit message.

- **bugtraq:logregex** - This property contains one or two regular expressions, separated by a newline. If only one expression is set, then the bug ID's must be matched in the groups of the regular expression string (for example, \[Ii\]ssue #?(\d+) ). If two expressions are set, then the first expression is used to find a string which relates to a bug ID but may contain more than just the bug ID (for example, Issue #123 or resolves issue 123 ). The second expression is then used to extract the bug ID from the string extracted with the first expression. An example: if you want to catch every pattern Issue #XXX and issue #890, #789 inside a log message you could use the following strings:
  
  ◦ \[Ii\]ssue #?(\d+) (,? ?#?(\d+))\
  ◦ (\d+)

The data configured with these SVN properties is stored on the repository when a revision is committed. A bug tracking system or a statistics tool can retrieve the revisions that affected a bug from the SVN server and present the commits related to that bug to the user of the bug tracking system.

If the **bugtraq:url** property was filled in with the URL of the bug tracking system and this URL includes the %BUGID% substring as specified above in the description of the **bugtraq:url** property then the History view (on page 2917) presents the bug ID as a hyperlink in the commit message. Clicking such a hyperlink in the commit message of a revision opens a Web browser at the page corresponding to the bug affected by that commit.
Obtain Information for a Resource

This section explains how to obtain information for a SVN resource:

Request Status Information for a Resource

While you are working with the SVN Client you often need to know which files you have changed, added, removed, or renamed, or even which files got changed and committed by others. This is where the Synchronize action from the Working Copy view (on page 2902) comes in handy. The Working Copy view shows you every file that has changed your working copy, as well as any unversioned files you may have.

If you want more detailed information about a given resource, you can use the Show SVN Information action. This action is available from the File menu or the contextual menu of the Working Copy, Repositories, History, or Directory Change Set views, or from the Revision Graph dialog box. The SVN Information dialog box will be displayed, showing information about the selected resource. The information displayed depends on the location of the item (local or remote) and may include the following:

- Local path and repository location
- Revision number
- Last change author, revision and date
- Information about locks
- Local file status
- Local properties status
- Local directory depth
- Repository location and revision number for copied files or directories
- Path information about locally moved items
- Path information about conflict generated files
- Remote file status
- Remote properties status
- File size and other information

The value of a property of the resource displayed in the dialog box can be copied by right-clicking the property and selecting the Copy action.

Request History for a Resource

In Apache Subversion™, both files and directories are versioned and have a history. If you want to examine the history for a selected resource and find out what happened at a certain revision you can use the History view that can be accessed from Repositories view (on page 2897), Working Copy view (on page 2902), Revision Graph (on page 2933), or Directory Change Set view (on page 2921).
From the **Working copy view** you can display the history of local versioned resources. If the view is not displayed, it can be opened by selecting it from the **Window > Show View** menu.

**Related Information:**

- **History View (on page 2917)**

**Management of SVN Properties**

In the **Properties view (on page 2930)** you can read and set the Apache Subversion™ properties of a file or folder. There is a set of predefined properties with special meaning to Subversion. For more information about properties in Subversion see the SVN Subversion specification. Subversion properties are revision dependent. After you change, add or delete a property for a resource, you have to commit your changes to the repository.

If you want to change the properties of a given resource you need to select that resource from the **Working Copy view (on page 2902)** and run the **Show properties** action from the contextual menu. The **Properties view (on page 2930)** will show the local properties for the resource in the working copy. Once the Properties view is visible, it will always present the properties of the currently selected resource. There are actions available in the **Properties view toolbar (on page 2932)** that allow you to add, change, and delete the properties.

If you choose the **Add a new property** action, a new dialog box will appear that contains the following:

- **Name** - Combo box that allows you to enter the name of the property. The drop-down menu of the combo box presents the predefined Subversion properties (such as *svn:ignore*, *svn:externals*, *svn:needs-lock*, etc.)
- **Current value** - Text area that allows you to enter the value of the new property.

If the selected item is a directory, you can also set the property recursively on its children by selecting the **Set property recursively** checkbox.

If you want to change the value for a previously set property, you can use the **Edit property** action, which will display a dialog box with the following information:

- **Name** - Property name (cannot be changed).
- **Current value** - The current value (can be changed).
- **Base value** - The value of the property, if any, from the resource in the pristine copy (cannot be changed).
If you want to completely remove a property previously set you can choose the **Remove property** action. It will display a confirmation dialog box in which you can also choose if the property will be removed recursively.

There is a **Refresh** action in the **Properties view** that can be used when the properties have been changed from outside the view. This can happen, for example, when the view was already presenting the properties of a resource and they have been changed after an **Update** operation.

Branches and Tags

One of the fundamental features of version control systems is the ability to create a new line of development from the main one. This new line of development will always share a common history with the main line if you look far enough back in time. This line is known as a **branch**. Branches are mostly used to try out features or fixes. When the feature or fix is finished, the branch can be merged back into the main branch (**trunk**).

Another feature of version control systems is the ability to take a snapshot of a particular revision, so you can at any time recreate a certain build or environment. This is known as **tagging**. Tagging is especially useful when making release versions.

In Apache Subversion™, there is no difference between a **tag** and a **branch**. On the repository, both are ordinary directories that are created by copying. The trick is that they are cheap copies instead of physical copies. Cheap copies are similar to hard links in Unix, which means that they merely link to a specific tree and revision without making a physical copy. As a result, branches and tags occupy little space on the repository and are created very quickly.

Provided that nobody ever commits to the directory in question, it remains a tag. If people start committing to it, it becomes a branch.

Create a Branch / Tag

To create a branch or tag by copying a directory, use the **Branch/Tag** action that is available in the **Tools** menu when an item is selected in the **Working Copy view** or **Repositories view**, or from the contextual menu of the **Repositories** view.

Figure 800. Branch/Tag Dialog Box
You can configure the following options in this dialog box:

You can specify the source revision of the copy in the **Copy from** section. You can choose between the following options:

- **HEAD revision in the repository** - The new branch or tag will be copied in the repository from the **HEAD** revision. The branch will be created very quickly, as the repository will make a *cheap* copy.

- **Specific revision in the repository** - The new branch will be copied into the repository, but you can specify the exact desired revision. For example, this is useful if you forgot to make a branch or tag when you released your application. If you click the **History** button you can select the revision number from the *History* dialog box (on page 2831). This type of branch will also be created very quickly.

- **Working copy** - (Available only if the item is selected from the **Working copy** view). The new branch will be a copy of your local working copy. If you have updated some files to an older revision in your working copy, or if you have made local changes, that is exactly what goes into the copy. This involves transferring some data from your working copy back to the repository, or more specifically, the locally modified files.

You can specify the location of the new branch or tag in the **Destination** section:

- **Into repository's directory** - The URL of the parent directory (on page 2938) of the new branch or tag.
Note: Peg revisions have no effect for this operation since it is used to send information to the repository.

- **Under the name** - You can specify another branch or tag name other than the name of the resource selected in the Repositories or Working copy view.

The new branch or tag will be created as a child of the specified URL of the repository directory and will have the new name.

Merging

At some stage during the development process, you will want to merge the changes made on a branch back into the trunk, or vice-versa. The merge is accomplished by comparing two points (branches or revisions) in the repository and applying the obtained differences to your working copy. This process is closely related to the diff concept.

Note: A branch is a line of development that exists independently of another line, yet still shares a common history if you look far enough back in time. A branch always begins life as a copy of something (such as a trunk, another branch, or tag), and moves on from there, generating its own history.

The ➔ Merge action is available in the Tools menu. The working copy item selected when you issued the command will be the one receiving the generated changes. If there is no item selected, the merge operation will be performed on the entire working copy.

Figure 801. Merge Wizard
The four types of merging are as follows:

- **Merge revisions** *(on page 2863)* - Port changes from one branch to another. Note that the trunk can also be considered a branch, in this context.
- **Synchronize branch** *(on page 2865)* - Fetch all the changes made on a parent branch (or the trunk) to a child branch.
- **Reintegrate a branch** *(on page 2867)* - Merge a branch back to its parent branch (can also be the trunk).
- **Merge two different trees** *(on page 2869)* - Integrate the changes done on a branch to a different branch.

It is recommended that you enable the following pre-merge check:

**Perform pre-merge best practices checks of the working copy target** *(on page 2862)* - When selected, the SVN Client checks if the working copy target item is ready for the merge operation and displays the pre-merge checks wizard page.

**Remember:** It is a good idea to perform a merge into an unmodified working copy. If you have made changes to your working copy, commit them first. If the merge does not go as you expect, you may want to revert the changes and revert cannot recover your uncommitted modifications.
Important: The above recommendation becomes mandatory when reintegrating a branch (on page 2860).

Pre-Merge Checks

Before performing a merge, it is recommended to make sure that the working copy target item is ready for the merge operation. The SVN Client includes a best practices step that checks various conditions of the working copy target item to ensure that the merge operation will succeed. By selecting the Perform pre-merge best practices checks of the working copy target option in the first page of the Merge wizard, the Pre-merge checks wizard page is displayed to give you a summary of the verified conditions.

Figure 802. Pre-Merge Checks Wizard Page

The following conditions are checked in this operation:

No local modifications

The working copy item (or any of its children) receiving the merge should not contain uncommitted changes, to make it easier to revert merge-generated changes if you encounter unexpected results.

Tip: If this condition fails, you should commit or revert the local modifications before merging.
No switched children

None of the children of the working copy item receiving the merge should be switched, to avoid incomplete merges and subtree mergeinfo.

Tip: If this condition fails, you should switch back all the children before merging.

Complete working copy tree

The working copy item receiving the merge should be a complete directory tree structure with an infinite depth, to avoid incomplete merges and subtree mergeinfo.

Tip: If this condition fails, you should change the sticky depth of the working copy item receiving the merge to infinity value.

No mixed revisions

To avoid unexpected merge conflicts, the working copy item that is receiving the merge should not contain items that were updated to other revisions.

Tip: If this condition fails, you should update the working copy before merging.

Each condition is marked with an icon that represents the state of the condition. The possible states are as follows:

• ✓ (Successful) - The condition is fulfilled successfully.
• ⚠ (Warning) - The condition is not fulfilled, but it is not mandatory.
• ⚠ (Error) - The condition is not fulfilled and is mandatory (therefore, the operation cannot proceed until you solve the error).

Tip: For each condition state, a message is displayed that gives you additional information about the results and, for warning or errors, a hint that explains how you can solve them.

Important: After solving any of the warnings or errors, it is recommended that you perform the pre-merge checks again to make sure your new changes are valid.

Merge Revisions

This case is when you have made one or more changes to a branch and you want to duplicate them in another branch. For example, suppose you know that a problem has been fixed by committing revisions 17, 20, and 25 on branch B1. These changes are also needed in branch B2. Thus, to merge them, you need a working copy of the B2 branch.

To merge revisions from a different branch, follow these steps:

1. Go to menu Tools > Merge.
The **Merge** wizard is opened.

2. Select the **Merge revisions** option.

3. It is recommended that you select the **Perform pre-merge best practices checks of the working copy target** option to make sure that the working copy target item is ready for the merge operation.

   a. Press the **Next** button.

   If the **Perform pre-merge best practices checks of the working copy target** option is selected, the **Pre-Merge Checks** wizard page (on page 2862) is displayed.

   **Note:** If errors are found you need to solve them before proceeding.

4. Press the **Next** button.

   The **Merge revisions** wizard page is displayed.

5. In the **Merge from (URL)** text box, enter the **URL of the branch or tag** (on page 2938) that contain the changes that you want to duplicate in your working copy. You may also click the **Browse** button to browse the repository and find the desired branch. If you have previously merged from this branch, then you can simply use the drop down menu, which displays a history of previously used URLs.

   **Note:** If the URL belongs to a different repository than the working copy, the **Ignore ancestry / Disable merge tracking** option (in the **Merge Options** wizard page (on page 2872)) will be selected automatically (and you cannot change this). This is because the **Subversion client cannot track changes between different repositories** (on page 2875).

   **Tip:** You can also specify a **peg revision** (on page 2940) at the end of the URL (for example, URL@rev1234). The peg revision does not affect the merge range you select. By default, the **HEAD** revision is assumed.

6. In the **Revisions to merge** section, choose between the **all revisions** and **specific revision(s)** options.

   - **all revisions** - The operation will include **all eligible revisions** that were not yet merged.
   - **specific revision(s)** - You can specify one or more individual revisions and/or revision ranges. Also, you can mix **forward** ranges (for example, 1-5), **backward ranges** (for example, 20-15), and subtract specific revisions from a range (for example, 1-5, -3).

   **Note:** If using the Subversion command-line client, a revision range of the form 1-5 means all changes starting from revision 2 up to revision 5 (the changes necessary to reach revision 5, committed after revision 1). Unlike the Subversion command-line client, in **Syncro SVN Client** the revision ranges are inclusive, meaning that it will process all revisions, starting with revision 1, up to and including revision 5.
Attention: The HEAD revision is the only non-numerical revision allowed, and it can only be used when specifying revision ranges as one of the ends of the range (for example, 10-HEAD). Be careful when using it, as it might not refer to the desired revision, if it has recently been committed by another user.

Tip: If you want to perform a reverse merge and roll-back your working copy changes that have already been committed to the repository, use the negative revisions notation (for example, -7) or backward revision ranges (for example, 20-10).

a. If you press the History button, the History dialog box (on page 2831) is displayed, which allows you to select one or more revisions to be merged.

7. Optionally, if you want to configure the options (on page 2872) for your merge, press the Next button.
   The Merge Options wizard page (on page 2872) is displayed that allows you to configure options for the operation.

Warning: If the Ignore ancestry / Disable merge tracking option is selected and you chose all revisions in the Revisions to merge section, revisions that were previously merged will also be included, which may result in conflicts.

8. Press the Merge button.
   The merge operation is performed.

If the merge is completed successfully, all the changes corresponding to the selected revisions should be merged in your working copy.

It is recommended to look at the results of the merge, in the working copy, to review the changes and see if it meets your expectations. Since merging can sometimes be complicated, you may need to resolve conflicts (on page 2874) after making major changes.

Note: The merge result is only in your local working copy and needs to be committed to the repository for it to be available to others.

Synchronize a Branch

While working on your own branch, other people on your team might continue to make important changes in the parent branch (which can be the trunk itself or any other branch). It is recommended to periodically duplicate those changes in your branch to make sure your changes are compatible with them. This is done by performing a synchronize merge, which will bring your branch up-to-date with any changes made to its ancestral parent branch since your branch was last created or synchronized.
Subversion is aware of the history of your branch and can detect when it split away from the parent branch.

Frequently keeping your branch in sync with the parent branch helps you to prevent unexpected conflicts when the time comes for you to duplicate your changes back into the parent branch. The synchronization uses *merge tracking* to skip all those revisions that have already been merged, thus a sync merge can be repeated periodically to fetch all the latest changes of the parent branch to keep up-to-date with it.

**Important:** It is recommended to synchronize the whole working copy that was created from the child branch (the root of the working copy), rather than just a part of it.

After running the *synchronize* merge, your working copy from the child branch now contains new local modifications, and these edits are duplications of all of the changes that have happened on the *trunk* since you first created your branch. At this point, your private branch is now synchronized with the trunk.

To synchronize your branch with its parent branch, follow these steps:

1. Go to **Tools > Merge**. The Merge wizard is opened.
2. Select the **Synchronize branch** option.
3. It is recommended that you select the **Perform pre-merge best practices checks of the working copy target** option to make sure that the working copy target item is ready for the merge operation.
   a. Press the **Next** button.
      If the **Perform pre-merge best practices checks of the working copy target** option is selected, the **Pre-Merge Checks wizard page (on page 2862)** is displayed.

      **Note:** If errors are found you need to solve them before proceeding.
4. Press the **Next** button.
   The Synchronize branch wizard page is displayed.
5. In the **Parent branch (URL)** text box, enter the **URL of the branch from which you created your branch (on page 2938)**. This means that the URL must belong to the same repository as your working copy that was created from the child branch.
   You may also click the **Browse** button to browse the repository and find the desired branch. If you have previously merged from this branch, then you can simply use the drop down menu, which displays a history of previously used URLs.
Tip: You can also specify a peg revision (on page 2940) at the end of the URL (for example, URL@rev1234). The peg revision specifies both the peg revision of the URL and the latest revision that will be considered for merging. By default, the HEAD revision is assumed.

6. Optionally, if you want to configure the options (on page 2872) for your merge, press the Next button.
   The Merge Options wizard page (on page 2872) is displayed that allows you to configure options for the operation.

   Note: The Ignore ancestry / Disable merge tracking option is not available for this merge type, since a synchronization merge should always be recorded in the destination branch.

7. Press the Merge button.
   The merge operation is performed.

If the merge is completed successfully, all the changes corresponding to the selected revisions should be merged in your working copy.

It is recommended to look at the results of the merge, in the working copy, to review the changes and see if it meets your expectations. Since merging can sometimes be complicated, you may need to resolve conflicts (on page 2874) after making major changes.

   Note: The merge result is only in your local working copy and needs to be committed to the repository for it to be available to others.

Reintegrate a Branch

There are some conditions that apply to reintegrate a branch:

- The server must support merge tracking.
- The source branch (to be reintegrated) must be coherently synchronized with its parent branch.
  This means that all revisions between the branching point and the last revision merged from the parent branch to the child branch must be merged to the latter one (there must be no missing revisions in-between).
- The working copy must not contain the following:
  - Local modifications.
  - A mixture of revisions (all items must point to the same revision).
  - Sparse directories (all directories must be of infinity depth).
  - Switched items.
- The revision of the working copy must be greater than or equal to the last revision of the parent branch with which the child branch was synchronized.
Tip: You can use the pre-merge checks option (on page 2862) to make sure these conditions are fulfilled.

This method is useful when you have a feature branch on which the development has concluded and it should be merged back into its parent branch. Since you have kept the feature branch synchronized with its parent, the latest versions of them will be absolutely identical except for your feature branch changes. These changes can be reintegrated into the parent branch by using a working copy of it and the Reintegrate a branch option.

This method uses the merge-tracking features of Apache Subversion™ to automatically calculate the correct revision ranges and to perform additional checks that will ensure that the branch to be reintegrated has been fully updated with its parent changes. This ensures that you do not accidentally undo work that others have committed to the parent branch since the last time you synchronized the child branch with it. After the merge, all branch development will be completely merged back into the parent branch, and the child branch will be redundant and can be deleted from the repository.

Tip: Before reintegrating the child branch it is recommended to synchronize it with its parent branch one more time, to help avoid any possible conflicts.

To reintegrate a child branch into its parent branch, follow these steps:

1. Go to menu Tools > Merge.
   The Merge wizard is opened.

2. Select the Reintegrate a branch option.

   Note: This option is not available if the selected working copy item (or if it is a directory, any of the items inside of it) has any type of modification. This is because it is mandatory for the target item to have no modifications.

3. It is recommended that you select the Perform pre-merge best practices checks of the working copy target option to make sure that the working copy target item is ready for the merge operation.

   a. Press the Next button.
      If the Perform pre-merge best practices checks of the working copy target option is selected, the Pre-Merge Checks wizard page (on page 2862) is displayed.

      Note: If errors are found you need to solve them before proceeding.

4. Press the Next button.
   The Reintegrate a branch wizard page is displayed.
5. In the **Child branch (URL)** text box, enter the **URL of the child branch to be reintegrated** ([on page 2938](#)). This means that the URL must belong to the same repository as your working copy that was created from the parent branch.

You may also click the **Browse** button to browse the repository and find the desired branch. If you have previously merged from this branch, then you can simply use the drop down menu, which displays a history of previously used URLs.

**Tip:** You can also specify a **peg revision** ([on page 2940](#)) at the end of the URL (for example, `URL@rev1234`). The peg revision specifies both the peg revision of the URL and the latest revision that will be considered for merging. By default, the **HEAD** revision is assumed.

The **Merge Options** wizard page ([on page 2872](#)) is displayed that allows you to configure options for the operation.

**Note:** Since a **reintegrate merge** is so specialized, most of the merge options are not available, except for those in the **File Comparison** category.

6. Press the **Merge** button.

The merge operation is performed.

If the merge is completed successfully, all the changes corresponding to the selected revisions should be merged in your working copy.

It is recommended to look at the results of the merge, in the working copy, to review the changes and see if it meets your expectations. Since merging can sometimes be complicated, you may need to **resolve conflicts** ([on page 2874](#)) after making major changes.

**Note:** The merge result is only in your local working copy and needs to be committed to the repository for it to be available to others.

### Merge Two Different Trees

This merge type is useful when you need to duplicate changes from one child branch (for example, **CB1**) to another child branch (**CB2**) from the same parent branch. The SVN client will calculate the changes necessary to get from the **HEAD** revision of the parent branch (or the **trunk**) to the **HEAD** revision of one of its child branches (**CB1**), and apply those changes to your working copy of the other branch (**CB2**). The result is that the latter child branch (**CB2**) will also include the changes made on the original child branch (**CB1**), although that branch was not reintegrated into the parent branch.

This merge type could also be used to reintegrate a child branch back into its parent when the repository does not support **merge tracking**.
Note: If the server does not support *merge-tracking*, then this is the only way to merge a branch back to its parent.

1. Go to menu **Tools > Merge**. 
   The Merge wizard is opened.

2. Select the option **Merge two different trees**.

3. It is recommended that you select the **Perform pre-merge best practices checks of the working copy target** option to make sure that the working copy target item is ready for the merge operation.
   a. Press the Next button.
      If the **Perform pre-merge best practices checks of the working copy target** option is selected, the Pre-Merge Checks wizard page *(on page 2862)* is displayed.

   Note: If errors are found you need to solve them before proceeding.

4. Press the Next button.
   The **Merge two different trees** wizard page is displayed.

5. In the **From (starting URL and revision)** section enter the URL of the first branch *(on page 2938)*. 
   You may also click the **Browse** button to browse the repository and find the desired branch. If you have previously merged from this branch, then you can simply use the drop down menu, which displays a history of previously used URLs.

   Tip: If you are using this method to merge a feature branch back to its parent branch, you need to start the merge wizard from within a working copy of the parent. In this field enter the full URL of the parent branch. This may sound wrong, but remember that the parent is the starting point to which you want to add the branch changes.

   Note: If the URL belongs to a different repository than the working copy, the **Ignore ancestry / Disable merge tracking** option *(in the Merge Options wizard page (on page 2872))* will be selected automatically (and you cannot change this). This is because the Subversion client cannot track changes between different repositories *(on page 2875)*.

   Tip: You can also specify a **peg revision** *(on page 2940)* at the end of the URL (for example, `URL@rev1234`). By default, the **HEAD** revision is assumed.

6. Enter the last revision number at which the two trees were synchronized by choosing between **HEAD revision** and **other revision**.

   - **HEAD revision** - Use this option if you are sure that no one else has committed changes since the last synchronization.
• **other revision** - Use this option to input a specific revision number and avoid losing recent commits. You can use the History button to see a list of all revisions.

7. In the **To (ending URL and revision)** section enter the URL of the second branch *(on page 2938).* You may also click the **Browse** button to browse the repository and find the desired branch. If you have previously merged from this branch, then you can simply use the drop down menu, which displays a history of previously used URLs.

**Tip:** If you are using this method to merge a feature branch back to its parent branch, enter the URL of the feature branch. This way, only the changes unique to this branch will be merged, since the branch should have been periodically synchronized with its parent.

**Attention:** The URL must point to the same repository as the one in the **From (starting URL and revision)** field. Otherwise, the operation will not be allowed, since Subversion cannot compute changes between items from different repositories.

**Tip:** You can also specify a peg revision *(on page 2940)* at the end of the URL (for example, URL@rev1234). By default, the HEAD revision is assumed.

8. Select a revision to compute all changes committed up to that point by choosing between **HEAD revision** and **other revision**.
   - **HEAD revision** - This is the default selected revision.
   - **other revision** - Use this option if you want to enter a previous revision. You can use the History button to see a list of all revisions.

9. Optionally, if you want to configure the options *(on page 2872)* for your merge, press the **Next** button.

The **Merge Options** wizard page *(on page 2872)* is displayed that allows you to configure options for the operation.

**Warning:** If the Ignore ancestry / Disable merge tracking option is selected and you chose all revisions in the Revisions to merge section, revisions that were previously merged will also be included, which may result in conflicts.

10. Press the **Merge** button.

The merge operation is performed.

If the merge is completed successfully, all the changes corresponding to the selected revisions should be merged in your working copy.

It is recommended to look at the results of the merge, in the working copy, to review the changes and see if it meets your expectations. Since merging can sometimes be complicated, you may need to resolve conflicts *(on page 2874)* after making major changes.
**Note:** The merge result is only in your local working copy and needs to be committed to the repository for it to be available to others.

**Merge Options**

Here is the list of options that can be used when merging:

![Merge Wizard - Advanced Options](image)

- **Depth** (This option is applicable only for directories) - sets the depth of the merge operation. You can specify how far down into your working copy the merge should go by selecting one of the following values:
  - **Current depth** - Obeys the depths registered for the directories in the working copy that are to be switched.
  - **Recursive (infinity)** - Merges all the files and folders contained in the selected folder. This is the recommended depth for most users, to avoid incomplete merges and subtree mergeinfo.
  - **Immediate children (immediates)** - Merges only the child files and folders without recursing subfolders.
  - **File children only (files)** - Merges only the child files.
  - **This folder only (empty)** - Merges only the selected folder (no child files or folders are included).

**Note:** The *depth* term is described in the Sparse checkouts *(on page 2895)* section. The default depth is the current depth of the working copy item receiving the merge.
• **Ignore ancestry / Disable merge tracking** - Changes the way two items are merged if they do not share a common ancestry. Most merges involve comparing items that are ancestrally related to one another. However, occasionally you may want to merge unrelated items. If this option is not selected, the first item will be replaced with the second item. In these situations, you would want the merge to do a path-based comparison only, ignoring any relations between the items. For example, if two different files have the same name and are in the same relative location, deselecting the option replaces one of the files with the other one, and selecting it merges their contents.

**Note:** If the URL of the merge source belongs to a different repository than the URL of the target working copy item (the one receiving the changes), this option is selected automatically (and you cannot change this). This is because the Subversion client cannot track changes between different repositories.

• **Force deletion of modified or non-versioned items, if necessary** - If not selected, when the merge operation involves deleting locally modified or non-versioned items, it will fail. This is done to prevent data loss. This option is only available if there are uncommitted changes in the working copy.

• **Only record the merge (block revisions from getting merged)** - Available when the **Ignore ancestry / Disable merge tracking** option (on page 2873) is not selected. It enables a special mode of the merge operation that just records it in the local merge tracking information, without actually performing it (does not modify any file contents or the structure of your working copy). You might want to select this option for two possible reasons:
  ◦ You made (or will make) the merge manually, and therefore need to mark the revisions as being merged to make the merge tracking system aware of them. This will exclude them from future merges.
  ◦ You want to prevent one or more particular changes from being fetched in subsequent merges.

• **Ignore line endings** - Allows you to specify how the line ending changes should be handled. By default, all such changes are treated as real content changes, but you can ignore them if you select this option.

• **Ignore whitespaces** - Allows you to specify how the whitespace changes should be handled. By default, all such changes are treated as real content changes, but you can ignore them if you select this option.
  ◦ **Ignore whitespace changes** - Ignores changes in the amount of whitespaces or to their type (for example, when changing the indentation or changing tabs to spaces).

**Note:** Whitespaces that were added where there were none before, or that were removed, are still considered to be changes.
  ◦ **Ignore all whitespaces** - Ignores all types of whitespace changes.

• **Test merge** - Performs a dry run of the merge operation, allowing you to preview it without actually performing the merge. In the **Console** view you will see a list of the working copy items
that will be affected and how they will be affected. This is helpful in detecting whether or not a merge will be successful, and where conflicts may occur.

Resolving Merge Conflicts

After the merge operation is finished, it is possible to have some items in conflict. This means that some incoming modifications for an item could not be merged with the current working copy version. If there are such conflicts, the **Merge conflicts** dialog box will appear, presenting the items that are in conflict. This dialog box offers you choices for resolving the conflicts.

Figure 804. Merge Conflicts Dialog Box

The options to resolve a conflict are as follows:

- **Resolve later** - Used for leaving the conflict as it is, to manually resolve it later.
- **Keep incoming** - This option keeps all the incoming modifications and discards all current ones from your working copy.
- **Keep outgoing** - This option keeps all current modifications from your working copy and discards all incoming ones.
- **Mark resolved** - You should choose this option after you have manually solved the conflict, to instruct the Subversion that it was resolved. To do this, use the **Edit conflict** button, which displays a dialog box that presents the contents of the conflicting items (the content of the working copy version versus the incoming version).
Additional Notes About the Merge Operation

**Sub-tree Merges**

It is recommended to perform a merge on the whole working copy (select its root directory when triggering the operation) to avoid *sub-tree mergeinfo*. *Sub-tree mergeinfo* is the *mergeinfo* recorded to describe a *sub-tree merge*. That is, a merge done directly to a child of a branch root that might be needed in certain situations. There is nothing special about *sub-tree merges* or *sub-tree mergeinfo* except that the complete record of merges to a branch may not be contained solely in the *mergeinfo* on the branch root and you may have to look to any *sub-tree mergeinfo* to get a full accounting. Fortunately, Subversion does this for you and rarely will you need to look for it.

**Merging from Foreign Repositories**

Subversion supports merging from foreign repositories. While all merge source URLs must point to the same repository, the merge target (from the working copy) may come from a different repository than the source. However, copies made in the merge source will be transformed into plain additions in the merge target. Also, *merge-tracking* is not supported for merges from foreign repositories.

**Note:** When performing merges from repositories other than the one corresponding to the target item (from the working copy), the **Ignore ancestry / Disable merge tracking** option (on page 2873) in the **Merge Options** wizard page (on page 2872) will be selected automatically (and you cannot change this).

**General Merge Recommendations**

As a recommendation, you should only merge into clean working copies that **do not** contain any of the following:

- Modifications.
- Sparse directories (all directories must be of depth *infinity*).
- Switched items.

**Important:** This recommendation becomes mandatory when performing a **reintegrate merge** (on page 2867) operation. Also, trying to merge to mixed-revision working copies will fail in all types of merge operations.

**Remember:** The merge result is only in your local working copy and needs to be committed to the repository for it to be available to others.
Switch the Repository Location

The **Switch** action is useful when the repository location of a working copy, or an already committed item in the working copy, must be changed within the same repository. The action is available on the **Tools** menu when a versioned resource is selected in the current working copy that is displayed in the **Working Copy** view (on page 2902).

**Note:** *External* items cannot be switched using this action. Instead, change the value of the **svn:externals** property set on the parent directory of the external item and update the parent directory.

Figure 805. **Switch** Dialog Box

![Switch Dialog Box](image)

The following options can be configured in the **Switch** dialog box:

**Switch to URL**

The new location in the same repository (on page 2938) you are switching to.

**Tip:** You can switch to items that were deleted, moved, or replaced, by specifying the original URL (before the item was removed) and use a **peg revision** (on page 2940) at the end (for example, `URL@rev1234`).

**Note:** For items that are already switched (on page 2904) that you want to switch back, the proposed URL is the original location of the item.

**Revision**

The specific version of the location that you are switching to.

**Depth - (This option is applicable only for directories)**

Current depth
Obeys the depths registered for the directories in the working copy that are to be switched.

**Recursive (infinity)**

Switches the location of the selected folder and all of its files and folders.

**Immediate children (immediates)**

Switches the location of the selected folder and its child files and folders without recursing subfolders.

**File children only (files)**

Switches the location of the selected folder and its child files.

**This folder only (empty)**

Switches the location of the selected folder (no child files or folders are included).

**Ignore "svn:externals" definitions**

When selected, external items are ignored in the switch operation. This option is only available if you choose the Current depth or Recursive (infinity) depth.

**Change the working copy item to the specified depth**

Changes the sticky depth on the directory in the working copy.

**Ignore ancestry**

When not selected, the SVN system does not allow you to switch to a location that does not share a common ancestry with the current location. If selected, the SVN does not check for a common ancestry.

**Relocate a Working Copy**

Sometimes the base URL of the repository is changed after a working copy is checked out from that URL. For example, if the repository itself is moved to a different server. In such cases, you do not have to check out a working copy from the new repository location. It is easier to change the base URL of the root folder of the working copy to the new URL of the repository (on page 2938).

**Note:** Peg revisions have no effect for this operation.

This Relocate action is available in the Tools menu when selecting the root item of the working copy.

**Note:** External items that are defined using absolute URLs and that point to the same repository as the working copy are not affected by the Relocate action (the URL is not updated). To relocate these items, change the value of the svn:externals property for each external item (set on their parent directories). For example, if an external item is defined as externalDir http://host/path/to/repo/to/dir and the repository was moved to another server (host2) and its protocol changed to
Then the value of the property needs to be updated to `externalDir https://host2/path/to/repo/to/dir`.

**Tip:** If you edit external items using the method described in the previous note, on the next update the system will try to fetch the external items again. To avoid this, you can invoke the **Relocate** action on each of these external items.

### Patches

This section explains how to work with patches in Syncro SVN Client.

#### What is a Patch

Suppose you are working with a set of XML files that you want to tag the project and distribute releases to other team members. While working on the project and correcting problems, you may need to distribute the corrections to other team members. In this case, you can distribute a patch (a collection of differences) that would correct the problems when applied over the last distribution. By default, the Syncro SVN Client generates patches in the **Unified Diff format**, but it can also use the **Git format** *(on page 2890)*.

Creating a patch in Apache Subversion™ implies the access to either two revisions of a versioned item, or two different versioned items from the repository:

- **Two revisions of a version item** - the item can be local or remote and you can select two versions of it. This also applies when you need to generate a patch that only contains the changes in the working copy that were not yet committed.
- **Two different versioned items from the repository** - the items are remote and you need to specify a revision for both.

**Warning:** The resulting patch file may contain content that was written using a mix of encodings, based upon the encodings of the files that were compared. If you open the generated patch file in a text editor, it may result in unrecognizable content.

### Generating a Patch - Local Items

Based on a versioned item (already committed or scheduled for addition) in the working copy, you can generate patches that contain the local changes, the differences between a specific revision of that item and the item itself, or differences between the pristine item and another item from the repository. There are four options for generating a patch based upon local items.

To open the **Create patch** wizard, use the ![Create patch](createpatch.png) **Create patch** action from the **Tools** menu or from the contextual menu in the **Modified, Incoming, Outgoing**, or **Conflicts** modes.
Create Patch from Local Modifications

This is the most commonly used type of patch and contains only the local changes for the selected item.

This option is useful if you want to share changes with other team members and you are not yet ready to commit them. This option is only available for local items that contain modifications. It is not available for items in which the local file status is unversioned or ignored, and in some cases missing or obstructed (on page 2905).

The steps are as follows:

1. Go to menu Tools > Create patch.
   This opens the Create patch wizard.

2. Select the Create patch from local modifications option in the dialog box.

3. Optionally, if you want to configure the options (on page 2887) for your patch, press the Next button.
   This options page does not remember your selections when creating future patches. It will revert to the default values.
   The Options wizard page is displayed.

4. Press the Create patch button.
If the patch is applied on a folder of the working copy and that folder contains unversioned files (on page 2905), this step of the wizard offers the option of selecting the ones that will be included in the patch.

Figure 807. Create Patch Dialog Box - Add Unversioned Resources

The patch is created and stored in the path specified in the Output section of the Options page (on page 2887) or in the default location.

Create Patch Against a Specific Revision

This type of patch contains changes between an old revision and the current content from the selected item within the working copy.

This option is useful if you want to obtain differences between an older revision and the current state of the working copy (for instance, to test how current changes apply to an older version).

The steps are as follows:

1. Go to menu Tools > Create patch.
   This opens the Create patch wizard.

2. Select the Create patch against a specific revision option in the dialog box.

3. Press the Next button.
   The second step of the wizard is opened:

Figure 808. Create Patch Wizard - Step 2
4. Select the revision to create patch against.
   You can select between the HEAD revision and a specific revision number. For the other revision option, you can press the History button (on page 2831) to display a list of the item revisions.

   **Note:** If the revision to create patch against is older than the revision for which the working copy item was updated, the patch will include changes that were made after the selected revision.

5. Optionally, if you want to configure the options (on page 2887) for your patch, press the Next button.
   This options page does not remember your selections when creating future patches. It will revert to the default values.
   The Options wizard page is displayed.

6. Press the Create patch button.
   The patch is created and stored in the path specified in the Output section of the Options page (on page 2887) or in the default location.

Create Patch Between Two Revisions of an Item

This type of patch contains historical changes between two revisions of a selected item.

This option is useful if you want to share changes between two revisions with other team members.
Tip: If you need to generate a patch between two revisions of a previously deleted, moved, or replaced item, you should use the Create patch between two repository items option (on page 2883) instead.

The steps are as follows:

1. Go to menu Tools > Create patch.
   This opens the Create patch wizard.

2. Select the Create patch between two revisions of an item option in the dialog box.

3. Press the Next button.
   The second step of the wizard is opened:

   ![](Figure 809. Create Patch Wizard - Step 2)

4. Select the starting and ending revisions in the From and To sections.
   You can select between the HEAD revision and a specific revision number. For the other revision option, you can press the History button (on page 2831) to display a list of the item revisions.

   Note: The patch will only include changes between the two specified revisions, starting with the changes that were made after the older revision.

   Tip: If you want to reverse changes done between two revisions by using a patch file, you can specify the newer revision in the From section and the older version in the To section.

5. Optionally, if you want to configure the options (on page 2887) for your patch, press the Next button.
   This options page does not remember your selections when creating future patches. It will revert to the default values.
   The Options wizard page is displayed.

6. Press the Create patch button.
   The patch is created and stored in the path specified in the Output section of the Options page (on page 2887) or in the default location.
Create Patch Between Two Repository Items

This type of patch contains changes between one version of an item and a specific version of another item.

This option is useful for generating a patch that contains changes between existing, or even previously deleted, moved, or replaced items from different branches. This is the default option when you do not have a working copy loaded, when no repository items are selected, or when exactly two repository items of the same kind are selected.

**Tip:** To access an item that was deleted, moved, or replaced, you need to specify the original URL (before the item was removed) and use a **peg revision** (on page 2940) at the end (for example, `URL@rev1234`).

The steps are as follows:

1. Go to menu **Tools > Create patch**.
   This opens the **Create patch** wizard.

2. Select the **Create patch between two repository items** option in the dialog box.

3. Press the **Next** button.
   The second step of the wizard is opened:

Figure 810. Create Patch Wizard - Step 2
4. Select the starting and ending URLs (on page 2938) and revisions in the From and To sections. You can select between the HEAD revision and a specific revision number. For the other revision option, you can press the History button (on page 2831) to display a list of the item revisions.

⚠️ **Important:** Both URLs must point to items from the same repository.

⚠️ **Note:** If you use a peg revision in the URL field, anything specified in the other revision field is ignored.

5. Optionally, if you want to configure the options (on page 2887) for your patch, press the Next button. This options page does not remember your selections when creating future patches. It will revert to the default values. The Options wizard page is displayed.

6. Press the Create patch button. The patch is created and stored in the path specified in the Output section of the Options page (on page 2887) or in the default location.

---

Generating a Patch - Remote Items

Based on a repository item, you can generate patches that contain the differences between two specific revisions of that item, or between a revision of that same item and another revision of another item from the repository. There are two options for generating a patch based upon remote items.

To open the Create patch wizard, use the Create patch action from the Tools menu.

Figure 811. Create Patch Wizard - Remote Items
Create Patch Between Two Revisions of an Item

This type of patch contains historical changes between two revisions of a selected item.

This option is useful if you want to share changes between two revisions with other team members.

**Tip:** If you need to generate a patch between two revisions of a previously deleted, moved, or replaced item, you should use the Create patch between two repository items option (on page 2883) instead.

The steps are as follows:

1. Go to menu **Tools > Create patch**.
   This opens the Create patch wizard.

2. Select the Create patch between two revisions of an item option in the dialog box.

3. Press the **Next** button.
   The second step of the wizard is opened:

   Figure 812. Create Patch Wizard - Step 2

4. Select the starting and ending revisions in the **From** and **To** sections.
   You can select between the HEAD revision and a specific revision number. For the other revision option, you can press the History button (on page 2831) to display a list of the item revisions.

   **Note:** The patch will only include changes between the two specified revisions, starting with the changes that were made after the older revision.

   **Tip:** If you want to reverse changes done between two revisions by using a patch file, you can specify the newer revision in the From section and the older version in the To section.

5. Optionally, if you want to configure the options (on page 2887) for your patch, press the **Next** button.
   This options page does not remember your selections when creating future patches. It will revert to the default values.
   The **Options** wizard page is displayed.
6. Press the **Create patch** button. The patch is created and stored in the path specified in the **Output** section of the **Options page** *(on page 2887)* or in the default location.

### Create Patch Between Two Repository Items

This type of patch contains changes between one version of an item and a specific version of another item.

This option is useful for generating a patch that contains changes between existing, or even previously deleted, moved, or replaced items from different branches. This is the default option when you do not have a working copy loaded, when no repository items are selected, or when exactly two repository items of the same kind are selected.

**Tip:** To access an item that was deleted, moved, or replaced, you need to specify the original URL (before the item was removed) and use a **peg revision** *(on page 2940)* at the end (for example, `URL@rev1234`).

The steps are as follows:

1. Go to menu **Tools > Create patch**. This opens the **Create patch** wizard.

2. Select the **Create patch between two repository items** option in the dialog box.

3. Press the **Next** button. The second step of the wizard is opened:

   Figure 813. Create Patch Wizard - Step 2
4. Select the starting and ending URLs (on page 2938) and revisions in the From and To sections. 
   You can select between the HEAD revision and a specific revision number. For the other revision option, you can press the History button (on page 2831) to display a list of the item revisions.

   **Important:** Both URLs must point to items from the same repository.

   **Note:** If you use a peg revision in the URL field, anything specified in the other revision field is ignored.

5. Optionally, if you want to configure the options (on page 2887) for your patch, press the Next button.
   This options page does not remember your selections when creating future patches. It will revert to the default values.
   The Options wizard page is displayed.

6. Press the Create patch button.
   The patch is created and stored in the path specified in the Output section of the Options page (on page 2887) or in the default location.

Patch Options
Patch Section

Depth - (This option is applicable only for directories)

- Current depth
  The depth of recursing the folder for creating the patch is the same as the depth of that same folder in the working copy (available only when generating patches that contain changes from the working copy).

- Recursive (infinity)
  The patch is created on all the files and folders contained in the selected folder.

- Immediate children (immediates)
  The patch is created only on the child files and folders without recursing subfolders.

- File children only (files)
  The patch is created only on the child files.

- This folder only (empty)
The patch is created only on the selected folder (no child file or folder is included in the patch).

**Ignore content of added files**

When selected, the patch file does not include the content of the *added* items. This option corresponds to the `--no-diff-added` option of the `svn diff` command.

**Ignore content of delete files**

When selected, the patch file does not include the content of the *deleted* items. This option corresponds to the `--no-diff-deleted` option of the `svn diff` command.

**Treat copied files as newly added**

When selected, copied items are treated as new, rather than comparing the items with their sources. This option corresponds to the `--show-copies-as-adds` option of the `svn diff` command.

**Include files having a binary MIME type**

When selected, the application is forced to compare items that are considered binary file types. This option corresponds to the `--force` option of the `svn diff` command.

**Ignore properties**

When selected, differences in the properties of items are ignored. This option corresponds to the `--ignore-properties` option of the `svn diff` command.

**Properties only**

When selected, only differences in the properties of the items are included in the patch file (file content is ignored). This option corresponds to the `--properties-only` option of the `svn diff` command.

> **Note:** The **Ignore properties** and **Properties only** options are mutually exclusive.

**Notice ancestry**

If selected, the SVN common ancestry is taken into consideration when calculating the differences. This option corresponds to the `--notice-ancestry` option of the `svn diff` command.

**Files Comparison Section**

**Ignore line endings**

If selected, the differences in line endings are ignored when the patch is generated. This option corresponds to the `--ignore-eol-style` option of the `svn diff` command.

**Ignore whitespaces**
If selected, it allows you to specify how the whitespace changes should be handled. When selected, you can then choose between two options:

- **Ignore whitespace changes** (`--ignore-space-change`) - Ignores changes in the amount of whitespaces or changes to their type (for example, when changing the indentation or changing tabs to spaces).

  **Note:** Whitespaces that are added or removed are still considered to be changes.

- **Ignore all whitespaces** (`--ignore-all-space`) - Ignores all types of whitespace changes.

Output Section

**Save as**

The patch will be created and saved in the specified file.

**Use Git extended diff format**

When selected, the patch is generated using the *Git* format. This option corresponds to the `--git` option of the *svn diff* command.

Working with Repositories

This section explains how to locate and browse SVN repositories in Syncro SVN Client.

**Importing Resources Into a Repository**

Importing resources into a repository is the process of copying local files and directories into a repository so that they can be managed by an Apache Subversion™ server. If you have already been using Subversion and you have an existing working copy you want to use, then you will likely want to follow the procedure for using an existing working copy (on page 2832).

The **Import folder** and **Import Files** actions are available from the **Import** submenu of the **Repository** menu or of the contextual menu in the **Repositories** view. These actions open a dialog box that allow you to select the directories or files that will be imported into the selected repository location.

The **Import folder** action opens the **Import folder** dialog box.

Figure 815. **Import Folder** Dialog Box
You can configure the following options:

**Folder**

Specify the local folder *(on page 2938)* by using the text box or the **Browse** button. This folder should not be empty or already under version control.

⚠️ **Important:** By default, the SVN system only imports the content of the specified folder, and not the folder itself. Therefore, it is recommended to use the **Browse** button to select the local folder so that the client will automatically append the name of it to the specified URL.

**URL**

Specify the repository location *(on page 2938)* that will be used to access the folder to be imported.

⚠️ **Note:** Peg revisions have no effect for this operation since it is used to send information to the repository.

⚠️ **Attention:** If the new location already exists, make sure that it is an empty directory to avoid mixing your project content with other files (if items exist with the same name, an error will occur and the operation will not proceed). Otherwise, if the address does not exist, it is created automatically.

**Depth**

- **Recursive (infinity)**
  
  Imports all the files and folders contained in the selected folder.

- **Immediate children (immediates)**
  
  Imports only the child files and folders without recursing subfolders.

- **File children only (files)**
  
  Imports only the child files.
This folder only (empty)

Imports only the selected folder (no child file or folder is included).

Share files matching global ignore patterns

When selected, the file names that match the patterns defined in either of the following locations are also imported into the repository:

- The `global-ignores` property in the SVN configuration file (on page 2937).
- The File name ignore patterns option (on page 237) in the SVN > Working Copy preferences page (on page 236).

Enable automatic properties/Disable automatic properties

Enables or disables automatic property assignment (per runtime configuration rules), overriding the `enable-auto-props` runtime configuration directive, defined in the SVN configuration file (on page 2937).

Note: This option is available only when there are defined properties to be applied automatically for newly added items under version control. You can define these properties in the SVN config file (in the `auto-props` section). Based on the value of the `enable-auto-props` runtime configuration directive, the presented option is either Enable automatic properties, or Disable automatic properties.

Exporting Resources From a Repository

This is the process of taking a resource from the repository and saving it locally in a clean form, with no version control information. This is very useful when you need a clean build for an installation kit.

The Export dialog box is similar to the Check out dialog box:

Figure 816. Export from Repository Dialog Box
You can configure the following options:

**URL**

Specify the source directory from the repository (on page 2938) by using the text box or the Browse button.

**Tip:** To export an item that was deleted, moved, or replaced, you need to specify the original URL (before the item was removed) and use a peg revision (on page 2940) at the end (for example, URL@rev1234).

**Note:** The content of the selected directory from the repository and not the directory itself will be exported to the file system.

**Revision**

You can choose between the HEAD or Other revision. If you need to export a specific revision, specify it in the Other text box or use the History button and choose a revision from the History dialog box.

**Export to**

Specify the location where you want to export the repository directory by typing the local path in the text box or by using the Browse button. If the specified local path does not point to an existing directory, it will automatically be created.

**Important:** By default, the SVN system only exports the content of the directory specified by the URL, and not the directory itself. Therefore, it is recommended to use the Browse button to select the export location so that the client will automatically append the name of the remote directory to the path of the selected directory.

**Warning:** The destination directory should be empty. If files exist, they will be overwritten by exported files with matching names.

**Depth**

- **Recursive (infinity)**
  
  Exports all the files and folders contained in the selected folder.

- **Immediate children (immediates)**
  
  Exports only the child files and folders without recursing subfolders.

- **File children only (files)**
  
  Exports only the child files.

- **This folder only (empty)**
  
  Exports only the selected folder (no child file or folder is included).
Ignore "svn:externals" definitions

When selected, external items are ignored in the export operation. This option is only available if you choose the **Recursive (infinity)** depth.

**EOL style**

Defines the *end-of-line (EOL)* marker that should be used when exporting files that have the value or the `svn:eol-style` property set to *native*. You can choose between the following styles:

- **Default** - It uses the system-specific *end-of-line* marker.
- **CRLF** - The Windows-specific *end-of-line* marker (*carriage return - line feed*).
- **LF** - The Unix / OS X-specific *end-of-line* marker (*line feed*).
- **CR** - The Mac OS 9 (or older)-specific *end-of-line* marker (*carriage return*).

**Ignore keywords**

When selected, the export operation does not expand the SVN keywords found inside the files.

**Copy / Move / Delete Resources From a Repository**

Once you have a location defined in the **Repositories view (on page 2897)**, you can run commands (such as copy, move, and delete) directly on the repository. The commands correspond to the following actions in the contextual menu:

The **Copy to** and **Move to** action allows you to copy and move individual or multiple resources to a specific directory from the **HEAD** revision of the repository.

Figure 817. Copy/Move Items in Repository
The dialog box used to copy or move items allows you to browse the HEAD revision of the repository and select the destination of the items, presenting its repository URL below the tree view.

The **Source** section presents relevant options regarding the item(s) that you move or copy:

- **URL** - This field is displayed only if you copy/move a single item.
- **Revision** - Presents the revision from which you copy one or more items, allowing you to also choose another revision.

**Note**: Since only items from the HEAD revision can be moved, the **Revision** options are not presented for the **Move to** action.

**Note**: When you copy a single item while browsing a revision other than HEAD, the **Revision** options present this revision but does not allow you to change it. The same applies if copying multiple items.

- **New name** - This option is presented when you copy or move a single item, allowing you to also rename it.

Another useful action is **Delete**, allowing you to erase resources directly from the repository.

All three actions are commit operations and you will be prompted with the **Commit message** dialog box.
Sparse Checkout

Sometimes you only need to check out certain parts of a directory tree. In this case, you can check out the top directory (using the **Check out** action from the **Repositories** view (on page 2898)) and then recursively update only the needed directories (using the **Update** action from the **Working Copy** view (on page 2910)). Each directory then has a depth set to it, with four possible values:

- **Recursive (infinity)** - Updates all descendant directories and files recursively.
- **Immediate children (immediates)** - Updates the directory, including direct child directories and files, but does not populate the child directories.
- **File children only (files)** - Updates the directory, including only child files without the child directories.
- **This folder only (empty)** - Updates only the selected directory, without updating any children.

For some operations, you can use as depth the current depth registered on the directories from the working copy (the value **Current depth**). This is the depth value defined in a previous check out or update operation.

The sparse checked out directories are presented in the **Working Copy** view (on page 2902) with a marker corresponding to each depth value, in the top left corner, as follows:

- 🗑 **Recursive (infinity)** - This is the default value and it is has no mark. The directory has no limiting depth.
- 📖 **Immediate children (immediates)** - The directory is limited to direct child directories (without contents) and files.
- 📜 **File children only (files)** - The directory is limited to direct child files only.
- 🗑️ **This folder only (empty)** - The directory has empty depth set.

A depth set on a directory means that some operations process only items within the specified depth range. For example, **Synchronize** on a working copy directory reports the repository modified items within the depth set on the directory and those existing in the working copy outside of this depth.

The depth information is also presented in the **SVN Information** dialog box and in the tool tip displayed when hovering a directory in the **Working Copy** view.

**Syncro SVN Client Views**

The main working area occupies the center of the application window, which contains the most important views:

- **Repositories View** (on page 2897)
- **Working Copy View** (on page 2902)
The other views that support the main working area are also presented in this section.

Repositories View

The **Repositories** view allows you to define and manage Apache Subversion™ repository locations and browse repositories. If the view is not displayed, it can be opened by selecting it from the **Window > Show View** menu.

If no connections to your repository are available, you can add a new repository location *(on page 2823)*. Repository files and folders are presented in a tree view with the repository locations at the first level, where each location represents a connection to a specific repository. More information about each resource is displayed in a tabular form:

- **Date** - Date when the resource was last modified.
- **Revision** - The revision number at the time the resource was last modified.
- **Author** - Name of the person who made the last modification on the resource.
- **Size** - Resource size on disk.
- **Lock information** - Information about the lock status of a file. When a repository file is locked by a user the ⚒ icon is displayed in this column. If no icon is displayed the file is not locked. The tooltip of this column displays the details about the lock:
  - **Owner** - The name of the user who created the lock.
  - **Date** - The date when the user locked the file.
  - **Expires on** - Date when the lock expires. Lock expiry policy is set in the repository options, on the server side.
  - **Comment** - The message attached when the file was locked.
- **Type** - Contains the resource type or file extension.

Figure 818. Repositories View
The Repositories view’s toolbar contains the following buttons:

- **New Repository Location** - Allows you to enter a new repository location by means of the Add SVN Repository dialog box.
- **Move Up** - Move the selected repository up one position in the list of repositories in the Repositories view.
- **Move Down** - Move the selected repository down one position in the list of repositories in the Repositories view.
- **Collapse all** - Collapses all repository trees.
- **Stop** - Stops the current repository browsing operation executed when a repository node is expanded. This is useful when the operation takes too long or the server is not responding.
- **Settings** - Allows you to configure the resource table appearance.

Repositories View Contextual Menu Actions

The Repositories view contextual menu contains various actions, depending on the selected item. If a repository location is selected, the following management actions are available:
New Repository Location (Ctrl + Alt + N (Command + Alt + N on OS X))
Displays the Add SVN Repository dialog box. This dialog box allows you to define a new repository location.

Figure 819. Add SVN Repository Dialog Box

If the Validate repository connection option is selected, the URL connection is validated before being added to the Repositories view.

Edit Repository Location (Ctrl + Alt + E (Command + Alt + E on OS X))
Context-dependent action that allows you to edit the selected repository location using the Edit SVN Repository dialog box. It is active only when a repository location root is selected.

Change the Revision to Browse (Ctrl + Alt + B (Command + Alt + B on OS X))
Context-dependent action that allows you to change the selected repository revision using the Change the Revision to Browse dialog box. It is active only when a repository location root is selected.

Remove Repository Location (Ctrl + Alt + R (Command + Alt + R on OS X))
Allows you to remove the selected repository location from the view. It shows you a confirmation dialog box before removal. It is active only when a repository location root is selected.

The following actions are common to all repository resources:

Open
Opens the selected file in the Editor view in read-only mode.

Open with
Displays the Open with dialog box to specify the editor in which the selected file is opened. If multiple files are selected, only external applications can be used to open the files.

Save as
Saves the selected files locally, as they are in the browsed revision.

Refresh (F5)
Refreshes the resource selected in the **Repositories** view.

**Check out (Ctrl + Alt + O (Command + Alt + O on OS X))**

Allows you to create a working copy from a repository directory, on your local file system. To read more about this operation, see the section **Check out a working copy (on page 2829)**.

**Branch/Tag**

Allows you to create a branch or a tag from the selected folder in the repository. To read more about how to create a branch/tag, see the **Creation and management of Branches/Tags (on page 2858)** section.

**Share project**

Allows you to share a new project (on page 2826) using an SVN repository. The local project is automatically converted into an SVN working copy.

**Import:**

**Import folder (Ctrl + Shift + L (Command + Shift + L on OS X))**

Allows you to import the contents of a specified folder from the file system into the selected folder in a repository. To read more about this operation, see the section **Importing resources into a repository (on page 2890)**.

**Note:** The difference between the **Import folder** and **Share project** actions is that the latter also converts the selected directory into a working copy.

**Import Files (Ctrl + Shift + I (Command + Shift + I on OS X))**

Imports the files selected from the file system into the selected folder in the repository.

**Export**

Opens the **Export dialog box (on page 2892)** that allows you to configure options for exporting a folder from the repository to the local file system.

**Show History (Ctrl + H (Command + T on OS X))**

Displays the history of the selected resource. At the start of the operation, you can set filtering options.

**Show Annotation (Ctrl + Shift + A (Command + Shift + A on OS X))**

Opens the **Show Annotation** dialog box that computes the annotations for a file and displays them in the **Annotations view (on page 2924)**, along with the history of the file in the **History** view.
Revision Graph (\texttt{Ctrl + G (Command + G on OS X)})

This action allows you to see the graphical representation of a resource history. For more details about a resource revision graph see Revision Graph (on page 2933). This operation is available for any resource selected in the Repositories view or Working Copy view.

Copy URL Location (\texttt{Ctrl + Alt + U (Command + Alt + U on OS X)})

Copies to clipboard the URL location of the selected resource.

Copy to

Copies to a specified location the currently selected resource(s). This action is also available when you browse other revisions than the latest one (\texttt{HEAD}), to allow restoring previous versions of an item.

Move to (\texttt{Ctrl + M (Command + M on OS X)})

Moves to a specified location the currently selected resource(s).

Rename (\texttt{(F2)})

Renames the selected resource.

Delete (\texttt{(Delete)})

Deletes selected items from the repository via an immediate commit.

New Folder (\texttt{Ctrl + Shift + F (Command + Shift + F on OS X)})

Allows you to create a folder in the selected repository path (available only for folders).

Locking

The following options are available only for files:

\begin{itemize}
  \item Lock (\texttt{Ctrl + K (Command + K on OS X)})
    
    Allows you to lock certain files for which you need exclusive access. For more details on the use of this action, see Locking a file (on page 2840).
  \item Unlock (\texttt{Ctrl + Shift + K (Command + Shift + K on OS X)})
    
    Releases the exclusive access to a file from the repository. You can also choose to unlock it by force (\textit{break the lock}).
\end{itemize}

Show SVN Properties (\texttt{Ctrl + Shift + P (Command + Shift + P on OS X)})

Brings up the Properties view (on page 2930) displaying the SVN properties for the selected resource. This view does not allow adding, editing, or removing SVN properties of a repository resource. These operations are allowed only for working copy resources.

Show SVN Information (\texttt{Ctrl + I (Command + I on OS X)})
Provides additional information for the selected resource. For more details, go to Obtain information for a resource (on page 2856).

Assistant Actions

When there is no repository configured, the Repositories view mode lists the following two actions:

Drag and Drop Operations

The structure of the files tree can be changed with drag and drop operations inside the Repositories view. These operations behave in the same way with the Copy to/Move to operations.

Working Copy View

The Working Copy view allows you to manage the content of an SVN working copy. If the view is not displayed, it can be opened by selecting it from the Window > Show View menu.

The toolbar contains the following:

- The list of defined working copies.
- A set of view modes that allow you to filter the content of the working copy based on the resource status (such as incoming or outgoing changes).
- Settings menu.

If you click any of the view modes (All Files, Modified, Incoming, Outgoing, Conflicts), the information displayed changes as follows:

- **All Files** - Resources (files and folders) are presented in a hierarchical structure with the root of the tree representing the location of the working copy on the file system. Each resource has an icon representation that describes the type of resource and also depicts the state of that resource with a small overlay icon.

Figure 821. Working Copy View - All Files View Mode
• Modified - The resource tree presents resources modified locally (including those with conflicting content) and remotely. Decorator icons are used to differentiate between various resource states:

- Incoming modification from repository:
  - ■ - File content or properties modified remotely.
  - ■ - New file added remotely.
  - ■ - File deleted remotely.

- Outgoing modification to repository:
  - ■ - File content or properties modified locally.
  - ■ - New file added locally.
  - ■ - File deleted locally.

- Pseudo-conflict state - A resource being locally and remotely modified at the same time, or a parent directory of such a resource.

- Real conflict state - A resource that had both incoming and outgoing changes and not all the differences could be merged automatically through the update operation (manually editing the local file is necessary for resolving the conflict).

Figure 822. Working Copy View - Modified View Mode
The resource tree presents

- **Incoming** - The resource tree presents only incoming changes.
- **Outgoing** - The resource tree presents only outgoing changes.
- **Conflicts** - The resource tree presents only conflicting changes (real conflicts and pseudo-conflicts).

The following columns provide information about the resources:

- **Name** - Resource name. Resource icons can have the following decorator icons:
  - Additional status information:
    - ![Propagated modification marker](image) - A folder marked with this icon indicates that the folder itself presents some changes (such as modified properties) or a child resource has been modified.
    - ![External](image) - This indicates a mapping of a local directory to the URL of a versioned resource. It is declared with a `svn:externals` property in the parent folder and it indicates a working copy not directly related with the parent working copy that defines it.
    - ![Switched](image) - This indicates a resource that has been switched from the initial repository location to a new location within the same repository. The resource goes to this state as a result of the Switch action ([on page 2875](#)) executed from the contextual menu of the Working Copy view.
    - ![Grayed](image) - A resource with a grayed-out icon, but no overlaid icon, is an ignored resource. It is obtained with the Add to `svn:ignore` action.
Current SVN depth of a folder:

- **Immediate children (immediates)** (a variant of sparse checkout (on page 2895)) - The directory contains only direct file and folder children. Child folders ignore their content.

- **File children only (files)** (a variant of sparse checkout (on page 2895)) - The directory contains only direct file children, disregarding any child folders.

- **This folder only (empty)** (a variant of sparse checkout (on page 2895)) - The directory discards any child resource.

**Note:**
- Any folder not marked with one of the depth icons, has recursive depth (infinity) set by default (presents all levels of child resources).
- Although folders not under version control can have no depth set, Oxygen XML Editor presents unversioned and ignored folders with empty depth when Show unversioned directories content or Show ignored directories content options are not selected.

- **Local file status** - Shows the changes of working copy resources that were not committed to the repository yet. The following icons are used to mark resource status:
  - - Resource is not under version control (unversioned).
  - ⚠️ - Resource is being ignored because it is not under version control and its name matches a file name pattern defined in one of the following places:
    - [global-ignores](on page 2820) section in the SVN client-side config file (on page 2820).
    - Application global ignores option (on page 237) of Oxygen XML Editor.
    - The value of a [svn:ignore](on page 2835) property set on the parent folder of the resource being ignored.
  - 📃 - Marks a newly created resource, scheduled for addition to the version control system.
  - 📃 - Marks a resource scheduled for addition, created by copying a resource already under version control and inheriting all its SVN history.
  - 📃 - The content of the resource has been modified.
  - 📃 - Resource has been replaced in your working copy (the file was scheduled for deletion, and then a new file with the same name was scheduled for addition in its place).
  - 📃 - Resource is deleted (scheduled for deletion from Repository upon the next commit).
  - 📃 - The resource is incomplete (as a result of an interrupted check out or update operation).
  - 📃 - The resource is missing because it was moved or deleted without using an SVN-aware application.
  - 📃 - The contents of the resource is in real conflict state (on page 2843).
  - 📃 - Resource is in a name conflict state.
Resource is in *tree conflict* state after an update operation because:
- Resource was locally modified and incoming deleted from repository.
- Resource was locally scheduled for deletion and incoming modified.
- Resource is *obstructed* (versioned as one kind of object: file, directory, or symbolic link, but has been replaced outside Syncro SVN Client by a different kind of object).

**Local properties status** - Marks the resources that have SVN properties, with the following possible states:
- The resource has SVN properties set.
- The resource properties have been modified.
- Properties for this resource are in *real conflict* (on page 2843) with property updates received from the repository.

**Revision** - The current revision number of the resource.

**Date** - Date when the resource was last time modified on the disk.

**BASE Revision** - The revision number of the pristine version of the resource.

**BASE Date** - Date when the pristine version of the resource was last time committed in the repository.

**Author** - Name of the person who made the last modification on the pristine version of the resource.

**Remote file status** - Shows changes of resources recently modified in the repository. The following icons are used to mark incoming resource status:
- Resource is newly added in repository.
- The content of the resource has been modified in repository.
- Resource was replaced in repository.
- Resource was deleted from repository.

**Remote properties status** - Resources marked with the icon have incoming modified properties from the repository.

**Remote revision** - Revision number of the resource latest committed modification.

**Remote date** - Date of the resource latest modification committed on the repository.

**Remote author** - Name of the author who committed the latest modification on the repository.

**Lock information** - Shows the lock state of a resource. The lock mechanism is a convention intended to help you signal other users that you are working with a particular set of files. It minimizes the time and effort wasted in solving possible conflicts generated by clashing commits. A lock gives you exclusive rights over a file, only if other users follow this convention and they do not try to bypass the lock state of a file.

A folder can be locked only by the SVN client application, completely transparent to the user, if an operation in progress was interrupted unexpectedly. As a result, folders affected by the operation are marked with the symbol. To clear the locked state of a folder, use the **Clean up** action.

**Note:** Users can lock only files.
The following lock states are displayed:

- **no lock** - the file is not locked. This is the default state of a file in the SVN repository.

- **remotely locked** - shown when:
  - Another user has locked the file in the repository.
  - The file was locked by the same user from another working copy.
  - The file was locked from the **Repositories** view.

If you try to commit a new revision of the file to the repository, the server does not allow you to bypass the file lock.

**Note:** To commit a new revision, you need to wait for the file to be unlocked. Ultimately, you might try to break or steal the lock, but this is not what other users expect. Use these actions carefully, especially when you are not the file lock owner.

- **locked** - displayed after you have locked a file from the current working copy. Now you have exclusive rights over the corresponding file, being the only one who can commit changes to the file in the repository.

**Note:** Working copies keep track of their locked files, so the locks are presented between different sessions of the application. Synchronize your working copy with the repository to make sure that the locks are still valid (not stolen or broken).

- **stolen** - a file already locked from your working copy is being locked by another user. Now the owner of the file lock is the user who stole the lock from you.

- **broken** - a file already locked from your working copy is no longer locked in the repository (it was unlocked by another user).

**Note:** To remove the stolen or broken states from your working copy files, you have to Update them.

If one of your working copy files is locked, hover the mouse pointer over the lock icon to see more information:

- Lock type - current file lock state
- Owner - the name of the user who created the lock
- Date - the date when the user locked the file
- Expires on - date when the lock expires. Lock expiry policy is set in the repository options, on the server side
- Comment - the message attached when the file was locked

- **Size** - Resource size on disk
- **Type** - Contains the resource type or file extension

**Note:** The working copy table allows you to show or hide any of its columns and also to sort its contents by any of the displayed columns. The table header provides a contextual menu that allows you to customize the displayed information.
The toolbar contains the following options for switching to a different working copy:

- **List of Defined Working Copies** - A drop-down menu that contains all the working copies Oxygen XML Editor is aware of. When you select a different working copy from the list, the newly selected working copy content is scanned and displayed in the Working Copy view.

- **Working Copies Manager** - Opens a dialog box that displays the working copies Oxygen XML Editor is aware of. In this dialog box, you can add existing working copies or remove those you no longer need. If you try to add a folder that is not a valid Subversion working copy, Oxygen XML Editor warns you that the selected directory is not under version control.

  **Note:** Removing a working copy from this dialog box does NOT remove it from your file system; you will have to do that manually.

**Working Copy Settings**

The **Settings** button from the toolbar of the Working Copy view provides the following options:

- **Show unversioned directories content** - Displays the content of unversioned directories.

  **Note:** If this option is not selected, it will be ignored for items that, after a synchronize, are reported as incoming from the repository. This applies for all working copy modes, except All Files.

- **Show ignored items** - Displays the ignored resource when All Files mode is selected.

- **Show ignored directories content** - Displays the content of ignored directories when All Files mode is selected.

  **Note:** Although ignored items are not presented in the Modified, Incoming, and Conflicts modes, they will be if, after a synchronize, they are reported as incoming from the repository.

- **Show deleted items** - Displays the deleted resource when All Files mode is selected. All other modes always display deleted resources, disregarding this option.

- **Tree / Compressed / Flat** - Affect the way information is displayed inside the Modified, Incoming, Outgoing, and Conflicts view modes.

- **Configure columns** - Allows you to customize the structure of the Working Copy view data. This action opens the following dialog box:

  Figure 823. Configure Columns of Working Copy View
The order of the columns can be changed with the two arrow buttons. The column size can be edited in the **Width of selected column** field. The **Restore Defaults** button reverts all columns to the default order, width, and enabled/disabled state from the installation of the application.

### Working Copy Format

When an SVN working copy is loaded, Syncro SVN Client first checks the format of the working copy:

- If the format is older than SVN 1.7, you are prompted to upgrade it to SVN 1.8 to load it.
- If the format is 1.7, Syncro SVN Client takes into account the state of the [When loading an old format working copy option](on page 236).

To change how working copy formats are handled, open the **Preferences** dialog box (**Options > Preferences**) (on page 79), go to **SVN > Working copy**, and configure the options in the **Administrative area** (on page 236) section.

- **Note:**
  - The format of the working copy can be downgraded or upgraded at any time with the **Upgrade** and **Downgrade** actions available in the **Tools** menu. These actions allow switching between SVN 1.7 and SVN 1.8 working copy formats.
  - SVN 1.7 working copies cannot be downgraded to older formats.
Refresh a Working Copy

A refresh is a frequent operation triggered automatically when you switch between two working copies using the toolbar selector of the Working Copy view and when you switch between Oxygen XML Editor and other applications.

The Working Copy view features a fast refresh mechanism: the content is cached locally when loading the working copy for the first time. Later on, when the same working copy is displayed again, the application uses this cache to detect the changes between the cached content and the current content found on disk. The refresh operation is run on these changes only, thus improving the response time. Improvement is noticeable especially when working with large working copies.

Working Copy View Contextual Menu Actions

The contextual menu in the Working Copy view contains the following actions:

- **Edit conflict (Ctrl (Command on OS X) + E)**
  
  Opens the Compare editor, allowing you to modify the content of the currently conflicting resources. For more information about editing conflicts, see Edit conflicts (on page 2845).

- **Open in Compare Editor (Ctrl (Command on OS X) + Alt + C)**
  
  Displays changes made in the currently selected file.

- **Open (Ctrl (Command on OS X) + O)**
  
  Opens the selected resource from the working copy. Files are opened with an internal editor or an external application associated with that file type, while folders are opened with the default file system browsing application (Windows Explorer on Windows, Finder on OS X, etc).

- **Open with...**
  
  Submenu that allows you to open the selected resource either with Oxygen XML Editor or with another application.

- **Show in Explorer/Show in Finder**
  
  Opens the parent directory of the selected working copy file and selects the file.

- **Expand All (Ctrl (Command on OS X) + Alt + X)**
  
  Displays all descendants of the selected folder. The same behavior is obtained by double-clicking a collapsed folder.

- **Refresh (F5)**
  
  Re-scans the selected resources recursively and refreshes their status in the working copy view.
Synchronize (Ctrl (Command on OS X) + Shift + S)

Connects to the repository and determines the working copy and repository changes made to the selected resources. The application switches to Modified view mode if the Always switch to 'Modified' mode option (on page 236) is selected.

Update (Ctrl (Command on OS X)+ U)

Updates the selected resources to the HEAD revision (latest modifications) from the repository. If the selection contains a directory, it will be updated depending on its depth.

Update to revision/depth

Allows you to update the selected resources from the working copy to an earlier revision from the repository. You can also select the update depth for the current folder. You can find out more about the depth term in the sparse checkouts (on page 2895) section.

Commit

Collects the outgoing changes from the selected resources in the working copy and allows you to choose exactly what resources to commit. A directory will always be committed recursively. Unversioned resources will be deselected by default. In the Commit dialog box you can also enter a comment before sending your changes to the repository.

Revert (Ctrl (Command on OS X) + Shift + V)

Undoes all local changes for the selected resources. It does not contact the repository and the files are obtained from Apache Subversion™ pristine copy. It is available only for modified resources. See Revert your changes (on page 2847) for more information.

Override and Update

Drops any outgoing change and replaces the local resource with the HEAD revision. This action is available on resources with outgoing changes, including conflicting ones. See the Revert your changes (on page 2847) section.

Override and Commit

Drops any incoming changes and sends your local version of the resource to the repository. This action is available on conflicting resources. For more information see Drop incoming modifications (on page 2849).

Mark Resolved (Ctrl (Command on OS X) + Shift + R)

Instructs the Subversion system that you resolved a conflicting resource. For more information, see Merge conflicts (on page 2849).

Mark as Merged (Ctrl (Command on OS X) + Shift + M)
Instructs the Subversion system that you resolved the pseudo-conflict by merging the changes and you want to commit the resource. Read the [Merge conflicts](on page 2849) section for more information about how you can solve the pseudo-conflicts.

**Create patch (Ctrl (Command on OS X) + Alt + P)**

Allows you to create a file containing all the differences between two resources, based on the `svn diff` command. To read more about creating patches, see the section about patches (on page 2880).

**Compare with:**

- **Latest from HEAD (Ctrl (Command on OS X) + Alt + H)** - Performs a 3-way diff operation between the selected file and the HEAD revision from the repository and displays the result in the Compare view. The common ancestor of the 3-way diff operation is the BASE version of the file from the local working copy.
- **BASE revision (Ctrl (Command on OS X) + Alt + C)** - Compares the working copy file with the BASE revision file (the so-called pristine copy).
- **Revision (Ctrl (Command on OS X) + Alt + R)** - Displays the History view that contains the log history of that resource.
- **Branch/Tag** - Opens the Compare with Branch/Tag dialog box that allows you to specify another file from the repository (on page 2938) (To URL field) to compare with the working copy file. You can specify the revision of the repository file by choosing between HEAD revision or specific Other revision.

**Tip:** To compare with a file that was deleted, moved, or replaced, you need to specify the original URL (before the file was removed) and use a peg revision (on page 2940) at the end (for example, URL@rev1234).

- **Each other** - Compares two selected files with each other.

These compare actions are available only if the selected resource is a file.

**Replace with:**

- **Latest from HEAD** - Replaces the selected resources with their versions from the HEAD revision of the repository.
- **BASE revision** - Replace the selected resources with their versions from the pristine copy (the BASE revision).

**Note:** In some cases it is impossible to replace the currently selected resources with their versions from the BASE/HEAD revision:

- For the **Replace with BASE revision** action, the resources being unversioned or added have no BASE revision, and thus cannot be replaced. However, they will be
deleted if the action is invoked on a parent folder. The action will never work for missing folders or for obstructing files (folders being obstructed by a file), since you cannot recover a tree of folders

- For the Replace with latest from HEAD action, you must be aware that there are cases when resources will be completely deleted or reverted to the BASE revision and then updated to a HEAD revision to avoid conflicts. These cases are:
  - The resource is unversioned, added, obstructed, or modified.
  - The resource is affected by a svn:ignore or svn:externals property that is locally added on the parent folder and not yet committed to the repository.

Show History (Ctrl (Command on OS X) + H)

Displays the History view where the log history for the selected resource will be presented. For more details about resource history, see the sections about the resource history view (on page 2917) and requesting the history for a resource (on page 2856).

Show Annotation (Ctrl + Shift + A (Command + Shift + A on OS X))

Opens the Show Annotation dialog box that computes the annotations for a file and displays them in the Annotations view (on page 2924), along with the history of the file in the History view.

Revision Graph (Ctrl (Command on OS X) + G)

This action allows you to see the graphical representation history of a resource. For more details about the revision graph of resources, see Revision Graph (on page 2933).

Copy URL Location (Ctrl (Command on OS X) + Alt + U)

Copies the encoded URL of the selected resource from the Working Copy to the clipboard.

Mark as copied

You can use this action to mark an item from the working copy as a copy of an other item under version control, when the copy operation was performed outside of an SVN client. The Mark as copied action is available when you select two items (both the new item and source item), and it depends on the state of the source item.

Mark as moved

You can use this action to mark an item from the working copy as being moved from another location of the working copy, when the move operation was performed outside of an SVN client. The Mark as moved action is available when you select two items from different locations (both the new item and the source item that is usually reported as missing), and it depends on the state of the source item.

Mark as renamed
You can use this action to mark an item from the working copy as being renamed outside of an SVN client. The **Mark as renamed** action is available when you select two items from the same directory (both the new item and the source item that is usually reported as *missing*), and it depends on the state of the source item.

**Copy to**

Copies the currently selected resource to a specified location.

**Move to**  
*Ctrl + M* (*Command + M on OS X*)

Moves the currently selected resource to a specified location.

**Rename** (*F2*)

As with the move command, a copy of the original resource will be made with the new name and the original will be marked as deleted. Note that you can only rename one resource at a time.

**Delete** (*Delete*)

Schedules selected items for deletion upon the next commit and removes them from the disk. Depending on the state of each item, you are prompted to confirm the operation.

**New:**

- **New File**  
  Creates a new file inside the selected folder. The newly created file will be added under version control only if the parent folder is already versioned.

- **New Folder** (*Ctrl (Command on OS X) + Shift + F*)  
  Creates a child folder inside the selected folder. The newly created folder will be added under version control only if its parent is already versioned.

- **New External Folder** (*Ctrl (Command on OS X) + Shift + W*)  
  This operation allows you to add a new external definition on the selected folder. An external definition is a mapping of a local directory to a URL of a versioned directory (*on page 2938*), and ideally a particular revision, stored in the `svn:externals` property of the selected folder.

  **Tip:** You can specify a particular revision of the external item by using a *peg revision* (*on page 2940*) at the end of the URL (for example, `URL@rev1234`). You can also use peg revisions to access external items that were deleted, moved, or replaced.

  The URL used in the external definition format can be relative. You can specify the repository URL that the external folder points to by using one of the following relative formats:

  - `../` - Relative to the URL of the directory that the `svn:externals` property is set.
Relative to the root of the repository in which the `svn:externals` property is versioned.

Relative to the scheme of the URL of the directory that the `svn:externals` property is set.

Relative to the root URL of the server in which the `svn:externals` property is versioned.

⚠️ **Important:** To change the target URL of an external definition, or to delete an external item, do the following:

1. Modify or delete the item definition found in the `svn:externals` property that is set on the parent folder.
2. For the change to take effect, use the **Update** operation on the parent folder of the external item.

📝 **Note:** Syncro SVN Client does not support definitions of local relative external items.

### Add to "svn:ignore" (Ctrl (Command on OS X) + Alt + I)

Allows you to add files that should not participate in the version control operations inside your working copy. This action can only be performed on resources not under version control. It actually modifies the value of the `svn:ignore` property in the parent directory of the resource. Read more about this in the [Ignore Resources Not Under Version Control](on page 2915) section.

### Add to version control (Ctrl (Command on OS X) + Alt + V)

Allows you to add resources that are not under version control. For further details, see [Add Resources to Version Control](on page 2919) section.

### Remove from version control

Schedules selected items for deletion from repository upon the next commit. The items are not removed from the file system after committing.

⚠️ **Clean up** (Ctrl (Command on OS X) + Shift + C)

Performs a maintenance cleanup operation on the selected resources from the working copy. This operation removes the Subversion maintenance locks that were left behind. This is useful when you already know where the problem originated and want to fix it as quickly as possible. It is only active for resources under version control.

### Locking:

- **Scan for locks** (Ctrl (Command on OS X) + L) - Contacts the repository and recursively obtains the list of locks for the selected resources. A dialog box containing the locked files and the lock description will be displayed. This is only
active for resources under version control. For more details see Scanning for locks (on page 2839).

- **Lock (Ctrl (Command on OS X) + K)** - Allows you to lock certain files that need exclusive access. You can write a comment describing the reason for the lock and you can also force (steal) the lock. This action is active only on files under version control. For more details on the use of this action see Locking a file (on page 2840).

- **Unlock (Ctrl (Command on OS X) + Alt + K)** - Releases the exclusive access to a file from the repository. You can also choose to unlock it by force (break the lock).

**Show SVN Properties (Ctrl + P (Command + P on OS X))**

Brings up the Properties view (on page 2930) and displays the SVN properties for the selected resource.

**Show SVN Information (Ctrl + I (Command + I on OS X))**

Provides additional information for the selected resource from the working copy. For more details, go to Obtain information for a resource (on page 2856).

**Drag and Drop Operations**

The structure of the files tree can be changed with drag and drop operations inside the Working Copy view. These operations behave in the same way with the Copy to / Move to operations.

Also, files and folders can be added to the file tree of the view as unversioned resources by drag and drop operations from other applications (for example, from Windows Explorer or Mac OS X Finder). In this case, the items from the file system are only copied, without removing them from their original location.

**Attention:** When you drag items from the working copy to a different application, the performed operation is controlled by that application. This means that the moved items are left as missing in the working copy (items are moved in the file system only, but no SVN versioning meta-data is changed).

**Assistant Actions**

To ensure a continuous and productive work flow, when a view mode has no files to present, it offers a set of guiding actions with some possible paths to follow.

Initially, when there is no working copy configured the All Files view mode lists the following two actions:

Figure 824. All Files Panel
For **Modified, Incoming, Outgoing, Conflicts** view modes, the following actions may be available, depending on the current working copy state in various contexts:

- **Synchronize with Repository** - Available only when there is nothing to present in the **Modified** and **Incoming** view modes.

- **Switch to Incoming** - Selects the **Incoming** view mode.

- **Switch to Outgoing** - Selects the **Outgoing** view mode.

- **Switch to Conflicts** - Selects the **Conflicts** view mode.

- **Show all changes/incoming/outgoing/conflicts** - Depending on the currently selected view mode, this action presents the corresponding resources after a synchronize operation was executed only on a part of the working copy resources.

- **(Information message)** - Informs you why there are no resources presented in the currently selected view mode.

### History View

In Apache Subversion™, both files and directories are versioned and have a history. If you want to examine the history for a selected resource and find out what happened at a certain revision you can use the **History view** that can be accessed from **Repositories view (on page 2897)**, **Working Copy view (on page 2902)**, **Revision Graph (on page 2933)**, or **Directory Change Set view (on page 2921)**. From the **Working copy view** you can display the history of local versioned resources. If the view is not displayed, it can be opened by selecting it from the **Window > Show View** menu.

The view consists of four distinct areas:

- The table showing details about each revision, such as revision number, commit date and time, number of changes (more details available in the tooltip), author’s name, and a fragment of the commit message.

Some revisions may be highlighted to emphasize:

- The current revision of the resource for which the history is displayed - a bold font revision.

- The last revision in which the content or properties of the resource were modified - blue font revision.

**Note:** Both font highlights may be applied for the same revision.
• The complete commit message for the selected revision.
• A tree structure showing the folders where the modified resources are located. You can compress this structure to a more compact form that focuses on the folders that contain the actual modifications.
• The list of resources modified in the selected revision. For each resource, the type of action done against it is marked with one of the following symbols:
  ◦ - A newly created resource.
  ◦ - A newly created resource, copied from another repository location.
  ◦ - The content/properties of the resource were modified.
  ◦ - Resource was replaced in the repository.
  ◦ - Resource was deleted from the repository.

Figure 825. History View

You can group revisions in predefined time frames (today, yesterday, this week, this month), by pressing the Group by date button from the toolbar.

History Filter Dialog Box

The History view does not always show all the changes ever made to a resource because there may be thousands of changes and retrieving the entire list can take a long time. Normally you are interested in the more recent ones. That is why you can specify the criteria for the revisions displayed
in the **History view** by selecting one of several options presented in the **History** dialog box that is displayed when you invoke the **Show History** action.

Figure 826. History Filters Dialog Box

![History Filters Dialog Box](image)

Options for the set of revisions presented in the History view are:

- All revisions of the selected resource.
- Only revisions between a start revision number and an end revision number.
- Only revisions added in a period of time (such as today, last week, last month, etc.)
- Only revisions between a start and an end date.
- Only revisions committed by a specified SVN user.

The toolbar of the **History view** has two buttons for extending the set of revisions presented in the view: **Get next 50** and **Get all**.

**History Filter Field**

When only the history entries that contain a specified substring need to be displayed in the **History** view, the filter field displayed at the top of this view is a useful tool. Just enter the search string in the field next to the **Find** label. Only the items (with an author name, commit message, revision number, or date) that match the search string are kept in the **History** view. When you press the **Search** button, the filter action is executed and the content of the table is updated.

**History View Contextual Menu Actions**

The **History** view contains the following contextual menu actions:

- **Compare with working copy**
Compares the selected revision with your working copy file. It is available only when you select a file.

**Open**

Opens the selected revision of the file into the Editor. This is available only for files.

**Open with**

Displays the Open with dialog box to specify the editor in which the selected file will be opened.

**Get Contents**

Replaces the current version from the working copy with the contents of the selected revision from the history of the file. The BASE version of the file is not changed in the working copy so that after this action the file will appear as modified in a synchronization operation, that is newer than the BASE version, even if the contents is from an older version from history.

**Save as**

Allows you to save the contents of a file as it was committed at a certain revision. This option is available only when you access the history of a file.

**Copy to**

Copies to the repository the item whose history is displayed, using the selected revision. This option is active only when presenting the history for a repository item (URL).

![Note:](image) This action can be used to resurrect deleted items also.

**Revert changes from this revision**

Reverts changes that were made in the selected revisions. The changes are reverted only in your working copy and does not affect the repository items. It does not replace your working copy items with those from the selected revisions. This action is available when the resource history was launched for a local working copy resource.

![Note:](image) For items displayed in the Affected Paths section that were added, deleted, or replaced, this action has no effect because such changes are considered to be changes to the parent directory. To revert these type of changes, follow these steps:

1. Request the history for the parent directory.
2. Identify the revision that contains the changes you want to revert.
3. Invoke the action on that revision.

![Warning:](image) There are instances where the SVN Client is not able to identify the corresponding working copy item for the selected item in the Affected Paths section. In this case, the action does not proceed and an error message is displayed. For example,
the selected item in the **Affected Paths** section is from a different repository location than the working copy item for which the history is displayed.

**Update to revision**

Updates your working copy resource to the selected revision. This is useful if you want your working copy to reflect a time in the past. It is best to update a whole directory in your working copy, not just one file. Otherwise, your working copy is inconsistent and you are unable to commit your changes.

**Check out**

Checks out a new working copy of the directory for which the history is presented, from the selected revision.

**Export**

Opens the Export dialog box ([on page 2892](#)) that allows you to configure options for exporting a folder from the repository to the local file system.

**Show Annotation (Ctrl + Shift + A (Command + Shift + A on OS X))**

Opens the Show Annotation dialog box that computes the annotations for a file and displays them in the Annotations view ([on page 2924](#)), along with the history of the file in the History view.

**Change**

Allows you to change commit data for a file:

- **Author** - Changes the name of the SVN user that committed the selected revision.
- **Message** - Changes the commit message of the selected revision.

