
Docs as Code
Documentation Management
Inspired by Software Development

© 2019 Syncro Soft SRL. All rights reserved.

Alex Jitianu
alex_jitianu@oxygenxml.com

@AlexJitianu

Docs as Code

Agenda
● What is Docs as Code
● Choosing a text markup language
● Version Control
● Continuous integration and delivery
● Example of a working Docs as Code setup

Docs as Code

Docs as Code
● Refers to a philosophy that you should be writing

documentation with the same tools and workflows as
code:
– Version Control
– Collaboration and Review Process
– Automated Tests, Builds, Delivery
– Issue Trackers
– Plain Text Markup

Docs as Code

Choosing a Suitable Text Markup
● Markdown
● Asciidoc
● XML

– Docbook
– DITA

Docs as Code

Why should I use a Version Control?
● Storing versions

– The basics of version control is the ability to save changes made
to files, whilst retaining the changes from all previous versions.

● Collaboration and review
● Understand what happened

Docs as Code

Which Version Control System?
● Git
● Mercurial
● Subversion (svn)

Docs as Code

In the Cloud or on Premise
● On premise Git repositories

– GitLab Community Edition (CE) is an open source end-to-end
software development platform with built-in version control, issue
tracking, code review, CI/CD, and more. Self-host GitLab CE on
your own servers, in a container, or on a cloud provider.

● Web-based Git repositories
– GitLab [https://about.gitlab.com/pricing]
– GitHub [https://github.com/pricing]
– Bitbucket [https://bitbucket.org/product/pricing]

https://about.gitlab.com/pricing
https://github.com/pricing
https://bitbucket.org/product/pricing

Docs as Code

Continuous Integration (CI)
● Changes are validated as soon as they are committed, by

creating a build and running automated tests.
– Helps avoid “integration hell” where the software works on

individual developers’ machines, but it fails when all developers
combine (or “integrate”) their code

● Puts a great emphasis on testing automation.

Docs as Code

What can we automate for a
documentation project?

● Quality checks

– Business rules (Schematron, Vale)
– Integrity checks (Validate and Check for Completeness)

● Reuse metrics
● Publishing pipelines

Docs as Code

Continuous Delivery (CD)
● The goal of CD is to make sure the software is always

ready to go to production
– You have automated your release process
– You can deploy your application at any point of time by clicking

on a button.

Docs as Code

CI/CD Platforms/Servers
● Jenkins
● Travis CI
● Netlify
● GitLab CI/CD

Docs as Code

Editing tools
● Any text processor
● GitLab, GitHub built-in text editors
● Commercial XML editors

– Oxygen Web Author
– Oxygen XML Editor

Docs as Code

Collaboration
● Using version control (Git)
● GitHub pull requests

– https://github.com/features/code-review/
● Using dedicated solutions (Oxygen Content Fusion,

Oxygen XML Web Author)

https://github.com/features/code-review/

Docs as Code

DEMO TIME
● Oxygen Content Fusion in action
● Oxygen Web Author in action

Docs as Code

Issue Tracking
● GitHub Issue Tracker

– https://github.com/oxygenxml/userguide/issues
● GitLab Issue Tracker

– https://gitlab.com/jitianualex83/my-test-project/issues
● Atlassian Jira

– https://www.atlassian.com/ro/software/jira

https://github.com/oxygenxml/userguide/issues
https://gitlab.com/jitianualex83/my-test-project/issues
https://www.atlassian.com/ro/software/jira

Docs as Code

Proposed Docs as Code setup
● Text Markup: DITA + Markdown
● Version control: GitHub
● Issues tracker: GitHub
● CI/CD : Netlify + SonarCloud
● Collaboration: Oxygen Web Author [links in published

 output]

Docs as Code

What can we automate for a
documentation project?

● Quality checks

– Business rules (Schematron, Vale)
– Integrity checks (Validate and Check for Completeness)

● Reuse metrics
● Publishing pipelines

Docs as Code

Netlify
A platform offering:
- Hosting (free!)
- Continuous Deployment from
a Git Repo

Docs as Code

SonarCloud
An open-source platform for continuous
inspection of code quality to perform automatic
reviews with static analysis of code to detect
bugs, code smells, and security vulnerabilities.

Docs as Code

DEMO TIME
● Deploy to Netlify our docs-as-code solution for

DITA and Markdown
● https://github.com/AlexJitianu/dita-meets-markdown

Docs as Code

SonarCloud Configuration
These details need to be filled in on a per-project basis
sonar.organization={sonarcloud.organization.name}
sonar.login={sonarcloud.auth.token}
sonar.projectKey={unique.project.name} !!!!!

Configration
sonar.sources=.
sonar.host.url=https://sonarcloud.io
sonar.exclusions=bin/**,scripts/**, demo-files/**
sonar.externalIssuesReportPaths=bin/tmp/sonar-schematron.json, bin/tmp-vcc/vcc-
result-sonar.json

Docs as Code

DEMO TIME
● Setup SonarCloud

– Create account
– https://sonarcloud.io/about

– Create organization
– https://sonarcloud.io/account/organizations

– Set permissions (Execute Analysis)
– https://sonarcloud.io/organizations/{organization-name}/permissions

– Generate Token
– https://sonarcloud.io/account/security/

https://sonarcloud.io/about
https://sonarcloud.io/account/organizations
https://sonarcloud.io/account/security/

Docs as Code

SonarCloud permissions

THANK YOU!
Any questions?

Alex Jitianu

alex_jitianu@oxygenxml.com

@AlexJitianu

© 2019 Syncro Soft SRL. All rights reserved.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	CI/CD
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24

