
DITA Gradle and Git
DITA-OT day 2018 - Rotterdam

The company - L-Acoustics

French company based near Paris.

Leader in professional audio solutions.

Lorde Melodrama
tour

Paris fashion
week

Hollywood bowl

The team – the work

We are
-> 5 tech writers (2 apprentices)
-> 1 information architect / toolsmith
-> embedded in R&D

We produce
-> PDFs (user and maintenance manuals, marketing documents)
-> HTML5 (embedded help)

Tools

Docs as Code!

-> Using software tools to build documentation.

-> Leveraging the software team DevOps capability.

-> No CCMS.

Tools

Git

Artifactory

Gradle

Gitlab Runner

Tools – Git

Decentralized version control system.

Widely used today in software development.

Authored files are stored here.

Each system/software has its own repository.

Tools – Artifactory

Package repository manager.

Store resources created from other sources.

Handles dependency declaration.

Compatible with Gradle.

Tools – Gradle

Open-source build automation system.

Groovy-based with a task oriented syntax.

Eero Helenius DITA-OT and Saxon plug-ins.

Used by the DITA-OT team!

Tools – Gitlab runner

GitLab Continuous Integration solution.

Integrated with Git concepts.

Uses the same Gradle build as the author.

Basic web platform to trigger publishing.

Source management - Git

Product1-head

Boilerplate

Variables

Product1

Generated

Product2-head

Boilerplate

Variables

Product2

Product1

We make extensive
use of submodules.

Maps and build files
in super-projects

Topics and resources
in submodules

Generated resources are
handles as artifacts

Source management - Artifactory

Generated content is stored in Artifactory.

ERP

Firmware

Other XML

doc-release

doc-snapshot

doc-test

DITA-OT plug-ins

One document type = one transform

-> 34 plug-ins with transforms

Each feature block has a plug-in

-> 64 plug-ins in total

DITA-OT plug-ins

How do we deal?

Dependency
management!

+--- com.lgroup:help:2.6

| +--- com.lgroup:base:1.3

| +--- com.lgroup:l-html:+ -> 1.2

| | +--- com.lgroup:boilerplate:+ -> 1.0

| | +--- com.lgroup:strings:+ -> 1.0

| | \--- com.oxygenxml:html.embed:+ -> 1.0

| +--- com.lgroup:help.css:+ -> 1.2

| +--- com.lgroup:videoJs:+ -> 1.0

| \--- com.lgroup:bootstrap:3.4

\--- com.oxygenxml:media:+ -> 2.0

DITA-OT plug-ins

+--- com.lgroup:help:2.6

| +--- com.lgroup:base:1.3

| +--- com.lgroup:l-html:+ -> 1.2

| | +--- com.lgroup:boilerplate:+ -> 1.0

| | +--- com.lgroup:strings:+ -> 1.0

| | \--- com.oxygenxml:html.embed:+ -> 1.0

| +--- com.lgroup:help.css:+ -> 1.2

| +--- com.lgroup:videoJs:+ -> 1.0

| \--- com.lgroup:bootstrap:3.4

\--- com.oxygenxml:media:+ -> 2.0

Dependencies built by a
saxon-gradle task from
the plug-in <require>
element.

Uploaded to Artifactory and
installed in a local Maven repo.

DITA-OT plug-ins

Plug-ins dependencies are resolved by the Gradle build.

They are copied in the DITA-OT plugins folder.

The dita --install command is executed.

DITA-OT plug-ins – development

Developer

Git branch in plug-in repo.

Git branch in build repo.

Plug-ins published to test repo.

Tester

Git branch in build repo

The developer creates a branch in

the build repo and changes the

version numbers of the updated

plug-ins.

Build

Based on the dita-ot-gradle plug-in by Eero Helenius.

-> input is a list of files

-> picks up files with the same name as the input
(properties, ditaval)

-> great developer!

Build

Gradle handles all dependencies

-> DITA-OT

-> plug-ins

-> generated content

All dependencies are declared in two files.

Build – configuration files

deps.gradle

Build – configuration files

deps.gradle

input lists

Build – configuration files

deps.gradle

input lists

content dependency

Build – configuration files

deps.gradle

input lists

content dependency

plug-in from Github

Build – configuration files

*_publi.ditamap

Build – configuration files

*_publi.ditamap

transtype

Build – configuration files

*_publi.ditamap

parameters

transtype

Build – local vs server

Authors clone the build Git repository.

-> A gradle wrapper is included.

-> Available transtypes are listed in the build.

transtype

Build – authors

local build

$./gradlew buildAll

Authors set up their maps and update deps.gradle.

Only technical writers can build
locally.

Build – contributors

Content admins set up the map and deps.gradle.

Contributors
use XML
Web Author

Changes are
pushed to
the server in
a branch.

Branch is
picked up by
the Gitlab
runner

Gradle script
is executed
and output
is published.

Build – script outline

Gather variables
dependencies

Divide ditamaps
into recipes

Create
*.properties
files for each

ditamap

Download one
DITA-OT

instance per
recipe

Donwload and
install pluginsDITA transforms

Zip outputs and
publish to
Artifactory

Copy outputs on
a server for

review

CI-specific

Why it werks

We make time to develop our tools.

We work with the software team.

It is simple enough for our SMEs.

DITA is adopted by our company.

We have full ownership of our tools.

We document our processes.

What is missing?

On our side
-> A more comprehensive dashboard.
-> An xml database to query more efficiently.
-> Unit tests...

On the other side
-> Another indirection level in DITA(-OT).
-> A bare DITA-OT distribution build.

THANKS!

Questions?

Tools

https://github.com/eerohele/

https://gradle.org

https://docs.gitlab.com/ce/ci/quick_start/

http://metadita.org/toolkit/happyhtml-

background.html#why__newxform

Contact

lionel.moizeau@gmail.com

https://github.com/eerohele/
https://gradle.org/
https://docs.gitlab.com/ce/ci/quick_start/
http://metadita.org/toolkit/happyhtml-background.html#why__newxform
mailto:lionel.moizeau@gmail.com

	Diapositive numéro 1
	The company - L-Acoustics
	The team – the work
	Tools
	Tools
	Tools – Git
	Tools – Artifactory
	Tools – Gradle
	Tools – Gitlab runner
	Source management - Git
	Source management - Artifactory
	DITA-OT plug-ins
	DITA-OT plug-ins
	DITA-OT plug-ins
	DITA-OT plug-ins
	DITA-OT plug-ins – development
	Build
	Build
	Build – configuration files
	Build – configuration files
	Build – configuration files
	Build – configuration files
	Build – configuration files
	Build – configuration files
	Build – configuration files
	Build – local vs server
	Build – authors
	Build – contributors
	Build – script outline
	Why it werks
	What is missing?
	Diapositive numéro 32