When two resources are selected in the History view, the contextual menu contains the following actions:

**Compare revisions**

When the resource is a file, the action compares the two selected revisions using the Compare view. When the resource is a folder, the action displays the set of all resources from that folder that were changed between the two revision numbers.

**Revert changes from these revisions**

Similar to the **svn merge** command, it merges two selected revisions into the working copy resource. This action is only available when the resource history was requested for a working copy item.

For more information about the History view and its features, see the Request history for a resource ([on page 2856](#)) and Using the resource history view ([on page 2917](#)) sections.
Directory Change Set View

The result of comparing two reference revisions from the history of a folder resource is a set with all the resources changed between the two revision numbers. The changed resources can be contained in the folder or in a subfolder of that folder. These resources are presented in a tree format. For each changed resource all the revisions committed between the two reference revision numbers are presented.

Figure 827. Directory Change Set View

The set of changed resources displayed in the tree is obtained by running the action **Compare revisions** available on the contextual menu of the **History** view when two revisions of a folder resource are selected in the **History** view.

The left side panel of the view contains the tree hierarchy with the names of all the changed resources between the two reference revision numbers. The right side panel presents the list with all the revisions of the resource selected in the left side tree. These revisions were committed between the two reference revision numbers. Selecting one revision in the list displays the commit message of that revision in the bottom area of the right side panel.

Double-clicking a file listed in the left-side tree performs a diff operation between the two revisions of the file corresponding to the two reference revisions. Double-clicking one of the revisions displayed in the right side list of the view performs a diff operation between that revision and the previous one of the same file.

The contextual menu of the right side list contains the following actions:

- **Compare with previous version**
  
  Performs a diff operation between the selected revision in the list and the previous one.

- **Open**
Opens the selected revision in the associated editor type.

**Open with**

Displays a dialog box with the available editor types and allows you to select the editor type for opening the selected revision.

**Save as**

Saves the selected file as it was in the selected revision.

**Copy to**

Copies to the repository the item whose history is displayed, using the selected revision.

*Note:* This action can be used to resurrect deleted items also.

**Check out**

Checks out a new working copy of the selected directory, from the selected revision.

**Export**

Opens the Export dialog box (on page 2892) that allows you to configure options for exporting a folder from the repository to the local file system.

**Show Annotation** (Ctrl + Shift + A (Command + Shift + A on OS X))

Opens the Show Annotation dialog box that computes the annotations for a file and displays them in the Annotations view (on page 2924), along with the history of the file in the History view.

**Show SVN Information** (Ctrl (Command on OS X) + I)

Provides additional information for a selected resource. For more details, go to Obtain information for a resource (on page 2856).

Editor Panel of SVN Client

You can open a file for editing in an internal built-in editor. There are default associations between frequently used file types and the internal editors in the File Types preferences panel (on page 250).

The internal editor can be accessed either from the Working copy view (on page 2902) or from the History view (on page 2917). No actions that modify the content are allowed when the editor is opened with a revision from history.

Only one file at a time can be edited in an internal editor. If you try to open another file it will be opened in the same editor window. The editor provides syntax highlighting for known file types. This means that a different color will be used for each recognized token type found in the file. If the file’s content type is unknown you will be prompted to choose the proper way the file should be opened.
After editing the content of the file in an internal editor you can save it to disk by using the Save action from the File menu or the Ctrl + S (Command + S on OS X) key shortcut. After saving your file you can see the file changed status in the Working Copy view.

If the internal editor associated with a file type is not the XML Editor, then the encoding set in the preferences for Encoding for non XML files is used for opening and saving a file of that type. This is necessary because in the case of XML files, the encoding is usually declared at the beginning of the XML file in a special declaration or it assumes the default value UTF-8, but in the case of non-XML files, there is no standard mechanism for declaring the encoding for the file.

Annotations View

Sometimes you need to know not only what was changed in a file, but also who made those changes. The Annotations view displays the revision and the author that changed every line in a file. The annotations of a file are computed and this view is opened with the Show Annotation action, which is available in the History menu, and from the contextual menu of the following views: the Repositories view, Working copy view, History view, and Directory Change Set view.

This action opens a dialog box that allows you to configure some options for showing the annotations.

Figure 828. Show Annotation Options Dialog Box

Once you have configured the options and click OK, the Annotations view is displayed (by default, on the right side of the application). You can click a line in the editor panel where the file is opened to
see the revision in which the line was last modified. The same revision is highlighted in the History view and you can also see all the lines that were changed in the same revision highlighted in the editor panel. Also, the entries of the Annotations view corresponding to that revision are highlighted. Therefore, the Annotations view, History view, and annotations editor panel are all synchronized. Clicking a line in one of them highlights the corresponding lines in the other two.

Figure 829. Annotations View

The following options can be configured in the Show Annotation dialog box:

**From Revision Section**

Select the revision from which to start computing the annotation. If you press the History button, the History dialog box (on page 2831) is displayed, which allows you to select a revision.

**To Revision Section**

Select the ending revision by choosing between the HEAD revision or specify it in the Other text box. If you press the History button, the History dialog box (on page 2831) is displayed, which allows you to select a revision.

**Encoding**

Select the encoding to be used when the annotation is computed. For each line of text, the SVN Client looks through the history of the file to be annotated see when it was last modified, and by whom. It is required that it is in the form of a text file.
Therefore, encoding is needed to properly decode and read the file content. By default, the encoding of the operating system is used.

**Ignore MIME type**

If selected, the file is treated as a text file and ignores what the SVN system infers from the `svn:mime-type` property.

**Ignore line endings**

If selected, the differences in line endings are ignored when the annotation is computed.

**Ignore whitespaces**

If selected, it allows you to specify how the whitespace changes should be handled. When selected, you can then choose between two options:

- **Ignore whitespace changes** - Ignores changes in the amount of whitespaces or to their type (for example, when changing the indentation or changing tabs to spaces).

  ![Note](image.png)

  Whitespace changes that were added where there were none before, or that were removed, are still considered to be changes.

- **Ignore all whitespaces** - Ignores all types of whitespace changes.

**Tip:** Selecting any of these ignore options can help you better determine the last time a meaningful change was made to a given line of text.

After you configure the options and press OK, the annotations will be computed and the Annotations view is displayed, where all the users that modified the selected resource will be presented, along with the specific lines and revision numbers modified by each user.

![Note](image.png)

If the file has a very long history, the computation of the annotation data can take a long time to process.

**Compare View**

In the Oxygen XML Editor, there are three types of files that can be checked for differences: text files, image files and binary files. For the text files and image files you can use the built-in Compare view. This view is automatically opened if you select two files and use the Compare with > Each Other action in the contextual menu.

Figure 830. Compare View
At the top of each of the two editors, there are presented the name of the opened file, the corresponding SVN revision number (for remote resources) and the author who committed the associated revision.

When comparing text, the differences are computed using a line differencing algorithm. The view can be used to show the differences between two files in the following cases:

- After obtaining the outgoing status of a file with a Refresh operation, the view can be used to show the differences between your working file and the pristine copy. In this way you can find out what changes you will be committing.
- After obtaining the incoming and outgoing status of the file with the Synchronize operation, you can examine the exact differences between your local file and the HEAD revision file.
- You can use the Compare view from the History view to compare the local file and a selected revision or compare two revisions of the same file.

The Compare view contains two editors. Edits are allowed only in the left editor and only when it contains the working copy file. To learn more about how the view can be used, see View Differences (on page 2840).
Compare View Toolbar

The toolbar of the Compare view contains the operations that can be performed on the source and target files.

Figure 831. Compare View Toolbar

The following actions are available:

**Algorithm**

The algorithm to be used for performing a comparison. The following options are available:

- **Auto** - Selects the most appropriate algorithm, based on the compared content and its size (selected by default).
- **Lines** - Computes the differences at line level, meaning that it compares two files or fragments looking for identical lines of text. This algorithm is not available when the file comparison is in Author mode.
- **XML Fast** - Comparison that works well on large files or fragments, but it is less precise than **XML Accurate**.
- **XML Accurate** - Comparison that is more precise than XML Fast, at the expense of speed. It compares two XML files or fragments looking for identical XML nodes.

**Save action**

Saves the content of the left editor when it can be edited.

**Perform Files Differencing**

Looks for differences between the two files displayed in the left and right side panels.

**Ignore Whitespaces**

Enables or disables the whitespace ignoring feature. Ignoring whitespace means that before performing the comparison, the application normalizes the content and trims its leading and trailing whitespaces.

**Synchronized scrolling**

Toggles synchronized scrolling. When toggled on, a selected difference can be seen in both panels.

**Format and Indent Both Files** *(Ctrl + Shift + P (Command + Shift + P on OS X))*
Formats and indents both files before comparing them. Use this option for comparisons that contain long lines that make it difficult to spot differences.

**Note:** When comparing two JSON files, the **Format and Indent Both Files** action will automatically sort the keys in both files the same to make it easier to compare.

**Copy Change from Right to Left**
Copies the selected difference from the file in the right panel to the file in the left panel.

**Copy All Changes from Right to Left**
Copies all changes from the file in the right panel to the file in the left panel.

**Next Block of Changes (Ctrl + Period (Command + Period on OS X))**
Jumps to the next block of changes. This action is not available when the cursor is positioned on the last change block or when there are no changes.

**Note:** A change block groups one or more consecutive lines that contain at least one change.

**Previous Block of Changes (Ctrl + Comma (Command + Comma on OS X))**
Jumps to the previous block of changes. This action is not available when the cursor is positioned on the first change block or when there are no changes.

**Next Change (Ctrl + Shift + Period (Command + Shift + Period on OS X))**
Jumps to the next change from the current block of changes. When the last change from the current block of changes is reached, it highlights the next block of changes. This action is not available when the cursor is positioned on the last change or when there are no changes.

**Previous Change (Ctrl + Shift + Comma (Command + Shift + M on OS X))**
Jumps to the previous change from the current block of changes. When the first change from the current block of changes is reached, it highlights the previous block of changes. This action is not available when the cursor is positioned on the first change or when there are no changes.

**Ignore Nodes by XPath**
You can use this text field to enter an XPath expression *(on page 2182)* to ignore certain nodes from the comparison. It will be processed as XPath version 2.0. You can also enter the name of the node to ignore all nodes with the specified name (for example, if you want to ignore all ID attributes from the document, you could simply enter `@id`). This field is only available when comparing XML documents using the **XML Fast** or **XML Accurate** algorithms.
Note: If an XPath expression is specified in the Ignore nodes by XPath option (on page 241) in the Diff / File Comparison preferences page, that one is used as a default when the application is started. If you then enter an expression in this field on the toolbar, this one will be used instead of the default. If you delete the expression from this field, neither will be used.

First Change (Ctrl + B (Command + B on OS X))

Jumps to the first change.

Most of these actions are also available from the Compare (on page 2807) menu.

Image Preview

You can view your local files by using the built-in Image Preview component. The view can be accessed from the Working copy view (on page 2902) or from the Repository view (on page 2897). It can also be used from the History view (on page 2917) to view a selected revision of a image file.

Only one image file can be opened at a time. If an image file is opened in the Image preview and you try to open another one it will be opened in the same window. Supported image types are GIF, JPEG/JPG, PNG, BMP. Once the image is displayed in the Image Preview panel using the actions from the contextual menu, you can scale the image at its original size (1:1 action) or scale it down to fit in the view's available area (Scale to fit action).

Compare Images View

The images are compared using the Compare Images view. This view is automatically opened if you select two image files and use the Compare with > Each Other action in the contextual menu. The images are presented in the left and right part of the view, scaled to fit the available area. You can use the contextual menu actions to scale the images at their original size or scale them down to fit the view's available area.

The supported image types are: GIF, JPG/JPEG, PNG, BMP.

Properties View

The properties view presents Apache Subversion™ properties for the currently selected resource from either the Working Copy view or the Repositories view. If the view is not displayed, it can be opened by selecting it from the Window > Show View menu.

Figure 832. Properties View
The table includes four columns:

- **State** - Can be one of the following:
  - (empty) - Normal unmodified property (same current and base values)
  - * (asterisk) - Modified property (current and base values are different)
  - + (plus sign) - New property
  - - (minus sign) - Removed property

- **Name** - The property name.

- **Current value** - The current value of the property.

- **Base value** - The base (original) value of the property.

**svn:externals Property**

The `svn:externals` property can be set on a folder or a file. In the first case, it stores the URL of a folder from another repository (on page 2914).

In the second case, it stores the URL of a file from another repository. The external file will be added into the working copy as a versioned item. There are a few differences between directory and external file:

- The path to the external file must be in a working copy that is already checked out. While external directories can place the external directory at any depth and it will create any intermediate directories, external files must be placed into a working copy that is already checked out.
- The external file URL must be in the same repository as the URL that the external file will be inserted into (inter-repository external files are not supported).
- While commits do not descend into an external directory, a commit in a directory containing an external file will commit any modifications to the external file.
The difference between a normal versioned file and an external file is that external files cannot be moved or deleted (the `svn:externals` property must be modified instead. However, external files can be copied).

An external file is displayed as an X in the switched status column.

**Toolbar / Contextual Menu**

The properties view toolbar and contextual menu contain the following actions:

- **Add a new property** - This button invokes the *Add property* dialog box in which you can specify the property name and value.
- **Edit property** - This button invokes the *Edit property* dialog box in which you can change the property value and also see its original (base) value.
- **Remove property** - This button will prompt a dialog box to confirm the property deletion. You can also specify if you want to remove the property recursively.
- **Refresh** - This action will refresh the properties for the current resource.

**Console View**

The *Console View* shows the traces of all the actions performed by the application. If the view is not displayed, it can be opened by selecting it from the *Window > Show View* menu.

Part of the displayed messages mirror the communication between the application and the Apache Subversion™ server. The output is expressed as subcommands to the Subversion server and simulates the Subversion command-line notation. For a detailed description of the Subversion console output read the *SVN User Manual*.

The view has a simple layout, with most of its space occupied by a message area. On its right side, there is a toolbar holding the following buttons:

- **Clear**
  Erases all the displayed messages.
- **Lock scroll**
  Disables the automatic scrolling when new messages are appended in the view.

The maximum number of lines displayed in the console (length of the buffer) can be modified in the *Preferences (on page 234)* page. By default, this value is set to 100.
Dynamic Help View

**Dynamic Help view** is a help window that changes its content to display the help section that is specific to the currently selected view. As you change the focused view, you can read a short description of it and its functionality. If the view is not displayed, it can be opened by selecting it from the **Window > Show View** menu.

Revision Graph of a SVN Resource

The history of a SVN resource can be watched on a graphical representation of all the revisions of that resource together with the tags in which the resource was included. The graphical representation is identical to a tree structure and very easy to follow.

The graphical representation of a resource history is invoked with the Revision graph action available on the right-click menu of a SVN resource in the Working Copy view (on page 2902) and the Repository view (on page 2897).

Figure 833. Revision Graph of a File Resource

In every node of the revision graph an icon and the background color represent the type of operation that created the revision represented in that node. The commit message associated with that revision, the repository path, and the revision number are also contained in the node. The tooltip displayed when the mouse pointer hovers over a node specifies the URL of the resource, the SVN user who
created the revision of that node, the revision number, the date of creation, the commit message, the
modification type and the affected paths (on page 2831).

The types of nodes used in the graph are:

**Added resource**

The ![new resource] icon for a new resource added to the repository and a green background.

**Copied resource**

The ![copied resource] icon for a resource copied to other location (for example, when a SVN tag is
created and a green background).

**Modified resource**

The ![modified resource] icon for a modified resource and a blue background.

**Deleted resource**

The ![deleted resource] icon for a resource deleted from the repository and a red background.

**Replaced resource**

The ![replaced resource] icon for a resource removed and replaced with another one on the repository and
a orange background.

**Indirect resource**

The ![indirect resource] icon for a revision from where the resource was copied or an indirectly modified
resource, that is a directory in which a resource was modified and a gray background.

The Modification type field of the tooltip specifies how that revision was obtained in the
history of the resource.

A directory resource is represented with two types of graphs:

**Simplified graph**

Lists only the changes applied directly to the directory;

**Complete graph**

Lists also the indirect changes of the directory resource, that is the changes applied to
the resources contained in the directory.

Figure 834. Revision Graph of a Directory (Direct Changes)
The Revision graph toolbar contains the following actions:
Save as image

Saves the graphical representation as image. For a large revision graph you have to set more memory in the startup script (on page 290). The default memory size is not enough when there are more than 100 revisions that are included in the graph.

Show/Hide indirect modifications

Switches between simplified and complete graph.

Zoom In

Zooms in the graph.

Zoom Out

Zooms out the graph. When the font reaches its minimum size, the graph nodes will display only the icons, leading to a very compact representation of the graph.

Reset scale

Resets the graphical scale to a default setting.

Print

Prints the graph.

Print preview

Offers a preview of the graph to allow you to check the information to be printed.

The contextual menu of any of the graph nodes contains the following actions:

Open

Opens the selected revision in the editor panel. Available only for files.

Open with

Opens the selected revision in the editor panel. Available only for files.

Save as

Saves the file for which the revision graph was generated, based on the selected node revision.

Copy to

Copies to the repository the item whose revision graph is displayed, using the selected revision.

Note: This action can be used to resurrect deleted items also.

Compare with HEAD
Compares the selected revision with the HEAD revision and displays the result in the diff panel. Available only for files.

Show History
Displays the history of the resource in the History view (on page 2917). Available for both files and directories.

Check out
Checks out (on page 2829) the selected revision of the directory. Available only for directories.

Export
Opens the Export dialog box (on page 2892) that allows you to configure options for exporting a folder from the repository to the local file system.

When two nodes are selected in the revision graph of a file the right-click menu of this selection contains only the Compare for comparing the two revisions corresponding to the selected nodes. If the resource for which the revision graph was built is a folder then the right-click menu displayed for a two nodes selection also contains the Compare action but it computes the differences between the two selected revisions as a set of directory changes. The result is displayed in the Directory Change Set (on page 2921) view.

Attention: Generating the revision graph of a resource with many revisions may be a slow operation. You should enable caching for revision graph actions so that future actions on the same repository will not request the same data again from the SVN server, which will finish the operation much faster.

Oxygen XML Editor SVN Preferences

The options used in the SVN client are saved and loaded independently from the Oxygen XML Editor options. However, if Oxygen XML Editor cannot determine a set of SVN options to be loaded at startup, some of the preferences are imported from the XML Editor options (such as the License key and HTTP Proxy settings).

There is also an additional set of preferences applied to the SVN client that are set in global SVN files. There are two editing actions available in the Global Runtime Configuration submenu of the Options menu. These actions, Edit 'config' file and Edit 'servers' file, contain parameters that act as defaults applied to all the SVN client tools that are used by the same user on their login account.
Entering Local Paths and URLs

The Oxygen XML Editor includes a variety of option configuration pages or wizards that contain text boxes where you specify paths to local resources or URLs of items inside remote repositories. The Oxygen XML Editor provides support in these text boxes to make it easier to specify these paths and URLs.

Local Item Paths

The text boxes used for specifying local item paths support the following:

- **Absolute Paths** - In most cases, the Oxygen XML Editor expects absolute paths for local file system items.
- **Relative Paths** - The Oxygen XML Editor only accepts relative paths in the form ~[/...], where ~ is the user home directory.
- **Path Validation** - Oxygen XML Editor validates the path as you type and invalid text becomes red.
- **Drag and Drop** - You can drag files and folders from the file system or other applications and drop them into the text box.
- **Automatic Use of Clipboard Data** - If the text box is empty when its dialog box is opened, any data that is available in the system clipboard is used, provided that it is valid for that text box.

Repository Item URLs

- **Local Repository Paths** - You can use local paths (absolute or relative) to access local repositories. When you use the **Browse** button, the Oxygen XML Editor will convert the file path to a file:// form of URL, provided that the location is a real repository.
  - **Absolute Paths** - In most cases, the Oxygen XML Editor expects absolute paths for local file system items.
  - **Relative Paths** - The Oxygen XML Editor only accepts relative paths in the form ~[/...], where ~ is the user home directory.
- **Peg Revisions** - For URL text boxes found inside dialog boxes where you are pulling information from the repository, you can use peg revisions at the end of the URLs (on page 2940) (for example, URL@rev1234).

**Note:** If you try to use a peg revision number in a dialog box where you are sending information to the repository then the peg revision number will become part of the name of the item rather than searching for the specified revision. For example, in the URL http://host/path/inside/repo/item@100, the item name is considered to be item@100.

**Tip:** You can even use peg revisions with local repository paths. For example, C:\path\to\local\repo@100 will be converted to file:///C:/path/to/local/repo@100 and the Repository browser will display the content of the local repository as it is at revision 100.
• **URL Validation** - Oxygen XML Editor validates the URLs as you type and invalid text becomes red. Even paths to local repositories are not accepted unless using the **Browse** button to convert them to valid URLs.

• **Drag and Drop** - You can drag URLs from other applications or text editors and drop them into the URL text box. You can also drag folders that point to local repositories, from the local file system or from other applications, and they are automatically converted to valid `file://` type URLs.

• **Automatic Use of Clipboard Data** - If the URL text box is empty when its dialog box is opened, any data that is available in the system clipboard is used, provided that it is valid for that text box. Even valid local paths will be automatically converted to `file://` type URLs.

**Note:** The text boxes that are in the form of a combo box also allow you to select previously used URLs, or URLs defined in the **Repositories** view.

## Technical Issues

This section contains special technical issues found during the use of Syncro SVN Client.

### Authentication Certificates Not Saved

If Syncro SVN Client prompts you to enter the authentication certificate, although you already provided it in a previous session, then you should make sure that your local machine user account has the necessary rights to store certificate files in the Subversion configuration folder (write access to **Subversion** folder and all its subfolders). Usually, it is located in the following locations:

- **Windows:** `\[HOME_DIR]\AppData\Roaming\Subversion`
- **Mac OS X and Linux:** `\[HOME_DIR]/.subversion`

### Updating Newly Added Resources

When you want to get a resource that is part of a newly created structure of folders from the repository, you need to also get its parent folders.

**Figure 836.** Incoming Changes
Syncro SVN Client allows you to choose how you want to deal with the entire structure from that moment onwards:

**Update ancestor directories recursively**

This option brings the entire newly added folders structure into your working copy. In this case, the update time depends on the total number of newly incoming resources, because of the full update operation (not updating only selected resource).

**Update selected files only (leave ancestor directories empty)**

This option brings a skeleton structure composed of the resource's parent folders only, and the selected resource at the end of the operation. All of the parent directories will have depth set to *empty* in your working copy, thus subsequent *Synchronize* operations will not report any remote modifications in those folders. If you need to update the folders to full-depth, you can use the *Update to revision/depth* action (on page 2911) from the working copy view.

**Accessing Old Items from a Repository**

Usually, you point to an item from a repository using a URL. However, sometimes this might not be enough because the URL alone might point to a different item than the one you want and a *peg revision* is needed.

A Subversion repository tracks any change made to its items by using *revisions*, which contain information such as the name of the author who made the changes, the date when they were made, and a number that uniquely identifies each of them. Over time, an item from a specific location in a repository evolves as a result of committing changes to it. When an item is deleted, its entire life cycle (all changes made to it from the moment it was created) remains recorded in the history of the repository. If a new item is created, with the same name and in the same location of the repository as a previously existing one, then both items are identified by the same URL even though they are located in different time frames. This is when a *peg revision* comes in handy. A *peg revision* is nothing more than a normal revision, but the difference between them is made by their usage. Many of the Subversion commands also accept a peg revision as a way to precisely identify an item in time, beside an *operative revision* (the revision regarding the used command).

**Example:**

To illustrate an example, consider the following:

- A new repository file *config* was created, identified by the URL [http://host.com/myRepository/dir/config](http://host.com/myRepository/dir/config).
- The file has been created at revision 10.
- Over time, the file was modified by committing revisions 12, 15, 17.
To access a specific version of the file identified by the URL, you need to use a corresponding revision (the operative revision):

- If a revision number is used that is lower than 10, an error is triggered, because the file has not been created yet.
- If a revision number is used that is between 10 and 19, the specific version you are interested in would be obtained.

**Note:** Although the file was modified in revisions 12, 15, 17, it existed in all revisions between 10 and 19. Starting with a revision at which the file is modified, it has the same content across all revisions generated in the repository until another revision in which it is modified again.

At this point, the file is deleted, creating revision 20. Now, no version of the file can be accessed because it no longer exists in the latest repository revision. This is due to the fact that Subversion automatically uses the HEAD revision as a peg revision (it assumes any item currently exists in the repository if not instructed otherwise). However, using any of the revision numbers from the 10–19 interval (when the file existed) as a peg revision (beside the operative revision), will help Subversion to properly identify the time frame when the file existed, and access the file version corresponding to the operative revision. If you use a revision number greater than 19, this will also trigger an error.

Continuing the example, suppose that at revision 30, a directory called config is created in the same repository location as the deleted file. This means that the new directory will be identified by the same repository address: http://host.com/myRepository/dir/config. If you only use this URL in any Subversion command, you will access the new directory. You will also access the same directory if you use any revision number equal to or greater than 30 as peg revision. However, if you are interested in accessing an old version of the previously existing file, then you must use one of the revisions that existed (10–19), as a peg revision, similar to the previous case.

Checksum Mismatch Error

A **Checksum Mismatch** error could happen if an operation that sends or retrieves information from the repository to the working copy is interrupted. This means that there is a problem with the synchronization between a local item and its corresponding remote item.

If you encounter this error, try the following:

1. Identify the parent directory of the file that caused the error (the file name should be displayed in the error message).

   **Note:** If the parent directory is the root of the working copy or if it contains a large amount of items it is recommended that you check out the working copy again, rather than continuing with the rest of this procedure.
2. Identify the current depth (on page 2905) of that directory.

3. Update the parent directory using the Update to revision/depth action that is available from the contextual menu or the Working copy menu. For the Depth option, select This folder only (empty).

⚠️ Warning: If you have files with changes in this directory, those changes could be lost. You should commit your changes or move the files to another directory outside the working copy prior to proceeding with this operation.

4. After clicking OK the contents of the directory will be erased and the directory is be marked as having an empty depth (on page 2905).

5. Once again, update the same directory using the Update to revision/depth action. This time, for the Depth option, select the depth that was previously identified in step 2.

6. If you moved modified files to another directory outside the working copy, move them back to the original location inside the working copy.

If this procedure does not solve the error, you need to check out the working copy again and move possible changes from the old working copy to the new one.

**External Tools**

A command-line tool can be started in the Oxygen XML Editor user interface as if from the command line of the operating system shell. Oxygen XML Editor offers you the option of integrating such a tool by specifying just the command line for starting the executable file and its working directory. To integrate such a tool, open the Preferences dialog box (Options > Preferences) (on page 79) and go to External Tools (on page 246) (or select Configure from the Tools > External Tools menu).

The External Tools preferences page (on page 246) presents a list of the external tools that have been configured. Once a tool has been configured (on page 246), you can open it by selecting it from the Tools > External Tools menu or from the ⏸️ External Tools drop-down menu on the toolbar (the Tools toolbar needs to be selected in the Configure Toolbars dialog box (on page 273)). You can also assign a keyboard shortcut (on page 248) to be used to launch the tool.

If the external tool is applied on one of the files opened in Oxygen XML Editor, the Save all files before calling external tools option (on page 157) (in the Save preference page) should be selected so that all edited files are automatically saved when an external tool is applied.

When an external tool is launched, the icon on the toolbar changes to a stop icon (⏹️) and you can use this button to stop the tool. When the tool has finished running (or you close it), the icon changes back to the original icon (►️).
Note: Even though you can stop the external tool by invoking the stop action while it is running, that does not necessarily mean it will also stop the processes spawned by that external tool. For instance, if you stop an external tool that runs a batch file, the batch may be stopped but without actually stopping the processes that the batch was running at that time.

Example: Integrating the Ant Tool

This is an example procedure for integrating the Ant build tool into Oxygen XML Editor:

1. Download and install Apache Ant (on page 3279) on your computer.
2. Test your Ant installation from the command-line interface in the directory where you want to use Ant from. For example, run the clean target of your build.xml file C:\projects \XMLproject\build.xml:
   ```
   ant clean
   ```
3. Open the Preferences dialog box (Options > Preferences) (on page 79) and go to External Tools (or select Configure from the Tools > External Tools menu).
4. Click the New button to create a new external tool entry and enter the following information:
   - Name - For example, Ant tool.
   - Working directory - For example, C:\projects\XMLproject.
   - Command line - For example, "C:\projects\XMLproject\ant.bat" clean.
5. Click OK to add the new tool to the list of external tools.
6. Run the tool from Tools > External Tools > Ant tool. You can see the output in the system console:
   ```
   Started: "C:\projects\XMLproject\ant.bat" clean
   Buildfile: build.xml
   
clean:
   [echo] Delete output files.
   [delete] Deleting 5 files from C:\projects\XMLproject
   
   BUILD SUCCESSFUL
   Total time: 1 second
   ```
20.
Common Problems

This section provides a collection of common performance and other types of problems that might be encountered when using Oxygen XML Editor, along with their possible solutions.

Performance Problems and Solutions

This section contains solutions for some common performance problems that may appear when running Oxygen XML Editor.

Related Information:

- Documents with Long Lines (on page 784)
- Loading Large Documents (on page 781)
- External Tools (on page 2942)

Display Problems on Linux or Solaris

Problem

I experience display problems (such as screen freezes) on Linux or Solaris.

Cause

This is possibly a rendering problem with the off-screen pixmap support.

Solution

Add the following startup parameter (on page 290): `-Dsun.java2d.pmscreen=false`.
Out of Memory on External Processes

Problem

Oxygen XML Editor throws an Out Of Memory error when trying to generate PDF output with the built-in Apache FOP processor.

Cause

The amount of allocated memory might be insufficient.

Solutions

- Open the Preferences dialog box (Options > Preferences) (on page 79), go to XML > XSLT-FO-XQuery > FO Processors, and increase the value of the Memory available to the built-in FOP option (on page 217).
- For external XSL-FO processors, XSLT processors, and external tools, the maximum value of the allocated memory is set in the command line of the tool using the -Xmx parameter set to the Java virtual machine.

Related Information:

- FO Processors Preferences (on page 216)
- Custom Engines Preferences (on page 215)
- External Tools Preferences (on page 246)
- How to Enable Debugging for FO Processor Transformations (on page 1742)

Too many nested apply-templates calls Error When Running a Transformation

Problem

I'm getting the error message Too many nested apply-templates calls when I try to transform my DocBook file to HTML using default Oxygen XML Editor DocBook to HTML transformation scenario.
Cause

Most likely, this is the result of a masked stack overflow error.

Solution

Try setting a new VM option with the value `-Xss4m`. You can also try to slowly increase this to larger values (e.g. `-Xss5m` or `-Xss6m`). Note that this consumes memory on a per thread basis (Oxygen XML Editor can have tens of threads), so using a very large value here can backfire and leave Oxygen XML Editor without memory.

Related Information:

- Setting a Java Virtual Machine Parameter when Launching Oxygen XML Editor (on page 290)

Performance Issues with Large Documents

Problem

The performance of the application slows down considerably over time when working with large documents.

Cause

A possible cause is that the application needs more memory to run properly.

Solutions

- You can increase the maximum amount of memory available to Oxygen XML Editor by setting the `-Xmx` parameter in a configuration file (on page 290) that is specific to the platform that runs the application.

  \[\textbf{Attention:} \text{The maximum amount of memory should be less than 75\% of the physical amount of memory available on the machine. Otherwise, the operating system and other applications will have no memory available.}\]

- When installed on a multiple user environment, each instance of Oxygen XML Editor will be allocated the amount stipulated in the memory value. To avoid degrading the general
Performance of the host system, ensure that the amount of memory available is optimally apportioned for each of the expected instances.

Note: When starting Oxygen XML Editor from the icon created on the Start menu or Desktop in Windows (or from the shortcut created on the Linux desktop), the default maximum memory available to the application is set to 40% of the amount of physical RAM (but not more than 700 MB for 32-bit distributions or 4 GB for 64-bit distributions).

When starting Oxygen XML Editor from a command-line script, the default maximum memory is 1 GB for 32-bit distributions or 4 GB for 64-bit distributions.

Performance Issues when Using Oxygen XML Editor with Remote Desktop

Problem

When trying to run Oxygen XML Editor in a Remote Desktop Protocol (RDP) environment, the performance is slow and choppy.

Cause

Running a standalone version of Oxygen XML Editor over a slow RDP connection may result in performance issues.

Solution

As a workaround, you try to run Oxygen XML Editor as an Eclipse plugin when working with a slow RDP connection.

Misc Problems and Solutions

This chapter presents common problems that may appear when running the application along with solutions for these problems.

'Address Family Not Supported by Protocol Family; Connect' Error

Problem

I have experienced the following error: "Address Family Not Supported by Protocol Family; Connect". How do I solve it?
**Cause**

This seems to be an IPv6 connectivity problem. By default, the Java runtime used by Oxygen XML Editor prefers to create connections via IPv6, if the support is available. However, even though it is available in appearance, IPv6 sometimes happens to be configured incorrectly on some systems.

**Solution**

A quick solution for this problem is to set the `java.net.preferIPv4Stack` Java property to `true` ( `java.net.preferIPv4Stack=true` ), by following this procedure:

1. Create a file named `custom_commons.vmoptions` and on a single line, add `-Djava.net.preferIPv4Stack=true`. Then save the file and copy it to the Oxygen XML Editor installation folder (may need admin access).
2. Restart Oxygen XML Editor.
3. Make sure the procedure was successful by going to Help > About > System properties and check that the value of the `java.net.preferIPv4Stack` property is `true`.

**Application Takes Several Minutes to Start**

**Problem**

Oxygen XML Editor seems to take an abnormally long amount of time to start.

**Cause**

Some anti-virus software can cause Java applications, such as Oxygen XML Editor, to start very slowly due to scanning compressed archives (such as the JAR libraries that all Java applications use).

**Solution**

A possible solution is to add the Oxygen XML Editor folder to the list of exceptions in the anti-virus software settings.
Archive Distribution Fails to Run on Mac OS 10.12 (Sierra)

Problem
For versions prior to 18.1, the classic archive distributions of Oxygen XML Editor (.zip or .tar.gz) fail to run on Mac OS 10.12 (Sierra).

Cause
This happens because the archives get quarantined and Mac OS 10.12 (Sierra) treats quarantined apps differently than older versions and isolates them from their parent folder at launch. If Oxygen XML Editor was already installed when you upgraded to Mac OS 10.12 (Sierra), there are no problems.

Solution
If Oxygen XML Editor was not already installed, or you need to reinstall an older version (prior to version 18.1), the quarantine flag must be removed for the entire content of the Oxygen XML Editor installation directory or the individual applications. To resolve this issue, follow these steps:

1. Open a Terminal window and change the directory to the folder where Oxygen XML Editor is located.
2. Run the following command:

   ```
   xattr -dr com.apple.quarantine oxygen/
   ```

   where "oxygen" is the actual name of the Oxygen XML Editor directory.

   If Oxygen XML Editor is in a location that requires administrator privileges for write access, you need to run the command from an administrator account and prefix the command with `sudo`. You will then be prompted to enter your password.

Cannot Associate Oxygen XML Editor With a File Type on My Windows Computer

Problem
I cannot associate the Oxygen XML Editor application with a file type on my Windows computer by right clicking a file in Windows Explorer, selecting Open With > Choose Program and browsing to the file oxygen21.1.exe. When I select the file oxygen21.1.exe in the Windows file browser dialog box, the Oxygen XML Editor application is not added to the list of applications in the Open With dialog box.
**Cause**

The problem is usually due to old Windows registry entries remaining from previous versions of Oxygen XML Editor.

**Solution**

Uninstall all your installed versions of Oxygen XML Editor and reinstall your current version of Oxygen XML Editor. If you only have the current version installed, you could try to reinstall it without uninstalling it first.

**Cannot Connect to SVN Repository from Repositories View**

**Problem**

I cannot connect to an SVN repository from the Repositories view of SVN Client. How can I find more details about the error?

**Solution**

First check that you entered the correct URL of the repository in the Repositories view. Also check that an SVN server is running on the server machine specified in the repository URL and is accepting connections from SVN clients. You can check that the SVN server accepts connections with the command-line SVN client from CollabNet.

If you try to access the repository with an `svn+ssh` URL, also check that an SSH server is running on port 22 on the server machine specified in the URL.

If the above conditions are verified and you cannot connect to the SVN repository, generate a logging file on your computer and send the logging file to support@oxygenxml.com. For generating a logging file, you need to create a text file called `log4j.properties` in the install folder with the following content:

```
log4j.rootCategory= debug, R2

log4j.appender.R2=org.apache.log4j.RollingFileAppender
log4j.appender.R2.File=logging.log
log4j.appender.R2.MaxFileSize=12000KB
log4j.appender.R2.MaxBackupIndex=20
log4j.appender.R2.layout=org.apache.log4j.PatternLayout
log4j.appender.R2.layout.ConversionPattern=%r %p [%t ] %c - %m%n
```
Restart the application, reproduce the error, close the application, and send the `logging.log` file generated in the install directory to support@oxygenxml.com.

Cannot Open XML Files in Internet Explorer

**Problem**

Before installing Oxygen XML Editor I had no problems opening XML files in Internet Explorer. Now when I try to open an XML file in Internet Explorer, it opens the file in Oxygen XML Editor. How can I load XML files in Internet Explorer again?

**Cause**

XML files are opened in Oxygen XML Editor because Internet Explorer uses the Windows system file associations for opening files and you associated XML files with Oxygen XML Editor in the installer panel called **File Associations**. Therefore, Internet Explorer opens XML files with the associated Windows application.

**Solution**

To open XML files in Internet Explorer, you have to set Internet Explorer as the default system application for XML files. For example, you can do so by following this procedure:

1. Right-click the XML file in Windows Explorer and select **Open With > Choose Default Program**.
2. Expand the section with the down-arrow and select IE in the list of applications.
3. Select the **Always use the selected program** option.

If XML files are still not opened in Internet Explorer, create a file named `revert.vbs` with the following content:

```vbs
function revert()
    Set objShell = CreateObject("WScript.Shell")
    objShell.RegWrite "HKCR\.xml", "xmlfile", "REG_SZ"
    objShell.RegWrite "HKCR\.xml\Content Type", "text/xml", "REG_SZ"
end function

revert()
```

Then run the following command from a command line:

```
wscript revert.vbs
```
Cannot Uninstall Oxygen XML Editor in Windows

**Problem**

When I try to uninstall Oxygen XML Editor in Windows, I get an error that says it cannot find the *files.log* file.

**Cause**

The *install4j* installer that is used by Oxygen XML Editor creates the *files.log* file during the installation process. If you cannot uninstall the product, then most likely something went wrong with this file during the installation process.

**Solution**

To solve this, simply reinstall the software in the same directory as the current installation. This will automatically uninstall the old version or overwrite it with a clean install. You should then be able to uninstall this new installation.

Compatibility Issue Between Java and Certain Graphics Card Drivers

**Problem**

Under certain settings, a compatibility issues can appear between Java and some graphics card drivers, which results in the text from the editor (in Author or Text mode) being displayed garbled.

**Solution**

If you encounter this problem, update your graphics card driver. Another possible workaround is, open the Preferences dialog box (Options > Preferences) (on page 79), go to Appearance > Fonts, and set the value of the Text antialiasing option (on page 89) to ON.

Note: If this workaround does not resolve the problem, set the Text antialiasing option (on page 89) to other values.
Crash at Startup on Windows with an Error About the nvogl32.dll File

**Problem**

I try to start Oxygen XML Editor on Windows but it crashed with an error message about ‘Fault Module Name: nvogl32.dll’. What is the problem?

**Cause**

It is most likely an OpenGL driver issue.

**Solution**

This can be avoided by creating an empty file called `opengl32.dll` in the Oxygen XML Editor install folder (if you start Oxygen XML Editor with the shortcut created by the installer on the Start menu or on Desktop) or in the subfolder `bin` of the home folder of the Java virtual machine that runs Oxygen XML Editor (if you start Oxygen XML Editor with the `oxygen.bat` script). The home folder of the Java virtual machine that runs Oxygen XML Editor is the value of the `java.home` property that is available in the System properties tab of the About dialog box (opened from the Help > About menu).

Crash in Java Runtime Thread

**Problem**

I encounter consistent crashes in one of the Java runtime threads (for example, AWT-EventQueue, Java2D Queue Flusher, or C2 CompilerThread).

**Cause**

This is usually caused by unknown errors somewhere in the implementation of the Java Runtime.

**Solution**

Although this does not guarantee that it will solve the problem, you could try updating the Java Runtime Environment (JRE) that comes bundled with Oxygen XML Editor to the latest supported version.

⚠️ **Important:** You should only use a version of Java 8.

Windows/Linux
1. Download the latest Java 8 JRE from here: http://www.oracle.com/technetwork/java/javase/downloads/jre8-downloads-2133155.html. Download the JRE in the tar.gz format with the same architecture as your Oxygen XML Editor installation (x86=32bit / x64=64bit).

2. Navigate to the Oxygen XML Editor installation folder and rename the jre folder to jre.old (you will need admin privileges if it is installed in Program Files).

3. Unpack the tar.gz and rename the extracted folder to jre.

4. Move that folder to the Oxygen XML Editor installation folder.

5. Verify the paths in the jre folder. The path of the JRE bin folder should be: oxygen/jre/bin.

6. Start Oxygen XML Editor and check the Java version in Help > About > System properties. The java.runtime.version should be match the one you unpacked.

**Mac OS X**


2. Extract the archive contents in a location of your choice (for example, Downloads). You will end up with a folder named something like this: jre1.8.0_181.jre (depending on the version).

3. Move or rename the JRE that was bundled with Oxygen XML Editor. The bundled JRE folder (jre.bundle) is located inside a hidden folder named .install4j (in the Oxygen XML Editor installation folder), so you can not see it in the Mac Finder. Thus, you need to move or rename it via the command line.

For example, if you have Oxygen XML Editor deployed in the Applications folder, the command should look similar to this:

```
mv "/Applications/Oxygen XML Editor/.install4j/jre.bundle"
"/Applications/Oxygen XML Editor/.install4j/jre.bundle.old"
```

4. Move the unpacked JRE folder from the location where you extracted it in the second step to a folder named .install4j/jre.bundle inside the Oxygen XML Editor installation direction.

For example, if you have Oxygen XML Editor deployed in the Applications folder, the command should look similar to this:

```
mv "~/Downloads/jre1.8.0_181.jre"/Applications/Oxygen XML Editor/.install4j/
jre.bundle"
```

The default bundled JRE should now be successfully replaced by the newer one.

5. Start Oxygen XML Editor and check the Java version in Help > About > System properties. The java.runtime.version should be match the one you unpacked.
Damaged File Associations on OS X

Problem

After upgrading OS X and Oxygen XML Editor, it is no longer associated to the appropriate file types (such as XML, XSL, XSD). How can I re-create the file associations?

Cause

The upgrade damaged the file associations in the LaunchService Database on your OS X machine.

Solution

You can rebuild the LaunchService Database with the following procedure. This will reset all file associations and rescan the entire file system searching for applications that declare file associations and collect them in a database used by Finder.

1. Find all the Oxygen XML Editor installations on your hard drive.
2. Delete them by dragging them to the Trash.
3. Clear the Trash.
4. Unpack the Oxygen XML Editor installation kit on your desktop.
5. Copy the contents of the archive into the folder /Applications/Oxygen.
6. Run the following command in a Terminal:

   ```
   /System/Library/Frameworks/CoreServices.framework/Versions/A/Frameworks/LaunchServices.framework/Versions/A/Support/lsregister -kill -r -domain local -domain system -domain user
   ```

7. Restart Finder with the following command:

   ```
   killall Finder
   ```

8. Create an XML or XSD file on your desktop. It should have the Oxygen XML Editor icon.
10. Accept the confirmation.

**Result:** When you start Oxygen XML Editor, the file associations should work correctly.
Details to Submit in a Request for Technical Support Using the Online Form

**Problem**

What details should I add to my request for technical support on the online form in the product website?

**Solution**

When completing a request for Technical Support using the online form, include as many details as possible about your problem. For problems where a simple explanation may not be enough for the Technical Support team to reproduce or address the issue (such as server connection errors, unexpected delays while editing a document, an application crash, etc.), you should generate a log file and attach it to the problem report. In the case of a crash, you should also attach the crash report file generated by your operating system.

If the text content of an XML document you want to send to the support team contains sensitive or private information, you can use the Randomize XML text content action (on page 25) to create filler content. Before using this action, you need to copy the initial XML resources and save them in a separate folder. Otherwise, you might lose your original information.

To generate an Oxygen XML Editor log file, follow these steps:

1. Create a text file called `log4j.properties` in the application installation folder, with the following content:

   ```
   log4j.rootCategory = debug, R2
   log4j.appender.R2=org.apache.log4j.RollingFileAppender
   log4j.appender.R2.File=${user.home}/Desktop/oxygenLog/oxygen.log
   log4j.appender.R2.MaxFileSize=12000KB
   log4j.appender.R2.MaxBackupIndex=20
   log4j.appender.R2.layout=org.apache.log4j.PatternLayout
   log4j.appender.R2.layout.ConversionPattern=%r %p [ %t ] %c - %m%n
   ```

2. Restart the application.
3. Reproduce the error.
4. Close the application.
5. Delete the `log4j.properties` file because it might cause performance issues if you leave it in the installation folder.
Important: The logging mode may severely decrease the performance of the application. Therefore, do not forget to delete the log4j.properties file when you are done with the procedure.

Result: The resulting log file is named oxygen#.log (for example, oxygen.log, oxygen.log.1, oxygen.log.2, etc.) and is located in the Desktop\oxygenLog folder.

DITA Map Transformation Fails (Cannot Connect to External Location)

Problem

DITA map (on page 3281) transformation fails because it cannot connect to an external location.

Solution

The transformation is run as an external Ant process so you can continue using the application as the transformation unfolds. All output from the process appears in the DITA Transformation tab.

The HTTP proxy settings are used for the Ant transformation, so if the transformation fails because it cannot connect to an external location, you can check the the Proxy preferences page (on page 255)

DITA Map WebHelp Transformation Fails (Duplicate Topic References Found)

Problem

DITA Map WebHelp transformation fails with a message that indicates duplicate topic references were found.

Cause

By default the WebHelp transformation uses the force-unique parameter set to true to force the transformation to create unique output files for each instance of a resource when a map contains multiple references to a single topic. However, there are cases when this feature does not work as expected and the duplicate topic references are not handled properly.

Solution

To solve this issue, you should manually set a unique copy-to attribute on any duplicate topic reference that was not handled automatically by DITA-OT:
DITA OT Transformation Takes a Long Time to Process

Problem
A DITA transformation takes an extremely long time to process (over an hour, for example).

Cause
Large delays in DITA OT processing are usually caused by intensive disk operations, CPU usage, or connections to remote websites. The DITA OT processing is very disk-intensive, each stage takes the entire content from the transformation temporary files folder, reads it, modifies it, and then writes it back.

Solution
There are several things you can try to troubleshoot this problem:

• If you are using a shared or remote drive, it is recommended to specify a local drive for the output and temporary files directory (edit the transformation scenario and in the Output tab, select a local directory for Temporary files directory and Output directory).
• If you want to test if the publishing has a problem downloading remote resources, you could disable the network adapter on the computer and then try to publish. The purpose is to see if the publishing finishes without any reported error about obtaining a certain HTTP resource.
• Using DTDs instead of XML Schemas is faster. This is because of a default transformation parameter called args.grammar.cache that only works for DTD-based DITA topics.
• You can increase the memory available to Oxygen XML Editor (on page 2946). Sometimes, just increasing the amount of memory available to the DITA OT process may be enough to lower the time necessary for the publishing to run.
• You can enable some logging to help you determine which stage in the process is taking a long time. Edit the transformation scenario and in the Advanced tab, enter logger org.apache.tools.ant.listener.ProfileLogger in the Additional arguments field. Then go to Options > Preferences > DITA > Logging and select Always for the Show console output option.
• You could try disabling antivirus applications since the publishing process is very disk intensive and certain antivirus application might slow down the process.

• If the published DITA map is part of a larger DITA project with lots of maps and topics, references from topics in the current map to topics in other sub-projects might result in problems resolving those references. You could look in the output folder to see if the number of HTML documents match the number of DITA topics in your map.

DITA PDF Transformation Fails

Problem

The DITA to PDF transformation fails.

Cause

To generate the PDF output, Oxygen XML Editor uses the DITA Open Toolkit. This process sometimes results in errors. For information about some of the most common errors, see DITA PDF Processing Common Errors (on page 2960).

Solution

If your transformation fails, you can detect some of the problems that caused the errors by running the Validate and Check for Completeness action (on page 3036). Depending on the options you select when you run it, this action reports errors such as topics referenced in other topics but not in the DITA map (on page 3281), broken links, and missing external resources.

You can analyze the Results tab of the DITA transformation and search for messages that contain text similar to [fop] [ERROR]. If you encounter this type of error message, edit the transformation scenario you are using and set the clean.temp parameter to no and the retain.topic.fo parameter to yes. Run the transformation, go to the temporary directory of the transformation, open the topic.fo file and go to the line indicated by the error. Depending on the XSL FO context try to find the DITA topic that contains the text that generates the error.

If none of the above methods helps you, go to Help > About > Components > Frameworks and check what version of the DITA Open Toolkit you are using. Copy the whole output from the DITA OT console output and either report the problem on the DITA User List or send it to support@oxygenxml.com.

Related Information:
DITA PDF Processing Common Errors

There are cases when the PDF processing fails when trying to publish DITA content to a PDF file. This topic lists some of the common problems and possible solutions.

**Problem: Cannot Save PDF**

The FO processor cannot save the PDF at the specified target. The console output contains messages like this:

```
[fop] [ERROR] Anttask - Error rendering fo file:
C:\samples\dita\temp\pdf\oxygen_dita_temp\topic.fo
Failed to open C:\samples\dita\out\pdf\test.pdf
Failed to open samples\dita\out\pdf\test.pdf
...............[fop]
Caused by: java.io.FileNotFoundException:
C:\Users\default\Desktop\bev\out\pdf\test.pdf
(The process cannot access the file because it is being used by another process)
```

**Solution: Cannot Save PDF**

Such an error message usually means that the PDF file is already opened in a PDF reader application. The solution is to close the open PDF before running the transformation.

**Problem: Table Contains More Cells Than Defined in Colspec**

One of the DITA tables contains more cells in a table row than the defined number of `colspec` elements. The console output contains messages like this:

```
[fop] [ERROR] Anttask - Error rendering fo file:
D:\projects\eXml\samples\dita\flowers\temp\pdf\oxygen_dita_temp\topic.fo
<net.sf.saxon.trans.XPathException: org.apache.fop.fo.ValidationException:
The column-number or number of cells in the row overflows the number of
columns specified for the table.
(See position 179: -1)>net.sf.saxon.trans.XPathException:
org.apache.fop.fo.ValidationException: The column-number or number of cells in the row overflows the number of columns specified for the table.
(See position 179: -1)
```
Solution: Table Contains More Cells Than Defined in Colspec

To resolve this issue, correct the `colspec` attribute on the table that caused the issue. To locate the table that caused the issue:

1. Edit the transformation scenario and set the parameter `clean.temp` to `no`.
2. Run the transformation, open the `topic.fo` file in Oxygen XML Editor, and look in it at the line specified in the error message (See position 179:-1).
3. Look around that line in the `XSL-FO` file to find relevant text content that you can use (for example, with the Find/Replace in Files action in the DITA Maps Manager view (on page 2990)) to find the original DITA topic for which the table was generated.

Problem: Broken Link

There is a broken link in the generated `XSL-FO` file. The PDF is generated but contains a link that is not working. The console output contains messages like this:

```
[fop] 1248 WARN [ main ] org.apache.fop.apps.FOUserAgent -
Page 6: Unresolved ID reference "unique_4_Connect_42_wrongID" found.
```

Solution: Broken Link

To resolve this issue:

1. Use the Validate and Check for Completeness action available in the DITA Maps Manager view (on page 2990) to find such problems.
2. If you publish to PDF using a DITAVAL filter, select the same DITAVAL file in the DITA Map Completeness Check dialog box.
3. If the Validate and Check for Completeness action does not discover any issues, edit the transformation scenario and set the `clean.temp` parameter to `no`.
4. Run the transformation, open the `topic.fo` file in Oxygen XML Editor, and search for the unresolved ID references (for example: `unique_4_Connect_42_wrongID`).
5. Look in the XSL-FO file to find relevant text content that you can use (for example, with the **Find/Replace in Files** action in the **DITA Maps Manager** view (on page 2990)) to find the original DITA topic for which the table was generated.

**Related Information:**

- How to Enable Debugging for FO Processor Transformations (on page 1742)

---

### DITA to CHM Transformation Fails - Cannot Open File

**Problem**

The DITA to CHM transformation fails with the following error: 

```
```

**Cause**

This error occurs when the CHM output file is opened and the transformation scenario cannot rewrite its content.

**Solution**

To solve this issue, close the CHM help file and run the transformation scenario again.

**Tip:** It is a good practice to validate the **DITA map** (on page 3281) before executing the transformation scenario. To do so, run the **Validate and Check for Completeness** action (on page 3036). Depending on the selected options, this action reports errors, such as topics referenced in other topics (but not in the **DITA map**), broken links, and missing external resources.

**Related Information:**

- DITA Map to CHM (Compiled HTML Help) Transformation (on page 1664)
DITA to CHM Transformation Fails - Compilation Failed

Problem

The DITA to CHM transformation fails with the following error: [exec] HHC5003: Error: Compilation failed while compiling fileName.

Cause 1

One possible cause for this error is that the processed file does not exist.

Solution 1

To solve this issue, fix the file reference before executing the transformation scenario again.

Cause 2

Another possible cause for this error is that the processed file has a name that contains space characters.

Solution 2

To solve the issue, remove any spacing from the file name and run the transformation scenario again.

Tip: It is a good practice to validate the DITA map (on page 3281) before executing the transformation scenario. To do so, run the Validate and Check for Completeness action (on page 3036). Depending on the selected options, this action reports errors, such as topics referenced in other topics (but not in the DITA map), broken links, and missing external resources.

Related Information:

- DITA Map to CHM (Compiled HTML Help) Transformation (on page 1664)

Drag and Drop Without Initial Selection Does Not Work

Problem

When I try to drag with the mouse an unselected file from the Project view (on page 333) or the DITA Maps Manager view (on page 2990), the drag doesn't start, it only selects the resource. I need to drag
the resource again after it becomes selected. Therefore, any drag and drop action without an initial selection becomes a two step operation. How can I fix this?

**Solution**

This is a bug present in JVM versions prior to 1.5.0_09. This issue is fixed in 1.5.0_09 and newer versions. See the installation instructions (on page 33) for setting a specific JVM version for running the Oxygen XML Editor application.

### Gray Window on Linux With the Compiz / Beryl Window Manager

**Problem**

I try to run Oxygen XML Editor on Linux with the Compiz / Beryl window manager but I only get a gray window that does not respond to user actions. Sometimes the Oxygen XML Editor window responds to user actions but after opening and closing an Oxygen XML Editor dialog, or after resizing the Oxygen XML Editor window or a view of the Oxygen XML Editor window, the content of this window becomes gray and it does not respond to user actions.

**Cause**

Sun Microsystems' Java virtual machine does not support the Compiz window manager and the Beryl one very well. It is expected that better support for Compiz / Beryl will be added in future versions of their Java virtual machine.

**Solution**

Try turning off the special effects for the Compiz / Beryl window manager before starting the Oxygen XML Editor application or switch to another window manager.

### Handshake Failure Error When Accessing an HTTPS (SSL) Resource

**Problem**

When attempting to access an HTTPS (SSL) resource, I receive a handshake_failure error.

**Cause**

The issue is most likely due to the limitation of Java cryptography capabilities.
Solution

A solution might be to download and deploy Java Cryptography Extension (JCE) Unlimited Strength Jurisdiction Policy Files 8 (for Java 8).

❗ Warning: It is possible that this may not be legal in your country. Be advised that you bare legal responsibility for activating unlimited strength Java cryptography capabilities, so you must have the legal right to use such cryptography (consult your export/import control counsel or attorney to determine the exact requirements for your jurisdiction).

To deploy it in Oxygen XML Editor, unpack the downloaded zip archive and move the two jar files (local_policy.jar and US_export_policy.jar) from UnlimitedJCEPolicyJDK8 to the following directory, overwriting existing files:

- **Windows** - [OXYGEN_INSTALL_DIR]/jre/lib/security
- **Linux** - [OXYGEN_INSTALL_DIR]/jre/lib/security
- **Mac OS X** - [OXYGEN_INSTALL_DIR]/jre.bundle/Contents/Home/jre/lib/security

Hunspell Spell Checker is Unusable on Your Platform Error

Problem

When trying to use the Check Spelling option, I receive the error Hunspell spell checker is unusable on your platform. It has crashed the application in a previous session.

Cause

There are instances where Oxygen XML Editor determines that an internal component (such as the spell checker) has crashed the application and disables that component from running in the future (to prevent a possible future crash).

Solution

To re-enable the spell checker component, follow these steps:

1. Close Oxygen XML Editor.
2. Open the %APPDATA%/com.oxygenxml folder and look for a file called something like HunspellCrashGuard*.txt. Delete that file.
3. Restart Oxygen XML Editor.
High Resolution Scaling Issues

Problem

I encounter scaling detection issues in a high resolution display. For example, some GUI components are too small.

Cause

This sometimes happens when using multiple displays with different resolutions because the application cannot detect the correct scaling setting.

Solution

You can use the `com.oxygenxml.hidpi.scaling` custom system property (on page 288) to force a specific scaling setting. For example: 

```
-Dcom.oxygenxml.hidpi.scaling=1.5
```

for 150% scaling.

Images Appear Stretched Out in the PDF Output

Problem

When publishing XML content (DITA, DocBook, etc.), images are sometimes scaled up in the PDF outputs but are displayed perfectly in the HTML (or WebHelp) output.

Solution

PDF output from XML content is obtained by first obtaining an intermediary XML format called XSL-FO and then applying an XSL-FO processor to it to obtain the PDF. This stretching problem is caused by the fact that all XSL-FO processors take into account the DPI (dots-per-inch) resolution when computing the size of the rendered image.

The PDF processor that comes out of the box with the application is the open-source Apache FOP processor. Here is what Apache FOP does when deciding the image size:

1. If the XSL-FO output contains width, height or a scale specified for the image `external-graphic` tag, then these dimensions are used. This means that if in the XML (DITA, DocBook, etc.) you set explicit dimensions to the image they will be used as such in the PDF output.
2. If there are no sizes (width, height or scale) specified on the image XML element, the processor looks at the image resolution information available in the image content. If the image has such a
resolution saved in it, the resolution will be used and combined with the image width and height to obtain the rendered image dimensions.

3. If the image does not contain resolution information inside, Apache FOP will look at the FOP configuration file for a default resolution. The FOP configuration file for XSLT transformations that output PDF is located in the \[OXYGEN_INSTALL_DIR\]/lib/fop.xconf. DITA publishing uses the DITA Open Toolkit that has the Apache FOP configuration file located in \[DITA-OT-DIR\]/plugins/org.dita.pdf2.fop/fop/conf/fop.xconf. The configuration file contains two XML elements called source-resolution and target-resolution. The values set to those elements can be increased (usually a DPI value of 110 or 120 should render the image in PDF the same as in the HTML output).

The commercial RenderX XEP XSL-FO processor behaves similarly but as a fallback it uses 120 as the DPI value instead of using a configuration file.

Tip: It is best to save your images without any DPI resolution information. For example, when saving a PNG image in the open-source GIMP image editor, you do not want to save the resolution.

This allows you to control the image resolution from the configuration file for all referenced images.

Increasing the Memory for the Ant Process

Problem

The Ant build process runs out of memory.

Solution

For details about setting custom JVM arguments to the Ant build process, see JVM Arguments (on page 3210).
Java Virtual Machine (JVM) Crash on Mac OS X

**Problem**

Oxygen XML Editor crashed the Apple Java virtual machine or it could not start up on my OS X computer due to a JVM crash.

**Cause**

Usually it is an incompatibility between the Apple JVM and a native library of the host system. More details are available in the crash log file generated by OS X and reported in the crash error message.

**Solution**

If this happens, it is best to send a copy of the logs via email to support@oxygenxml.com. Usually, the operating system will offer a prompt that allows you to see the logs. If not, you should be able to find the logs in the Console app (Applications > Utilities, under ~/Library/Logs/DiagnosticReports. They are usually named JavaApplicationStub*.crash/.hang.

JPEG CMYK Color Space Issues

**Problem**

JPEG images with the CMYK color profile and have the color profiles embedded in the image aren't rendered in the Author mode.

**Solution**

If the color profile information is missing from the JPEG image but you have the ICC file available, you can copy the profileFileName.icc to the {OXYGEN_INSTALL_DIR}\lib directory.

If the color space profile is missing, JPEG images that have the CMYK color space are rendered without taking the color profile into account. The Unsupported Image Type message is displayed above the image.
Keyboard Language Resets to Default on Windows

**Problem**

In Windows, I have set a specific language for my keyboard and while using Oxygen XML Editor, it keeps getting reset to the default language.

**Cause**

When multiple languages are enabled in Windows, the default shortcut key combination for switching the input language is **Left Alt + Shift**. Trying to use various shortcuts in Oxygen XML Editor that involves combinations of those two keys is probably resetting your input language to the default setting if you press those two keys without a third combination.

**Solution**

You can change the Windows shortcut keys that are assigned to the input language by going to the control panel and searching for the **Switch input languages** option. For example, in Windows 10, go to **Control Panel > Language > Advanced Setting**. In the **Switching input methods** section, click on **Change language bar hot keys**. Click the **Change Key Sequence** button. This opens a dialog box that allows you to switch the shortcut keys for the input language or keyboard layout.

Keyboard Shortcuts Do Not Work At All

**Problem**

The keyboard shortcuts listed in the **Menu Shortcut Keys preferences page (on page 248)** do not work.

**Cause**

Usually this happens when a special keyboard layout is set (in the operating system) that generates non-standard characters. For example, an extended Greek layout will generate special characters that are not present in the default Greek layout. This causes the Java virtual machine that runs the application to receive unexpected key codes.

**Solution**

Reset the keyboard layout to the standard layout for your particular language.
Keyboard Shortcuts Result in Unexpected Behavior

**Problem**

In some rare cases, using certain keyboard shortcuts listed in the Menu Shortcut Keys preferences page (on page 248) result in something different than what is listed in that preferences page.

**Cause**

This is usually caused by the operating system intercepting the keyboard shortcut. For example, certain applications or hardware drivers intercept certain keyboard shortcuts by default. Another example is if you have multiple input sources configured, the operating system might intercept shortcuts if they match the ones used to change between the input sources.

**Solution**

Assign a different keyboard shortcut for the particular action in the Menu Shortcut Keys preferences page (on page 248) or refer to documentation for your operating system or hardware equipment to see if there are options to change the behavior.

Mac Touch Bar Function Keys Do Not Work

**Problem**

I am using a Mac that has a Touch Bar but its function keys do not work in Oxygen XML Editor.

**Causes**

By default, the Touch Bar function keys are not enabled for Oxygen XML Editor.

**Solution**

To enable the Touch Bar function keys for Oxygen XML Editor, follow these steps:

1. Go to System Preferences and select Keyboard.
2. Click Shortcuts.
3. From the left sidebar, select Function Keys.
4. Click the + symbol, select Oxygen from the list of apps, and click Add.
Machine Signature Mismatch Error

Problem

I receive an error indicating that the current license was already activated on a License Server or that the License Server’s Machine Signature does not match.

During the license activation process, the license key becomes bound to a particular license server deployment. This means that a code that uniquely identifies your license server deployment (called Machine Signature) is sent to the Oxygen XML Editor servers, which in turn will sign the license key. The Machine Signature is computed from the list of network interfaces of the machine where you deployed the license.

When starting the license server, if you receive an error stating that your server’s Machine Signature does not match, there are several possible causes:

Possible Cause 1

The license key was moved to a new machine that hosts your license server.

Solution

Revert to your previous configuration.

Possible Cause 2

A new network interface was changed, added, or activated in the machine that hosts your license server.

Note: A specific example of when this could happen is if the Bluetooth or the WiFi module is activated/deactivated.

Solution

If reverting is not possible, contact the Oxygen support team.

Possible Cause 3

The license server was restarted from a different location as the previous restart. For example, some server configurations will have the Apache Tomcat server installed in a versioned folder (/usr/local/apache-tomcat-V.V.V) with a symbolic link to the typical folder (/usr/local/tomcat).
The server can be restarted from either location, but it is recommended to always restart from the typical folder (/usr/local/tomcat) and always restart from the same location.

**Solution**

The server simply needs to always be restarted from the same location.

**MSXML 4.0 Transformation Issues**

**Problem**

When running a transformation scenario that uses the MSXML 4.0 transformer, I receive an error that looks like this:

```
Could not create the 'MSXML2.DOMDocument.4.0' object.
Make sure that MSXML version 4.0 is correctly installed on the machine.
```

**Cause**

It is likely that the latest MSXML 4.0 service pack is not installed on your computer.

**Solution**

To fix this issue, go to the Microsoft website and get the latest MSXML 4.0 service pack.

**Navigation to a Web Page is Canceled when Viewing CHM on a Network Drive**

**Problem**

When viewing a CHM on a network drive, I only see the TOC and an empty page that displays the message: **Navigation to the web page was canceled**.

**Cause**

This is actually normal behavior. The Microsoft viewer for CHM does not display the topics for a CHM opened on a network drive.
Solution

As a workaround, copy the CHM file on your local system and view it there.

Out Of Memory Error When Opening Large Documents

Problem

I am trying to open a file larger than 100 MB in Oxygen XML Editor, but it runs out of memory (OutOfMemoryError).

Solution

You should make sure that the value of the Optimize loading in the Text edit mode for files over option (on page 155) is less than the size of your document. This will enable the optimized support for large documents. If that fails and you still get an Out Of Memory error you should increase the memory available to Oxygen XML Editor (on page 2946).

Other tips:

• Make sure that you close other files before opening the large file.
• You can set the default editing mode in the Preferences dialog box (on page 126). The Text editing mode uses less memory than other editing modes.
• If the file is too large for the editor to handle, you can open it in for viewing in Large File Viewer (on page 2764).

Rectangular Selection Feature Does Not Work On Windows

Problem

When trying to use the Rectangular Selection feature (on page 843) on Windows using both the keyboard and mouse, releasing the Alt key shifts the focus to the main menu instead of entering the edit mode.

Cause

This seems to be an issue caused by something that was changed in Java 8u172.
Solution

A workaround is to use Shift or Ctrl along with Alt and release them simultaneously.

References Outside the Main DITA Map Folder

Problem

A reference to a DITA topic, map, or binary resource (for example, an image) that is located outside of the folder where the main DITA map (on page 3281) is located leads to problems when publishing the content using the DITA Open Toolkit.

Cause

DITA-OT often has trouble resolving references that are outside the directory where the published DITA map is found. By default, it does not even copy the referenced topics to the output directory.

Solution

To solve this, try one of the following solutions:

- Create another DITA map that is located in a folder path above all referenced folders and reference the original DITA map from this new map. Then transform this DITA map instead.
- Edit the transformation scenario and in the Parameters tab, change the value of the fix.external.refs.com.oxygenxml parameter to true. This parameter is used to specify whether or not the application tries to fix such references in a temporary files folder before the DITA Open Toolkit is invoked on the fixed references. The fix has no impact on your edited DITA content. **Important:** The fix.external.refs.com.oxygenxml parameter is only supported when the DITA OT transformation process is started from Oxygen XML Editor.
- For PDF output, you can edit the transformation scenario and in the Parameters tab set the value of the generate.copy.outer parameter to 3. This parameter specifies whether to generate output files for content that is not located in or beneath the directory containing the DITA map file. By setting the value of this parameter to 3, the transformation scenario shifts the output directory so that it contains all output for the publication. **Important:** This method is recommended for transformation scenarios that use an external DITA-OT.
Saxon 9.7 Transformer Issues

**Problem**

I have upgraded to Oxygen XML Editor version 19.0 (which comes bundled with Saxon 9.7) and I am experiencing issues when trying to use the Saxon 9.7 transformer. Is it possible to use the Saxon 9.6 transformer with Oxygen XML Editor version 19.0 or later?

**Solution**

There is a plugin available that can be installed and it allows you to use Saxon 9.6. To install it, follow these instructions:

1. Go to Help > Install new add-ons to open an add-on selection dialog box.
2. Select the default update site from the drop-down menu (https://www.oxygenxml.com/InstData/Addons/default/updateSite.xml).
3. Select the Saxon 9.6 XSLT and XQuery Transformer plugin and click Next.
4. Select the I accept all terms of the end user license agreement option and click Finish.
5. Restart the application.

**Result:** When you configure the transformation scenario, you will now have the option to choose the Saxon 9.6 transformer.

Scroll Function of my Notebook Trackpad is Not Working

**Problem**

I got a new notebook (Lenovo Thinkpad™ with Windows) and noticed that the scroll function of my trackpad is not working in Oxygen XML Editor.

**Cause**

It is most likely a problem with the Synaptics™ trackpads.

**Solution**

Try adding the following lines to the C:\Program Files\Synaptics\SynTP\TP4table.dat file (depending on your version of Oxygen XML Editor). For example:

```
*,*,oxygen20.1.exe,*,*,*,WheelStd,1,9
```
Segmentation Fault Error on Mac OS X

**Problem**

On Mac OS X, the application gives a *Segmentation fault* error when I double-click the application icon. Sometimes it gives no error but it does not start.

**Solution**

Make sure you have the latest Java update from the Apple website installed. If this does not solve the problem, copy the *JavaApplicationStub* file from the `/System/Frameworks/JavaVM.framework` folder to the `Oxygen.app/Contents/MacOS` folder. To browse the `.app` folder, you have to use the *Command* key while clicking the Oxygen XML Editor icon and select *Show Package Contents*.

Special Characters are Replaced with a Square

**Problem**

My file was created with another application and it contains special characters (such as é, ©, ®, etc.) but Oxygen XML Editor displays a square for these characters.

**Solution**

You must set a font that is able to render the special characters in the *Font preferences* (on page 88). If it is a text file, you must also set the *encoding used for non XML files* (on page 123). If you want to set a font that is installed on your computer but that font is not accessible in the *Font preferences*, this means the Java virtual machine is not able to load the system fonts (probably because it is not a True Type font). It is a problem of the Java virtual machine and a possible solution is to copy the font file in the `[$JVM_DIR]/lib/fonts` folder. `$JVM_DIR` is the value of the property `java.home` that is available in the *System properties* tab of the *About* dialog box that is opened from menu *Help > About*. 
TocJS Transformation Does not Generate All Files for a Tree-Like TOC

Problem

The TocJS transformation of a DITA map (on page 3281) does not generate all the files needed to display the tree-like table of contents.

Solution

To get a complete set of output files, follow these steps:

1. Run the XHTML transformation on the same DITA map. Make sure the output gets generated in the same output folder as for the TocJS transformation.
2. Copy the content of the DITA-OT-DIR/plugins/com.sophos.tocjs/basefiles folder to the transformation output folder.
3. Copy the DITA-OT-DIR/plugins/com.sophos.tocjs/sample/basefiles/frameset.html file to the transformation output folder.
5. Locate element <frame name="contentwin" src="concepts/about.html">.
6. Replace "concepts/about.html" with "index.html".

Windows Service Reports Incorrect Function Error When Starting (TCP Server)

Problem

My TCP floating license server reports an "Incorrect Function" error message when starting the Windows service.

Cause

This usually appears because the Windows service launcher cannot locate a Java virtual machine on your system.

Solution

Make sure that you have installed a 32-bit Java SE from Oracle (or Sun) on the system: http://www.oracle.com/technetwork/java/javase/downloads/index.html.
Windows Service Reports Process Terminated Unexpectedly Error (TCP Server)

**Problem**

My TCP floating license server reports a "Process Terminated Unexpectedly" error message for the Windows service.

**Cause**

This error message appears if the Windows service launcher quits immediately after being started. This problem usually happens because the license key has not been correctly deployed (license.txt file in the license folder).

**Solution**

Re-deploy your license key. For more information, see the Setting up a Floating License Server section (on page 67).

Wrong Words are Highlighted when Searching in a User Manual

**Problem**

When I do a keyword search in the User Manual that is included with the Oxygen XML Editor application, the search highlights the wrong word in the text. Sometimes the highlighted word is several words after the matched word.

**Cause**

This does not happen when Oxygen XML Editor runs with a built-in Java virtual machine that was installed by Oxygen XML Editor in a subfolder of the installation folder (for example, on Windows and Linux when installing Oxygen XML Editor with the installation wizard specific for that platform). However, when Oxygen XML Editor runs from an All Platforms installation, it uses whatever JVM was found on the host system, which may be incompatible with the JavaHelp indexer used for creating the built-in User Manual. Such a JVM may offset the highlight of the matched word with several characters, usually to the right of the matched word.
XML Document Takes a Long Time to Open

**Problem**

Oxygen XML Editor takes a long time to open an XML document.

**Cause**

It takes longer to open an XML document if the whole content of your document is on a single line or if the document size is very large.

**Solution**

If the content is on a single line, you can speed up loading by selecting the Format and indent the document on open option (on page 159) (in the Format preferences page).

If the document is very large (above 30 MB), make sure that the value of the Optimize loading in the Text edit mode for files over option (on page 155) (in the Open preferences page) is greater than the size of your document.

If that fails and you get an Out Of Memory error (OutOfMemoryError) you can increase the memory available to Oxygen XML Editor. (on page 2946)

XSLT Debugger Is Very Slow

**Problem**

When I run a transformation in the XSLT Debugger perspective (on page 3285), it is very slow.

**Solution**

If the transformation produces HTML or XHTML output, you can disable rendering of output in the XHTML output view (on page 212) during the transformation process. To view the XHTML output result do one of the following:
• Run the transformation in the **Editor perspective (on page 3285)** and make sure the **Open in Browser/System Application** option (on page 1685) is selected.

• Run the transformation in the **XSLT Debugger perspective (on page 3285)**, save the text output area to a file, and use a browser application for viewing it (for example, Firefox or Internet Explorer).
21. DITA Authoring

DITA is an XML standard, an architectural approach, and a writing methodology, developed by technical communicators for technical communicators. It provides a standardised architectural framework (on page 3282) for a common structure for content that promotes the consistent creation, sharing, and re-use of content.

Some of the benefits of using DITA include the following:

- **Flexibility** - DITA is a topic-based architecture and it offers flexibility in content organization.
- **Modularity** - DITA allows for content reuse that saves time and reduces the number of modifications.
- **Structured Authoring** - DITA offers a standardized, methodological approach that helps to reduce authoring time and improve consistency.
- **Single-Source Publishing** - DITA provides the ability to change content in one place and have the change propagate everywhere.
- **Multiple Output Formats** - DITA supports multiple types of output.
- **Inheritance** - The DITA inheritance model makes it easy to specialize topics or elements within topics and you only have to define how the element is different from its immediate ancestor.
- **Process Automation** - DITA offers various ways to automate processes, such as with index or glossary production, output delivery, validation, and more.
- **Specialization** - DITA allows you to define your own information types and semantic elements/attributes to suit the needs of your particular content model.
- **Multi-Lingual** - DITA is a translation-friendly structure that supports numerous languages and text encodings.
- **Conditional Profiling** - DITA supports conditional text processing and profiling to filter content in the publishing stage.

This chapter is designed to be a guide to help content authors who use DITA. It also presents the Oxygen XML Editor features that are specific to working with DITA documents and concepts.

**DITA Resources**

For more general information and technical details about working with DITA, refer to the following resources:

- The DITA Specifications.
• The DITA Style Guide Best Practices for Authors.
• Various sample DITA topics and maps can be found in the \(\text{[OXYGEN_INSTALL_DIR]}/\text{samples/dita}\) folder.

Related Information:

• DITA Topics Document Type (Framework) (on page 1573)
• DITA Map Document Type (Framework) (on page 1596)

Getting Started with DITA

The information in this topic is meant to be a very basic starting point for those who are just getting started using DITA in Oxygen XML Editor. Oxygen XML Editor makes it easy to create, edit, manage, and publish DITA content, but it requires at least some basic DITA knowledge. To truly get the most out of Oxygen XML Editor and all of its DITA-related features, you should explore resources in the online DITA community to acquire knowledge of its concepts and uses.

Understanding DITA Topics

It is important to understand the role that a DITA topic plays in a DITA project. A DITA topic is not associated with a single published document. It is a separate entity that can potentially be included in many different books, help systems, or websites. Therefore, when you write a DITA topic you are not writing a book, a help system, or a website. You are writing an individual piece of content. This affects how you approach the writing task and how Oxygen XML Editor works to support you as you write.

Most of your topics are actually related to other topics, and those relationships can affect how you write and handle things such as links and content reuse. Oxygen XML Editor helps you manage those relationships. Depending on how your topics are related, you can use the tools provided in Oxygen XML Editor, along with the features of DITA, in a variety of ways.

Creating a DITA Topic in Oxygen XML Editor

To create a DITA topic (on page 3050):

1. Select File > New or click the New button on the toolbar.

Step Result: The New Document Wizard (on page 676) is displayed:

Figure 837. New DITA Document Wizard
2. Go to **Framework templates > DITA > topic** and select the type of topic that you want to create.

   **Note:** If your organization has created DITA customizations, the appropriate template files may be in another location, and various types of topics may be provided for your use. Check with the person who manages your DITA system to see if you should be using templates from another directory.

3. Select a file path where it will be saved. You can also optionally specify a title.

4. Click **Create**.

**Result:** Your document is opened in the editor. Eventually you will need to add a reference to it in your DITA map (on page 16).

Your DITA topic is an XML document, thus all the editing features that Oxygen XML Editor provides for editing XML documents (on page 8) also apply to DITA topics. Oxygen XML Editor also provides additional specific DITA-related support for working with DITA topics (on page 3048), their associated DITA maps (on page 2988), and for creating DITA output (on page 3171).

**Role of Maps**

The basic method that DITA uses to express the relationship between topics is through a **DITA map (on page 3281)**. Other relationships between topics, such as cross references, generally need to be made between topics in the same root map. DITA uses maps to determine which topics are part of
any output that you create. While customized DITA solutions can use other mechanisms, generally DITA is not used as a way to publish individual topics. Output is created from a map and includes all the topics referenced by the map.

A publication is not always represented by a single map. For instance, if you are writing a book, you might use a submap to create each chapter and then organize the chapters in a main root map to create the book. This helps you to manage your content, offers the possibility of reusing submaps, and segregates content to support multiple people working on the same project.

Creating a Map in Oxygen XML Editor

To create a map (on page 3007):

1. Select File > New or click the New button on the toolbar.
2. Go to Framework templates > DITA Map > map and select the type of map you want to create.
3. Choose whether you want to open the map in the Editor or in the DITA Maps Manager (on page 2990). Usually, opening it in the DITA Maps Manager is the best choice. The DITA Maps Manager presents a view of the DITA map that is similar to a table of contents.

![DITA Maps Manager View](image)

Adding Existing Topics to a Map in Oxygen XML Editor

There are several ways to add a topic reference to a map (on page 3010). Perhaps the easiest method is to add a reference to a topic that is already open in the editor:

1. Open the DITA topic in the main editing window.
2. Right-click the **DITA map** in the **DITA Maps Manager** view *(on page 2990)* and choose **Reference to the currently edited file** from the **Append Child**, **Insert Before**, or **Insert After** submenu.

**Step Result:** This opens the **Insert Reference** dialog box *(on page 3017)* with all of the required fields already filled in for you.

Figure 839. Insert Reference Dialog Box

3. You can fill in additional information in the various tabs in this dialog box or add it to the map later.
4. Select **Insert and close** to add a reference to your topic in the map.
5. Save the **DITA map**.

**Adding New Topics to a Map in Oxygen XML Editor**

As you add topics to your map, you may want to create a new topic as a child or sibling of another topic. This is usually done at the map level.

To **add a new topic to a map** *(on page 3010)*, follow these steps:

1. In the **DITA Maps Manager** *(on page 2990)*, right-click the node in the current map where you want to add the new topic.
2. Select one of the following actions:
   - **Append Child > New** - Select this action to insert the new topic as a child of the selected node. This action opens a **New file dialog box** *(on page 3051)* that allows you to select the
type of document and assists you with naming it. After you have configured your new topic, click Create.

- **Insert Before > New** - Select this action to insert the new topic as a sibling to the current node, before it. This action opens a New file dialog box (on page 3051) that allows you to select the type of document and assists you with naming it. After you have configured your new topic, click Create.

- **Insert After > New** - Select this action to insert the new topic as a sibling to the current node, after it. This action opens a New file dialog box (on page 3051) that allows you to select the type of document and assists you with naming it. After you have configured your new topic, click Create.

- **Duplicate** - Select this action to create a copy of the selected topic and insert it as a sibling. This action opens a dialog box that allows you to choose the file name and location for the newly created copy of the topic. After you have selected the name and path for your new topic, click OK.

**Step Result:** The new topic is now referenced (as a topicref) in the DITA map at the location where you inserted it and the new topic is opened in the editor.

3. Save the DITA map.

You can also change the order and nesting of topics in the DITA Maps Manager view by doing either of the following:

- Select the topic to move while holding down the Alt key and use the arrow keys to move it around.
- Use the mouse to drag and drop the topic to the desired location.

The way your parent and child topics are organized in any particular output depends on both the configuration of those topics in the map and the rules of the output transformation that is applied to them. Do not assume that your topics must have the same organization for all output types. The map defines the organization of the topics, not the topics themselves. It is possible to create a variety of maps, each with different organization and configuration options to produce a variety of outputs.

### Adding Submaps in Oxygen XML Editor

If you have a large set of information, such as a long book or extensive help system, a single map can become long and difficult to manage. To make it easier to manage, you can break up the content into smaller submaps (on page 3008). A submap might represent a chapter of a book, a section of a user manual, or a page on a website. To build a publication out of these smaller maps, you must add them to a map that represents the overall publication.

To add a child map to the current map (on page 3008):
1. Right-click the parent DITA map in the **DITA Maps Manager** view (on page 2990) and choose **Append child > Map reference**.

   **Step Result:** This opens the **Insert Reference** dialog box (on page 3017) with all of the required fields already filled in for you.

2. You can fill in additional information in the various tabs in this dialog box or add it to the map later.

3. Select **Insert and close** to add a reference to your submap in the main map.

4. Save the main DITA map.

### Validating a Map in Oxygen XML Editor

Just as it is with your individual topics, it is important to **validate your maps** (on page 3036). Oxygen XML Editor provides a validation function for **DITA maps** that does more than simply validating that the XML is well formed. It also does the following:

- Validates all of the relationships defined in the maps.
- Validates all of the files that are included in the map.
- Validates all of the links that are expressed in the files.

Validating the map that describes your entire publication validates all the files that make up the publication and all of the relationships between them.

To validate a map:

1. Click the **Validate and Check for Completeness** button in the **DITA Maps Manager** view (on page 2990).

   **Step Result:** This opens the **DITA Map Completeness Check** dialog box (on page 3037).

2. Select any of the various options you want to check.

3. Click **Check** to run the validation process.

### Publishing Your Topics in Oxygen XML Editor

As noted previously, in DITA standards you usually do not publish output from an individual topic. Instead, you **create published output** (on page 3171) by running a DITA transformation on a map. This collects all the topics that are referenced in the map, organizes them, and produces output in a particular format. By default, Oxygen XML Editor uses the transformations provided by the **DITA Open Toolkit** for publishing to various output formats (such as PDF, WebHelp or EPUB). Your organization may have created various custom transformations or modified the built-in **DITA Open Toolkit** transformations. In either case, Oxygen XML Editor manages them by using transformation scenarios.
To publish output for a map:

1. Click the Configure Transformation Scenario(s) button in the DITA Maps Manager view (on page 2990).

**Step Result:** This opens the Configure Transformation Scenario(s) dialog box (on page 1762).

![Configure Transformation Scenarios Dialog Box](image)

2. Select the appropriate transformation depending on the type of output you desire.
3. To change or view the configuration or storage options for a transformation scenario, select the transformation and click Edit.
4. Click Apply associated.

**Result:** Depending on the configuration of the transformation scenario, when the transformation is finished, your output may automatically be opened in the appropriate application.

Related Information:

- DITA Authoring (on page 2981)
- Editing XML Documents in Author Mode (on page 893)
Working with DITA Maps

In the DITA standard architecture you create documents by collecting topics into maps.

DITA Maps

A DITA map (on page 3281) organizes a set of topics into a hierarchy. In most output formats, the structure of the map becomes the structure of the table of contents. Oxygen XML Editor provides support for creating (on page 3007) and managing DITA maps (on page 3010) through the DITA Maps Manager (on page 2990). There are also specialized types of DITA maps, such as a bookmap (on page 3280), which is intended for creating the structure of a book.

Submaps

You do not have to create an entire publication using a single map. It is generally good practice to break up a large publication into several smaller submaps (on page 3008) that are easier to manage. You can reuse submaps in multiple publications by including them in each of the main maps. The DITA Maps Manager (on page 2990) provides support for easily creating and managing submaps.

Opening a DITA Map

There are several ways to open a DITA map and you can choose to open it in the DITA Maps Manager (on page 2990) or in the XML Editor. Use any of the following methods to open a map:

• To open a submap in its own tab in the DITA Maps Manager, simply double-click it (or right-click it and select Open).
• To open a map in the XML editor from the DITA Maps Manager, right-click it and select Open Map in Editor.
• Drag a DITA map file from your system browser and drop it in the XML editor. This will open the map in the editor.
• If you open a file with the .ditamap or .bookmap extension (from the Project view (on page 333) or a system browser), a dialog box is opened that offers you the choice of opening it in the XML editor or in the DITA Maps Manager.

Note: If you select the Do not show the dialog again option, it will always be opened in the method that you choose and you will not be asked in the future. However, you can reset this by selecting Always ask for the When opening a map option in the DITA preferences page (on page 225).

• To open a map in the DITA Maps Manager, you can right-click a map file in the Project view (on page 333) and select Open with > DITA Maps Manager.
• If you have a DITA map file open in the XML editor, you can open it in the DITA Maps Manager by right-clicking the title tab and selecting Open in DITA Maps Manager View.
Chunking DITA Maps

By default, many output types place a single topic on each output page. In some cases you may want to output multiple topics as a single output page (also known as chunking) (on page 3035). To support this, Oxygen XML Editor provides an Edit Properties dialog box (on page 3027) that allows you to easily configure the attributes of a topic to control how your table of contents and topics are rendered in the output.

Validating a Map

You should validate your maps (on page 3036) to make sure that the individual topics are valid and that the relationships between them are working. Oxygen XML Editor provides a validation function for DITA maps that performs a comprehensive validation of a map and its topics.

For more information about DITA editing, watch our video demonstration:

https://www.youtube.com/embed/t2cG3Xe1TXY

Related Information:

- DITA Map Document Type (Framework) (on page 1596)
- DITA Map Author Mode Actions (on page 1598)

DITA Maps Manager

Oxygen XML Editor provides a view for managing and editing DITA maps. The DITA Maps Manager view presents a DITA map as a Table of Contents. It allows you to navigate the topics and maps, make changes, and apply transformation scenarios to obtain various output formats. By default, it is located to the left of the main editor. If the view is not displayed, it can be opened by selecting it from the Window > Show View menu.

The DITA Maps Manager includes a variety of useful actions to help you edit and organize the structure of your DITA maps and topics. The actions that are available and their functions depend on the type of nodes that are selected in the DITA Maps Manager. If you select multiple sibling nodes, the result of the actions will be applied to all the selected nodes. If you select multiple nodes that are not on the same hierarchical level, the actions will be applied to the parent node and the child nodes will inherit certain attributes from the parent node.

Figure 841. DITA Maps Manager View
Opening Maps in the DITA Maps Manager

The DITA Maps Manager view supports opening multiple maps at the same time, with each one presented in its own tab. To open a DITA map in the DITA Maps Manager, use any of the following methods:

• To open a submap in its own tab, simply double-click it (or right-click it and select Open).

• If you open a file with a .ditamap or .bookmap extension (from the Project view (on page 333) or a system browser), a dialog box is opened that offers you the choice of opening it in the DITA Maps Manager or the XML editor.

  Note: If you select the Do not show the dialog again option, it will always be opened in the method that you choose and you will not be asked in the future. However, you can reset this by selecting the Always ask choice for the When opening a map option in the DITA preferences page (on page 225).

• Right-click a map file in the Project view (on page 333) and select Open with > DITA Maps Manager.

• If you have a DITA map file open in the XML editor, you can right-click the title tab and select Open in DITA Maps Manager View.

By default, when a map is opened in the DITA Maps Manager, its index is automatically refreshed. You can disable this feature by deselecting the Refresh index when opening a map in DITA Maps Manager option (on page 251) in the Open/Find Resource preferences page.
Submap Nodes

If your root map (on page 3287) (main DITA map) references other maps (submaps), they can be expanded and you can navigate their content in the DITA Maps Manager, but the references within those submaps are not editable unless you open the submap separately in its own tab. The references within submap nodes are shown with a gray background.

Moving Nodes in the DITA Maps Manager

You can move topics or nodes within the same map, or other maps, by dragging and dropping them into the desired position. You can arrange the nodes by dragging and dropping one or more nodes at a time. You can arrange multiple topics by dragging them while pressing the Ctrl or Shift key. Drop operations can be performed before, after, or as child of the targeted node.

Operations include:

Copy

Select the nodes you want to copy and start dragging them. Before dropping them in the appropriate place, press and hold the Ctrl key. The mouse pointer changes to a symbol to indicate that a copy operation is being performed.

Move

Select the nodes you want to move and drag and drop them in the appropriate place.

Promote (Alt + LeftArrow) / Demote (Alt + RightArrow)

You can move nodes between child and parent nodes by using the Promote (Alt + LeftArrow) and Demote (Alt + RightArrow) operations.

DITA Maps Manager Toolbar

The toolbar includes the following actions (also available in the DITA Maps menu) and their availability depend on the nodes that are selected:

Note: If multiple nodes are selected, the availability of the actions depends on the nodes that are selected.

Open Drop-down Menu

You can use this drop-down menu to open new DITA maps or to reopen recently viewed maps. The drop-down menu contains the following:
• List of recently viewed DITA maps that can be selected to reopen them.

• **Clear history** - Clears the history list of the recently viewed DITA maps.

• ![Open](open_icon) **Open** - Allows you to open the map in the DITA Maps Manager view (on page 2990). You can also open a map by dragging it from the file system explorer and dropping it into the DITA Maps Manager view (on page 2990).

• ![Open URL](open_url_icon) **Open URL** - Displays the Open URL dialog box where you can specify a URL (defined by a protocol, host, resource path, and an optional port) or use the browsing actions in the ![Browse for remote file](browse_icon) drop-down menu.

**Save (Ctrl (Meta on Mac OS)+S)**

Saves the current DITA map.

**Validate and Check for Completeness**

Checks the validity and integrity (on page 3036) of the map.

**Apply Transformation Scenario(s)**

Applies the DITA Map transformation scenario (on page 1641) that is associated with the current map.

**Configure Transformation Scenario(s)**

Opens the Configure Transformation Scenarios(s) dialog box (on page 1762) where you can edit or create transformation scenarios or associate a DITA Map transformation scenario (on page 1702) with the current map.

**Refresh References**

You can use this action to manually trigger a refresh and update of all referenced documents. This action is useful when the referenced documents are modified externally. When they are modified and saved from Oxygen XML Editor, the DITA map is updated automatically.

**Open Map in Editor with Resolved Topics**

Opens the DITA map in the main editor area with content from all topic references, expanded in-place. Content from the referenced topics is presented as read-only and you have to use the contextual menu action **Edit Reference** to open the topic for editing.

**Tip:** If you want to print the expanded content, you should consider changing the Styles drop-down to + Print ready.

**Open Map in Editor**
For complex operations that cannot be performed in the simplified DITA Maps Manager view (for instance, editing a relationship table) you can open the map in the main editing area.

Note: You can also use this action to open referenced DITA maps in the Editor.

Profiling/Conditional Text Drop-down Menu

This drop-down menu contains the following actions:

- **Show Profiling Colors and Styles** - Select this option to turn on conditional styling. To configure the colors and styles open the Preferences dialog box (Options > Preferences) (on page 79) and go to Editor > Edit modes > Author > Profiling/Conditional Text > Colors and Styles.

- **Show Profiling Attributes** - Select this option to display the values of the profiling attributes at the end of the titles of topic references. When selected, the values of the profiling attributes are displayed in both the DITA Maps Manager view and in the Author view.

- **Show Excluded Content** - Controls if the content filtered out by a particular condition set is hidden or grayed-out in the editor area and in the Outline (on page 347) and DITA Maps Manager views. When this option is selected, the content filtered by the currently applied condition set is grayed-out. To show only the content that matches the currently applied condition set, deselect this option.

- **Profiling Settings** - Opens the preferences page for adding and editing the profiling conditions that you can apply in the DITA Maps Manager view and the Author mode editing pane. When a profiling condition set (on page 975) is applied, the keys that are defined in the DITA map are gathered by filtering out the excluded content.

Link with Editor

Toggles the synchronization between the file path of the current editor and the selected topic reference in the DITA Maps Manager view. If enabled, it results in the following types of synchronizations:

- If you select a topic tab in the main editing area and it is referenced in the map currently opened in the DITA Maps Manager, the reference to that topic is selected in the DITA Maps Manager.

- If you have a map opened in both the DITA Maps Manager and the main editor, selecting the map tab in the main editing area opens that map in the DITA Maps Manager.
• If you have a map opened in both the DITA Maps Manager and the main editor (Author mode) and, selecting one or more topicrefs in the DITA Maps Manager will also select the same topicrefs in the main editor.

• If you have a map opened in both the DITA Maps Manager and the main editor (Author mode) and, selecting one or more topicrefs in the main editor will also select the same topicrefs in the DITA Maps Manager.

Settings

Show extended toolbar

Toggles whether or not the extended toolbar will be displayed in the DITA Maps Manager toolbar.

Show root map toolbar

Toggles whether or not the Root map option (on page 2995) will be displayed in the DITA Maps Manager toolbar.

Show topic titles

Toggles how topics are presented in the DITA Maps Manager. If selected, the title of each topic is shown. Otherwise, the file path (value of the href attribute) for each topic is shown.

Root map

Specifies a master DITA map (root map (on page 3287)) that Oxygen XML Editor uses to define a hierarchical structure of submaps and to establish a key space (on page 3283) that defines the keys that are propagated throughout the entire map structure. For more information, see Selecting a Root Map (on page 3007).

Browse Drop-down menu

You can use this drop-down menu to browse for root maps with the following choices:

• Browse for local file - Opens a local file browser dialog box, allowing you to select a local root map.

• Browse for remote file - Displays the Open URL dialog box (on page 694) that allows you to select a remotely stored root map.

• Browse for archived file - Displays the Archive Browser (on page 2191) that allows you to browse the content of an archive and choose a root map.

• Browse Data Source Explorer - Opens the Data Source Explorer (on page 2198) that allows you to browse the data sources defined in the Data Sources preferences page (on page 229).
Tip: You can open the Data Sources preferences page by using the Configure Database Sources shortcut from the Open URL dialog box.

- **Search for file** - Displays the Find Resource dialog box (on page 733) to search for a root map.

The following additional actions are displayed in the toolbar when the Show extended toolbar option is selected in the Settings menu:

- **Insert Topic Reference**
  
  Opens the Insert Reference dialog box (on page 3017) that allows you to insert references to targets such as topics, maps, topic sets, or key definitions.

- **Edit Properties**
  
  Opens the Edit Properties dialog box that allows you to configure the properties of a selected node. For more details about this dialog box, see Edit Properties Dialog Box (on page 3027).

- **Edit Attributes**
  
  Opens a small in-place editor that allows you to edit the attributes of a selected node. You can find more details about this action in the Attributes View in Author Mode (on page 426) topic.

- **Delete**
  
  Deletes the selected node.

- **Move Up**
  
  Moves the selected node up within the DITA map tree.

- **Move Down**
  
  Moves the selected node down within the DITA map tree.

- **Promote (Alt + LeftArrow)**
  
  Moves the selected node up one level to the level of its parent node.

- **Demote (Alt + RightArrow)**
  
  Moves the selected node down one level to the level of its child nodes.

**Contextual Menu of the DITA Maps Manager**

**Root Map**
The following actions can be invoked from the contextual menu on the root map (on page 3287) of an opened DITA map (many of them are also available in the DITA Maps menu):

- **Open Map in Editor**
  For complex operations that cannot be performed in the simplified DITA Maps Manager view (for instance, editing a relationship table) you can open the map in the main editing area.

- **Open Map in Editor with Resolved Topics**
  Opens the DITA map in the main editor area with content from all topic references, expanded in-place. Content from the referenced topics is presented as read-only and you have to use the contextual menu action **Edit Reference** to open the topic for editing.

- **Export DITA Map**
  Opens a dialog box that allows you to choose a destination for exporting the DITA map. It also includes an Export as Zip archive option that allows you to package the DITA map as a zip archive. The result will contain all directly and indirectly referenced topics from the DITA Map by following all topicref, conref, and xref elements.

- **Find Unreferenced Resources**
  Allows you to search for orphaned resources that are not referenced in the DITA maps.

- **Add to Review Task**
  This action can be used to add the selected documents to a task in the Content Fusion Tasks Manager view. Oxygen Content Fusion is a flexible, intuitive collaboration platform designed to adapt to any type of documentation review workflow. This functionality is available through a pre-installed connector add-on (on page 2679). To fully take advantage of all of the benefits and features of Content Fusion, your organization will need an Oxygen Content Fusion Enterprise Server. For more information, see the Oxygen Content Fusion website.

- **Edit Properties**
  Opens the Edit Properties dialog box that allows you to configure the properties of a selected node. For more details about this dialog box, see Edit Properties Dialog Box (on page 3027).

- **Fast Create Topics**
Opens the **Fast Create Topics** dialog box *(on page 3053)* that allows you to quickly create multiple skeleton topics at once and you can specify their hierarchical structure within the **DITA map (on page 3281)**.

### Append Child submenu

Container sub-menu for a number of actions that create a map node as a child of the currently selected node:

- **New** - Opens a dialog box that allows you to configure some options for inserting a new topic *(on page 3050)*.
- **Reference** - Inserts a reference to a topic file. You can find more details about this action in the **Inserting References (on page 3017)** topic.
- **Reference to the currently edited file** - Inserts a reference to the currently edited file. You can find more details about this action in the **Inserting References (on page 3017)** topic.
- **Key Reference** - Opens an **Insert Key Definition** dialog box that allows you to insert a targeted key definition *(on page 3026)* (for example, to target a resource such as an image or external link).
- **Key Reference with Keyword** - Opens an **Insert Key Definition** dialog box that allows you to define a key and a value inside a keyword *(on page 3026)*.
- A set of actions that open the **Insert Reference** dialog box *(on page 3017)* that allow you to insert various reference specializations (such as Anchor Reference, Glossary Reference, Map Reference, Navigation Reference, Topic Group, Topic Head, Topic Reference, Topic Set, Topic Set Reference).

### Search References

Searches all references to the current topic in the entire **DITA map (on page 3281)**.

### Refactoring submenu

The following actions are available from this submenu when invokes from a root map:

- **Rename resource**
  
  Allows you to change the name of a resource linked in the edited **DITA map (on page 3013)**.

- **Move resource**
Allows you to change the location on disk of a resource linked in the edited DITA map (on page 3013).

**Rename Key**

Use this operation to rename a key. It also updates all references to it. Note that it does not work on DITA 1.3 key scopes.

**Convert to Concept**

Use this operation to convert a DITA topic (of any type) to a DITA Concept topic type (for example, Topic to Concept).

**Convert to General Task**

Use this operation to convert a DITA topic (of any type) to a DITA General Task topic type (for example, Task to General Task). A DITA General Task is a less restrictive alternative to the Strict Task information type.

**Convert to Reference**

Use this operation to convert a DITA topic (of any type) to a DITA Reference topic type (for example, Topic to Reference).

**Convert to Task**

Use this operation to convert a DITA topic (of any type) to a DITA Task topic type (for example, Topic to Task).

**Convert to Topic**

Use this operation to convert a DITA topic (of any type) to a DITA Topic (for example, Task to Topic).

**Convert to Troubleshooting**

Use this operation to convert a DITA topic (of any type) to a DITA Troubleshooting topic type (for example, Topic to Troubleshooting).

**Other XML Refactoring Actions**

For your convenience, the last 5 XML Refactoring tool operations (on page 1139) that were finished or previewed will also appear in this submenu.

**XML Refactoring**

Opens the XML Refactoring tool wizard (on page 1139) that presents refactoring operations to assist you with managing the structure of your XML documents.
Find/Replace in Files

Opens the Find/Replace in Files dialog box (on page 745) that allows you to find and replace content across multiple files.

Check Spelling in Files

Allows you to spell check multiple files (on page 766).

Paste

Allows you to paste content from the clipboard into the DITA map.

Paste Before

Pastes the content of the clipboard (only if it is a part of the DITA map) before the currently selected DITA map node.

Paste After

Pastes the content of the clipboard (only if it is a part of the DITA map) after the currently selected DITA map node.

Expand All

Allows you to expand the entire DITA map structure.

Collapse All

Allows you to collapse the entire DITA map structure.

Editable Child Nodes

The following actions are available when the contextual menu is invoked on an editable child node of a DITA map (submaps need to be opened in the DITA Maps Manager to access these actions since they are in a read-only state in the parent map):

Note: If multiple nodes are selected, the availability of the actions depends on the nodes that are selected.

Open

Opens the selected resource in the editor.

Add to Review Task

This action can be used to add the selected documents to a task in the Content Fusion Tasks Manager view. Oxygen Content Fusion is a flexible, intuitive collaboration platform designed to adapt to any type of documentation review workflow. This functionality is available through a pre-installed connector add-on (on page 2679). To fully take advantage of all of the benefits and features of Content Fusion, your organization will
need an Oxygen Content Fusion Enterprise Server. For more information, see the Oxygen Content Fusion website.

**Edit Properties**

Opens the Edit Properties dialog box that allows you to configure the properties of a selected node. For more details about this dialog box, see Edit Properties Dialog Box (on page 3027).

**Fast Create Topics**

Opens the Fast Create Topics dialog box (on page 3053) that allows you to quickly create multiple skeleton topics at once and you can specify their hierarchical structure within the DITA map (on page 3281).

**Append Child submenu**

Container sub-menu for a number of actions that create a map node as a child of the currently selected node:

- **New** - Opens a dialog box that allows you to configure some options for inserting a new topic (on page 3050).
- **Reference** - Inserts a reference to a topic file. You can find more details about this action in the Inserting References (on page 3017) topic.
- **Reference to the currently edited file** - Inserts a reference to the currently edited file. You can find more details about this action in the Inserting References (on page 3017) topic.
- **Key Reference** - Opens an Insert Key Definition dialog box that allows you to insert a targeted key definition (on page 3026) (for example, to target a resource such as an image or external link).
- **Key Reference with Keyword** - Opens an Insert Key Definition dialog box that allows you to define a key and a value inside a keyword (on page 3026).
- A set of actions that open the Insert Reference dialog box (on page 3017) that allow you to insert various reference specializations (such as Anchor Reference, Glossary Reference, Map Reference, Navigation Reference, Topic Group, Topic Head, Topic Reference, Topic Set, Topic Set Reference).

**Insert Before submenu**

Container sub-menus for a number of actions that create a map node as a sibling of the currently selected node, above the current node in the map:
• **New** - Opens a dialog box that allows you to configure some options for inserting a new topic *(on page 3050).*

• ☐ **Reference** - Inserts a reference to a topic file. You can find more details about this action in the *Inserting References* *(on page 3017)* topic.

• **Reference to the currently edited file** - Inserts a reference to the currently edited file. You can find more details about this action in the *Inserting References* *(on page 3017)* topic.

• **Key Reference** - Opens an *Insert Key Definition* dialog box that allows you to insert a targeted key definition *(on page 3026)* (for example, to target a resource such as an image or external link).

• **Key Reference with Keyword** - Opens an *Insert Key Definition* dialog box that allows you to define a key and a value inside a keyword *(on page 3026).*

• A set of actions that open the *Insert Reference* dialog box *(on page 3017)* that allow you to insert various reference specializations (such as Anchor Reference, Glossary Reference, Map Reference, Navigation Reference, Topic Group, Topic Head, Topic Reference, Topic Set, Topic Set Reference).

**Insert After submenu**

Container sub-menus for a number of actions that create a map node as a sibling of the currently selected node, below the current node in the map:

• **New** - Opens a dialog box that allows you to configure some options for inserting a new topic *(on page 3050).*

• ☐ **Reference** - Inserts a reference to a topic file. You can find more details about this action in the *Inserting References* *(on page 3017)* topic.

• **Reference to the currently edited file** - Inserts a reference to the currently edited file. You can find more details about this action in the *Inserting References* *(on page 3017)* topic.

• **Key Reference** - Opens an *Insert Key Definition* dialog box that allows you to insert a targeted key definition *(on page 3026)* (for example, to target a resource such as an image or external link).

• **Key Reference with Keyword** - Opens an *Insert Key Definition* dialog box that allows you to define a key and a value inside a keyword *(on page 3026).*

• A set of actions that open the *Insert Reference* dialog box *(on page 3017)* that allow you to insert various reference specializations (such

Search References

Searches all references to the current topic in the entire DITA map (on page 3281).

Refactoring submenu

The following actions are available from this submenu:

Convert Markdown to DITA Topic (Available for Markdown documents)

Opens a dialog box that allows you to configure options for converting the Markdown document into a DITA topic (on page 1521).

Rename resource

Allows you to change the name of a resource linked in the edited DITA map (on page 3013).

Move resource

Allows you to change the location on disk of a resource linked in the edited DITA map (on page 3013).

Extract to New DITA Map

Use this operation to extract editable topics into a new DITA map. The operation will open a map creation dialog box where you can select the type of map and configure the title or file name. Click Create to complete the operation and a new DITA map will be inserted at the location where the action was invoked with the selected topic references moved into the new map.

Rename Key

Use this operation to rename a key. It also updates all references to it. Note that it does not work on DITA 1.3 key scopes.

Convert Nested Topics to New Topics (Available from the contextual menu of editable maps/nodes in the DITA Maps Manager (on page 2990))
Use this operation on topics that contain nested `<topic>` elements to convert each nested topic to a new topic. Also, the new topics are added in the DITA Maps Manager as the first child topics of the original topic.

**Convert Sections to New Topics (Available from the contextual menu of editable maps/nodes in the DITA Maps Manager (on page 2990))**

Use this operation on topics that contain multiple sections to convert each section to a new topic. Also, the new topics are added in the DITA Maps Manager as the first child topics of the original topic.

**Convert to Concept**

Use this operation to convert a DITA topic (of any type) to a DITA Concept topic type (for example, Topic to Concept).

**Convert to General Task**

Use this operation to convert a DITA topic (of any type) to a DITA General Task topic type (for example, Task to General Task). A DITA General Task is a less restrictive alternative to the Strict Task information type.

**Convert to Reference**

Use this operation to convert a DITA topic (of any type) to a DITA Reference topic type (for example, Topic to Reference).

**Convert to Task**

Use this operation to convert a DITA topic (of any type) to a DITA Task topic type (for example, Topic to Task).

**Convert to Topic**

Use this operation to convert a DITA topic (of any type) to a DITA Topic (for example, Task to Topic).

**Convert to Troubleshooting**

Use this operation to convert a DITA topic (of any type) to a DITA Troubleshooting topic type (for example, Topic to Troubleshooting).

**Other XML Refactoring Actions**

For your convenience, the last 5 XML Refactoring tool operations (on page 1139) that were finished or previewed will also appear in this submenu.
XML Refactoring

Opens the XML Refactoring tool wizard (on page 1139) that presents refactoring operations to assist you with managing the structure of your XML documents.

Find/Replace in Files

Opens the Find/Replace in Files dialog box (on page 745) that allows you to find and replace content across multiple files.

Check Spelling in Files

Allows you to spell check multiple files (on page 766).

Cut

Deletes the currently selected node and copies it to the clipboard.

Copy

Copies the currently selected node to the clipboard.

Paste

Allows you to paste content from the clipboard into the DITA map.

Paste Before

Pastes the content of the clipboard (only if it is a part of the DITA map) before the currently selected DITA map node.

Paste After

Pastes the content of the clipboard (only if it is a part of the DITA map) after the currently selected DITA map node.

Delete

Deletes the currently selected node from the DITA map.

Remove from Disk

This action can be used to remove the selected resource(s) from disk. Selecting this action will open a confirmation dialog box where you can also choose to remove the descendants by selecting the Also remove all descendants option. If you proceed, a search for references is triggered. If multiple references are detected for any of the selected resources, you will have the option to review them since this would lead to broken links.

Organize

Allows you to organize the DITA map with the several submenu actions:
• **Move Up** - Moves the selected node up within the *DITA map* tree.
• **Move Down** - Moves the selected node down within the *DITA map* tree.
• **Promote** *(Alt + LeftArrow)* - Moves the selected node up one level to the level of its parent node.
• **Demote** *(Alt + RightArrow)* - Moves the selected node down one level to the level of its child nodes.

**Expand All**

Allows you to expand the entire *DITA map* structure.

**Collapse All**

Allows you to collapse the entire *DITA map* structure.

**Other Nodes**

The following additional actions are available when the contextual menu is invoked from other nodes, such as a *submap* node or a relationship table:

**Open Map in Editor (available when invoking on a submap)**

Opens the currently selected *DITA map* in the editor.

**Open parent DITA map (available when invoking on a read-only topic reference or a submap reference)**

Opens the parent *DITA map* of the currently selected reference in the *DITA Maps Manager*.

**Edit Attributes (only available for relationship table nodes)**

Opens a small in-place editor that allows you to edit the attributes of a selected node. You can find more details about this action in the *Attributes View in Author Mode (on page 426)* topic.

**Edit Profiling Attributes (only available for relationship table nodes)**

Allows you to change the *profiling attributes (on page 969)* defined on the selected node.

For more information about the *DITA Maps Manager* view and many of its features, watch our video demonstration:

https://www.youtube.com/embed/ozFZz6YZMCY

**Related Information:**
Creating a Map

To create a DITA map (on page 3281), subject scheme map (on page 3288), bookmap (on page 3280), or other types of DITA maps, follow these steps:

1. Use the New Document wizard (on page 676) to start creating your map.
   
   Tip: If you want the map to be a submap, you can create it the same way by right-clicking the place in the current map where you want to add it (in the DITA Maps Manager (on page 2990)) and selecting New from the Append Child, Insert Before, or Insert After submenu.

2. Select one of the DITA Map templates from the Framework templates folder.

3. Click the Create button.

4. Select whether you want to open the map in the DITA Maps Manager (on page 2990) or the Editor.

5. Save the map using the Save button on the toolbar of the DITA Maps Manager view (on page 2990).

Related Information:

- Customizing Profiling Values with a Subject Scheme Map (on page 3243)
- Managing DITA Maps (on page 3010)

Selecting a Root Map

Oxygen XML Editor allows you to select a root map (on page 3287) (a master DITA map (on page 3281)) that defines a hierarchical structure of submaps and establishes a key space (on page 3283) that defines the keys used in all the other DITA maps and topics in the project. Specifying the correct root map helps to prevent validation problems when you work with keyrefs and also acts as the
foundation for content completion. All the keys that are defined in a root map are available in the submaps that are contained within the root map.

There are several ways to select or change the root map:

- The easiest method is to use the Root map drop-down menu (on page 2995) in the DITA Maps Manager (on page 2990) toolbar to select the appropriate root map.

- If you insert a key reference using the Cross Reference action from the Link drop-down menu (from the toolbar or Link submenu of the contextual menu) and keys are not gathered from the expected DITA map, you can change the root map by using the Change Root Map link in the Choose Key dialog box that is opened when you click the Choose Key Reference button.

- If you insert a content key reference or key reference using the Reuse Content action (from the toolbar, DITA menu, or Reuse submenu of the contextual menu) and keys are not gathered from the expected DITA map, you can change the root map by using the Change Root Map link in the Choose Key dialog box that is opened when you click the Choose Key Reference button.

For more information about the DITA root map support, watch our video demonstration:

https://www.youtube.com/embed/e81r3Y1qjnE

Creating DITA Submaps

You can break up a large DITA map (on page 3281) into more manageable pieces by creating submaps. A submap is simply a DITA map that is included by another DITA map. There is no separate markup for a submap.

For example, if you are creating a book, you might use one submap for each chapter of the book. If you are reusing a set of topics in multiple publications, you might collect them into a map and reuse the map as a submap in multiple other maps, rather than referencing the topics individually from the new maps.

You add a submap to a map the same way that you would add a new topic or insert an existing topic into a map (on page 3010), except you choose a map rather than a topic to create or add. When adding a submap to a map make sure that you use a mapref element or a topicref element with the format attribute set to ditamap. In most cases, Oxygen XML Editor takes care of this for you.

Adding a Submap to a Map

To add a submap to a map:

1. Right-click the place in the current map where you want to add the new submap.
2. To insert the submap as a child of the selected node, select **Append Child > New**. To insert the submap as a sibling to the current node, select **Insert After > New** or **Insert Before > New**.

**Step Result:** This opens a **New DITA file dialog box (on page 3050)** that allows you to select the type of document and assists you with naming it.

3. Select the type of map in one of the folders inside the **DITA Map** folder and give it a name (the file type should be `.ditamap`).

4. Click **Create** to insert the submap.

You can also manage and move submaps the same as you would with topics. For more information, see Managing DITA Maps (on page 3010).

Creating a Bookmap in DITA

If you want to create a traditional book in DITA, you can use a **bookmap (on page 3280)** to organize your topics into a book. A DITA **bookmap** is a specialized type of map, intended for creating output that is structured like a book. A **bookmap** allows you to add book-specific elements such as frontmatter, part, chapter, appendix, and backmatter to the map. How these book-specific elements are processed for publication is up to the processing script for each media. See the DITA documentation for details.

You can find additional support for creating books in DITA in the DITA for Publishers plugin, which is included with Oxygen XML Editor.

To create a book in DITA using a **bookmap**, follow these steps:

1. Create a new **bookmap (on page 3009)** (File > New > Framework templates > DITA Map > map > Bookmap). If you want the **bookmap** to be a submap, you can create it the same way by right-clicking the place in the current map where you want to add it (in the DITA Maps Manager (on page 2990)) and selecting New from the Append Child, Insert Before, or Insert After submenus.

2. Create the structure of your book by adding the appropriate book sections and defining containers for chapters and any appendices. To add sections to a **bookmap**, or children to a section, right-click the **bookmap** or section icon and choose any of the reference actions in the Append child menu. The selections offered in the menu will adjust depending on the element they are applied to. Consult the DITA documentation to fully understand the structure of a DITA **bookmap** and where to create each element.

3. Create special elements such as an **index (on page 3034)** and **table of contents (on page 3033)**. The index and table of contents will be generated by the build process, based on the content of the map and the topics it points to.

4. **Add topics (on page 3010)** to your chapters to add content to your book. You may find it easier to manage if you use **submaps (on page 3008)** to create the content of your chapters. This keeps your **bookmap** from becoming long and difficult to manage.
Managing DITA Maps

You may want to manage your DITA maps in a variety of ways, including:

- Change the order and nesting of topics in a map.
- Add topics to a map.
- Insert various types of references in a map.
- Find, move, or rename resources in a map.
- Change other properties of the items in a map.
- Use the Edit Properties dialog box to manage attributes, keys, metadata, or add profiling to any section of a map.

This section includes various topics that describe how you can manage DITA maps and resources.

For more information about the DITA Maps Manager view and many of its features, watch our video demonstration:

[https://www.youtube.com/embed/ozFZz6YZMCY](https://www.youtube.com/embed/ozFZz6YZMCY)

Change the Order of Topics in DITA Maps

You can change the order and nesting of the topics in a map in several ways:

- By dragging and dropping topics within the DITA Maps Manager.
- By highlighting a topic in the DITA Maps Manager, holding down the Alt key, and pressing the arrow keys.
- By showing the extended DITA Maps Manager toolbar (press the Settings icon on the DITA Maps Manager toolbar and select the extended toolbar) and then using the node moving buttons on the toolbar to move topics around in the map.

To understand how to organize topics in a DITA map using the DITA Maps Manager, you can examine and experiment with the sample map called flowers.ditamap, located in the [OXYGEN_INSTALL_DIR]/samples/dita folder.

Adding Topics to a DITA Map

When you are working in DITA, there are several approaches that you can use to create topics and maps. You can start by first creating topics and then assembling your finished topics into one or more documents by creating one or more maps, or you can start by creating a map and then adding new topics to it as you work.
The topics-first approach is generally more appropriate if you intend to do a lot of content reuse, as it encourages you to think of each topic as an independent unit that can be combined with other topics in various ways. The map-first approach will be more familiar to you if you are used to creating books or manuals as a whole. Oxygen XML Editor supports both approaches.

A DITA map (on page 3281) organizes content hierarchically, so you can add a topic as a child of the map root element or as a child or sibling of any item already in the map. Therefore, the first step to adding a topic to a map is always to choose the place it will be inserted into the map.

Adding Existing Topics to a Map

At the XML-level, a topic is added to a map by adding a reference to the map that points to the topic. There are a variety of reference types that you can use. The default type is the topicref element. See the DITA documentation for the full range of reference elements and their uses. Oxygen XML Editor provides several tools for inserting reference elements into a map:

Using the Insert Reference Dialog Box

The Insert Reference dialog box (on page 3017) allows you to create various reference types and configure the most commonly used attributes. You can open the Insert Reference dialog box with any of the following methods:

• Right-click an item in the current map where you want to add the reference, select Append Child, Insert Before, or Insert After and select the type of reference to enter.
• If the topic you want to add is currently open in the editor, you can right-click an item in the current map where you want to add the reference and select Reference to the currently edited file.
• Selecting an item in the map and click the Insert Reference button from the DITA Maps Manager toolbar.
• Select Insert Reference from the DITA Maps menu.

Dragging and Dropping a File into the DITA Maps Manager

You can add a topic to a DITA map by dragging and dropping the file into the DITA Maps Manager (on page 2990). You can drag and drop files from any of the following:

• Your OS file system explorer.
• The Project view (on page 333).
• The Open/Find Resource view (on page 344).

Adding topics this way will not open the Insert Reference dialog box, but you can adjust all the same properties by invoking the contextual menu from the topic and selecting Edit Properties.
Adding a New Topic to a Map

To add a new topic to a map, follow these steps:

1. In the DITA Maps Manager (on page 2990), right-click the node in the current map where you want to add the new topic.
2. Select one of the following actions:
   - **Append Child > New** - Select this action to insert the new topic as a child of the selected node. This action opens a New file dialog box (on page 3051) that allows you to select the type of document and assists you with naming it. After you have configured your new topic, click Create.
   - **Insert Before > New** - Select this action to insert the new topic as a sibling to the current node, before it. This action opens a New file dialog box (on page 3051) that allows you to select the type of document and assists you with naming it. After you have configured your new topic, click Create.
   - **Insert After > New** - Select this action to insert the new topic as a sibling to the current node, after it. This action opens a New file dialog box (on page 3051) that allows you to select the type of document and assists you with naming it. After you have configured your new topic, click Create.
   - **Duplicate** - Select this action to create a copy of the selected topic and insert it as a sibling. This action opens a dialog box that allows you to choose the file name and location for the newly created copy of the topic. After you have selected the name and path for your new topic, click OK.

   **Step Result:** The new topic is now referenced (as a topicref) in the DITA map at the location where you inserted it and the new topic is opened in the editor.
3. Save the DITA map.

Adding Multiple Skeleton Topics at Once

Oxygen XML Editor includes a feature in the DITA Maps Manager (on page 2990) that allows you to quickly create multiple skeleton topics at once and you can specify their hierarchical structure within the DITA map (on page 3281).

To access this feature, right-click a node in the DITA Maps Manager where you want the new topics to be inserted and select Fast Create Topics. This opens the Fast Create Topics dialog box where you can configure the structure for the new topics.

For more information, see Fast Create Multiple DITA Topics (on page 3053).
Adding Multiple References to the Same Topic in a Map

Oxygen XML Editor allows you to reuse entire topics by adding multiple references to the same topic in a DITA map. Whenever multiple references to the same topic are detected in the context of the current map in the DITA Maps Manager (on page 2990), an indicator will appear in the top-right corner of the Author mode editor that shows the number of times the topic is referenced in the DITA map. It also includes navigation arrows that allow you to jump to the next or previous reference.

Remove Topics from a Map

You can remove topics from a map in a number of ways. Some ways to remove a topic from a map include:

- Highlight the topic and press Delete or Backspace.
- Highlight the topic and click the ✕ Delete button on the DITA Maps Manager (on page 2990) extended toolbar.

Related Information:

- Fast Create Multiple DITA Topics (on page 3053)

Moving and Renaming Resources

You can move or rename resources on disk directly from Oxygen XML Editor and you have the option of updating all the references to the moved or renamed resources. For DITA resources (such as topics and maps), you can do this from the DITA Maps Manager view (on page 2990). For non-DITA resources (such as folders, images, html files, audio, video, text files, Markdown documents), you can do this from the Project view (on page 333).

Moving or Renaming DITA Resources (Topics or Maps)

To move or rename normal DITA resources (such as topics or maps), use one of the following actions available in the Refactoring submenu of the contextual menu when invoked on the resource in the DITA Maps Manager view (on page 2990):

- Refactoring > Move resource
This action allows you to change the location of a resource linked in the edited DITA map, using the Move resource dialog box. This dialog box contains the following options:

- **Destination** - Specifies the target location of the edited resource.
- **File name** - Allows you to change the name of the edited resource.
- **Update references** - Select this checkbox to update all references of the file in the edited DITA map and in the files referenced from the DITA map, preserving the completeness of the DITA map.
- **Preview** - Select this button to display a preview of the changes Oxygen XML Editor is about to make.
- **Move** - Moves the edited resource in the target location on disk.
- **Cancel** - Cancels the Move resource operation. No changes are applied.

**Refactoring > Rename resource**

This action allows you to change the name of a resource linked in the edited DITA map (on page 3281), using the Rename resource dialog box. This dialog box contains the following options:

- **New name** - Presents the current name and allows you to change it.
- **Update references** - Select this checkbox to update all references of the file in the edited DITA map and in the files referenced from the DITA map, preserving the completeness of the DITA map.
- **Preview** - Select this button to display a preview of the changes Oxygen XML Editor is about to make.
- **Rename** - Executes the Rename resource operation.
- **Cancel** - Cancels the Rename resource operation. No changes are applied.

⚠️ **Note:** If a root DITA map (on page 3287) is not defined, the move and rename actions are executed in the context of the current DITA map.

**Moving or Renaming Non-DITA Resources and Updating the References to Them**

To move or rename non-DITA resources (such as folders, images, html files, audio, video, text files, Markdown documents), you can simply follow the procedures described in Moving/Renaming Resources in the Project View (on page 720). However, this approach will not give you the option to update the references to the moved or renamed resources.

To perform move or rename operation on non-DITA resources while also updating all the references to them, use the following sets of procedures:
1. Enable *Master Files* support and add your root *DITA map* to the *Master Files* folder by following the procedure found here: How to Enable Master Files Support in DITA (on page 3266).

2. Move or rename resources and update the references to them by following the procedure found here: Moving or Renaming Non-DITA Resources and Updating the References to Them (on page 3267).

Related Information:

- Master Files Support in DITA (on page 3266)
- Finding Resources Not Referenced in DITA Maps (on page 3015)

Finding Resources Not Referenced in DITA Maps

Over the course of time, large projects can accumulate a vast amount of resources from a variety of sources. Especially in organizations with a large number of content authors or complex project structures, organizing the project resources can become a challenge. Over time a variety of actions can cause resources to become orphaned from *DITA maps* (on page 3281). To assist you with organizing project resources, Oxygen XML Editor includes the **Find Unreferenced Resources** action, that searches for such resources.

To perform this search, open the *DITA map* in the *DITA Maps Manager* (on page 2990), invoke the contextual menu on the *map*, and select the **Find Unreferenced Resources** action. It can also be selected from the *DITA Maps* menu. This action opens the **Find Unreferenced Resources** dialog box, shown below.

Figure 842. Find Unreferenced Resources Dialog Box
The Find Unreferenced Resources dialog box includes the following options:

- **DITA Maps** - Provides a list of DITA maps to be included in the search and allows you to Add maps to the list or Remove them.

- **Folders** - Provides a list of folders to be included in the search and allows you to Add or Remove specific folders. All files from this list of folders that are not referenced from the maps specified in the DITA Maps list will be reported.

- **Filters** - Provides three combo boxes that allow you to filter the search to include or exclude certain files or folders:
  - **Include files** - Allows you to filter specific files to include in the search.
  - **Exclude files** - Allows you to filter specific files to exclude from the search.
  - **Exclude folders** - Allows you to filter specific folders to exclude from the search.

  **Note:** In any of the filter combo boxes you can enter multiple filters by separating them with a comma and you can use the ? and * wildcards. Use the drop-down arrow to select a previously used filter pattern.

When you click the **Find** button, if the search operation finds unreferenced resources, they are displayed in the **Results** panel at the bottom of the editor. If you want to delete an unreferenced resource, you can right-click its result and select **Remove from Disk**. If you want to see the resource before deciding what to do with it, you can right-click its result and select **Show in Explorer**.
Inserting References in DITA Maps

A DITA map (on page 3281) may contain various types of references. The targets of the references can be a variety of references, such as chapters, maps, topics, topic sets, or key definitions. You can insert references to such targets with the Insert Reference dialog box (on page 3017).

This section explains how to insert and configure references (such as topic references, topic groups, topic headings, and key definitions) in a DITA map.

Insert Reference Dialog Box

The Insert Reference dialog box allows you to insert and configure references in DITA maps (on page 3281). There are numerous types of references that can be inserted into maps. They include references to topics, other maps, glossary terms, and keys. You can also use this dialog box to configure the attributes of a reference, add profiling or metadata, and define keys.

To open the Insert Reference dialog box, use one of the following methods:

- Select Reference, Reference to the currently edited file, or any of the other specific reference actions that are available from the Append Child, Insert Before, and Insert After submenus when invoking the contextual menu in the DITA Maps Manager (on page 2990).
  + To insert the reference as a child of the current node, select the reference from the Append Child submenu.
  + To insert the reference as a sibling of the current node, below the current node in the map, select the reference from the Insert After submenu.
  + To insert the reference as a sibling of the current node, above the current node in the map, select the reference from the Insert Before submenu.

  Note: The content of these submenus depends on the node that is selected in the DITA map tree when the contextual menu is invoked. For example, if the selected node is a topic reference (topicref), its possible child nodes include the following elements: anchorref, chapter, keydef, mapref, topicgroup, topichead, topicref, topicset, and topicsetref.

- Click the Insert Reference button on the DITA Maps Manager extended toolbar. This action will insert the reference as a sibling of the current node (below the current node in the map).
- Select Insert Reference from the DITA Maps menu. This action will insert the reference as a sibling of the current node (below the current node in the map).

For the Reference or Reference to the currently edited file actions, a Reference type drop-down list is displayed at the top of the Insert Reference dialog box and you can select the type of reference you want to insert. Depending on the place where the reference will be inserted, Oxygen XML Editor will propose only valid reference types. When you change the reference type, the fields in the various tabs of the dialog box are reconfigured depending upon the availability of the associated attributes. For the
other reference actions in the **Append Child**, **Insert Before**, and **Insert After** submenus, the reference type is automatically chosen based upon the invoked action and you cannot change it.

The main section of the dialog box includes the following tabs: **Target**, **Keys**, **Attributes**, **Metadata**, and **Profiling**.

**Target Tab**

Figure 843. Insert Reference Dialog Box - Target Tab

The **Target** tab of the **Insert Reference** dialog box allows you to specify information about the target reference. It includes the following sections and fields:

**Choose a file location section**

You can browse for and select the source target file by using the **Look in** drop-down list, browsing buttons, or file window in this section. You can use the **Files of type** drop-down menu to narrow the list of possible file types that will be displayed.

**URL**

Displays the path to the target and allows you to select or change it by using the combo box or browsing buttons.

**ID**
The drop-down list displays all of the target elements that are available for the selected target URL.

**Href**

The selected target automatically modifies this value to point to the corresponding `href` attribute of the target element.

**Note:** If the **Reference type** is a **Navigation Reference**, the **Href** field is changed to **Mapref**, since a `navref` element requires a `mapref` attribute instead.

### Keys Tab

![Insert Reference Dialog Box - Keys Tab](image)

The **Keys** tab allows you to use and define keys (on page 3024) for indirect referencing. For more information, see **Working with Keys in DITA** (on page 3116). This tab includes the following:

**Define keys**

Use this text field to define the `keys` attribute for the target.

**Key scopes**

Use this text field to define or edit the value of a `keyscope` attribute. **Key scopes** allow you to specify different sets of key definitions for different map branches.

**Key reference**

Instead of using the **Target** tab to select a file that contains the target reference, you can reference a key definition by using this text field. Use the **Choose key reference** button to access the list of keys that are already defined in the current **root map** (on page 3287).
The Attributes tab of the Insert Reference dialog box allows you to insert and edit attribute values for the target reference. This tab includes the following sections and actions:

**Navigation title**

This text field allows you to specify a custom navigation title for the target reference. If you want this attribute to always be populated with a detected value (based on the specifications for the target file), select the Navigation title checkbox for the Always fill values for attributes option in the DITA preferences page (on page 226). For references to DITA resources, you can enforce the use of the specified title by selecting the Lock checkbox (otherwise, the topic <title> takes precedence).

**Collection type**

This drop-down list allows you to select the collection-type attribute to create hierarchical linking between topics in a DITA map (for example, unordered, sequence, choice, family, -dita-use-conref-target).

**Type**

Allows you to select a type attribute (such as topic, task, concept, etc.) for the target element. If you want this attribute to always be populated with a detected value (based on the specifications for the target file), select the Type checkbox for the Always fill values for attributes option in the DITA preferences page (on page 226).

**Scope**

This property corresponds to the scope attribute of the target element. It is populated automatically, based on the selected file type, unless its value for the selected target file is the same as the default attribute value. If you want this attribute to always be
populated with a detected value based on the specifications (regardless of the default value), select the **Scope** checkbox for the **Always fill values for attributes** option in the **DITA preferences page** *(on page 226)*.

**Format**

This property corresponds to the `format` attribute of the target element. It is populated automatically, based on the selected file type, unless its value for the selected target file is the same as the default attribute value. If you want this attribute to always be populated with a detected value based on the specifications (regardless of the default value), select the **Format** checkbox for the **Always fill values for attributes** option in the **DITA preferences page** *(on page 226)*.

**Processing Role**

This drop-down list allows you to set the `processing-role` attribute to one of the allowed values for DITA reference elements (for example, `resource-only`, `normal`, `-dita-use-conref-target`).

**Other attributes table**

This table contains the attributes that are available for the selected reference. You can use this table to insert or edit the values of any of the listed attributes. Clicking a cell in the **Value** column allows you to use the combo box to enter, edit, or select attribute values.

**Metadata Tab**

**Figure 846. Insert Reference Dialog Box - Metadata Tab**

The **Metadata** tab allows you to add metadata elements to the target reference. Use the buttons on the right side of the tab to insert specific metadata elements (you can add the following metadata elements: `navtitle`, `linktext`, `shortdesc`, `keyword`, `indexterm`). The metadata elements are inserted inside a `topicmeta` element. The editing window allows you to easily insert and modify the content of the metadata that will be inserted.
The **Profiling** tab allows you to select or change profiling attributes for the selected reference. This tab displays profiling attributes and their values as determined by the following:

- If your root map *(on page 3287)* references a DITA subject scheme map *(on page 3288)* that defines values for the profiling attributes, those values are used.
- If your project defines project-level *(on page 3286)* configuration values for the profiling attributes *(on page 144)*, those values are used.
- If Oxygen XML Editor defines global-level *(on page 3283)* configuration values for the profiling attributes *(on page 144)*, they are used.
- Otherwise, a basic default set of profiling attributes and values are used.

When you modify a selection of values in this tab, the change will also automatically be reflected in the **Attributes** tab. For more information, see DITA Profiling / Conditional Text *(on page 3225)*.

**Finalizing Your Insert Reference Configuration**

Once you click **Insert** or **Insert and close**, the configured reference is added in the map.

**Tip:** You can easily insert multiple references by keeping the **Insert Reference** dialog box opened, using the **Insert** button.

**Related Information:**

- DITA Profiling / Conditional Text *(on page 3225)*
Inserting Topic Headings

The `topichead` element provides a title-only entry in a navigation map, as an alternative to the fully-linked title provided by the `topicref` element.

You can insert a topic heading by doing the following:

- Select **Topic Head** from the **Append Child, Insert Before, or Insert After** submenus when invoking the contextual menu in the **DITA Maps Manager** view (on page 2990).
- Open the **DITA map** in the XML editor (on page 2989) and select the **Insert Topic Heading** action from the main toolbar (or from the **Insert** submenu of the contextual menu).

Those actions open the **Insert Topic Head** dialog box (on page 3017) that allows you to easily insert a `topichead` element. A **Navigation title** ( `navtitle` attribute) is required but other attributes can also be specified from this dialog box (such as **Type**, **Scope**, **Format**, etc.)

Figure 848. Insert Topic Heading Dialog Box

**Related Information:**

- Insert Reference Dialog Box (on page 3017)
Inserting Topic Groups

The `topicgroup` element identifies a group of topics (such as a concepts, tasks, or references) or other resources. A `topicgroup` can contain other `topicgroup` elements, allowing you to express navigation or table-of-contents hierarchies, as well as implying relationships between the containing `topicgroup` and its children. You can set the collection-type of a container `topicgroup` to determine how its children are related to each other. Relationships end up expressed as links in the output (with each participant in a relationship having links to the other participants by default).

You can insert a topic group by doing the following:

- Select **Topic Group** from the **Append Child**, **Insert Before**, or **Insert After** submenus when invoking the contextual menu in the [DITA Maps Manager](on page 2990) view.

- Open the **DITA map** in the XML editor (on page 2989) and select the **Insert Topic Group** action from the main toolbar (or from the **Insert** submenu of the contextual menu).

Those actions open the **Insert Topic Group** dialog box (on page 3017) that allows you to easily insert a `topicgroup` element and various attributes can be specified (such as **Collection type**, **Type**, **Scope**, **Format**, etc.)

Figure 849. Insert Topic Group Dialog Box

![Insert Topic Group Dialog Box](image_url)

Related Information:

- Insert Reference Dialog Box ([on page 3017](#))
Defining Keys in DITA Maps

DITA uses keys (on page 3116) to insert content that may have different values in various circumstances. Keys provide the means for indirect referencing in DITA. This can make it easier to manage and to reuse content. In DITA, keys are defined in maps and can then be reused and referenced throughout the whole structure of the map. It is considered best practice to create a separate submap that contains all of the key definitions and reference that submap in the main (root) map (on page 3287). This makes it easier to manage since they're all in one location.

There are two types of key definitions that can be created in a map.

- Key with a value inside a keyword.
- Key with a target (for example, to target a resource such as an image or external link).

The following example is a DITA map (on page 3281) (a key definition submap) that contains some key definitions with various values for the product key and some targets to external URLs:

```xml
<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE map PUBLIC "-//OASIS//DTD DITA Map//EN" "map.dtd">
<map id="keydefs">
  <!-- product name -->
  <title>Key Definitions</title>
  <keydef keys="product" product="basic">
    <topicmeta>
      <keywords>
        <keyword>Basic Widget</keyword>
      </keywords>
    </topicmeta>
  </keydef>
  <keydef keys="product" product="pro">
    <topicmeta>
      <keywords>
        <keyword>Professional Widget</keyword>
      </keywords>
    </topicmeta>
  </keydef>
  <keydef keys="url_eula" href="https://www.example.com/eula.html" format="html" scope="external"/>
  <keydef keys="url_eula2" href="https://www.example.com/eula2.html" format="html" scope="external"/>
</map>
```
Note: The profiling of the names is now contained in the map, where it only has to occur once to reuse throughout the whole map structure.

Key Definition with a Keyword Value

To define a key with a value inside a keyword, follow these steps:

1. [Optional but Recommended] Create a submap (on page 3008) that will contain all of your key definitions and reference the submap in your main (root) map (if you don’t already have one created).
2. Open that map in the DITA Maps Manager (on page 2990).
3. Right-click the map or an item in the map where you want to add the reference and select Key Definition with Keyword from the Append Child, Insert Before, or Insert After submenu (depending on where you want to insert the key definition). This opens an Insert Key Definition dialog box.
4. Enter the name of the key in the Key field.
5. Enter the key’s value in the Keyword field.
6. Click Insert and close.

Tip: If you need to profile the key or add other attributes, you can right-click the key definition in the DITA Maps Manager, select Edit properties, and configure them in the Profiling tab or Attributes tab, respectively.

Key Definition with a Target

To insert a targeted key definition (for example, to target a resource such as an image or external link), follow these steps:

1. [Optional but Recommended] Create a submap (on page 3008) that will contain all of your key definitions and reference the submap in your main (root) map (if you don’t already have one created).
2. Open that map in the DITA Maps Manager (on page 2990).
3. Right-click the map or an item in the map where you want to add the reference and select Key Definition from the Append Child, Insert Before, or Insert After submenu (depending on where you want to insert the key definition in the DITA map). This opens an Insert Key Definition dialog box.
4. Go to the Keys tab and enter the name of the key in the Define keys field.
5. Go to the Target tab and select a target resource (such as an image or external link).

Tip: You can profile the key by using the Profiling tab and other attributes can also be defined in the Attributes tab.
6. Once you are done configuring the targeted key definition, click **Insert and close**.

**Related Information:**

- Working with Variable Text in DITA (*on page 3148*)
- Working with Keys in DITA (*on page 3116*)
- DITA 1.3 Specification: Indirect Key-based Addressing

**Edit Properties Dialog Box**

The **DITA Maps Manager** view (*on page 2990*) includes a feature that allows you to view and edit the properties of a selected node. The **Edit properties** action is available on both the **DITA Maps Manager** toolbar and in the contextual menu. This action is also available in the contextual menu when you edit a **DITA map** (*on page 3281*) document in **Author** mode. The action opens the **Edit Properties** dialog box and it includes several tabs with various functions and fields that are initialized with values based upon the node for which the action was invoked.

**Note:** If you select multiple sibling nodes and invoke the **Edit properties** action, only the **Profiling** tab will be available and your modifications in that tab will be applied to all the selected nodes. If you select multiple nodes that are not on the same hierarchical level, the other tabs will also be available and your modifications will be applied to the parent node (the child nodes will inherit the attributes of the parent node).

You can use the **Edit Properties** dialog box to modify or define attributes, metadata, profiling, or keys in **DITA maps** or topics. You can also use it to modify the title of **root maps** (*on page 3287*).

At the top of the **Edit Properties** dialog box, the **Reference type** drop-down list displays the type of the selected node and it depends on the node for which the action was invoked.

The main section of the dialog box includes the following tabs: **Target**, **Keys**, **Attributes**, **Metadata**, and **Profiling**. The availability of the tabs and their functions depend on the selected node. For example, if you invoke the action on a **root map** (*on page 3287*), only the **Attributes**, **Metadata**, and **Profiling** tabs are accessible and the **Title** property can be configured. Also, if you select multiple nodes, only the **Profiling** tab is available.

**Target Tab**

Figure 850. Edit Properties Dialog Box - Target Tab
The **Target** tab of the **Edit Properties** dialog box displays information about the target node on which the action was invoked and allows you to change the target. It includes the following sections and fields:

**Choose a file location section**

You can browse for and select the source target file by using the **Look in** drop-down list, browsing buttons, or file window in this section. You can use the **Files of type** drop-down menu to narrow the list of possible file types that will be displayed.

**URL**

Displays the path to the target and allows you to select or change it by using the combo box or browsing buttons.

**ID**

The drop-down list displays all of the target elements that are available for the selected target URL.

**Href**

The selected target automatically modifies this value to point to the corresponding `href` attribute of the target element.

**Note:** If the **Reference type** is a **Navigation Reference**, the **Href** field is changed to **Mapref**, since a `navref` element requires a `mapref` attribute instead.
**Keys Tab**

Figure 851. Edit Properties Dialog Box - Keys Tab

The **Keys** tab allows you to use and define keys (on page 3024) for indirect referencing. For more information, see Working with Keys in DITA (on page 3116). This tab includes the following:

**Define keys**

Use this text field to define the `keys` attribute for the target.

**Key scopes**

Use this text field to define or edit the value of a `keyscope` attribute. *Key scopes* allow you to specify different sets of key definitions for different map branches.

**Key reference**

Use this combo box (or the Choose key reference button) to select a key that is already defined in the root map (on page 3287).

---

**Attributes Tab**

Figure 852. Edit Properties Dialog Box - Attributes Tab
The Attributes tab of the Edit Properties dialog box allows you to insert and edit attribute values for the target node for which the action was invoked.

If the target is a root map (on page 3287), the tab displays the title of the map. You can change it in the Title text field and assign it to an Attribute, Element, or All.

Figure 853. Attributes Tab for a Root Map

For other types of targets, the tab includes the following sections and fields that can be used to edit the attributes of the target:

**Navigation title**

This text field allows you to specify a custom navigation title for the target reference. If you want this attribute to always be populated with a detected value (based on the specifications for the target file), select the Navigation title checkbox for the Always fill values for attributes option in the DITA preferences page (on page 226). For references to DITA resources, you can enforce the use of the specified title by selecting the Lock checkbox (otherwise, the topic <title> takes precedence).

**Tip:** You can also select the Prefer navigation title for topicref rendering option in the DITA preferences page (on page 226) to always enforce the use of the navtitle value rather than selecting this Lock option on individual topics.

**Collection type**
This drop-down list allows you to select the `collection-type` attribute to create hierarchical linking between topics in a DITA map (for example, unordered, sequence, choice, family, -dita-use-conref-target).

**Type**

Allows you to select a `type` attribute (such as topic, task, concept, etc.) for the target element. If you want this attribute to always be populated with a detected value (based on the specifications for the target file), select the Type checkbox for the Always fill values for attributes option in the DITA preferences page (on page 226).

**Scope**

This property corresponds to the `scope` attribute of the target element. It is populated automatically, based on the selected file type, unless its value for the selected target file is the same as the default attribute value. If you want this attribute to always be populated with a detected value based on the specifications (regardless of the default value), select the Scope checkbox for the Always fill values for attributes option in the DITA preferences page (on page 226).

**Format**

This property corresponds to the `format` attribute of the target element. It is populated automatically, based on the selected file type, unless its value for the selected target file is the same as the default attribute value. If you want this attribute to always be populated with a detected value based on the specifications (regardless of the default value), select the Format checkbox for the Always fill values for attributes option in the DITA preferences page (on page 226).

**Processing Role**

This drop-down list allows you to set the `processing-role` attribute to one of the allowed values for DITA reference elements (for example, resource-only, normal, -dita-use-conref-target).

**Other attributes table**

This table contains the attributes that are available for the selected reference. You can use this table to insert or edit the values of any of the listed attributes. Clicking a cell in the Value column allows you to use the combo box to enter, edit, or select attribute values.

**Metadata Tab**

Figure 854. Edit Properties Dialog Box - Metadata Tab
The **Metadata** tab allows you to add metadata elements to the target node. Use the buttons on the right side of the tab to insert specific metadata elements (you can add the following metadata elements: `navtitle`, `linktext`, `shortdesc`, `keyword`, `indexterm`). The metadata elements are inserted inside a `topicmeta` element. The editing window allows you to easily insert and modify the content of the metadata that will be inserted.

**Profiling Tab**

Figure 855. Edit Properties Dialog Box - Profiling Tab

The **Profiling** tab allows you to select or change profiling attributes for the selected target nodes. This tab displays profiling attributes and their values as determined by the following:

- If your root map (on page 3287) references a DITA subject scheme map (on page 3288) that defines values for the profiling attributes, those values are used.
- If your project defines project-level (on page 3286) configuration values for the profiling attributes (on page 144), those values are used.
- If Oxygen XML Editor defines global-level (on page 3283) configuration values for the profiling attributes (on page 144), they are used.
- Otherwise, a basic default set of profiling attributes and values are used.
If you have a large list of profiling attributes, you can use the text filter field to search for attributes or values, and you can expand or collapse attributes by using the Expand All/Collapse All buttons to the right of the text filter or the arrow button to the left of the profiling attribute name.

When you modify a selection of values in this tab, the change will also automatically be reflected in the Attributes tab. For more information, see DITA Profiling / Conditional Text (on page 3225).

**Note:** If you invoke the Edit properties action on a selection of multiple nodes that have different values for the same profiling attribute, a conflict panel will be displayed in the Profiling tab and you can choose between the following actions for resolving it:

- **Keep** - Preserves the current attribute values.
- **Change Now** - Allows you to edit the selection of values in this Profiling tab and the changes will be applied to all the selected nodes.

Figure 856. Profiling Conflict Panel

---

**Finalizing Your Modifications**

Once you click OK, all your changes are applied to the target node.

---

**Related Information:**

- DITA Profiling / Conditional Text (on page 3225)
- Working with Keys in DITA (on page 3116)

---

**Generating a Table of Contents in DITA**

In DITA, the order and hierarchy of the table of contents of a document is based directly on the DITA map that defines the document (on page 2988). In most cases, the processor generates a table of contents (TOC) based on the hierarchy of the topics in a DITA map. By default, each topicref element in a map represents a node in the TOC.

It is also possible to instruct DITA where the table of contents should occur (or other content lists, such as a list of figures or tables). If you want to instruct the processor to generate a table of contents
at a particular location within your DITA map structure, you can use the toc element in a bookmap (on page 3009) (as in the example below). For more information about the toc element, see https://docs.oasis-open.org/dita/v1.2/os/spec/langref/toc.html.

Example:

```
<bookmap>
    ....
    <frontmatter>
        <booklists>
            <toc href="chapter1.dita"/>
        </booklists>
    </frontmatter>
    ....
```

Creating an Index in DITA

In DITA, indexes are created from indexterm elements. You can insert index term elements:

- In the header of a topic. In paginated media, such as a printed book or a PDF, this results in an index entry that points to the page in which the topic starts, even if it is not the page in which the indexed term occurs.
- In the topicref element in a map that references the topic. This applies those index terms to that topic only when used in that map, allowing you to index topics differently in various publications. In paginated media, index entries point to the page in which the topic starts.
- In the body of a topic. In paginated media, this results in an index entry that points to the page in which the indexterm element occurs, even if that is not the page in which the topic starts.

To add index terms to the text of a topic of the topic header, create the elements as you normally would in Oxygen XML Editor (on page 3055). To add index terms to a map, open the map in the editor and add the elements, as you normally would, in a topic.

In some media, indexes will be generated automatically when index entries are found in the source. For other media, such as books, you may need to tell DITA where to place the index. For instance, to add an index to a bookmap (on page 3280), you need to add an indexlist element to the backmatter of the book.

1. Open your bookmap (on page 3009) in the DITA Maps Manager (on page 2990).
2. Right-click the bookmap and select Append Child > Backmatter.
   The Insert Reference dialog box (on page 3017) appears.
3. Click Insert and Close to insert the backmatter element.
4. Right-click the backmatter element and create a booklists element using Append Child > Book Lists.

5. Use the same steps to create an indexlist element.

**CAUTION:** Adding index entries and an indexlist to your project creates an instruction to the DITA publishing routines to create an index. There is no guarantee that all DITA output types or third-party customizations obey that instruction or create the index the way you want it. Modifying the output may be necessary to get the result you want.

## Resolving Topic References Through an XML Catalog

There are situations where you want to resolve URIs with an XML Catalog (on page 3289):

- You customized your DITA map (on page 3281) to reference topics using URIs instead of local paths.
- You have URI content references in your DITA topic files and you want to map them to local files when the map is transformed.

In such situations, you have to add the catalog to Oxygen XML Editor. The DITA Maps Manager view (on page 2990) will solve the displayed topic refs through the added XML catalog, as well as DITA map transformations (for PDF output, XHTML output, etc.)

To add an XML catalog to the DITA framework (on page 3282), follow these steps:

1. Create an XML catalog using the guidelines described in Working with XML Catalogs (on page 1123).
2. Open the Preferences dialog box (Options > Preferences) (on page 79) and go to Document Type Association.
3. Select the DITA document type and use the Edit, Duplicate, or Extend button to open a Document type configuration dialog box (on page 95).
4. Go to the Catalogs tab (on page 119).
5. Click on the Add button to open a dialog box that allows you to add your created XML Catalog to the list.
6. After adding your catalog, click OK. You may need to reopen any currently edited files that use the new catalog or run a manual Validate action (on page 1082) for the changes to take effect.

**Note:** You could also add your created catalog to the list of global catalogs in the XML Catalog preferences (on page 189) page.
Chunking DITA Topics

By default, when a DITA map (on page 3281) is published to an online format, each topic becomes a separate page in the output. In some cases, you may want to combine multiple source topics into one output page. For instance, you may want to combine several types of information into a single page, or you may have chosen to create many small DITA topics for reuse purposes but feel they are too small to be useful to a reader by themselves. This is referred to as chunking.

To chunk DITA topics, you set the chunking attribute on the topicref that contains the sub-topics in a DITA map. There are several values that you can set on the chunking attribute (for example, by-topic or to-content). See the DITA documentation for full details. To achieve the effects you want in your topics and table of contents, you may also need to set the toc and collection-type attributes on the sub-topics or container topic to suitable values. See the DITA documentation for details.

You can set the collection-type attribute on your topics using the Edit Properties action in the DITA Maps Manager (on page 2990). To set the toc and chunk attributes, you must open the map file in the editor and add or edit the attributes directly (double-click the map icon in the DITA Maps Manager (on page 2990) to open the map in the editor).

DITA Map Validation and Completeness Check

You should validate your DITA maps (on page 3281) regularly to make sure that your maps and topics are valid, and all of the relationships between them are working. Changing one topic, image, or piece of metadata may create errors in references that rely on them. You may not discover these problems all at once. Validate your map to catch all of these kinds of problems. The longer you wait between validating your maps, the more difficult it may be to detect and correct any errors you find.

Validating a DITA Map

To validate a DITA, follow these steps:

1. In the DITA Maps Manager view (on page 2990), make sure that the tab that holds your root map (on page 3287) is selected and that the Root map selection is set either to the name of your root map or to <current map>.
2. It is a good practice to refresh your DITA map before running the validation process. To do so, select the DITA map in the DITA Maps Manager view and click F5 (F5).
3. Click the Validate and Check for Completeness button on the DITA Maps Manager toolbar to open the DITA Map Completeness Check dialog box (on page 3037).
4. If you are using profiling, check the Use DITAVAL filters box and select the appropriate option.
5. Select any other options you want to check.
6. Click Check to run the validation process.
Validation Process

The validation process of a DITA map includes the following:

- Verifies that the file paths of the topic references are valid. For example, if an `href` attribute points to an invalid file path, it is reported as an error in the message panel at the bottom of the editor.
- Validates each referenced topic and map. Each topic file is opened and validated against the appropriate DITA DTD. If another DITA map is referenced in the main one, the referenced DITA map is verified recursively, applying the same algorithm as for the main map.
- If errors or warnings are found, they are displayed in a separate message pane at the bottom of the editor and clicking them takes you to the location of the error or warning in the file where it was found.

DITA Map Completeness Check Dialog Box

The DITA Map Completeness Check dialog box allows you to configure the DITA map validation.

Figure 857. DITA Map Completeness Check Dialog Box
You can configure the validation process with the following options that are available in the **DITA Map Completeness Check** dialog box:

**Batch validate referenced DITA resources**

This option specifies the level of validation that applies to referenced DITA files:

- If the checkbox is left unchecked (default setting), the DITA files will be validated using the rules defined in the DTD or XML Schema declared in the document.
- If the checkbox is selected, the DITA files will be validated using rules defined in their associated validation scenario (on page 1093).

**Check the existence of non-DITA references resources**

Extends the validation of referenced resources to non-DITA files.

**Include remote resources**

Select this option if you want to check that remote referenced binary resources (such as images, movie clips, ZIP archives) exist at the specified location.

**Use DITAVAL filters**

The content of the map is filtered by applying a profiling condition set (on page 3225) before validation. You can choose between the following options:

- **From the current condition set** - The map is filtered using the condition set currently applied in the **DITA Maps Manager view** (on page 2990). Clicking the **Details** icon opens a topic in the Oxygen XML Editor User Guide that explains how to create a profiling condition set.
- **From all available condition sets** - For each available condition set, the map content is filtered using that set before validation.
- **From the associated transformation scenario** - The filtering condition set is specified explicitly as a DITAVAL file in the current transformation scenario associated with the **DITA map**.
- **Other DITAVAL files** - For each DITAVAL file from this list, the map content is filtered using the DITAVAL file before validation. Use the **Add** or **Remove** buttons to configure the list. The **Add** button opens a dialog box that allows you to select a local or remote path to a DITAVAL file. You can specify the path by using the text field, its history drop-down, the **Insert Editor Variables** (on page 276) button, or the browsing actions in the **Browse** drop-down list.

**Report references to resources outside of the DITA map folder**
If selected, it will report any references to DITA resources that are located outside the main DITA map (on page 3287) folder.

**Report links to topics not referenced in DITA maps**

Checks that all the topics referenced by other topics are also linked in the DITA map.

**Report multiple references to the same topic**

If selected, it will report warnings when a topic is referenced multiple times in the DITA map, unless a unique copy-to attribute is used on the topicref element for any topic that is referenced multiple times.

For example, it will not report a warning if there is a topic referenced twice, but the second topicref has a copy-to attribute set:

```xml
<topicref href="topic.dita"/>
.....
<topicref href="topic.dita" copy-to="topic2.dita"/>
```

On the other hand, it will report a warning if there is a topic referenced twice and none of the reference-type elements has a copy-to attribute set or both of them have the copy-to attribute set to the same value:

```xml
<topicref href="topic.dita" copy-to="topic2.dita"/>
.....
<topicref href="topic.dita" copy-to="topic2.dita"/>
```

**Check for duplicate topic IDs within the DITA map context**

Checks for multiple topics with the same ID in the context of the entire map.

**Report duplicate key definitions**

Checks the DITA map for multiple key references with the same key defined for them. This is helpful because if you have two different resources with the same value for the keys attribute, all references will point to the first one encountered and the other will be ignored.

**Note:** This option takes key scopes (on page 3151) into account. For example, if you have something like this:

```xml
<topicref href="t2.dita" keys="k2"/>
<topicgroup keyscope="ks">
  <topicref href="t2.dita" keys="k2"/>
</topicgroup>
```
it will not report the "k2" key as a duplicate because it is defined in a key scope (on page 3151) on the second occurrence.

Report unreferenced key definitions

Checks the entire DITA map and reports any key definitions that are not referenced anywhere. Note that if the Use DITAVAL filters option (on page 3038) is selected, this check will search for unreferenced key definitions based upon your selected filter.

Report unreferenced reusable elements

Checks the entire DITA map and reports any detected reusable elements that are not referenced anywhere. It looks for elements that have an ID specified in the following types of topic references:

- Any topicref that contains a processing-role attribute set to resource-only.
- Any other referenced topic that contains elements that are reused elsewhere through a conref or conkeyref.

Report table layout problems

Looks for table layout problems. The types of errors that may be reported include:

- If a row has fewer cells than the number of columns detected.
- For a CALS table, if a cell has a vertical span greater than the available rows count.
- For a CALS table, if the number of cols is different than the number of columns detected from the table cols attribute.
- For a CALS table, if the number of columns detected from the table cols attribute is different than the number of columns detected in the table structure.
- For a CALS table, if the value of the cols, rowsep, or colsep attributes are not numeric.
- For a CALS table, if the namest, nameend, or colname attributes point to an incorrect column name.

Identify possible conflicts in profile attribute values

When the profiling attributes of a topic contain values that are not found in parent topic profiling attributes, the content of the topic is overshadowed when generating profiled output. This option reports these possible conflicts.

Report attributes and values that conflict with profiling preferences

Looks for profiling attributes and values that are not defined in the Profiling / Conditional Text preferences page (on page 144) (you can click the Profiling Preferences button to open this preferences page). It also checks if profiling attributes defined as single-value have multiple values set in the searched topics.
Additional Schematron checks

Allows you to select a Schematron file that Oxygen XML Editor will use for the validation of DITA resources. You can specify the path by using the text field, its history drop-down, the Insert Editor Variables (on page 276) button, or the browsing actions in the Browse drop-down list.

Export settings

Allows you to export the settings assigned in this dialog box to an XML file that you can share with other users or use on other systems.

Import settings

Allows you to import settings for this dialog box from an XML file that was created by the Export settings action.

Check

Use the Check button to begin the validation process. The options that you choose in this dialog box are preserved between sessions.

Related Information:

• DITA Maps Manager (on page 2990)

DITA Map Validation and Completeness Check from the Command-Line Interface

⚠️ Important: This command-line script requires a special Oxygen XML Scripting License and does not work with a normal Oxygen XML Editor license. For more information and to obtain an Oxygen XML Scripting License license, see the Oxygen XML Scripting Web Page.

You can execute a Validate and Check for Completeness operation (on page 3036) with a script ran from the command-line interface. The operation can be executed by running the following script:

• Windows:

  validateCheckDITA.bat -i mainDitamapPath -s settingsFile -r reportFile

• Linux:

  sh validateCheckDITA.sh -i mainDitamapPath -s settingsFile -r reportFile

• Mac OS X:

  sh validateCheckDITA.sh -i mainDitamapPath -s settingsFile -r reportFile
The script is located in the Oxygen XML Editor installation folder and can be integrated in an external batch process launched from the command-line interface. The script accepts a variety of command-line arguments that allow you to configure the validation.

The accepted arguments are as follows:

**mainDitamapPath**

The path to the main DITA map file to validate. This is a required parameter.

**settingsFile**

The options file for the validate and completeness check. This file can be obtained from the DITA Map Completeness Check dialog box by using the Export Settings action. If this parameter is missing, the default options for the validation will be used.

**reportFile**

The file where the validation report will be saved. If this parameter is missing, the report will be displayed in the console.

**Note:** When using this script, some of the options that appear in the DITA Map Completeness Check dialog box are ignored. The ignored options include:

- Batch validate referenced DITA resources
- Use DITAVAL filters: From the current condition set
- Use DITAVAL filters: From all available condition sets
- Use DITAVAL filters: From the associated transformation scenario
- Report attributes and values that conflict with profiling preferences

**Tip:** You can use DITAVAL filter files with the script by specifying one or more ditaval files in the Use DITAVAL filters: Other DITAVAL files option in the DITA Map Completeness Check dialog box.

**Result:** The validation result is displayed in the command line interface. This includes whether or not the validation was successful, the number of issues, and the path to the report file (if the reportFile parameter was used), or the actual content of the validation result if the reportFile parameter was not used.

**Restriction:** When using this script, the Saxon 9 XSLT processor used to apply custom Schematron checks is not licensed and therefore the Schematron cannot call external Java extensions.
DITA Map Author Mode Actions

A variety of actions are available in the DITA map (on page 3281) framework (on page 3282) that can be added to the DITA menu, the Author Custom Actions toolbar, the contextual menu, and the Content Completion Assistant (on page 3280).

DITA Map Toolbar and Menu Actions

When a DITA map is opened in Author mode, the following default actions are available on the DITA Map Author Custom Actions toolbar (by default, they are also available in the DITA menu and in various submenus of the contextual menu):

- **Insert New DITA Resource**
  
  Opens a New DITA file dialog box (on page 3050) where you can choose the type of DITA document to create and inserts a reference to it at the current position within the map.

- **Insert Topic Reference**
  
  Opens the Insert Reference dialog box (on page 3017) where you can configure a topic reference and inserts it at the current position within the map.

- **Reuse Content**
  
  Opens the Reuse Content dialog box (on page 3135) that allows you to insert and configure a content reference (conref), or a content key reference (conkeyref) at the cursor position.

- **Insert Topic Heading**
  
  Opens the Insert Reference dialog box (on page 3017) that allows you to insert a topic heading at the cursor position.

- **Insert Topic Group**
  
  Opens the Insert Reference dialog box (on page 3017) that allows you to insert a topic group at the cursor position.

- **Insert Relationship Table**
  
  Opens a dialog box that allows you to configure the relationship table to be inserted. The dialog box allows you to configure the number of rows and columns of the relationship table, if the header will be generated and if the title will be added.

- **Relationship Table Properties**
  
  Allows you to change the properties of rows in relationship tables.

- **Insert Relationship Row**
Inserts a new table row with empty cells. The action is available when the cursor position is inside a table.

**Insert Relationship Column**

Inserts a new table column with empty cells after the current column. The action is available when the cursor position is inside a table.

**Delete Relationship Column**

Deletes the table column where the cursor is located.

**Delete Relationship Row**

Deletes the table row where the cursor is located.

**Move Up**

Moves the selected node up one position on its same level.

**Move Down**

Moves the selected node down one position on its same level.

**Promote (Alt + LeftArrow)**

Moves the selected node up one level to the level of its parent node.

**Demote (Alt + RightArrow)**

Moves the selected node down one level to the level of its child nodes.

**DITA Menu Actions**

The following additional actions can be found in the DITA menu when editing a DITA map in Author mode:

**Refresh References**

You can use this action to manually trigger a refresh and update of all referenced resources.

**Tags display mode Submenu**

**Full Tags with Attributes**

Displays full tag names with attributes for both block (on page 3280) and inline elements (on page 3283). Oxygen XML Editor

**Full Tags**

Displays full tag names without attributes for both block and inline elements.
Block Tags
Displays full tag names for block elements and simple tags without names for inline elements.

Inline Tags
Displays full tag names for inline elements, while block elements are not displayed.

Partial Tags
Displays simple tags without names for inline elements, while block elements are not displayed.

No Tags
No tags are displayed. This is the most compact mode and is as close as possible to a word-processor view.

Configure Tags Display Mode
Use this option to go to the Author preferences page (on page 131) where you can configure the Tags Display Mode options.

Profiling/Conditional Text Submenu

Edit Profiling Attributes
Allows you to configure the profiling attributes (on page 969) and their values.

Show Profiling Colors and Styles
Select this option to turn on conditional styling.

Show Profiling Attributes
Select this option to turn on conditional text markers. They are displayed at the end of conditional text blocks, as a list of attribute name and their currently set values.

Show Excluded Content
When this option is selected, the content filtered by the currently applied condition set is grayed-out. To show only the content that matches the currently applied condition set, deselect this option.

List of all profiling condition sets that match the current document type
You can click a listed condition set (on page 975) to activate it.

Profiling Settings
Opens the profiling options preferences page (on page 144), where you can manage profiling attributes and profiling conditions sets. You can also configure the profiling styles and colors options from the colors/styles preferences page (on page 146) and the attributes rendering preferences page (on page 148).

**ID Options**

Opens the ID Options dialog box that allows you to configure options for generating IDs in Author mode. The dialog box includes the following:

**ID Pattern**

The pattern for the ID values that will be generated. This text field can be customized using constant strings or any of the Oxygen XML Editor Editor Variables (on page 276).

**Element name or class value to generate ID for**

The elements for which ID values will be generated, specified using class attribute values. To customize the list, use the Add, Edit, or Remove buttons.

**Auto generate IDs for elements**

If selected, Oxygen XML Editor will automatically generate unique IDs for the elements listed in this dialog box when they are created in Author mode.

**Remove IDs when copying content in the same document**

When copying and pasting content in the same document, this option allows you to control whether or not pasted elements that are listed in this dialog box should retain their existing IDs. To retain the element IDs, deselect this option.

**Note:** This option does not have an effect on content that is cut and pasted.

**Generate IDs**

Oxygen XML Editor generates unique IDs for the current element (or elements), depending on how the action is invoked:

- When invoked on a single selection, an ID is generated for the selected element at the cursor position.
• When invoked on a block of selected content, IDs are generated for all top-level elements and elements from the list in the ID Options dialog box that are found in the current selection.

**Note:** The Generate IDs action does not overwrite existing ID values. It only affects elements that do not already have an `id` attribute.

### DITA Map Contextual Menu Actions

In addition to many of the DITA Map toolbar actions (on page 1598) and the general Author mode contextual menu actions (on page 1065), the following DITA map framework-specific actions are also available in the contextual menu when editing in Author mode:

**Add File to Review Task**

This action can be used to add the current document to a task in the Content Fusion Tasks Manager view. Oxygen Content Fusion is a flexible, intuitive collaboration platform designed to adapt to any type of documentation review workflow. This functionality is available through a pre-installed connector add-on (on page 2679). To fully take advantage of all of the benefits and features of Content Fusion, your organization will need an Oxygen Content Fusion Enterprise Server. For more information, see the Oxygen Content Fusion website.

**Edit Properties**

Opens the Edit Properties dialog box that allows you to configure the properties of a selected node. For more details about this dialog box, see Edit Properties Dialog Box (on page 3027).

**Generate IDs**

Oxygen XML Editor generates unique IDs for the current element (or elements), depending on how the action is invoked:

• When invoked on a single selection, an ID is generated for the selected element at the cursor position.

• When invoked on a block of selected content, IDs are generated for all top-level elements and elements from the list in the ID Options dialog box that are found in the current selection.

**Note:** The Generate IDs action does not overwrite existing ID values. It only affects elements that do not already have an `id` attribute.
Finds the references to the `href` or `keys` attribute value of the topic/map reference element at the current cursor position, in all the topics from the current DITA map (opened in the DITA Maps Manager view (on page 2990)). The current topic/map reference element must have an `href` or `keys` attribute defined to complete the search.

**Show Key Definition**

Available for elements that have a `conkeyref` or `keyref` attribute set (or elements with an ancestor element that has a `conkeyref` or `keyref` attribute). It computes the key name and opens the DITA map (on page 3281) that contains the definition of the key with the element that defines that key selected.

**DITA Map Drag/Drop Actions**

Dragging a file from the Project view (on page 333) or DITA Maps Manager view (on page 2990) and dropping it into a DITA map document that is edited in Author mode creates a link to the dragged file (a `topicref` element, chapter, part, etc.) at the drop location.

**Open Topic from DITA Map in Author Mode**

When a DITA map is opened in Author mode, you can click the icon to the left of a topic to open that particular topic in the editor.

**Tip:** For information about customizing Author mode actions for a particular framework (on page 3282) (document type), see the Configuring Actions, Menus, Toolbars, Content Completion for a Framework (on page 2323) section.

**Related Information:**

- Configuring Actions, Menus, Toolbars, Content Completion for a Framework (on page 2323)

**Working with DITA Topics**

DITA is a structured writing format. Structure can have several meanings, all of which are relevant to DITA. This section includes information about working with DITA topics and the structure.

**Information Types**

The structure of a piece of content refers to how the words and images are selected and organized to convey information. One approach to structured writing is to divide content into discrete blocks that
contain various types of information, and then to combine those blocks to form publications. DITA is based on this approach, and encourages the author to write in discrete blocks called topics. DITA provides three base topic types (concept, task, and reference), a number of extended topic types, and the capability to create new topic types through specialization.

Text Structure

Every piece of text is made up of certain text structures, such as paragraphs, lists, and tables. DITA supports text structures through XML elements such as `p`, `ol`, and `simpletable`. The DITA markup specifies the text structures, but not how they will be published in various types of media. The formatting of text structures is determined by the output transformations and may be customized to meet the needs of various organizations and type of media.

Semantic Structure

Semantic structure is structure that shows the meaning of things. For example:

- A `task` element specifies that a block of content contains the description of a task.
- A `codeblock` element specifies that a block of text consists of programming code.
- A `uicontrol` element specifies that a word is the name of a control in a computer GUI.
- The `platform` profiling attribute specifies that a particular piece of content applies only to certain computing platforms.

Semantic structure is important in a structured writing system because it allows both authors and readers to find content, and it allows processing scripts to process various pieces of content differently, based on their role or meaning. This can be used to do things such as filtering content related to a specific product so that you can produce documentation on many products from the same source.

There can be many forms of semantics captured in a document set. DITA captures some of these in topics and some of them in maps. If you are using a CMS, it may capture additional semantics.

Document Semantics

Documents consist of elements that may be made up of the same basic text structures as the rest of the text, but have a special function within the structure of the document. For instance, both tables of contents and indexes are lists, but they play a special role in the document. Chapters and sections are just sequences of paragraphs and other text structures, yet they are meaningful in the structure of the document. In some cases, such as indexes and tables of contents, these structures can be generated from semantic information embedded in the source. For instance, a table of contents can be built by reading the titles of chapters and sections. DITA provides elements to describe common document semantics.
Subject Matter Semantics

In some cases, the semantics of the content relate directly to the subject matter that the content describes. For instance, DITA supports tags that allow you to mark a piece of text as the name of a window in a software application (\texttt{wintitle}), or to mark a piece of text as applying only to a particular product.

Audience Semantics

In some cases, the semantics of the content relate to the audience that it is addressed to. For instance, a topic might be addressed to a particular role, or to a person with a particular level of experience. DITA provides an \texttt{audience} element to capture audience metadata.

Creating Topic Structures

Oxygen XML Editor provides a number of tools to help you create topic structures:

- \textit{Content Completion Assistant (on page 3280)} - Shows you which elements can be created at the current position.
- \textit{Model view (on page 353)} - Shows you the complete structure supported by the current element.
- \textit{Outline view (on page 347)} - Shows you the current structure of your document.
- \texttt{DITA toolbar} - Helps you to easily insert many common structures.

Related Information:

- Getting Started with DITA (on page 13)
- DITA Topics Document Type (Framework) (on page 1573)

Creating a New DITA Topic

The basic building block for DITA information is the DITA topic. DITA provides a variety of specialized topic types, the most common of which are:

- \texttt{Topic} - The base topic type from which all other topic types are specialized. Typically, it is used when a more specialized topic type is inappropriate.
- \texttt{Task} - For procedural information such as how to use a dialog box.
- \texttt{Concept} - For general, conceptual information such as a description of a product or feature.
- \texttt{Reference} - For reference information.
Oxygen XML Editor also supports numerous other specialized topic types that you will find templates for in the various folders in the New DITA file dialog box (on page 3051). They include DITA 1.3 specializations, Lightweight DITA templates, MathML composites, Markdown documents, and other DITA specialized topic and DITA map (on page 3281) types such as Glossentry, Troubleshooting, Bookmap (on page 3280), and Subject Scheme Map (on page 3288).

To create a new DITA topic and add a reference to it in your DITA map (on page 3281), follow these steps:

1. In the DITA Maps Manager (on page 2990), right-click the node in the current map where you want to add the new topic.
2. Select one of the following actions:
   - Append Child > New - Select this action to insert the new topic as a child of the selected node. This action opens a New file dialog box (on page 3051) that allows you to select the type of document and assists you with naming it. After you have configured your new topic, click Create.
   - Insert Before > New - Select this action to insert the new topic as a sibling to the current node, before it. This action opens a New file dialog box (on page 3051) that allows you to select the type of document and assists you with naming it. After you have configured your new topic, click Create.
   - Insert After > New - Select this action to insert the new topic as a sibling to the current node, after it. This action opens a New file dialog box (on page 3051) that allows you to select the type of document and assists you with naming it. After you have configured your new topic, click Create.
   - Duplicate - Select this action to create a copy of the selected topic and insert it as a sibling. This action opens a dialog box that allows you to choose the file name and location for the newly created copy of the topic. After you have selected the name and path for your new topic, click OK.

   **Step Result:** The new topic is now referenced (as a topicref) in the DITA map at the location where you inserted it and the new topic is opened in the editor.
3. Save the DITA map.

**New DITA File Dialog Box**

The New DITA file dialog box allows you to create a new DITA topic using various types of DITA file templates and provides some options that help you to configure the new topic.

Figure 858. New DITA File Dialog Box
Note: The templates that appear in this dialog box include all templates that have an associated .properties file and the type property is set to dita, as well as templates that do not have an associated properties file or the type property is not defined. It will also include custom templates that you create using the procedures presented in Creating New Document Templates (on page 683).

The New DITA file dialog box includes the following features and options:

Choose a file template

Use the template preview pane to select the appropriate type of DITA file you want to create. Once you select a template, the other options will appear below the preview pane.

Tip: You can use the text filter field at the top of the dialog box to search for a specific template.

Title

Depending on the selected file template, the value of the Title field is set in:

- The title element of a DITA topic file. The title element needs to be the first child of the root element.
- The glossterm element of a Glossentry file.
New Topics Preferences

Pressing this button opens the DITA New Topics preference page (on page 227)

Save as

Use this option to specify a file name and path for the new file. You can specify the path by using the text field, the history drop-down, or the browsing actions in the · Browse drop-down menu.

Create

When you click this button, a reference (topicref) to the new topic is added to the current DITA map and the new topic is opened in the editor.

Related Information:

- Getting Started with DITA (on page 13)
- Adding Topics to a DITA Map (on page 3010)
- Working with Markdown Documents in DITA (on page 1520)
- Fast Create Multiple DITA Topics (on page 3053)

Fast Create Multiple DITA Topics

The DITA Maps Manager (on page 2990) includes a feature that allows you to quickly create multiple skeleton topics at once and you can specify their hierarchical structure within the DITA map (on page 3281). A common use-case for using this feature is when you need to insert a new chapter or section that will include multiple topics and you have the structure and titles planned out in advance.

Note: The Fast Create Topics feature works for the following types of local and remote resource protocols: file, http, https, ftp, ftps.

To access this feature, right-click a node in the DITA Maps Manager where you want the new topics to be inserted and select Fast Create Topics. This opens the Fast Create Topics dialog box where you can configure the structure for the new topics.

Figure 859. Fast Create Topics Dialog Box
The **Fast Create Topics** dialog box includes the following features and options:

**Hierarchy Text Pane**

Use this text area to enter the titles for your new topics, one per line, and specify the hierarchy by using indents (Tab or Space). Topic references will be created in the DITA map according to the hierarchy you enter in this section.

**File name generation rules**

The titles that you enter in the text pane will not only be used for the topic titles but also to generate their file names and you can click the [File name generation rules](on page 227) link to configure the rules for how those file names will be generated.

**Tip:** If you have added a file name prefix or suffix to the properties file for DITA document templates, the generated file name will include that prefix or suffix.

**File name prefix**

Use this option to add a specified prefix to the file name. If you have added a file name prefix to the properties file for DITA document templates, the prefix you enter here will override the one from the properties file.
File name suffix

Use this option to add a specified suffix to the end of the file name. If you have added a file name suffix to the properties file (on page 686) for DITA document templates, the suffix you enter here will override the one from the properties file.

Topic type

All of the topics that will be created will have the same DITA topic type, which is detected from the most recently created topic. You can click the Change button to select a different type from a list of possible DITA templates.

Tip: You can convert any of these new files to a different DITA topic type at a later time by using another feature that allows you to easily convert DITA documents to other types (on page 3059).

Add created topic hierarchy relative to the selection as

By default, the hierarchy of topics will be added to the DITA map as the First Child of the node where the action was invoked. You can change this to Last Child, Preceding Sibling, or Following Sibling if the selected node allows topics to be inserted as such.

Create

When you click Create, the specified hierarchy is added as topic references in the DITA map. The new documents are created as bare skeleton topics with only the topic title and possibly the root ID populated.

Tip: You can easily change the order of the topics in the DITA map (on page 3010) at a later time,

Related Information:

- Adding Topics to a DITA Map (on page 3010)
- Converting DITA Topics to Another Type (on page 3059)

Editing DITA Topics

Oxygen XML Editor provides a number of features to help you edit DITA topics. A DITA topic is an XML document, thus all the editing features that Oxygen XML Editor provides for editing XML documents also apply to DITA topics. Oxygen XML Editor also provides extensive additional support specifically for DITA.
Opening a DITA Topic

There are several ways to open a DITA topic in the XML editor. Use any of the following methods to open a topic:

- Double-click the topic in the DITA Maps Manager (on page 2990) (or right-click the topic and select Open).
- Double-click the file in the Project view (on page 333) (or right-click the file and select Open).
- If you have a DITA map (on page 3281) opened in the XML editor, you can click the icon to the left of the topic.
- Drag a DITA file from your system browser and drop it in the XML editor.

Visual Editing in Author Mode

DITA is an XML format (on page 8), although you do not have to write raw XML to create and edit DITA topics. Oxygen XML Editor provides a graphical view of your topics in Author mode (on page 402). Your topics will likely open in Author mode by default, so this is the first view you will see when you open or edit a DITA topic. If your topic does not open in Author mode, just click Author at the bottom left of the editor window to switch to this mode.

Author mode presents a graphical view of the document you are editing, similar to the view you would see in a word processor. However, there are some differences, including:

- **Author** mode is not a WYSIWYG view. It does not show you exactly what your content will look like when printed or displayed on-screen. The appearance of your output is determined by the DITA publishing process, and your organization may have modified that process to change how the output is displayed. Oxygen XML Editor has no way of determining what your final output will look like or where line breaks or page breaks will fall. Treat Author mode as a friendly visual editing environment, not a faithful preview of your output.
- Your document is still an XML document. **Author** mode creates a visual representation of your document by applying a CSS stylesheet to the XML. You can see the XML at any time by switching to Text mode (on page 303). You, or someone in your organization, can change how the **Author** view looks by changing the CSS stylesheet or providing an alternate stylesheet.
- Your aim in editing a DITA document is not to make it look right, but to create a complete and correct DITA XML document. **Author** mode keeps you informed of the correctness of your content by highlighting XML errors in the text and showing you the current status in a box at the top right of the editor window. Green means that your document is valid, yellow means valid with warnings, and red means invalid. Warnings and errors are displayed when you place the cursor on the error location.
Your XML elements may have attributes set on them. Conventionally, attributes are used to contain metadata that is not displayed to the reader. By default, attributes are not displayed in the Author view (though there are some exceptions) and cannot be edited directly in the Author view (though in some cases the CSS that drives the display may use form controls to let you edit attributes directly). To edit the attributes of an element, place your cursor on the element and press Alt+Enter to bring up the attribute editor. Alternatively, you can use the Attributes view (on page 426) to edit attributes.

Tip: You can select Hints from the Styles drop-down menu (available on the Author Styles toolbar) to display tooltips throughout the DITA document that offers additional information to help you with the DITA structure. For more information, see the Selecting and Combining Multiple CSS Styles (on page 2348) section.

Content Completion Assistance

Since it is a structured format, DITA only allows certain elements in certain places. The set of elements allowed differ from one DITA topic type to another (this is what makes one topic type different from another). To help you figure out which elements you can add in any given place and help you understand what they mean, Oxygen XML Editor has a number of Content Completion Assistant (on page 3280) features.

• The Enter key: In Author mode, the Enter key does not create line breaks, it brings up the Content Completion Assistant to help you enter a new element. In XML, you do not use line breaks to separate paragraphs. You create paragraphs by creating paragraph elements (element p in DITA) and tools insert the line breaks in the output and on-screen.

Figure 860. Content Completion Assistant

The Content Completion Assistant not only suggests new elements you can add. If you press Enter at the end of a block element (on page 3280) (such as a paragraph) it suggests creating a new element of the same type. If you press Enter in the middle of a block element, it suggests splitting that element into two elements.

A useful consequence of this behavior is that you can create a new paragraph simply by hitting Enter twice (just as you might in a text editor).
As you highlight an element name, a basic description of the element is displayed. Select the desired element and press Enter to create it.

To wrap an element around an existing element or piece of text, simply select it and press Enter and use the Content Completion Assistant to choose the wrapper element.

- The Model view: You can see the entire model of the current element by opening the Model view (Window > Show View > Model, if the view is not already open). The Model view shows you what type of content the current element can contain, all the child elements it can contain, all its permitted attributes, and their types.

Tip: You can also select Inline actions from the Styles drop-down menu (available on the Author Styles toolbar) to display possible elements that are allowed to be inserted at various locations throughout the DITA document. For more information, see the Selecting and Combining Multiple CSS Styles (on page 2348) section.

**DITA Editing Actions**

A variety of actions are available in the DITA framework (on page 3282) to specifically assist you with editing DITA documents. These various actions are available in the contextual menu, the DITA menu, the DITA (Author Custom Actions) toolbar, or the Content Completion Assistant.

The DITA toolbar contains buttons for inserting a number of common DITA elements (elements that are found in most DITA topic types).

If the DITA toolbar is not displayed, right-click anywhere on the toolbar area, select Configure Toolbars, and select it from the displayed dialog box.

Note: The DITA toolbar contains a list of the most common elements and actions for DITA, such as inserting an image, creating a link, inserting a content reference, or creating a table. It does not contain a button for inserting every possible DITA element. For a complete list of elements that you can insert at the current location in your document, press Enter to open the Content Completion Assistant.

Whenever the current document in the editor is a DITA document, the DITA menu is displayed in the menu bar. It contains a large number of actions for inserting elements, creating content references and keys, editing DITA documents, and controlling the display. These actions are specific to DITA and supplement the general editing commands available for all document types. Many of these actions are also conveniently available in the contextual menu. In addition to the DITA framework-specific actions (on page 1575), the contextual menu also includes various general Author mode contextual menu actions (on page 1065).
Converting DITA Topics to Another Type

Oxygen XML Editor includes a feature that allows you to convert an existing DITA document to a different topic type. For example, if you want to convert a DITA Task to a DITA Topic, or vice versa. There are several ways to access these refactoring actions and you can choose a scope for the operation and some filtering options.

**DITA Conversion Refactoring Operations for DITA**

The following conversion operations are available:

- **Convert Nested Topics to New Topics** *(Available from the contextual menu of editable maps/nodes in the DITA Maps Manager on page 2990)*
  
  Use this operation on topics that contain nested `<topic>` elements to convert each nested topic to a new topic. Also, the new topics are added in the DITA Maps Manager as the first child topics of the original topic.

- **Convert Sections to New Topics** *(Available from the contextual menu of editable maps/nodes in the DITA Maps Manager on page 2990)*
  
  Use this operation on topics that contain multiple sections to convert each section to a new topic. Also, the new topics are added in the DITA Maps Manager as the first child topics of the original topic.

- **Convert to Concept**
  
  Use this operation to convert a DITA topic (of any type) to a DITA Concept topic type (for example, Topic to Concept).

- **Convert to General Task**
  
  Use this operation to convert a DITA topic (of any type) to a DITA General Task topic type (for example, Task to General Task). A DITA General Task is a less restrictive alternative to the Strict Task information type.

- **Convert to Reference**
Use this operation to convert a DITA topic (of any type) to a DITA Reference topic type (for example, Topic to Reference).

**Convert to Task**

Use this operation to convert a DITA topic (of any type) to a DITA Task topic type (for example, Topic to Task).

**Convert to Topic**

Use this operation to convert a DITA topic (of any type) to a DITA Topic (for example, Task to Topic).

**Convert to Troubleshooting**

Use this operation to convert a DITA topic (of any type) to a DITA Troubleshooting topic type (for example, Topic to Troubleshooting).

**Methods for Accessing the DITA Conversion Refactoring Operations**

To access the conversion operations, use one of the following methods:

**Single Document Method**

With the document opened in the editor, right-click anywhere in the main editing pane (or right-click the topic reference in the DITA Maps Manager (on page 2990)), go to the Refactoring submenu, and choose whichever operation is appropriate for your needs.

**Multiple Documents At Once Method**

Select XML Refactoring from the Tools menu (or from the Refactoring submenu when you right-click one or more documents in the Project view (on page 333) or the DITA Maps Manager view (on page 2990)). Then select whichever operation is appropriate for your needs.

**XML Refactoring Wizard Dialog Box**

When you select any of the operations, Oxygen XML Editor proceeds to the XML Refactoring Wizard. If you used the Multiple Documents At Once Method (on page 3060), the wizard page allows you to choose a scope for the operation and some filtering options:

- **Scope** - Select from a variety of options to define the scope for which resources will be affected by the operation. For example, you can choose to affect all resources in the Project, All opened files, Current DITA map hierarchy, Selected reference, and others depending on the context.
- **Filters section**
  - **Include files** - Specifies files to be excluded from the operation. You can specify multiple files by separating them with commas and the patterns can include wildcards (such as * or ?).
- **Restrict to known XML file types only** - Excludes non-XML file types from the operation.
- **Look inside archives** - If this option is selected, the scope of the operation will include files inside archives.

If you used the **Single Document Method** *(on page 3060)*, the scope will be the current file so the scope and filtering options are not displayed.

You can then use one of the following buttons to proceed with the operation:

**Preview**

You can use the **Preview** button to open a comparison panel where you can review all the changes that will be made by the refactoring operation before applying the changes.

⚠️ **Warning**: It is always recommended to use the **Preview** button to make sure the operation is not going to do something unexpected and after you click the **Finish** button, any **Undo** action will only revert changes on the current document.

**Finish**

When you use the **Finish** button, behind the scenes Oxygen XML Editor maps the structure of the previous DITA document type to a structure that fits the new type. In some cases, especially when the previous structure was very complex, the conversion might result in an invalid structure and some manual adjustments might be required.

**Handling Special Characters When Generating New File Names**

For refactoring operations that generate a new file, if special characters are detected in an element that will be used to generate the new file name, the special characters will automatically be replaced with their ASCII equivalents (for example, Ä is changed to AE). If an ASCII equivalent does not exist, it will be replaced with an underline character (_). The purpose of this functionality is to avoid generating invalid file names.

It is possible to customize the list of replaceable symbols by editing the following XSLT character map file:

`{OXYGEN_INSTALL_DIR}/frameworks/dita/refactoring/utils/character-map.xsl`.

**Converting To and From DITA Specialization Document Types**

If you use your own **DITA specialization document type** *(on page 3260)*, you can modify the predefined conversion operations to work with your specialization by customizing the values of particular variables.

To use the conversion operations with your DITA specialization, follow these steps:
1. Locate the conversion stylesheets in the following directory: \{OXYGEN_INSTALL_DIR\}/frameworks/dita/refactoring/dita-files-conversion-system-stylesheets.
2. Each conversion operation has a stylesheet with the word entrypoint at the end of its name. Edit the appropriate *-entrypoint.xsl file (for example, to modify the Convert to Task operation, edit the convert-resource-to-task-entrypoint.xsl file).
3. Depending on whether you use a DTD, XML Schema, or Relax NG-based specialization, you can:
   a. Modify the values of the declared root-element, public-literal-target, and system-literal-target variables to match your specialization's DTD information.
   b. Modify the value of the declared schema-location variable to match the location of your specialization's XML schema.
   c. Modify the value of the declared xml-model-location variable to match your Relax NG specialization.
4. Save your changes to the stylesheet.
5. If you want to change the name of the operation that will be displayed in Oxygen XML Editor, follow these substeps:
   a. Locate the resource XML file for the same conversion operation in the following directory: \{OXYGEN_INSTALL_DIR\}/frameworks/dita/refactoring/ (for example, for the Convert to Task operation, it is convertResource2Task.xml).
   b. Edit that XML file and change the name attribute to match whatever you want to be displayed for that operation (for example, name="Convert to My DocType").
   c. Save your changes to the XML file.
6. Restart Oxygen XML Editor

**Result:** You should now see your changes when accessing the conversion operations (on page 3060).

**Tip:** You can also create your own customized refactoring operations. For more information, see Custom Refactoring Operations (on page 1153).

**Related Information:**
- Editing DITA Topics (on page 3055)
- Refactoring XML Documents (on page 1139)

**Working with Images in DITA Topics**

There are several ways to add images to a DITA topic, depending on if you want to create a figure element (with a title and caption), just insert an image inline, or if you want to use multiple versions of
a graphic depending on the situation. For instance, you might want to use a specific image for each
different product version or output media.

**Adding an Image Inline with the Insert Image Dialog Box**

Use the following procedure to add an image inline:

1. Place the cursor in the position you want the graphic to be inserted.
2. Select the ![Insert Image](image-insert.png) action. The Insert Image dialog box appears.

![Insert Image Dialog Box](image-insert-box.png)

3. Configure the options in this dialog box and click **Insert**.

The Insert Image dialog box includes the following options and features for inserting images into
a DITA document:

### Location

Use this option to specify a URL for the image as the value of an @href attribute
inside the `<image>` element. You can type the URL of the image you want to insert
or use browsing actions in the ![Browse](image-browse.png) drop-down menu (there is also a history
drop-down).

### Key

Use this option to insert the selected key as the value of a @keyref attribute inside
the `<image>` element. All keys that are presented in the dialog box are gathered
from the *root map (on page 3287)* of the current *DITA map*. You can use the
Choose Key Reference button to open the Choose Key dialog box that presents the list of keys available in the selected root map.

Note: If your defined keys are not listed in this dialog box, it is most likely trying to gather keys from the wrong root map. You can change the root map by using the Change Root Map link in the Choose Key dialog box or change it in the Root map option in the toolbar of the DITA Maps Manager.

Figure title

Use this text box to insert a <title> and <image> element inside a <fig>.

Alternate text

Use this text box to insert an <alt> element inside the <image>.

Size

Use this section to configure the Width and Height of the image, or Scale the image. Specifying a value in these options inserts a @width, @height, and @scale attribute, respectively.

Layout

Use the options in this section to insert @placement and @align attributes into the <image> element.

Preview

The Preview box shows a thumbnail of the selected image so that you can see a preview of the image before clicking Insert.

Adding an Image Inline with Drag/Drop (or Copy/Paste) Actions

You can drag images from your system explorer or the Project view (on page 333) and drop them into a DITA document (or copy and paste). This will insert the path of the image file as the value of the @href attribute in a DITA <image> element:

```xml
<image href="../images/image_file.png"/>
```

Tip: To replace an image, just drag and drop a new image over the existing one. Oxygen XML Editor will automatically update the reference to the new image.

Adding an Image in a Figure Element

To add an image in a figure:

1. Add a <fig> element to your document at the appropriate place.
2. Add a `<title>` and/or `<desc>` element to `<fig>`, according to your needs.

3. Add an `<image>` element (on page 3063) to the `<fig>` element.

**Note:** The `<fig>` element has a number of other child elements that may be appropriate to your content. See the DITA documentation for complete information about `<fig>`.

**Note:** The order that the content of the `<image>`, `<title>`, and `<desc>` elements will appear in the output is determined by the output transformation. If you want to change how they appear, you may have to modify the output transformation, rather than your source content.

### Floating Images in DITA Topics for PDF or XHTML Output

Oxygen XML Editor provides the possibility of floating an image to the left or right of blocks of content in DITA topics, for both PDF and XHTML output.

To float an image, you simply need to set the `@outputclass` attribute on the `<image>` element. The possible values are:

- `float-left`
- `float-right`

For example, the following DITA structure will present the image to the right of the paragraph content in the output:

```
<p><image href="../../images/Lilac.jpg" scale="45" outputclass="float-right"/>
  <b>Lilac</b> (<b>Syringa</b>) is a genus of about 20–25 species of flowering plants in the olive family (<b>Oleaceae</b>), native to Europe and Asia.
</p>
```

Figure 862. Image Floated to the Right

### Searching for References to Images

You can search for all references to an image by selecting **Search References** from the contextual menu. The result depends on how the image is defined, as follows:
• If the action is invoked on an `<image>` element that contains an `@href` attribute but does not include an `@id` attribute, all direct references to the image are reported. If the `<image>` element does have an `@id` attribute, all links to the specified ID are also reported.

• If the action is invoked on an `<image>` element that contains a `@keyref` attribute but does not include an `@id` attribute, all direct references to the image are reported along with all instances where the key is used. If the `<image>` element does have an `@id` attribute, all links to the specified ID are also reported.

Related Information:

- Image Maps in DITA (on page 1030)

---

Adding Video, Audio, and Embedded HTML Resources in DITA Topics

You can insert references to media resources (such as videos, audio clips, or embedded HTML frames) in your DITA topics. The media resources can be played directly in Author mode and in all HTML5-based outputs. There is a toolbar button ( görüntü ) that allows you to insert and configure a reference to the media resource. You can also drag media files from your system explorer or the Project view (on page 333) and drop them into your documents (or copy and paste them).

Table 80. Supported Media Types

<table>
<thead>
<tr>
<th>Media</th>
<th>Description</th>
<th>Type</th>
<th>Supported Size Properties</th>
</tr>
</thead>
<tbody>
<tr>
<td>mp3</td>
<td>Moving Picture Experts Group Layer-3 Audio</td>
<td>audio</td>
<td>Width</td>
</tr>
<tr>
<td>wav</td>
<td>Windows Wave</td>
<td>audio</td>
<td>Width</td>
</tr>
<tr>
<td>pcm</td>
<td>Pulse Code Modulation</td>
<td>audio</td>
<td>Width</td>
</tr>
<tr>
<td>m4a</td>
<td>Moving Picture Experts Group Layer-4 Audio</td>
<td>audio</td>
<td>Width</td>
</tr>
<tr>
<td>aif</td>
<td>Audio Interchange Format</td>
<td>audio</td>
<td>Width</td>
</tr>
<tr>
<td>mp4</td>
<td>Moving Picture Experts Group Layer-4 Video</td>
<td>video</td>
<td>Width &amp; Height</td>
</tr>
<tr>
<td>flv</td>
<td>Flash Video</td>
<td>video</td>
<td>Width &amp; Height</td>
</tr>
<tr>
<td>m4v</td>
<td>Itunes Video File</td>
<td>video</td>
<td>Width &amp; Height</td>
</tr>
</tbody>
</table>
### Adding a Media Resource

To insert a media resource in a DITA document, use the following procedure:

1. Place the cursor at the location where you want the media resource.
2. Select the **Insert Media Resource** action from the toolbar. The **Insert Media** dialog box appears.

   **Note:** You can also drag media files from your system explorer or the [Project view](on page 333) and drop them into your documents (or copy and paste them). Note that this method will bypass the **Insert Media** dialog box, so if you need to adjust the size you will need to adjust the @width or @height attributes manually.

   ![Insert Media Dialog Box](image)

3. Configure the options in this dialog box and click **Insert**.

   The **Insert Media** dialog box includes the following options:

   **Location**

   Use this option to specify a URL for the media resource as the value of a @data attribute inside the `<object>` element. You can type the URL of the resource you want to insert or use browsing actions in the  · **Browse** drop-down menu (there is also a history drop-down).
Key

Use this option to insert the selected key as the value of a `@datakeyref` attribute inside the `<object>` element. All keys that are presented in the dialog box are gathered from the root map (on page 3287) of the current DITA map. You can use the `Choose Key Reference` button to open the Choose Key dialog box that presents the list of keys available in the selected root map.

**Note:** If your defined keys are not listed in this dialog box, it is most likely trying to gather keys from the wrong root map. You can change the root map by using the Change Root Map link in the Choose Key dialog box or change it in the Root map option in the toolbar of the DITA Maps Manager.

Type

Oxygen XML Editor detects and automatically selects the media type based upon the specified resource in the URL field (on page 3067). You can manually change the type, but keep in mind that in the publishing stage the object element is converted to an HTML5 element (on page 3068) based upon the type selected here. You can choose between: audio, video, or iframe.

Size

Use this section to configure the Width and Height of the frame for the media resource. Specifying a value in these options inserts a `width` and `height` attribute, respectively. For audio clips, only the Width can be adjusted.

**Result in Author Mode:** A reference to the specified video, audio, or embedded HTML frame is inserted in an object element and it is rendered in Author mode so that it can be played directly from there.

⚠️ **Attention:**

- On Ubuntu 17.10, if you receive an error when trying to play videos in Author mode, you need to install the `libavformat57` library.

**Result in Output:** In the publishing stage, the object element is converted to an HTML5 element so that it can be rendered properly and played in all HTML5-based outputs.

- **Videos** - The object element is converted to an HTML5 `video` element.
- **Audio Clips** - The object element is converted to an HTML5 `audio` element.
- **Embedded HTML Frames** - The object element is converted to an HTML5 `iframe` element.

**Tip:** There is an even faster way of inserting an embedded video (such as a YouTube or Vimeo). If you copy the embed code from the source (for example, you can right-click on a YouTube video
and select **Copy embed code**), you can then paste the contents of the clipboard in the **URL field (on page 3067)** and the **Type (on page 3068)** will automatically be set on **iframe**, while the **Width and Height (on page 3068)** will be populated according to the detected size, and an **allowfullscreen** parameter will automatically be added (set the value of this parameter to **true** to allow videos to play in full screen mode once the document is converted to XHTML output).

**Inserting Media in HTML Outputs That Do Not Support Embedded Media**

For certain types of HTML output (for example, CHM) that do not support embedded media (such as videos or audio files), Oxygen XML Editor provides a parameter that can be set in the transformation scenario to present the media object as a plain link in the output.

This can be achieved by following these steps:

1. **Edit the DITA transformation scenario (on page 3196)** for the output type that does not support embedded objects (for example, **DITA Map CHM**).
2. Go to the **Parameters tab (on page 3205)** and click the **New** button to add a new parameter.
3. For the **Name**, enter: **com.oxygenxml.xhtml.linkToMediaResources**.
4. For the **Value**, enter: **true**.
5. Click **OK** and continue on to run the transformation.

**Result:** The media object will appear in the output as a plain link instead of an embedded object.

For more information, see the following video demonstration:

[https://www.youtube.com/embed/llX11gS4WaU](https://www.youtube.com/embed/llX11gS4WaU)

**Related Information:**

- Working with Images in DITA Topics (on page 3062)
- How to Add Video and Audio Objects in DITA WebHelp Output (on page 1964)

**Image Maps in DITA**

Oxygen XML Editor includes support for **image maps** in DITA documents through the use of the **imagemap** element. This feature provides an easy way to create hyperlinks in various areas within an image without having to divide the image into separate image files. The visual **Author** editing mode includes an **Image Map Editor** that helps you to easily create and configure image maps.

Figure 864. Image Map Editor in DITA
Image Map Editor Interface in DITA

The interface of the Image Map Editor consists of the following sections and actions:

**Toolbar**

- **New Rectangle**
  
  Use this button to draw a rectangular shape over an area in the image. You can drag any of the four points to adjust the size and shape of the rectangle.

- **New Circle**
  
  Use this button to draw a circle over an area in the image. You can drag any of the four points to adjust the size of the circle.

- **New Polygon**
  
  Use this button to draw a polygon shape over an area in the image. This action opens a dialog box that allows you to select the number of points for the polygon. You can drag any of the points to adjust the size and shape of the polygon.

- **New Free Form Shape**
Use this button to draw a free form shape over an area in the image. After selecting this button, left-click anywhere in the image to place the first point of your shape. Then move the cursor to the location of the next desired point and left-click to place the next point, and so on. To complete the shape (area), click the first point again and a line will automatically be added from the last point that was added, or simply double-click the last point to automatically add the line from the last point back to the first.

Duplicate
Use this button to create a duplicate of the currently selected shape.

Delete
Use this button to delete the currently selected shape.

Undo
Use this button to undo the last action.

Redo
Use this button to redo the last action that was undone.

Show/Hide Numbers
Use this button to toggle between showing or hiding the numbers for the shapes.

Bring Shape to Front
Use this button to bring the currently selected shape forward to the top layer.

Bring Shape Forward
Use this button to bring the currently selected shape forward one layer.

Send Shape Backward
Use this button to send the currently selected shape back one layer.

Send Shape to Back
Use this button to send the currently selected shape back to the bottom layer.

Color Chooser
Use this drop-down menu to select a color scheme for the lines and numbers of the shapes.
Zoom Slider

Use this slider to zoom the image in or out in the main image pane.

Image Pane

This main Image Pane is where you work with shapes to add hyperlinks to multiple areas within an image. The editing mechanisms that are supported in the Image Pane include the following:

Mouse Controls and Keyboard Shortcuts

- Use the mouse to select and move shapes around in the image pane. It is easy to see which shape is selected in this image pane because the border of the selected shape changes from a solid line to a dotted one.
- You can also drag any of the points of a selected shape to adjust its size and shape.
- You can hold down the Ctrl key to select multiple shapes and then move them simultaneously.
- You can also move shapes by using the arrow keys on your keyboard. In addition, you can hold down Shift while using the arrow keys to move the shape further or Alt to move it 1 pixel at a time.
- To zoom in or out, you can use the NumPad + or NumPad - keys respectively. Use Ctrl + NumPad 0 to reset the zoom level to its default value.
- You can use Ctrl + Z to undo an action or Ctrl + Y to redo the last action that was undone.

Contextual Menu Actions Available in the Image Pane

You can right-click the shapes, points, or anywhere in the Image Pane to invoke the contextual menu where the following actions are available:

+ Add Point

Add a point to Polygon or Free Form shapes.

× Remove Point

Removes the current point from Polygon or Free Form shapes.

_duplicate

Create a duplicate of the currently selected shape.
- **Delete**
  Delete the currently selected shape.

- **New Rectangle**
  Creates a rectangular shape over an area in the image. You can drag any of the four points to adjust the size and shape of the rectangle.

- **New Circle**
  Creates a circle over an area in the image. You can drag any of the four points to adjust the size of the circle.

- **New Polygon**
  Creates a polygon shape over an area in the image. This action opens a dialog box that allows you to select the number of points for the polygon. You can drag any of the points to adjust the size and shape of the polygon.

- **Undo**
  Use this action to undo the last action.

- **Redo**
  Use this action to redo the last action that was undone.

**Shape Table**

The table at the right of the *Image Pane* is a sequential list of all the areas (shapes) that have been added in the image. It shows their number, type, and description (if one has been added). If you select one of the entries in the table, the corresponding shape will be selected in the *Image Pane*.

**Properties**

- **Type**
  Displays information about the selected coordinate.

- **Target**
  Allows you to choose the target resource that you want the selected area (shape) to be linked to. Select a target by using the **Link** drop-down menu to the right of the text field. You can choose between the following types of links: **Cross Reference**, **File Reference**, or **Web Link**. All three types will open a dialog box that allows you to define the target resource. This linking process is similar to the normal process of inserting links in
DITA (on page 3164) by using the identical Link drop-down menu from the main toolbar.

When you click OK to finalize your changes in the Image Map Editor, an xref element will be inserted with either an href attribute or a keyref attribute. Additional attributes may also be inserted and their values depend on the target and the type of link. For details about the three types of links and their dialog boxes, see Inserting a Link in Oxygen XML Editor (on page 3164).

Description

You can enter an optional description for the selected area (shape) that will be displayed in the Image Map Details section (on page 1036) in Author mode and as a tooltip message when the end user hovers over the hyperlink in the output.

How to Create an Image Map in DITA

To create an image map on an existing image in a DITA document, follow these steps:

1. Right-click the image and select Image Map Editor.

   **Result:** This action will apply an image map to the current image and open the Image Map Editor dialog box.

2. Add hyperlinks to the image by selecting one of the shape buttons (☐ New Rectangle, ☺ New Circle, or ☠ New Polygon).

3. Move the shape to the desired area in the image and drag any of the points on the shape to adjust its size or form. You can use the other buttons on the toolbar (on page 1031) to adjust its layer and color, or to perform other editing actions.

   **Tip:** You can right-click any of the points, shapes, or anywhere in the Image Pane to access various helpful contextual menu actions (on page 1033). For example, the easiest way to remove a point is to right-click the point and select ✗ Remove Point.

4. With the shape selected, use one of the linking options (on page 1034) in the Link drop-down menu to select a target resource (or enter its path in the Target (on page 1034) text field).

5. (Optional) Enter a Description (on page 1035) for the selected area (shape).

6. If you want to add more hyperlinks to the image, select a shape button again and repeat the appropriate steps.

7. When you are finished creating hyperlinks, click OK to process your changes.

   **Result:** The image map is applied on the image and the appropriate elements and attributes are automatically added. In Author mode, the image map is now rendered over the image. If the image
includes an `alt` element, its value will be displayed under the image. The following two buttons will also now be available under the image in **Author** mode:

- **Image Map Editor** - Click this button to open the **Image Map Editor**.
- **Image Map Details** - Click this button to expand a section that displays the details of the image map and allows you to change the shape and coordinates of the hyperlinked areas. Keep in mind that if you change the shape in this section, you also need to add or remove coordinates to match the requirements of the new shape.

Figure 865. Image Map Details

![Image Map Details](image)

**How to Edit an Existing Image Map in DITA**

To edit an existing image map, use any of the following methods:

- Simply double-click the image.
- Right-click the image and select **Image Map Editor**.
- Click the **Image Map Editor** button below the image.

All three methods open the **Image Map Editor** where you can make changes to the image map using the various features described above. You can also make changes to the XML structure of the image map in the **Text** editing mode.

You can also click the **Image Map Details** button below the image to expand a section that displays the details of the image map and allows you to change the shape and coordinates of the hyperlinked areas. Keep in mind that if you change the shape in this section, you also need to add or remove coordinates to match the requirements of the new shape.

**Overlapping Areas**

If shapes overlap one another in the **Image Map Editor**, the one on the top layer takes precedence. The number shown inside each shape represent its layer (if the numbers are not displayed, click the ✉️ Show/Hide Numbers button on the **Image Map Editor** toolbar *(on page 1031)*). To change the layer
order for a shape, use the layer buttons on the **Image Map Editor toolbar** (*on page 1031*) *(‡‡‡‡) .

If you insert a shape and all of its coordinates are completely inside another shape, the **Image Map Editor** will display a warning to let you know that the shape is entirely covered by a bigger shape. Keep in mind that if a shape is completely inside another shape, its hyperlink will only be accessible if its layer is on top of the bigger shape.

**Related Information:**

- DITA 'imagemap' Element Specifications
- Working with Images in DITA Topics (*on page 3062*)

### Adding Tables in DITA Topics

You can use the **Insert Table** action on the toolbar or from the contextual menu to add a table in a DITA topic. By default, DITA supports four types of tables:

- **DITA Simple table model** (*on page 999*) - This is the most commonly used model for basic tables.
- **CALS table model (OASIS Exchange Table Model)** (*on page 1001*) - This is used for more advanced functionality.
- **DITA Choice table model** (*on page 1004*) - This is used within a `step` element in a DITA Task document to describe a series of optional choices that a user must make before proceeding.
- **DITA Properties table model** (*on page 1005*) - This is used in DITA Reference documents to describe a property (for example, its type, value, and description).

If you are using a specialized DITA vocabulary, it may contain specialized versions of these table models.

Since DITA is a structured format, you can only insert a table in places in the structure of a topic where tables are allowed. The Oxygen XML Editor toolbar provides support for entering and editing tables. It also helps to indicate where you are allowed to insert a table or its components by disabling the appropriate buttons.
Inserting a Simple Table Model

To insert a Simple DITA table, select the Insert Table action on the toolbar or from the contextual menu (or the Table submenu from the DITA menu). The Insert Table dialog box appears. Select Simple for the table Model.

The dialog box allows you to configure the following options when you select the Simple table model:

**Title**

If this checkbox is selected, you can specify a title for your table in the adjacent text box.

**Generate table header**

If selected, an extra row will be inserted at the top of the table to be used as the table header.

**Column widths**

Allows you to specify the type of properties for column widths (colwidth attribute). You can choose one of the following properties for the column width:

- **proportional** - The width is specified in proportional (relative) units of measure. The proportion of the column is specified in a relcolwidth attribute with the values listed as the number of shares followed by an asterisk. The value of the shares is totaled and rendered as a percent. For example, relcolwidth="1* 2* 3*" causes widths of 16.7%, 33.3%, and 66.7%. When entering content into a cell in one column, the width proportions of the other columns are maintained. If you change the width by dragging a column in Author mode, the values of the relcolwidth attribute are
automatically changed accordingly. By default, when you insert, drag and drop, or copy/paste a column, the value of the `relcolwidth` attribute is `1*`.

- **dynamic** - If you choose this option, the columns are created without a specified width. Entering content into a cell changes the rendered width dynamically. If you change the width by dragging a column in Author mode, a dialog box will be displayed that asks you if you want to switch to proportional or fixed column widths.

**Frame**

Allows you to specify a value for the `frame` attribute. It is used to specify where a border should appear in the table. The allowed values are as follows:

- **none** - No border will be added.
- **all** - A border will be added to all frames.
- **top** - A border will be added to the top frame.
- **topbot** - A border will be added to the top and bottom frames.
- **bottom** - A border will be added to the bottom frame.
- **sides** - A border will be added to the side frames.
- **-dita-use-conref-target** - Normally, when using a `conref`, the values of attributes specified locally are preserved. You can choose this option to override this behavior and pull the value of this particular attribute from the `conref` target. For more information, see [https://www.oxygenxml.com/dita/1.3/specs/langRef/attributes/ditauseconreftarget.html](https://www.oxygenxml.com/dita/1.3/specs/langRef/attributes/ditauseconreftarget.html).

**Note:** The options in the Insert Table dialog box for DITA documents are persistent, so changes made in one session will carry over to another.

When you click **Insert**, a simple table is inserted into your document at the current cursor position.

**Inserting a CALS Table Model (OASIS Exchange Table)**

To insert an OASIS Exchange Table (CALS), select the **Insert Table** action on the toolbar or from the contextual menu (or the **Table** submenu from the **DITA** menu). The Insert Table dialog box appears. Select **CALS** for the table **Model**. This model allows you to configure more properties than the **Simple** model.

Figure 867. Insert Table Dialog Box - CALS Model
The dialog box allows you to configure the following options when you select the CALS table model:

**Title**

If this checkbox is selected, you can specify a title for your table in the adjacent text box.

**Table Size**

Allows you to choose the number of Rows and Columns for the table.

**Generate table header**

If selected, an extra row will be inserted at the top of the table to be used as the table header.

**Column widths**

Allows you to specify the type of properties for column widths (colwidth attribute). You can choose one of the following properties for the column width:

- **proportional** - The width is specified in proportional (relative) units of measure. The proportion of the column is specified in a colwidth attribute with the values listed as the number of shares followed by an asterisk. The value of the shares is totaled and rendered as a percent. For example, colwidth="1* 2* 3*" causes widths of 16.7%, 33.3%, and 66.7%. When entering content into a cell in one column, the width proportions of the other columns are maintained. If you change the width by dragging a column in Author mode, the values of the colwidth attribute are automatically changed accordingly. By default, when you insert, drag and drop, or copy/paste a column, the value of the colwidth attribute is 1*.

- **dynamic** - If you choose this option, the columns are created without a specified width (colwidth attribute). Entering content into a cell changes the rendered width dynamically. If you change the width by dragging a column in Author mode, a dialog
box will be displayed that asks you if you want to switch to proportional or fixed column widths.

- **fixed** - The width is specified in fixed units. By default, the `pt` unit is inserted, but you can change the units in the `colspecs` (column specifications) section above the table or in Text mode. The following units are allowed: `pt` (points), `cm` (centimeters), `mm` (millimeters), `pi` (picas), `in` (inches).

**Frame**

Allows you to specify a value for the `frame` attribute. It is used to specify where a border should appear in the table. The allowed values are as follows:

- **none** - No border will be added.
- **all** - A border will be added to all frames.
- **top** - A border will be added to the top frame.
- **topbot** - A border will be added to the top and bottom frames.
- **bottom** - A border will be added to the bottom frame.
- **sides** - A border will be added to the side frames.
- **-dita-use-conref-target** - Normally, when using a `conref`, the values of attributes specified locally are preserved. You can choose this option to override this behavior and pull the value of this particular attribute from the `conref` target. For more information, see [https://www.oxygenxml.com/dita/1.3/specs/langRef/attributes/ditauseconreftarget.html](https://www.oxygenxml.com/dita/1.3/specs/langRef/attributes/ditauseconreftarget.html).

**Row separator**

Specifies whether or not to include row separators (`rowsep` attribute). The allowed values are: 0 (no separator) and 1 (include separators).

**Column separator**

Specifies whether or not to include column separators (`colsep` attribute). The allowed values are: 0 (no separator) and 1 (include separators).

**Alignment**

Specifies the alignment of the text within the table (`align` attribute). The allowed values are:

- **left** - Aligns the text to a left position.
- **right** - Aligns the text to a right position.
- **center** - Aligns the text to a centered position.
- **justify** - Stretches the line of text so that it has equal width.

**Note:** The `justify` value cannot be rendered in Author mode, so you will only see it in the output.
• **char** - Aligns text to the leftmost occurrence of the value specified on the char attribute for alignment.

• **-dita-use-conref-target** - Normally, when using a conref, the values of attributes specified locally are preserved. You can choose this option to override this behavior and pull the value of this particular attribute from the conref target. For more information, see https://www.oxygenxml.com/dita/1.3/specs/langRef/attributes/ditauseconreftarget.html.

**Note:** The options in the Insert Table dialog box for DITA documents are persistent, so changes made in one session will carry over to another.

When you click **Insert**, a CALS table is inserted into your document at the current cursor position.

When you insert a CALS table, you see a link for setting the colspecs (column specifications) of your table. Click the link to open the controls that allow you to adjust various column properties. Although they appear as part of the Author mode (on page 402), the colspecs link and its controls will not appear in your output. They are just there to make it easier to adjust how the columns of your table are formatted.

Figure 868. CALS Table in DITA

---

**Inserting a Choice Table Model**

To insert a Choice table within a step element in a DITA Task document, select the **Insert Table** action on the toolbar or in the Insert submenu from the contextual menu (or the Table submenu from the DITA menu), or select **choicetable** from the Content Completion Assistant (on page 3280). The Insert Table dialog box appears. Select **Simple** for the table Model.

Figure 869. Insert Table Dialog Box - Choice Model
The dialog box allows you to configure the following options when you insert a Choice table model within a DITA Task:

**Table Size**

Allows you to choose the number of **Rows** and **Columns** for the table.

**Generate table header**

If selected, an extra row will be inserted at the top of the table to be used as the table header.

**Column widths**

Allows you to specify the type of properties for column widths (**colwidth** attribute). You can choose one of the following properties for the column width:

- **proportional** - The width is specified in proportional (relative) units of measure. The proportion of the column is specified in a **relcolwidth** attribute with the values listed as the number of shares followed by an asterisk. The value of the shares is totaled and rendered as a percent. For example, **relcolwidth="1* 2* 3*"** causes widths of 16.7%, 33.3%, and 66.7%. When entering content into a cell in one column, the width proportions of the other columns are maintained. If you change the width by dragging a column in **Author** mode, the values of the **relcolwidth** attribute are automatically changed accordingly. By default, when you insert, drag and drop, or copy/paste a column, the value of the **relcolwidth** attribute is 1*.

- **dynamic** - If you choose this option, the columns are created without a specified width. Entering content into a cell changes the rendered width dynamically. If you change the width by dragging a column in **Author** mode, a dialog box will be displayed that asks you if you want to switch to proportional or fixed column widths.

**Frame**

Allows you to specify a value for the **frame** attribute. It is used to specify where a border should appear in the table. The allowed values are as follows:

- **none** - No border will be added.
• **all** - A border will be added to all frames.
• **top** - A border will be added to the top frame.
• **topbot** - A border will be added to the top and bottom frames.
• **bottom** - A border will be added to the bottom frame.
• **sides** - A border will be added to the side frames.
• `-dita-use-conref-target` - Normally, when using a `conref`, the values of attributes specified locally are preserved. You can choose this option to override this behavior and pull the value of this particular attribute from the `conref` target. For more information, see [https://www.oxygenxml.com/dita/1.3/specs/langRef/attributes/ditauseconreftarget.html](https://www.oxygenxml.com/dita/1.3/specs/langRef/attributes/ditauseconreftarget.html).

When you click **Insert**, a *Choice* table is inserted into your DITA Task document at the current cursor position (within a *step* element).

**Inserting a Properties Table Model**

To insert a *Properties* table within a *refbody* element in a DITA Reference document, select the **Insert Table** action on the toolbar or in the **Insert** submenu from the contextual menu (or the **Table** submenu from the **DITA** menu), or select **properties(wizard)** from the **Content Completion Assistant** *(on page 3280)*. The **Insert Table** dialog box appears. Select **Properties** for the table **Model**.

Figure 870. Insert Table Dialog Box - Properties Model

The dialog box allows you to configure the following options when you insert a *Properties* table model within a DITA Reference:

**Table Size**

Allows you to choose the number of **Rows** and **Columns** for the table.
Generate table header

If selected, an extra row will be inserted at the top of the table to be used as the table header.

Frame

Allows you to specify a value for the frame attribute. It is used to specify where a border should appear in the table. The allowed values are as follows:

- none - No border will be added.
- all - A border will be added to all frames.
- top - A border will be added to the top frame.
- topbot - A border will be added to the top and bottom frames.
- bottom - A border will be added to the bottom frame.
- sides - A border will be added to the side frames.
- -dita-use-conref-target - Normally, when using a conref, the values of attributes specified locally are preserved. You can choose this option to override this behavior and pull the value of this particular attribute from the conref target. For more information, see https://www.oxygenxml.com/dita/1.3/specs/langRef/attributes/ditauseconreftarget.html.

When you click Insert, a Properties table is inserted into your DITA Reference document at the current cursor position (within a refbody element).

Editing an Existing Table

You can edit the structure of an existing table using the table buttons on the toolbar (or in the contextual menu) to add or remove cells, rows, or columns, and to set basic table properties. Additional attributes can be used to fine-tune the formatting of your tables by using the Attributes view (Window > Show View > Attributes). See the DITA documentation for a full explanation of these attributes.

You can also use the Table Properties (Ctrl + T (Command + T on OS X)) action from the toolbar or contextual menu (or DITA menu) to modify many of the properties of the table.

Also, remember that underneath the visual representation, both table models are really just XML. If necessary, you can edit the XML directly by switching to Text mode.

You can use normal copy/paste shortcuts to move content between cells. Oxygen XML Editor includes a Smart Paste feature that preserves certain style and structure information when pasting content.
Tip: When copying a multiple selection of table cells and pasting them outside the table, a new table will be created. When pasting into space-preserved elements, the cell content will be pasted as plain text.

Related Information:

- Editing Tables in Author Mode (on page 985)

DITA Table Layouts

Depending on the context, DITA accepts the following table layouts:

- **CALS table model** (on page 1008)
- **Simple table model** (on page 1008)
- **Choice table model** (on page 1008)
- **Properties table model** (on page 1009)

CALS Table Model Layout

The **CALS** table model allows for more flexibility and table customization than other models. When choosing a **CALS** table model from the **Insert Table** dialog box, you have access to more configurable properties. The layout of a **CALS** table includes a **colspecs** section that allows you to easily configure some properties without opening the **Table Properties** dialog box. For example, you can change the value of column widths (**colwidth** attribute) or the text alignment (**align** attribute). Although they appear as part of the **Author mode** (on page 402), the **colspecs** link and its controls will not appear in your output. They are just there to make it easier to adjust how the columns of your table are formatted.

Figure 871. CALS Table in DITA
Simple Table Model Layout

When choosing a Simple table model from the Insert Table dialog box, you only have access to configure a few properties. For example, you can choose the number of rows and columns, specify values for frames, and choose from a few types of properties for the column width. The layout of this type of table is very simple, as the name suggests.

Figure 872. DITA Simple Table

<table>
<thead>
<tr>
<th>Horizontal Span</th>
<th>a3</th>
<th>a4</th>
<th>a5</th>
</tr>
</thead>
<tbody>
<tr>
<td>f1</td>
<td>f2</td>
<td>f3</td>
<td>f4</td>
</tr>
<tr>
<td>b1</td>
<td>b2</td>
<td>b3</td>
<td>b4</td>
</tr>
<tr>
<td>c1</td>
<td>c4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>d1</td>
<td></td>
<td>d4</td>
<td>d5</td>
</tr>
</tbody>
</table>

| Vertical Span   |   |
| Spans > Both 4 directions |

Choice Table Model Layout

A Choice table model is used within a step element in a DITA Task document to describe a series of optional choices that a user must make before proceeding. The choicetable element is a useful device for documenting options within a single step of a task. You can insert Choice tables in DITA Task documents either by selecting choicetable from the Content Completion Assistant (on page 3280) (within a step element) or by using the Insert Table action on the toolbar or from the contextual menu). The options and layout of a Choice table is similar to the Simple table model.

Figure 873. DITA Choice Table

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Opt A</td>
<td></td>
</tr>
<tr>
<td>Opt B</td>
<td></td>
</tr>
<tr>
<td>Opt C</td>
<td></td>
</tr>
</tbody>
</table>
Properties Table Model Layout

A Properties table model is used within a refbody element in a DITA Reference document to describe a property (for example, its type, value, and description). You can insert Properties tables in DITA Reference documents either by selecting properties(wizard) from the Content Completion Assistant (on page 3280) (within a refbody element) or by using the Insert Table action on the toolbar (or from the contextual menu) and selecting Properties for the Model. The layout of a Properties table is very simple. It allows for a maximum of 3 columns (typically for property type, value, and description) and the only options available are for whether or not you want a header row and for specifying frames (borders).

Figure 874. DITA Properties Table

<table>
<thead>
<tr>
<th>Property Type</th>
<th>Property Value</th>
<th>Property Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>B</td>
<td>C</td>
</tr>
</tbody>
</table>

Table Validation in DITA

Oxygen XML Editor reports table layout problems that are detected in manual or automatic validations. When you validate a DITA map (on page 3281) with the Validate and Check for Completeness action, if the Report table layout problems option is selected in the DITA Map Completeness Check dialog box (on page 3040), table layout problems will be reported in the validation results. The types of errors that may be reported for DITA table layout problems include:

**CALS Tables**

- A row has fewer cells than the number of columns detected from the table cols attribute.
- A row has more cells than the number of columns detected from the table cols attribute.
- A cell has a vertical span greater than the available rows count.
- The number of(colspecs) is different than the number of columns detected from the table cols attribute.
- The number of columns detected from the table cols attribute is different than the number of columns detected in the table structure.
- The value of the cols, rowsep, or colsep attributes are not numeric.
- The namest, nameend, or colname attributes point to an incorrect column name.

**Simple or Choice Tables**

A row has fewer cells than the number of table columns.
Editing Table Properties in DITA

To customize the look of a table in DITA, place the cursor anywhere in a table and invoke the `Ctrl + T (Command + T on OS X)` action from the toolbar or the Table submenu of the contextual menu (or DITA menu). This opens the Table properties dialog box.

The Table properties dialog box allows you to set specific properties to the table elements. The options that are available depend on the context and location within the table in which the action was invoked.

**Note:** Some properties allow the following special values, depending on the context and the current properties or values:

- `<not set>` - Use this value if you want to remove a property.
- `<preserve>` - If you select multiple elements that have the same property set to different values, you can choose this value to keep the values that are already set. In some cases it can also be used to keep the current non-standard value for a particular property.

Edit Table Properties for a CALS Table Model

For a CALS table model, the Table properties dialog box includes four tabs of options:

- **Table** tab - The options in this tab apply to the entire table.
- **Row** tab - The options in this tab apply to the current row or selection of multiple rows. A message at the bottom of the tab tells you how many rows will be affected.
- **Column** tab - The options in this tab apply to the current column or selection of multiple columns. A message at the bottom of the tab tells you how many columns will be affected.
- **Cell** tab - The options in this tab apply to the current cell or selection of multiple cells. A message at the bottom of the tab tells you how many cells will be affected.

The options in four tabs include a **Preview** pane that shows a representation of the modification.

Figure 875. Table Properties Dialog Box with Cell Tab Selected (DITA CALS Table Model)
The options in the four tabs include the following:

**Horizontal alignment (Available in the Table, Column, and Cell tabs)**

Specifies the horizontal alignment of text within the current table/column/cell or selection of multiple columns/cells (align attribute). The allowed values are as follows:

- **left** - Aligns the text to a left position.
- **right** - Aligns the text to a right position.
- **center** - Aligns the text to a centered position.
- **justify** - Stretches the line of text so that it has equal width.

**Note:** The justify value cannot be rendered in Author mode, so you will only see it in the output.

- **char** - Aligns text to the leftmost occurrence of the value specified on the char attribute for alignment.
- **dita-use-conref-target** - Normally, when using a conref, the values of attributes specified locally are preserved. You can choose this option to override this behavior and pull the value of this particular attribute from the conref target. For more information, see [https://www.oxygenxml.com/dita/1.3/specs/langRef/attributes/ditauseconreftarget.html](https://www.oxygenxml.com/dita/1.3/specs/langRef/attributes/ditauseconreftarget.html).

**Vertical alignment (Available in the Row and Cell tabs)**

Specifies the vertical alignment of text within the current row/cell or selection of multiple rows/cells (valign attribute). The allowed values are as follows:
- **top** - Aligns the text at the top of the cell.
- **middle** - Aligns the text in a vertically centered position.
- **bottom** - Aligns the text at the bottom of the cell.
- **-dita-use-conref-target** - Normally, when using a `conref`, the values of attributes specified locally are preserved. You can choose this option to override this behavior and pull the value of this particular attribute from the `conref` target. For more information, see https://www.oxygenxml.com/dita/1.3/specs/langRef/attributes/ditauseconreftarget.html.

**Column separator (Available in the Table, Column, and Cell tabs)**

Specifies whether or not to include column separators (borders/grid lines) in the form of the `colsep` attribute. The allowed values are: 0 (no separator) and 1 (include separators).

**Row separator (Available in all four tabs)**

Specifies whether or not to include row separators (borders/grid lines) in the form of the `rowsep` attribute. The allowed values are: 0 (no separator) and 1 (include separators).

**Frame (Available only in the Table tab)**

Allows you to specify a value for the `frame` attribute. It is used to specify where a border should appear in the table. The allowed values are as follows:

- **none** - No border will be added.
- **all** - A border will be added to all frames.
- **top** - A border will be added to the top frame.
- **topbot** - A border will be added to the top and bottom frames.
- **bottom** - A border will be added to the bottom frame.
- **sides** - A border will be added to the side frames.
- **-dita-use-conref-target** - Normally, when using a `conref`, the values of attributes specified locally are preserved. You can choose this option to override this behavior and pull the value of this particular attribute from the `conref` target. For more information, see https://www.oxygenxml.com/dita/1.3/specs/langRef/attributes/ditauseconreftarget.html.

**Edit Table Properties for a Simple, Choice, or Properties Table Model**

For a *Simple, Choice, Properties* table model, the *Table properties* dialog box only allows you to edit a few options.

**Table tab**

**Frame**
Allows you to specify a value for the `frame` attribute. It is used to specify where a border should appear in the table. The allowed values are as follows:

- **none** - No border will be added.
- **all** - A border will be added to all frames.
- **top** - A border will be added to the top frame.
- **topbot** - A border will be added to the top and bottom frames.
- **bottom** - A border will be added to the bottom frame.
- **sides** - A border will be added to the side frames.
- **-dita-use-conref-target** - Normally, when using a `conref`, the values of attributes specified locally are preserved. You can choose this option to override this behavior and pull the value of this particular attribute from the `conref` target. For more information, see https://www.oxygenxml.com/dita/1.3/specs/langRef/attributes/ditauseconreftarget.html.

### Row tab (not available for Properties tables)

#### Row type

Allows you to change the row to a body or header type of row.

**Related Information:**

- Adding Tables in DITA Topics *(on page 999)*
- Editing Tables in Author Mode *(on page 985)*

### Adding MathML Equations in DITA Topics

You can add MathML equations in a DITA document using one of the following methods:

- Embed MathML directly into a DITA topic. You can use **Insert > Σ Insert Equation** from the contextual menu to insert a MathML equation. Clicking on the equation will open a MathML Editor where you can edit the code.
- Reference an external MathML file as an image, using the **Insert Image** action that is available on the DITA toolbar (or from the DITA > Insert menu).

**Publishing Notes:**
• MathML equations contained in DITA topics can be published out-of-the-box in PDF using the DITA PDF transformation scenario.
• The DITA Map PDF - based on HTML5 & CSS transformation scenario (on page 2013) support MathML equations (on page 2145).
• For details about HTML output, see MathML Equations in HTML Output (on page 1059).
• For other publishing formats, you might need to employ additional customizations for handling MathML content.

Adding LaTeX Equations in DITA Topics

LaTeX is a high-quality typesetting system that includes features designed for the production of technical and scientific documentation. LaTeX can also be used to express mathematical formulas in a textual format. By default, web browsers and PDF readers do not have support to show mathematical equations written in LaTeX, but there are open-source projects that can read LaTeX and convert it to other image types.

Adding support for writing LaTeX equations in a DITA topic implies three stages:

1. Find a way to write the equation in the DITA XML content. You can either create a DITA DTD specialization and add a new element (for example, called `<latex>` and it extends the DITA `<foreign>` element). Alternatively, you can directly use the DITA `<foreign>` element with a specific `@outputclass` attribute value:

```xml
<!DOCTYPE topic PUBLIC "-//OASIS//DTD DITA Topic//EN" "topic.dtd">
<topic id="testEquation">
  <title>Test equation</title>
  <body>
    <p><foreign outputclass="embed-latex">L' = \( L\sqrt{1-\frac{v^2}{c^2}} \)</foreign></p>
  </body>
</topic>
```

2. If you want Oxygen XML Editor to properly present the LaTeX equation when editing in the Author visual mode, you need a plugin that converts the equation content to an image. There is a sample plugin that does that here: https://github.com/oxygenxml/wsaccess-javascript-sample-plugins/tree/master/latex-images-support. You can download and copy the plugin folder `latex-images-support` to the Oxygen XML Editor plugins folder, then restart Oxygen XML Editor.

3. The final stage would be to publish the content to HTML-based or PDF output. The following DITA Open Toolkit plugin automatically converts LaTeX images to SVG when publishing: https://github.com/oxygenxml/dita-latex.
DITA Topic Author Mode Actions

A variety of actions are available for the DITA framework (on page 3282) that can be found on the toolbar, the contextual menu, or the DITA menu.

DITA Toolbar Actions

The following default actions are readily available on the DITA (Author Custom Actions) toolbar when editing in Author mode (by default, most of them are also available in the DITA menu and in various submenus of the contextual menu):

- **Bold**
  
  Surrounds the selected text with a `b` tag. You can use this action on multiple non-contiguous selections.

- **Italic**
  
  Surrounds the selected text with an `i` tag. You can use this action on multiple non-contiguous selections.

- **Underline**
  
  Surrounds the selected text with a `u` tag. You can use this action on multiple non-contiguous selections.

- **Link Actions Drop-Down Menu**

  The following link actions are available from this menu:

  - **Cross Reference**
    
   Opens the Cross Reference (xref) dialog box (on page 3164) that allows you to insert a link to a target DITA resource at the current location within a document. The target resource can be the location of a file or a key that is already defined in your DITA map (on page 3281) structure. Once the target resource has been selected, you can also target specific elements within that resource. For more information, see Linking in DITA Topics (on page 3163).

  - **File Reference**
    
    Opens the File Reference dialog box (on page 3164) that allows you to insert a link to a target non-DITA file resource at the current location within a document. The target resource can be the location of a file or a key that is already defined in your DITA map structure. For more information, see Linking in DITA Topics (on page 3163).

  - **Web Link**
Opens the **Web Link** dialog box *(on page 3164)* that allows you to insert a link to a target web-related resource at the current location within a document. The target resource can be a URL or a key that is already defined in your **DITA map** structure. For more information, see Linking in DITA Topics *(on page 3163)*.

**Related Link to Topic**

Opens the **Cross Reference (xref)** dialog box *(on page 3165)* that allows you to insert a link to a target DITA resource in a related links section at the bottom of the current document. The target resource can be the location of a file or a key that is already defined in your **DITA map** structure. Once the target resource has been selected, you can also target specific elements within that resource. If a related links section does not already exist, this action creates one. For more information, see Linking in DITA Topics *(on page 3163)*.

**Tip:** You can use the Find Similar Topics action that available in the DITA menu to quickly find related topics that can be added as related links. It opens the Open/Find Resource view and performs a search using text content from the `<title>`, `<shortdesc>`, `<keyword>`, and `<indexterm>` elements.

**Related Link to File**

Opens the **File Reference** dialog box *(on page 3165)* that allows you to insert a link to a target non-DITA file resource in a related links section at the bottom of the current document. The target resource can be the location of a file or a key that is already defined in your **DITA map** structure. If a related links section does not already exist, this action creates one. For more information, see Linking in DITA Topics *(on page 3163)*.

**Related Link to Web Page**

Opens the **Web Link** dialog box *(on page 3165)* that allows you to insert a link to a target web-related resource in a related links section at the bottom of the current document. The target resource can be a URL or a key that is already defined in your **DITA map** structure. If a related links section does not already exist, this action creates one. For more information, see Linking in DITA Topics *(on page 3163)*.

**Insert Image**

Opens the **Insert Image** dialog box *(on page 3062)* that allows you to configure the properties of an image to be inserted into a DITA document at the cursor position.
Insert Media Resource

Opens the Insert Media dialog box (on page 3066) that allows you to select and configure the properties of a media object to be inserted into a DITA document at the cursor position. The result will be that a reference to the specified video, audio, or embedded HTML frame is inserted in an object element and it is rendered in Author mode so that it can be played directly from there.

Insert Section Drop-Down Menu

The following insert actions are available from this menu:

- **Insert Section**
  Inserts a new section element in the document, depending on the current context.

- **Insert Concept**
  Inserts a new concept element, depending on the current context. Concepts provide background information that users must know before they can successfully work with a product or interface.

- **Insert Task**
  Inserts a new task element, depending on the current context. Tasks are the main building blocks for task-oriented user assistance. They generally provide step-by-step instructions that will help a user to perform a task.

- **Insert Topic**
  Inserts a new topic element, depending on the current context. Topics are the basic units of DITA content and are usually organized around a single subject.

- **Insert Reference**
  Inserts a new reference element, depending on the current context. A reference is a top-level container for a reference topic.

- **Insert Paragraph**
  Inserts a new paragraph at current cursor position.

Reuse Content

This action provides a mechanism for reusing content fragments. It opens the Reuse Content dialog box (on page 3135) that allows you to insert several types of references to reusable content at the cursor position. The types of references that you can insert using this dialog box include content references (conref) (on page 3136), content key
references (conkeyref) (on page 3137), or key references to metadata (keyref) (on page 3141).

- **Insert step or list item**
  Inserts a new list or step item in the current list type.

- **Insert Unordered List**
  Inserts an unordered list at the cursor position. A child list item is also automatically inserted by default. You can also use this action to convert selected paragraphs or other types of lists to an unordered list.

- **Insert Ordered List**
  Inserts an ordered list at the cursor position. A child list item is also automatically inserted by default. You can also use this action to convert selected paragraphs or other types of lists to an ordered list.

- **Sort**
  Sorts cells or list items in a table.

- **Insert Table**
  Opens a dialog box that allows you to configure and insert a table. You can generate a header and footer, set the number of rows and columns of the table and decide how the table is framed. You can also use this action to convert selected paragraphs, lists, and inline content (mixed content, text plus markup, that is rendered inside a block element (on page 3280)) into a table, with the selected content inserted in the first column, starting from the first row after the header (if a header is inserted).

  **Note:** If the selection contains a mixture of elements that cannot be converted, you will receive an error message saying that Only lists, paragraphs, or inline content can be converted to tables.

- **Insert Row Below**
  Inserts a new table row with empty cells below the current row. This action is available when the cursor is positioned inside a table.

- **Delete Row(s)**
  Deletes the table row located at cursor position or multiple rows in a selection.

- **Insert Column After**
  Inserts a new table column with empty cells after the current column. This action is available when the cursor is positioned inside a table.

- **Delete Column(s)**
Deletes the table column located at cursor position or multiple columns in a selection.

Table Properties
Opens the Table properties dialog box that allows you to configure properties of a table (such as frame borders).

Join Cells
Joins the content of the selected cells (both horizontally and vertically).

Split Cell
Splits the cell at the cursor location. If Oxygen XML Editor detects more than one option to split the cell, a dialog box will be displayed that allows you to select the number of rows or columns to split the cell into.

DITA Contextual Menu Actions
In addition to many of the DITA toolbar actions (on page 1575) and the general Author mode contextual menu actions (on page 1065), there are numerous DITA-specific actions that are available in the contextual menu when editing DITA documents in Author mode (most of them are also available in the DITA menu at the top of the interface):

Add File to Review Task
This action can be used to add the current document to a task in the Content Fusion Tasks Manager view. Oxygen Content Fusion is a flexible, intuitive collaboration platform designed to adapt to any type of documentation review workflow. This functionality is available through a pre-installed connector add-on (on page 2679). To fully take advantage of all of the benefits and features of Content Fusion, your organization will need an Oxygen Content Fusion Enterprise Server. For more information, see the Oxygen Content Fusion website.

Edit Attributes
Displays an in-place attributes editor (on page 429) that allows you to manage the attributes of an element.

Edit Profiling Attributes
Allows you to change the profiling attributes (on page 969) defined on all selected elements.

Cut (Ctrl + X (Command + X on OS X))
Removes the current selected content from the document and places it in the clipboard.

Copy (Ctrl + C (Command + C on OS X))
Places a copy of the current selected content in the clipboard.

⚠️ **Paste (Ctrl + V (Command + V on OS X))**

*Inserts the current clipboard content into the document at the cursor position.*

#### Paste special submenu

This submenu includes the following special paste actions that are specific to the DITA framework:

**Paste as content reference**

Inserts a content reference (a DITA element with a `conref` attribute) to the DITA XML element from the clipboard. An entire DITA XML element with an ID attribute must be present in the clipboard when the action is invoked. The `conref` attribute will point to this ID value.

**Paste as content key reference**

Allows you to indirectly reference content using the `conkeyref` attribute. When the DITA content is processed, the key references are resolved using key definitions from *DITA maps (on page 3281)*. To use this action, you must first do the following:

1. Make sure the DITA element that contains the copied content has an ID attribute assigned to it.
2. In the DITA Maps Manager view, make sure that the Root map combo box (on page 2995) points to the correct map that stores the keys.
3. Make sure the topic that contains the content you want to reference has a key assigned to it. To assign a key, right-click the topic with its parent map opened in the DITA Maps Manager, select Edit Properties, and enter a value in the Keys field.

**Paste as link**

Looks for the first element with an ID value in the clipboard and inserts an `xref` that points to that element. If no elements with an ID value are found, a message will appear that informs you that to use this action, the clipboard contents must include at least one element with a declared ID.

**Paste as link (keyref)**

Inserts a link to the element that you want to reference. To use this action, you must first do the following:

1. Make sure the DITA element that contains the copied content has an ID attribute assigned to it.
2. In the **DITA Maps Manager** view, make sure that the **Root map combo box** *(on page 2995)* points to the correct map that stores the keys.

3. Make sure the topic that contains the content you want to reference has a key assigned to it. To assign a key, right-click the topic with its parent map opened in the **DITA Maps Manager**, select **Edit Properties**, and enter a value in the **Keys** field.

**Insert submenu**

This submenu includes the following insert actions that are specific to the DITA framework:

- **Insert Table**

  Opens a dialog box that allows you to configure and insert a table. You can generate a header and footer, set the number of rows and columns of the table and decide how the table is framed. You can also use this action to convert selected paragraphs, lists, and inline content (mixed content, text plus markup, that is rendered inside a **block element** *(on page 3280)*) into a table, with the selected content inserted in the first column, starting from the first row after the header (if a header is inserted).

  **Note:** If the selection contains a mixture of elements that cannot be converted, you will receive an error message saying that **Only lists, paragraphs, or inline content can be converted to tables**.

- **Insert Image**

  Inserts an image reference *(on page 1021)* at the cursor position. Depending on the current location, an image-type element is inserted.

- **Insert Media Resource**

  Opens a **Choose Media** dialog box *(on page 1055)* that allows you to select the URL of a media object to be inserted into a document at the cursor position. The result will be that a reference to the specified video, audio, or embedded HTML frame is inserted and rendered in **Author mode** so that it can be played directly from there.

- **Insert Equation**

  Opens the **XML Fragment Editor** that allows you to insert and edit **MathML notations** *(on page 1057)*.

- **Insert Paragraph**

  Inserts a new paragraph at current cursor position.
**Insert Section**

Inserts a new `section` element in the document, depending on the current context.

**Insert Topic**

Inserts a new `topic` element, depending on the current context. Topics are the basic units of DITA content and are usually organized around a single subject.

**Insert Entity**

Allows you to insert a predefined entity or character entity. Surrogate character entities (range $\texttt{x10000}$ to $\texttt{x10FFFF}$) are also accepted. Character entities can be entered in one of the following forms:

- `$<$decimal value$>$` - e.g. $\texttt{#65}$
- `&$<$decimal value$>$;` - e.g. $\texttt{&\#65}$
- `$\texttt{x<hexadecimal value>}$` - e.g. $\texttt{x41}$
- `&#x<hexadecimal value>;` - e.g. $\texttt{&\#x41}$

**Image Map Editor**

This action is available in the contextual menu when it is invoked on an image. This action applies an `image map` to the current image (if one does not already exist) and opens the **Image Map Editor** dialog box. This feature allows you to create hyperlinks in specific areas of an image that will link to various destinations.

**Table Actions**

The following table editing actions are available in the contextual menu when it is invoked on a table:

- **Insert Rows**
  
  Opens a dialog box that allows you to insert any number of rows and specify the position where they will be inserted (`Above` or `Below` the current row).

- **Delete Row(s)**
  
  Deletes the table row located at cursor position or multiple rows in a selection.

- **Insert Columns**
  
  Opens a dialog box that allows you to insert any number of columns and specify the position where they will be inserted (`Above` or `Below` the current column).
Delete Column(s)

Deletes the table column located at cursor position or multiple columns in a selection.

Join Cells

Joins the content of the selected cells (both horizontally and vertically).

Split Cell

Splits the cell at the cursor location. If Oxygen XML Editor detects more than one option to split the cell, a dialog box will be displayed that allows you to select the number of rows or columns to split the cell into.

Sort

Sorts cells or list items in a table.

Table Properties

Opens the Table properties dialog box that allows you to configure properties of a table (such as frame borders).

Other Actions submenu

This submenu give you access to all the usual contextual menu actions.

Link submenu

The following link actions are available from this submenu:

Cross Reference

Opens the Cross Reference (xref) dialog box (on page 3164) that allows you to insert a link to a target DITA resource at the current location within a document. The target resource can be the location of a file or a key that is already defined in your DITA map (on page 3281) structure. Once the target resource has been selected, you can also target specific elements within that resource. For more information, see Linking in DITA Topics (on page 3163).

File Reference

Opens the File Reference dialog box (on page 3164) that allows you to insert a link to a target non-DITA file resource at the current location within a document. The target resource can be the location of a file or a key that is already defined in your DITA map structure. For more information, see Linking in DITA Topics (on page 3163).

Web Link
Opens the **Web Link** dialog box (on page 3164) that allows you to insert a link to a target web-related resource at the current location within a document. The target resource can be a URL or a key that is already defined in your **DITA map** structure. For more information, see Linking in DITA Topics (on page 3163).

**Related Link to Topic**

Opens the **Cross Reference (xref)** dialog box (on page 3165) that allows you to insert a link to a target DITA resource in a related links section at the bottom of the current document. The target resource can be the location of a file or a key that is already defined in your **DITA map** structure. Once the target resource has been selected, you can also target specific elements within that resource. If a related links section does not already exist, this action creates one. For more information, see Linking in DITA Topics (on page 3163).

**Tip:** You can use the **Find Similar Topics** action that available in the DITA menu to quickly find related topics that can be added as related links. It opens the **Open/Find Resource** view and performs a search using text content from the `<title>`, `<shortdesc>`, `<keyword>`, and `<indexterm>` elements.

**Related Link to File**

Opens the **File Reference** dialog box (on page 3165) that allows you to insert a link to a target non-DITA file resource in a related links section at the bottom of the current document. The target resource can be the location of a file or a key that is already defined in your **DITA map** structure. If a related links section does not already exist, this action creates one. For more information, see Linking in DITA Topics (on page 3163).

**Related Link to Web Page**

Opens the **Web Link** dialog box (on page 3165) that allows you to insert a link to a target web-related resource in a related links section at the bottom of the current document. The target resource can be a URL or a key that is already defined in your **DITA map** structure. If a related links section does not already exist, this action creates one. For more information, see Linking in DITA Topics (on page 3163).

**Sort**

Available when invoked on a list, it opens a dialog box where you can configure a sorting operation for an entire list or a selection of list items.
Generate IDs

Oxygen XML Editor generates unique IDs for the current element (or elements), depending on how the action is invoked:

- When invoked on a single selection, an ID is generated for the selected element at the cursor position.
- When invoked on a block of selected content, IDs are generated for all top-level elements and elements from the list in the ID Options dialog box that are found in the current selection.

**Note:** The **Generate IDs** action does not overwrite existing ID values. It only affects elements that do not already have an `id` attribute.

Reuse submenu

This submenu includes the following actions regarding reusing content in DITA:

- **Reuse Content**
  
  This action provides a mechanism for reusing content fragments. It opens the **Reuse Content** dialog box (on page 3135) that allows you to insert several types of references to reusable content at the cursor position.
  
  The types of references that you can insert using this dialog box include content references (`conref`) (on page 3136), content key references (`conkeyref`) (on page 3137), or key references to metadata (`keyref`) (on page 3141).

- **Push Current Element**
  
  Opens the **Push current element** dialog box (on page 3144) that allows content from a source topic to be inserted into another topic without any special coding in the topic where the content will be re-used.

- **Edit Content Reference**
  
  This action is available for elements with a `conref` or `conkeyref` attribute. It opens the **Edit Content Reference** dialog box that allows you to edit the source location (or key) and source element of a content reference (or content key reference), and the reference details (`conref` / `conkeyref` and `conrefend` attributes). For more information, see **Reuse Content Dialog Box** (on page 3135).

- **Replace Reference with Content**
  
  Replaces the referenced fragment (`conref` or `conkeyref`) at the cursor position with its content from its source. This action is useful if you
want to make changes to the content in the currently edited document without changing the referenced fragment in its source location. If the source content includes references to other topics/resources (*hrefs*), the operation also resolves those references relative to the new location. Attributes are preserved according to the following priority:

1. Attributes from the elements in the current document that reference other content are preserved except for attributes with a `-dita-use-conref-target` value.
2. Attributes from the referenced content are brought into the replaced elements in the current document except for `id` attributes.

**Replace All References with Content**

Replaces all referenced fragments (*keyref*, `conref`, or `conkeyref`) in the current document with the content. Attributes are preserved according to the following priority:

1. Attributes from the elements in the current document that reference other content are preserved except for attributes with a `-dita-use-conref-target` value.
2. Attributes from the referenced content are brought into the replaced elements in the current document except for `id` attributes.

For `keyrefs` inside `xref` or `link` elements, the `keyref` attribute is changed to an `href` attribute, while the rest of the content for the `keyref` is replaced with its source content.

If the source content includes references to other topics/resources (*hrefs*), the operation also resolves those references relative to the new location.

**Remove Content Reference**

Removes the content reference (`conref` or `conkeyref`) inside the element at the cursor position.

**Create Reusable Component**

Creates a reusable component from the selected fragment of text. For more information, see Creating a Reusable Content Component *(on page 3147).*

**Insert Reusable Component**

Inserts a reusable component at cursor location. For more information, see Inserting a Reusable Content Component *(on page 3148).*
Search References (Ctrl + Shift + G)

Finds the references to the `id` attribute value for the element at the current cursor position, in all the topics contained in the current DITA map (on page 3281) (opened in the DITA Maps Manager view (on page 2990)). If no references are found for the current element, a dialog box will be displayed that offers you the option of searching for references to its ancestor elements.

Figure 876. Search References to Ancestors Dialog Box

Tip: If you are invoking the action on an image, see Searching for References to Images (on page 3065) for details about what will be reported.

Show Key Definition

Available for elements that have a `conkeyref` or `keyref` attribute set (or elements with an ancestor element that has a `conkeyref` or `keyref` attribute). It computes the key name and opens the DITA map (on page 3281) that contains the definition of the key with the element that defines that key selected.

About Element submenu

This submenu includes the following actions:

Style Guide

Opens the DITA Style Guide Best Practices for Authors in your browser and displays a topic that is relevant to the element at the cursor position. When editing DITA documents, this action is available in the contextual menu of the editing area (under the About Element sub-menu), in the DITA menu, and in some of the documentation tips that are displayed by the Content Completion Assistant (on page 3280).

Browse reference manual

Opens a reference to the documentation of the XML element closest to the cursor position in a web browser.

Go to Definition

Moves the cursor to the definition of the current element.

Select submenu
This submenu allows you to select the following:

**Element**
Selects the entire element at the current cursor position.

**Content**
Selects the entire content of the element at the current cursor position, excluding the start and end tag. Performing this action repeatedly will result in the selection of the content of the ancestor of the currently selected element content.

**Parent**
Selects the entire parent element at the current cursor position.

**Text submenu**
This submenu contains the following actions:

**To Lower Case**
Converts the selected content to lower case characters.

**To Upper Case**
Converts the selected content to upper case characters.

**Capitalize Sentences**
Converts to upper case the first character of every selected sentence.

**Capitalize Words**
Converts to upper case the first character of every selected word.

**Count Words**
Counts the number of words and characters (no spaces) in the entire document or in the selection for regular content and read-only content.

**Note:** The content marked as deleted with *change tracking (on page 3288)* is ignored when counting words.

**Convert Hexadecimal Sequence to Character (Ctrl + Shift + X (Command + Shift + X on OS X))**
Converts a sequence of hexadecimal characters to the corresponding Unicode character (*on page 770*). The action can be invoked if there is a selection containing a valid hexadecimal sequence or if the cursor is placed at the right side of a valid hexadecimal sequence. A valid hexadecimal sequence can be composed of 2 to 4 hexadecimal characters.
and may or may not be preceded by the \texttt{0x} or \texttt{0X} prefix. Examples of valid sequences and the characters they will be converted to:

- \texttt{0x0045} will be converted to \texttt{E}
- \texttt{0X0125} to \texttt{#}
- \texttt{265} to \texttt{#}
- \texttt{2190} to \texttt{#}

\begin{itemize}
\item \texttt{0x0045} \texttt{will be converted to} \texttt{E}
\item \texttt{0X0125} \texttt{to} \texttt{#}
\item \texttt{265} \texttt{to} \texttt{#}
\item \texttt{2190} \texttt{to} \texttt{#}
\end{itemize}

\begin{itemize}
\item \texttt{Refactoring submenu}
\end{itemize}

Contains a series of actions designed to alter the XML structure of the document:

\begin{itemize}
\item \texttt{\textbullet} \texttt{Toggle Comment}
\end{itemize}

Encloses the currently selected text in an XML comment, or removes the comment if it is commented.

\begin{itemize}
\item \texttt{Move Up (Alt + UpArrow)}
\end{itemize}

Moves the current node or selected nodes in front of the previous node.

\begin{itemize}
\item \texttt{Move Down (Alt + DownArrow)}
\end{itemize}

Moves the current node or selected nodes after the subsequent node.

\begin{itemize}
\item \texttt{\textbullet} \texttt{Split Element (Alt + Shift + D (Ctrl + Alt + D on OS X))}
\end{itemize}

Splits the content of the closest element that contains the position of the cursor. Thus, if the cursor is positioned at the beginning or at the end of the element, the newly created sibling will be empty.

\begin{itemize}
\item \texttt{\textbullet} \texttt{Join Elements}
\end{itemize}

Joins two adjacent \texttt{block elements (on page 3280)} that have the same name. The action is available only when the cursor position is between the two adjacent \texttt{block elements}. Also, joining two \texttt{block elements} can be done by pressing the \texttt{Delete} or \texttt{Backspace} keys and the cursor is positioned between the boundaries of these two elements.

\begin{itemize}
\item \texttt{\textbullet} \texttt{Surround with Tags (Ctrl + E (Command + E on OS X))}
\end{itemize}

Allows you to choose a tag to enclose a selected portion of content. If there is no selection, the start and end tags are inserted at the cursor position.
• If the **Position cursor between tags** option *(on page 167)* is selected in the **Content Completion** preferences page, the cursor is placed between the start and end tag.

• If the **Position cursor between tags** option *(on page 167)* is not selected in the **Content Completion** preferences page, the cursor is placed at the end of the start tag, in an insert-attribute position.

**Surround with '[tag]' (Ctrl + ForwardSlash (Command + ForwardSlash on OS X))**

Surround the selected content with the last tag used.

**Rename Element**

The element from the cursor position, and any elements with the same name, can be renamed according with the options from the **Rename** dialog box.

**Delete Element Tags**

Deletes the tags of the closest element that contains the position of the cursor. This operation is also executed if the start or end tags of an element are deleted by pressing the **Delete** or **Backspace** keys.

**Remove All Markup**

Removes all the XML markup inside the selected block of content and keeps only the text content.

**Remove Text**

Removes the text content of the selected block of content and keeps the markup intact with empty elements.

**DITA Refactoring Actions**

A variety of built-in XML refactoring operations that pertain to DITA documents with some of the information preconfigured based upon the current context.

**Change Topic ID to File Name**

Use this operation to change the ID of a topic to be the same as its file name.

**Convert CALS Tables to Simple Tables**

Use this operation to convert DITA CALS tables to simple tables. If you invoke this operation from a nested table (a table inside a table), only the nested table will be affected. If
it is invoked on a parent table that contains nested tables, all of the contained tables will be converted.

**Convert conrefs to conkeyrefs**

Use this operation to convert `conref` attributes to `conkeyref` attributes.

**Convert Simple Tables to CALS Tables**

Use this operation to convert DITA simple tables to CALS tables. If you invoke this operation from a nested table (a table inside a table), only the nested table will be affected. If it is invoked on a parent table that contains nested tables, all of the contained tables will be converted.

**Convert to Concept**

Use this operation to convert a DITA topic (of any type) to a DITA Concept topic type (for example, Topic to Concept).

**Convert to General Task**

Use this operation to convert a DITA topic (of any type) to a DITA General Task topic type (for example, Task to General Task). A DITA General Task is a less restrictive alternative to the Strict Task information type.

**Convert to Reference**

Use this operation to convert a DITA topic (of any type) to a DITA Reference topic type (for example, Topic to Reference).

**Convert to Task**

Use this operation to convert a DITA topic (of any type) to a DITA Task topic type (for example, Topic to Task).

**Convert to Topic**

Use this operation to convert a DITA topic (of any type) to a DITA Topic (for example, Task to Topic).

**Convert to Troubleshooting**

Use this operation to convert a DITA topic (of any type) to a DITA Troubleshooting topic type (for example, Topic to Troubleshooting).

**Rename Key**
Available when invoked on a key, and can be used to quickly rename a key. It also updates all references to it. Note that it does not work on DITA 1.3 key scopes.

Attributes Refactoring Actions
Contains built-in XML refactoring operations that pertain to attributes with some of the information preconfigured based upon the current context.

Add/Change attribute
Allows you to change the value of an attribute or insert a new one.

Convert attribute to element
Allows you to change an attribute into an element.

Delete attribute
Allows you to remove one or more attributes.

Rename attribute
Allows you to rename an attribute.

Replace in attribute value
Allows you to search for a text fragment inside an attribute value and change the fragment to a new value.

Comments Refactoring Actions
Contains built-in XML refactoring operations that pertain to comments with some of the information preconfigured based upon the current context.

Delete comments
Allows you to delete comments found inside one or more elements.

Elements Refactoring Actions
Contains built-in XML refactoring operations that pertain to elements with some of the information preconfigured based upon the current context.

Delete element
Allows you to delete elements.

Delete element content
Allows you to delete the content of elements.

Insert element
Allows you to insert new elements.

**Rename element**

Allows you to rename elements.

**Unwrap element**

Allows you to remove the surrounding tags of elements, while keeping the content unchanged.

**Wrap element**

Allows you to surround elements with element tags.

**Wrap element content**

Allows you to surround the content of elements with element tags.

**Fragments Refactoring Actions**

Contains built-in XML refactoring operations that pertain to XML fragments with some of the information preconfigured based upon the current context.

**Insert XML fragment**

Allows you to insert an XML fragment.

**Replace element content with XML fragment**

Allows you to replace the content of elements with an XML fragment.

**Replace element with XML fragment**

Allows you to replace elements with an XML fragment.

**Review submenu**

This submenu includes the following actions:

**Track Changes**

Enables or disables the *Track Changes (on page 3288)* support for the current document.

**Accept Change(s) and Move to Next**

Accepts the *Tracked Change (on page 3288)* located at the cursor position or all of the changes in a selection and then moves to the next change. If you select a part of a deletion or insertion change, only the selected content is accepted.

**Accept All Changes**
Accepts all Tracked Changes (on page 3288) in the current document.

Reject Change(s) and Move to Next
Rejects the Tracked Change (on page 3288) located at the cursor position or all of the changes in a selection and then moves to the next change. If you select a part of a deletion or insertion change, only the selected content is rejected.

Reject All Changes
Rejects all Tracked Changes (on page 3288) in the current document.

Comment Change
Opens a dialog box that allows you to add a comment to an existing Tracked Change (on page 3288). The comment will appear in a callout and a tooltip when hovering over the change. If the action is selected on an existing commented change, the dialog box will allow you to edit the comment.

Highlight
Enables the highlighting tool that allows you to mark text in your document.

Colors
Allows you to select the color for highlighting text.

Stop highlighting
Use this action to deactivate the highlighting tool.

Remove highlight(s)
Use this action to remove highlighting from the document.

Add Comment
Inserts a comment at the cursor position. The comment appears in a callout box and a tooltip (when hovering over the change).

Show/Edit Comment
Opens a dialog box that displays the discussion thread and allows the current user to edit comments that do not have replies. If you are not the author who inserted the original comment, the dialog box just displays the comment without the possibility of editing it.

Remove Comment
Removes a selected comment. If you remove a comment that contains replies, all of the replies will also be removed.
Manage Reviews

Opens the Review view (on page 964).

Folding submenu

This submenu includes the following actions:

- **Toggle Fold**
  Toggles the state of the current fold.

- **Collapse Other Folds (Ctrl + NumPad/ (Command + NumPad/ on OS X))**
  Folds all the elements except the current element.

- **Collapse Child Folds (Ctrl + NumPad. (Command + NumPad. on OS X))**
  Folds the elements indented with one level inside the current element.

- **Expand Child Folds**
  Unfolds all child elements of the currently selected element.

- **Expand All (Ctrl + NumPad* (Command + NumPad* on OS X))**
  Unfolds all elements in the current document.

Inspect Styles

Opens the CSS Inspector view (on page 439) that allows you to examine the CSS rules that match the currently selected element.

Options

Opens the Author mode preferences page (on page 131) where you can configure various options in regards to the Author editing mode.

DITA Drag/Drop (or Copy/Paste) Actions

Dragging a file from the Project view (on page 333) or DITA Maps Manager view (on page 2990) and dropping it into a DITA document that is edited in Author mode, creates a link to the dragged file (the `xref` DITA element with the `href` attribute) at the drop location. Copy and paste actions work the same.

You can also drag images or media files from your system explorer or the Project view (on page 333) and drop them into a DITA document (or copy and paste). This will insert the appropriate element at the drop or paste location (for example, dropping/pasting an image will insert the DITA image element with an `href` attribute).
Tip: For information about customizing Author mode actions for a particular framework (on page 3282) (document type), see the Configuring Actions, Menus, Toolbars, Content Completion for a Framework (on page 2323) section.

Related Information:

- Configuring Actions, Menus, Toolbars, Content Completion for a Framework (on page 2323)

Working with Markdown Documents in DITA

Oxygen XML Editor includes some unique features that allow you to easily integrate Markdown documents in a DITA project. This is especially helpful for teams that have contributors who are familiar with the Markdown syntax, but they want their output to be generated from DITA projects. The integration between the Markdown editor and DITA includes actions to export or convert Markdown documents to DITA topics and the DITA tab in the Preview pane provides a visualization of how the topic will look after conversion.

Export Markdown as a DITA Topic

The Markdown editor includes an option to quickly convert the current Markdown document into a DITA topic. The Export as DITA Topic action is available in the contextual menu.

The conversion creates a new XML file that is defined as a DITA topic and opens it in the Text editing mode. You can then work with the document as you would with any other DITA topic, although you may need to manually correct some issues where the parser could not properly map Markdown syntax to DITA markup.

Working with Markdown Documents in the DITA Maps Manager

Oxygen XML Editor has some specialized features that allow you to integrate Markdown documents directly into your DITA project using the DITA Maps Manager (on page 2990). The following features are available for Markdown documents in the DITA Maps Manager view:

- Insert Reference to Markdown Document - You can use the New, Reference, and Reference to the currently edited file actions from the Append Child, Insert Before, or Insert After submenu when invoking the contextual menu in the DITA Maps Manager to insert a reference to a Markdown document at the selected location in the map. Markdown documents will be inserted as a topic reference (topicref element) with the format attribute set to markdown.
• **Validate Markdown Documents in DITA Maps** - When you use the Validate and Check for Completeness action from the DITA Maps Manager toolbar to check the integrity of the structure of a DITA map, Markdown documents that are referenced in the DITA map will be converted to DITA topics in the background and validated the same as any other DITA topic.

• **Transforming DITA Maps with Markdown Documents** - When transforming DITA maps that have Markdown documents referenced, the transformation will convert the Markdown documents to normal DITA output without you needing to manually convert the Markdown documents to DITA topics.

• **Manually Convert Markdown Documents to DITA Topics** - If you need to use DITA semantics that are not possible in Markdown syntax (such as content references, related links, and other DITA-specific syntax), you can manually convert the Markdown document into a DITA topic. To do so, right-click the Markdown document in the DITA Maps Manager and select Refactoring > Convert Markdown to DITA Topic. This will open a dialog box that allows you to configure options for converting the document to an XML file that is defined as a DITA topic.

Figure 877. Convert Markdown to DITA Topic Dialog Box

This dialog box includes the following options:

**Destination**

The destination path for the new DITA topic.

**File Name**

Presents the current name and allows you to change it.

**Update references**

Select this option to update all references of the file in the DITA map and in the files referenced from the DITA map.

**Delete Markdown file**

If selected, the Markdown version of the file is deleted when the document is converted into a DITA file. If deselected (default value), when the document is converted into a DITA file, the original Markdown file is also preserved in its current location.
Preview

Select this button to display a preview of the changes Oxygen XML Editor is about to make.

Convert

Select this button to perform the conversion. If the Markdown file has `format="markdown"`, it will be converted to a DITA topic. If it has `format="mdita"`, it will be converted to a LightWeight DITA topic.

Tip: Oxygen XML Editor comes with a sample ditamap project for converting Markdown to DITA. Go to the Project view (on page 333), open the sample.xpr project, and navigate to the dita/markdown-dita folder.

Converting Multiple Markdown Documents to DITA

Oxygen XML Editor offers an add-on that contributes actions in the Tools menu and contextual menu to enable batch conversion between various formats, including Markdown to DITA. For more information and instructions for installing the add-on, see Batch Converter Add-on (on page 2677).

Related Information:

- Markdown Editor (on page 1507)
- Actions Available in the Markdown Editor (on page 1510)
- Markdown Editor Syntax Rules and Specifications (on page 1522)
- Automatic Validation in Markdown Documents (on page 1519)
- Markdown DITA Syntax Reference

Working with Keys in DITA

DITA uses keys to insert content that may have different values in various circumstances. Keys provide a way to reference something indirectly. This can make it easier to manage and to reuse content in a number of ways.
You can think of keys as like renting a post office box. Instead of the mail going directly from the sender to your house, it now goes to the post office box. You then go to the post office box and bring the mail back to your house. If you move to a new house, your mail still gets to you because it comes to the same post office box. You do not have to send change of address cards to all the people who send you mail. Your mailbox address is the key that makes sure your mail always reaches you, even if you move.

Similarly, if you use keys in your content to reference other content, you do not have to update the source content to change the value of the key or what it points to. You just change the definition of the key.

**Defining Keys in DITA Maps**

Keys are defined in maps and can then be reused and referenced throughout the whole structure of the map. It is considered best practice to create a separate submap that contains all of the key definitions and reference that submap in the main (root) map (on page 3287). This makes it easier to manage since they’re all in one location.

There are two types of key definitions that can be created in a map:

- Key with a value inside a *keyword*. To define this type of key, follow these instructions: [Key Definition with a Keyword Value](on page 3026).
- Key with a target (for example, to target a resource such as an image or external link). To define this type of key, follow these instructions: [Key Definition with a Target](on page 3026).

**Using Keys for Values**

You can use keys to represent values that may vary depending on the type of output. For instance, you may have several products that share a common feature. When you want to describe that feature, you need a way to insert the name of the product, even though that name is different depending on which product the feature description is being used for. For more information, see [Working with Variable Text in DITA](on page 3148).

**Assigning Keys to Topics**

You can assign a key to a topic and use that key to reference that topic for various purposes, such as reuse or linking. As always, keys are defined in maps, so the key definition is done using the keys attribute of the `topicref` element:

```xml
<topicref href="quick-heat.dita" keys="feature.quick-heat"/>
```
The easiest way to assign keys to a topic (and insert the `topicref` element in its DITA map (on page 3281)) is to use the Keys tab in the Edit Properties dialog box (on page 3029). In the DITA Maps Manager (on page 2990), invoke the contextual menu on the topic for which you want to assign a key and select Edit Properties. Go to the Keys tab and enter the name of the key in the Define keys field.

Once a key is assigned to a topic, you can use it to reference that topic for various purposes:

- You can create a link (on page 3163) to it using `<xref keyref="feature.quick-heat"/>`. This allows you to change the target of the link by changing the topic that is pointed to by the key (for example, by profiling).
- You can use it in a map to create a reference to a topic (on page 3010) by key: `<topicref keyref="feature.quick-heat"/>`. This allows you to change which topic is inserted in the map by the build, by changing the topic that is pointed to by the key.
- You can use it to insert a content reference (on page 3130). In this case, the content reference uses the key to locate the topic to pull content from. It uses a `conkeyref` attribute: `<procedure conkeyref="feature.quick-heat/preheat-procedure"/>`. In this example, `feature.quick-heat` is the key, and `preheat-procedure` is the ID of a procedure within the topic for that key. Using this mechanism, you could have multiple versions of the preheat procedure in various topics and control which one is inserted by changing the topic that is pointed to by the key.

### Assigning Keys to Graphics

You can assign a key to an image (using a map to point to the image file (on page 3026)) and then insert the image using the key (on page 3062).

Example of a key definition for a targeted image file:

```xml
<map id="keydefs">
  <!-- product name -->
  <title>Key Definitions</title>
  <keydef keys="image1" href="../img/image1.png" format="png"/>
</map>
```

**Related Information:**

- Defining Keys in DITA Maps (on page 3024)
- Creating a DITA Content Key Reference (on page 3130)
Working with a Glossary of Terms in DITA

There are several ways to manage a Glossary of Terms in DITA, but it is considered best practices to create a separate submap for the glossary and embed that glossary map in the main (root) map (on page 3287). The actual glossary terms are small glossary entry topics that are referenced in the glossary map. You can add links to the glossary terms (on page 3120) in the output and you can even define abbreviated forms (on page 3121) for terms that have an acronym or some other type of abbreviation.

How to Create a Glossary of Terms in Oxygen XML Editor

Even though there are several ways to create a glossary and reference the glossary terms, the following is the recommended approach:

1. Create a new submap (on page 3008) for your glossary and embed it in your main map.
2. Create a glossary entry topic ( `<glossentry>` ) for each glossary term. The `<glossentry>` element may contain numerous optional glossentry elements, but every glossentry topic must contain a `<glossterm>` and `<glossdef>` element. The `<glossterm>` is the name of the term while the `<glossdef>` is its definition.

Here is an simple example:

```xml
<glossentry id="ddl">
  <glossterm>Data Definition Language</glossterm>
  <glossdef>A language used for defining database schemas.</glossdef>
</glossentry>
```

The easiest way to create a glossentry topic in Oxygen XML Editor:

a. Click the New file wizard button on the toolbar.
b. Type `glossentry` in the search field at the top of the dialog box.
c. Select the Glossentry DITA topic type, configure the name and optionally the title, and click Create.
3. Reference each glossary entry topic in your glossary submap using the `<glossref>` element. This element requires a `@keys` attribute.

```xml
<glossref keys="gloss_ddl" href="ddl.dita"/>
```

The easiest way to reference a glossentry in Oxygen XML Editor:

a. With the glossary entry topic opened in the main editor, open the glossary submap in the DITA Maps Manager, right-click the map node and select **Append Child > Reference to the currently edited file** (if you already have existing glossentry topics, you can right-click the glossentry where you want to insert the new one and select **Insert After > Reference to the currently edited file**).

   **Step Result:** This opens the **Insert Reference** dialog box *(on page 3017).*

b. Go to the **Keys** tab and enter a name in the **Define keys** field.

c. Go to the **Attributes** tab and select **Glossary Reference** from the **Reference type** drop-down list at the top of the dialog box.

d. Click **Insert and Close**.

**Tip:** You could also group multiple glossentry topics into a single collection by using the `<glossgroup>` element.

### How to Create Links to Glossary Terms

To specify that a link is generated in the output from the glossary term to its definition, use the `<term>` element (or `<abbreviated-form>` element as described in the next section *(on page 3121)*) with a `@keyref` attribute that references the corresponding key specified in the `<glossref>` element. Of course, the glossref points to the glossentry topic where the glossary term is defined.

```xml
<term keyref="gloss_ddl"/>
```

In the output, the text specified in the `<glossterm>` element is displayed for the glossary term with a link to its glossentry topic that contains its definition.

The easiest way to add a `<term>` element and reference the glossary term in Oxygen XML Editor:

1. Place the cursor at the location where you want to insert a link to the glossary term.
2. In the **DITA Reusable Components view** *(on page 3154)*, go to the **Keys** tab and use the search filter field at the top of the view to find the key for the particular glossary term.
3. Right-click the key and select **Insert as Keyref > More > Term**.
Using Abbreviated Forms (Acronyms) with Glossary Terms

The `<abbreviated-form>` element can be used for glossary terms that you want to appear in an abbreviated form (such as an acronym). Abbreviated forms are expanded to their full form the first time that they appear in a document, and then all subsequent instances will display the short form (or acronym). You would need to define the long and short forms in the `<glossentry>` and then reference it with the `<abbreviated-form>` element (instead of the `<term>` element).

The recommended best practices for defining the long and short forms would be to use a structure similar to this:

```xml
<glossentry id="ddl">
  <glossterm>Data Definition Language</glossterm>
  <glossBody>
    <glossSurfaceForm>Data Definition Language (DDL)</glossSurfaceForm>
    <glossAlt>
      <glossAcronym>DDL</glossAcronym>
    </glossAlt>
  </glossBody>
</glossentry>
```

The long form is declared using the `<glossSurfaceForm>` element while the short form is declared using the `<glossAcronym>` element.

Then you need to reference the glossentry that contains the long and short forms using the `<abbreviated-form>` element:

```xml
<abbreviated-form keyref="gloss_ddl"/>
```

For more information about the recommended best practices for using abbreviations, including information about using multiple languages, see: [http://www.oasis-open.org/committees/download.php/29734/AcronymBestPractice_08112008.doc](http://www.oasis-open.org/committees/download.php/29734/AcronymBestPractice_08112008.doc).

Related Information:

- [https://docs.oasis-open.org/dita/v1.2/os/spec/langref/glossentry.html](https://docs.oasis-open.org/dita/v1.2/os/spec/langref/glossentry.html)
- [https://docs.oasis-open.org/dita/v1.2/os/spec/langref/abbreviated-form.html](https://docs.oasis-open.org/dita/v1.2/os/spec/langref/abbreviated-form.html)
Reusing DITA Content

Reusing content is one of the key features of DITA. DITA provides several methods for reusing content. Oxygen XML Editor provides support for each of these methods.

**Reusing Topics in DITA Maps**

A DITA topic does not belong to any one publication. You add a DITA topic to a publication by referencing it in a map. You can reference the same topic in multiple maps (on page 3125).

**Reusing Content with References and Keys**

DITA allows you to reuse content by referencing it in another topic. DITA provides several mechanisms for including content by reference (on page 3126) (conref, conkeyref, coderef). A **conref** (content reference) (on page 3128) creates a direct reference to a specific element of another topic. A **conkeyref** (content key reference) (on page 3130) creates a reference to a key, which then points to a specific element in another topic. The advantage of using a conkeyref is that you can change the element that is included by changing the key reference. For example, since keys are defined in maps, if you include a topic in multiple maps, you can use a different key reference in each map. A **coderef** references an external file that contains literal code.

Oxygen XML Editor provides support for all of these mechanisms.

While the conref and conkeyref mechanisms can be used to reference any content element, it is considered best practice to only conref or conkeyref content that is specifically set and managed as reusable content. This practice helps reduce expensive errors, such as an author accidentally deleting the source element that other topics are including by conref. Oxygen XML Editor can help you create a reusable component from your current content.

**Reusing Content with Reusable Components**

DITA allows you to select content in a topic, create a reusable component (on page 3146) from it and reference that component in other locations. Each reusable component is created as a separate file. Anytime the content needs to be edited, you only need to update it in the component file and all the locations in your topics that reference it will also be updated. This can help you to maintain continuity and accuracy throughout your documents.

**Reusing Content with Variables**

DITA allows you to replace the content of certain elements with a value that is pointed to by a key. This mechanism effectively means that you can create variables in your content (on page 3148),
which you can then create multiple outputs by changing the value that the key points to. This is done by profiling the definition of the key value, or by substituting another map with a different key value.

**Reusing Content with DITA 1.3 Concepts**

DITA 1.3 allows you to use some advanced concepts to expand content reuse possibilities even further. *Key Scopes (or scoped keys) (on page 3151)* allow you to reuse topics with variable content depending on the particular context and it maximizes reuse possibilities for keys. *Branch Filtering (on page 3152)* allows you to reuse the same content that is profiled in multiple ways within the same publication, each time using a different filter.

**DITA Reusable Components View**

If you use a large amount of keys or reusable components in your DITA project, the DITA Reusable Components view (on page 3154) can be quite helpful. It collects all of the keys and reusable components that are defined in the root map (on page 3287) and presents them in a dynamic table where you can easily locate and insert references to them.

**Reuse Actions in Oxygen XML Editor**

Oxygen XML Editor includes some actions that are specifically designed for DITA reusable content. These actions are available in the contextual menu, the DITA menu, and some are available on the toolbar.

**Reuse Content**

This action provides a mechanism for reusing content fragments. It opens the Reuse Content dialog box (on page 3135) that allows you to insert several types of references to reusable content at the cursor position. The types of references that you can insert using this dialog box include content references (conref) (on page 3136), content key references (conkeyref) (on page 3137), or key references to metadata (keyref) (on page 3141).

**Push Current Element**

Opens the Push current element dialog box (on page 3144) that allows content from a source topic to be inserted into another topic without any special coding in the topic where the content will be re-used.

**Edit Content Reference**

This action is available for elements with a conref or conkeyref attribute. It opens the Edit Content Reference dialog box that allows you to edit the source location (or key) and source element of a content reference (or content key reference), and the reference
Replace Reference with Content

Replaces the referenced fragment (conref or conkeyref) at the cursor position with its content from its source. This action is useful if you want to make changes to the content in the currently edited document without changing the referenced fragment in its source location. If the source content includes references to other topics/resources (hrefs), the operation also resolves those references relative to the new location.

Attributes are preserved according to the following priority:

1. Attributes from the elements in the current document that reference other content are preserved except for attributes with a -dita-use-conref-target value.
2. Attributes from the referenced content are brought into the replaced elements in the current document except for id attributes.

Replace All References with Content

Replaces all referenced fragments (keyref, conref, or conkeyref) in the current document with the content. Attributes are preserved according to the following priority:

1. Attributes from the elements in the current document that reference other content are preserved except for attributes with a -dita-use-conref-target value.
2. Attributes from the referenced content are brought into the replaced elements in the current document except for id attributes.

For keyrefs inside xref or link elements, the keyref attribute is changed to an href attribute, while the rest of the content for the keyref is replaced with its source content.

If the source content includes references to other topics/resources (hrefs), the operation also resolves those references relative to the new location.

Remove Content Reference

Removes the content reference (conref or conkeyref) inside the element at the cursor position.

Create Reusable Component

Creates a reusable component from the selected fragment of text. For more information, see Creating a Reusable Content Component (on page 3147).

Insert Reusable Component

Inserts a reusable component at cursor location. For more information, see Inserting a Reusable Content Component (on page 3148).
Reusing DITA Topics in Multiple Maps

You can reuse an entire DITA topic simply by referencing it in multiple maps (or multiple locations within the same map (on page 3013)) using one of the following procedures:

Reuse Topics Using the DITA Maps Manager

1. Make sure the DITA map (on page 3281) is opened in the DITA Maps Manager (on page 2990).
2. Add a reference to an existing topic by using one of the following methods (depending on your particular situation):
   a. If the topic already exists in this DITA map, do one of the following:
      • Simply drag the topic and press Ctrl (or Alt on OS X) at the new location within the map (or use the Copy and Paste contextual menu actions).
      • If the topic is the currently opened document in the main editor, determine the new location in the map (in the DITA Maps Manager (on page 2990)), right-click a parent or sibling topic, and select Append Child > Reference to the currently edited file or Insert After > Reference to the currently edited file.
   b. If the topic already exists in another DITA map, do one of the following:
      • Open the other map in the DITA Maps Manager (on page 2990), right-click the topic, select Copy, switch back to the original DITA map in the DITA Maps Manager, determine the new location in the map, right-click a parent or sibling topic, and use one of the Paste contextual menu actions (Paste, Paste Before, or Paste After).
      • If the topic is the currently opened document in the main editor, determine the new location in the map (in the DITA Maps Manager (on page 2990)), right-click a parent or sibling topic, and select Append Child > Reference to the currently edited file or Insert After > Reference to the currently edited file.
   c. If the topic exists in the project, but has not yet been added to a DITA map, do one of the following:
      • Right-click the topic in the Project view (on page 333) (or the file system), select Copy, switch to the DITA Maps Manager (on page 2990) view, determine the new location in the map, right-click a parent or sibling topic, and use one of the Paste contextual menu actions (Paste, Paste Before, or Paste After).
      • If the topic is the currently opened document in the main editor, determine the new location in the map (in the DITA Maps Manager (on page 2990)), right-click a parent or
sibling topic, and select **Append Child** > **Reference to the currently edited file** or **Insert After** > **Reference to the currently edited file**.

3. If your topic uses a **key reference** (on page 3116), set up the appropriate **key definition in your map** (on page 3024).

4. If you want to define relationships between topics, other than those defined in the topics themselves, you can **add a relationship table to your map** (on page 3169).

5. When you have finished adding topics, check that your map is complete and that all topic links and keys resolve correctly. To do this **validation**, click the ✉️ **Validate and Check for Completeness action** (on page 3036) on the toolbar in the **DITA Maps Manager**.

### Reuse Topics Using Author Mode Editor

1. **Open the DITA map** (on page 2989) in the **Author** mode editor.

2. **Add a reference to an existing topic** by dragging it from the **Project view** (on page 333) (or the file system) and dropping it in the desired location in the **DITA map** opened in **Author** mode. You can also accomplish the same thing by using the ✉️ **Copy** and ✉️ **Paste** contextual menu actions.

3. If your topic uses a **key reference** (on page 3116), set up the appropriate **key definition in your map** (on page 3024).

4. If you want to define relationships between topics, other than those defined in the topics themselves, you can **add a relationship table to your map** (on page 3169).

5. When you have finished adding topics, check that your map is complete and that all topic links and keys resolve correctly. To do this **validation**, click the ✉️ **Validate and Check for Completeness action** (on page 3036) on the toolbar in the **DITA Maps Manager**.

### Displaying Multiple References to the Same Topics

Whenever multiple references to the same topic are detected in the context of the current map in the **DITA Maps Manager** (on page 2990), an indicator will appear in the top-right corner of the **Author** mode editor that shows the number of times the current topic is referenced in the **DITA map**. It also includes navigation arrows that allow you to jump to the next or previous reference in the **DITA Maps Manager**.

![References in map: 1 of 6](image)

### Working with Content References

The DITA `conref` feature (short for **content reference**) lets you insert a piece of source content by referencing it from its source. When you need to update that content, you only need to do it in one place.
There are several strategies for managing content references:

- **Reusable components** - With this strategy, you create a new file for each piece of content that you want to reuse and you insert references from the content of the reusable component files. For example, suppose that you have a disclaimer that needs to be included in certain sections of your documentation. You can create a reusable component that contains your disclaimer and reuse it as often as you need to. If the disclaimer ever needed to be updated, you only have to edit it in one file.

- **Single-source content references** - You may prefer to keep many pieces of reusable content in one file. For example, you might want to create a single file that contains all the actions that are available in various menus or toolbars for your software application. Then, wherever you need to describe or display an action in your documentation, you can reuse content from that single file by inserting content references. This strategy requires more setup than reusable components, but might make it easier to centrally managing the reused content and it allows for more flexibility in the XML structure of the reusable content.

- **Arbitrary content references** - Although it is not recommended, you can create content references among topics without storing the reusable content in components or a single file. This strategy might make it difficult to manage content that is reused and to maintain continuity and accuracy, since you may not have any indication that content you are editing is reused elsewhere.

Oxygen XML Editor creates a reference to the external content by adding a `conref` attribute to an element in the local document. The `conref` attribute defines a link to the referenced content, made up of a path to the file and the topic ID within the file. The path may also reference a specific element ID within the topic. Referenced content is not physically copied to the referencing file. However, by default Oxygen XML Editor displays it in **Author** mode as if it is there in the referencing file. If you do not want referenced content displayed, open the **Preferences** dialog box (**Options > Preferences**) (on page 79), go to **Editor > Edit modes > Author**, and deselect the **Display referenced content** option (on page 132).

**Note:** A reference also displays tracked changes (on page 3288) and comments that are included in the source fragment. To edit these comments (or accept/reject changes) right-click the comment or tracked change and select **Edit Reference**.

**Tip:** To search for references made through a direct content reference, use the **Search References** action from the contextual menu.

**Related Information:**

- [Working with Reusable Components](on page 3146)
- [Working with Keys in DITA](on page 3116)
Creating a DITA Content Reference

DITA Content Reference

A DITA content reference, or conref, is one of the main content reuse features of DITA. It is a mechanism for re-using the same content in multiple topics (or even in multiple locations within the same topic).

For a conref to be created, the source content must have an id attribute that the conref can reference. Therefore, creating a conref requires that you add an id to the content to be reused before inserting a conref into the topic that reuses the referenced content.

Assigning an ID to the Referenced Content

To add an id to a DITA element in a topic, place the cursor on the element and select `Edit Attributes` from the contextual menu (or simply press `Alt+Enter`) to open the in-place attribute editor. Enter id as the Name of the attribute and a value of your choice in the Value field. You can also use the Attributes view (on page 426) to enter a value in the id attribute.

Note: The element may already have an id, since in some cases, Oxygen XML Editor automatically generates an ID value when the id attribute is created.

Creating a Content Reference

To create a content reference (conref), follow these steps:

1. Make sure the element you want to reference has an ID assigned to it (on page 3128).
2. In Author mode (on page 402), place the cursor at the location where you want the reused content to be inserted.
3. Select the Reuse Content action on the main toolbar (or from the DITA menu or Reuse submenu of the contextual menu). The Reuse Content dialog box (on page 3135) is displayed.
4. In the Location field of the Reuse Content dialog box, select the topic that contains the element you want to reference. The elements that you can reference are presented in a table.
5. Select the **Target ID** of the element (or elements) from which you want to insert the content, and verify the content in the **Preview** pane. The \_id\_ value of the element that you select is automatically added to the **Reference to (conref)** field.

6. Make any other selections you need in the **Reuse Content** dialog box (on page 3135). If you select multiple elements, the **Expand to (conrefend)** field is automatically filled with the \_id\_ value of the last element in your selection.

7. Click **Insert** or **Insert and close** to create the content reference.

### Using Copy/Paste Actions to Create a Content Reference

Oxygen XML Editor also includes support for creating content references with simple copy/paste actions. The copied content must be an entire DITA XML element with an ID attribute. Also, the location in the document where you paste the element must be valid, although as long as the **Smart paste and drag and drop option** (on page 138) is selected in the **Schema Aware** preferences page, if you try to paste it in an invalid location, Oxygen XML Editor will attempt to place it in a valid location, and may prompt you with one or more choices for where to place it.

To create a content reference (\_conref\_) using copy/paste actions, follow these steps:

1. Copy an entire DITA element that has an ID attribute assigned to it.
2. Place the cursor at a location where the copied element will be valid.
3. Select the **Paste as Content Reference** action from the **Paste Special** submenu from the contextual menu.

### Other Ways to Reuse Content

- You can use the **Components** tab in the **DITA Reusable Components** view (on page 3158) to easily insert content references.
- An alternate way to reuse content is to use the Oxygen XML Editor **Create Reusable Component** (on page 3147) and **Insert Reusable Component** (on page 3148) actions (available in the **DITA** menu and the **Reuse** submenu of the contextual menu). They handle the details of creating an \_ID\_ and \_conref\_ and create reusable component files, separate from your normal content files. This can help you manage your reusable content more effectively.
- You can also insert reusable content using content key references (on page 3130). This may also make reusable content easier to manage, depending on your particular situation and needs.
- Other topics in this section include information about more specialized or advanced ways or reusing content, such as **code references** (on page 3143), the **conref push mechanism** (on page 3144), **variable text** (on page 3148), **key scopes** (on page 3151), and **branch filtering** (on page 3152).
Creating a DITA Content Key Reference

**DITA Content Key Reference**

A DITA content key reference, or `conkeyref`, is a mechanism for inserting a piece of content from one topic into another. It is a version of the DITA content reference mechanism (on page 3128) that uses keys (on page 3116) to locate the content to reuse rather than direct references to topics that contain reused content.

As with a `conref`, a `conkeyref` requires that the element to be reused has an `id` attribute. It also requires the topic that contains the reusable content to be assigned a `key` (on page 3116) in a map. As with all uses of keys, you can substitute multiple maps or use profiling (on page 3225) to create multiple definitions of keys in a single map. This allows the same `conkeyref` to pull in content from various sources, depending on how your build is configured. This can make it easier to create and manage sophisticated content reuse scenarios.

**Creating a Content Key Reference**

To create a content key reference (conkeyref), follow these steps:

1. Make sure the topic that contains the reusable content is assigned a key in the DITA map and the element you want to reference has an `id` assigned to it.
2. In Author mode (on page 402), place the cursor at the location where you want the reused content to be inserted.
3. Select Reuse Content (on page 402), place the cursor at the location where you want the reused content to be inserted. The Reuse Content dialog box (on page 3135) is displayed.
4. Select the Key radio button for the content source and use the Choose Key Reference button to select the key for the topic that contains the reusable content (you can also select one from the drop-down list in the Key field). The elements that you can reference from the source are presented in the table in the middle of the Reuse Content dialog box.

5. Select the Target ID of the element (or elements) that you want to insert, and verify the content in the Preview pane. The id value of the element that you select is automatically added to the Reference to (conkeyref) field.

6. Make any other selections you need in the Reuse Content dialog box. If you select multiple elements, the Expand to (conrefend) field is automatically filled with the id value of the last element in your selection.

7. Click Insert or Insert and close to create the content reference.

Note: If you are using Text mode (on page 303), when you insert a conkeyref attribute, after you enter the first quote (conkeyref="), the Content Completion Assistant will list all the defined keys that you can select from. Also, after you select the key, the Content Completion Assistant will then list the element IDs from the referenced topic, allowing you to insert an anchor. Note that this only works for local files.

Using Copy/Paste Actions to Create a Content Key Reference

Oxygen XML Editor also includes support for creating content key references with simple copy/paste actions. When the DITA content is processed, the key references are resolved using key definitions from DITA maps. The copied content must be an entire DITA XML element with an ID attribute and the topic that contains the reusable content must have a key assigned in a DITA map. Also, the location in the document where you paste the element must be valid, although as long as the Smart paste and drag and drop option (on page 138) is selected in the Schema Aware preferences page, if you try to paste it in an invalid location, Oxygen XML Editor will attempt to place it in a valid location, and may prompt you with one or more choices for where to place it.

To create a content key reference (conkeyref) using copy/paste actions, follow these steps:

1. In the DITA Maps Manager view (on page 2990), make sure that the Root map combo box (on page 2995) points to the correct map that stores the keys.

2. Make sure the topic that contains the content you want to reference has a key assigned to it. To assign a key, right-click the topic with its parent map opened in the DITA Maps Manager (on page 2990), select Edit Properties, and enter a value in the Keys field.

3. In a topic with an assigned key, copy an entire DITA element that has an ID attribute assigned to it.

4. Place the cursor at a location where the copied element will be valid.

5. Select the Paste as Content Key Reference action from the Paste Special submenu from the contextual menu.
Other Ways to Reuse Content

- You can use the **Components** tab in the **DITA Reusable Components** view (on page 3158) to easily insert content key references.
- You can also insert reusable content using content references (**conref**) (on page 3128).
- Other topics in this section include information about more specialized or advanced ways or reusing content, such as **code references** (on page 3143), the **conref push mechanism** (on page 3144), **variable text** (on page 3148), **key scopes** (on page 3151), and **branch filtering** (on page 3152).

Related Information:

- **Reuse Content Dialog Box** (on page 3135)
- **Working with Reusable Components** (on page 3146)
- **Editing DITA Content References** (on page 3132)
- **DITA Reusable Components View** (on page 3154)
- **Creating a DITA Content Reference** (on page 3128)

Editing DITA Content References

Oxygen XML Editor also includes some actions that allows you to quickly edit existing content references. When the element that contains a content reference (**conref** or **conkeyref**) is selected, the following actions are available in the **DITA** menu and the **Reuse** submenu of the contextual menu:

**Edit Content Reference**

This action is available for elements with a **conref** or **conkeyref** attribute. It opens the **Edit Content Reference** dialog box that allows you to edit the source location (or key) and source element of a content reference (or content key reference), and the reference details (**conref** / **conkeyref** and **conrefend** attributes). For more information, see **Reuse Content Dialog Box** (on page 3135).

**Replace Reference with Content**

Replaces the referenced fragment (**conref** or **conkeyref**) at the cursor position with its content from it source. This action is useful if you want to make changes to the content in the currently edited document without changing the referenced fragment in
its source location. If the source content includes references to other topics/resources (hrefs), the operation also resolves those references relative to the new location. Attributes are preserved according to the following priority:

1. Attributes from the elements in the current document that reference other content are preserved except for attributes with a -dita-use-conref-target value.
2. Attributes from the referenced content are brought into the replaced elements in the current document except for id attributes.

**Replace All References with Content**

Replaces all referenced fragments (keyref, conref, or conkeyref) in the current document with the content. Attributes are preserved according to the following priority:

1. Attributes from the elements in the current document that reference other content are preserved except for attributes with a -dita-use-conref-target value.
2. Attributes from the referenced content are brought into the replaced elements in the current document except for id attributes.

For keyrefs inside xref or link elements, the keyref attribute is changed to an href attribute, while the rest of the content for the keyref is replaced with its source content.

If the source content includes references to other topics/resources (hrefs), the operation also resolves those references relative to the new location.

**Remove Content Reference**

Removes the content reference (conref or conkeyref) inside the element at the cursor position.

**Converting Conrefs to Conkeyrefs**

Oxygen XML Editor includes a DITA refactoring operation called Convert conrefs to conkeyrefs that will find all content references (that reference content outside the current document) and convert them to content key references. You can also use it to quickly convert all content references in the current document or multiple documents at once.

To access the Convert conrefs to conkeyrefs operation, use one of the following methods:

**Single Document Method**

With the document opened in the editor, right-click anywhere in the main editing pane (or right-click the topic reference in the DITA Maps Manager (on page 2990)), go to the Refactoring submenu, and choose Convert conrefs to conkeyrefs.

**Multiple Documents At Once Method**
Select **XML Refactoring** from the **Tools** menu (or from the **Refactoring** submenu when you right-click a document in the **Project view (on page 333)** or the **DITA Maps Manager view (on page 2990)**). Then select **Convert conrefs to conkeyrefs** from the **DITA section** and click **Next**.

Either method will proceed to the **XML Refactoring Wizard**. If you used the **Multiple Documents At Once Method (on page 3133)**, the wizard page allows you to choose a scope for the operation and some filtering options:

- **Scope** - Select from a variety of options to define the scope for which resources will be affected by the operation. For example, you can choose to affect all resources in the **Project**, All opened files, Current DITA map hierarchy, or just the Current file.

- **Filters** section
  - **Include files** - Specifies files to be excluded from the operation. You can specify multiple files by separating them with commas and the patterns can include wildcards (such as * or ?).
  - **Restrict to known XML file types only** - Excludes non-XML file types from the operation.
  - **Look inside archives** - If this option is selected, the scope of the operation will include files inside archives.

If you used the **Single Document Method (on page 3133)**, the scope will be the current file so the scope and filtering options are not displayed.

You can then use one of the following buttons to proceed with the operation:

**Preview**

You can use the **Preview** button to open a comparison panel where you can review all the changes that will be made by the refactoring operation before applying the changes.

**Warning:** It is always recommended to use the **Preview** button to make sure the operation is not going to do something unexpected and after you click the **Finish** button, any **Undo** action will only revert changes on the current document.

**Finish**

When you use the **Finish** button, the operation will be processed and all content references will be converted to content key references (either all content references in the current document or all content references in all of the documents specified in the scope). The file name for each converted document is used as the value for its new key. However, the operation does NOT automatically add the key to the **DITA Map (on page 3281)**, so you still need to manually define each key in your **DITA map (on page 3024)**.

Related Information:
Reuse Content Dialog Box

The **Reuse Content** dialog box provides a mechanism for reusing content fragments. DITA `conref`, `conkeyref`, and `keyref` attributes can be used to insert references to reusable content. The `conref` attribute stores a reference to another element and is processed to replace the referencing element with the referenced element. The `conkeyref` attribute uses `keys (on page 3116)` to locate the content to reuse rather than direct references to the topic that contains the reusable content. The `keyref` attribute also uses `keys (on page 3116)` and can be used to indirectly reference metadata that may have different values in various circumstances.

**Note:** For a `conref` or `conkeyref`, to reference the content inside a DITA element, the source element must have an `id` attribute assigned to it. The element containing the content reference acts as a placeholder for the referenced element. For more details about DITA `conref` and `conkeyref` attributes, go to [https://www.oxygenxml.com/dita/1.3/specs/archSpec/base/conref.html](https://www.oxygenxml.com/dita/1.3/specs/archSpec/base/conref.html).

**Note:** For the purposes of using a `keyref`, keys are defined at map level and referenced afterwards. For more information about the DITA `keyref` attribute, go to [https://www.oxygenxml.com/dita/1.3/specs/langRef/attributes/thekeyrefattribute.html](https://www.oxygenxml.com/dita/1.3/specs/langRef/attributes/thekeyrefattribute.html).

Oxygen XML Editor displays the referenced content (on page 900) of a DITA content reference if it can resolve it to a valid resource. If you use URIs instead of local paths in your XML documents and your DITA-OT transformation needs an `XML Catalog (on page 3289)` to map the URIs to local paths, you need to [add the catalog in Oxygen XML Editor (on page 1123)](https://www.oxygenxml.com/dita/1.3/specs/...). If the URIs can be resolved, the referenced content is displayed in **Author** mode and in the transformation output.

In **Author** mode, a reference to reusable content ( `conref`, `conkeyref`, or `keyref` ) can easily be inserted at the cursor position by using the **Reuse Content** dialog box. It can be opened with any of the following methods:

- Click the ![Reuse Content](https://www.oxygenxml.com/dita/1.3/specs/tools/authority/dialogs/...)
- In the contextual menu of the editing area, go to **Reuse > ![Reuse Content](https://www.oxygenxml.com/dita/1.3/specs/tools/authority/dialogs/...)**.
- Go to **DITA > ![Reuse Content](https://www.oxygenxml.com/dita/1.3/specs/tools/authority/dialogs/...)**.
Your selection at the top of the dialog box for choosing the content source determines whether Oxygen XML Editor will insert a `conref`, `conkeyref`, or `keyref`.

If you select **Location** for the content source, a **content reference** (`conref`) will be inserted. If you select **Key** for the content source, keys will be used to insert a **content key reference** (`conkeyref`) or a **key reference** (`keyref`).

**Content Reference** (`conref`) Options Using the Reuse Content Dialog Box

Figure 878. Reuse Content Dialog Box (with the Default Insert Content Reference Options Displayed)

Choose the content source Section

When **Location** is selected for the content source, a **content reference** (`conref`) will be inserted. Here you can specify the path of the topic that contains the content you want to reference.

The dialog box offers the following options:
Select an element from the content source Section

**Show elements of type**
You can use this drop-down list to select specific types of elements to be displayed in the subsequent table. This can help you narrow down the list of possible source elements that you can select.

**Text Filter Field**
You can also use the text filter field to narrow down the list of possible source elements to be displayed in the subsequent table.

**Element Table**
Presents all the element IDs defined in the source topic. Use this table to select the **Target ID** of the element that you want to reference. You can select multiple contiguous elements to reference a block of content.

**Preview Pane**
Displays the content that will be referenced. If you select multiple elements in the element table, the content from all the selected elements is displayed.

**Source Pane**
Displays the source code of the element to be referenced.

**Reference details Section**

**Reference to (conref)**
Oxygen XML Editor automatically fills this text field with the value of the `conref` attribute to be inserted. However, you can edit this value if need be.

**Reference to range end (conrefend)**
If you select multiple elements (of the same type) in the element table, Oxygen XML Editor automatically fills this text field with the `id` value of the last element in your selection. This value will be inserted as a `conrefend` attribute, defining the end of the `conref` range.

**Content Key Reference (conkeyref) Options Using the Reuse Content Dialog Box**

Figure 879. Insert Content Key Reference Options
Choose the content source Section

When Key is selected for the content source, you can use keys to reference content. You can use the Choose Key Reference button to open the Choose Key dialog box that allows you to select one from a list of all the keys that are gathered from the root map (on page 3287) (you can also select one from the drop-down list in the Key field).

Note: If the current DITA map is not selected as the root map, no keys will be listed.

Tip: You can also use the DITA Reusable Components view (on page 3154) for similar purposes.

Figure 880. Choose Key Dialog Box
The **Choose Key** dialog box includes the following:

- **Change Root Map** - Opens a small dialog box that allows you to select a root map (on page 3007).
- **Search Filter** - You can enter text in the filter field at the top of the dialog box to filter the list and search for a specific key.
- **Sortable Columns** - The dialog box includes the following columns that can be sorted by clicking on the heading:
  - **Key** - The name of the key (the value of the `keys` attribute).
  - **Description** - The description of the key that is obtained from its definition. Keys that are defined with a text value in the `navtitle` or `keyword` element have that value listed in this column.
  - **Href** - Keys that are defined with a value in an `href` attribute have that href value listed in this column.
  - **Definition Location** - The name of the DITA map (on page 3281) where the key is defined.
- **Group by Definition Location** - A contextual menu action that can be used to group (and sort) all the keys based upon the value in the `Definition Location` column.

To insert a **content key reference** (`conkeyref`), select the key that contains the content you want to reference. Notice that the file path is shown in the `Href` column. Keys that do not have a value in the `Href` column are for referencing metadata with a `keyref` attribute. Therefore, to insert a `conkeyref`, you need to select a key that does have a value (file path) in the `Href` column.

After you select a key, click **OK** to return to the **Reuse Content** dialog box.

When a key that is defined as a **content key reference** has been selected, the **Reuse Content** dialog box offers the following additional options for inserting a `conkeyref`:

- **Select an element from the content source Section**

  - **Show elements of type**
You can use this drop-down list to select specific types of elements to be displayed in the subsequent table. This can help you narrow down the list of possible source elements that you can select.

Text Filter Field

You can also use the text filter field to narrow down the list of possible source elements to be displayed in the subsequent table.

Element Table

Presents all the element IDs defined in the source topic. Use this table to select the Target ID of the element that you want to reference. You can select multiple contiguous elements to reference a block of content.

Preview Pane

Displays the content that will be references. If you select multiple elements in the element table, the content from all the selected elements is displayed.

Source Pane

Displays the source code of the element to be referenced.

Reference details Section

Reference type

The type of reference that will be inserted. If you selected a key that references a DITA resource, you will notice that conkeyref value is automatically selected.

Reference to

Oxygen XML Editor automatically fills this text field with the value of the conkeyref attribute to be inserted. However, you can edit this value if need be.

Fallback to (conref)

You can select this option to define a conref attribute to be used as a fallback to determine the content reference relationship if the specified conkeyref cannot be resolved.

Reference to range end (conrefend)

If you select multiple elements (of the same type) in the element table, Oxygen XML Editor automatically fills this text field with the id value of the last element in your selection. This value will be inserted as a conrefend attribute, defining the end of the conkeyref range.
Key Reference to Metadata (keyref) Options Using the Reuse Content Dialog Box

Figure 881. Insert Key Reference Options

Choose the content source Section

When Key is selected for the content source, you can use keys to reference content. You can use the Choose Key Reference button to open the Choose Key dialog box that allows you to select one from a list of all the keys that are gathered from the root map (on page 3287) (you can also select one from the drop-down list in the Key field).

Note: If the current DITA map is not selected as the root map, no keys will be listed.

Tip: You can also use the DITA Reusable Components view (on page 3154) for similar purposes.

Figure 882. Choose Key Dialog Box
The **Choose Key** dialog box includes the following:

- **Change Root Map** - Opens a small dialog box that allows you to select a root map (on page 3007).
- **Search Filter** - You can enter text in the filter field at the top of the dialog box to filter the list and search for a specific key.
- **Sortable Columns** - The dialog box includes the following columns that can be sorted by clicking on the heading:
  - **Key** - The name of the key (the value of the `keys` attribute).
  - **Description** - The description of the key that is obtained from its definition. Keys that are defined with a text value in the `navtitle` or `keyword` element have that value listed in this column.
  - **Href** - Keys that are defined with a value in an `href` attribute have that href value listed in this column.
  - **Definition Location** - The name of the DITA map (on page 3281) where the key is defined.
- **Group by Definition Location** - A contextual menu action that can be used to group (and sort) all the keys based upon the value in the **Definition Location** column.

To insert a **key reference** to metadata (keyref), select the key you want to reference. Keys that do not have a value in the **Href** column are for referencing metadata with a keyref attribute. Therefore, to insert a keyref, you need to select a key that does not have a value (file path) in the **Href** column.

After you select a key, click **OK** to return to the **Reuse Content** dialog box.

When a key that references metadata has been selected, the **Reuse Content** dialog box offers the following additional options for inserting a keyref:

- **Select an element from the content source Section**
  - This section is not used when referencing metadata.

- **Reference details Section**
**Reference type**

The type of reference that will be inserted. If you selected a key that does not reference a DITA resource, you will notice that **keyref** value is automatically selected.

**Reference to**

Oxygen XML Editor automatically fills this text field with the value of the **keyref** attribute to be inserted.

**Element name**

Oxygen XML Editor automatically selects the element that is most commonly used for the selected type of key reference, but you can use the drop-down list to choose another element to use for the reference.

---

**Finalizing Your Content Reference Configuration**

Once you click **Insert** or **Insert and close**, the configured content reference is inserted into your document.

**Tip:** You can easily insert multiple content references by keeping the **Reuse Content** dialog box opened, using the **Insert** button.

---

**Working with Code References**

**Code References**

The DITA **coderef** element can be used to reference an external file that contains literal code. This is especially useful if you need to reference code from an external source that may occasionally change. Another advantage is that you don't have to convert illegal characters into their character equivalents. When the **coderef** is processed, the referenced code file is imported and delimiting characters (such as `<` or `>` ) are displayed as standard text, rather than treated as XML markup.

For more information about code references, see DITA 1.3 Specification: Coderef.

---

**Example of using a Coderef**

```xml
<p>This code is an example of how to use a coderef.</p>
<codeblock><coderef href="MyExternalCode.xsl"/></codeblock>
```
Defining Line Ranges

DITA-OT provides additional code reference processing support that allows you to define line ranges in case you only want to reference certain parts of the external file, rather than the whole file.

For information and examples of how to define line ranges, see DITA Open Toolkit Documentation: Extended Code Reference Processing.

Working with the Conref Push Mechanism

Content Reference Push Mechanism

The usual method of using content references pulls element content from a source element and inserts it in the current topic. DITA 1.2 introduced an alternative method of content referencing, allowing element content to be pushed, or injected, from a source topic to another topic without any special coding in the topic where the content will be re-used. This technique is known as a content reference push mechanism (conref push).

The conref push mechanism requires elements in the target topic (the topic where the content is to be pushed) to have ID elements, as the push mechanism inserts elements before or after a named element, or replaces the named element. Assuming the source topic is included in the DITA map (on page 3281), the conref push will be processed during publishing stage for the DITA map.

Example of a Conref Push Scenario

An example of a scenario in which a conref push would be useful is where a car manufacturer produces driver manuals that are distributed to various regions with their own specific regulations and certain sections need to be customized by the local car dealers before publishing. The local dealer could use a conref push technique to insert specific content without modifying the manufacturer-supplied content.

Push Current Element Action

Oxygen XML Editor includes an action that allows you to easily reference content with a conref push mechanism. The Push Current Element action is available in the DITA menu and in the Reuse subfolder of the contextual menu when editing in Author mode. Selecting this action opens the Push current element dialog box that allows you to select a target resource and element, and where to insert the current element content.

Figure 883. Push Current Element Dialog Box
This dialog box allows you to configure the following options for the `conref push` action:

**Choose the target resource**

Allows you to select a **Location** URL or a **Key** for the target resource and the table in the next section of the dialog box will be populated using the information from the specified resource.

**Select the target element**

The table in this section contains the available elements (identified by their ID) that belong to the same class as the current element on which the action was invoked.

**Push action**

Allows you to choose one of the following options for where you want to insert the current element content:

- **replace the target element**
  
The target element will be replaced with the current element content.
  
  On the technical side, the value of the `conaction` attribute in the current element will be set to `pushreplace` and the `conref` or `conkeyref` attribute will be set to the specified reference.

- **push before**
  
The current element content will be inserted before the specified target element in the target resource.
On the technical side, the value of the `conaction` attribute in the current element will be set to `pushbefore`. Another element with the same name and class as the target element will be inserted in the document after the current element. The new element will have the `conaction` attribute set to `mark` and the `conref` or `conkeyref` attribute will be set to the specified reference.

**push after**

The current element content will be inserted after the specified target element in the target resource.

On the technical side, the value of the `conaction` attribute in the current element will be set to `pushafter`. Another element with the same name and class as the target element will be inserted in the document before the current element. The new element will have the `conaction` attribute set to `mark` and the `conref` or `conkeyref` attribute will be set to the specified reference.

You can also use the **Preview** panel to view the content that will be pushed and the **Source** panel to see the XML code for the content to be pushed. After you click **OK**, the `conref push` mechanism is inserted in the current document. The changes in the target resource will be processed when you transform the **DITA map**.

**Related Information:**

For more technical details about the conref push mechanism, refer to "The Conref Push Technique" section of The DITA Style Guide Best Practices for Authors.

---

**Working with Reusable Components**

In DITA, the content of almost any element can be made reusable simply by adding an `id` attribute to the element. The DITA content reference mechanism can reuse any element with an `ID`. However, it is not considered best practice to arbitrarily reuse pieces of text from random topics due to the difficulties this creates in trying to manage it. It also creates the possibility of authors deleting or changing content that is reused in other topics without being aware that the content is reused.

To prevent these types of problems, you can create reusable components to manage a separate set of topics that contain topics designed specifically for reuse. Then, all of your reusable content can be referenced from the reusable components and if the content needs to be updated you only need to edit it in one place.
Oxygen XML Editor allows you to select content in a topic, create a reusable component from it and reference that component in other locations by using the Create Reusable Component and Insert Reusable Component actions.

Related Information:

- DITA Reusable Components View (on page 3154)

Creating a Reusable Content Component

Oxygen XML Editor makes it easy to create reusable content components from existing topic content.

Note: To ensure that the topic file that contains the reusable component is a valid container for just the reusable content component, without having to include the other elements required by a standard topic type, Oxygen XML Editor creates a specialized topic type on the fly. This specialization is designed to make sure that the content is compatible with the topic type from which it is created.

Follow these steps to create a reusable component:

1. In **Author** mode, select the content you want to make into a reusable component.

2. Select the Create Reusable Component action that is available in the DITA menu or the Reuse submenu of the contextual menu. The Create Reusable Component dialog box is displayed.

3. Use the Reuse Content drop-down list to select the scope of the content to be made reusable. It allows you to select how much of the current content you want to make reusable. The choices presented include the element at the current cursor position and its ancestor elements.

4. Add a description. This becomes the title of the topic that contains the reusable component, but is not part of the reusable content. It is just to help you identify the reusable content and will not become part of your output.

5. If you want to replace the extracted content with a reference to the new component you should leave the Replace selection with content reference option selected. This is recommended, since the point of reuse is to maintain only one copy of the content.

6. Select a file name and location to save the topic containing the reusable component and click **Save**. It is considered best practice to save or store reusable components in an area set aside for that purpose.

If the Replace selection with content reference option was selected, Oxygen XML Editor replaces the current content with a conref attribute. The content of the content reference will be displayed in your current topic with a gray background, but it will no longer be editable since it is
stored in a separate file. To edit the source of the reusable component, click the Edit Content icon at the beginning of the inserted content.

You now have a reusable component that you can include in other topics by using the Insert Reusable Component action that is available in the DITA menu or the Reuse submenu of the contextual menu. You can also reference this new reusable component by using a content reference (on page 3128) or content key reference (on page 3130).

Inserting a Reusable Content Component

Oxygen XML Editor includes an Insert Reusable Content action that allows you to easily insert a reusable content component that you created using the Create Reusable Component action (on page 3147).

⚠️ CAUTION: This action is only designed to insert reusable components created using the Oxygen XML Editor Create Reusable Component action. It assumes certain things about the structure of the reusable content file that may not be true of reusable content created by other methods and it may not provide the expected results if used with content that does not have the same structure.

The Insert Reusable Content action creates a DITA conref to insert the content, and creates a parent element for the conref attribute based on the type of the reusable element in the reusable component file. This action ensures that the correct element is used to create the conref. However, that element must still be inserted at a point in the current topic where that element type is permitted.

To insert a reusable component that was created using the Create Reusable Component action, follow these steps:

1. Place the cursor at the insertion point where you want the reusable component to be inserted.

2. Select the Insert Reusable Component action that is available in the DITA menu or the Reuse submenu of the contextual menu.
   The Insert Reusable Component dialog box is displayed.

3. Locate the reusable content file in which you want to insert its content.

4. If you select Content reference in the Insert as drop-down list, the action will add a conref attribute to the DITA element at the current location. If you select Copy in the drop-down list, the content of the reusable component file will simply be pasted at the current location (assuming the content is valid at the current location).

5. Click Insert to perform the action.
Working with Variable Text in DITA

You may often find that you want a certain piece of text in a topic to have a different value in various circumstances. For example, if you are reusing a topic about a feature that is shared between several products, you might want to make the name of the product a variable so that the correct product name is used in the manual for each product.

For example, you might have a sentence like this:

```
The quick-heat feature allows [product-name] to come up to temperature quickly.
```

You need a way to substitute the correct product name for each product.

One way to do this would be to use conditional profiling to provide conditional values using the `product` profiling attribute, as in the following example:

```
<p>The quick-heat feature allows
  <ph product="basic">Basic Widget</ph>
  <ph product="pro">Pro Widget</ph>
  to come up to temperature quickly.</p>
```

However, this approach means that you are repeating the product names over and over again everywhere the product name is mentioned. This is time consuming for authors and will create a maintenance problem if the product names change.

The alternative is to use a key reference, as in the following example:

```
<p>The quick-heat feature allows <ph keyref="product"/> to come up to temperature quickly.</p>
```

The definition of the key reference determines the name of the product:

```
<keydef keys="product" product="basic">
  <topicmeta>
    <keywords>
      <keyword>Basic Widget</keyword>
    </keywords>
  </topicmeta>
</keydef>

<keydef keys="product" product="pro">
  <topicmeta>
    <keywords>
      <keyword>Pro Widget</keyword>
    </keywords>
  </topicmeta>
</keydef>
```
When the content is published, the value defined in the `product` key will be inserted for each product.

**Inserting a Keyref**

To insert a defined key reference (on page 3024) into a document in Oxygen XML Editor Author mode, use one of the following methods (the method you choose simply depends on which Oxygen XML Editor feature you prefer):

- **DITA Reusable Components View Method**

  Use the DITA Reusable Components view (on page 3154) to insert a variable reference to the defined key (on page 3024). For example, in the Keys tab, find a key defined as a variable and double-click it. Oxygen XML Editor will insert the variable as a `<ph>` element with a `@keyref` attribute that references the specified key.

- **Code Template Method**

  Add the source code pattern of the defined key (on page 3024) to a code template (on page 172) so that it appears in the list of proposals in the Content Completion Assistant (on page 3280). For example, the code pattern could be something like `<ph keyref="product"/>` for defined `product` key.

- **Reuse Content Dialog Box Method**

  Use the Reuse Content action on the main toolbar to open the Reuse Content dialog box (on page 3135). Use the Key option to select a key that is defined as a variable (key reference to metadata) (on page 3141) and Oxygen XML Editor will insert the variable as a `<ph>` element with a `@keyref` attribute that references the specified key.

- **Manual Method**

  Manually insert the `keyref` attribute using the attributes editor as follows:

  1. Press Enter and select a DITA element (for example, `<ph>`) that supports the `keyref` attribute.
  2. Select `Edit Attributes` from the contextual menu (or simply press Alt+Enter) to bring up the attributes editor (on page 429).
  3. In the Name field, select `keyref`.
  4. In the Value field, select or enter the name of the defined key (on page 3024).

**Related Information:**
Working with DITA 1.3 Key Scopes

DITA 1.3 includes the possibility of using a concept called Key Scopes (or scoped keys). It allows you to reuse a topic in multiple places within the same DITA map (on page 3281), but with slightly different content in each instance.

Key Scopes Use-Case

Suppose that you develop a software product and you have a topic in your user guide that explains how to install your product on a Windows operating system. Suppose that the steps are exactly the same for installing it on Linux and the only difference is the name of the operating system. Therefore, it would be helpful if you could reuse the exact same content in two different topics, but with the name of the operating system different in each instance. In DITA 1.2, this is not possible since keys can only be resolved to a single value. However, with the DITA 1.3 Key Scopes mechanism, you can define multiple values for the same key depending on the context.

How to Use Key Scopes in Oxygen XML Editor

To use DITA 1.3 key scopes in Oxygen XML Editor, follow these steps:

1. Define the keys (on page 3116) to be used in multiple places within your DITA map.
2. For each particular topic that contains the keys, define the key scopes:
   a. Right-click the topic in the DITA Maps Manager (on page 2990) and select Edit properties.
   b. In the Keys tab (on page 3029), enter a value (or multiple values) in the Key scopes field.
   c. Click OK to save your changes.
3. Save the DITA map.

Result: In the DITA Maps Manager (on page 2990), you can now see the key scopes in brackets and when you open each topic reference.
The content will also be expanded in Author mode according to the context of the key scope you defined for that particular topic. Also, when you transform the DITA map, the scoped keys will be reflected in the published content.

Resources

• You can find a more detailed example and download samples for reuse possibilities based on key scopes in the DITA 1.3 Key Scopes - Next Generation of Reuse blog post.
• You can also watch our DITA 1.3 video tutorial to see how key scopes can be used in Oxygen XML Editor.

Related Information:

• Working with DITA 1.3 Branch Filtering (on page 3152)
• Oxygen XML Blog: DITA 1.3 Key Scopes - Next Generation of Reuse
• Oxygen Video Tutorial: DITA 1.3 (Key Scopes, Branch Filtering)

Working with DITA 1.3 Branch Filtering

DITA 1.3 allows you to use a mechanism called Branch Filtering that enables you to set filtering conditions for specific branches of a DITA map (on page 3281). This makes it possible for multiple conditional profiles to be applied within a single publication, each time with a different filter.

Branch Filtering Use-Case

Suppose that you sell two models of a mobile phone and you need to create a brochure for each model. You want both brochures to have the same structure and most of the content is the same for both brochures. The only differences are in the values for certain details (for example, the model name, size dimensions, battery life, etc.) Therefore, it would be helpful if you could use the same topic and reference it twice in the same map, with each reference using different filtering conditions. In DITA 1.2, this is not possible since you can only apply one DITAVAL filter to a map. However, with the DITA 1.3 Branch Filtering mechanism, you can reuse content multiple times within the same map, each time using different filters.
How to Use Branch Filtering in Oxygen XML Editor

To use DITA 1.3 branch filtering in Oxygen XML Editor, follow these steps:

1. The support for DITA 1.3 must be enabled in the DITA preferences page (on page 225).
2. Assuming you have already defined your profiling attributes (on page 970), create a DITAVAL filter file (on page 3249).
3. Insert a reference to the DITAVAL filter file in the DITA map:
   a. Right-click the DITA map reference in the DITA Maps Manager (on page 2990) and select Append Child > DITAVAL Reference.
   b. Select the DITAVAL file.
   c. Click Insert and Close.
4. Save the DITA map.

Result: You can now see the ditaval files referenced in the DITA Maps Manager (on page 2990) and when you transform the DITA map, filtered content will be reflected in the published output.

Figure 885. Branch Filtering in DITA Maps Manager

Resources

- You can find a more detailed example and download samples for reuse possibilities based on key scopes in the DITA 1.3 Branch Filtering - Next Generation of Reuse blog post.
- You can also watch our DITA 1.3 video tutorial to see how branch filtering can be used in Oxygen XML Editor.

Related Information:

- Working with DITA 1.3 Key Scopes (on page 3151)
- Oxygen XML Blog: DITA 1.3 Branch Filtering - Next Generation of Reuse
DITA Reusable Components View

The **DITA Reusable Components** view is helpful if you use a large amount of keys or reusable components in your DITA project. It collects all of the keys and reusable components that are defined in the root map ([page 3287](#)) and presents them in a side view where you can easily locate and insert references to them. It re-collects the keys anytime the root map is changed ([page 3007](#)) or you switch the editor focus to a different file.

If the view is not displayed, it can be opened by selecting it from **Window > Show View**. By default, it will appear in the bottom-right section of the editor.

**Tip:** You can also assign a keyboard shortcut to open the view using the **Menu Shortcut Keys** preference page ([page 248](#)).

It includes two tabs:

- **Keys** ([page 3154](#)) - Displays all the keys that are defined in the root map ([page 3287](#)) and provides ways to easily insert references to them as cross reference links, key references, or variables. It includes a search field, some filtering and sorting options to help you find particular keys, and some contextual menu actions. It also supports drag and drop actions and double-clicking a key is the fastest way to insert a reference.

- **Components** ([page 3158](#)) - Displays all the reusable components found in the root map ([page 3287](#)) and provides ways to easily insert them as content references or content key references. To determine which components to display in this tab, Oxygen XML Editor looks for any `topicref` in the root map ([page 3287](#)) that is marked as `resource-only` and then looks for elements with an assigned `@id` attribute value. This tab includes a search field, some filtering options, and some simple links and contextual menu actions to quickly insert references or open their source file. It also supports drag and drop and double-clicking actions.

**Keys Tab**

The **DITA Reusable Components** view collects all the keys that are defined in the current root map ([page 3287](#)) and displays them in the **Keys** tab. This tab has two view modes. The default tiles style view mode and a table style view mode.

**Tiles Mode**

The default tiles mode displays the keys as blocks (cards). The advantage of this display mode is that more information about each particular key can be seen even when the view is sized with a small
width. Each block (card) displays the name of the key (the value of the `keys` attribute), followed by its description and/or `href` value, followed by the name of the DITA map file where the key is defined.

Figure 886. DITA Reusable Components View - Keys Tab (Default tiles mode)

Table Mode

You can switch to a `table` style display mode by selecting the `Table mode` toggle action from the ✨ Settings menu. The advantage of this display mode is that more keys can be listed at once. In this mode, keys that are defined with a text value in the `navtitle` or `keyword` element have that value listed in the `Description` column, while keys that are defined with a value in an `href` attribute have that href value listed in the `Href` column.

Figure 887. DITA Reusable Components View - Keys Tab (Table mode)

Both display modes in the `Keys` tab include a variety of features and options:

**Search Filter**
You can enter text in the filter field at the top of this tab to filter the list and search for specific keys.

**Sorting**

**Tiles Mode:** In the default *tiles* display mode, to sort the keys alphabetically in ascending order, select *Sort by key name* from the 🛠 Settings menu.

**Table Mode:** In the *table* display mode, the following columns can be sorted by clicking on the heading:

- **Key** - The name of the key (the value of the `keys` attribute).
- **Description** - The description of the key that is obtained from its definition. Keys that are defined with a text value in the `navtitle` or `keyword` element have that value listed in this column.
- **Href** - Keys that are defined with a value in an `href` attribute have that href value listed in this column.
- **Definition Location** - The name of the DITA map *(on page 3281)* where the key is defined.

**Double-Click Mechanism**

You can double-click any key listed in this tab to insert a key reference at the current cursor position or surrounding the current selection.

- If the selected key points to an `href` value, it is inserted as a cross reference link *(xref)* *(on page 3163).*
- If the selected key is a reference to an image, it is inserted as an `image` element.
- If the selected key does not have an associated `href`, it is inserted as a variable reference *(ph)* *(on page 3148).*

**Drag and Drop Mechanism**

You can drag a key from this tab and drop it in the main editor to insert a key reference at the current cursor position.

- If the selected key points to an `href` value, it is inserted as a cross reference link *(xref)* *(on page 3163).*
- If the selected key is a reference to an image, it is inserted as an `image` element.
- If the selected key does not have an associated `href`, it is inserted as a variable reference *(ph)* *(on page 3148).*

**Contextual Menu Actions**

**Insert as Link**
Inserts a cross reference link (\texttt{xref}) (on page 3163) to the selected key at the current cursor position or surrounding the current selection.

**Insert as Variable**

Inserts a variable reference (\texttt{ph}) (on page 3148) to the selected key at the current cursor position or surrounding the current selection. However, if the selected key is a reference to an image, this action inserts the key reference in an \texttt{image} element.

**Insert as Keyref**

Presents a submenu with all the elements that can be inserted at the current cursor position. Selecting an element will insert that element at the current cursor position or surrounding the current selection with a \texttt{keyref} attribute and its value set to the selected key.

**Rename Key**

Opens a refactoring wizard (on page 1142) where you can easily rename the key and define the scope of the operation. It also updates all references to it.

**Notes:**

- This action does not work on DITA 1.3 key scopes.
- This action is only available if the DITA map opened in the DITA Maps Manager is also selected as the Root map.

**Go to Definition**

Opens the DITA map where the key is defined.

**Search References**

Searches for all references to the selected key in the entire DITA map structure.

**Group by Definition Location (Available in Table mode only)**

A toggle action that can be used to group (and sort) all the keys based upon the value in the Definition Location column.

**Settings Menu**

This menu includes the following options:

**Filtering Options**

- **Show all** - Shows all defined keys found in the current root map (on page 3287).
- **Show only variables** - Filters the keys to show only those defined as variable references *(on page 3148).*
- **Show only maps and topics** - Filters the keys to show only those that reference DITA maps or topics.
- **Show only multimedia resources** - Filters the keys to show only those that reference multimedia resources (such as images).
- **Show only external resources** - Filters the keys to show only those that reference external resources (such as web links).

**Sort by key name (Available in Tiles mode only)**

Sorts the keys alphabetically in ascending order.

**Table mode**

A toggle action that switches between the *table* and *tiles* display modes.

## Components Tab

The **DITA Reusable Components** view collects all the topics from the current root map *(on page 3287)* that are marked as resource-only, then collects the reusable components from those topics, and displays them in the Components tab. To set a topic as resource-only, the topicref in the DITA map file needs to have a processing-role attribute set like this:

```
<topicref href="topics/randomize-xml-content.dita" processing-role="resource-only"/>
```

The **DITA Reusable Components** view considers topic references that contain processing-role="resource-only" to be candidates to contain reusable components. The reusable components inside these topics are collected from all elements that have an ID specified. These reusable components are displayed in the Components tab along with the file name and the specific names of the elements that contain an ID attribute.

Figure 888. DITA Reusable Components View - Components Tab
The Components tab includes the following features and options:

**Search Filter**

You can enter text in the filter field at the top of this tab to filter the list and search for specific content inside the list of reusable components. This field supports many of the Lucene-based search patterns, such as wildcards (∗, ?), boolean operators (AND, OR, NOT), fuzzy searches (~), boosting searches (^), and more.

**Settings Menu**

This menu includes the following options:

**Compact Mode**

You can use this toggle action to switch the display for the Components tab to a compact visualization mode. When switched to Compact mode, fewer details are shown for each component, but more components are displayed in the view.

**Reindex**

You can use this action force a re-indexing of the reusable components.

**Show Elements of Type**

You can use this drop-down list to select specific types of elements to be displayed in the list of components. This can help you narrow down the list of possible source elements that you can select.

**Source File(s)**
You can use this combo box to search for specific source files (the topics that contain reusable components) or select a file from its drop-down list. You can also use wildcards (such as * or ?) in this field.

**Double-Click Mechanism**

You can double-click any reusable component listed in preview window in this tab to insert it as a content reference or content key reference at the current cursor position or replace the current selection.

- If the parent topic of the selected component has a key defined, it is inserted as a content key reference (*conkeyref* *(on page 3130)*).
- If the parent topic of the selected component does not have a key defined, it is inserted as a content reference (*conref* *(on page 3128)*).

**Drag and Drop Mechanism**

You can drag a reusable component from the preview window in this tab and drop it in the main editor to insert a content reference or content key reference at the current cursor position.

- If the parent topic of the selected component has a key defined, it is inserted as a content key reference (*conkeyref* *(on page 3130)*).
- If the parent topic of the selected component does not have a key defined, it is inserted as a content reference (*conref* *(on page 3128)*).

**Hover and Click Actions**

If you hover over a component shown in the preview window, you have access to the following link actions:

- **Insert**
  
  Inserts the component as a content reference or content key reference at the current cursor position or replaces the current selection. If the parent topic has a key defined, it is inserted as a content key reference (*conkeyref* *(on page 3130)*). Otherwise, it is inserted as a content reference (*conref* *(on page 3128)*).

- **Open**
  
  Opens the source file that contains the reusable component.

**Contextual Menu Actions**

**Insert Content Reference**
Inserts the component as a content reference (conref) (on page 3128) at the current cursor position or replaces the current selection.

**Insert Content Key Reference**

Inserts the component as a content key reference (conkeyref) (on page 3130) at the current cursor position or replaces the current selection. This action is only available if the parent topic has a key defined.

**Go to Definition**

Opens the source file that contains the reusable component.

**Search References**

Searches for all references to the selected component in the entire DITA map (on page 3281) structure.

**Related Information:**

- Working with Reusable Components (on page 3146)
- Linking in DITA Topics (on page 3163)
- Working with Variable Text in DITA (on page 3148)
- Working with Keys in DITA (on page 3116)
- Creating a DITA Content Reference (on page 3128)
- Creating a DITA Content Key Reference (on page 3130)

**Linking in DITA**

DITA provides support for various types of linking between topics, some of which is automated, while others are specified by the author. Oxygen XML Editor provides support for all forms of linking in DITA.

**Linking Between Parent, Child, and Sibling Topics**

A DITA map (on page 3281) creates a hierarchical relationship between topics. That relationship expresses a narrative flow from one topic to another, or it may be used as a classification system to help the reader find topics based on their classification, without creating a narrative flow. Since
there may be various types of relationships between topics in a hierarchy, you may want to create links between topics in a variety of ways. For instance, if your topics are supposed to be organized into a narrative flow, you may want to have links to the next and previous topics in that flow. If your topics are part of a hierarchical classification, you may want links from parent to child topics, and vice versa, but not to the next and previous topics.

Parent, child, and sibling links are created automatically by the DITA output transformations (and may differ between various output formats). The kinds of links that are created are determined by the DITA collection-type attribute (on page 3030).

**In-Line Linking in the Content of a Topic**

DITA supports linking within the text of a topic using the `xref` element. The destination of the link can be expressed directly using the `href` attribute or indirectly using the `keyref` attribute. If you use the `keyref` attribute, you link to a key rather than directly to a topic. That key is then assigned to a topic in a map that includes that topic. This means that you can change the destination that a key points to by editing the key definition in the map or by substituting another map in the build.

**Linking Between Related Topics**

In addition to the relationships between topics that expressed by their place in the hierarchy of a map, a topic may be related to other topics in various ways. For instance, a task topic may be related to a concept topic that gives the background of the task, or to a reference topic that provides data needed to complete the task. Task topics may also be related to other tasks in a related area, or concepts to related concepts.

Typically, they are grouped in a list at the end of the topic, although this depends on the behavior of the output transformation. DITA provides two mechanisms for expressing relationships between topics at the topic level: the Related Links section of a topic and relationship tables in maps. To add related links, select Related Link to Topic, Related Link to File, or Related Link to Web Page from the Link drop-down menu from the toolbar (or the Link submenu in the contextual menu or DITA menu).

**Tip:** You can use the Find Similar Topics action that available in the DITA menu to quickly find related topics that can be added as related links. It opens the Open/Find Resource view and performs a search using text content from the `<title>`, `<shortdesc>`, `<keyword>`, and `<indexterm>` elements.

**Managing Links**

Links can break for a variety of reasons. The topic that a link points to may be renamed or removed. A topic may be used in a map that does not include a linked topic. A topic or a key may not exist in a map when a particular profile is applied. The [DITA Maps Manager](on page 2990) provides a way to
validate all the links in the documents that are included in the map (on page 3036). This can include validating all the profiling conditions that are applied.

Hierarchical Linking in DITA Maps

To create hierarchical linking between the topics in a DITA map (on page 3281), you set the appropriate value of the collection-type attribute on the map. See the DITA documentation for the meaning of each of the values of the collection-type attribute.

**Note:** Publishing scripts determine when and how to create hierarchical links. The collection-type attribute does not force a particular style of linking. Instead, it declares what the nature of the relationship is between the topics. The publishing scripts use that information to determine how to link topics. Scripts for different types of media might make the determination depending on what is appropriate for the particular type of media. You can provide additional instructions to the scripts using the linking attribute.

To add the collection-type to an item in a map:

1. Right-click the topic and choose **Edit Properties**. The Edit Properties dialog box is displayed.
2. In the Attributes tab, select the appropriate value from the Collection type drop-down list.
3. You can use the Other attributes table to add a value to the linking attribute.

Linking in DITA Topics

**Direct Links**

Inline links can be created DITA topics using the xref element. The destination of the link can be expressed directly by using the href attribute and the target can be another topic or a specific element within the other topic, another location within the same topic, a file, or a web link. You can also create direct related links to topics, files, or websites in a DITA topic using the related-links element.

**Indirect Links Using Keys**

The destination of the link can also be expressed indirectly by using keys (on page 3116) to create either inline links or related links (with the keyref attribute). By using keys, you avoid creating a direct dependency between topics. This makes links easier to manage and can make it easier to reuse topics in various publications. It can also be helpful in verifying the completeness of a publication, by ensuring that a publication map provides a key definition for every key reference used in the content.
Links based on keys require two pieces:

- Key Definition - Assigns a key to a topic so that other topics can link to it. For more information, see Defining Keys in DITA Maps (on page 3024).
- Key Reference - Created in an `xref` element and specifies the key to link to.

The key reference points to a key definition, and the key definition points to a topic. Key definitions are created in maps, as an element on the `topicref` element that points to a topic. This allows you to assign a particular key to one topic in one map and to another topic in another map. When a topic that links to that key is used in each of these maps, the links work correctly in both maps.

### Inserting a Link in Oxygen XML Editor

To insert a link in Author mode (on page 402), use the actions available in the - Link drop-down menu from the toolbar (or the - Link submenu in the contextual menu or DITA menu). You can choose between the following types of inline links:

**Cross Reference**

Opens the Cross Reference (xref) dialog box (on page 3166) that allows you to insert a cross reference link to a target DITA resource at the current location within a document. The target resource can be the location of a file or a key that is already defined in your DITA map structure. Once the target resource has been selected, you can also target specific elements within that resource. Depending on the context where it is invoked, the action inserts one of the following two elements:

- `xref` - Used to link to other topics or another location within the same topic and points to the target using the `href` or `keyref` attribute.
- `fragref` - A logical reference to a fragment element within a syntax diagram and points to the target using the `href` or `keyref` attribute.

**File Reference**

Opens a dialog box that allows you to insert a link to a target non-DITA file resource at the current location within a document. The target resource can be the location of a file or a key that is already defined in your DITA map structure. It inserts an `xref` element with either an `href` attribute or a `keyref` attribute. If you select Location for the target, the link is expressed in an `href` attribute. If you select Key for the target, keys will be used to express the link in a `keyref` attribute. You can select a key from the drop-down list or click the Choose Key Reference button to use the Choose Key dialog box (on page 3167).

**Web Link**
Opens a dialog box that allows you to insert a link to a target web-related resource at the current location within a document. The target resource can be a URL or a key that is already defined in your DITA map structure. It inserts an `xref` element with either an `href` attribute or a `keyref` attribute. If you select URL for the target resource, the link is expressed in an `href` attribute. If you select Key for the target, keys will be used to express the link in a `keyref` attribute. You can select a key from the drop-down list or click the Choose Key Reference button to use the Choose Key dialog box (on page 3167).

Related Link to Topic

Opens the Cross Reference (xref) dialog box (on page 3166) that allows you to insert a link to a target DITA resource in a related links section that is typically at the bottom of your topic (although this depends on the behavior of the output transformation). The target resource can be the location of a file or a key that is already defined in your DITA map structure. Once the target resource has been selected, you can also target specific elements within that resource. If a related links section does not already exist, this action creates one. Specifically, it inserts a `link` element inside a `related-links` element.

Tip: You can use the Find Similar Topics action that available in the DITA menu to quickly find related topics that can be added as related links. It opens the Open/Find Resource view and performs a search using text content from the `title`, `shortdesc`, `keyword`, and `indexterm` elements.

Related Link to File

Opens a dialog box that allows you to insert a link to a target non-DITA file resource in a related links section that is typically at the bottom of your topic (although this depends on the behavior of the output transformation). The target resource can be the location of a file or a key that is already defined in your DITA map structure. If a related links section does not already exist, this action creates one. Specifically, it inserts a `link` element inside a `related-links` element. If you select Location for the target, the link is expressed in an `href` attribute. If you select Key for the target, keys will be used to express the link in a `keyref` attribute. You can select a key from the drop-down list or click the Choose Key Reference button to use the Choose Key dialog box (on page 3167).

Related Link to Web Page

Opens the Web Link dialog box that allows you to insert a link to a target web-related resource in a related links section that is typically at the bottom of your topic (although this depends on the behavior of the output transformation). The target resource can be a URL or a key that is already defined in your DITA map structure. If a related links section does not already exist, this action creates one. Specifically, it inserts a `link`
element inside a `related-links` element. If you select `URL` for the target resource, the link is expressed in an `href` attribute. If you select `Key` for the target, keys will be used to express the link in a `keyref` attribute. You can select a key from the drop-down list or click the `Choose Key Reference` button to use the `Choose Key` dialog box (on page 3167).

**Cross Reference (xref) Dialog Box**

The Cross Reference (xref) dialog box is displayed when you insert a Cross Reference or Related Link to Topic (from the Link drop-down menu). It allows you to insert a link to a target resource at the current location within a document (for a Cross Reference link) or in a related links section (for a Related Link to Topic). The target resource can be the location of a file or a key that is already defined in your DITA map structure. Once the target resource has been selected, you can also target specific elements within that resource.

![Cross Reference (xref) Dialog Box](image)

This dialog box includes the following sections and fields:

- **Choose the Target Resource Section**
Location

If you select Location for the target, the link is expressed in an `href` attribute.

Key

If you select Key for the target, keys will be used to express the link in a `keyref` attribute. You can use the Choose Key Reference button to open the Choose Key dialog box that allows you to select one from a list of all the keys that are gathered from the root map (on page 3287) (you can also select one from the drop-down list in the Key field).

Tip: You can also use the DITA Reusable Components view (on page 3154) for similar purposes.

Figure 890. Choose Key Dialog Box

![Choose Key Dialog Box](image)

The Choose Key dialog box includes the following:

- **Change Root Map** - Opens a small dialog box that allows you to select a root map (on page 3007).
- **Search Filter** - You can enter text in the filter field at the top of the dialog box to filter the list and search for specific keys.
- **Sortable Columns** - The dialog box includes the following columns that can be sorted by clicking on the heading:
  - **Key** - The name of the key (the value of the `keys` attribute).
  - **Description** - The description of the key that is obtained from its definition. Keys that are defined with a text value in the `navtitle` or `keyword` element have that value listed in this column.
  - **Href** - Keys that are defined with a value in an `href` attribute have that href value listed in this column.
Definition Location - The name of the DITA map (on page 3281) where the key is defined.

Group by Definition Location - A contextual menu action that can be used to group (and sort) all the keys based upon the value in the Definition Location column.

Select the Target Element Section

This section can be used to target a specific element inside the target resource.

Show elements of type

You can use this drop-down list to select specific types of elements to be displayed in the subsequent table. This can help you narrow down the list of possible source elements that you can select.

Text Filter Field

You can also use the text filter field to narrow down the list of possible source elements to be displayed in the subsequent table.

Element Table

Presents all the element IDs defined in the source topic. Use this table to select the Target ID of the element that you want to reference.

Preview Pane

Displays the content that will be references.

Source Pane

Displays the XML source code of the element to be referenced.

Once you click Insert or Insert and close, the configured cross reference is inserted into your document.

Tip: You can easily insert multiple cross references by keeping the dialog box opened, using the Insert button.

Using Copy/Paste Actions to Insert a Cross Reference

Oxygen XML Editor also includes support for inserting cross references with simple copy/paste actions. The copied content must be an entire DITA XML element with an ID attribute or a topicref. Also, the location in the document where you paste the link must be valid, although as long as the Smart paste and drag and drop option (on page 138) is selected in the Schema Aware preferences page, if you try to paste it in an invalid location, Oxygen XML Editor will attempt to place it in a valid location, and may prompt you with one or more choices for where to place it. You can paste the link as a cross reference with the link expressed in an href attribute or in a keyref attribute.
To insert a cross reference link (expressed in an `href` attribute) using copy/paste actions, follow these steps:

1. Copy an entire DITA element that has an ID attribute assigned to it or a `topicref`.
2. Place the cursor at a location, where you want to insert the link.
3. Select the **Paste as Link** action from the **Paste Special** submenu from the contextual menu.

To insert a cross reference link (expressed in a `keyref` attribute) using copy/paste actions, follow these steps:

1. In the **DITA Maps Manager view** (**on page 2990**), make sure that the **Root map combo box** (**on page 2995**) points to the correct map that stores the keys.
2. Make sure the topic that contains the content you want to reference has a key assigned to it. To assign a key, right-click the topic with its parent map opened in the **DITA Maps Manager** (**on page 2990**), select **Edit Properties**, and enter a value in the **Keys** field.
3. Copy an entire DITA element that has an ID attribute assigned to it from a topic with an assigned key, or a `topicref` from a **DITA map**.
4. Place the cursor at a location, where you want to insert the link.
5. Select the **Paste as Link (keyref)** action from the **Paste Special** submenu from the contextual menu.

**Related Information:**

- Defining Keys in DITA Maps (**on page 3024**)
- DITA Reusable Components View (**on page 3154**)

**Linking with Relationship Tables in DITA**

A relationship table is used to express relationships between topics outside of the topics themselves. The DITA publishing scripts can then create links between related topics when the content is published.

The reason for using a relationship table is to help make topics easier to reuse. If a topic links directly to another topic, this creates a dependency between the topics. If one topic is reused in a publication where the other is not used, the link is broken. By defining relationships between topics in a relationship table, you avoid creating this dependency.
To create an appropriate set of links between topics in multiple publications, you can create a separate relationship table for each publication. If you are creating multiple publications by applying profiling conditions to a single map, you can also profile your relationship table.

To create a relationship table, follow these steps:

1. If the map is currently open in the DITA Maps Manager (on page 2990), double-click the map icon (_toolbar) to open the map in Author mode. If it opens in Text mode, click Author at the bottom left to switch to Author mode.

2. Move the insertion point inside the map root element (usually _map_, but it might be _bookmap_, or another specialization of the _map_ element). The easiest way to do this is to click below the title of the map in the editor and then press the up arrow once. Confirm that you are inside the _map_ root element by checking the breadcrumbs at the top left of the editor window. You should only see the name of the _map_ root element.

3. Select the Insert Relationship Table action on the toolbar or from the Relationship Table submenu of the contextual menu. The Insert Relationship Table dialog box is displayed.

4. Set the number of rows, the number of columns, a table title (optional), and select whether or not you want a table header. Click Insert.

5. Enter the type of the topics in the header of each column.
   
   The header of the table (the relheader element) already contains a relcolspec element for each table column. You should set the value of the attribute type of each relcolspec element to a value such as concept, task, or reference. When you click in the header cell of a column (that is a relcolspec element), you can see all the attributes of that relcolspec element, including the type attribute in the Attributes view (on page 426). You can edit the attribute type in this view.

6. To insert a topic reference in a cell, place the cursor in a table cell and select Insert Reference (on page 3050) from the contextual menu or the DITA Map toolbar.

7. To add a new row to the table or remove an existing row use Insert Relationship Row>Delete Relationship Row from the contextual menu or the DITA Map toolbar.

8. To add a new column to the table or remove an existing column, use Insert Relationship Column>Delete Relationship Column contextual menu or the DITA Map toolbar. If you double-click the relationship table (or select it and press Enter, or choose Open from the contextual menu) the DITA map is opened in the editor with the cursor positioned inside the corresponding relationship table.
9. To add topic references to your relationship table, drag and drop topics from the DITA Maps Manager (on page 2990) or the Project (on page 333) view into the appropriate cell in the relationship table. See the DITA documentation for a full explanation of the relationship table format and its options. Note that you can change all the selections that you make here later by using the actions on the toolbar (or in the Relationship Table submenu of the contextual menu) or by editing the underlying XML in Text mode.

10. Save the DITA map.

Relationship tables are also displayed in the DITA Maps Manager view (on page 2990), along with the other elements in its DITA map.

Figure 891. Relationship Table

You can open the DITA map to edit the relationship table by doing one of the following:

- Double-click the appropriate relationship table in the DITA Maps Manager (on page 2990).
- Select the relationship table in the DITA Maps Manager (on page 2990) and press Enter.
- Select Open from the contextual menu of the relationship table in the DITA Maps Manager (on page 2990).

Publishing DITA Output

As a structured writing format, DITA produces structured content (content that is annotated with specific structural and semantic information rather than with formatting information). To create a publication, your DITA map (on page 3281) and its associated topics must be processed by a transformation script. That script is responsible for how the structural and semantic information in the DITA files is converted into formatting information for display.

Oxygen XML Editor publishes DITA content to various output sources using a bundled version of the DITA Open Toolkit. The DITA OT is an open-source publishing engine that can publish DITA content to various output sources such as XHTML, PDF, or Windows Help (CHM). Since it has a plugin-based architecture, it can be extended with extra plugins that either define new formats for conversion or customize an existing conversion format. You can run the DITA-OT from Oxygen XML Editor using a
transformation scenario or you can run it directly from a command line: http://www.dita-ot.org/dev/topics/building-output.html.

The DITA-OT that comes bundled with Oxygen XML Editor contains more plugins than the standard DITA-OT that can be downloaded from their official website. For example, it contains pre-installed plugins for converting DITA content to Word, EPUB, WebHelp, or to publish to PDF using CSS to customize the output: http://blog.oxygenxml.com/2017/03/useful-dita-ot-plugins.html.

DITA Map Transformation Scenarios

Built-in transformation scenarios allow you to transform DITA maps (on page 3281) to a variety of outputs, such as WebHelp, PDF, ODF, XHTML, EPUB, CHM, Kindle, and MS Word. Oxygen XML Editor also includes a special Run DITA-OT Integrator (on page 1665) that can be used to integrate a DITA-OT plugin and a DITA Map Metrics Report transformation that generates a statistics report for your DITA map. All of them are listed in the DITA Map section in the Configure Transformation Scenario(s) dialog box (on page 1762).

A variety of transformations scenarios are available for DITA maps (on page 3281):

• Built-in transformation scenarios allow you to transform a DITA map to a variety of outputs, such as WebHelp, PDF, ODF, XHTML, EPUB, CHM, Kindle, and MS Word.

• **Run DITA-OT Integrator (on page 1665)** - Use this transformation scenario if you want to integrate a DITA-OT plugin (on page 3256). This scenario runs an Ant task that integrates all the plugins from the DITA-OT/plugins directory.

• **DITA Map Metrics Report** - Use this type of transformation scenario if you want to generate a DITA map statistics report. It contains information such as:
  ◦ The number of processed maps and topics.
  ◦ Content reuse percentage.
  ◦ Number of elements, attributes, words, and characters used in the entire DITA map structure.
  ◦ DITA conditional processing attributes used in the DITA maps.
  ◦ Processing instructions.
  ◦ External links.
  ◦ All @outputclass attribute values gathered from the DITA project.

⚠️ **Important:** If you have cross references that point to content outside the scope of the DITA map, that referenced content will not be counted. For example, if you have links to topics that are not included in the DITA map hierarchy, the content in those topics is ignored when generating the statistics.
DITA Map to WebHelp Responsive Transformation

DITA content can be transformed into several types of WebHelp Responsive systems (with or without a feedback section). The WebHelp Responsive layout and features (on page 1858) are designed to adapt to any device and screen size to provide an optimal viewing and interaction experience. Oxygen XML Editor also provides numerous possibilities for customizing the WebHelp Responsive output (on page 1935).

WebHelp Responsive Transformation Scenario

To publish a DITA map (on page 3281) as WebHelp Responsive output, follow these steps:

1. Select the Configure Transformation Scenario(s) action from the DITA Maps Manager (on page 2990) toolbar.
2. Select the DITA Map WebHelp Responsive scenario from the DITA Map section.
3. If you want to configure the transformation, click the Edit button.

Step Result: This opens an Edit scenario configuration dialog box that allows you to configure various options in the following tabs:

- Templates Tab (on page 3199) - This tab contains a set of built-in publishing templates (on page 1892) that you can use for the layout of your WebHelp system output. You can also create your own publishing templates or edit existing ones (on page 1935).
- Parameters Tab (on page 3205) - This tab includes numerous parameters that can be set to customize your WebHelp system output. See the Parameters section (on page 1645) below for details about the most commonly used parameters for WebHelp Responsive transformations.
- Filters Tab (on page 3207) - This tab allows you to filter certain content elements from the generated output.
- Advanced Tab (on page 3208) - This tab allows you to specify some advanced options for the transformation scenario.
- Output Tab (on page 3210) - This tab allows you to configure options that are related to the location where the output is generated.

4. Click Apply associated to process the transformation.
When the DITA Map WebHelp Responsive transformation is complete, the output is automatically opened in your default browser.

WebHelp Responsive with Feedback Transformation Scenario

To publish a DITA map (on page 3281) as a WebHelp Responsive with Feedback system, follow these steps:

1. Select the Configure Transformation Scenario(s) action from the DITA Maps Manager (on page 2990) toolbar.
2. Select the DITA Map WebHelp Responsive with Feedback scenario from the DITA Map section.
3. If you want to configure the transformation, click the Edit button.

**Step Result:** This opens an Edit scenario configuration dialog box that allows you to configure various options in the following tabs:

- **Templates Tab (on page 3199)** - This tab contains a set of built-in publishing templates (on page 1892) that you can use for the layout of your WebHelp system output. You can also create your own publishing templates or edit existing ones (on page 1935).
- **Parameters Tab (on page 3205)** - This tab includes numerous parameters that can be set to customize your WebHelp system output. See the Parameters section (on page 1645) below for details about the most commonly used parameters for WebHelp Responsive transformations.
- **Filters Tab (on page 3207)** - This tab allows you to filter certain content elements from the generated output.
- **Advanced Tab (on page 3208)** - This tab allows you to specify some advanced options for the transformation scenario.
- **Output Tab (on page 3210)** - This tab allows you to configure options that are related to the location where the output is generated.

4. Click Apply associated to begin the transformation.
5. Enter the documentation product ID (value for the webhelp.product.id parameter) and the documentation version (value for the webhelp.product.version parameter).

When the DITA Map WebHelp Responsive with Feedback transformation is complete, your default browser opens the installation.html file. This file contains information about the output location, system requirements, installation instructions, and deployment of the output. Follow the instructions to complete the system deployment (on page 1873).
Parameters for Customizing WebHelp Responsive Output

To customize a transformation scenario, you can edit various parameters, including the following most commonly used ones:

**default.language**

This parameter is used if the language is not detected in the DITA map. The default value is **en-us**.

**clean.output**

Deletes all files from the output folder before the transformation is performed (only **no** and **yes** values are valid and the default value is **no**).

**editlink.remote.ditamap.url**

Use this parameter in conjunction with **editlink.web.author.url** to add an Edit link next to the topic title in the WebHelp output. When a user clicks the link, the topic is opened in Oxygen XML Web Author where they can make changes that can be saved to a file server. The value should be set as the custom URL of the main DITA map. For example, a GitHub custom URL might look like this: https://getFileContent/oxyengxml/userguide/master/UserGuide.ditamap.

**editlink.web.author.url**

This parameter needs to be used in conjunction with **editlink.remote.ditamap.url** to add an Edit link next to the topic title in the WebHelp output. When a user clicks the link, the topic is opened in Oxygen XML Web Author where they can make changes that can be saved to a file server. The value should be set as the URL of the Web Author installation. For example: https://www.oxygenxml.com/oxygen-xml-web-author/.

**editlink.present.only.path.to.topic**

When this parameter is set to "true", the DITA topic path is displayed to the right of each topic title in the WebHelp Responsive output. Also, when this parameter is used, the **editlink.remote.ditamap.url** and **editlink.web.author.url** parameters are ignored.

**fix.external.refs.com.oxygenxml** (Only supported when the DITA OT transformation process is started from Oxygen XML Editor)

The DITA Open Toolkit usually has problems processing references that point to locations outside of the directory of the processed DITA map. This parameter is used to specify whether or not the application should try to fix such references in a temporary files folder before the DITA Open Toolkit is invoked on the fixed references. The fix has no impact on your edited DITA content. Allowed values: **true** or **false** (default).

**force.unique**
When set to `true` (default value), the transformation will be forced to create unique output files for each instance of a resource when a map contains multiple references to a single topic.

**use.stemming**

Controls whether or not you want to include stemming search algorithms into the published output (default setting is `false`).

**webhelp.custom.resources**

The file path to a directory that contains resources files. All files from this directory will be copied to the root of the WebHelp output.

**webhelp.favicon**

The file path that points to an image to be used as a favicon in the WebHelp output.

**webhelp.reload.stylesheet**

Set this parameter to `true` if you have out of memory problems when generating WebHelp. It will increase processing time but decrease the memory footprint. The default value is `false`.

**webhelp.search.custom.excludes.file**

The path of the file that contains name patterns for HTML files that should not be indexed by the WebHelp search engine. Each exclude pattern must be on a new line. The patterns are considered to be relative to the output directory, and they accept wildcards such as `*` (matches zero or more characters) or `?` (matches one character). For more information about the patterns, see [https://ant.apache.org/manual/dirtasks.html#patterns](https://ant.apache.org/manual/dirtasks.html#patterns).

**webhelp.search.japanese.dictionary**

The file path of the dictionary that will be used by the Kuromoji morphological engine for indexing Japanese content in the WebHelp pages. The encoding for the dictionary must be `UTF8`.

**webhelp.search.enable.pagination**

Specifies whether or not search results will be displayed on multiple pages. Allowed values are `yes` or `no`.

**webhelp.search.page.numberOfItems**

Specifies the number of search results items displayed on each page. This parameter is only used when the `webhelp.search.enable.pagination` parameter is enabled.

**webhelp.search.ranking**

If this parameter is set to `false` then the 5-star rating mechanism is no longer included in the search results that are displayed on the Search tab (default setting is `true`).
webhelp.show.changes.and.comments

When set to `yes`, user comments, replies to comments, and tracked changes are published in the WebHelp output. The default value is `no`.

webhelp.sitemap.base.url

Base URL for all the `loc` elements in the generated `sitemap.xml` file. The value of a `loc` element is computed as the relative file path from the `href` attribute of a `topicref` element from the DITA map, appended to this base URL value. The `loc` element is mandatory in `sitemap.xml`. If you leave this parameter set to its default empty value, then the `sitemap.xml` file is not generated.

webhelp.sitemap.change.frequency

The value of the `changefreq` element in the generated `sitemap.xml` file. The `changefreq` element is optional in `sitemap.xml`. If you leave this parameter set to its default empty value, then the `changefreq` element is not added in `sitemap.xml`. Allowed values: `<empty string>` (default), `always`, `hourly`, `daily`, `weekly`, `monthly`, `yearly`, `never`.

webhelp.sitemap.priority

The value of the `priority` element in the generated `sitemap.xml` file. It can be set to any fractional number between 0.0 (least important priority) and 1.0 (most important priority). For example, 0.3, 0.5, or 0.8. The `priority` element is optional in `sitemap.xml`. If you leave this parameter set to its default empty value, then the `priority` element is not added in `sitemap.xml`.

Parameters Specific to WebHelp Responsive Output

webhelp.default.collection.type.sequence

Specifies if the `sequence` value will be used by default when the `collection-type` attribute is not specified. This option is helpful if you want to have `Next` and `Previous` navigational buttons generated for all HTML pages. Allowed values are `no` (default) and `yes`.

webhelp.enable.search.autocomplete

Specifies if the `Autocomplete` feature is enabled in the WebHelp search text field. The default value is `yes`.

webhelp.fragment.after.body

In the generated output it displays a given XHTML fragment after the page body. The value of the parameter can be either a well-formed XHTML fragment or a path to a file that contains a well-formed XHTML fragment.

webhelp.fragment.after.logo_and_title
In the generated output it displays a given XHTML fragment after the logo and title. The value of the parameter can be either a well-formed XHTML fragment or a path to a file that contains a well-formed XHTML fragment.

**webhelp.fragment.after.main.page.search**

In the generated output it displays a given XHTML fragment after the search field. The value of the parameter can be either a well-formed XHTML fragment or a path to a file that contains a well-formed XHTML fragment.

**webhelp.fragment.after.toc_or_tiles**

In the generated output it displays a given XHTML fragment after the table of contents or tiles in the main page. The value of the parameter can be either a well-formed XHTML fragment or a path to a file that contains a well-formed XHTML fragment.

**webhelp.fragment.after.top_menu**

In the generated output it displays a given XHTML fragment after the top menu. The value of the parameter can be either a well-formed XHTML fragment or a path to a file that contains a well-formed XHTML fragment.

**webhelp.fragment.before.body**

In the generated output it displays a given XHTML fragment before the page body. The value of the parameter can be either a well-formed XHTML fragment or a path to a file that contains a well-formed XHTML fragment.

**webhelp.fragment.before.logo_and_title**

In the generated output it displays a given XHTML fragment before the logo and title. The value of the parameter can be either a well-formed XHTML fragment or a path to a file that contains a well-formed XHTML fragment.

**webhelp.fragment.before.main.page.search**

In the generated output it displays a given XHTML fragment before the search field. The value of the parameter can be either a well-formed XHTML fragment or a path to a file that contains a well-formed XHTML fragment.

**webhelp.fragment.before.toc_or_tiles**

In the generated output it displays a given XHTML fragment before the table of contents or tiles in the main page. The value of the parameter can be either a well-formed XHTML fragment or a path to a file that contains a well-formed XHTML fragment.

**webhelp.fragment.before.top_menu**

In the generated output it displays a given XHTML fragment before the top menu. The value of the parameter can be either a well-formed XHTML fragment or a path to a file that contains a well-formed XHTML fragment.
webhelp.fragment.footer

In the generated output it displays a given XHTML fragment as the page footer. The value of the parameter can be either a well-formed XHTML fragment or a path to a file that contains a well-formed XHTML fragment.

webhelp.fragment.head

In the generated output it inserts a given XHTML fragment in the <head> element. The value of the parameter can be either a well-formed XHTML fragment or a path to a file that contains a well-formed XHTML fragment.

webhelp.fragment.welcome

In the generated output it displays a given XHTML fragment as a welcome message (or title). The value of the parameter can be either a well-formed XHTML fragment or a path to a file that contains a well-formed XHTML fragment.

webhelp.merge.nested.topics.related.links

Specifies if the related links from nested topics will be merged with the links in the parent topic. Thus the links will be moved from the topic content to the related links component and all of the links from the same group (for example, Related Tasks, Related References, Related Information) are merged into a single group. The default value is yes.

webhelp.search.stop.words.exclude

Specifies a list of words that will be excluded from the default list of stop words that are filtered out before the search processing. Use comma separators to specify more than one word (for example: if,for,is).

webhelp.show.breadcrumb

Specifies if the breadcrumb component will be presented in the output. The default value is yes.

webhelp.show.child.links

Specifies if child links will be generated in the output for all topics that have subtopics. The default value is no.

webhelp.show.indexterms.link

Specifies if an icon that links to the index will be presented in the output. The default value is yes.

webhelp.show.main.page.tiles

Specifies if the tiles component will be presented in the main page of the output. For a tree style layout, this parameter should be set to no.

webhelp.show.main.page.toc
Specifies if the table of contents will be presented in the main page of the output. The default value is \textit{yes}.

\texttt{webhelp.show.navigation.links}

Specifies if navigation links will be presented in the output. The default value is \textit{yes}.

\texttt{webhelp.show.print.link}

Specifies if a print link or icon will be presented within each topic in the output. The default value is \textit{yes}.

\texttt{webhelp.show.related.links}

Specifies if the related links component will be presented in the WebHelp Responsive output. The default value is \textit{yes}. The \texttt{webhelp.merge.nested.topics.related.links} parameter can be used in conjunction with this one to merge the related links from nested topics into the links in the parent topic.

\texttt{webhelp.show.publication.toc}

Specifies if a table of contents will be presented on the left side of each topic in the output. The default value is \textit{yes}.

\texttt{webhelp.show.topic.toc}

Specifies if a topic table of contents will be presented on the right side of each topic in the output. This table of contents contains links to each \texttt{<section>} within the current topic that contains an \texttt{id} attribute and the section corresponding to the current scroll position is highlighted. The default value is \textit{yes}.

\texttt{webhelp.show.top.menu}

Specifies if a menu will be presented at the topic of the main page in the output. The default value is \textit{yes}.

\texttt{webhelp.publication.toc.hide.chunked.topics}

Specifies if the table of contents will contain links for \textit{chunked} topics. The default value is \textit{yes}.

\texttt{webhelp.publication.toc.links}

Specifies which links will be included in the table of contents. The possible values are:

- \texttt{chapter} (default) - The TOC will include links for the current topic, its children, its siblings, and its direct ancestor (including the direct ancestor's siblings), and the parent chapter.
- \texttt{topic} - The TOC will only include links for the current topic and its direct children.
- \texttt{all} - The TOC will include all links.

\texttt{webhelp.publication.toc.tooltip.position}
By default, if a topic contains a `shortdesc` element, its content is displayed in a tooltip when the user hovers over its link in the table of contents. This parameter controls whether or not this tooltip is displayed and its position relative to the link. The possible values are:

- **left** (default)
- **right**
- **top**
- **bottom**
- **hidden** - The tooltip will not be displayed.

**webhelp.top.menu.depth**

Specifies the maximum depth level of the topics that will be included in the top menu. The default value is 3. A value of 0 means that the menu has unlimited depth.

**webhelp.topic.collapsible.elements.initial.state**

Specifies the initial state of collapsible elements (tables with titles, nested topics with titles, sections with titles, index term groups). The possible values are **collapsed** or **expanded** (default value).

---

**Related Information:**

- Customizing the WebHelp Responsive Output *(on page 1935)*

- WebHelp Responsive Output Layout and Features *(on page 1858)*

---

**DITA Map to WebHelp Classic Transformation**

DITA content can be transformed into several types of WebHelp Classic systems (with or without a feedback section). The WebHelp Classic layout and features *(on page 1773)* are designed for desktop systems and include a familiar classical style. Oxygen XML Editor also provides numerous possibilities for customizing the WebHelp Classic output *(on page 1806)*.

**WebHelp Classic Transformation Scenario**

To publish a DITA map *(on page 3281)* as a WebHelp Classic system, follow these steps:

1. Select the **Configure Transformation Scenario(s)** action from the DITA Maps Manager *(on page 2990)* toolbar.
2. Select the DITA Map WebHelp Classic scenario from the DITA Map section.
3. If you want to configure the transformation, click the **Edit** button.

**Step Result:** This opens an **Edit scenario** configuration dialog box that allows you to configure various options in the following tabs:

- **Skins Tab (on page 3197)** - This tab contains a set of built-in skins that you can use for the layout of your WebHelp system output.
- **Parameters Tab (on page 3205)** - This tab includes numerous parameters that can be set to customize your WebHelp system output. See the Parameters section (on page 1654) below for details about the most commonly used parameters for WebHelp Responsive transformations.
- **Filters Tab (on page 3207)** - This tab allows you to filter certain content elements from the generated output.
- **Advanced Tab (on page 3208)** - This tab allows you to specify some advanced options for the transformation scenario.
- **Output Tab (on page 3210)** - This tab allows you to configure options that are related to the location where the output is generated.

4. Click **Apply associated** to process the transformation.

When the **DITA Map WebHelp Classic** transformation is complete, the output is automatically opened in your default browser.

### WebHelp Classic with Feedback Transformation Scenario

To publish a **DITA map (on page 3281)** as a **WebHelp Classic with Feedback** system, follow these steps:

1. Select the 🔄 **Configure Transformation Scenario(s)** action from the **DITA Maps Manager (on page 2990)** toolbar.
2. Select the **DITA Map WebHelp Classic with Feedback** scenario from the **DITA Map** section.
3. If you want to configure the transformation, click the **Edit** button.

**Step Result:** This opens an **Edit scenario** configuration dialog box that allows you to configure various options in the following tabs:

- **Skins Tab (on page 3197)** - This tab contains a set of built-in skins that you can use for the layout of your WebHelp system output.
- **Parameters Tab (on page 3205)** - This tab includes numerous parameters that can be set to customize your WebHelp system output. See the Parameters section (on page 1654) below for details about the most commonly used parameters for WebHelp Responsive transformations.
- **Filters Tab (on page 3207)** - This tab allows you to filter certain content elements from the generated output.
• **Advanced Tab (on page 3208)** - This tab allows you to specify some advanced options for the transformation scenario.

• **Output Tab (on page 3210)** - This tab allows you to configure options that are related to the location where the output is generated.

4. Click **Apply associated** to begin the transformation.

5. Enter the documentation product ID (value for the `webhelp.product.id` parameter) and the documentation version (value for the `webhelp.product.version` parameter).

When the DITA Map WebHelp Classic with Feedback transformation is complete, your default browser opens the `installation.html` file. This file contains information about the output location, system requirements, installation instructions, and deployment of the output. Follow the instructions to complete the system deployment (on page 1873).

For more information about the feedback-enabled WebHelp system, watch our video demonstration:

https://www.youtube.com/embed/eoQ2uxHvppE

**Parameters for Customizing WebHelp Classic Output**

To customize a transformation scenario, you can edit various parameters, including the following most commonly used ones:

- **default.language**
  
  This parameter is used if the language is not detected in the DITA map. The default value is `en-us`.

- **clean.output**
  
  Deletes all files from the output folder before the transformation is performed (only `no` and `yes` values are valid and the default value is `no`).

- **fix.external.refs.com.oxygenxml** (Only supported when the DITA OT transformation process is started from Oxygen XML Editor)
  
  The DITA Open Toolkit usually has problems processing references that point to locations outside of the directory of the processed DITA map. This parameter is used to specify whether or not the application should try to fix such references in a temporary files folder before the DITA Open Toolkit is invoked on the fixed references. The fix has no impact on your edited DITA content. Allowed values: `true` or `false` (default).

- **force.unique**
  
  When set to `true` (default value), the transformation will be forced to create unique output files for each instance of a resource when a map contains multiple references to a single topic.
use.stemming

Controls whether or not you want to include stemming search algorithms into the published output (default setting is false).

webhelp.body.script

URL value that specifies the location of a well-formed XHTML file containing the custom script that will be copied in the <body> section of every WebHelp page.

webhelp.copyright

Adds a small copyright text that appears at the end of the Table of Contents pane.

webhelp.custom.resources

The file path to a directory that contains resources files. All files from this directory will be copied to the root of the WebHelp output.

webhelp.favicon

The file path that points to an image to be used as a favicon in the WebHelp output.

webhelp.footer.file

Path to an XML file that includes the footer content for your WebHelp output pages. You can use this parameter to integrate social media features (such as widgets for Facebook™, Twitter™, Google Analytics, or Google+™). The file must be well-formed, each widget must be in separate div or span element, and the code for each script element is included in an XML comment (also, the start and end tags for the XML comment must be on a separate line). The following code excerpt is an example for adding a Facebook™ widget:

```xml
<div id="facebook">
  <div id="fb-root"/>
  <script>
    <!-- (function(d, s, id) { var js, fjs = d.getElementsByTagName(s)[0];
        if (d.getElementById(id)) return;
        js = d.createElement(s); js.id = id;
        js.src = '//connect.facebook.net/en_US/sdk.js#xfbml=1&version=v2.0';
        fjs.parentNode.insertBefore(js, fjs); }
    (document, 'script', 'facebook-jssdk')); -->
  </script>
  <div data-share="true" data-show-faces="true" data-action="like"
       data-layout="standard" class="fb-like"/>
</div>
</div>
```

webhelp.footer.include
Specifies whether or not to include footer in each WebHelp page. Possible values: yes, no. If set to no, no footer is added to the WebHelp pages. If set to yes and the webhelp.footer.file parameter has a value, then the content of that file is used as footer. If the webhelp.footer.file has no value then a default Oxygen footer is inserted in each WebHelp page.

**webhelp.google.search.results**

A file path that specifies the location of a well-formed XHTML file containing the Google Custom Search Engine element gcse:searchresults-only. You can use all supported attributes for this element. It is recommend to set the linkTarget attribute to frm for frameless (iframe) version of WebHelp or to contentWin for the frameset version of WebHelp. The default value for this attribute is _blank and the search results will be loaded in a new window. If this parameter is not specified, the following code will be used: `<gcse:searchresults-only linkTarget="frm"></gcse:searchresults-only>`

**webhelp.google.search.script**

A file path that specifies the location of a well-formed XHTML file containing the Custom Search Engine script from Google.

**webhelp.head.script**

URL value that specifies the location of a well-formed XHTML file containing the custom script that will be copied in the <head> section of every WebHelp page.

**webhelp.logo.image.target.url**

Specifies a target URL that is set on the logo image. When you click the logo image, you will be redirected to this address.

**webhelp.logo.image**

Specifies a path to an image displayed as a logo in the left side of the output header.

**webhelp.reload.stylesheet**

Set this parameter to true if you have out of memory problems when generating WebHelp. It will increase processing time but decrease the memory footprint. The default value is false.

**webhelp.search.custom.excludes.file**

The path of the file that contains name patterns for HTML files that should not be indexed by the WebHelp search engine. Each exclude pattern must be on a new line. The patterns are considered to be relative to the output directory, and they accept wildcards such as ‘*’ (matches zero or more characters) or ‘?’ (matches one character). For more information about the patterns, see https://ant.apache.org/manual/dirtasks.html#patterns.

**webhelp.search.japanese.dictionary**
The file path of the dictionary that will be used by the Kuromoji morphological engine for indexing Japanese content in the WebHelp pages. The encoding for the dictionary must be UTF8.

**webhelp.search.ranking**

If this parameter is set to `false` then the 5-star rating mechanism is no longer included in the search results that are displayed on the Search tab (default setting is `true`).

**webhelp.show.changes.and.comments**

When set to `yes`, user comments, replies to comments, and tracked changes are published in the WebHelp output. The default value is `no`.

**webhelp.sitemap.base.url**

Base URL for all the `loc` elements in the generated `sitemap.xml` file. The value of a `loc` element is computed as the relative file path from the `href` attribute of a `topicref` element from the DITA map, appended to this base URL value. The `loc` element is mandatory in `sitemap.xml`. If you leave this parameter set to its default empty value, then the `sitemap.xml` file is not generated.

**webhelp.sitemap.change.frequency**

The value of the `changefreq` element in the generated `sitemap.xml` file. The `changefreq` element is optional in `sitemap.xml`. If you leave this parameter set to its default empty value, then the `changefreq` element is not added in `sitemap.xml`. Allowed values: `<empty string>` (default), always, hourly, daily, weekly, monthly, yearly, never.

**webhelp.sitemap.priority**

The value of the `priority` element in the generated `sitemap.xml` file. It can be set to any fractional number between 0.0 (least important priority) and 1.0 (most important priority). For example, 0.3, 0.5, or 0.8. The `priority` element is optional in `sitemap.xml`. If you leave this parameter set to its default empty value, then the `priority` element is not added in `sitemap.xml`.

---

**Related Information:**

- Customizing WebHelp Classic Output *(on page 1806)*
- WebHelp Classic Output Layout and Features *(on page 1773)*
DITA Map to PDF - based on HTML5 and CSS Transformation

Oxygen XML Editor includes a built-in **DITA Map PDF - based on HTML5 & CSS** transformation scenario based on a **DITA-OT CSS-based PDF Publishing plugin** that converts DITA maps to PDF using a CSS-based processing engine and an HTML5 intermediate format. Oxygen XML Editor comes bundled with a built-in CSS-based PDF processing engine called **Oxygen PDF Chemistry**. Oxygen XML Editor also supports some third-party processors.

For those who are familiar with CSS, this makes it very easy to style and customize the PDF output of your DITA projects without having to work with **xsl:fo** customizations. This transformation also includes some built-in publishing templates that you can use for the layout of your PDF output and you can create your own templates or edit existing ones.

The following CSS-based PDF processors can be used:

- **Oxygen PDF Chemistry** - A built-in processor that is bundled with Oxygen XML Editor. For more information, see the **Oxygen PDF Chemistry User Guide**. This is the supported processor.
- **Prince Print with CSS** (not included in the Oxygen XML Editor installation kit) - A third-party component that needs to be purchased from [http://www.princexml.com](http://www.princexml.com).
- **Antenna House Formatter** (not included in the Oxygen XML Editor installation kit) - A third-party component that needs to be purchased from [http://www.antennahouse.com/antenna1/formatter/](http://www.antennahouse.com/antenna1/formatter/).

**How to Create the Transformation Scenario**

To create a **DITA Map PDF - based on HTML5 & CSS** transformation scenario, follow these steps:

1. Click the **Configure Transformation Scenario(s)** button from the **DITA Maps Manager** ([on page 2990](#)) toolbar.
2. Select **DITA Map PDF - based on HTML5 & CSS**.
3. If you want to configure the transformation, click the **Edit** button.

**Step Result:** This opens an **Edit scenario** configuration dialog box that allows you to configure various options in the following tabs:

- **Templates Tab** ([on page 3199](#)) - This tab contains a set of built-in publishing templates that you can use for the layout of your WebHelp system output. You can also create your own publishing templates by saving one from the gallery and changing it.
- **CSS Processor Tab** - This is where you choose the processor type. You can select between **Oxygen PDF Chemistry**, **Prince XML**, or **Antenna House**.
- **Parameters Tab** ([on page 3205](#)) - This tab includes numerous parameters that can be set to customize your WebHelp system output.
- **Filters Tab (on page 3207)** - This tab allows you to filter certain content elements from the generated output.

- **Advanced Tab (on page 3208)** - This tab allows you to specify some advanced options for the transformation scenario.

- **Output Tab (on page 3210)** - This tab allows you to configure options that are related to the location where the output is generated.

4. In the **Parameters** tab, configure any of the following parameters (if applicable):

   - **args.css** - Specifies a path to a custom CSS to be used in addition to those specified in the publishing template. The files must have URL syntax and be separated using semicolons. Also, the `dita.css.list` parameter must be left empty to use these files in addition to the selection in the **Styles** drop-down menu.

   - **css.processor.path.chemistry** (if you are using the **Oxygen PDF Chemistry** processor) - Specifies the path to the **Oxygen PDF Chemistry** executable file that will be run to generate the PDF. If this parameter is not set, the transformation will use the processor specified in the **CSS-based Processors** preferences page (on page 220).

   - **css.processor.path.prince** (if you are using the **Prince Print with CSS** processor) - Specifies the path to the Prince executable file that will be run to produce the PDF. If you installed Prince using its default settings, you can leave this blank.

   - **css.processor.path.antenna-house** (if you are using the **Antenna House Formatter** processor) - Specifies the path to the Antenna House executable file that will be run to produce the PDF. If you installed Antenna House using its default settings, you can leave this blank.

   - **show.changes.and.comments** - When set to **yes**, user comments, replies to comments, and tracked changes are published in the PDF output. The default value is **no**.

   - **figure.title.placement** - Controls the position of the figure title relative to the image. Allowed values are "top" and "bottom", "top" is the default

5. Click **OK** and run the transformation scenario.

### Customizing the Output

For information about customizing the output, see **CSS-based DITA to PDF Customization (on page 2013)**.

**Related Information:**

- Editing a Transformation Scenario (on page 1758)

- Configure Transformation Scenario(s) Dialog Box (on page 1762)
DITA Map to PDF - based on DITA and CSS (WYSIWYG) (Deprecated)

⚠️ Attention: This transformation scenario was deprecated starting with version 21.0. If you have configured scenarios associated to your project based on this transformation scenario, you will still be able to use them, but for new transformations, it is recommended to use the DITA Map PDF - based on HTML5 & CSS transformation scenario (on page 1657) instead.

Oxygen XML Editor includes a built-in DITA Map to PDF - based on DITA & CSS (WYSIWYG) transformation scenario based on a DITA-OT CSS-based PDF Publishing plugin that convert DITA maps to PDF using a CSS-based processing engine. Oxygen XML Editor also comes bundled with a built-in CSS-based PDF processing engine called Oxygen PDF Chemistry. For those who are familiar with CSS, this makes it very easy to style and customize the PDF output of your DITA projects without having to work with xsf:fo customizations. Oxygen XML Editor also supports some third-party processors.

The following processors are supported:

- **Oxygen PDF Chemistry** - A built-in processor that is bundled with Oxygen XML Editor. For more information, see the Oxygen PDF Chemistry User Guide.
- **Prince XML** (not included in the Oxygen XML Editor installation kit) - A third-party component that needs to be purchased from http://www.princexml.com.
- **Antenna House Formatter** (not included in the Oxygen XML Editor installation kit) - A third-party component that needs to be purchased from http://www.antennahouse.com/antenna1/formatter/.

DITA Map to PDF - based on DITA and CSS (WYSIWYG) Transformation Scenario

To create a DITA Map to PDF - based on DITA & CSS (WYSIWYG) transformation scenario, follow these steps:

1. Click the Configure Transformation Scenario(s) button from the DITA Maps Manager (on page 2990) toolbar.
2. Select DITA Map to PDF - based on DITA & CSS (WYSIWYG).
3. If you want to configure the transformation, click the Edit button.
Step Result: This opens an Edit scenario configuration dialog box that allows you to configure various options in the following tabs:

- **CSS Processor Tab** - This is where you choose the processor type. You can select between Oxygen PDF Chemistry, Prince XML, or Antenna House.
- **Parameters Tab** *(on page 3205)* - This tab includes numerous parameters that can be set to customize your WebHelp system output.
- **Filters Tab** *(on page 3207)* - This tab allows you to filter certain content elements from the generated output.
- **Advanced Tab** *(on page 3208)* - This tab allows you to specify some advanced options for the transformation scenario.
- **Output Tab** *(on page 3210)* - This tab allows you to configure options that are related to the location where the output is generated.

4. In the **Parameters** tab, configure any of the following parameters (if applicable):

   - **args.css** - Specifies a path to a custom CSS *(on page 2041)* to be used in addition to those specified in the `dita.css.list` parameter OR in addition to the CSS that is currently selected in the Styles drop-down menu. The files must have URL syntax and be separated using semicolons. Also, the `dita.css.list` parameter must be left empty to use these files in addition to the selection in the Styles drop-down menu.

   - **dita.css.list** - Specifies a list of CSS URLs to be used by the PDF processor (instead of the default CSS files). The files must have URL syntax and be separated using semicolons. If the value is empty, the CSS associated with the current selection from the Styles drop-down menu is used.

   - **css.processor.path.chemistry** *(if you are using the Oxygen PDF Chemistry processor)* - Specifies the path to the Oxygen PDF Chemistry executable file that will be run to generate the PDF. If this parameter is not set, the transformation will use the processor specified in the CSS-based Processors preferences page *(on page 220).*

   - **css.processor.path.prince** *(if you are using the Prince Print with CSS processor)* - Specifies the path to the Prince executable file that will be run to produce the PDF. If you installed Prince using its default settings, you can leave this blank.

   - **css.processor.path.antenna-house** *(if you are using the Antenna House Formatter processor)* - Specifies the path to the Antenna House executable file that will be run to produce the PDF. If you installed Antenna House using its default settings, you can leave this blank.

   - **show.changes.and.comments** - When set to yes, user comments, replies to comments, and tracked changes are published in the PDF output. The default value is no.

   - **figure.title.placement** - Controls the position of the figure title relative to the image. Allowed values are "top" and "bottom", "top" is the default

5. Click **OK** and run the transformation scenario.
Customizing the Output

The DITA-OT CSS-based PDF Publishing plugin makes it very easy to style and customize the PDF output of your DITA projects without having to work with xsl:fo customizations. You can style the PDF output by simply using a custom CSS to change the styling and then re-running the transformation scenario until you get the desired result.

For more information about customizing the output, see: CSS-based DITA to PDF Customization (on page 2013).

Changing the Style of an Element

To change the style of a particular element, you need to create an additional CSS file that will store the customization rules. Once you have created this file, you need to instruct the editor how to use this additional CSS. This can be done in two ways:

• Specify the path to your custom CSS using the args.css parameter:
  1. Edit a DITA Map to PDF - based on DITA & CSS (WYSIWYG) transformation scenario.
  2. In the Parameters tab, specify the path to your custom CSS files in the args.css parameter.
  3. Click OK and run the transformation scenario.

This method is appropriate if you just want to apply the styling customization to the output.

• Create an alternate CSS for the DITA document type:
  1. Follow the procedure for adding an alternate CSS file in Customizing Author Mode Using CSS Files Associated with a Framework (on page 2346).
  2. Once you have configured your CSS as an additional layer, you can select it from the Styles drop-down menu (on the toolbar) (on page 2348).
  3. Run the DITA Map to PDF - based on DITA & CSS (WYSIWYG) transformation scenario and the customization rules from the additional CSS will be visible in the produced PDF.

This method allows you to have many customization CSS files and simply select the one that you need at any time for both the output and the rendering in Author mode.

Related Information:

• Editing a Transformation Scenario (on page 1758)

• Configure Transformation Scenario(s) Dialog Box (on page 1762)

• Configuring and Managing Multiple CSS Styles for a Framework (on page 2348)
DITA Map to PDF - based on XSL-FO Transformation

Oxygen XML Editor comes bundled with the DITA Open Toolkit that provides a mechanism for converting DITA maps (on page 3281) to PDF output.

Creating a DITA Map to PDF - based on XSL-FO Transformation Scenario

To create a DITA Map to PDF - based on XSL-FO transformation scenario, follow these steps:

1. Click the Configure Transformation Scenario(s) button from the DITA Maps Manager (on page 2990) toolbar.
2. Select DITA Map PDF - based on XSL-FO and click the Edit button (or use the Duplicate button if your framework (on page 3282) is read-only).
3. Use the various tabs to configure the transformation scenario. In the Parameters tab, you can use a variety of parameters to customize the output. For example, the following parameters are just a few of the most commonly used ones:
   - show.changes.and.comments - If set to yes, user comments, replies to comments, and tracked changes are published in the PDF output.
   - customization.dir - Specifies the path to a customization directory.
   - editlink.remote.ditamap.url - When this parameter is set to “true”, the DITA topic path is displayed to the right of each topic title in the PDF output.
4. Click OK and then the Apply Associated button to run the transformation scenario.

Related Information:

- XSL FO-based DITA to PDF Customization (on page 2167)

DITA Map to MS Office Word Transformation

Oxygen XML Editor comes bundled with a transformation scenario that allows you to convert DITA maps (on page 3281) to Microsoft Office Word documents. It utilizes the DITA to Word plugin created by Jarno Elovirta. This plugin contains a Word document named Normal.docx (located in:
Tip: You can make general modifications to the Normal.docx template file to alter the published output.

Configuring the Transformation Scenario

To configure a DITA Map to MS Office Word transformation scenario, follow these steps:

1. Open the DITA map in the DITA Maps Manager (on page 2990).
2. Click the Configure Transformation Scenario(s) button from the DITA Maps Manager (on page 2990) toolbar.
3. Select DITA Map MS Office Word.
4. For advanced customizations, in the Parameters tab you can use any of the following parameters that are unique to this transformation scenario to specify paths to files that affect the output in various ways:
   - dotx.file - Specifies the path to a Word template file (.docx) that will be used in the transformation to generate the final Word document. Set this parameter if you want to use a different template file other than the Normal.docx file that is used by default.
   - document.flat.xsl - Specifies the path to a pre-process clean-up stylesheet.
   - core.xsl - Specifies the path to a core metadata stylesheet.
   - custom.xsl - Specifies the path to a custom metadata stylesheet.
   - document.xsl - Specifies the path to a main document stylesheet.
   - comments.xsl - Specifies the path to a comments stylesheet.
   - numbering.xsl - Specifies the path to a list and title numbering stylesheet.
   - footnotes.xsl - Specifies the path to a footnote stylesheet.
   - document.xml.xsl - Specifies the path to a document relations metadata stylesheet.
   - inkscape.exec - Specifies the path to an Inkscape (open-source vector graphics editor) executable file.
5. Click OK and run the transformation scenario.

Result: The result of the transformation will automatically be opened in your system's default word processing application (such as Microsoft Word).

Related Information:

- Editing a Transformation Scenario (on page 1758)
DITA Map to CHM (Compiled HTML Help) Transformation

To perform a Compiled HTML Help (CHM) transformation, Oxygen XML Editor needs Microsoft HTML Help Workshop to be installed on your computer. Oxygen XML Editor automatically detects HTML Help Workshop and uses it.

**Note:** HTML Help Workshop might fail if the files used for transformation contain accents in their names, due to different encodings used when writing the .hhp and .hhc files. If the transformation fails to produce the CHM output but the .hhp (HTML Help Project) file is already generated, you can manually try to build the CHM output using HTML Help Workshop.

Changing the Output Encoding

Oxygen XML Editor uses the htmlhelp.locale parameter to correctly display specific characters of different languages in the output of the Compiled HTML Help (CHM) transformation. By default, the DITA Map CHM transformation scenario that comes bundled with Oxygen XML Editor has the htmlhelp.locale parameter set to en-US.

To customize this parameter, follow this procedure:

1. Use the Configure Transformation Scenario(s) (Ctrl + Shift + C (Command + Shift + C on OS X)) action from the toolbar or the Document > Transformation menu.
2. Select the DITA Map CHM transformation scenario and click the Edit button.
3. In the Parameter tab, search for the htmlhelp.locale parameter and change its value to the desired language tag.

**Note:** The format of the htmlhelp.locale parameter is LL-CC, where LL represents the language code (en, for example) and CC represents the country code (us, for example). The language codes are contained in the ISO 639-1 standard and the country codes are contained in the ISO 3166-1 standard. For further details about language tags, go to [http://www.rfc-editor.org/rfc/rfc5646.txt](http://www.rfc-editor.org/rfc/rfc5646.txt).

DITA Map to Kindle Transformation

Oxygen XML Editor requires KindleGen to generate Kindle output from DITA maps (on page 3281). To install KindleGen for use by Oxygen XML Editor, follow these steps:
1. Go to [www.amazon.com/kindleformat/kindlegen](http://www.amazon.com/kindleformat/kindlegen) and download the zip file that matches your operating system.
2. Unzip the file on your local disk.
3. Start Oxygen XML Editor and open a DITA map in the DITA Maps Manager view (on page 2990).
4. Click the Configure Transformation Scenario(s) button.
5. Select the DITA Map Kindle transformation and press the Edit button to edit it.
6. Go to Parameters tab and set the kindlegen.executable parameter as the path to the KindleGen directory.
7. Accept the changes.

Running a DITA Transformation Scenario

To select and run a transformation scenario on your DITA map, follow these steps:

1. Click the Configure Transformation Scenario(s) button on the DITA Maps Manager toolbar (on page 2992). The Configure Transformation Scenario(s) dialog box (on page 1762) appears. This dialog box lists all the transformation scenarios that have been configured in your project. Oxygen XML Editor provides a default set of transformation scenarios, but the people in charge of your DITA system may have provided others that are specifically configured for your needs.
2. Select the transformation scenario you want to run and click Apply Associated. The transformation scenario runs in the background. You can continue to work in Oxygen XML Editor while the transformation is running. If there are errors or warnings, Oxygen XML Editor displays them when the transformation is complete. If the transformation is successful, Oxygen XML Editor opens the output in the appropriate application.
3. To rerun the same scenario again, click the Apply Transformation Scenario(s) button.

Creating or Editing a DITA OT Transformation

Creating a DITA OT Transformation Scenario

To create a DITA OT Transformation scenario, use one of the following methods:

- Use the Configure Transformation Scenario(s) (Ctrl + Shift + C (Command + Shift + C on OS X)) action from the DITA Maps Manager toolbar, main toolbar, or the Document > Transformation menu. Then click the New button and select DITA OT Transformation.
- Go to Window > Show View and select Transformation Scenarios to display this view. Click the New Scenario drop-down menu button and select DITA OT Transformation.
Both methods open the DITA Transformation Type dialog box that presents the list of possible outputs.

Figure 892. DITA Transformation Type Dialog Box

Select the desired type of output and click OK. This opens the New Scenario dialog box.

The upper part of the dialog box allows you to specify the Name of the transformation scenario and the following Storage options:

- **Project Options (on page 3286)** - The scenario is stored in the project file and can be shared with other users. For example, if your project is saved on a source versioning/sharing system (CVS, SVN, Source Safe, etc.) or a shared folder, your team can use the scenarios that you store in the project file.

- **Global Options (on page 3283)** - The scenario is saved in the global options that are stored in the user home directory and is not accessible to other users.

The lower part of the dialog box contains several tabs that allow you to configure the options that control the transformation. Some of these tabs are only available for certain output types (for example, a Skins tab is only available for WebHelp Classic and WebHelp Classic with Feedback output types, a Templates tab is available only for WebHelp Responsive and WebHelp Responsive with Feedback, and a FO Processor tab is available for PDF output).

**Editing a DITA OT Transformation Scenario**

Editing a transformation scenario is useful if you need to configure some of its parameters.
To configure an existing transformation scenario, follow these steps:

1. Select the `Configure Transformation Scenario(s)` action from the DITA Maps Manager toolbar, main toolbar, or the Document > Transformation menu.

   **Step Result:** The Configure Transformation Scenario(s) dialog box (on page 1762) is opened.

2. Select the particular transformation scenario and click the Edit button at the bottom of the dialog box or from the contextual menu.

   **Note:** Since transformation scenarios that are associated with built-in frameworks (on page 3282) are read-only, these scenarios will prompt you to use the Duplicate button and then edit the duplicated scenario (on page 1760).

   **Result:** This will open an Edit scenario configuration dialog box (on page 1758) that contains several tabs that allow you to configure the options that control the transformation. Some of these tabs are only available for certain output types (for example, a Skins tab is only available for WebHelp Classic and WebHelp Classic with Feedback output types, a Templates tab is available only for WebHelp Responsive and WebHelp Responsive with Feedback, and a FO Processor tab is available for PDF output).

---

**Related Information:**

- Creating a DITA OT Plugin (on page 3252)
- Installing a DITA-OT Plugin (on page 3256)
- DITA Open Toolkit Documentation

---

**Skins Tab (DITA OT Transformations)**

When you create a new transformation scenario (on page 1674) or edit an existing one (on page 1758), a configuration dialog box allows you to customize the transformation with various options in several tabs.

The Skins tab is available for DITA OT transformations with WebHelp Classic or WebHelp Classic with Feedback output types and it provides a set of built-in skins that you can use as a base for your WebHelp system output.
A *skin* is a collection of CSS properties that can alter the look of the output by changing colors, font types, borders, margins, and paddings. This allows you to rapidly adapt the look and feel of your output.

Figure 893. Skins Tab

The **Skins** tab includes the following sections:

**Built-in Skins**

This sections presents the built-in skins that are included in Oxygen XML Editor. The built-in skins cover a wide range of chromatic themes, ranging from a very light one to a high-contrast variant. To see how the *skin* looks when applied on a sample documentation project that is stored on the Oxygen XML Editor website, press the **Online preview** link.

**Custom Skins**

You can use this section to customize the look of the output.

**CSS File**

You can set this field to point to a custom CSS stylesheet or customized skin. A custom CSS file will overwrite a skin selection.

**Note:** The output can also be styled by setting the `args.css` parameter in the **Parameters tab**. The properties taken from the stylesheet referenced in this parameter take precedence over the properties declared in the skin set in the **Skins tab**.
Create custom skin

Use this link to open the WebHelp Skin Builder (on page 1806) tool.

Templates Tab (DITA OT Transformations)

When you create a new transformation scenario (on page 1674) or edit an existing one (on page 1758), a configuration dialog box allows you to customize the transformation with various options in several tabs.

The Templates tab is available for DITA OT transformations with WebHelp Responsive, WebHelp Responsive with Feedback, or PDF - based on HTML5 & CSS output types and it provides a set of built-in publishing templates (on page 1892). You can use one of them to publish your documentation or as a starting point for a new publishing template.

Figure 894. Templates Tab

Filtering and Previewing Templates

You can click on the tags at the top of the pane to filter the templates and narrow your search. Each built-in template also includes an Online preview icon in the bottom-right corner that opens a webpage in your default browser providing a sample of how the main page will look when that particular template is used to generate the output.
Built-in Templates Locations

Oxygen XML Editor scans the following locations to find the built-in templates to display in the dialog box:

- **WebHelp Responsive Templates** - All built-in WebHelp Responsive publishing templates are stored in the following directory: `DITA-OT-DIR/plugins/com.oxygenxml.webhelp.responsive/templates`
- **PDF - based on HTML5 & CSS** - All built-in PDF publishing templates are stored in the following directories:
  - `DITA-OT-DIR/plugins/com.oxygenxml.pdf.css/templates`
  - `DITA-OT-DIR/plugins/com.oxygenxml.webhelp.responsive/templates`

Custom Templates Locations

Oxygen XML Editor scans the locations specified in the **DITA > Publishing preferences page** (on page 228) to find custom templates to display in the dialog box. You can access that preferences page directly from the Template tab by clicking on the Configure Publishing Templates Gallery link.

Selecting Custom Templates

Once you are finished configuring your template, you can click the Choose Custom Publishing Template link to select your template.

You can also add your custom templates (on page 1938) to the list of templates displayed in the Templates tab. To do this, store them in a directory, then click the Configure Publishing Templates Gallery link to open the **DITA > Publishing preferences page** (on page 228) where you can add that directory to the list. All the templates contained in your template directory will be displayed in the preview pane along with all the built-in templates.

Save Template As Button

You can use the Save template as button (at the bottom-left of the transformation dialog box) to export the currently selected template into a new template package that can be used as a starting point to create your own custom template (on page 2029). Clicking this button will open a template package configuration dialog box (on page 1707) that contains some options and displays the parameters that will be exported to your template package.
Template Errors

When the Templates tab is opened, all templates (built-in and custom) are loaded and validated. Specifically, certain elements in the template descriptor file are checked for validity. If errors are encountered that prevents the template from loading, the following message will be displayed toward the bottom of the dialog box:

![Some templates could not be loaded. More details](image)

If you click the More details link, a window will open with more information about the encountered error. For example, it might offer a hint for which element is missing from the expected descriptor file structure.

Also, if a template could be loaded, but certain elements could not be found in the descriptor file, a warning icon (⚠️) will be displayed on the template's image (in the Templates tab of the transformation dialog box). For example, this happens if a valid preview-image element cannot be found.

Sharing Publishing Template

To share a publishing template with others, following these steps:

1. Copy your template in a new folder.
2. Go to Options > Preferences > DITA > Publishing (on page 228) and add that new folder to the list.
3. Switch the option as the bottom of that preferences page to Project Options.
4. Share your project file (.xpr).

For more information about customizing publishing templates, watch our video demonstration:

https://www.youtube.com/embed/zNmXfKWXwO8

Related Information:

- Publishing Templates (on page 1892)
- Publishing Template Package Contents for PDF Customizations (on page 2023)
- Publishing Template Package Contents for WebHelp Responsive Customizations (on page 1895)
Template Package Configuration Dialog Box

The **Save template as** button (at the bottom-left of the transformation dialog box for WebHelp Responsive or PDF - based on HTML5 & CSS transformations) can be used to export the currently selected template into a new template package that can be used as a starting point to create your own custom template (on page 2029). The result will be a ZIP archive that contains a template descriptor file and other resources (such as CSS files) that were attached to the selected template.

Clicking the **Save template as** button opens a template package configuration dialog box contains the following options and components:

**Name**

Required field used to specify the name for the new template. This will become the text value of the `name` element in the template descriptor file. This information is displayed as the name of the template in the transformation scenario dialog box.

**Description**

Optional field used to specify a template description. This will become the text value of the `description` element in the template descriptor file. This information is displayed when the user hovers over the template in the transformation scenario dialog box.

**Parameter Table**

This table displays the parameters that will be exported. Only relevant parameters are exported. The parameters and their values will be inserted in the `parameters` section of the template descriptor file. If any of the parameter values point to a file path that references a template resource (such as CSS files, custom HTML fragments, images), those resources will automatically be copied to the new template package and their references will be changed accordingly.

**Note:** Additional resources that are referenced in CSS files or other resources will not be copied to the new template package, so you will need to copy them manually and update their references in the template descriptor file.

**Include WebHelp Customization**

The same publishing template package can contain both a WebHelp Responsive and PDF customization and you can use the same template in both types of transformations (DITA Map WebHelp Responsive (on page 1643) or DITA Map to PDF - based on HTML5 & CSS (on page 1657)). This option specifies that the custom template will include a WebHelp Responsive customization.

**Include HTML Page Layout Files**

For WebHelp Responsive customizations, select this option if you want to copy the default HTML Page Layout Files (on page 1909) into your
template package. They are helpful if you want to change the structure of the generated HTML pages.

**Include PDF Customization**

The same publishing template package can contain both a WebHelp Responsive and PDF customization and you can use the same template in both types of transformations ([DITA Map WebHelp Responsive](on page 1643) or [DITA Map to PDF - based on HTML5 & CSS](on page 1657)). This option specifies that the custom template will include a PDF customization.

**Save as**

Use this field to specify the name and path of the ZIP file where the template will be saved.

**Figure 895. Template Package Configuration Dialog Box**

Read more about Oxygen Publishing Templates

**Related Information:**

- Publishing Templates ([on page 1892](#))
- Publishing Template Package Contents for PDF Customizations ([on page 2023](#))
- Publishing Template Package Contents for WebHelp Responsive Customizations ([on page 1895](#))
FO Processor Tab (DITA OT Transformations)

When you create a new transformation scenario (on page 1674) or edit an existing one (on page 1758), a configuration dialog box allows you to customize the transformation with various options in several tabs.

The FO Processor tab is available for DITA OT transformations with a PDF output type.

This tab allows you to select an FO Processor to be used for the transformation.

Figure 896. FO Processor Configuration Tab

You can choose one of the following processors:

**Apache FOP**

The default processor that comes bundled with Oxygen XML Editor.

**XEP**

The RenderX XEP processor. If XEP is already installed, Oxygen XML Editor displays the detected installation path under the drop-down menu. XEP is considered installed if it was detected in one of the following sources:

- XEP was configured as an external FO Processor in the FO Processors option page (on page 216).
- The system property com.oxygenxml.xep.location was set to point to the XEP executable file for the platform (for example: xep.bat on Windows).
- XEP was installed in the DITA-OT-DIR/plugins/org.dita.pdf2/lib directory of the Oxygen XML Editor installation directory.

**Antenna House**
The Antenna House (AH Formatter) processor. If Antenna House is already installed, Oxygen XML Editor displays the detected installation path under the drop-down menu. Antenna House is considered installed if it was detected in one of the following sources:

- Environment variable set by Antenna House installation (the newest installation version will be used).
- Antenna House was added as an external FO Processor in the Oxygen XML Editor preferences pages.

To further customize the PDF output obtained from the Antenna House processor, follow these steps:

1. **Edit** the transformation scenario.
2. Open the **Parameters tab (on page 3205).**
3. Add the `env.AXF_OPT` parameter and point to the Antenna House configuration file.

**Related Information:**

- FO Processors Preferences (on page 216)
- XSL-FO (Apache FOP) Processor for Generating PDF Output (on page 1738)

**Parameters Tab (DITA OT Transformations)**

When you **create a new transformation scenario (on page 1674) or edit an existing one (on page 1758),** a configuration dialog box allows you to customize the transformation with various options in several tabs.

The **Parameters** tab allows you to configure the parameters sent to the DITA-OT build file.

The table in this tab displays all the parameters that the DITA-OT documentation specifies as available for each chosen type of transformation (for example, XHTML or PDF), along with their description and current values. You can find more information about each parameter in the **DITA OT Documentation.** You can also add, edit, and remove parameters, and you can use the text box to filter or search for a specific term in the entire parameters collection. Note that edited parameters are displayed with their name in bold.

Depending on the type of a parameter, its value can be one of the following:

- A simple text field for simple parameter values.
- A combo box with some predefined values.
A file chooser and an editor variable (on page 276) selector to simplify setting a file path as the value of a parameter.

**Note:** To input parameter values at runtime, use the ask editor variable (on page 277) in the Value column.

Below the table, the following actions are available for managing parameters:

**New**

Opens the Add Parameter dialog box that allows you to add a new parameter to the list. You can specify the Value of the parameter by using the ➤ Insert Editor Variables (on page 276) button or the ➡ Browse button.

**Unset**

Resets the selected parameter to its default value. Available only for edited parameters with set values.

**Edit**

Opens the Edit Parameter dialog box that allows you to change the value of the selected parameter or its description.

**Delete**

Removes the selected parameter from the list. It is available only for new parameters that have been added to the list.

### Parameters Contributed by an Oxygen Publishing Template

Transformation parameters that are defined in an Oxygen Publishing Template (on page 2021) descriptor file are displayed in italics. After creating a publishing template (on page 2029) and adding it to the templates gallery (on page 1938), when you select the template in the Templates tab (on page 3199), the Parameters tab will automatically be updated to include the parameters defined in the template descriptor file.

**Related Information:**

- DITA Open Toolkit Documentation
Feedback Tab (DITA OT Transformations)

When you create a new transformation scenario (on page 1674) or edit an existing one (on page 1758), a configuration dialog box allows you to customize the transformation with various options in several tabs.

⚠️ **Attention:** This tab is for a feature that has not yet been implemented. To check the progress of the feature, see [https://feedback.oxygenxml.com/](https://feedback.oxygenxml.com/).

The **Feedback** tab is available for the **WebHelp Responsive** transformation type and can be used to connect the published WebHelp Responsive output to an **Oxygen Feedback** server to provide a comment section in the output where users can offer feedback and ask questions.

When you configure the **Oxygen Feedback** server, you will retrieve an HTML fragment during site creation procedure. Click the **Edit** button at the bottom-right of this tab to open a dialog box where you will paste the HTML fragment (using keyboard shortcut keys or contextual menu actions).

Filters Tab (DITA Transformations)

When you create a new transformation scenario (on page 1674) or edit an existing one (on page 1758), a configuration dialog box allows you to customize the transformation with various options in several tabs.

The **Filters** tab allows you to add filters to remove certain content elements from the generated output.

Figure 897. Edit Filters Tab
You can choose one of the following options to define filters:

**Use DITAVAL file**

If you already have a DITAVAL file associated with the DITA map (on page 3281), you can specify the file to be used when filtering content. You can specify the path by using the text field, its history drop-down, the Insert Editor Variables (on page 276) button, or the browsing actions in the Browse drop-down list. You can find out more about constructing a DITAVAL file in the DITA Documentation.

⚠️ **Attention:** If a filter file is specified in the args.filter parameter (in the Parameters tab (on page 3205)), that file takes precedence over a DITAVAL file specified here.

**Use profiling condition set**

Sets the profiling condition set (on page 3234) that will be applied to your transformation.

**Exclude from output all elements with any of the following attributes**

By using the New, Edit, or Delete buttons at the bottom of the pane, you can configure a list of attributes (name and value) to exclude all elements that contain any of these attributes from the output.

Advanced Tab (DITA OT Transformations)

When you create a new transformation scenario (on page 1674) or edit an existing one (on page 1758), a configuration dialog box allows you to customize the transformation with various options in several tabs.

The Advanced tab allows you to specify advanced options for the transformation scenario.

Figure 898. Advanced Settings Tab
You can specify the following parameters:

**Custom build file**

If you use a custom DITA-OT build file, you can specify the path to the customized build file. If empty, the `build.xml` file from the `dita.dir` parameter that is configured in the Parameters tab (on page 3205) is used. You can specify the path by using the text field, the Insert Editor Variables (on page 276) button, or the Browse button.

**Build target**

Optionally, you can specify a build target for the build file. If no target is specified, the default `init` target is used.

**Additional arguments**

You can specify additional command-line arguments to be passed to the transformation (such as `-verbose`).

**Ant Home**

You can choose between the default or custom Ant installation to run the transformation. The default path can be configured in the Ant preferences page (on page 221).

**Java Home**
You can choose between the default or custom Java installation to run the transformation. The default path is the Java installation that is used by Oxygen XML Editor.

**Note:** It may be possible that the used Java version is incompatible with the DITA Open Toolkit engine. For example, DITA-OT 2.0 and newer requires Java 1.7 or newer. Thus, if you encounter related errors running the transformation, consider installing a Java VM that is supported by the DITA OT publishing engine and using it in the Java Home text field.

**JVM Arguments**

This parameter allows you to set specific parameters for the Java Virtual Machine used by Ant. For example, if it is set to `-Xmx384m`, the transformation process is allowed to use 384 megabytes of memory. When performing a large transformation, you may want to increase the memory allocated to the Java Virtual Machine. This will help avoid Out of Memory error messages (`OutOfMemoryError`).

**Libraries**

By default, Oxygen XML Editor adds libraries (as high priority) that are not transformation-dependent and also patches for certain DITA Open Toolkit bugs. You can use this button to specify additional libraries (JAR files or additional class paths) to be used by the transformer.

**Tip:** You can specify the path to the additional libraries using wildcards (for example, `${oxygenHome}/lib/*.jar`).

**Output Tab (DITA OT Transformations)**

When you create a new transformation scenario (on page 1674) or edit an existing one (on page 1758), a configuration dialog box allows you to customize the transformation with various options in several tabs.

The **Output** tab allows you to configure options that are related to the location where the output is generated.

Figure 899. Output Settings Tab
You can specify the following parameters:

**Base directory**

All the relative paths that appear as values in parameters are considered relative to the base directory. The default value is the directory where the transformed map is located. You can specify the path by using the text field, the `Insert Editor Variables (on page 276)` button, or the `Browse` button.

**Temporary files directory**

This directory is used to store pre-processed temporary files until the final output is obtained. You can specify the path by using the text field, the `Insert Editor Variables (on page 276)` button, or the `Browse` button.

**Output directory**

The folder where the content of the final output is stored. You can specify the path by using the text field, the `Insert Editor Variables (on page 276)` button, or the `Browse` button.

**Note:** If the DITA map (on page 3281) or topic is opened from a remote location or a ZIP file, the parameters must specify absolute paths.

**Open in Browser/System Application**
If selected, Oxygen XML Editor automatically opens the result of the transformation in a system application associated with the file type of the result (for example, in Windows PDF files are often opened in Adobe Reader).

**Note:** To set the web browser that is used for displaying HTML/XHTML pages, go to Options > Preferences > Global, and set it in the Default Internet browser field.

- **Output file** - When Open in Browser/System Application is selected, you can use this button to automatically open the default output file at the end of the transformation.
- **Other location** - When Open in Browser/System Application is selected, you can use this option to open the file specified in this field at the end of the transformation.

You can specify the path by using the text field, the Insert Editor Variables button, or the Browse button.

**Open in editor**

When this option is selected, at the end of the transformation, the default output file is opened in a new editor panel with the appropriate built-in editor type (for example, if the result is an XML file it is opened in the built-in XML editor, or if it is an XSL-FO file it is opened with the built-in FO editor).

At the bottom of the pane there is a link to the Console options preferences page that contains options to control the display of the console output received from the publishing engine.

**Customizing DITA Transformations**

You can customize the appearance of any of the output types by customizing the output transformations. There are several ways to do this:

- Most transformations are configurable by passing parameters to the transformation script. Oxygen XML Editor allows you to set parameters on a transformation scenario and you can save and share them with others. You can also use the $ask editor variable in the Parameters tab to instruct Oxygen XML Editor to prompt you for a particular parameter whenever a transformation scenario is run. You can set up multiple transformation scenarios for a given output type, allowing you to maintain several customized transformation scenarios for multiple types of output configurations.
- If you want to customize an output in a way not supported by the built-in customization options, you can create a modified version of the transformation code and execute it using a custom build file. Sometimes the transformation code exports specific forms of extensions or customizations. You should consult the DITA Open Toolkit for the transformation type that you are interested in to see what customization options are supported. Oxygen XML Editor provides
full editing and debugging support from XSLT and CSS stylesheets (on page 2290), which you can use to modify transformation code.

- You can also write your own transformation code (and execute it using a custom build file (on page 3214)) to produce a type of output not supported by the DITA Open Toolkit. Oxygen XML Editor provides a full source editing environment for developing such transformations. You can create Oxygen XML Editor transformation scenarios to run these scripts once they are complete.

There are also many other ways to customize specific types of output generated from DITA transformations:

- **WebHelp** - For information about customizing WebHelp output, see the WebHelp Output section (on page 1772).
- **PDF** - For information about customizing PDF output generated from DITA content, see XSL FO-based DITA to PDF Customization (on page 2167).

**Publishing Customizations**

Some customizations (usually for HTML-based output), can be made simply by creating a custom CSS and they do not involve modifying the DITA-OT engine in any way. Instead, most customizations involve adding a new plugin to the DITA-OT. Here are some best practices to follow before beginning your customization:

1. Copy the bundled DITA-OT folder (usually $OXYGEN_INSTALL_DIR\frameworks\dita\DITA-OT3.x) to a location where you have full write access so that you have the ability to install new DITA-OT plugins (on page 3256).
2. Go to Options > Preferences > DITA, select Custom for the DITA Open Toolkit option and set the Location to be the path to the location where you copied the bundled DITA-OT folder. This will allow you to upgrade the version of Oxygen XML Editor at anytime without affecting the publishing system.
3. Share that external DITA-OT folder with the rest of the team. If you are using a repository (such as Subversion or Git), you can commit the entire modified DITA-OT publishing engine as part of your project. This will allow everyone in your team to use the official changes that you made. This will also allow you to set up some kind of automatic publishing system using an open-source integration server (such as Travis CI or Jenkins).

**Customizing XHTML-based Output**

XHTML-based output can be modified by using a custom CSS stylesheet to override various styles. If you edit an XHTML transformation scenario (on page 3195), there is a parameter called args.css that can be set to point to your custom CSS and a parameter called args.copy.css that can be set to yes to copy the CSS to the output folder.
You can also create plugins to customize the XHTML-based output by adding an extra XSLT stylesheet. For more information, see: http://blog.oxygenxml.com/2013/12/creating-simple-dita-open-toolkit.html. A list with all DITA-OT XSLT extension points can be found here: http://www.dita-ot.org/dev/extension-points/plugin-extension-points-xslt-import.html.

**Customizing WebHelp-based Output**

The DITA-OT that comes bundled in Oxygen XML Editor includes specific plugins that provide the ability to publish DITA content to WebHelp Classic (on page 1773) and WebHelp Responsive (on page 1857) output.

For information about customizing WebHelp Classic output, see Customizing WebHelp Classic Output (on page 1806).

For information about customizing WebHelp Responsive output, see Customizing the WebHelp Responsive Output (on page 1935).

**Customizing PDF-based Output**

DITA to PDF output can be customized either by creating a PDF customization folder (in this case, the DITA OT folder will not be modified at all) or by creating a PDF customization plugin. For information about customizing DITA to PDF output, see XSL FO-based DITA to PDF Customization (on page 2167).

There is also a book called DITA For Print that contains details about how to customize various aspects.

**Customizing PDF Output with CSS**

Oxygen XML Editor also includes a transformation scenario called DITA Map PDF - based on HTML5 and CSS (on page 1657) that is based on a DITA-OT CSS-based PDF Publishing plugin that allows you to convert DITA maps (on page 3281) to PDF using a CSS layout processor. For those who are familiar with CSS, this makes it very easy to style and customize the PDF output of your DITA projects without having to work with xsl:fo customizations. For more information about customizing PDF output using this transformation scenario, see Customization CSS (on page 2041).

**Related Information:**

- DITA Open Toolkit Documentation
Using a Custom Build File

You can use a Custom Build File to customize transformation scenarios.

To use a custom build file in a DITA-OT transformation, follow these steps:

1. Use the Configure Transformation Scenario(s) action to open the Configure Transformation Scenario(s) dialog box (on page 1762).
2. Select the transformation scenario and click Edit.
3. Go to the Advanced (on page 3208) tab and change the Custom build file path to point to the custom build file.

As an example, if you want to call a custom script before running the DITA OT, your custom build file would have the following content:

```xml
<project basedir="." default="dist">
  <!-- The DITA OT default build file-->
  <import file="build.xml"/>
  <target name="dist">
    <!-- You could run your script here -->
    <!-- Call the DITA OT default target-->
    <antcall target="init"/>
  </target>
</project>
```

Note: If you use the built-in Ant 1.9.8 build tool that comes bundled with Oxygen XML Editor, it is located in the [OXYGEN_INSTALL_DIR]/tools/ant directory. Any additional libraries for Ant must be copied to the Oxygen XML Editor Ant lib directory.

Adding a Watermark in DITA Map to XHTML Output

To add a watermark to the XHTML output of a DITA map (on page 3281) transformation, follow these steps:

1. Create a custom CSS stylesheet that includes the watermark image, as in the following example:

```css
body {
  background-image: url(MyWatermarkImage.png);
}
```
2. Edit a DITA Map XHTML transformation scenario and in the Parameters tab set the value of the args.css parameter as the path to your watermark image.

3. Set the value of the args.copycss parameter to yes.

4. Apply the transformation scenario.

5. Copy the watermark image in the output directory of the transformation scenario, next to the CSS file created in step 1.

Related Information:

- Adding a Watermark to PDF Output (on page 2172)

Adding Syntax Highlights for Codeblocks in the Output

*Syntax Highlighting* makes it easier to read the semantics of the structured content by displaying each type of code (language) in different colors and fonts. Oxygen XML Editor provides the ability to add syntax highlights in codeblocks for DITA to PDF or HTML-based output through the use of the @outputclass attribute and a variety of predefined values are available.

To provide syntax highlighting in the codeblocks that appear in the output, add the @outputclass attribute on the `<codeblock>` element and set its value to one of the predefined language values. The Content Completion Assistant offers a list of the possible values when adding the @outputclass attribute in Text mode but there are also two very simple ways to set the value in Author mode:

- Select the `<codeblock>` element in the editor and in the Attributes view, click on the Value cell for the outputclass attribute and select one of the predefined values (for example, language-xml).
- Select the `<codeblock>` element in the editor and use the Alt + Enter keyboard shortcut to open the in-place attributes editor window. Then select one of the predefined values from the Value drop-down menu.

The predefined values that can be selected are:

- language-bourne
- language-c
- language-cpp
- language-csharp
- language-css
- language-ini
- language-java
Attention: It is recommended that you do not add inline elements in the codeblocks when using this `@outputclass` attribute, as it may lead to improper highlighting.

Example:

This codeblock:

```xml
<codeblock outputclass="language-xml">
  <p>This code is an example of how to use a coderef.</p>
  <codeblock><coderef href="MyExternalCode.xsl"/></codeblock>
</codeblock>
```

would look like this in the output:

```xml
<p>This code is an example of how to use a coderef.</p>
<codeblock><coderef href="MyExternalCode.xsl"/></codeblock>
```

Troubleshooting DITA Transformation Problems

This section contains some topics to help you troubleshoot DITA transformation issues.

DITA Map Transformation Fails (Cannot Connect to External Location)

Problem

*DITA map (on page 3281)* transformation fails because it cannot connect to an external location.

Solution

The transformation is run as an external Ant process so you can continue using the application as the transformation unfolds. All output from the process appears in the DITA Transformation tab.
DITA Map WebHelp Transformation Fails (Duplicate Topic References Found)

**Problem**

DITA Map WebHelp transformation fails with a message that indicates duplicate topic references were found.

**Cause**

By default the WebHelp transformation uses the `force-unique` parameter set to `true` to force the transformation to create unique output files for each instance of a resource when a map contains multiple references to a single topic. However, there are cases when this feature does not work as expected and the duplicate topic references are not handled properly.

**Solution**

To solve this issue, you should manually set a unique `copy-to` attribute on any duplicate topic reference that was not handled automatically by DITA-OT:

```xml
<map>
  ...
  <topicref href="../topics/MyTopic.dita"/>
  ...
  <topicref href="../topics/MyTopic.dita" copy-to="../topics/MyTopic-2.dita"/>
</map>
```

DITA OT Transformation Takes a Long Time to Process

**Problem**

A DITA transformation takes an extremely long time to process (over an hour, for example).

**Cause**

Large delays in DITA OT processing are usually caused by intensive disk operations, CPU usage, or connections to remote websites. The DITA OT processing is very disk-intensive, each stage takes the
entire content from the transformation temporary files folder, reads it, modifies it, and then writes it back.

Solution

There are several things you can try to troubleshoot this problem:

- If you are using a shared or remote drive, it is recommended to specify a local drive for the output and temporary files directory (edit the transformation scenario and in the Output tab, select a local directory for Temporary files directory and Output directory).
- If you want to test if the publishing has a problem downloading remote resources, you could disable the network adapter on the computer and then try to publish. The purpose is to see if the publishing finishes without any reported error about obtaining a certain HTTP resource.
- Using DTDs instead of XML Schemas is faster. This is because of a default transformation parameter called args.grammar.cache that only works for DTD-based DITA topics.
- You can increase the memory available to Oxygen XML Editor (on page 2946). Sometimes, just increasing the amount of memory available to the DITA OT process may be enough to lower the time necessary for the publishing to run.
- You can enable some logging to help you determine which stage in the process is taking a long time. Edit the transformation scenario and in the Advanced tab, enter logger org.apache.tools.ant.listener.ProfileLogger in the Additional arguments field. Then go to Options > Preferences > DITA > Logging and select Always for the Show console output option.
- You could try disabling antivirus applications since the publishing process is very disk intensive and certain antivirus application might slow down the process.
- If the published DITA map is part of a larger DITA project with lots of maps and topics, references from topics in the current map to topics in other sub-projects might result in problems resolving those references. You could look in the output folder to see if the number of HTML documents match the number of DITA topics in your map.

DITA PDF Transformation Fails

Problem

The DITA to PDF transformation fails.

Cause

To generate the PDF output, Oxygen XML Editor uses the DITA Open Toolkit. This process sometimes results in errors. For information about some of the most common errors, see DITA PDF Processing Common Errors (on page 2960).
Solution

If your transformation fails, you can detect some of the problems that caused the errors by running the Validate and Check for Completeness action (on page 3036). Depending on the options you select when you run it, this action reports errors such as topics referenced in other topics but not in the DITA map (on page 3281), broken links, and missing external resources.

You can analyze the Results tab of the DITA transformation and search for messages that contain text similar to [fop] [ERROR]. If you encounter this type of error message, edit the transformation scenario you are using and set the clean.temp parameter to no and the retain.topic.fo parameter to yes. Run the transformation, go to the temporary directory of the transformation, open the topic.fo file and go to the line indicated by the error. Depending on the XSL FO context try to find the DITA topic that contains the text that generates the error.

If none of the above methods helps you, go to Help > About > Components > Frameworks and check what version of the DITA Open Toolkit you are using. Copy the whole output from the DITA OT console output and either report the problem on the DITA User List or send it to support@oxygenxml.com.

Related Information:

• How to Enable Debugging for FO Processor Transformations (on page 1742)

DITA PDF Processing Common Errors

There are cases when the PDF processing fails when trying to publish DITA content to a PDF file. This topic lists some of the common problems and possible solutions.

Problem: Cannot Save PDF

The FO processor cannot save the PDF at the specified target. The console output contains messages like this:

[fop] [ERROR] Anttask – Error rendering fo file:
C:\samples\dita\temp\pdf\oxygen_dita_temp\topic.fo
Failed to open C:\samples\dita\out\pdf\test.pdf
Failed to open samples\dita\out\pdf\test.pdf
............
[fop] Caused by: java.io.FileNotFoundException:
C:\Users\default\Desktop\bev\out\pdf\test.pdf
(The process cannot access the file because it is being used by another process)
Solution: Cannot Save PDF

Such an error message usually means that the PDF file is already opened in a PDF reader application. The solution is to close the open PDF before running the transformation.

Problem: Table Contains More Cells Than Defined in Colspec

One of the DITA tables contains more cells in a table row than the defined number of `colspec` elements. The console output contains messages like this:

```
[fop] [ERROR] Anttask - Error rendering fo file:
D:\projects\eXml\samples\dita\flowers\temp\pdf\oxygen_dita_temp\topic.fo
<net.sf.saxon.trans.XPathException: org.apache.fop.fo.ValidationException:
The column-number or number of cells in the row overflows the number of fo:table-columns specified for the table.
(See position 179:-1)>net.sf.saxon.trans.XPathException:
org.apache.fop.fo.ValidationException: The column-number or number of cells in the row overflows the number of fo:table-columns specified for the table.
(See position 179:-1)
[fop]  at org.apache.fop.tools.anttasks.FOPTaskStarter.renderInputHandler
(Fop.java:657)
[fop]  at net.sf.saxon.event.ContentHandlerProxy.startContent
(ContentHandlerProxy.java:375)
..........  
[fop] D:\projects\samples\dita\flowers\temp\pdf\oxygen_dita_temp\topic.fo ->
D:\projects\samples\dita\flowers\out\pdf\flowers.pdf
```

Solution: Table Contains More Cells Than Defined in Colspec

To resolve this issue, correct the `colspec` attribute on the table that caused the issue. To locate the table that caused the issue:

1. Edit the transformation scenario and set the parameter `clean.temp` to `no`.
2. Run the transformation, open the `topic.fo` file in Oxygen XML Editor, and look in it at the line specified in the error message (See position 179:-1).
3. Look around that line in the `XSL-FO` file to find relevant text content that you can use (for example, with the Find/Replace in Files action in the DITA Maps Manager view (on page 2990)) to find the original DITA topic for which the table was generated.
Problem: Broken Link

There is a broken link in the generated XSL-FO file. The PDF is generated but contains a link that is not working. The console output contains messages like this:

```
[fop] 1248 WARN [ main ] org.apache.fop.apps.FOUserAgent -
Page 6: Unresolved ID reference "unique_4_Connect_42_wrongID" found.
```

Solution: Broken Link

To resolve this issue:

1. Use the Validate and Check for Completeness action available in the DITA Maps Manager view (on page 2990) to find such problems.
2. If you publish to PDF using a DITAVAL filter, select the same DITAVAL file in the DITA Map Completeness Check dialog box.
3. If the Validate and Check for Completeness action does not discover any issues, edit the transformation scenario and set the clean.temp parameter to no.
4. Run the transformation, open the topic.fo file in Oxygen XML Editor, and search for the unresolved ID references (for example: unique_4_Connect_42_wrongID).
5. Look in the XSL-FO file to find relevant text content that you can use (for example, with the Find/Replace in Files action in the DITA Maps Manager view (on page 2990)) to find the original DITA topic for which the table was generated.

Related Information:

- How to Enable Debugging for FO Processor Transformations (on page 1742)

DITA to CHM Transformation Fails - Cannot Open File

Problem

The DITA to CHM transformation fails with the following error: [exec] HHC5010: Error: Cannot open "fileName.chm". Compilation stopped.

Cause

This error occurs when the CHM output file is opened and the transformation scenario cannot rewrite its content.
Solution

To solve this issue, close the CHM help file and run the transformation scenario again.

Tip: It is a good practice to validate the DITA map (on page 3281) before executing the transformation scenario. To do so, run the Validate and Check for Completeness action (on page 3036). Depending on the selected options, this action reports errors, such as topics referenced in other topics (but not in the DITA map), broken links, and missing external resources.

Related Information:

- DITA Map to CHM (Compiled HTML Help) Transformation (on page 1664)

DITA to CHM Transformation Fails - Compilation Failed

Problem

The DITA to CHM transformation fails with the following error: [exec] HHC5003: Error: Compilation failed while compiling fileName.

Cause 1

One possible cause for this error is that the processed file does not exist.

Solution 1

To solve this issue, fix the file reference before executing the transformation scenario again.

Cause 2

Another possible cause for this error is that the processed file has a name that contains space characters.

Solution 2

To solve the issue, remove any spacing from the file name and run the transformation scenario again.

Tip: It is a good practice to validate the DITA map (on page 3281) before executing the transformation scenario. To do so, run the Validate and Check for Completeness action (on page
Depending on the selected options, this action reports errors, such as topics referenced in other topics (but not in the DITA map), broken links, and missing external resources.

Related Information:

- DITA Map to CHM (Compiled HTML Help) Transformation (on page 1664)

Solving DITA Transformation Errors

If a DITA transformation results in errors or warnings, the information is displayed in the message panel at the bottom of the editor. The information includes the severity, description of the problem, the name of the resource, and the path of the resource.

To help prevent and solve DITA transformation problems, follow these steps:

1. Validate the DITA map (on page 3036) by using the Validate and Check for Completeness action that is available on the DITA Maps Manager (on page 2990) toolbar and in the DITA Maps menu.
2. If this action results in validation errors, solve them prior to executing the transformation. Also, you should pay attention to the warning messages because they may identify problems in the transformation.
3. Run the DITA transformation scenario (on page 1702).
4. If the transformation results in errors or warnings, they are displayed in the Results panel (on page 357) at the bottom of the editor. The following information is presented to help you troubleshoot the problems:
   - **Severity** - The first column displays the following icons that indicate the severity of the problem:
     - Informational - The transformation encountered a condition of which you should be aware.
     - Warning - The transformation encountered a problem that should be corrected.
     - Error - The transformation encountered a more severe problem, and the output is affected or cannot be generated.
   - **Info** - You can click the See More icon to open a web page that contains details about DITA-OT error messages.
   - **Description** - A description of the problem.
   - **Resource** - The name of the transformation resource.
   - **System ID** - The path of the transformation resource.
5. Use this information or other resources from the online DITA-OT community to solve the transformation problems before re-executing the transformation scenario.
6. If you need to contact the Oxygen technical support team, they will need you to send the entire transformation scenario execution log. To obtain it:
   a. Go to the Options > Preferences > DITA preferences page and set the Show console output option to Always.
   b. Execute the transformation scenario again. The console output messages are displayed in the DITA OT view.
   c. Copy the entire log, save it in a text file, then send it to the Oxygen technical support team.
   d. After your issue has been solved, go back to the Options > Preferences > DITA preferences page and set the Show console output option to When build fails.

Related Information:

- Troubleshooting DITA Transformation Problems (on page 3217)

DITA Profiling / Conditional Text

DITA offers support for conditionally profiling content by using profiling attributes. With Oxygen XML Editor, you can define values for the DITA profiling attributes and they can be easily managed to filter content in the published output. You can switch between profile sets to see how the edited content looks like before publishing. The profiling configuration can also be shared between content authors through the project file and there is no need for coding or editing configuration files.

Oxygen XML Editor includes a Profiling/Conditional Text preferences page (on page 144) where you can create and manage profiling attributes and condition sets. Oxygen XML Editor also offers convenient support for customizing and controlling profiling attribute values with a subject scheme (on page 3243) or DITAVAL file (on page 3248).

Profiling Attributes

You can profile content elements or map elements by adding one or more of the default DITA profiling attributes (product, platform, audience, rev, props, and otherprops). You can also create your own custom profiling attributes and profiling condition sets. The profiling attributes may contain one or more tokens that represent conditions to be applied to the content when a publication is built.

For example, you could define a section of a topic that would only be included for a publication related to the Windows platform by adding the platform profiling attribute:

```xml
<section platform="windows">
```
For information about creating and editing profiling attributes, see Creating and Editing Profiling Attributes in DITA (on page 3226) (for information about sharing them, see Sharing Profiling Attribute Configurations (on page 3229)).

**Profiling Conditions**

DITA allows you to conditionally profile parts of a topic so that certain parts of the topic are displayed when certain profiling conditions are set. Profiling conditions can be set both within topics and in maps. When set in a topic, they allow you to suppress an element (such as paragraph), step in a procedure, item in a list, or even a phrase within a sentence. When set in a map, they allow you to suppress an entire topic or group of topics. You can then create a variety of publications from a single map by applying profiling conditions to the build.

For information about creating and editing condition sets, see Creating and Editing Profiling Condition Sets in DITA (on page 3232) (for information about sharing them, see Sharing Condition Set Configurations (on page 3234)).

For more information about DITA profiling, watch our video demonstration:

https://www.youtube.com/embed/Gfyd4TkRQAw

**Creating and Editing Profiling Attributes in DITA**

You can filter DITA content or the structure of a document by using profiling attributes or profiling conditions sets (on page 3232).

**Defining Profiling Attributes for DITA Content**

To create or edit profiling attributes for filtering DITA content, follow these steps:

1. Open the Preferences dialog box (Options > Preferences) (on page 79) and go to Editor > Edit modes > Author > Profiling / Conditional Text.

   **Information:** The Profiling Attributes section (on page 145) is used to define the attributes and their values. For DITA documents, the default attributes are included (audience, platform, product, props, otherprops, and rev), but if a Subject Scheme Map (on page 3243) is used for profiling your content, you will see the attributes defined in your subject scheme map instead.

2. To add new attributes and values, click the New button at the bottom of the Profiling Attributes table. To customize existing attributes and their values, select an attribute and click the Edit button.

   **Step Result:** In either case, this opens a Profiling Attribute configuration dialog box where you can define attributes that exist in your schema.
Figure 900. Profiling Attribute Dialog Box

The following options are available in this dialog box:

**Document type**

Select the document type *(framework (on page 3282))*.

ℹ️ Tip: You can use the * or ? wildcards in this combo box. For example, DITA* would match any document type that starts with "DITA". You can also specify multiple document types by using commas to separate them.

**Attribute name**

The name of the profiling attribute.

**Display name**

This optional field is used for descriptive rendering in profiling dialog boxes.

**Attribute Values Table**

This table displays information about the values for the profiling attribute. You can configure them by using the buttons at the bottom of the table (New, Edit, Delete).

The columns are as follows:

- **Value**: The attribute value. You can also define profiling attribute groups using the following format: ParentAttrValue(SubAttrValue1 SubAttrValue2). For more information, see Conditional Profiling Attribute Groups (on page 3242).

- **Label**: You can specify a label for the attribute value that will be rendered as its name in various components in Author mode *(Edit Profiling Attributes)* dialog
box (on page 3229), **Condition Set** dialog box (on page 3232), **Profiling** tab in the **Edit Properties** dialog box (on page 3032), **DITA Maps Manager** (on page 2990). If the **Label** is not specified, the **Value** will be used as its rendered name.

- **Description** - A description for the attribute value that will be displayed in this table.

**Single value**

Select this option if you want the attribute to only accept a single value.

**Multiple values separated by**

Select this option if you want the attribute to accept multiple values, and you can choose the type of delimiter to use. You can choose between *space*, *comma*, and *semicolon*, or you can enter a custom delimiter in the text field. A custom delimiter must be supported by the specified document type. For example, the DITA document type only accepts spaces as delimiters for attribute values.

3. After defining or configuring the attributes and their values according to your needs, click **OK** to confirm your selections and close the **Profiling Attributes** configuration dialog box.
4. Click **Apply** to save the changes.

**Result:** You should see your changes in the **Profiling Attribute** table.

You can also use the **Profiling Condition Sets** section to apply more complex filters on your DITA content.

### Adding Profiling Attribute Values Directly in a Document

You can add values directly to the existing profiling attributes in a document using the **In-Place Attributes Editor** (on page 915) in **Author** mode, the **Attributes view** (on page 426), or in the source code in **Text** mode. However, this just adds them to the document and does not change the conditional text configuration. If you invoke the **Edit Profiling Attributes** action (from the contextual menu in **Author** mode) on the new value, the **Profiling Values Conflict** dialog box will appear and it includes an **Add these values to the configuration** action that will automatically add the new value to the particular profiling attribute. It also includes an **Edit the configuration** action that opens the **Profiling / Conditional Text** preferences page (on page 144) where you can edit the profiling configuration.

**Note:** If the **Allow contributing extra profiling attribute values** (on page 146) option is not selected in the **Profiling / Conditional Text** preferences page, the **Profiling Values Conflict** dialog box will never appear, so this automatically adding value not be possible.

Figure 901. Profiling Values Conflict Dialog Box
Sharing Profiling Attribute Configurations

Your profiling configuration can be shared with other users through a project file. If you select Project Options (on page 3286) at the bottom of the Profiling/Conditional Text preferences page, your configuration is stored in the project file and can be shared with others. For instance, if your project file is saved on a version control system (such as SVN, CVS, or Source Safe) or in a shared folder, your team will have the same option configuration that you stored in the project file.

For more information about sharing project files, see Sharing a Project - Team Collaboration (on page 723).

Related Information:

- Applying Profiling Attributes in DITA (on page 3229)
- Creating and Editing Profiling Condition Sets in DITA (on page 3232)
- Applying Profiling Condition Sets in DITA (on page 3234)
- Showing and Filtering Profiled Content in DITA (on page 3237)
- Customizing Colors and Styles for Rendering Profiling in Author Mode (on page 3240)
- Conditional Profiling Attribute Groups (on page 3242)
Applying Profiling Attributes in DITA

Profiling attributes are applied on element nodes. You can apply profiling attributes on a text fragment (it will automatically be wrapped into a phrase-type element), on a single element, or on multiple elements at the same time. If there is no selection in your document, the profiling attributes are applied on the element at the cursor position.

You can apply defined DITA profiling attributes (on page 3226) as follows:

**DITA Topics**

To profile DITA topics, right-click a topic reference in the DITA Maps Manager (on page 2990), select Edit Properties from the contextual menu, go to the Profiling tab, and select the appropriate values.

**DITA Content**

To profile DITA content in Author mode, highlight the content and select Edit Profiling Attributes from the contextual menu and select the appropriate values in the Edit Profiling Attributes dialog box.

**DITA Elements**

To profile specific XML elements in Author mode, position the cursor inside the element, right-click, select Edit Profiling Attributes (you can also right-click the element in the breadcrumb (on page 907) or Outline (on page 347) view), and select the appropriate values in the Edit Profiling Attributes dialog box. You can also use the Attributes view (on page 426) to set the profiling attributes on the element at the current cursor position.

Figure 902. Edit Profiling Attributes Dialog Box
The profiling attributes, and their potential values, that appear in this dialog box depend on what has been configured in Oxygen XML Editor. If you have a large list of profiling attributes, you can use the text filter field to search for attributes or values, and you can expand or collapse attributes by using the Expand All/Collapse All buttons to the right of the text filter or the arrow button to the left of the profiling attribute name.

The attributes and values that appear in the dialog box are determined as follows:

- If your root map (on page 3287) references a DITA subject scheme map (on page 3288) that defines values for the profiling attributes (on page 3243), those values are used. Oxygen XML Editor collects all the profiling values from the subject scheme map that is referenced in the map that is currently opened in the DITA Maps Manager (on page 2990) (or set as the root map (on page 3007)). In the image above (on page 3230) (taken from the Oxygen XML Editor documentation project), you see values for eight products. They are the only values that are defined in the subject scheme map and thus, are the only ones that appear in the dialog box.

- If you have defined profiling attribute values (on page 3226) for the DITA document type in the Profiling/Conditional Text preferences page (on page 144) and you store them at project-level (on page 3286), those values are displayed in the dialog box.

- If you have defined profiling attribute values (on page 3226) for the DITA document type in the Profiling/Conditional Text preferences page (on page 144) and you store them at global-level (on page 3283), those values are displayed in the dialog box.

- If you have defined profiling attribute values (on page 3226) for the DITA document type in the Profiling/Conditional Text preferences page (on page 144), those values are displayed in the dialog box.

- Otherwise, a generic default set of profiling attributes and values are available.

The attribute names and values selected in the Edit Profiling Attributes dialog box are set on the elements contained in the profiled fragment. If you only select a fragment of content (rather than the entire element), this fragment is wrapped in phrase-type elements in which the profiling attributes are set.

If the Show Profiling Attributes option (on page 981) (available in the Profiling / Conditional Text toolbar menu) is selected, a green border is painted around profiled text in the Author mode and all profiling attributes set on the current element are listed at the end of the highlighted block. To edit the attributes of a profiled fragment, click one of the listed attribute values. A form control pops up and allows you to add or remove attribute values.

Figure 903. Profiling Attribute Value Form Control Pop Up
Creating and Editing Profiling Condition Sets in DITA

Multiple profiling attributes can be aggregated into a profiling condition set that allows you to apply more complex filters on the document content. In DITA, profiling conditions can be set within both topics and in maps. When set in a topic, you can filter an element (such as paragraph), step in a procedure, item in a list, or even a phrase within a sentence. When set in a map, you can filter an entire topic or group of topics.

Creating Profiling Condition Sets

To create a new profiling condition set, follow these steps:

1. Open the Preferences dialog box (Options > Preferences) (on page 79) and go to Editor > Edit modes > Author > Profiling/Conditional Text.

Information: The Profiling Condition Sets section (on page 146) is used to define condition sets.
2. To add new condition set, click the **New** button at the bottom of the **Profiling Condition Sets** table. To customize existing condition sets, select an existing condition set and click the **Edit** button.

**Step Result:** In either case, this opens a **Condition Set** configuration dialog box where you can define attributes that exist in your schema.

Figure 904. Condition Set Configuration Dialog Box

![Condition Set Configuration Dialog Box](image)

The following options are available in this dialog box:

**Name**

The name of the new condition set.

**Document type**

Select the document type (*framework* on page 3282) for which you have defined profiling attributes.

**Use DITAVAL file**

For DITA projects, select this option if you want the **Profiling Condition Set** to reference a **DITAVAL file** on page 3248. You can specify the path by using the text field, its history drop-down, the **Insert Editor Variables** (on page 276) button, or the browsing actions in the **Browse** drop-down list.

**Include the content matching the following conditions**
You can select this option to define the combination of attribute values for your condition set by selecting the appropriate checkboxes for the values you want to be included in this particular condition set. If you have defined a lot of profiling attributes, you can use the filter text field to search for specific conditions.

**Shortcut key**

You can click the Choose button to open a dialog box that allows you to define a shortcut key for this particular condition set. You can then use that shortcut key anytime you want to select this condition set to filter content.

3. After defining or configuring the condition sets according to your needs, click OK to confirm your selections and close the **Condition Set** configuration dialog box.

4. Click Apply to save the condition set.

**Result:** All saved profiling condition sets are available in the Profiling / Conditional Text toolbar drop-down menu *(on page 980)*.

### Sharing Condition Set Configurations

Your condition set configuration can be shared with other users through a project file. If you select Project Options *(on page 3286)* at the bottom of the Profiling/Conditional Text preferences page, your configuration is stored in the project file and can be shared with others. For instance, if your project file is saved on a version control system (such as SVN, CVS, or Source Safe) or in a shared folder, your team will have the same option configuration that you stored in the project file.

For more information about sharing project files, see Sharing a Project - Team Collaboration *(on page 723)*.

**Related Information:**

- Applying Profiling Condition Sets in DITA *(on page 3234)*
- Creating and Editing Profiling Attributes in DITA *(on page 3226)*
- Applying Profiling Attributes in DITA *(on page 3229)*
- Showing and Filtering Profiled Content in DITA *(on page 3237)*
- Customizing Colors and Styles for Rendering Profiling in Author Mode *(on page 3240)*
Applying Profiling Condition Sets in DITA

All defined Profiling Condition Sets (on page 3232) are available as shortcuts in the Profiling / Conditional Text toolbar menu (on page 980). Select a menu entry to apply the condition set. The filtered content is then grayed-out in the Author mode, Outline view (on page 347), and DITA Maps Manager view (on page 2990). Your selection will also be used as the default condition set (on page 3251) in transformation scenarios (this can be changed in the Filters tab). An element is filtered-out when one of its attributes is part of the condition set and its value does not match any of the values covered by the condition set.

EXAMPLE:

Suppose that you have the following document:

```
<table>
<thead>
<tr>
<th>Spray painting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Short Description: When paint is applied using a spray nozzle, it is referred to as spray painting.</td>
</tr>
<tr>
<td>Context: The garage is a good place to spray paint.</td>
</tr>
<tr>
<td>Step 1</td>
</tr>
<tr>
<td>Step 2</td>
</tr>
<tr>
<td>Step 3</td>
</tr>
<tr>
<td>Step 4</td>
</tr>
<tr>
<td>Step 5</td>
</tr>
</tbody>
</table>
```

If you apply the following condition set, it means that you want to filter out the content to only include content profiled with the expert value for the @audience attribute and content that has the prop1 value for the @other attribute.
This is how the document looks in **Author** mode after you apply the condition set:

```
Spray painting

Short Description: When paint is applied using a spray nozzle, it is referred to as spray painting.
Context:

The garage is a good place to spray paint.

Step 1
Move the car out of the garage to avoid getting paint on it. Audience [novice]

Step 2
Place newspaper, cardboard, or a drop-cloth on the garage floor Audience [expert]

Step 3
Place the object to be painted on the covered area. Audience [expert] Other [prop2]

Step 4
Follow the directions on the paint can to paint the object Audience [expert] Other [prop1]

Step 5
Let the paint dry thoroughly before you move the object Audience [novice] Other [prop1]
```

Related Information:

- Creating and Editing Profiling Condition Sets in DITA *(on page 3232)*
- Creating and Editing Profiling Attributes in DITA *(on page 3226)*
Showing and Filtering Profiled Content in DITA

You can visualize the effect of profiling content by using the profiling tools in the Profiling/Conditional Text drop-down menu that is located on the DITA Maps Manager toolbar and on the main toolbar. This drop-down menu includes the following filtering options:

**Show Profiling Colors and Styles**
Select this option to show colors and styles for profiled content in Author mode and the DITA Maps Manager. You can configure the colors and styles or specify whether or not this option is selected by default in the Profiling/Conditional Text > Colors and Styles preferences page.

**Show Profiling Attributes**
Select this option to display the values of the profiling attributes at the end of profiled content in Author mode and next to the nodes in the DITA Maps Manager. You can specify whether or not this option is selected by default in the Profiling/Conditional Text > Attributes Rendering preferences page.

**Show Excluded Content**
Controls whether the content filtered out by a particular condition set is hidden or grayed-out in Author mode, the DITA Maps Manager, and the Outline view. When this option is selected and a condition set is selected in this drop-down menu, the filtered content is grayed-out. If this option is not selected and a condition set is selected in this drop-down menu, the filtered content is hidden. You can specify whether or not this option is selected by default in the Profiling/Conditional Text preferences page.

**Choose Condition Set (Available if more than 15 condition sets are defined)**
This option is available if you have more than 15 conditions sets defined. It opens a dialog box that makes it easier to find and select condition sets that are not displayed in this drop-down menu.

**List of Defined Condition Sets**
Up to 15 defined condition sets are listed and you can toggle each one of them on to filter the content in Author mode and the DITA Maps Manager (on page 2990) to only show content that will appear in the output for that particular condition set. If there are more than 15 defined condition sets, the rest of them can be accessed in the More submenu or by using the Choose Condition Set option (on page 3237) to access a dialog box that presents all of them.

### Profiling Settings

Opens the Profiling/Conditional Text preferences page (on page 144) where you can add and edit profiling attributes and condition sets.

Figure 905. Example: Profiling Controls in Author Mode

If the Show Profiling Attributes option is selected, a green border is painted around profiled text in the Author mode. Also, all profiling attributes set on the current element are listed at the end of the highlighted block and in its tooltip message. To edit the attributes of a profiled fragment, click one of the listed attribute values. A form control pops up and allows you to add or remove attribute values.

Figure 906. Profiling Attribute Value Form Control Pop Up
Also, the following icons are used to mark profiled and non-profiled topics in the **DITA Maps Manager**:

- ■ - The topic contains profiling attributes.
- □ - The topic inherits profiling attribute from its ancestors.
- ◼ - The topic contains and inherits profiling attributes.
- - (dash) - The topic neither contains, nor inherits profiling attributes.

Figure 907. Rendering Profiled Topics in DITA Maps Manager

Related Information:

- Creating and Editing Profiling Condition Sets in DITA *(on page 3232)*

- Applying Profiling Attributes in DITA *(on page 3229)*

- Creating and Editing Profiling Attributes in DITA *(on page 3226)*

- Applying Profiling Condition Sets in DITA *(on page 3234)*
Customizing Colors and Styles for Rendering Profiling in Author Mode

By applying profiling colors and styles, you can mark profiled content in **Author** mode and the **DITA Maps Manager** so that you can instantly spot differences between multiple variants of the output. This allows you to preview the content that will go into the published output. The excluded text is grayed-out or hidden in **Author** mode and excluded nodes are grayed-out or hidden in the **DITA Maps Manager**.

Figure 908. Example: Profiling Colors and Styles in Author Mode

Choosing the right style for a specific profiling attribute is a matter of personal taste, but be aware of the following:

- If the same block of text is profiled with two or more profiling attributes, their associated styles combine. Depending on the styling, this might result in an excessively styled content that may prove difficult to read or work with.
- It is recommended that you only profile the differences. There is no need to profile common content, since excessive profiling can visually pollute the document.
- A mnemonic associated with a style will help you instantly spot differences in the types of content.

**Styling Profiling Attribute Values**

To set colors and styles for profiling attribute values, follow these steps:
1. Select the **Show Profiling Colors and Styles** option *(on page 980)* from the **Profiling / Conditional Text** toolbar drop-down menu.

2. Select **Profiling Settings** *(on page 981)* from the **Profiling / Conditional Text** toolbar drop-down menu. This is a shortcut to the **Profiling/Conditional Text** preferences page *(on page 144)*.

3. Go to the **Colors and Styles preferences page** *(on page 146)* to configure the colors and styling for the profiling attributes.

4. Go to the **Attributes Rendering preferences page** *(on page 148)* to configure how you want the profiling attributes to appear in Oxygen XML Editor.

**Result:** The styling is now applied in the **Author** editing mode, the **Outline view** *(on page 347)*, and in the **DITA Maps Manager** view *(on page 2990)*. Also, to help you more easily identify the profiling you want to apply in the current context, the styling is applied in the **Edit Profiling Attributes** dialog box *(on page 970)* and in the inline form control pop-up that allows you to quickly set the profiling attributes.

Figure 909. Profiling Attribute Value Form Control Pop Up

**Alternate Method with a DITAVAL File:** If you are using a DITAVAL filter file to control the filtering of profiled content in DITA topics, you can use a flag filter to define the colors and styles that will be used when rendering the profiling. For detailed information about this alternate method, see the procedure in the **Styling the Rendering of Profiled Content Using a DITAVAL File** *(on page 3250)* topic.

**Related Information:**

- Creating and Editing Profiling Condition Sets in DITA *(on page 3232)*

- Applying Profiling Attributes in DITA *(on page 3229)*

- Creating and Editing Profiling Attributes in DITA *(on page 3226)*

- Applying Profiling Condition Sets in DITA *(on page 3234)*
Conditional Profiling Attribute Groups

Overview

Conditional processing attributes can be specified using grouped values. Groups organize the attributes into subcategories. This is intended to support situations where an attribute applies to multiple specialized subcategories. For example, suppose a company needs to filter content for several internal teams (operations and support) and they use the @audience attribute with the values ops and support, but the Support team has several levels of personnel (L1, L2, and L3). They could use a group to define the levels (L1, L2, and L3) as subcategories for the support value. Using groups for these subcategories allows each category to be processed independently.

A major advantage is that you do not need to add new profiling attributes using a DTD specialization. You can re-use existing DITA profiling attributes (such as @product, @audience, @otherprops) and specify multiple attribute subcategories.

Creating a Conditional Profiling Attribute Group

To create a group in Oxygen XML Editor:

1. Open the Preferences dialog box (Options > Preferences) (on page 79) and go to Editor > Edit modes > Author > Profiling / Conditional Text.
2. To add new attributes and values, click the New button at the bottom of the Profiling Attributes table. To customize existing attributes and their values, select an attribute and click the Edit button.
   
   **Step Result:** In either case, this opens a Profiling Attribute configuration dialog box where you can define attributes that exist in your schema.
3. Specify the appropriate values for the Document type, Attribute name, and Display name.
   
   For information about the Profiling Attribute configuration dialog box, see Defining Profiling Attributes for DITA Content (on page 3226).
4. Click the New button at the bottom of the attribute values table.
5. In the Value field of the resulting dialog box, define groups using the following format:
   
   ParentAttrValue(SubAttrValue1 SubAttrValue2). For example:
   
   support(L1 L2 L3)
6. Click OK and Apply to save and apply the changes.
Using Conditional Groups in Conjunction with a DITAVAL File

You can use groups to customize a hierarchy of profiling attribute values and then use it in conjunction with a DITAVAL file to filter or flag (on page 3248) the values. For example, suppose the company described in the example in the Overview section (on page 3242) needed to generate content for the Support team, but only for L1 and L2 support personnel. The DITAVAL file could look like this:

```xml
<val>
  <prop action="include" att="support" val="L1"/>
  <prop action="include" att="support" val="L2"/>
  <prop action="exclude" att="support" val="L3"/>
</val>
```

That DITAVAL file could then be used for a condition set (on page 3232) to filter content in Author mode or during the transformation stage to filter content in the output (on page 3251) and content profiled with the L1 and L2 values would be included while content with the L3 value would be excluded.

This example company could also have another DITAVAL file for filtering out all content profiled for any of the three subcategories (L1, L2, L3) by simply excluding the support value (since L1, L2, and L3 are subcategories of it).

```xml
<val>
  <prop action="exclude" att="support"/>
</val>
```

For more information about creating conditional profiling attribute groups, watch our video demonstration:

https://www.youtube.com/embed/YRi9XP6CcY

Related Information:

- DITA 1.3 Specifications: Conditional Processing Values and Groups
Customizing Profiling Values with a Subject Scheme Map

Overview

A subject scheme map (on page 3288) allows you to create and manage custom profiling values in DITA documents without having to write a DITA specialization. Ultimately, this allows you to filter and flag content in Author mode or in transformed output.

Subject scheme maps use key definitions to define a collection of profiling values. You can also use subject scheme maps to filter out (reject) the values for certain attributes so that you only see the attributes or values that you want to use in Author mode or the transformed output.

The highest level of map (main DITA map (on page 3287)) that uses the set of profiling values must reference the subject scheme map where the profiling values are defined and the type attribute needs to be set to subjectScheme for the reference, as in the following example:

```
<topicref href="test.ditamap" format="ditamap" type="subjectScheme"/>
```

Advantages of Using a Subject Scheme Map

The advantages of using a subject scheme to control profiling attribute values include:

- You can create a hierarchy of profiling attribute values and use a DITAVAL file to filter or flag the tree of values.
- You can share the subject scheme files with others without having to share preferences or the entire project.
- The subject scheme offers validation support so you are notified if an undefined value is used.

Creating a Subject Scheme Map

To create and configure a subject scheme map, follow this procedure:

1. Use the New Document wizard (on page 676) to create a new Subject Scheme document (Framework templates > DITA Map > map > Subject Scheme).
2. Use the controls in Author mode to define the hierarchical tree of values for your subject scheme (see the Author mode example below (on page 3246)) or switch to Text mode and define it there if you prefer (see the Text mode example below (on page 3246)).

  **Note:** The pre-defined subject scheme template includes Navigation Titles (navtitle element). This element is not required, but if you use it, the text that you enter for the navtitle will be used (instead of the name of the value) in the various places where profiling attributes are presented in Oxygen XML Editor (on page 3247). An example of when this might be helpful is if
3. Bind the particular attribute to the key you define for the tree of values using the `<attributedef>` and `<subjectdef>` elements inside the `<enumerationdef>` element. Notice that in the examples below (on page 3246), the `audience` attribute is bound to the `audienceKey` value.

Tip: By default, attributes can accept multiple values, but you can use `outputclass="single_value"` to specify that a certain attribute only accepts a single value at a time and the attribute will be presented in Oxygen XML Editor with radio buttons instead of checkboxes. For example:

```xml
<enumerationdef outputclass="single_value">
  <attributedef name="audience"/>
  <subjectdef keyref="audienceKey"/>
</enumerationdef>
```

4. If you want to filter out (reject) values for certain attributes, bind the attributes to a blank value (as you see for the `props` and `otherprops` attributes in the examples below (on page 3246)). This means that those attributes will not appear in the various places where profiling attributes are presented in Oxygen XML Editor (on page 3247).

5. Save your `subject scheme` file.

6. Reference your `subject scheme` in the highest level of map (main DITA map (on page 3287)) that will use the set of profiling values and set its type to `subjectScheme`. The easiest way to do this is:
   a. With your `subject scheme` file opened in the editor, go to the DITA Maps Manager view, right-click the `main DITA map`, and select Append Child > Reference to the currently edited file.
   b. In the Insert Topic Reference dialog box, go to the Attributes tab and in the Type field, enter or select `subjectScheme`.
   c. Click the Insert and Close button and save your main DITA map.

Using a Subject Scheme in Conjunction with a DITAVAL File

You can use a subject scheme to customize a hierarchy of profiling attribute values and then use it in conjunction with a DITAVAL file to filter or flag (on page 3248) the entire tree of values. For example, suppose one of the values for the `audience` attribute in a hierarchical subject scheme is `surgeon` and it has two subordinate values of `neuro-surgeon` and `plastic-surgeon` (see the examples below (on page 3246)). You could create a DITAVAL file with the following content:

```xml
<val>
  <prop action="exclude" att="audience" val="surgeon"/>
</val>
```
That DITAVAL file could then be used for a condition set (on page 3232) to filter content in Author mode or during the transformation stage to filter content in the output (on page 3251) and the neuro-surgeon and plastic-surgeon values would be excluded by the filter since the subject scheme defines them as subordinate values of the surgeon value.

**Example: Subject Scheme Map that Defines Custom Values for the Audience Attribute**

This example uses typical audience values for medical personnel (therapist, oncologist, physicist, radiologist, surgeon, and so on). The audience attribute is bound to the audienceKey value (which defines the tree of values). You can also see that it filters out all possible values for other attributes (props and otherprops) so that they won't be available in the various places where profiling attributes are presented in Oxygen XML Editor (on page 3247).

**Example using Author mode controls:**

![Subject Scheme Controls](image)

**Example code in Text mode:**
Where the Profiling Attributes are Available in Oxygen XML Editor

When you edit a DITA topic in the Text or Author mode, Oxygen XML Editor collects all the profiling values from the subject scheme map (on page 3288) that is referenced in the map that is currently opened in the DITA Maps Manager (on page 2990) (or set as the root map (on page 3007)). The values of profiling attributes defined in a Subject Scheme Map are available in the following places in Oxygen XML Editor (regardless of their mapping in the Profiling/Conditional Text preferences page (on page 144)):

- The Profiling tab of the Edit Properties dialog box (on page 3032).
- The Edit Profiling Attribute dialog box (on page 3230).
• The inline profiling controls in **Author mode (on page 3238)**.
• The proposals for the attribute values in the **Content Completion Assistant (on page 3280)**.

For more information about using a DITA subject scheme map, watch our video demonstration:

https://www.youtube.com/embed/RgkVRg6k6zo

**Related Information:**
• **Filtering Profiling Values with a DITAVAL File (on page 3248)**
• DITA 1.3 Specifications: Subject Scheme Maps

**Filtering Profiling Values with a DITAVAL File**

You can use a DITAVAL filter file to control the filtering or flagging of profiled content or to identify which values are to be used for conditional processing during a particular output.

**DITAVAL Filtering Use-Case**

Suppose that a medical publication uses the **audience** attribute to profile the content for the following types of users: **therapist**, **physician**, and **surgeon**. Suppose that in the output, you want to exclude any content that is profiled as **surgeon** value for the **audience** attribute.

You could use a DITAVAL filter file to exclude anything that is profiled as **surgeon**:

```xml
<val>
  <prop action="exclude" att="audience" val="surgeon"/>
</val>
```

If you then transform the main **DITA map (on page 3281)** and specify the DITAVAL filter file in the transformation scenario, the output will exclude anything that is profiled as **surgeon**.

**DITAVAL Filter File Editor in Author Mode**

The **Author** editing mode in Oxygen XML Editor offer a simple and intuitive editor for creating or modifying DITAVAL files. It provides a series of drop-down menus and text fields that allow you to easily define the filters.

Figure 911. DITAVAL File Editor in Author Mode
Use the +... button to display a drop-down list that contains elements that you can add at that particular location in the DITAVAL file. Clicking this button at the top (next to the DITAVAL FILTER File title, allows you to insert the following elements:

- **Style Conflict** - Inserts a `style-conflict` element that declares behavior to be used when one or more flagging methods collide on a single content element. You can use the simple drop-down menus to select values for the `foreground-conflict-color` and `background-conflict-color` attributes.

- **Filter** - Inserts a `prop` element that identifies an attribute to apply a filtering action on. The possible actions that you can select are `include`, `exclude`, `passthrough`, and `flag`. If you select the `flag` action, you can use the drop-down menus to select values for the `style`, `color`, and `background` attributes.

- **Flag** - Inserts a `revprop` element that identifies a value in the `rev` attribute that should be flagged in some manner. The allows actions are `include`, `passthrough`, and `flag`. If you select the `flag` action, you can use the drop-down menus to select values for the `style`, `color`, `background`, and `changebar` attributes.

See the DITAVAL Element Specifications for more details about the allowed filters and flags.

**How to Create a DITAVAL Filter File**

To create a DITAVAL filter file, follow these steps:

1. Go to File > New.
2. Scroll to the Framework templates > DITAVAL folder.
3. Select the Filter template file and click Create.
4. Define your filters in the DITAVAL file (in Text or Author mode).
5. Save the DITAVAL file.
Result: The DITAVAL filter file can now be used for all of the following:

- To apply a reference to the DITAVAL file in a Profiling Condition Set using the Use DITAVAL File option in the Condition Set configuration dialog box (on page 3232).
- You can use the Import from DITAVAL option (on page 145) in the Profiling/Conditional Text preferences page (on page 144) to use the DITAVAL file to define profiling attributes.
- You can use the DITAVAL file to apply the filters to the output by specifying the DITAVAL file in the transformation scenario (on page 3208).
- You can use the filter file in the DITA Map Completeness Check dialog box (on page 3037) when validating your DITA map (on page 3281).
- DITAVAL files are also used when working with the DITA 1.3 Branch Filtering mechanism. For more details, see: Working with DITA 1.3 Branch Filtering (on page 3152).
- You can define the colors and styles to be used for rendering profiled condition sets (on page 3250) in Author mode and the DITA Maps Manager (on page 2990) view by using a Flag filter in the DITAVAL file.

Related Information:

- DITAVAL Element Specifications
- Working with DITA 1.3 Branch Filtering (on page 3152)
- Customizing Profiling Values with a Subject Scheme Map (on page 3243)
- Styling the Rendering of Profiled Content Using a DITAVAL File (on page 3250)
- Conditional Profiling Attribute Groups (on page 3242)

Styling the Rendering of Profiled Content Using a DITAVAL File

If you are using a DITAVAL filter file to control the filtering of profiled content, you can define the colors and styles to be used for rendering profiled condition sets in Author mode and the DITA Maps Manager (on page 2990) by defining the styles in a flag filter that is set in a DITAVAL filter file.

How to Define a Flag for a Condition Set in a DITAVAL Filter File

To define the colors and styles to be used for rendering profiled condition sets by using a flag filter in a DITAVAL filter file, follow these steps:
1. Create or edit your DITAVAL file (on page 3249) to define your profiling condition set (on page 3232).
2. In Author mode, define the filters for your condition set (on page 3248).
3. Select Flag from the drop-down menu on in a particular Filter or Flag Revision to present additional drop-down menus that allow you to configure the colors and styles for the particular condition set.
4. Save the DITAVAL file.

Result: Test your changes by opening profiled content in Author mode or the DITA Maps Manager (on page 2990) and use the options in the Profiling / Conditional Text drop-down menu to see how the changes in your DITAVAL flag are rendered.

EXAMPLE:

Using a Flag on a Filter to define the styling for a condition set like this:

![DITAVAL Filter file](image)

will render the styling of the profiled content in Author mode to look like this:

![Shortcut Keys - Many of the shortcut keys](image)

and will render the styling in the DITA Maps Manager view (on page 2990) to look like this:

Related Information:

- Filtering Profiling Values with a DITAVAL File (on page 3248)
Publishing Profiled DITA Content

You can create a variety of publications or versions of your documentation from a single map by applying profiling conditions to the build.

Oxygen XML Editor includes preconfigured transformation scenarios for DITA. By default, these scenarios take the current profiling condition set (on page 3234) into account during the transformation, as defined in the Filters tab (on page 3207) when creating a DITA transformation (on page 1702). You can also specify a DITAVAL file (on page 3248) that defines filters for your profiled content.

Figure 912. Profiling Option in the Filters Tab (DITA OT Transformations)

DITA Open Toolkit Support

The DITA Open Toolkit is an open-source publishing engine that can generate various output formats (for example, HTML, PDF, CHM) from DITA content. Oxygen XML Editor includes support for the DITA Open Toolkit. This section includes information about how to install and create a DITA OT plugin (on page 3285), and how to use an external instance of the DITA Open Toolkit.

Related Information:

- DITA Open Toolkit Documentation

DITA-OT Plugins

The architecture of the DITA Open Toolkit publishing engine is plugin-based. A plugin can add support for publishing DITA content as a new format or for customizing an existing output format. The DITA Open Toolkit bundled with Oxygen XML Editor already has lots of plugins pre-installed but you can also install additional plugins (on page 3285) or create your own.
Creating a DITA OT Plugin

Oxygen XML Editor provides the ability to install additional DITA Open Toolkit plugins (on page 3256) that can be found from various sources (for example, Oxygen’s public GitHub repository includes some DITA-OT plugins). It is also possible to create your own plugin.

To create a DITA-OT plugin, follow these steps:

1. Create a new folder in the plugins folder located in your DITA OT directory (for example, if you are using DITA 3.3.1, the path would look like this: `[OXYGEN_INSTALL_DIR]/frameworks/dita/DITA-OT3.x/plugins/MyNewPlugin`).
2. Create a plugin.xml file in that same folder. This file will contain the extension points for the plugin. For example, references to the XSLT stylesheets that will be used to style the output.

   **Note:** You can easily create this file by using the DITA OT Plugin new document template that is included in Oxygen XML Editor (from the New document wizard (on page 676) you can find this template in Framework templates > DITA > plugin.

   **Example:**

   ```xml
   <plugin id="org.metadita.specialization.music">
     <feature extension="dita.specialization.catalog.relative"
              file="catalog-dita.xml"/>
     <feature extension="dita.xsl.xhtml" file="xsl/music2xhtml.xsl"/>
   </plugin>
   ```

   **Tip:** Oxygen XML Editor includes special editing support when adding extension points in the plugin.xml file. If you place the cursor in the value of the @extension attribute and press Ctrl+Space, a list of possible extension points is presented with links to the DITA-OT documentation. For more information about extension points that are available to use in the plugin.xml file, see: http://www.dita-ot.org/dev/extension-points/extension-points-by-plugin.html.

3. Install the newly created DITA-OT plugin (on page 3256) by running the built-in transformation scenario called Run DITA-OT Integrator (on page 1665) from the Apply Transformation Scenario(s) (on page 1641) or Configure Transformation Scenario(s) dialog box (on page 1762).

   **Note:** If the integrator is not visible, select the Show all scenarios option in the Settings drop-down menu.

You can share your new plugin with other users who have the same DITA-OT distribution by sending them your newly created folder along with the installation instructions (on page 3256).

Related Information:
Example: Creating a DITA OT Plugin for Embedding Video Resources

To offer a detailed example of the steps required to create a new DITA Open Toolkit plugin (on page 3285), this topic uses an example of creating an XSLT customization plugin that provides support for referencing video and audio content using the DITA object element and then publishing to HTML and PDF output formats. This plugin (com.oxygenxml.media) is available in the DITA Open Toolkit distribution that comes bundled with the latest version of Oxygen XML Editor, but these instructions show you how you could create it if it were not included.

The following procedure is meant to help you with creating the plugin:

1. Create a folder for your plugin in the DITA OT plugins folder (DITA-OT-DIR/plugins/).
2. Create a plugin.xml file (in the same plugin folder) that contains the extension points of the plugin.

Note: You can easily create this file by using the DITA OT Plugin template that is included in Oxygen XML Editor (from the New document wizard (on page 676) you can find this template in Framework templates > DITA > plugin).

Example: Media Plugin File

```xml
<plugin id="com.oxygenxml.media">
  <feature extension="package.support.name" value="Oxygen XML Editor Support"/>
  <feature extension="package.support.email" value="support@oxygenxml.com"/>
  <feature extension="package.version" value="21.0"/>
  <feature extension="dita.xsl.xhtml" value="xhtmlMedia.xsl" type="file"/>
  <feature extension="dita.xsl.xslfo" value="pdfMedia.xsl" type="file"/>
</plugin>
```

The most important extensions in it are the references to the XSLT stylesheets that will be used to style the HTML and PDF outputs.

You can find other DITA OT plugin extension points here: http://www.dita-ot.org/dev/extension-points/extension-points-by-plugin.html.
3. Create an XSLT stylesheet to customize the output types. In this example, to customize the HTML output, it is necessary to create an XSLT stylesheet called `xhtmlMedia.xsl` (in the same plugin folder).

**Tip:** You can use the Find/Replace in Files action (on page 745) to find an XSLT stylesheet with content that is similar to the desired output and use it as a template to overwrite parts of your stylesheet. For example, suppose you want to overwrite HTML content produced from a DITA `codeblock` element. Since a DITA `object` element has the class attribute value `- topic/object`, you can take part of the class attribute value (`topic/object`) and search the DITA OT resources for a similar stylesheet. The search might find the XSLT stylesheet `DITA-OT-DIR/plugins/org.dita.xhtml/xsl/xslhtml/xsl/xslhtml/dita2htmlImpl.xsl`.

You can use it as a starting point to overwrite the `xhtmlMedia.xsl` stylesheet. For example, the results might be:

```xml
<xsl:template
    match="*[contains(@class, ' topic/object ')]*[contains(@outputclass, 'video')]">
    <video class="embed-responsive-item">
        <xsl:call-template name="commonattributes" />
        <xsl:call-template name="setidaname" />
        <xsl:call-template name="copySource" />
    </video>
</xsl:template>
```

4. Create additional XSLT stylesheets to customize all other desired output types. In this example, to customize the PDF output it is necessary to create an XSLT stylesheet called `pdfMedia.xsl` (in the same plugin folder).

In this case, you might find an appropriate XSLT stylesheet called `DITA-OT-DIR/plugins/org.dita.pdf2/xsl/fo/topic.xsl` to use as a starting point to overwrite the `pdfMedia.xsl` stylesheet, with results looking something like this:

```xml
<!--Treat video, audio or iframe objects as links-->
<xsl:template
    match="*[contains(@class, ' topic/object ')][@outputclass = 'video']">
    <xsl:variable name="target" select="@data" />
    <xsl:variable name="baseDir">
        <xsl:call-template name="substring-before-last">
            <xsl:with-param name="text" select="@xtrf" />
            <xsl:with-param name="delim" select="'/'" />
        </xsl:call-template>
    </xsl:variable>
</xsl:template>
```
5. To install the created plugin in the DITA OT, run the built-in transformation scenario called Run DITA-OT Integrator (on page 1665) by executing it from the Apply Transformation Scenario(s) dialog box (on page 1641). If the integrator is not visible, select the Show all scenarios option that is available in the Settings drop-down menu. For more information, see Installing a DITA-OT Plugin (on page 3256).

Results of running the integrator using the media plugin example:

XSLT content is applied with priority when publishing to both HTML and PDF outputs.

a. For the HTML output, in the XSLT stylesheet DITA-OT-DIR/plugins/org.dita.xhtml/xsl/dita2html-base.xsl, a new import automatically appeared:

```xml
<xsl:import href="../plugins/com.oxygenxml.media/xhtmlMedia.xsl"/>
```

This import is placed after all base imports and thus has a higher priority. For more information about imported template precedence, see: http://www.w3.org/TR/xslt#import.

b. Likewise, for the PDF output, in the top-level stylesheet DITA-OT-DIR/plugins/org.dita.pdf2/xsl/fo/topic2fo_shell_fop.xsl, a new import statement appeared:

```xml
<xsl:import href="../../../com.oxygenxml.media/pdfMedia.xsl"/>
```

Now, you can distribute your plugin folder to anyone that has a DITA OT installation along with some simple installation notes. Your customization will work provided the templates you are overwriting have not changed from one DITA OT distribution to the other.

Related Information:

- DITA Open Toolkit Documentation
Installing a DITA-OT Plugin

Oxygen XML Editor comes bundled with various DITA-OT plugins [on page 3285], but the architecture of the DITA Open Toolkit also allows you to install additional plugins that can be found from various sources (for example, Oxygen’s public GitHub repository includes some DITA-OT plugins).

⚠ Warning: Oxygen XML Editor has only been tested with DITA-OT plugins that come bundled with the product. Be aware that installing additional plugins or modifying the bundled plugins may affect the default functionality of the application.

Installing a DITA-OT Plugin

To install a DITA-OT plugin, following this procedure:

1. Copy the additional plugin to the location of the DITA OT version you are using (by default, DITA-OT-DIR\plugins directory).

   Note: If the plugin is only supported in DITA-OT 3.3.1 version, make sure that you copy the plugin to the [OXYGEN_INSTALL_DIR]/frameworks/dita/DITA-OT3.x directory.

2. Select the Configure Transformation Scenario(s) (on page 1762) action from the DITA Maps Manager toolbar (you could also use the same action on the main toolbar or open the Transformation Scenarios view (on page 1768)).

3. Select the Run DITA-OT Integrator transformation scenario (on page 1665). If the integrator is not visible, select the Show all scenarios option that is available in the Settings drop-down menu.

   Important: The folder where the DITA OT is located needs to have full write access permissions set to it. For example, in Windows, if you are integrating plugins in the DITA OT folder bundled with Oxygen XML Editor and your application is installed in the Program Files folder, you can start the Oxygen XML Editor main executable with administrative rights for the integrator process to be able to modify resources in the DITA OT folder.

4. Apply the scenario (on page 1761).

5. Check the Results panel at the bottom of the application to make sure the build was successful.

Note: Starting with version 17.0, if the DITA-OT plugin declares a transtype (transformation type), Oxygen XML Editor detects that transformation type declaration from the DITA OT plugin and presents descriptions in the DITA Transformation Type dialog box (on page 1702). Oxygen XML Editor also shows the contributed parameters from the plugin in the transformation scenario's Parameters tab (on page 3205).

Tip: You can declare the transformation type and allowed parameters by following the procedure found in: Defining the Transformation Type and Allowed Parameters in a DITA-OT Plugin (on page 3258).
Defining the Transformation Type and Allowed Parameters in a DITA-OT Plugin

Custom DITA-OT plugins may contribute new transformation types (transtypes) and each transtype may have a set of allowed configuration parameters. If a DITA-OT plugin declares a transtype, Oxygen XML Editor detects that transformation type declaration and presents descriptions in the DITA Transformation Type dialog box (on page 1702) and the contributed parameters in the transformation scenario's Parameters tab (on page 3205).

To define a transformation type and its contributed parameters in a DITA-OT plugin, follow this procedure:

1. If you have not already done so, create a DITA-OT plugin.xml file (on page 3252) (you can easily create this file by using the DITA OT Plugin new document template in the New document wizard (on page 676)).
2. In the plugin.xml file, define the transformation type details by using the <transtype> element to specify a name, description, and the transtype it extends.
   ```xml
   <transtype name="xhtml" extends="base-html" desc="HTML">
   </transtype>
   ```
3. Define allowed parameters by using the <param> element to specify the name, description, and information about the default and allowed set of values. For more information, see: https://www.dita-ot.org/3.1/topics/plugin-configfile.html.
   ```xml
   <param name="args.indexshow" desc="Specifies whether to show the index" type="enum">
     <val>yes</val>
     <val default="true">no</val>
   </param>
   ```
Depending on the type declared for a parameter, Oxygen XML Editor will help you pick values for each parameter edited in the Parameters tab of the transformation scenario dialog box. For example, for parameters of type "enum", Oxygen XML Editor will present a combo box for choosing the proper value for the parameter.

4. Extend various extension points in your plugin.xml. For more information, see: https://www.dita-ot.org/3.1/extension-points/plugin-extension-points.html.

5. Install the plugin (on page 3256).

**Note:** If the plugin is installed using an external command line, you may need to restart Oxygen XML Editor to properly re-detect the newly contributed transtypes and parameters.

**Complete plugin.xml example:**

```xml
<plugin id="com.oxygenxml.pdf.prince">
  <!-- extensions -->
  <feature extension="dita.conductor.transtype.check" value="pdf-prince" type="txt"/>
  <feature extension="dita.conductor.target.relative" value="integrator.xml" type="file"/>
  <feature extension="dita.transtype.print" value="pdf-prince"/>
  <transtype name="pdf-prince" extends="commons" desc="PDF (Prince XML)">
    <param name="princeExecPath" type="file" desc="Path to the Prince executable"/>
  </transtype>
</plugin>
```

For more information, watch this DITA-OT Day 2015 presentation:

https://www.youtube.com/embed/LcrR0YUFfQ4

**Built-in Third-Party DITA Open Toolkit Plugins**

The DITA Open Toolkit 3.3.1 distribution that is bundled with Oxygen XML Editor includes some pre-installed third-party open-source plugins (on page 3285) that add extra publishing formats and functionality.

The plugins that come bundled with Oxygen XML Editor include:

- **DITA For Publishers** - These plugins allow DITA content to be published to additional formats, such as EPUB 2.0 and Kindle.
- **DITA to Word** - This plugin allows users to publish DITA content to MS Word.
- **DITA Community** - These plugins allow support for DITA 1.3 with embedded or referenced MathML and SVG images.
Using an External DITA Open Toolkit in Oxygen XML Editor

Oxygen XML Editor comes bundled with a DITA Open Toolkit, located in the `DITA-OT-DIR` directory. Starting with Oxygen XML Editor version 17, if you want to use an external DITA OT for all transformations and validations, you can open the Preferences dialog box (Options > Preferences) (on page 79) and go to the DITA page (on page 224), where you can specify the DITA OT to be used. Otherwise, to use an external DITA Open Toolkit, follow these steps:

1. Edit your transformation scenarios and in the Parameters tab change the value for the `dita.dir` parameter to point to the new directory.
2. To make changes in the libraries that come with the DITA Open Toolkit and are used by the Ant process, go to the Advanced tab, click the Libraries button and deselect Allow Oxygen to add high priority libraries to classpath.
3. If there are also changes in the DTDs and you want to use the new versions for content completion and validation, go to the Document Type Association preferences page (on page 92), edit the DITA and DITA Map document types and modify the catalog entry in the Catalogs tab to point to the custom catalog file `catalog-dita.xml`.

Related Information:

- Editing a Transformation Scenario (on page 1758)
- Creating New Transformation Scenarios (on page 1674)
- DITA Open Toolkit Documentation

DITA Specialization Support

DITA is designed to let you design new markup and new document types that allow any general-purpose DITA processor to process documents that use the new markup. This in turn enables blind interchange of DITA documents from any source. In particular, in the context of a map, you can combine topics of any type and get usable results from any general-purpose DITA processor. Specialization is the one truly unique and distinguishing aspect of DITA. Even if you have no use for any aspect of DITA modularity or reuse, you still have a use for specialization simply because it enables reliable interchange in a way that no other XML application does.

For detailed information and step-by-step tutorials about DITA specializations, see DITA 4 Practitioners: DITA Configuration and Specialization Tutorials.
In addition, the topics in this section contain information about using DITA specializations in Oxygen XML Editor.

Integrating a DITA Specialization

A DITA specialization can have its document type defined with any of the following:

- **DTD** - For configuration and specialization tutorials, see [http://dita4practitioners.github.io/dita-specialization-tutorials/](http://dita4practitioners.github.io/dita-specialization-tutorials/).

- **XSD** - For configuration and specialization tutorials, see [http://dita4practitioners.github.io/dita-specialization-tutorials/](http://dita4practitioners.github.io/dita-specialization-tutorials/).

- **Relax NG** - For more information, see the following presentation: Creating DITA-OT Constraint/Specialization Plugins. For Relax NG coding requirements, see [https://www.oxygenxml.com/dita/1.3/specs/archSpec/base/relax-ng-requirements.html](https://www.oxygenxml.com/dita/1.3/specs/archSpec/base/relax-ng-requirements.html).

A DITA specialization may optionally include specialized processing, that is new XSLT template rules that match the extension part of the `class` attribute values of the new elements, and thus extend the default processing available in the DITA Open Toolkit.

To integrate a DITA specialization into Oxygen XML Editor, use one of the following methods:

**DITA-OT Plugin Method**

If the DITA specialization is available as a DITA Open Toolkit plugin, follow this procedure:

1. Copy the additional `plugin` to the location of the DITA OT version you are using (by default, `DITA-OT-DIR\plugins` directory).

   **Important:** The application needs to have full write access permissions to the DITA OT directory.

2. If Oxygen XML Editor was installed in the default location, you may need to restart and run it as an administrator.

3. Select the 🔄 Configure Transformation Scenario(s) ([on page 1762](#)) action from the DITA Maps Manager toolbar (you could also use the same action on the main toolbar or open the Transformation Scenarios view ([on page 1768](#))).

4. Select the Run DITA-OT Integrator transformation scenario ([on page 1665](#)).

   **Tip:** If you don't see that scenario in the 🔄 Configure Transformation Scenario(s) ([on page 1762](#)) dialog box or Transformation Scenarios view ([on page 1768](#)), click the 📋 Settings button and select the Show all scenarios option, but don't forget to change it back to Show only the scenarios available for the editor after you are finished with this procedure.

5. Apply the scenario ([on page 1761](#)).
6. Check the **Results** panel at the bottom of the application to make sure the build was successful.
7. Restart Oxygen XML Editor with your normal permissions.

**Tip:** Oxygen XML Editor detects new document templates *(on page 683)* contributed by the DITA OT plugin as long as you do the following:

1. Create a new folder called `template_folders` inside the `DITA-OT-DIR\plugins` directory.
2. Create one or more subfolders inside the `template_folders` directory that contain the new document templates. The new document templates found in those subfolders will be available in the **New** document wizard.

### Alternative Methods

If the DITA specialization is not available as a DITA OT plugin, you have the following options:

- If the DTDs that define the extension elements are located in a folder outside the DITA Open Toolkit folder, add new rules to the DITA OT catalog file. These rules are meant for resolving the DTD references from the DITA files that use the specialized elements to that folder. This allows for correct resolution of DTD references to your local DTD files and is needed for both validation and transformation of the **DITA maps** or topics. The DITA OT catalog file is called `catalog-dita.xml` and is located in the root folder of the DITA Open Toolkit.
- If there is specialized processing provided by XSLT stylesheets that override the default stylesheets from DITA OT, these new stylesheets must be called from the DITA OT Ant build scripts.

**Important:** If you are using DITA specialization elements in your DITA files, it is recommended that you activate the **Enable DTD/XML Schema processing in document type detection** option in the **Document Type Association preferences page** *(on page 92).*

- You could create your own document templates *(on page 683)*, store them in a custom directory, then add that directory to the list of template directories that Oxygen XML Editor uses by adding the directory to the list in the **Document Templates Preferences** *(on page 123)* page.

### Related Information:

- DITA Configuration and Specialization Tutorials
Editing DITA Map Specializations

In addition to recognizing the default DITA map (on page 3281) formats (map and bookmap), the DITA Maps Manager view (on page 2990) can also be used to open and edit specializations of DITA maps.

All advanced editing actions available for the map (such as insertion actions or editing properties) allow you to specify the element in an editable combo box. The elements that initially appear in the combo box are all the elements that are allowed to appear at the insert position for the given specialization.

The topic titles rendered in the DITA Maps Manager view (on page 2990) are collected from the target files by matching the class attribute and not a specific element name.

When editing DITA specializations of maps in the main editor, the insertions of topic reference, topic heading, topic group and conref actions should work without modification. For the table actions, you have to modify each action manually to insert the correct element name at the cursor position. You can go to the DITA Map document type from the Document Type Association preferences page (on page 92) and edit the actions to insert the element names as specified in your specialization. See Creating/Extending a Custom Framework (on page 2322) for more details.

Related Information:

- DITA Configuration and Specialization Tutorials
- Integrating a DITA Specialization (on page 3261)

Editing DITA Topic Specializations

In addition to recognizing the default DITA topic formats, topic specializations can also be edited in Author mode.

The content completion should work without additional modifications and you can choose the tags that are allowed at the cursor position.

The CSS styles used for rendering the elements should also work on the specialized topics without additional modifications.

The toolbar/menu actions should be customized to insert the correct element names. You can go to the DITA document type from the Document Type Association preferences page (on page 92) and edit the actions to insert the element names, as specified in your specialization. See Creating/Extending a Custom Framework (on page 2322) for more details.
Translating DITA Projects Overview

This topic contains some general information about translating DITA content and is meant to help those who do not store their DITA projects through a Content Management System (CMS) or other type of service that already includes their own translation support.

Choosing a Translation Agency

To minimize translation costs, it is recommended to choose a translation agency that is able to handle DITA content directly, without requiring you to convert the content to some intermediary format. This means that you benefit from the DITA reusable content features (on page 3121).

If you plan to translate your DITA project, it is also recommended that you contact a DITA-aware translation agency as early in your process as possible because translation agencies who translate DITA content directly usually need to have a preliminary discussion about how your project is structured, which terms need to be skipped when translating, how various measuring units are translated, how content is reused, your metadata strategy, and how screenshots are handled. Those discussions may influence the way that you organize and write your DITA content.

Note: If your translation agency does not directly handle DITA content, there are commercial tools that can be used to convert DITA to XLIFF (for example, https://www.maxprograms.com/products/fluenta.html).

Optimizing Content for Translation

In general, there are three main principles to take into account when writing DITA content that will be translated:

1. Use a controlled vocabulary (for example, the Simplified Technical English vocabulary).
2. Avoid reusing inline elements other than product names. The following DITA Users List discussion describes the reasons for this: https://lists.oasis-open.org/archives/dita/201301/msg00029.html.
3. Avoid profiling/filtering content at inline level, for similar reasons.
General DITA Project Structure

It is usually considered best practice to organize your DITA maps/topics in a separate folder for each language. One folder that contains the English version of all of your DITA resources and a separate folder for each of the other languages you will translate with equivalent DITA resources translated in that specific language.

General Translation Workflow

When translating DITA content, the most common workflow involves these steps:

1. Create your content in the primary language.
2. Before each release, you gather all the DITA files that have been changed and need to be translated. The DITA Translation Package Builder Add-on (on page 2681) could be handy for this.
3. Send a copy of the relevant DITA files to the translation agency (known also as "localization service provider").
4. Receive translated DITA content back from the translation agency and integrate it in each language-specific project folder (on page 3265).

Publishing Translated Content

All of your translated DITA maps and topics should have the xml:lang attribute set with the appropriate value on the root element. Along with the actual translated content, the published output may also contain various static text (such as the word Table followed by the table number, Figure following by the number, or Note appearing before the content of each DITA <note> element). The DITA Open Toolkit includes support for various languages for HTML-based output and PDF-based output. You can also add support for other languages: Globalizing DITA Content: Customizing Generated Text. For information about how to add a new language to the Oxygen WebHelp Responsive output, see Adding a New Language (on page 1975).

Liability

Translation agencies usually do not assume any liability for incorrectly translated content. If possible, it is recommended to have someone who is familiar with the particular language be responsible for reviewing and accepting the translated content. For example, if your company has regional headquarters located in various countries, perhaps someone from each headquarters could review the translated content.

Other Resources

Here are some links to other resources that might help you with translating DITA projects:
Master Files Support in DITA

Oxygen XML Editor includes a feature that allows you to define Master Files (on page 3284) at project level. This feature is typically used in Oxygen XML Editor for XML documents to determine the context for operations such as validation, content completion, refactoring, searches, or displaying components collected from various modules. For DITA projects, this feature has a more limited purpose in Oxygen XML Editor since it is mainly used to provide the means for updating references to moved or renamed resources.

Since you can move or rename DITA resources (such as topics and maps) in the DITA Maps Manager (on page 2990), the root map (on page 3287) is used as the scope to update all the references to the moved or renamed resources. However, you do not have this option for non-DITA resources (such as folders, images, HTML files, audio, video, text files, Markdown documents) since they do not appear in the DITA Maps Manager. Also, when moving DITA resources in the DITA Maps Manager, you have to do it one at a time.

You can use the Master Files support in DITA to update all the references to moved or renamed resources in the scope of the Master Files, and since the root map (on page 3287) will be set as the Master File, you achieve the same result as if you were moving or renaming them in the DITA Maps Manager. It also allows you to move multiple DITA resources (or entire folders) at once in the Project view (on page 333), instead of the DITA Maps Manager, while still giving you the option of updating all the references.

How to Enable Master Files Support in DITA

To use the Master Files support in DITA, follow these steps:

1. Go to the Project view (on page 333) and enable Master Files support with one of the following methods:
   - Select Enable Master Files Support from the ☰ Settings menu in the top-right corner.
   - Select Enable Master Files Support from the contextual menu of the project root folder. If a disabled Master Files folder exists, you can also select that option from its contextual menu.
   - Click the Enable button in the tooltip located at the bottom. This tooltip window is displayed when the Master Files support is disabled. Clicking the Read more link takes you to the user guide. Clicking the Enable button opens the Enable Master Files dialog box. This dialog box contains general information about the Master Files Support and allows you to enable it.
Warning: Once you close this window tip, Oxygen XML Editor hides it for all projects. You can make the window tip reappear by resetting Oxygen XML Editor to its default settings (on page 268). However, doing so will result in you losing your customized options.

2. Add the main DITA map (root map) (on page 3287) to the Master Files folder by doing one of the following:
   - Right-click the project root folder and select Detect Master Files.
   - Right-click the Master Files folder and select Detect Master Files from Project.
   - If you enabled the Master Files support from the tooltip at the bottom of the Project view, you can also use the Detect and Enable button in the resulting dialog box to detect the master files from the current project.
   - Manually add the root map (on page 3287) to the Master Files folder by doing one of the following:
     - Right-click a file from your project and select Add to Master Files from the contextual menu (or simply drag and drop it into the Master Files folder).
     - Select Add Files or Add Edited File from the contextual menu of the Master Files folder.

Tip: You can set multiple maps in the Master Files folder and all of them will automatically be added to the list of root maps you can select from the drop-down menu in the DITA Maps Manager toolbar (on page 2995).

Moving or Renaming Non-DITA Resources and Updating the References to Them

With the Master Files support enabled, you can move or rename non-DITA resources (such as folders, images, HTML files, audio, video, text files, Markdown documents) or move multiple normal DITA resources (or entire folders) in the Project view (on page 333) and Oxygen XML Editor will offer the option of updating all the references to the moved or renamed resources in the scope of the Master Files (in this case, the main DITA map (root map) (on page 3287)).

To move or rename non-DITA resources (or move multiple DITA resources) and update the references to them, follow these steps:

1. Enable Master Files support and add your root DITA map (on page 3287) to the Master Files folder as described in the How to Enable Master Files Support in DITA (on page 3266) section above.
2. Go to the Project view (on page 333), and use one of the following methods to move or rename the resources:

   Moving Resources

   To move resources in the Project view (on page 333), do one of the following:
• Simply drag and drop the resource to the new location in the tree structure (the Enable drag-and-drop in Project view option must be selected in the View preferences page (on page 259)).
• Use the Cut, Copy, and Paste actions from the contextual menu.
• Right-click the resource and select Refactoring > Move resource action from the contextual menu. Note that this method also allows you to specify a new name and destination path in the Move resource dialog box.

Result: In all cases, a Move resource dialog box will be presented.

Renaming Resources

To rename resources in the Project view (on page 333), do one of the following:
• Select the resource and press F2, or simply left-click again, until the in-place editor allows you to change the file name.
• Right-click the resource and select Rename or Refactoring > Rename resource.

Result: In all cases, a Rename resource dialog box will be presented.

3. Make sure the Update references of the moved resource(s) option is selected in the resulting Move or Rename dialog box and keep the scope as master files to make sure all the references to the moved or renamed resource are updated.

DITA Resource Hierarchy/Dependencies View

The Resource Hierarchy/Dependencies view displays the hierarchy or dependencies for an XML document. For DITA resources, it will only show direct references, so resources that are indirectly referenced through keys are not presented in the hierarchy or dependencies tree.

To see the hierarchy or dependencies for a DITA resource (maps or topics), right-click a resource in the Project view (on page 333) and either select Resource Hierarchy or Resource Dependencies.

If you want to view the dependencies for a media resource (such as images) directly referenced in a DITA topic, click the Show Dependencies button on the toolbar of the Resource Hierarchy/Dependencies view, select the All files filter in the file browser, find the particular resource, and double-click it.

Figure 913. Resource Hierarchy/Dependencies View
The following actions are available on the toolbar of the Resource Hierarchy/Dependencies view:

- **Refresh**
  Refreshes the Hierarchy/Dependencies structure.

- **Stop**
  Stops the hierarchy/dependencies from computing.

- **Show Hierarchy**
  Compute the hierarchy structure.

- **Show Dependencies**
  Compute the dependencies structure.

- **Configure dependencies search scope**
  Allows you to configure a scope to compute the dependencies structure. You can restrict the scope to the current project or to one or multiple working sets (on page 3288). If the Use only Master Files, if enabled checkbox is selected, the scope of the search is restricted to the Master Files directory (on page 3266).

- **History**
  Provides access to the list of previously computed dependencies. Use the Clear history button to remove all items from this list.

The contextual menu for a resource listed in the Resource Hierarchy/Dependencies view contains the following actions:

- **Open**
Opens the resource. You can also double-click a resource in the Hierarchy/Dependencies structure to open it.

**Go to reference**

Opens the source document where the resource is referenced.

**Copy location**

Copies the location of the resource.

**Move resource**

Opens the **Move resource** dialog box where the following fields are available:

- **Destination** - Presents the path to the current location of the resource you want to move and gives you the option to introduce a new location.
- **New name** - Presents the current name of the moved resource and gives you the option to change it.
- **Update references of the moved resource(s)** - As long as **Master Files support is enabled** *(on page 3266)*, you can select this option to update the references to the resource you are moving, in accordance with the new location and name. A **Preview** option is available that allows you to see what will be updated before selecting **Move** to process the operation.

**Rename resource**

Opens the **Rename resource** dialog box where the following fields are available:

- **New name** - Presents the current name of the edited resource and allows you to modify it.
- **Update references of the renamed resource(s)** - As long as **Master Files support is enabled** *(on page 3266)*, you can select this option to update the references to the resource you are renaming. A **Preview** option is available that allows you to see what will be updated before selecting **Rename** to process the operation.

**Show Resource Hierarchy**

Shows the hierarchy for the selected resource.

**Show Resource Dependencies**

Shows the dependencies for the selected resource.

**Add to Master Files**

Adds the currently selected resource in the **Master Files** directory.

**Expand All**
Expands all the children of the selected resource from the Hierarchy/Dependencies structure.

**Collapse All**

Collapses all children of the selected resource from the Hierarchy/Dependencies structure.

ℹ️ Tip: When a recursive reference is encountered in the Hierarchy view, the reference is marked with a special icon 🟢.

**Metadata**

Metadata is a broad concept that describes data that explains or identifies other data. Metadata can be used for many purposes, from driving automation of document builds to enabling authors and readers to find content more easily. DITA provides numerous types of metadata, each of which is used and created differently. Some of the most important forms of metadata in DITA are topic and taxonomy.

**Topic Metadata**

Topic metadata describes the topic and what it is about. Topic metadata can be inserted in the `prolog` element of a topic or inside the `topicref` element that points to a topic from a map. In other words, metadata about the topic can be asserted by the topic itself, or can be assigned to it by the map that includes it in the build. This allows multiple maps to assign different metadata to the same topic. This may be appropriate when you want to describe a topic differently in various documents.

**Taxonomy and Subject Scheme**

A taxonomy is a controlled vocabulary. It can be used to standardize how many things in your content and metadata are named. This consistency in naming can help ensure that automated processes work correctly, and that consistent terminology is used in content, and in metadata. In DITA, taxonomies are created using `subject scheme maps (on page 3288)`. When you are authoring, many of the values you choose from have been defined in `subject scheme maps`.

**Migrating MS Office Documents to DITA**

Oxygen XML Editor integrates the entire DITA for Publishers plugins suite and provides some possibilities for migrating content from Microsoft Office® (and other Office-type formats) to DITA. There are also possibilities for migrating various other types of formats. For more information, see Migrating Various Document Formats to DITA (on page 3274).
Migration from Office-type formats to XML is rarely perfect and manual changes may need to be made to the converted content, but the methods described below should help you find the best approach for your particular case.

**Method 1 (Single Document)**

1. Open the document in MS Office (or other similar application), select all the content, and copy it.
2. Open Oxygen XML Editor and create a new DITA topic.
3. Paste the selected content in Author mode. The *Smart Paste functionality (on page 918)* will attempt to convert the content to DITA.

**Method 2 (Single Document)**

1. Save your document as HTML.
2. Once you have converted it to HTML, you have several possibilities:
   - In Oxygen XML Editor, select **File > Import > HTML File** to import it as XHTML. Then, open the XHTML in Oxygen XML Editor and use one of the **XHTML to DITA Transformation Scenarios (on page 1605)** to convert the content to DITA.
   - Open the HTML file in any Web browser, select all of its content, and copy it. Then, open Oxygen XML Editor, create a new **DITA topic** and paste the selected content in Author mode. The *Smart Paste functionality (on page 918)* will attempt to convert the HTML content to DITA.

**Method 3 (Single Document)**

1. Open the document in the free *LibreOffice* application and save it as **DocBook**.
2. Open the **DocBook** document in Oxygen XML Editor.
3. Run the built-in transformation scenario called **DocBook to DITA (on page 1671)**.
4. You may need to make some manual adjustments for elements that couldn't be mapped.

**Method 4 (Single Document)**

1. Save the document in the MS Word DOCX format.
2. Open it in the **Archive Browser view (on page 2191)** in Oxygen XML Editor and then open the **document.xml** file contained in the archive.
3. Run the built-in transformation scenario (on page 3195) called **DOCX DITA**. This scenario runs a build file over the DOCX archive and should produce a DITA project that contains a **DITA map** and multiple topics.
4. You may need to do some manual reconfiguration to map DOCX styles to DITA content.
Method 5 (Multiple Documents)

1. Use a tool to convert the documents to **DocBook**. For example, *Pandoc* is a free document converter engine that can convert **DOCX** documents to **DocBook** and according to *Pandoc’s manual*, you can specify multiple input files and use wildcards in the commands.
2. Save the newly converted **DocBook** documents somewhere in your project.
3. Perform a **batch transformation** *(on page 1767)* on all the newly converted **DocBook** documents:
   a. Select all the **DocBook** documents in the **Project view** *(on page 333)*.
   b. Right-click the selected files and choose **Transform > Configure Transformation Scenario(s)**.
   c. Apply the built-in transformation scenario called **DocBook to DITA** *(on page 1671)*.
4. You may need to make some manual adjustments in the resulting documents for elements that couldn't be mapped.

Method 6 (Multiple Documents)

1. Use a tool to convert the documents to **HTML** or **Markdown**. For example, *Pandoc* is a free document converter engine that can convert **DOCX** documents to those formats.
2. Use **Oxygen’s Batch Converter add-on** *(on page 2677)* to convert the documents to **DITA**.
3. You may need to make some manual adjustments in the resulting documents for elements that couldn't be mapped.

Migrating Excel and Other Types of Spreadsheets to DITA

There are two possibilities for converting Microsoft Excel (or other similar types of documents) to DITA:

- Copy the spreadsheet content and paste it in an opened DITA topic in **Author** mode. The **Smart Paste functionality** *(on page 918)* will attempt to convert the content to DITA.
- Use **Oxygen’s Batch Converter add-on** *(on page 2677)* to convert one or more spreadsheet documents to **DITA**.

Related Information:

- Migrating Various Document Formats to DITA *(on page 3274)*
- Smart Paste Mechanism *(on page 918)***
Migrating Various Document Formats to DITA

When organizations decide to use DITA for structuring, developing, managing, or publishing content, they usually already have content written in other formats and need to convert it to DITA. There are a variety of possibilities for a conversion to DITA, depending on the original format of the content.

Migration from other formats to DITA is rarely perfect and manual changes may need to be made to the converted content, but the methods described below should help you find the best approach for your particular case.

Migrating Microsoft Office and Other Similar Types of Documents to DITA

There are various possibilities for migrating content from Microsoft Office® (and other Office-type formats) to DITA. For details, see Migrating MS Office Documents to DITA (on page 3271).

Migrating DocBook Content to DITA.

Since DocBook content is already in XML format, migrating it to DITA is more straightforward than with other non-XML formats:

1. Convert the DocBook content to a single large DITA composite file by performing a batch transformation (on page 1767) on all the DocBook documents:
   a. Select all the DocBook documents in the Project view (on page 333).
   b. Right-click the selected files and choose Transform > Configure Transformation Scenario(s).
   c. Apply the built-in transformation scenario called DocBook to DITA (on page 1671).
2. You may need to make some manual adjustments in the resulting documents for elements that couldn't be mapped.

Tip: There is also a utility XSLT stylesheet available on the Oxygen XML GitHub account that can be used convert a DITA composite file to a DITA map with separate DITA topic files. It can be found here: https://github.com/oxygenxml/old-userguide-docbookbased/blob/master/split-DITA-topic.xsl.
Migrating Google Docs to DITA

There are several possibilities to convert Google Docs to DITA:

- Copy the content from Google Docs and paste it in an opened DITA topic in Author mode. The Smart Paste functionality (on page 918) will attempt to convert the content to DITA.
- Save the Google document as OpenDocumentFormat (ODF), then open it in the free LibreOffice application and save it as DocBook. Next, open the DocBook document in Oxygen XML Editor and run the built-in transformation scenario called DocBook to DITA (on page 1671).
- If you want to convert multiple Google documents at once, save the documents as HTML, then use Oxygen's Batch Converter add-on (on page 2677) to convert the documents to DITA.

In all cases, you may need to make some manual adjustments in the resulting documents for elements that couldn't be mapped.

Migrating Markdown Content to DITA

There are several possibilities to convert Markdown content to DITA:

- The DITA Open Toolkit publishing engine bundled with Oxygen XML Editor allows you to reference Markdown files directly in a DITA map and either publish them directly or export the Markdown files to DITA one by one. For details, see Working with Markdown Documents in DITA (on page 1520).
- If you want to convert multiple Markdown files at once, you can use Oxygen's Batch Converter add-on (on page 2677) to convert the documents to DITA.

Migrating HTML Content to DITA

There are several possibilities to convert HTML content to DITA:

- Copy the HTML content and paste it in an opened DITA topic in Author mode. The Smart Paste functionality (on page 918) will attempt to convert the content to DITA.
- Convert the HTML file to XHTML by selecting File > Import > HTML File. Then, open the XHTML file and use one of the XHTML to DITA Transformation Scenarios (on page 1605) to convert the content to DITA.
- If you want to convert multiple HTML files at once, you can use Oxygen's Batch Converter add-on (on page 2677) to convert the documents to DITA.
Migrating Unstructured FrameMaker to DITA

There is a FrameMaker plugin that can be used for this type of conversion: http://leximation.com/tools/info/fm2dita.php.

Migrating MadCap Content to DITA

Some recent MadCap versions seem to have facilities to export content directly to DITA. Otherwise, you will need to convert XHTML content to DITA with a custom XSLT stylesheet to preserve variable references.

Migrating Other Formats to DITA

You may find third-party applications (such as Pandoc) that can convert your content to HTML or to some kind of XML format like DocBook. Once you have HTML or DocBook content, you can convert them to DITA using one of the methods described above.

DITA 1.3 Support

Starting with version 17.1, Oxygen XML Editor includes support for some DITA 1.3 features.

The Oxygen XML Editor publication of the full DITA 1.3 specifications can be found at https://www.oxygenxml.com/dita/1.3/specs/index.html#introduction/dita-release-overview.html.

The following table is a list of DITA 1.3 features and their implementation status in Oxygen XML Editor:

Table 81. DITA 1.3 Features Implementation Status

<table>
<thead>
<tr>
<th>Feature</th>
<th>Editing</th>
<th>Publishing [DITA Open Toolkit 3.3.1 is used]</th>
</tr>
</thead>
<tbody>
<tr>
<td>DITA 1.3 DTD, XML Schema, and Relax NG-based maps/topics/tasks/references, etc.</td>
<td>New DITA 1.3 document templates. By default, DITA topics and maps that do not specify version in the DOCTYPE declaration are also considered to be DITA 1.3</td>
<td>N/A</td>
</tr>
<tr>
<td>Feature</td>
<td>Editing</td>
<td>Publishing [DITA Open Toolkit 3.3.1 is used]</td>
</tr>
<tr>
<td>----------------------------------------------</td>
<td>------------------------------</td>
<td>---------------------------------------------</td>
</tr>
<tr>
<td>Learning Object and Group maps</td>
<td>New document templates</td>
<td>No specific support implemented</td>
</tr>
<tr>
<td>Troubleshooting specialization</td>
<td>Create and edit new troubleshooting topics</td>
<td>No specific support implemented</td>
</tr>
<tr>
<td>XML markup domain</td>
<td>Validation and Content Completion</td>
<td>Special rendering in PDF and XHTML-based outputs</td>
</tr>
<tr>
<td>Equation and MathML domain</td>
<td>Validation and content completion</td>
<td>Special rendering in PDF and XHTML-based outputs</td>
</tr>
<tr>
<td>SVG domain</td>
<td>Validation and content completion</td>
<td>Special rendering in PDF and XHTML-based outputs</td>
</tr>
<tr>
<td>Other new DITA 1.3 elements (div, strike-through, overline, etc)</td>
<td>Validation and Content Completion</td>
<td>Special rendering in PDF and XHTML-based outputs</td>
</tr>
<tr>
<td>Release management domain</td>
<td>Validation and Content Completion</td>
<td>No specific support implemented</td>
</tr>
<tr>
<td>Scoped keys (on page 3151)</td>
<td>Define key scopes</td>
<td>Partially implemented (Various issues may still be encountered)</td>
</tr>
<tr>
<td>Branched filtering (on page 3152)</td>
<td>Display, create, and edit ditavalref elements</td>
<td>Partially implemented (Various issues may still be encountered)</td>
</tr>
<tr>
<td>Key-based cross deliverable addressing</td>
<td>Special display for references to DITA maps with scope=&quot;peer&quot; and a defined keyscope</td>
<td>Not implemented.</td>
</tr>
<tr>
<td>Feature</td>
<td>Editing</td>
<td>Publishing [DITA Open Toolkit 3.3.1 is used]</td>
</tr>
<tr>
<td>------------------------------------------------------------------------</td>
<td>--------------------------------------------------------</td>
<td>---------------------------------------------</td>
</tr>
<tr>
<td>Shorthand to address syntax that identifies elements in the same topic</td>
<td>Properly resolved for validation, links, and conrefs</td>
<td>Implemented</td>
</tr>
<tr>
<td>Various table attributes (orientation, rotation, scope, and headers on cells)</td>
<td>Not implemented in the Table Properties action support. However, attributes can be changed from the Attributes view</td>
<td>Not implemented</td>
</tr>
<tr>
<td>New Map topicref attributes (cascade, deliveryTarget)</td>
<td>Allow setting new attributes, propose proper values for them</td>
<td>Implemented</td>
</tr>
</tbody>
</table>

**Related Information:**

- Watch our DITA 1.3 video tutorial for more information about key scopes and branch filtering.
Active Cell

Active cell refers to the selected cell where data is entered when you begin typing. Only one cell is active at a time. The active cell is bounded by a heavy border.

Alternate CSS Style

The Alternate CSS Style refers to the choices in the bottom half of Styles drop-down menu (on the toolbar) that makes it easy to apply style changes to your documents as they appear in Author mode and the output without having to edit the CSS stylesheets. By default, the alternate styles are applied like layers, they are merged sequentially with the main CSS style (on page 3284), and you can activate any number of them. However, if you deselect the Enable multiple selection of alternate CSSs option (on page 101) in the CSS subtab of the Document Type configuration dialog box (on page 95), the alternate styles are treated like main CSS styles (on page 3284) and you can only select one at a time.

For more information, see Configuring and Managing Multiple CSS Styles for a Framework (on page 2348).

Anchor

An Anchor is used in various types of links to take the user to a specific location within the target document. It is designated in a URL or in the value of the href attribute with a # symbol followed by the anchor that is defined in a target ID (for example href="MyTopic.dita#anchor").

Apache Ant

Apache Ant (Another Neat Tool) is a software tool for automating software build processes.
Block Element

A *block element* is intended to be visually separated from its siblings, usually vertically. For instance, paragraphs and list items are *block elements*. It is distinct from a *inline element*, which has no such separation.

Bookmap

A *bookmap* is a specialized *DITA map* used for creating books. A *bookmap* supports book divisions such as chapters and book lists such as indexes.

Callout

A *callout* is a string of text inside a graphic and is connected to a specific location in a document by a line. Oxygen XML Editor uses callouts to present comments and other types of review modifications.

Canonicalize

To *canonicalize* something means to convert it to a standard format that everyone generally uses. When using the term with regard to XML, it refers to the process of converting data that has more than one possible representations into a standardization that conforms to the specification of an XML document or document subset. It is helpful for applications that require the ability to test whether or not the content of an XML document or subset has been changed.

Content Completion Assistant

The *Content Completion Assistant* refers to a very helpful mechanism in Oxygen XML Editor that offers a list of proposed items that could be inserted at the current location, depending on the current context, editing mode, and type of document. It also tries to determine the most logical choice in the current editing context and displays that proposal at the beginning of the list.

For more information about this feature and how to invoke it, depending on your editing context, see the following:

- Content Completion Assistant in Author Mode *(on page 921)*
- Content Completion Assistant in Text Mode *(on page 844)*
- Content Completion Assistant in Grid Mode *(on page 891)*
- Content Completion in XSLT Stylesheets *(on page 1190)*
- Content Completion in Ant Build Files *(on page 1238)*
- Content Completion in XML Schema *(on page 1288)*
• Content Completion in XQuery (on page 1338)
• Content Completion Assistance in WSDL Documents (on page 1356)
• Content Completion in CSS Stylesheets (on page 1382)
• Content Completion in LESS Stylesheets (on page 1387)
• Content Completion in Relax NG Schemas (on page 1395)
• Content Completion in NVDL Schemas (on page 1412)
• Content Completion in JavaScript Documents (on page 1457)
• Content Completion in Schematron Documents (on page 1467)
• Content Completion in SQF (on page 1495)

Dockable

A Dockable window is one that can be moved and resized, and either floated or pinned to a location, allowing you to configure the workspace according to your preferences.

Document Fragment

A document fragment represents a portion of an XML document’s tree of nodes or content.

Document Type Association

In general terms, a Document Type Association is a set of rules that associate a document type with a framework (on page 3282). In Oxygen XML Editor, Document Type Association also specifically refers to a preferences page (on page 92) where you can create new custom frameworks or edit existing ones. Note that frameworks (document types) that come built-in with Oxygen XML Editor are read-only, but you can Extend (on page 93) or Duplicate (on page 93) them to configure them as custom frameworks.

DITA Map

A DITA map is a component of the DITA framework (on page 3282) that provides the means for a hierarchical collection of DITA topics that can be processed to form an output. Maps do not contain the content of topics, but only references to them. These are known as topic references. Usually the maps are saved on disk or in a CMS with the extension .ditamap.

Maps can also contain relationship tables that establish relationships between the topics contained within the map. Relationship tables are also used to generate links in your published document.

You can use your map or bookmark (on page 3280) to generate a deliverable using an output type such as XHTML, PDF, HTML Help, or Eclipse Help.
DITA Open Toolkit

**DITA Open Toolkit** is an open-source publishing engine for content authored in the Darwin Information Typing Architecture. It is a vendor-independent, open-source implementation of the DITA standard, released under the Apache License, Version 2.0.

The toolkit supports all versions of the OASIS DITA specification, including 1.0, 1.1, 1.2, and 1.3.

### DITA-OT

**Related Information:**

### DITA-OT-DIR

**DITA_OT_DIR** refers to the default directory that is specified for your DITA Open Toolkit distribution in the **Options > Preferences > DITA preferences page** *(on page 225).*

For example, if you are using DITA OT 3.3.1 that comes bundled with Oxygen XML Editor, the default directory is: `{OXYGEN_INSTALL_DIR}/frameworks/dita/DITA-OT3.x`. You can also specify a custom directory.

### Foldable Element

A **foldable element** refers to elements that can be collapsed and expanded in Oxygen XML Editor. Foldable elements are marked with a small triangle (`,` `)` on the left side of the editor panel and you can use that triangle to quickly collapse or expand them. This feature is helpful when you are working with large documents and you want to temporarily hide blocks of content. You can right-click the triangle to access additional collapse and expand actions (**Collapse Other Folds**, **Collapse Child Folds**, **Expand Child Folds**, **Expand All**).

### Framework

A **framework** refers to a package that contains resources and configuration information to provide ready-to-use support for an XML vocabulary or document type. A framework is associated to an XML document type according to a set of rules. It also includes a variety of settings that improve editing capabilities for its particular file type. Oxygen XML Editor includes a **Document Type Configuration**
**Dialog Box (on page 95)** that allows you to define the set of rules and customize various authoring mechanisms for new or existing *frameworks*.

For advanced details about customizing your own *framework*, see the *Creating and Configuring Custom Frameworks (on page 2322)* section.

### Global Options

**Global Options** refers to the *storage option (on page 265)* in the Oxygen XML Editor preference pages (Options > Preferences). If you select **Global Options (on page 265)**, the options in that particular preferences page are stored locally on your computer and are not accessible to other users (unless you *export them into an XML options file (on page 267)* that can then be shared).

### IDML

**IDML** is an abbreviation for Adobe InDesign Markup files.

### Inline Element

An *inline element* is intended to be displayed in the same line of text as its siblings or the surrounding text. For instance, strong and emphasis in HTML are *inline elements*. It is distinct from a *block element*, which is visually separated from its siblings.

### Java Archive

**Java Archive (JAR)** is an archive file format. *JAR* files are built on the ZIP file format and have the `.jar` file extension. Computer users can create or extract *JAR* files using the `jar` command or an archive tool.

### Key Space

The concept of a *Key Space* in DITA refers to a set of all possible keys that can be used in a *DITA map* structure. A *Key Space* is established when a *root map (on page 3287)* defines a set of effective key bindings. When Oxygen XML Editor processes key references, it determines the effective binding of a given key to a resource in the context of the *specified root map (on page 3007)*.

### Keystore

A *Keystore* is an encrypted file that contains private keys and certificates. There are two types of *keystores* that are supported in Oxygen XML Editor:
- Java Key Store (JKS)
- Public-Key Cryptography Standards version 12 (PKCS-12)

Main CSS Style

The **Main CSS Style** refers to the selection in the top half of the **Styles** drop-down menu (on the toolbar) that makes it easy to quickly change the look of your documents as they appear in **Author** mode and the output without having to edit the CSS stylesheets. The main CSS applies to the whole document and you can also select one or more alternate styles (on page 3279) (listed in the bottom half of the drop-down menu) that behave like layers and are merged sequentially with the main CSS style.

For more information, see Configuring and Managing Multiple CSS Styles for a Framework (on page 2348).

Master File

A **Master File** typically refers to the root of an imported or included tree of modules and this support helps you simplify the configuration and development of XML projects. For more information, see the Master Files Support (on page 726) section.

Named User

**Named User** is defined as an individual full or part-time employee who is authorized by **You** (the individual or entity who owns the rights for Oxygen XML Editor) to use the software regardless of whether or not the individual is actively using the software at any given time. To avoid any doubt, **Named User** licenses cannot be shared among multiple individuals and separate **Named User** licenses must be purchased for each individual user.

A **Named User** license may not be reassigned to another employee except in the following circumstances:

- (a) Upon termination of the **Named User’s** employment with your company.
- (b) Permanent reassignment of a **Named User** to a position that does not involve the use of the Software.

For example, suppose Jane has been assigned an **Oxygen** license and she leaves your company. When she leaves, you can simply reassign her license to John, her replacement. In the event that you do reassign the **Named User** license in accordance with the restrictions above, you do not need to notify Syncro of such a reassignment.
**Note:** This definition is taken from the Oxygen XML Editor End User License Agreement.

### Oxygen Publishing Template

*Oxygen Publishing Template* defines all the aspects related with the **look and feel**(*layout and styles*) for the *WebHelp Responsive* output.

The template is self-contained and packed as a ZIP archive making it easy to share with others. It represents the main method for customizing the *WebHelp Responsive* output.

**Related Information:**

- Publishing Template Package Contents for WebHelp Responsive Customizations *(on page 1895)*

### Perspective

In Oxygen XML Editor, a *perspective* refers to an interface layout geared towards a specific editing environment. Each *perspective* includes a unique set of interface objects, toolbars, views, and features. You can change the *perspective* by selecting the respective icon (▲ ▼) in the top-right corner of Oxygen XML Editor or by selecting the *perspective* from the *Window > Open Perspective* menu.

The *perspectives* that are available in Oxygen XML Editor are:

- ▲ **Editor** *(on page 295)* - The most commonly used *perspective* and it is used to edit XML documents.
- ▶ **XSLT Debugger** *(on page 297)* - Used to detect problems in an XSLT transformation by executing the process step by step in a controlled environment.
- ▶ **XQuery Debugger** *(on page 299)* - Used to detect problems in an XQuery transformation process by executing the process step by step in a controlled environment
- ▼ **Database** *(on page 300)* - Used to browse and manage databases.

### Plugin

A *plugin* (also referred to as *add-on* or *extension*) is a component that adds specific features to an existing application. Oxygen XML Editor supports *plugins* to enable numerous customizations.
For more information, see the following topics:

- Installing and Updating Add-ons *(on page 75)*
- Automatic and Manual Methods for Installing Plugins *(on page 2582)*
- Packing and Deploying Plugins as Add-ons *(on page 2612)*
- Add-ons Preferences *(on page 92)*
- Extending Oxygen XML Editor with Plugins *(on page 2580)*
- General Configuration of an Oxygen XML Editor Plugin *(on page 2580)*

Pretty-Print

Pretty-print refers to formatting and indenting the source code in Text mode to make the content easier to view and analyze. The formatting actions that are available in Oxygen XML Editor include:

- **Format and Indent Element** - Available in the Source submenu of the contextual menu for the current element.
- **Format and Indent** - Available on the toolbar for the entire currently opened document.
- **Format and Indent Files** - Available in the contextual menu of the Project view *(on page 333)* for one or more selected files.

Project Options

Project Options refers to the storage option *(on page 265)* in the Oxygen XML Editor preference pages *(Options > Preferences)*. If you select Project Options *(on page 266)*, the options in that particular preferences page are stored at project level in the project file (*.xpr*), which can easily be shared with other users *(on page 266)*.

QName

QName stands for "qualified name" and defines a valid identifier for elements and attributes. QNames are used as URI references to reference particular elements or attributes within XML documents.

Quick Assist

The Quick Assist feature gives you easy access to some of the most commonly used actions for the specific type of document you are editing. If one or more actions are available in the current context, they are accessible via a yellow bulb help (🔍) placed at the current line in the stripe on the left side of the editor in Text mode. You can also invoke the quick assist menu by using the **Alt + 1** (**Meta + Alt + 1** on Mac OS X) keyboard shortcuts.
Quick Fix

The Quick Fix support in Oxygen XML Editor helps you resolve errors that appear in an XML document by offering proposals to fix problems such as missing required attributes or invalid elements. Quick Fixes are available in Text mode and Author mode and they can be presented and activated in several ways.

- When hovering over an area of text where a validation error or warning occurs, the Quick Fix proposals can be presented as links in a tooltip pop-up window.
- When hovering over an error or warning in Author mode, the Quick Fix proposals are presented in a small drop-down menu.
- If you place the cursor in the highlighted area where a validation error or warning occurs, a Quick Fix icon (👋) is displayed in the stripe on the left side of the editor. Clicking that icon will allow you to select from the available proposals.
- If you place the cursor in the highlighted area where a validation error or warning occurs, you can also access the Quick Fix menu by pressing Alt + 1 (Command + Alt + 1 on OS X) on your keyboard.

Oxygen XML Editor also provides support for defining and customizing a library of Quick Fixes using the Schematron language (on page 1482).

Root Map

A Root Map (or master map) specifies a DITA map (on page 3281) that defines a hierarchical structure of submaps that are contained within the root map. Essentially, the root map defines a scope and provides the mechanism to allow your defined keys to be propagated throughout the entire map structure (this mechanism is also known as a key space (on page 3283)).

In Oxygen XML Editor, the DITA Maps Manager includes an option on its toolbar where you can easily specify the root map (on page 2995), but there are also several other ways to select or change the root map (on page 3007).

Space-Preserved Element

A spaced-preserved element refers to elements that require white spaces and line endings to be preserved (for example, DITA codeblock and pre elements).
Subject Scheme Map

A **Subject Scheme Map** allows you to create custom controlled attribute values and to manage metadata. *Subject scheme maps* use a key definition to define a collection of controlled values rather than a collection of topics. The highest level of map that uses the set of controlled values must reference the *subject scheme map* in which those controlled values are defined.

A controlled value is a keyword that can be used as a value in a metadata attribute. For example, the `@audience` metadata attribute may take a value that identifies the user group associated with a particular content unit (for medical equipment, that might include *therapist*, *oncologist*, *surgeon*, *radiologist*, and so on). In a *subject scheme map*, you can define a list of these audience values and you can then use these values to profile your content. For more information, see *Customizing Profiling Values with a Subject Scheme Map* *(on page 3243)*.

Track Changes

The **Track Changes** feature allows you to review changes that you or other authors have made and then accept or reject them. You can also manage the visualization mode of the tracked changes, add comments to changes, and mark them as being done. These actions are easily accessible from contextual menus, the toolbar, or the **Review** view *(on page 964)*.

For more information about this feature, see *Managing Tracked Changes* *(on page 943)*.

WebHelp Output Directory

**WebHelp_OUTPUT_DIR** refers to the output directory where WebHelp transformation files will be generated.

The output directory can be specified using the **Output Directory** text field in the **Output** tab of the transformation scenario dialog box.

When running the WebHelp transformation from a command line, the output directory can be specified using the `-o` or `--output` option.

Working Set

A **Working Set** refers to a set of files that will be used for the scope of search and refactoring operations. Many of the search and refactoring wizards include a step where you can specify the
scope for the operation and you can choose one or more working sets to restrict the scope to that specified set of files.

XML Catalog

An XML Catalog maps a system ID or a URI reference for a resource (stored either remotely or locally) to a local copy of the same resource. Whenever XML processing relies on external resources (such as referenced schemas and stylesheets), the use of an XML Catalog becomes a necessity when Internet access is not available or the connection is slow.

Oxygen XML Editor includes default global catalogs as well as default catalogs for each of the built-in frameworks (on page 3282), and you can also create your own. Oxygen XML Editor uses these XML Catalogs to resolve references for document validation and transformations. For more information, see Working with XML Catalogs (on page 1123).
Index

Add fonts to built-in FO processor 1739, 1740
Add hyphenation libraries to built-in DITA-OT FO processor 2178
Add hyphenation libraries to built-in FO processor 1741
Add PDF image support to built-in DITA-OT FO processor 2178
Add PDF image support to built-in FO processor 1741
Add Schematron Quick Fix 1482
Add-on preferences 92
Add-ons
  Batch converter 2677
  CGM image support 2678
  Check for add-on updates 75
  Content Fusion Connector 2679
  DITA OT 3.x publishing engine 2681
  DITA prolog updater 2680
  DocBook checker 2682
  Embed images 2682
  Excel XLSX libraries 2683
  Git support
  ICU4J library 2684
  Install new add-ons 75
  Manage add-ons 75
  PDF image support 2684
  Saxon XSLT and XQuery transformer 2685
  Translation package builder 2681
  XSpec Helper View 2685
  Adding custom views 2586
  Adding media resources in Author Mode 596, 1055
  Additional Framework plugin extension 2591
  Additional languages plugin extension 2594
  Additional XProc engine plugin extension 2591
  Addon 3285
  Addons 3285
  AI image rendering in Author mode 568, 1026
  Annotation preferences 171
  Ant build files 1235
  Component Dependencies view 1244
  Content completion 1238
<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Editing in Master Files context</td>
<td>1235</td>
</tr>
<tr>
<td>Highlight occurrences</td>
<td>1246</td>
</tr>
<tr>
<td>Outline view</td>
<td>1239</td>
</tr>
<tr>
<td>Quick Assist feature</td>
<td>1248</td>
</tr>
<tr>
<td>Quick fix support</td>
<td>1237</td>
</tr>
<tr>
<td>Refactoring actions</td>
<td>1247</td>
</tr>
<tr>
<td>Resource Hierarchy/Dependencies view</td>
<td>1243</td>
</tr>
<tr>
<td>Search declarations</td>
<td>1246</td>
</tr>
<tr>
<td>Search references</td>
<td>1246</td>
</tr>
<tr>
<td>Syntax highlighting</td>
<td>1239</td>
</tr>
<tr>
<td>Transforming</td>
<td>1237</td>
</tr>
<tr>
<td>Validation</td>
<td>1236</td>
</tr>
<tr>
<td>Ant preferences</td>
<td>221</td>
</tr>
<tr>
<td>Ant transformation scenario</td>
<td>1718</td>
</tr>
<tr>
<td>Options tab</td>
<td>1719</td>
</tr>
<tr>
<td>Output tab</td>
<td>1721</td>
</tr>
<tr>
<td>Parameters tab</td>
<td>1720</td>
</tr>
<tr>
<td>Antenna House Formatter processor</td>
<td>1659,3189</td>
</tr>
<tr>
<td>Appearance preferences</td>
<td>84</td>
</tr>
<tr>
<td>Apply profiling attributes in Author Mode</td>
<td>515,973</td>
</tr>
<tr>
<td>Apply profiling condition sets in Author Mode</td>
<td>519,978</td>
</tr>
<tr>
<td>Archive preferences</td>
<td>244</td>
</tr>
<tr>
<td>Archives</td>
<td>2191</td>
</tr>
<tr>
<td>Browse</td>
<td>2191</td>
</tr>
<tr>
<td>Edit files</td>
<td>2196</td>
</tr>
<tr>
<td>EPUB</td>
<td>2194</td>
</tr>
<tr>
<td>File browser</td>
<td>2191</td>
</tr>
<tr>
<td>Migrate OXXML to DITA</td>
<td>2196</td>
</tr>
<tr>
<td>Migrate OXXML to TEI</td>
<td>2196</td>
</tr>
<tr>
<td>Modify</td>
<td>2191</td>
</tr>
<tr>
<td>ODF</td>
<td>2194</td>
</tr>
<tr>
<td>OOXML</td>
<td>2194</td>
</tr>
<tr>
<td>Associate schema directly in JSON documents</td>
<td>1431</td>
</tr>
<tr>
<td>Associate schema directly in XML documents</td>
<td>1120</td>
</tr>
<tr>
<td>Associate schema in a framework configuration</td>
<td>1121</td>
</tr>
<tr>
<td>Associate schema in a validation scenario defined in framework</td>
<td>1118</td>
</tr>
<tr>
<td>Associate schema through a validation scenario</td>
<td>1114,1428</td>
</tr>
<tr>
<td>Associate schema to a JSON document</td>
<td>1428</td>
</tr>
</tbody>
</table>
Associate schema to an XML document
1112
Attributes view in Author Mode
426, 474,929
Attributes view in Design mode
628,1292
Attributes view in Text mode
327, 351,851
Author Action dialog box
102
Author editing mode
402,893
   Adding media resources
   596,1055
   Apply profiling attributes
   515,973
   Apply profiling condition sets
   519,978
Attributes view
426, 474,929
Bidirectional text
620,773
Content completion
466,921
Contextual menu actions
606,1065
Create/Edit profiling attributes
511,970
Create/Edit profiling condition sets
517,975
Displaying referenced content
442,900
Displaying the markup
441,899
Drag and Drop
463,918
Editing attributes
460,915
Editing content
449,903
Editing XML markup
451,906
Elements view
432, 478,933
Entities view
330, 356, 433, 479, 854,934
Find/Replace text
482,941
Folding
461,916
Form Controls
604,1063
Generating IDs
601,1060
Handling whitespaces
447,902
Image Map Editor
570,1029
DITA
571, 1030,3069
DocBook
578,1037
TEI
584,1043
XHTML
589,1048
Image rendering
563,1022
AI images
568,1026
CGM images
565,1024
EPS images
568,1026
JAI images
568,1027
PDF images
566,1025
PSD images
567,1026
<table>
<thead>
<tr>
<th>Topic</th>
<th>Page Numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inserting images</td>
<td>562, 1021</td>
</tr>
<tr>
<td>MathML</td>
<td>598, 1057</td>
</tr>
<tr>
<td>MathML equations in HTML output</td>
<td>600, 1059</td>
</tr>
<tr>
<td>Model view</td>
<td>325, 353, 430, 472, 849, 927</td>
</tr>
<tr>
<td>Navigation</td>
<td>405, 895</td>
</tr>
<tr>
<td>Profiling</td>
<td>510, 969</td>
</tr>
<tr>
<td>Profiling colors and styles</td>
<td>524, 983</td>
</tr>
<tr>
<td>Profiling/Conditional Text menu</td>
<td>521, 980</td>
</tr>
<tr>
<td>Refreshing content</td>
<td>601, 1060</td>
</tr>
<tr>
<td>Rendering documents</td>
<td>403, 894</td>
</tr>
<tr>
<td>Review tools</td>
<td>483, 941</td>
</tr>
<tr>
<td>Callouts</td>
<td>499, 958</td>
</tr>
<tr>
<td>Comments</td>
<td>494, 952</td>
</tr>
<tr>
<td>Highlights</td>
<td>498, 956</td>
</tr>
<tr>
<td>Review view</td>
<td>506, 964</td>
</tr>
<tr>
<td>Track Changes</td>
<td>484, 943</td>
</tr>
<tr>
<td>Schema annotations</td>
<td>470, 925</td>
</tr>
<tr>
<td>Selecting content</td>
<td>465, 920</td>
</tr>
<tr>
<td>Set schema for content completion</td>
<td>469, 924</td>
</tr>
<tr>
<td>Smart Paste</td>
<td>463, 918</td>
</tr>
<tr>
<td>Special characters</td>
<td>620, 773</td>
</tr>
<tr>
<td>Tables</td>
<td>525, 984</td>
</tr>
<tr>
<td>DITA</td>
<td>540, 999, 3076</td>
</tr>
<tr>
<td>DocBook</td>
<td>528, 987</td>
</tr>
<tr>
<td>Editing features</td>
<td>526, 985</td>
</tr>
<tr>
<td>Sorting a table</td>
<td>558, 1017</td>
</tr>
<tr>
<td>Sorting list items</td>
<td>561, 1020</td>
</tr>
<tr>
<td>Sorting selected table rows</td>
<td>559, 1018</td>
</tr>
<tr>
<td>Sorting tables with merged cells</td>
<td>561, 1020</td>
</tr>
<tr>
<td>TEI</td>
<td>557, 1016</td>
</tr>
<tr>
<td>XHTML</td>
<td>554, 1013</td>
</tr>
<tr>
<td>Tags Display Mode</td>
<td>441, 899</td>
</tr>
<tr>
<td>Tooltips</td>
<td>443, 901</td>
</tr>
<tr>
<td>User roles</td>
<td>403, 893</td>
</tr>
<tr>
<td>Using Retina/HiDPI Images</td>
<td>569, 1028</td>
</tr>
<tr>
<td>Validation errors</td>
<td>445, 1086</td>
</tr>
<tr>
<td>Views</td>
<td>408</td>
</tr>
<tr>
<td>Visual hints</td>
<td>443, 901</td>
</tr>
<tr>
<td>Author mode default operations</td>
<td>2451</td>
</tr>
<tr>
<td>Author mode preferences</td>
<td>131</td>
</tr>
</tbody>
</table>
Author Stylesheet plugin extension
2590
Auto generate IDs
601,1060
Auto recovery
692
AutoCorrect
767
    Add dictionaries
    769
AutoCorrect preferences
150
Automated tests
2613
Automatic Spell Check
764
Automatic validation
1082
Automatic validation in JSON
1421
Automatically correct misspelled words
767
Available memory
294

B
Backup file
692
BaseX database connection
2249
BaseX database contextual menu actions
2249
BaseX XQJ connection
2252
Batch converter add-on
2677
Batch transformation
722,1767
Batch validation
722
Berkeley DB XML database connection
2222
Berkeley DB XML database contextual menu actions
2224
Berkeley DB XML debugging
2229,2268
Bidirectional text in Author mode
620,773
Bidirectional text in Grid mode
394,777
Bidirectional text in Text mode
366,776
Built-in frameworks
    DITA Map
    1596
    DITA Topic
    1573
    DocBook 4
    1537
    DocBook 5
    1553
    DocBook 5.1
    1553
    DocBook 5.1 Assembly
    1569
    DocBook 5.1 Topic
    1571
    DocBook Targetset Map
    1572
    EPUB
    1636
    JATS
    1631
    jTEI
    1629
    TEI ODD
    1621
    TEI P5
    1612
    XHTML
Creating publishing templates
1935, 2029
CSS :has relational pseudo class
2489
CSS @font-face rule
2481
CSS @media rule
2481
CSS attr() function
2496
CSS extensions
2501
Additional CSS properties
2512
-oxy-append-content CSS property
2512
-oxy-collapse-text property value
2513
-oxy-display-tags property
2514
-oxy-editable property
2515
-oxy-foldable property
2515
-oxy-folded property
2515
-oxy-link property
2517
-oxy-lower-cyrillic property values
2514
-oxy-morph property value
2517
-oxy-not-foldable-child property
2515
-oxy-placeholder-content property
2518
-oxy-prepend-content CSS property
2512
-oxy-show-placeholder property
2518
-oxy-style property
2519
-oxy-tags-background-color property
2519
-oxy-tags-color property
2519
display property
2517
list-style-type property
2514
visibility property
2513
Additional CSS selectors
2509
Built-in CSS selectors
2501
Custom CSS pseudo-classes
2576
Custom form controls
2573
Custom functions
2520
oxy_action
2521
oxy_action_list
2522
oxy_add
2520
oxy_attributes
2524
oxy_base-uri
2524
oxy_capitalize
2525
oxy_compound_action
2525
oxy_concat
2527
oxy_divide
2520
Audio file player

Browser

Button

Button group

Checkbox

Combo box

Date picker

Editing processing instructions

HTML content

Pop-up

Text area

Text field

URL chooser

Video player

CSS Imports

CSS Inspector view

CSS Inspector View

CSS namespace selector

CSS processors preferences

CSS properties
CSS selectors 2483
CSS Styles 2348
CSS stylesheets
  Content completion 1382
  Custom CSS properties 1381
  Editing features 1380
  Folding 1384
  Format and indent (pretty print) 1385
  Minifying 1385
  Outline view 1383
  Syntax highlighting 1383
  Validation 1381
CSS subject selector 2488
CSS target-counter() function 2499
CSS target-counters() function 2499
CSS validation preferences 188
Current license was already activated 71,2970
Cursor navigation preferences 136
Custom editor variables 254
Custom form controls 2573
Custom Protocol plugin extension 2595
Custom system properties 284
Custom validation engine preferences 181
Custom XML refactoring operations 1153,2701
Custom XSLT/XQuery transformation engine preferences 215
Customize document templates 685
Customizing annotations for the Content Completion Assistant 2369
Customizing default options 262
Customizing DITA transformations 3212
Customizing frameworks/document types 2322
D
Data Source Explorer view 2198
Data Sources preferences page 229
Database connection preferences 229
Database drivers 234
Database perspective 300
Databases 2198
Connections 2203
  BaseX 2249
  Contextual menu actions 2249
<table>
<thead>
<tr>
<th>Module</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>XQJ</td>
<td>2252</td>
</tr>
<tr>
<td>Contextual menu actions</td>
<td>2216</td>
</tr>
<tr>
<td>Berkeley DB XML</td>
<td>2222</td>
</tr>
<tr>
<td>Contextual menu actions</td>
<td>2221</td>
</tr>
<tr>
<td>Debugging</td>
<td>2229</td>
</tr>
<tr>
<td>eXist</td>
<td>2229</td>
</tr>
<tr>
<td>Contextual menu actions</td>
<td>2272</td>
</tr>
<tr>
<td>Connection wizard</td>
<td>2230</td>
</tr>
<tr>
<td>Contextual menu actions</td>
<td>2270</td>
</tr>
<tr>
<td>Manual configuration</td>
<td>2232</td>
</tr>
<tr>
<td>SharePoint Browser view</td>
<td>2254</td>
</tr>
<tr>
<td>Generic JDBC</td>
<td>2230</td>
</tr>
<tr>
<td>Contextual menu actions</td>
<td>2255</td>
</tr>
<tr>
<td>IBM DB2</td>
<td>2234</td>
</tr>
<tr>
<td>Contextual menu actions</td>
<td>2257</td>
</tr>
<tr>
<td>JDBC-ODBC</td>
<td>2246</td>
</tr>
<tr>
<td>Data Source Explorer view</td>
<td>2198</td>
</tr>
<tr>
<td>MarkLogic</td>
<td>2204</td>
</tr>
<tr>
<td>Contextual menu actions</td>
<td>2199</td>
</tr>
<tr>
<td>Debugging</td>
<td>2208</td>
</tr>
<tr>
<td>Transformations</td>
<td>2257</td>
</tr>
<tr>
<td>MarkLogic development</td>
<td>2234</td>
</tr>
<tr>
<td>Drag and drop from Data Source Explorer</td>
<td>2260</td>
</tr>
<tr>
<td>SQL support</td>
<td>2242</td>
</tr>
<tr>
<td>Microsoft SQL Server</td>
<td>2237</td>
</tr>
<tr>
<td>Transformations</td>
<td>2261</td>
</tr>
<tr>
<td>Contextual menu actions</td>
<td>2209</td>
</tr>
<tr>
<td>Validation</td>
<td>2261</td>
</tr>
<tr>
<td>MySQL</td>
<td>2211</td>
</tr>
<tr>
<td>Debug PDF transformation</td>
<td>2260</td>
</tr>
<tr>
<td>Oracle</td>
<td>2213</td>
</tr>
<tr>
<td>Debugger preferences</td>
<td>2179</td>
</tr>
<tr>
<td>PostgreSQL</td>
<td>2218</td>
</tr>
<tr>
<td>Contextual menu actions</td>
<td>2222</td>
</tr>
<tr>
<td>SharePoint</td>
<td>2268</td>
</tr>
<tr>
<td>Contextual menu actions</td>
<td>2229</td>
</tr>
<tr>
<td>Data Source Explorer view</td>
<td>2272</td>
</tr>
<tr>
<td>Contextual menu actions</td>
<td>2230</td>
</tr>
<tr>
<td>SharePoint</td>
<td>2270</td>
</tr>
<tr>
<td>Contextual menu actions</td>
<td>2232</td>
</tr>
<tr>
<td>Debugging</td>
<td>2272</td>
</tr>
<tr>
<td>WebDAV</td>
<td>2234</td>
</tr>
<tr>
<td>Contextual menu actions</td>
<td>2270</td>
</tr>
<tr>
<td>MarkLogic</td>
<td>2246</td>
</tr>
<tr>
<td>Drag and drop from Data Source Explorer</td>
<td>2260</td>
</tr>
<tr>
<td>Contextual menu actions</td>
<td>2234</td>
</tr>
<tr>
<td>Transformations</td>
<td>2261</td>
</tr>
<tr>
<td>Debugging</td>
<td>2242</td>
</tr>
<tr>
<td>Validation</td>
<td>2261</td>
</tr>
<tr>
<td>MySQL</td>
<td>2211</td>
</tr>
<tr>
<td>Debug PDF transformation</td>
<td>2179</td>
</tr>
<tr>
<td>Oracle</td>
<td>2213</td>
</tr>
<tr>
<td>Debugger preferences</td>
<td>2179</td>
</tr>
<tr>
<td>Debugging</td>
<td>2239</td>
</tr>
<tr>
<td>WebDAV</td>
<td>2246</td>
</tr>
<tr>
<td>Contextual menu actions</td>
<td>2255</td>
</tr>
<tr>
<td>Data Source Explorer view</td>
<td>2260</td>
</tr>
<tr>
<td>Contextual menu actions</td>
<td>2272</td>
</tr>
<tr>
<td>SharePoint Browser view</td>
<td>2270</td>
</tr>
<tr>
<td>Contextual menu actions</td>
<td>2257</td>
</tr>
<tr>
<td>Debugging</td>
<td>2261</td>
</tr>
<tr>
<td>WebDAV</td>
<td>2257</td>
</tr>
<tr>
<td>Contextual menu actions</td>
<td>2261</td>
</tr>
<tr>
<td>Debugging</td>
<td>2261</td>
</tr>
<tr>
<td>WebDAV</td>
<td>2261</td>
</tr>
</tbody>
</table>
Debugging CSS stylesheets
2578
Steps in a typical debugging process
2309
Toolbar
2293
Debugging XQuery
2290
Breakpoints
2313
Debugging Java extensions
2320
Identify expressions
2310
Information views
2296
Breakpoints view
2297
Context view
2298
Messages view
2300
Nodes/Values Set view
2306
Output Mapping Stack view
2302
Stack view
2301
Templates view
2305
Trace view
2304
Variables view
2307
XPath Watch view
2299
Layout
2291
Performance profiling
2314
Profiling
Hotspots view
2318
Invocation Tree view
2299
Layout
2291
Performance profiling
Profiling
- Hotspots view
- Invocation Tree view
Steps in a typical debugging process
Supported processors
Toolbar
Debugging XSLT that call Java extensions
Design editing mode
Attributes view
Components
Grouping components
xs:all
xs:alternative
xs:complexType
xs:element
Contextual menu actions
Editing actions
Facets view
Navigation
Outline view
625,1290
Palette view
631,1294
Design mode preferences
153
Detect Master Files
728
Detect Master Files from Project
728
Diagram preferences
129
Diff Directories tool
808,2792
Diff Files tool
786,2770
Digital Signature
Canonicalize files
1178,2754
Certificates
1177
Sign files
1179,2756
Verify signature
1181,2758
Digital Signatures
1174
Example of how to digitally sign XML content
1182
Overview
1174
Directory comparison appearance preferences
244
Directory comparison preferences
242
Displaying markup in Author mode
441,899
Displaying referenced content in Author mode
442,900
DITA
Abbreviated form
3119
Automate WebHelp Output with Jenkins
1799,1932
Automate WebHelp Output with Travis CI
1800,1933
Coderef
3143
Conkeyref
3130
Conref
3128
Conref Push
3144
Content References
3126
Cross references
3163
DITA 1.3 support
3276
DITA OT Plugins
Create customization plugin
3252
Define allowed parameters
3258
Define transformation type
3258
Define transtype
3258
Install additional plugins
3256
Third-party plugins
3259
Filtering content
3225
Getting started
13,2982
Glossary
3119
Glossary terms
3119
Image Map Editor
571, 1030, 3069
Index creation
3034
Keys
3116
Linking
3161
   Cross reference
   3163
   File reference
   3163
   Hierarchical
   3163
   Related links
   3163
   Relationship tables
   3169
   Web link
   3163
Maps
2988
   Add topics
   3010
   Change order of topics
   3010
   Chunking
   3035
   Create bookmap
   3009
   Create map
   3007
   Create subject scheme
   3007
   Create submap
   3008
   Create table of contents
   3033
   Define keys
3024
DITA Maps Manager
2990
Edit Properties dialog box
3027
Find unreferenced resources
3015
Insert Reference dialog box
3017
Insert references
3016
Insert topic groups
3023
Insert topic headings
3023
Managing maps
3010
Move resources
3013
Remove topics
3010
Rename resources
3013
Root map
3007
Validate and Check for Completeness
3036
Run from Command-Line
3041
XML catalogs
3035
Master Files support
3266
Metadata
3271
Migrate Excel to DITA
3271
Migrate Office documents to DITA
3271
Migrate various formats to DITA
<table>
<thead>
<tr>
<th>Page</th>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3274</td>
<td>Migrate Word to DITA</td>
<td>3243</td>
</tr>
<tr>
<td>3271</td>
<td>Open Toolkit</td>
<td>3171</td>
</tr>
<tr>
<td>3252</td>
<td>Output</td>
<td>3169</td>
</tr>
<tr>
<td>3171</td>
<td>Customizing Transformations</td>
<td>3268</td>
</tr>
<tr>
<td>3212</td>
<td>Custom build file</td>
<td></td>
</tr>
<tr>
<td>3214</td>
<td>DITA OT Transformation Scenario</td>
<td></td>
</tr>
<tr>
<td>3195</td>
<td>Syntax highlights in codeblocks</td>
<td></td>
</tr>
<tr>
<td>3216</td>
<td>Profiling</td>
<td></td>
</tr>
<tr>
<td>3225</td>
<td>Applying profiling attributes</td>
<td></td>
</tr>
<tr>
<td>3229</td>
<td>Applying profiling condition sets</td>
<td></td>
</tr>
<tr>
<td>3234</td>
<td>Attribute groups</td>
<td></td>
</tr>
<tr>
<td>3242</td>
<td>Creating or editing profiling attributes</td>
<td></td>
</tr>
<tr>
<td>3226</td>
<td>Creating or editing profiling condition sets</td>
<td></td>
</tr>
<tr>
<td>3232</td>
<td>Customizing colors and styles for profiling attributes</td>
<td></td>
</tr>
<tr>
<td>3240</td>
<td>DITAVAL filter file</td>
<td></td>
</tr>
<tr>
<td>3248</td>
<td>Filtering attribute values</td>
<td></td>
</tr>
<tr>
<td>3248</td>
<td>Flagging content with DITAVAL file</td>
<td></td>
</tr>
<tr>
<td>3250</td>
<td>Publishing profiling</td>
<td></td>
</tr>
<tr>
<td>3251</td>
<td>Showing and filtering profiling attributes</td>
<td></td>
</tr>
<tr>
<td>3237</td>
<td>Using subject scheme map</td>
<td></td>
</tr>
<tr>
<td>3171</td>
<td>Publishing</td>
<td></td>
</tr>
<tr>
<td>3169</td>
<td>Relationship tables</td>
<td></td>
</tr>
<tr>
<td>3268</td>
<td>Resource Hierarchy/Dependencies view</td>
<td></td>
</tr>
<tr>
<td>3121</td>
<td>Reusing content</td>
<td></td>
</tr>
<tr>
<td>3152</td>
<td>Branch Filtering</td>
<td></td>
</tr>
<tr>
<td>3143</td>
<td>Code References</td>
<td></td>
</tr>
<tr>
<td>3130</td>
<td>Conkeyref</td>
<td></td>
</tr>
<tr>
<td>3128</td>
<td>Conref</td>
<td></td>
</tr>
<tr>
<td>3144</td>
<td>Content Reference Push mechanism</td>
<td></td>
</tr>
<tr>
<td>3126</td>
<td>Content References</td>
<td></td>
</tr>
<tr>
<td>3154</td>
<td>DITA Reusable Components view</td>
<td></td>
</tr>
<tr>
<td>3132</td>
<td>Edit Content References</td>
<td></td>
</tr>
<tr>
<td>3151</td>
<td>Key Scopes</td>
<td></td>
</tr>
<tr>
<td>3125</td>
<td>Reference Topics in multiple maps</td>
<td></td>
</tr>
<tr>
<td>3146</td>
<td>Reusable components</td>
<td></td>
</tr>
<tr>
<td>3147</td>
<td>Create Reusable Component</td>
<td></td>
</tr>
<tr>
<td>3148</td>
<td>Insert Reusable Component</td>
<td></td>
</tr>
<tr>
<td>3135</td>
<td>Reuse Content dialog box</td>
<td></td>
</tr>
<tr>
<td>3148</td>
<td>Variable text</td>
<td></td>
</tr>
</tbody>
</table>
Style topics
2086

Header
2053
Add background image
2058
Change header at each chapter
2066
Change separators
2062
Only keep chapter title
2061
Style text
2060
Styling
2063
Underlined header
2068, 2107, 2108
XPath
2064

Header and Footer
Font
2056
Size
2055

Hyphenation
2128
Enable or disable for tables
2129
Entire map
2128

I/O exception
2167

i18n
2132, 2132

Images
2150
Centering
2153
Control image size
2153
Resolution
2151
Rotate
2151
SControl image size
2153
Side by side with text
2151, 2151
Size
2150
Wide
2151
Index
2114
Add a leader
2120
Change number format
2121
Change style and letters
2118
Style labels
2119
Table style layout
2121

Links
2148
List of Figures
2106
List of Tables
2106
Localization
2132, 2132
MathML equation customization
2145
Metadata
2070
Cover page
2074
Custom
2073 Start on odd page
Footer 2100
2076 Style
Header 2098
2076 Tables
Notes 2155
2162 Automatic layout
Numbering 2157
2088,2092 Rotate
Remove prefix 2155
2095 Text bleeding
Page breaks 2157
2125 Wide
Add a blank page after a topic 2155
2127 Tracked changes
Avoid in lists and tables 2135
2126 Hide footnotes
Enforce number of lines 2142
2128 Styling
Force before or after topic 2141
2126 Translation
Page size 2132,2132
Change setting for an element Unknown host
2052 2167
Changing DITA Map to PDF transformation
2052 1662,3192
Orientation DITA Map to WebHelp Classic transformation
2052 1652,3181
Styling DITA Map to WebHelp Responsive transformation
2144
Table of contents 1643,3173
2095 DITA map to XHTML output customization
Change header 3215
2099 DITA Map toolbar actions
Display short description in TOC 1598,3042
2101 DITA Map transformations
Display topic before TOC 1642,3172
2101 DITA Maps
Remove TOC entries Transformation scenarios
2101 1642,3172
DITA new topics preferences
227
DITA OT 3.x publishing engine add-on
2681
DITA OT preferences
224
DITA OT transformation scenario
1702
  Advanced tab
  1714,3208
  Feedback tab
  1712,3206
  Filters tab
  1713,3207
  FO Processor tab
  1709,3203
  Output tab
  1716,3210
  Parameters tab
  1711,3205
  Skins tab
  1703,3197
  Templates tab
  1705,3199
DITA OT Transformation Scenario
3195
DITA preferences
224
DITA prolog updater add-on
2680
DITA publishing preferences
228
DITA tables in Author Mode
540, 999,3076
DITA to Word
1663,3192
DITA Topic document type
1573
  Author mode actions
  1575,3092
DITA Topic menu actions
1575,3092
DITA Topic toolbar actions
1575,3092
DocBook 4 document type
1537
DocBook 4 menu actions
1539
DocBook 4 toolbar actions
1539
DocBook 5 document type
1553
DocBook 5.1 assembly
1555
DocBook 5.1 document type
1553
DocBook checker add-on
2682
DocBook olink
1549,1566
DocBook tables in Author Mode
528,987
DocBook Targetset Map document type
1572
DocBook to DITA transformation
1671
DocBook to EPUB transformation
1673
DocBook to PDF output customization
2180
<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>DocBook to PDF transformation</td>
<td>99</td>
</tr>
<tr>
<td>DocBook to WebHelp transformation</td>
<td>122</td>
</tr>
<tr>
<td>DocBook transformations</td>
<td>99</td>
</tr>
<tr>
<td>Document plugin extension</td>
<td>118</td>
</tr>
<tr>
<td>Document template preferences</td>
<td>120</td>
</tr>
<tr>
<td>Document templates</td>
<td>121</td>
</tr>
<tr>
<td>Creating</td>
<td></td>
</tr>
<tr>
<td>Customizing</td>
<td></td>
</tr>
<tr>
<td>Sharing</td>
<td></td>
</tr>
<tr>
<td>Document type association preferences</td>
<td>92</td>
</tr>
<tr>
<td>Document type configuration dialog box</td>
<td>95</td>
</tr>
<tr>
<td>Association rules tab</td>
<td>97</td>
</tr>
<tr>
<td>Author tab</td>
<td>100</td>
</tr>
<tr>
<td>Actions subtab</td>
<td>102</td>
</tr>
<tr>
<td>Content Completion subtab</td>
<td>116</td>
</tr>
<tr>
<td>Contextual Menu subtab</td>
<td>113</td>
</tr>
<tr>
<td>CSS subtab</td>
<td>101</td>
</tr>
<tr>
<td>Menu subtab</td>
<td>113</td>
</tr>
<tr>
<td>Toolbar subtab</td>
<td>116</td>
</tr>
<tr>
<td>Catalogs tab</td>
<td>119</td>
</tr>
<tr>
<td>Classpath tab</td>
<td></td>
</tr>
<tr>
<td>Edit mode preferences</td>
<td>126</td>
</tr>
<tr>
<td>Edit profiling attributes in Author Mode</td>
<td>511,970</td>
</tr>
<tr>
<td>Edit profiling condition sets in Author Mode</td>
<td>517,975</td>
</tr>
<tr>
<td>Edit validation scenario</td>
<td>1100</td>
</tr>
<tr>
<td>Editing actions in Grid Mode</td>
<td>395,886</td>
</tr>
<tr>
<td>Duplicate transformation scenario</td>
<td>1760</td>
</tr>
<tr>
<td>Edit mode preferences</td>
<td></td>
</tr>
<tr>
<td>Document type type customization</td>
<td>2322</td>
</tr>
<tr>
<td>Document Types</td>
<td>1537</td>
</tr>
<tr>
<td>Documents with long lines</td>
<td>784</td>
</tr>
<tr>
<td>DOM element</td>
<td>2667</td>
</tr>
<tr>
<td>Drag and Drop in Author Mode</td>
<td>463,918</td>
</tr>
<tr>
<td>Drag and Drop in Grid Mode</td>
<td>398,889</td>
</tr>
<tr>
<td>Drag and Drop in Text Mode</td>
<td>316,841</td>
</tr>
<tr>
<td>DTD Entities</td>
<td>1133,1133</td>
</tr>
<tr>
<td>Duplicate transformation scenario</td>
<td>1760</td>
</tr>
</tbody>
</table>

E
Editing attributes in Author Mode 460,915
Editing content in Author Mode 449,903
Editing Modes 303
   Author 402
   Design 623,1250
   Grid 392
   Text 303
Editing publishing templates 1937,2031
Editing XML markup in Author Mode 451,906
Editing XML markup in Text Mode 310,835
Editing XSLT
   Compile XSL Stylesheet for Saxon tool 1233,2739
Editor perspective 295
Editor preferences 125
Editor variables 276
   Custom editor variables 284
Elements view in Author Mode 432,478,933
Elements view in Text mode 329,355,853
Elements view preferences 259
Embed images add-on 2682
Encoding preferences

Entities view 330, 356, 433, 479, 854,934
EPS image rendering in Author mode 568,1026
EPUB document type 1636
Error: 1248 WARN org.apache.fop.apps.FOUserAgent 2960,3220
Error: Anttask - Error rendering fo file 2960,3220
Error: Cannot find files.log file 2951
Error: Could not create MSXML object 2972
Error: Incorrect Function Windows service error 72,2977
Error: java.io.FileNotFoundException 2960,3220
Error: Navigation to the web page was canceled 2972
Error: OutOfMemory 2944,2946
Error: OutofMemoryError 2973
Error: Process Terminated Unexpectedly 72,2977
Error: Segmentation fault 2976
Error: stack overflow 2945
Error: Startup crash - Fault Module Name nvgclv32.dll 2952
Excel XLSX libraries add-on 2683
Executing SQF in Other Documents
eXist database
  Connection wizard
  2230
  Manual configuration
  2230
eXist database connection
  2229
eXist database contextual menu actions
  2232
Export color themes
  84
Export Global Options
  268
Export Global Transformation Scenarios
  276
Export Global Validation Scenarios
  276
Export Layout
  268,669
Export to Excel
  401,892
Exporting Markdown documents
  1507
Extending frameworks
  2322
Extending Oxygen with plugins
  2580
External DITA-OT plugin extension
  2594
External tool configuration
  246
External tool preferences
  246
External Tools
  2942

Facets view in Design mode
  630,1295
File comparison appearance preferences
  242
File comparison preferences
  239
File properties
  705
File related actions in Text Mode
  367,861
File type preferences
  250
Filtering profiled content in Author mode
  521,980
Find All Elements action
  751
Find All Elements dialog box
  751
Find/Replace action
  740
Find/Replace dialog box
  740
Find/Replace in Files action
  745
Find/Replace in multiple files
  745
Find/Replace text in Author Mode
  482,941
Finding/Replacing text
  740
Find All Elements dialog box
  751
Find/Replace dialog box
  740
Find/Replace in multiple files
  745
Navigating Find/Replace matches
  753
Quick Find toolbar
  752
Flatten Schema tool
  1329,2730
Floating license server
  x
FO processor preferences
216
Folding elements in Author Mode
461,916
Folding in Text Mode
315,840
Font preferences
88
Font size configuration
449,903
Font size configuration in Text mode
308,832
FOP Error
2959, 2960, 3219, 3220
Form Control
  Editing processing instructions
    2576
Form Controls
2541
  Audio file player
    2542
  Browser
    2543
  Button
    2547
  Button group
    2550
  Checkbox
    2553
  Combo box
    2556
  Date picker
    2558
  HTML content
    2560
  Pop-up
    2562
  Render HTML frames
    2543
  Render SVG
    2543
  Text area
    2565
  Text field
    2568
  URL chooser
    2570
  Video player
    2572
Form Controls in Author mode
604,1063
Format and Indent Files tool
375, 869, 2741
Format and Indent in Text Mode
369, 863
Format/Indent multiple files
375, 869, 2741
Formatting preferences
157
Formatting Schematron Quick Fix Content
1490
Framework customization
2322
  Configuring an extensions bundle
    2391
  Configuring content completion proposals
    2352, 2360, 2364
  Configuring document templates
    2335
  Configuring transformation scenarios
    2337
  Configuring validation scenarios
    2339
  Configuring XML catalogs
    2336
  Creating
    2322
  Creating a basic document type association
    2380
Customize the main CSS
2346
Customizing annotations for the Content Completion Assistant
2369
Customizing Smart Paste mapping
2343
Customizing the Content Completion Assistant
2352
Deploying as Add-ons
2372
Extending
2322
Extensions
2391
Author Action Event Handler
2432
Author Edit Properties Handler
2438
Author Extension State Listener
2406
Author Image Decorator
2397
Author Persistent Highlighter
2398
Author Reference Resolver
2402
Author Schema Aware Editing Handler
2434
Author Table Cell Separator Provider
2419
Author Table Cell Span Provider
2416
Author Table Column Width Provider
2410
Content Completion Handler
2399
CSS Styles Filter
2424
Custom Attribute Value Editor
2422
Custom Drag and Drop Listener
2401
Custom Object Insertion Handler
2437
Element Locator Provider
2425
Link Target Element Finder
2425
Profiling Conditional Text Provider
2425
Unique Attributes Recognizer
2398
XML Node Renderer Customizer
2431
Sharing
2371
Translating annotations for the Content Completion Assistant
2369
Framework directory locations
94
Frameworks
1537
FTP connection settings
257
G
General plugin extension
2601
Generate Documentation tools
2742
Generate IDs in Author mode
601,1060
Generate Sample JSON Files tool
2725
Generate Sample XML Files tool
1306,2717
Advanced tab
1310,2722
From command line 1311,2723
Options tab 1307,2719
Schema tab 1306,2718
Generate WSDL Documentation tool 1371,2751
Generate XML Schema Documentation tool 1313,2742
Customize PDF output for DITA 1323
Customize PDF output for DocBook 1322
From command line 1323
Output formats 1317
Generate XSLT Stylesheet Documentation tool 1223,2746
Custom format 1229
From command line 1230
HTML format 1227
Generic JDBC database connection 2246
Getting familiar with the interface 3,667
Getting Started 2
Getting Started with DITA 13,2982
Getting Started with Oxygen
Help 22
Interface 3,667
Resources to help you with Oxygen
5 Shortcut keys
Supported document types
4 Your first XML document
8 Git support add-on
2683 Global Options
265 Global preferences
81 Grid editing mode
392,886 Bidirectional text
394,777 Content Completion Assistant
401,891 Copy/Paste
399,889 Drag and Drop
398,889 Editing actions
395,886 Export to Excel
401,892 Special characters
394,777 Grid editing modes
Layout 392
Navigation 393
Grid mode preferences 130
H Help
Randomize XML text content 25
Support related resources

HTTP troubleshooting
22

Using the Help menu
23

Help resources
2014

Hex Viewer tool
2767

Highlight ID occurrences in Text Mode
379,873

Highlights
823

Highlights in Author Mode
498,956

HTML documents

Content completion
1505

Editing features
1503

Folding
1506

Outline view
1506

Syntax highlighting
1505

Validation
1504

HTTP authentication schemes
700

HTTP connection settings
256

HTTP floating license server

Replacing
65

Upgrading
66

HTTP license server
57

Management and Statistics
61

Huge file editor
783

Huge files
783

IBM DB2 database connection
2204

IBM DB2 database contextual menu actions
2208

ID generation
601,1060

Image Map Editor in Author Mode
570,1029

Image Map Editor in DITA
571, 1030, 3069

Image Map Editor in DocBook
578,1037

Image Map Editor in TEI
584,1043

Image Map Editor in XHTML
589,1048

Image rendering in Author mode
563,1022

Import color themes
84

Import csv files
2276

Import data dynamically
2285

Import Global Options
268

Import Global Transformation Scenarios
276

Import Global Validation Scenarios
276

Import preferences
221

Import txt files
Importing data
Importing data from a database
Importing data from Excel
Importing data from HTML files
Importing Data from text files
Increase memory
Indenting Schematron Quick Fix Content
Information view
Information view preferences
Insert File in Text mode
Insert images in Author Mode
Install new add-ons
Installing Oxygen
Floating license servers
  Machine signature does not match
Group deployment
Licensing
Linux Installation
Linux/Unix Server Installation
Mac OS X Installation
TCP floating license server
  All Platforms distribution
  Replacing
  Upgrading
Windows 32-bit
  Incorrect Function error
  Process Terminated Unexpectedly error
  Replacing
  Upgrading
Transfer license key
Upgrading
Windows Installation
Windows Server Installation
Integrate Schematron Quick Fixes in a framework
Integrate Schematron rules in a framework
Integrating external tools
Introduction
J
JAI images in Author mode
JATS document type
Author mode actions
JATS menu actions
JATS toolbar actions
Java system properties
Java VM parameters
JavaScript documents
Content Completion
Editing features
Outline view
Syntax highlighting
Validation
JDBC-ODBC database connection
JSON documents
Associate schema
Associate schema directly in JSON documents
Associate schema through a validation scenario
Content completion
Contextual menu actions
Folding
Grid mode editing features
JSON to XML converter
Outline view
Presenting validation errors
Schema annotations
Syntax highlighting
Text mode editing features
Validating JSON schema
Validation
Against a schema
Automatic validation
Check Well-formedness
Manual validation
Resolving references to remote schemas
Sharing scenarios
Validation scenarios
XML to JSON converter
JSON schema
JSON Schema
JSON to XML tool
JSON validation scenarios
jTEI document type
1629

K
Kerberos
700

L
Large documents
781
Large File Viewer tool
2764
Large files
782
Layout configuration
268,669
Layout preferences
90
LESS stylesheets
  Compile to CSS
  1388
Content completion
  1387
Editing features
  1385
Syntax highlighting
  1387
Validation
  1386

Licensing Oxygen
50
  Floating license
    Reserve floating license
    56
  Floating licenses
    53
  Named-user license
    51
  Release a floating license
    55
  Request a floating license

HTTP license server
  53
TCP license server
  54
Load Layout
  268,669
Localizing frameworks
  111,2333
Localizing SQF messages
  1491
Localizing the user interface
  289
Localizing XML refactoring operations
  1173,2716
Lock Handler plugin extension
  2596
Lock/Unlock XML tags in Text Mode
  369,863
Locking a floating license
  56

M
Mac Function Keys
  2970
Mac Touch Bar
  2970
Machine signature does not match
  71,2970
Manage add-ons
  75
Manage highlighted content in Text Mode
  377,871
Manual validation actions
  1082
Manual validation in JSON
  1421
Markdown documents
  1507
  Actions in Markdown Editor
    1510
  Creating Markdown documents
DITA
1520,3114
Markdown Editor
1507
Rules and specifications
1522
Syntax highlighting
1519
Validation
1519
Markdown Editor
1507
MarkLogic database connection
2234
MarkLogic database contextual menu actions
2242
MarkLogic debugging
2239,2265
MarkLogic for the developer
2237
Markup transparency in Text Mode
368,862
Master Files
726
Add files
729
Detecting
728
Enabling
727
Overview
726
Transformation
729
Validation
729
MathML equations in HTML output in Author mode
600,1059

MathML notations in Author mode
598,1057
MathML preferences
149
Media query
2480
Memory availability
294
Menu Shortcut Keys
248
Message preferences
260
Microsoft SQL Server database connection
2209
Microsoft SQL Server database contextual menu actions
2211
Model view
325, 353, 430, 472, 849,927
Modular XML files
1126
Move file tabs
701
Move XML resources
1133
MSXML 3.0 and 4.0 preferences
205
MSXML.NET preferences
206
MySQL database connection
2244
Navigating in Text Mode
304,828
Navigation in Author Mode
405,895
Network connection preferences
254
New document from templates
683
New Document Wizard 676
New from Templates Wizard 683
New project 20,708
NISO Journal Article Tag Suite document type 1631
Non-XML files 706
NTLM 700
NVDL schemas 1408
Component Dependencies view 1414
Content completion 1412
Diagram Editor 1409
Contextual menu actions 1411
Full Model view 1409
Introduction 1409
Logical Model view 1410
Outline view 1414
Refactoring actions 1415
Search actions 1415
Syntax highlighting 1413
Validation 1412
Olink element 1549, 1566
Open File at Cursor in Text mode 367, 861
Open file at specific location 690
Open file at start-up 689
Open file in system application 689
Open preferences 154
Open Redirect plugin extension 2597
Open remote document 693
Open URL dialog box 694
Open With dialog box in Windows Explorer 2949
Open/Find Resource
In content 736
In file paths 739
In reviews 739
Open/Find Resource dialog box 733
Open/Find resource preferences 251
Open/Find Resource view 344, 419, 730
Opening file 689
Option Page plugin extension 2597
Options Menu
Preferences 79
Oracle database connection
<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oracle database contextual menu actions</td>
<td>2213</td>
</tr>
<tr>
<td>Out Of Memory error</td>
<td>2216</td>
</tr>
<tr>
<td>Outline view</td>
<td>216,2764</td>
</tr>
<tr>
<td>Outline view in Design mode</td>
<td>347, 422, 858, 937</td>
</tr>
<tr>
<td>Outline view preferences</td>
<td>625,1290</td>
</tr>
<tr>
<td>oxy:allows-child-element function</td>
<td>106</td>
</tr>
<tr>
<td>oxy:allows-global-element function</td>
<td>108</td>
</tr>
<tr>
<td>oxy:current-selected-element function</td>
<td>109</td>
</tr>
<tr>
<td>oxy:is-required-element function</td>
<td>110,110</td>
</tr>
<tr>
<td>oxy:platform function</td>
<td>110</td>
</tr>
<tr>
<td>oxy:selected-elements function</td>
<td>110</td>
</tr>
<tr>
<td>Oxygen media type</td>
<td>2480</td>
</tr>
<tr>
<td>Oxygen SDK</td>
<td>2580</td>
</tr>
<tr>
<td>Automated tests</td>
<td>2613</td>
</tr>
<tr>
<td>CMS integration</td>
<td>2605</td>
</tr>
<tr>
<td>Configuration</td>
<td>2580</td>
</tr>
<tr>
<td>Custom Protocol</td>
<td>2610</td>
</tr>
<tr>
<td>Debugging a plugin</td>
<td>2616</td>
</tr>
<tr>
<td>IntelliJ</td>
<td>2616</td>
</tr>
<tr>
<td>Debugging an SDK extension</td>
<td>2617</td>
</tr>
<tr>
<td>Deploying plugins as add-ons</td>
<td>2612</td>
</tr>
<tr>
<td>Disable a plugin</td>
<td>2618</td>
</tr>
<tr>
<td>Installation</td>
<td>2582</td>
</tr>
<tr>
<td>Testing plugins and Java extensions</td>
<td>2613</td>
</tr>
<tr>
<td>Types of Extensions</td>
<td>2583</td>
</tr>
<tr>
<td>Oxygen XML Author Component</td>
<td>2618</td>
</tr>
<tr>
<td>Customization</td>
<td>2620</td>
</tr>
<tr>
<td>Customize frameworks</td>
<td>2622</td>
</tr>
<tr>
<td>Customize options</td>
<td>2623</td>
</tr>
<tr>
<td>Frequently Asked Questions</td>
<td>2626</td>
</tr>
<tr>
<td>Insert references from a WebDAV connection</td>
<td>2625</td>
</tr>
<tr>
<td>Installation requirements</td>
<td>2620</td>
</tr>
<tr>
<td>Licensing</td>
<td>2619</td>
</tr>
<tr>
<td>MathML support</td>
<td>2624</td>
</tr>
<tr>
<td>Using plugins</td>
<td>2626</td>
</tr>
<tr>
<td>Oxygen XML Web Author Component</td>
<td>2630</td>
</tr>
<tr>
<td>PAC</td>
<td>256</td>
</tr>
<tr>
<td>Palette view in Design mode</td>
<td>631,1294</td>
</tr>
<tr>
<td>PDF image rendering in Author mode</td>
<td></td>
</tr>
<tr>
<td>Document Type Association</td>
<td>JavaScript formatting</td>
</tr>
<tr>
<td>-----------------------------------------------</td>
<td>--------------------------------</td>
</tr>
<tr>
<td>Document type configuration dialog box</td>
<td>Mark Occurrences</td>
</tr>
<tr>
<td>Document Type locations</td>
<td>MathML</td>
</tr>
<tr>
<td>Document Validation</td>
<td>Menu Shortcut Keys</td>
</tr>
<tr>
<td>Edit Modes</td>
<td>Messages</td>
</tr>
<tr>
<td>Editor</td>
<td>MSXML XSLT</td>
</tr>
<tr>
<td>Encoding</td>
<td>MSXML.NET XSLT</td>
</tr>
<tr>
<td>External Tools</td>
<td>Network Connection Settings</td>
</tr>
<tr>
<td>File Types</td>
<td>Open</td>
</tr>
<tr>
<td>Files Comparison</td>
<td>Open/Find Resource</td>
</tr>
<tr>
<td>Files Comparison Appearance</td>
<td>Plugins</td>
</tr>
<tr>
<td>FO Processor</td>
<td>Print</td>
</tr>
<tr>
<td>Fonts</td>
<td>Profiling/Conditional Text</td>
</tr>
<tr>
<td>Format</td>
<td>Proxy</td>
</tr>
<tr>
<td>FTP/SFTP</td>
<td>Relax NG parser</td>
</tr>
<tr>
<td>Global</td>
<td>Review</td>
</tr>
<tr>
<td>Grid mode</td>
<td>Sample XML Files Generator</td>
</tr>
<tr>
<td>HTTP(S)/WebDAV</td>
<td>Save</td>
</tr>
<tr>
<td>Import</td>
<td>Saxon-HE/PE/EE XQuery</td>
</tr>
<tr>
<td>JavaScript Content Completion</td>
<td>Saxon-HE/PE/EE XQuery Advanced</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Topic</td>
<td>Page</td>
</tr>
<tr>
<td>------------------------------------------------------------</td>
<td>------</td>
</tr>
<tr>
<td>Saxon-HE/PE/EE XSLT</td>
<td>201</td>
</tr>
<tr>
<td>Saxon-HE/PE/EE XSLT Advanced</td>
<td>204</td>
</tr>
<tr>
<td>Saxon6 XSLT</td>
<td>201</td>
</tr>
<tr>
<td>Schema Aware</td>
<td>137</td>
</tr>
<tr>
<td>Schema Design mode</td>
<td>153</td>
</tr>
<tr>
<td>Schematron parser</td>
<td>194</td>
</tr>
<tr>
<td>Spell Check</td>
<td>183</td>
</tr>
<tr>
<td>Spell Check Dictionaries</td>
<td>186</td>
</tr>
<tr>
<td>SSH</td>
<td>258</td>
</tr>
<tr>
<td>SVN</td>
<td>234</td>
</tr>
<tr>
<td>SVN Diff</td>
<td>237</td>
</tr>
<tr>
<td>SVN Messages</td>
<td>238</td>
</tr>
<tr>
<td>SVN Working Copy</td>
<td>236</td>
</tr>
<tr>
<td>Syntax Highlight</td>
<td>178</td>
</tr>
<tr>
<td>Text mode</td>
<td>127</td>
</tr>
<tr>
<td>Trusted Hosts</td>
<td>258</td>
</tr>
<tr>
<td>Views</td>
<td>259</td>
</tr>
<tr>
<td>Whitespaces</td>
<td>164</td>
</tr>
<tr>
<td>XML</td>
<td>189</td>
</tr>
<tr>
<td>XML Catalog</td>
<td>189</td>
</tr>
<tr>
<td>XML formatting</td>
<td>160</td>
</tr>
<tr>
<td>XML Parser</td>
<td>191</td>
</tr>
<tr>
<td>XML Refactoring</td>
<td>224</td>
</tr>
<tr>
<td>XML Schema parser</td>
<td>192</td>
</tr>
<tr>
<td>XML Signing Certificates</td>
<td>223</td>
</tr>
<tr>
<td>XML Structure Outline</td>
<td>259</td>
</tr>
<tr>
<td>XPath</td>
<td>214</td>
</tr>
<tr>
<td>XPath Content Completion</td>
<td>169</td>
</tr>
<tr>
<td>XPath formatting</td>
<td>165</td>
</tr>
<tr>
<td>XProc</td>
<td>198</td>
</tr>
<tr>
<td>XQuery</td>
<td>208</td>
</tr>
<tr>
<td>XQuery formatting</td>
<td>165</td>
</tr>
<tr>
<td>XQuery Profiler</td>
<td>213</td>
</tr>
<tr>
<td>XSD Content Completion</td>
<td>170</td>
</tr>
<tr>
<td>XSLT</td>
<td>200</td>
</tr>
<tr>
<td>XSLT Content Completion</td>
<td>169</td>
</tr>
<tr>
<td>XSLT Profiler</td>
<td>213</td>
</tr>
<tr>
<td>XSLT-XQuery</td>
<td>200</td>
</tr>
<tr>
<td>XSLTProc</td>
<td>204</td>
</tr>
<tr>
<td>Presenting validation errors in JSON</td>
<td>1423</td>
</tr>
</tbody>
</table>
Prince Print with CSS processor 1659,3189
Print documents 824
Print preferences 187
Print Preview dialog box 824
Printing 824
Problems and solutions 2947
Process overview 2015
Profiling attribute preferences 144
Profiling colors and styles in Author Mode 524,983
Profiling content in Author Mode 510,969
Profiling/Conditional Text menu in Author mode 521,980
Project Options 265
Project view 333, 409,709
Project view preferences 259
Projects 707
  Adding items to projects 20,708
  Batch transformations 722
  Batch validation 722
  Creating new projects 20,708
  Image preview
Managing resources 333, 409,709
Master files 726
Add files 729
Detecting 728
Enabling 727
Overview 726
Transformation 729
Validation 729
Move resources 720
Project view 333, 409,709
Rename resources 720
Sharing 723
Proxy auto-config script 256
Proxy preferences 255
PSD image rendering in Author mode 567,1026
Publishing 1640
Q
Quick Assist feature in Text Mode 378,872
Quick Find toolbar 752
Quick fix support in XML documents 1109
<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>RDP performance issues</td>
<td>2947</td>
</tr>
<tr>
<td>Read-only files</td>
<td>784</td>
</tr>
<tr>
<td>Rectangular Selection feature</td>
<td>317,841</td>
</tr>
<tr>
<td>Refactoring Operations plugin extension</td>
<td>2601</td>
</tr>
<tr>
<td>Refactoring XML Documents</td>
<td>1139,2687</td>
</tr>
<tr>
<td>Refreshing content in Author mode</td>
<td>601,1060</td>
</tr>
<tr>
<td>Regular expressions syntax</td>
<td>753</td>
</tr>
<tr>
<td>Relax NG schemas</td>
<td>1388</td>
</tr>
<tr>
<td>Component Dependencies View</td>
<td>1403</td>
</tr>
<tr>
<td>Content completion</td>
<td>1395</td>
</tr>
<tr>
<td>Custom datatype library</td>
<td>1408</td>
</tr>
<tr>
<td>Diagram Editor</td>
<td>1390</td>
</tr>
<tr>
<td>Contextual menu actions</td>
<td>1393</td>
</tr>
<tr>
<td>Full Model view</td>
<td>1390</td>
</tr>
<tr>
<td>Introduction</td>
<td>1390</td>
</tr>
<tr>
<td>Logical Model view</td>
<td>1391</td>
</tr>
<tr>
<td>Symbols</td>
<td>1392</td>
</tr>
<tr>
<td>Editing in Master Files context</td>
<td>1389</td>
</tr>
<tr>
<td>Moving resources</td>
<td>1403</td>
</tr>
<tr>
<td>Outline view</td>
<td></td>
</tr>
<tr>
<td>Quick Assist feature</td>
<td>1407</td>
</tr>
<tr>
<td>Refactoring actions</td>
<td>1405</td>
</tr>
<tr>
<td>Renaming resources</td>
<td>1403</td>
</tr>
<tr>
<td>Resource Hierarchy/Dependencies view</td>
<td>1400</td>
</tr>
<tr>
<td>Search actions</td>
<td>1405</td>
</tr>
<tr>
<td>Syntax highlighting</td>
<td>1396</td>
</tr>
<tr>
<td>Validation</td>
<td>1394</td>
</tr>
<tr>
<td>Release a floating license</td>
<td>55</td>
</tr>
<tr>
<td>Remote Desktop performance issues</td>
<td>2947</td>
</tr>
<tr>
<td>Rename XML resources</td>
<td>1133</td>
</tr>
<tr>
<td>Rendering documents in Author Mode</td>
<td>403,894</td>
</tr>
<tr>
<td>Request a floating license from a TCP license server</td>
<td>54</td>
</tr>
<tr>
<td>Request a floating license from an HTTP license server</td>
<td>53</td>
</tr>
<tr>
<td>Reserving a floating license</td>
<td>56</td>
</tr>
<tr>
<td>Reset Global Options</td>
<td>268</td>
</tr>
<tr>
<td>Reset Layout</td>
<td>268,669</td>
</tr>
<tr>
<td>Resolve schemas through XML catalogs</td>
<td>1126</td>
</tr>
<tr>
<td>Resource Hierarchy/Dependencies view for DITA documents</td>
<td>3268</td>
</tr>
</tbody>
</table>
Resource Hierarchy/Dependencies view for XML documents
1130
Resource Locking plugin extension
2598
Restricting Schematron Quick Fix operations
1489
Results view
357,434
Make persistent copy of results
361,438
Retina/HiDPI Images in Author mode
569,1028
Review preferences
140
Review tools in Author Mode
483,941
Run DITA OT Integrator transformation
1665

S
Sample XML File Generator preferences
196
Save file
692
Save preferences
156
Save remote document
693
Save template as button
1707,3201
Saxon 6 XSLT preferences
201
Saxon HE/PE/EE advanced XQuery preferences
211
Saxon HE/PE/EE advanced XSLT preferences
204
Saxon HE/PE/EE XQuery preferences
209
Saxon HE/PE/EE XSLT preferences
201
Saxon XSLT and XQuery transformer add-on
2685
Schema annotations in Author Mode
470,925
Schema annotations in JSON
1433
Schema annotations in Text Mode
323,847
Schema Design mode
623,1250
Schema Diagram Editor
623,1250
Schematron
Editing features
1461
Editing in Master Files context
1463
Integrating in a framework
1465
Sharing
1465
Unit test (XSpec)
1479
Validation
Against Schematron
1464
Schematron Quick Fix Operations
Add
1484
Delete
1484
Replace
1484
String Replace
1484
Schematron Quick Fixes
1111, 1481, 1481
Content Completion
1468
Schematron Schemas
Customizing
1482
Embedded
1108,1469
Defining
1482
Highlight occurrences
1475
Embedded
1498
Moving resources
1474
Executing SQF in Other Documents
1491
Outline view
1470
Formatting and Indenting
1490
Quick Assist feature
1478
Highlight occurrences
1496
Refactoring actions
1475
Integrating in a framework
1492
Renaming resources
1474
Localization
1491
Resource Hierarchy/Dependencies view
1472
Multiple similar quick fixes
1491
Search actions
1475
Refactoring actions
1496
Validation
1466
Restricting operations
1489
Scratch Buffer
785
Search actions
1496
Search
482,941
Sharing
1492
Search actions for IDs
1127
SQF Operations
1484
Search dialog box
740
Use-When Condition
1489
Search multiple files
745
User Entry operation
1488
Search preferences
251
Validation
1495
Searching documents
730
Schematron schemas
Open/Find Resource
Content completion
1467
In content
736
Syntax highlighting
In file paths
739
In reviews
739
Open/Find Resource dialog box
733
Open/Find Resource view
344, 419, 730
Searching in current file
740
Selecting content in Author Mode
465, 920
Selecting content in Text Mode
317, 841
Selection plugin extension
2602
Set indent to zero in Text Mode
375, 869
Set schema for content completion in Author Mode
469, 924
SFTP connection settings
257
Share transformation scenarios
1768
Share validation scenarios
1105
SharePoint Browser view
2270
SharePoint contextual menu actions
2272
SharePoint database connection
2268
Sharing document templates
688
Sharing frameworks
2371
Sharing JSON validation scenarios
1427
Sharing project level options
266
Sharing project options file
723
Minimize differences between versions
725
Sharing publishing templates
1940, 2033
Sharing Schematron Quick Fixes
1492
Sharing Schematron rules
1465
Sharing settings
266
Sharing Transformation Scenarios
723
Sharing Validation Scenarios
723
Sharing XML refactoring operations
1172, 2715
Shortcut actions in Text Mode
308, 832
Shortcut key configuration
248
Shortcut Keys
27
Show change tracking/comments in DocBook PDF
1674
Sign files tool
1179, 2756
Signing XML document preferences
223
Simple text editor
706
Single sign-on
701
Smart Editing in Text Mode
307, 831
Smart paste preferences
137
Smart Paste support in Author Mode
Operations
Refactoring actions
Restricting operations
Search actions
Sharing
Use-When Condition
User Entry operation
Validation
SQF attribute: use-for-each
SQF multi-lingual support
SQL transformation scenario
SSH connection settings
StackOverflowException error
Startup parameter
Application launcher parameters
Command-line script parameters
Custom startup parameters file
Startup parameters
Status information
Storing global options
Storing project level options
Storing XML refactoring operations
StratML documents
Editing features
Styles Filter plugin extension
Styles in Author mode
Supported document types
Supported processors for XSLT/XQuery
document debugging
SVG files
SVG Viewer
SVG viewer in Results panel
SVG Viewer in Results panel
SVG Viewer tool
SVN Client
Authentication
Branches/Tags
Create branch/tag
Exporting resources
Importing resources
Manage resources
Merging 2860
Patching 2878
Relocate working copy 2877
Switch repository location 2875
Checking out a working copy 2829
Define a working copy 2828
Entering local paths and URLs 2937
History dialog box 2831
Manage repository locations 2823
Menus 2807
Preferences 2937
Properties 2857
Request history for a resource 2856
Request status information for a resource 2856
Resource History view
   Directory Change Set view 2921
Revision Graph 2933
Share projects 2826
Sparse checkouts 2895
Status bar 2823
Synchronize with the SVN repository
Conflicts 2840
Integrating bug tracking tools 2854
Send changes to repository 2851
Update working copy 2850
View differences 2840
Technical issues 2939
Toolbar 2821
Use an existing working copy 2832
Views 2807
Annotations view 2924,2932
Compare Images view 2930
Compare view 2926
Dynamic Help view 2932
Editor view 2923
History view 2917
Image Preview panel 2930
Properties view 2930
Repositories view 2897
Working Copy view 2902
Working copy resource management
Add resources
Copy resources
Delete resources
Edit files
Ignore resources
Lock/Unlock resources
Move resources
Rename resources
SVN message preferences
SVN preferences
Switch file tabs
Syntax highlight preferences
Syntax highlighting in Text Mode
Syntax highlights in codeblocks
Syntax highlights in Text mode
System properties
Table editing features in Author Mode
Table Explorer view
Tables in Author Mode
Tags Display Mode
Tags transparency selector
TEI ODD document type
Author mode actions
TEI ODD menu actions
TEI ODD toolbar actions
TEI P5 document type
Author mode actions
TEI P5 menu actions
TEI P5 toolbar actions
TEI tables in Author Mode
Templates tab
Testing plugins and Java extensions
Text editing mode
Attributes view
Bidirectional text
Content completion
Contextual menu actions
Drag and Drop
Editing XML markup
Elements view
329, 355,853
Entities view
330, 356, 433, 479, 854,934
File related actions
367,861
Folding
315,840
Format and indent
369,863
Format and indent multiple files
375, 869,2741
Highlight ID occurrences
379,873
Lock/Unlock XML tags
369,863
Manage highlighted content
377,871
Markup transparency
368,862
Model view
325, 353, 430, 472, 849,927
Navigation
304,828
Rectangular selection
317,841
Schema annotations
323,847
Selecting content
317,841
Set indent to zero
375,869
Shortcut actions
308,832
Smart Editing
307,831
Special characters
366,776
Syntax highlighting
362,857
Syntax highlights
363
Validation errors
364,1084
Views
333
Text mode preferences
127
Three-way directory comparison and merge tool
814,2798
Three-way file comparison
786,2770
Toolbar configuration
273,673
Touch Bar on Mac
2970
Track Changes feature in Author Mode
484,943
Trackpad scroll function doesn't work on Lenovo Thinkpad
2975
Transform DITA document to MS Word
1663,3192
Transformation parameters
2018
Transformation Scenarios
1640
Ant
1718
Apply transformation scenarios
1761
Batch transformation
1767
Built-in transformation scenarios
1641
Configure
1758
Configure Transformation Scenario dialog box
Configure XSLT processor extension paths
1690, 1738
Custom XSLT processor
1689, 1737
Debugging PDF transformations
2179
DITA map
1642, 3172
DITA Map to CHM (Compiled Help)
1664, 3194
DITA Map to Kindle
1665, 3194
DITA Map to MS Office Word
1663, 3192
DITA Map to PDF
1662, 3192
DITA Map to PDF - based on DITA & CSS (WYSIWYG)
1659, 3189
DITA Map to PDF - based on HTML5 & CSS
1657, 3186
DITA Map to WebHelp Classic
1652, 3181
DITA Map to WebHelp Responsive
1643, 3173
DITA OT
1702, 3195
DocBook
1667
DocBook PDF - Show Change Tracking and Comments
1674
DocBook to DITA
1671
DocBook to EPUB
1673
DocBook to PDF
1672
DocBook to WebHelp
1668
DOCX DITA
3271
Duplicate
1670
Integrate external XProc engine
1747
New
1674
Run DITA OT Integrator
1665
Sharing
1768
SQL
1757
Supported XSLT processors
1686, 1734
XML to PDF with CSS
1699
XML with XQuery
1690
XML with XSLT
1690
XProc
1742
XQuery
1749
XSLT
1722
Transformation Scenarios view
1768
Transformation types
1758
Transforming Documents
1640
Translating annotations for the Content Completion Assistant
2369
Translating DITA content
3264
Translation package builder add-on 1428
Tree editor preferences 1427
Tree Editor tool 1421
Trusted hosts connection settings 1452
Two-way file comparison 1079
Unicode support 1081
Uninstalling Oxygen 1081
Upgrading Oxygen 1108,1469
Uppercase plugin 1464
URL Stream Handler plugin extension 1089
Use-When SQF Condition 445,1086
User Entry SQF operation 1082
User roles in Author Mode 1089
Using a floating license offline 1094
UTF-8 BOM handling 1089
Validating JSON Documents against a schema 1100
Validating JSON Documents against a schema with embedded Schematron 1106
Validating JSON schema 1105
Validating XML Documents 364,1084
Validating XML Documents against a schema 1187
Validating XML Documents against Schematron 1187
Author Mode 445,1086
Automatic validation 1082
Check Well-formedness 1094
Create new validation scenarios 1094
Custom validators 1094
Customizing error messages 1094
Edit validation scenarios 1094
Manual validation 1094
Resolving references to remote schemas 1094
Sharing scenarios 1094
Text Mode 1094
Validating XSLT that call Java extensions 1094
Validation engine 'StackOverflowException' error
183
Validation errors in Author mode
445,1086
Validation errors in Text mode
364,1084
Validation preferences
180
Verify Signature tool
1181,2758
Visual hints in Author mode
443,901

W
WebDAV connection
2254
WebDAV connection settings
256
WebDAV contextual menu actions
2255
WebDAV over HTTPS
697
WebHelp Classic
1773
Add custom HTML content
1810
Add Favicon
1818
Add logo image
1819
Add video and audio objects in DITA
1821
Add videos in DocBook
1823
Adding additional resources
1823
Changing icons in the table of contents
1815
Context-Sensitive
1786

Customize highlights in the table of contents
1817
Customize ordered lists
1814
Customizing
Overriding the XSLT processing step
1847
Disable caching
1853
Edit scoring in search results
1825
Exclude DITA topics from search results
1826
Flag DITA content
1854
Indexing Japanese content
1829
Integrate Facebook
1836
Integrate Google +
1839
Integrate Google Analytics
1843
Integrate Google Search
1845
Integrate Twitter
1840
Layout and features
1773
Localize email notifications
1830
Localizing the interface for DITA transformations
1832
Localizing the interface for DocBook transformations
1835
MathML
1824,1967
<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Navigation links</td>
<td>1781</td>
</tr>
<tr>
<td>Overriding the XSLT processing step</td>
<td>1847</td>
</tr>
<tr>
<td>Previous/Next arrows</td>
<td>1818</td>
</tr>
<tr>
<td>Publishing on SharePoint Site</td>
<td>1856</td>
</tr>
<tr>
<td>Right-to-Left languages</td>
<td>1836</td>
</tr>
<tr>
<td>Search engine optimization</td>
<td>1827</td>
</tr>
<tr>
<td>Skin Builder</td>
<td>1806</td>
</tr>
<tr>
<td>Use custom CSS</td>
<td>1809</td>
</tr>
<tr>
<td>WebHelp Classic with Feedback</td>
<td>1772</td>
</tr>
<tr>
<td>Deploying</td>
<td>1780,1873</td>
</tr>
<tr>
<td>Installing</td>
<td>1780,1873</td>
</tr>
<tr>
<td>WebHelp feature matrix</td>
<td>1772</td>
</tr>
<tr>
<td>WebHelp Jenkins integration</td>
<td>1799,1932</td>
</tr>
<tr>
<td>WebHelp Responsive</td>
<td>1857</td>
</tr>
<tr>
<td>Adding audio objects</td>
<td>1964</td>
</tr>
<tr>
<td>Adding favicon</td>
<td>1963</td>
</tr>
<tr>
<td>Adding logo</td>
<td>1962</td>
</tr>
<tr>
<td>Adding publishing templates to gallery</td>
<td>1938</td>
</tr>
<tr>
<td>Adding videos</td>
<td>1964</td>
</tr>
<tr>
<td>Adding welcome message</td>
<td>1956</td>
</tr>
<tr>
<td>Built-in templates</td>
<td>1893</td>
</tr>
<tr>
<td>Changing numbers for ordered lists</td>
<td>1952</td>
</tr>
<tr>
<td>Changing scoring values in search results</td>
<td>1967</td>
</tr>
<tr>
<td>Context-sensitive help</td>
<td>1879</td>
</tr>
<tr>
<td>Converting old publishing templates</td>
<td>1940,1941</td>
</tr>
<tr>
<td>Copy resources to output directory</td>
<td>1961</td>
</tr>
<tr>
<td>Creating publishing templates</td>
<td>1935,2029</td>
</tr>
<tr>
<td>CSS styling</td>
<td>1942</td>
</tr>
<tr>
<td>Custom templates</td>
<td>1893</td>
</tr>
<tr>
<td>Customizing main page layout</td>
<td>1954</td>
</tr>
<tr>
<td>Customizing output with CSS</td>
<td>1942</td>
</tr>
<tr>
<td>Customizing output with HTML content</td>
<td>1944</td>
</tr>
<tr>
<td>Customizing the footer</td>
<td>1957</td>
</tr>
<tr>
<td>Customizing the menu</td>
<td>1954</td>
</tr>
<tr>
<td>Customizing the tiles</td>
<td>1959</td>
</tr>
<tr>
<td>Deploying on SharePoint</td>
<td>2002</td>
</tr>
<tr>
<td>Edit link to launch Web Author</td>
<td>1998</td>
</tr>
<tr>
<td>Editing publishing templates</td>
<td>1937,2031</td>
</tr>
<tr>
<td>Excluding topics from search results</td>
<td>1968</td>
</tr>
<tr>
<td>Facebook Like button</td>
<td>1977</td>
</tr>
<tr>
<td>Flagging DITA content</td>
<td>4027</td>
</tr>
</tbody>
</table>
2000
Google Analytics
1984
Google Search
1985
Google+ button
1979
Index terms layout page
1868
Inserting HTML
1944
Localizing interface
1974
Main layout page
1859
MathML
1824, 1967
Navigation links
1953
Optimizing Japanese content indexing
1971
Optimizing search results
1969
Previous/Next arrows
1953
Publishing template descriptor file
1895
Publishing template HTML fragment
extensions
1902
Publishing template HTML page layout files
1909
Publishing template package
1895
Publishing template resources
1899
Publishing template transformation parameters
1901
Publishing template XSLT extensions
1902
Publishing templates could not be loaded
1941
Publishing templates troubleshooting
1941
Right-to-left languages
1977
Search features
1870
Search layout page
1865
Search rules
1870
Sharing publishing templates
1940, 2033
Sharing templates
1893
Topic layout page
1862
Transformation parameters
2003
Tweet button
1981
Using publishing templates from command line
1938
XSLT-Import extension point
2010
XSLT-import extension points
1988
XSLT-Parameter extension point
2010
WebHelp Responsive Templates tab
Save template as button
1707, 3201
WebHelp Responsive with Feedback
Comments section
1872
Deploying
1780, 1873
Installing
1780,1873
Localizing email notifications
1972
WebHelp Travis CI integration
1800,1933
Whitespace handling in Author mode
447,902
Workspace Access (JS-based) plugin extension
2587
Workspace Access plugin extension
2583
WSDL documents
1354
Component Dependencies view
1365
Content completion
1356
Editing in Master Files context
1355
Generate documentation for WSDL documents
1371,2751
Custom format
1375
From command line
1376
HTML format
1374
Highlight occurrences
1367
Moving resources
1365
Outline view
1358
Quick Assist feature
1370
Refactoring actions
1367
Renaming resources
1365
Resource Hierarchy/Dependencies view
1363
Search actions
1367
SOAP analyzer
1376,2758
Test remote files
1379,2761
UDDI Registry Browser
1379,2762
Syntax highlighting
1358
Validation
1356
WSDL SOAP Analyzer tool
1376,2758
Test remote files
1379,2761
UDDI Registry Browser
1379,2762
XHTML document type
1604
Author mode actions
1605
XHTML menu actions
1605
XHTML tables in Author Mode
554,1013
XHTML toolbar actions
1605
XInclude
1133,1135
XInclude 1.1 features
1135
XLIFF documents
Editing features
1453
XML catalog preferences 189
XML Catalogs 1123
XML documents 827
  Associate schema 1112
  Associate schema directly in XML documents 1120
  Associate schema in a framework configuration 1121
  Associate schema in a validation scenario defined in framework 1118
  Associate schema through a validation scenario 1114
Author Mode editing 893
  Adding media resources 596,1055
  Apply profiling attributes 515,973
  Apply profiling condition sets 519,978
  Attributes view 426, 474,929
  Content completion 466,921
  Contextual menu actions 606,1065
  Create/Edit profiling attributes 511,970
  Create/Edit profiling condition sets 517,975
  Drag and Drop 463,918
  Editing attributes 460,915
  Editing content 449,903
  Editing XML markup 451,906
  Elements view 432, 478,933
  Entities view 330, 356, 433, 479, 854,934
  Find/Replace text 482,941
  Folding 461,916
  Form Controls 604,1063
  Generating IDs 601,1060
  Image Map Editor 570,1029
  DITA 571, 1030,3069
  DocBook 578,1037
  TEI 584,1043
  XHTML 589,1048
  Image rendering 563,1022
  AI images 568,1026
  CGM images 565,1024
  EPS images 568,1026
  JAI images 568,1027
  PDF images 566,1025
<table>
<thead>
<tr>
<th>Topic</th>
<th>Page Numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>PSD images</td>
<td>567,1026</td>
</tr>
<tr>
<td>Inserting images</td>
<td>562,1021</td>
</tr>
<tr>
<td>MathML</td>
<td>598,1057</td>
</tr>
<tr>
<td>MathML equations in HTML output</td>
<td>600,1059</td>
</tr>
<tr>
<td>Model view</td>
<td></td>
</tr>
<tr>
<td>Navigation</td>
<td>405,895</td>
</tr>
<tr>
<td>Profiling</td>
<td>510,969</td>
</tr>
<tr>
<td>Profiling colors and styles</td>
<td>524,983</td>
</tr>
<tr>
<td>Profiling/Conditional Text menu</td>
<td>521,980</td>
</tr>
<tr>
<td>Refreshing content</td>
<td>601,1060</td>
</tr>
<tr>
<td>Rendering documents</td>
<td>403,894</td>
</tr>
<tr>
<td>Review tools</td>
<td>483,941</td>
</tr>
<tr>
<td>Callouts</td>
<td>499,958</td>
</tr>
<tr>
<td>Comments</td>
<td>494,952</td>
</tr>
<tr>
<td>Highlights</td>
<td>498,956</td>
</tr>
<tr>
<td>Review view</td>
<td>506,964</td>
</tr>
<tr>
<td>Track Changes</td>
<td>484,943</td>
</tr>
<tr>
<td>Schema annotations</td>
<td>470,925</td>
</tr>
<tr>
<td>Selecting content</td>
<td>465,920</td>
</tr>
<tr>
<td>Set schema for content completion</td>
<td>469,924</td>
</tr>
<tr>
<td>Smart Paste</td>
<td>463,918</td>
</tr>
<tr>
<td>Tables</td>
<td>525,984</td>
</tr>
<tr>
<td>DITA</td>
<td>540,999,3076</td>
</tr>
<tr>
<td>DocBook</td>
<td>528,987</td>
</tr>
<tr>
<td>Editing features</td>
<td>526,985</td>
</tr>
<tr>
<td>Sorting a table</td>
<td>558,1017</td>
</tr>
<tr>
<td>Sorting list items</td>
<td>561,1020</td>
</tr>
<tr>
<td>Sorting selected table rows</td>
<td>559,1018</td>
</tr>
<tr>
<td>Sorting tables with merged cells</td>
<td>561,1020</td>
</tr>
<tr>
<td>TEI</td>
<td>557,1016</td>
</tr>
<tr>
<td>XHTML</td>
<td>554,1013</td>
</tr>
<tr>
<td>User roles</td>
<td>403,893</td>
</tr>
<tr>
<td>Using Retina/HiDPI Images</td>
<td>569,1028</td>
</tr>
<tr>
<td>Code templates</td>
<td>331,480,855,935</td>
</tr>
<tr>
<td>DTD Entities</td>
<td>1133,1133</td>
</tr>
<tr>
<td>Editing in Master Files context</td>
<td>1126</td>
</tr>
<tr>
<td>Grid Mode editing</td>
<td>886</td>
</tr>
<tr>
<td>Content Completion Assistant</td>
<td>401,891</td>
</tr>
<tr>
<td>Copy/Paste</td>
<td>399,889</td>
</tr>
<tr>
<td>Drag and Drop</td>
<td>398,889</td>
</tr>
</tbody>
</table>
Editing actions
395,886
Export to Excel
401,892
Learn document structure
1122
Moving resources
1133
Outline view
347, 422, 858,937
Quick Assist feature
378,872
Quick fix support
1109
Refactoring
1139,2687
Built-in operations
1142,2690
Custom operations
1153,2701
Localizing operations
1173,2716
Sharing operations
1172,2715
Storing operations
1172,2715
Renaming resources
1133
Resolve schemas through XML catalogs
1126
Resource Hierarchy/Dependencies view
1130
Search actions for IDs
1127
Text Mode editing
828
Attributes view
327, 351,851
Content completion
319,844
Contextual menu actions
379,873
Drag and Drop
316,841
Editing XML markup
310,835
Elements view
329, 355,853
Entities view
330, 356, 433, 479, 854,934
File related actions
367,861
Folding
315,840
Format and indent
369,863
Format and indent multiple files
375, 869,2741
Highlight ID occurrences
379,873
Lock/Unlock XML tags
369,863
Manage highlighted content
377,871
Markup transparency
368,862
Model view
325, 353, 430, 472, 849,927
Navigation
304,828
Rectangular selection
317,841
Schema annotations
323,847
Selecting content
317,841
Set indent to zero
375,869
Shortcut actions
308,832
<table>
<thead>
<tr>
<th>Feature</th>
<th>Page Numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Smart Editing</td>
<td>307,831</td>
</tr>
<tr>
<td>Syntax highlighting</td>
<td>362,857</td>
</tr>
<tr>
<td>Validation</td>
<td>1079</td>
</tr>
<tr>
<td>Against a schema</td>
<td>1081</td>
</tr>
<tr>
<td>Against a schema with embedded Schematron</td>
<td>1108,1469</td>
</tr>
<tr>
<td>Author Mode</td>
<td>445,1086</td>
</tr>
<tr>
<td>Automatic validation</td>
<td>1082</td>
</tr>
<tr>
<td>Check Well-formedness</td>
<td>1079</td>
</tr>
<tr>
<td>Create new validation scenario</td>
<td>1094</td>
</tr>
<tr>
<td>Custom validators</td>
<td>1089</td>
</tr>
<tr>
<td>Customizing error messages</td>
<td>1089</td>
</tr>
<tr>
<td>Edit validation scenario</td>
<td>1100</td>
</tr>
<tr>
<td>Manual validation</td>
<td>1082</td>
</tr>
<tr>
<td>Resolving references to remote schemas</td>
<td>1106</td>
</tr>
<tr>
<td>Sharing scenarios</td>
<td>1105</td>
</tr>
<tr>
<td>Text Mode</td>
<td>364,1084</td>
</tr>
<tr>
<td>XInclude</td>
<td>1133,1135</td>
</tr>
<tr>
<td>XML catalogs</td>
<td>1123</td>
</tr>
<tr>
<td>XML documents without a schema</td>
<td>1122</td>
</tr>
<tr>
<td>XML parser preferences</td>
<td>191</td>
</tr>
<tr>
<td>XML refactoring preferences</td>
<td>224</td>
</tr>
<tr>
<td>XML Refactoring tool</td>
<td>1139,2687</td>
</tr>
<tr>
<td>Validation</td>
<td>1079</td>
</tr>
<tr>
<td>Against a schema</td>
<td>1081</td>
</tr>
<tr>
<td>Against a schema with embedded Schematron</td>
<td>1108,1469</td>
</tr>
<tr>
<td>Author Mode</td>
<td>445,1086</td>
</tr>
<tr>
<td>Automatic validation</td>
<td>1082</td>
</tr>
<tr>
<td>Check Well-formedness</td>
<td>1079</td>
</tr>
<tr>
<td>Create new validation scenario</td>
<td>1094</td>
</tr>
<tr>
<td>Custom validators</td>
<td>1089</td>
</tr>
<tr>
<td>Customizing error messages</td>
<td>1089</td>
</tr>
<tr>
<td>Edit validation scenario</td>
<td>1100</td>
</tr>
<tr>
<td>Manual validation</td>
<td>1082</td>
</tr>
<tr>
<td>Resolving references to remote schemas</td>
<td>1106</td>
</tr>
<tr>
<td>Sharing scenarios</td>
<td>1105</td>
</tr>
<tr>
<td>Text Mode</td>
<td>364,1084</td>
</tr>
<tr>
<td>XInclude</td>
<td>1133,1135</td>
</tr>
<tr>
<td>XML catalogs</td>
<td>1123</td>
</tr>
<tr>
<td>XML documents without a schema</td>
<td>1122</td>
</tr>
<tr>
<td>XML parser preferences</td>
<td>191</td>
</tr>
<tr>
<td>XML refactoring preferences</td>
<td>224</td>
</tr>
<tr>
<td>XML Refactoring tool</td>
<td>1139,2687</td>
</tr>
<tr>
<td>Validation</td>
<td>1079</td>
</tr>
<tr>
<td>Against a schema</td>
<td>1081</td>
</tr>
<tr>
<td>Against a schema with embedded Schematron</td>
<td>1108,1469</td>
</tr>
<tr>
<td>Author Mode</td>
<td>445,1086</td>
</tr>
<tr>
<td>Automatic validation</td>
<td>1082</td>
</tr>
<tr>
<td>Check Well-formedness</td>
<td>1079</td>
</tr>
<tr>
<td>Create new validation scenario</td>
<td>1094</td>
</tr>
<tr>
<td>Custom validators</td>
<td>1089</td>
</tr>
<tr>
<td>Customizing error messages</td>
<td>1089</td>
</tr>
<tr>
<td>Edit validation scenario</td>
<td>1100</td>
</tr>
<tr>
<td>Manual validation</td>
<td>1082</td>
</tr>
<tr>
<td>Resolving references to remote schemas</td>
<td>1106</td>
</tr>
<tr>
<td>Sharing scenarios</td>
<td>1105</td>
</tr>
<tr>
<td>Text Mode</td>
<td>364,1084</td>
</tr>
<tr>
<td>XInclude</td>
<td>1133,1135</td>
</tr>
<tr>
<td>XML catalogs</td>
<td>1123</td>
</tr>
<tr>
<td>XML documents without a schema</td>
<td>1122</td>
</tr>
<tr>
<td>XML parser preferences</td>
<td>191</td>
</tr>
<tr>
<td>XML refactoring preferences</td>
<td>224</td>
</tr>
<tr>
<td>XML Refactoring tool</td>
<td>1139,2687</td>
</tr>
<tr>
<td>Validation</td>
<td>1079</td>
</tr>
<tr>
<td>Against a schema</td>
<td>1081</td>
</tr>
<tr>
<td>Against a schema with embedded Schematron</td>
<td>1108,1469</td>
</tr>
<tr>
<td>Author Mode</td>
<td>445,1086</td>
</tr>
<tr>
<td>Automatic validation</td>
<td>1082</td>
</tr>
<tr>
<td>Check Well-formedness</td>
<td>1079</td>
</tr>
<tr>
<td>Create new validation scenario</td>
<td>1094</td>
</tr>
<tr>
<td>Custom validators</td>
<td>1089</td>
</tr>
<tr>
<td>Customizing error messages</td>
<td>1089</td>
</tr>
<tr>
<td>Edit validation scenario</td>
<td>1100</td>
</tr>
<tr>
<td>Manual validation</td>
<td>1082</td>
</tr>
<tr>
<td>Resolving references to remote schemas</td>
<td>1106</td>
</tr>
<tr>
<td>Sharing scenarios</td>
<td>1105</td>
</tr>
<tr>
<td>Text Mode</td>
<td>364,1084</td>
</tr>
<tr>
<td>XInclude</td>
<td>1133,1135</td>
</tr>
<tr>
<td>XML catalogs</td>
<td>1123</td>
</tr>
<tr>
<td>XML documents without a schema</td>
<td>1122</td>
</tr>
<tr>
<td>XML parser preferences</td>
<td>191</td>
</tr>
</tbody>
</table>
Editing in Master Files context
1286
Flatten Schema tool
1329,2730
Generate documentation for XML Schema
1313,2742
Customize PDF output for DITA
1323
Customize PDF output for DocBook
1322
From command line
1323
Output formats
1317
Generate Sample XML Files tool
1306,2717
Advanced tab
1310,2722
From command line
1311,2723
Options tab
1307,2719
Schema tab
1306,2718
Generate/Convert Schema tool
1325,2727
Highlight occurrences
1302
Moving resources
1299
Outline view
625,1290
Quick Assist feature
1304
Refactoring actions
1302
Regular Expressions Builder
1332,2763
Renaming resources
3299
Resource Hierarchy/Dependencies view
1297
Search actions
1302
Set version
1335
Syntax highlighting
1289
Text mode editing
1286
Validation
1287
XML Schema 1.1 support
1334
XML to JSON tool
1440,2736
XML to PDF with CSS transformation scenario
1699
CSS tab
1700
Output tab
1701
XML transformation with XQuery
1690
XML transformation with XSLT
1674
XPath Expressions
2182
Catalogs
2189
Prefix mapping
2190
Toolbar
2182
XPath Builder view
2185
XPath Results view
2188
XProc Scripts
Editing features
1459
XProc transformation scenario
1742
Inputs tab
1744
Options tab
1746
Outputs tab
1745
Parameters tab
1744
XProc tab
1743
XQuery
1337
Content completion
1338
Folding
1340
Format and Indent
1340
Generate HTML documentation
1349, 2750
Input view
1346
Outline view
1341
Sequence view
1350
Syntax highlighting
1339
Transformations
1350
Sequence view
1350
Updating XML documents
1354
XQJ
2263
Updating XML documents
1354
Validation
1337
XQuery Builder view
1343
XQuery Debugger perspective
299, 2290
Breakpoints
2313
Debugging Java extensions
2320
Identify expressions
2310
Information views
2296
Breakpoints view
2297
Context view
2298
Messages view
2300
Nodes/Values Set view
2306
Output Mapping Stack view
2302
Stack view
2301
Templates view
2305
Trace view
2304
Variables view
2307
XPath Watch view
2299
Layout
2291
Performance profiling
2314
Profiling
Hotspots view
2318
Invocation Tree view
2316
Steps in a typical debugging process
2309
Toolbar
2293
XQuery Documentation tool
1349,2750
XQuery preferences
208
XQuery Profiler preferences
213
XQuery transformation scenario
1749
FO Processor tab
1697,1755
Output tab
1697,1756
XQuery tab
1691,1750
XSL-FO processor
1738
xsl:sort for exotic languages
2684
XSLT
Component Dependencies view
1207
Component documentation
1210
Content completion
1190
Content completion in XPath expressions
1192
Editing features
1183
Editing in Master Files context
1184
Generate documentation for XSLT stylesheets
1223,2746
Custom format
1229
From command line
1230
HTML format
1227
Highlight occurrences
1209
Input view
1202
Moving resources
1206
Outline view
1197
Quick Assist feature
1218
Quick fix support
1187
Refactoring actions
1213
Renaming resources
1206
Resource Hierarchy/Dependencies view
1204
Search declarations
1209
Search references
1209
Syntax highlighting
1197
Text Value Templates
1212
Unit test (XSpec)
1220
Validating XSLT that call Java extensions
1187
Validating XSLT with custom engines
Validation
1184
XPath Tooltip Helper
1195
XSLT Debugger perspective
297,2290
Breakpoints
2313
Debugging Java extensions
2320
Debugging XSLT that call Java extensions
2319
Identify expressions
2310
Information views
2296
Breakpoints view
2297
Context view
2298
Messages view
2300
Nodes/Values Set view
2306
Output Mapping Stack view
2302
Stack view
2301
Templates view
2305
Trace view
2304
Variables view
2307
XPath Watch view
2299
Layout
2291
Performance profiling
2314
Profiling
Hotspots view
2318
Invocation Tree view
2316
Steps in a typical debugging process
2309
Supported processors
2320
Toolbar
2293
XSLT preferences
200
XSLT Profiler preferences
213
XSLT transformation scenario
1722
FO Processor tab
1684,1732
Output tab
1685,1733
XSLT tab
1675,1723
XSLTProc preferences
204
XSpec Helper View add-on
2685
XSpec Test Results view
2685
Y
Your first DITA document
13,2982
Copyright

Oxygen XML Editor User Manual

Syncro Soft SRL.

Copyright © 2002-2019 Syncro Soft SRL. All Rights Reserved.

All rights reserved. No parts of this work may be reproduced in any form or by any means - graphic, electronic, or mechanical, including photocopying, recording, taping, or information storage and retrieval systems - without the written permission of the publisher. Products that are referred to in this document may be either trademarks and/or registered trademarks of the respective owners. The publisher and the author make no claim to these trademarks.

Trademarks. Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where those designations appear in this document, and Syncro Soft SRL was aware of a trademark claim, the designations have been rendered in caps or initial caps.

Notice. While every precaution has been taken in the preparation of this document, the publisher and the author assume no responsibility for errors or omissions, or for damages resulting from the use of information contained in this document or from the use of programs and source code that may accompany it. In no event shall the publisher and the author be liable for any loss of profit or any other commercial damage caused or alleged to have been caused directly or indirectly by this document.

Link disclaimer. Syncro Soft SRL is not responsible for the contents or reliability of any linked Websites referenced elsewhere within this documentation, and Syncro Soft SRL does not necessarily endorse the products, services, or information described or offered within them. Syncro Soft cannot guarantee that these links will work all the time and has no control over the availability of the linked pages.

Warranty. Syncro Soft SRL provides a limited warranty on this product. Refer to your sales agreement to establish the terms of the limited warranty. In addition, Oxygen XML Editor End-User License Agreement, as well as information regarding support for this product, while under warranty, is available through the Oxygen XML Editor End-User License Agreement.

Third-party components. Certain software programs or portions thereof included in the Product may contain software distributed under third-party agreements ("Third-Party Components"), which may contain terms that expand or limit rights to use certain portions of the Product ("Third-Party Terms"). Information identifying Third-Party Components and the Third-Party Terms that apply to them is available on the Third-party License Agreements webpage.

Terms and conditions. For the terms and conditions for using Oxygen XML Editor, see Oxygen XML Editor End-User License Agreement.
**Documentation.** For the most current versions of documentation, see the *Oxygen XML Editor User Manual.*

**Contact Syncro Soft SRL.** Syncro Soft SRL provides telephone numbers and e-mail addresses for you to report problems or to ask questions about your product, see the *Oxygen support webpage.*