
Coffee break 10:30-11:00

Upgrade to better engine
SUCH DITA-OT

WOW

MUCH PREPROCESS

#ditaotday

TL;DR

Vanity Slide

Jarno Elovirta

jarno@elovirta.com @jelovirt https://github.com/jelovirt

Agenda

● DITA-OT at block level
● Disassembling preprocessing
● Expected work for 3.0
● Questions

Technology stack

● DITA-OT is a DITA processor implemented in Java, Ant, and XSLT

JVM

Ant

XSLT Java otherAnt

Processing modules and stages

● Instead of a single operation, input is processed in consecutive stages

● Preprocess step is common to all transtypes

preprocess base HTML HTMLHelp

PDF

HTML

Preprocessing

● Preprocessing prepares the content for transtype-specific processing
● Handles most of the functional features of DITA, like keyref or conref
● DITA spec doesn't mandate a processing order

TL;DR: Make complex DITA structures simple DITA structures

Generate lists & debug and filter (1/2)

● Initial processing steps that recursively read input
and linked resources

● Collect file metadata what each DITA topic or map
contains

.job.xml

● gen-list
● debug-filter
● mapref
● branch-filter
● copy-files
● keyref
● copy-to
● conrefpush
● conref
● profile
● topic-fragment
● chunk
● move-meta-entries
● maplink
● topicpull
● flag-module
● clean-map

Generate lists & debug and filter (2/2)

● Debug and filter step cleans, normalises, validates,
and serialises DITA into temporary directory

● By default also filters DITA content
● Since 2.4 copy-to processing has been split off

● gen-list
● debug-filter
● mapref
● branch-filter
● copy-files
● keyref
● copy-to
● conrefpush
● conref
● profile
● topic-fragment
● chunk
● move-meta-entries
● maplink
● topicpull
● flag-module
● clean-map

.job.xml

Resolve map references

● Resolves references from one DITA map to another
● Creates a single map that contains all topicrefs and

reltables for all maps

● gen-list
● debug-filter
● mapref
● branch-filter
● copy-files
● keyref
● copy-to
● conrefpush
● conref
● profile
● topic-fragment
● chunk
● move-meta-entries
● maplink
● topicpull
● flag-module
● clean-map

Branch filtering

● Filters topics using DITAVAL files defined in the map ● gen-list
● debug-filter
● mapref
● branch-filter
● copy-files
● keyref
● copy-to
● conrefpush
● conref
● profile
● topic-fragment
● chunk
● move-meta-entries
● maplink
● topicpull
● flag-module
● clean-map

Copy related files

● Copies non-DITA resources into output.
● Which files are copies depends on transtype

configuration.

● gen-list
● debug-filter
● mapref
● branch-filter
● copy-files
● keyref
● copy-to
● conrefpush
● conref
● profile
● topic-fragment
● chunk
● move-meta-entries
● maplink
● topicpull
● flag-module
● clean-map

Resolve key references

● Resolves keyrefs and conkeyrefs to populate link
URIs and text replacement.

<xref keyref="x">
↓

<xref href="foo.dita">

<p conkeyref="y/x">
↓

<p conref="b.dita#b/x">

● gen-list
● debug-filter
● mapref
● branch-filter
● copy-files
● keyref
● copy-to
● conrefpush
● conref
● profile
● topic-fragment
● chunk
● move-meta-entries
● maplink
● topicpull
● flag-module
● clean-map

Copy topics

● Makes a copy of original topic resources to new
resources defined by @copy-to attribute

<topicref href="foo.dita" copy-to="bar.dita">
↓

<topicref href="bar.dita">

● gen-list
● debug-filter
● mapref
● branch-filter
● copy-files
● keyref
● copy-to
● conrefpush
● conref
● profile
● topic-fragment
● chunk
● move-meta-entries
● maplink
● topicpull
● flag-module
● clean-map

● gen-list
● debug-filter
● mapref
● branch-filter
● copy-files
● keyref
● copy-to
● conrefpush
● conref
● profile
● topic-fragment
● chunk
● move-meta-entries
● maplink
● topicpull
● flag-module
● clean-map

Resolve content references

● Processes both push and pull content references

<p conref="b.dita#b/x">

↓
<p id="x">Resolved content</p>

Filter conditional content

● Removes content from topics and maps based on
DITAVAL or print attribute

● Output can differ based on when filtering is done

<li audience="pro">duct tape

cable tie

↓
cable tie

● gen-list
● debug-filter
● mapref
● branch-filter
● copy-files
● keyref
● copy-to
● conrefpush
● conref
● profile
● topic-fragment
● chunk
● move-meta-entries
● maplink
● topicpull
● flag-module
● clean-map

Resolve topic fragments 1/2

● Expands same topic fragments in URIs

<xref href="#./x">

↓
<xref href="#b/x/>

● gen-list
● debug-filter
● mapref
● branch-filter
● copy-files
● keyref
● copy-to
● conrefpush
● conref
● profile
● topic-fragment
● chunk
● move-meta-entries
● maplink
● topicpull
● flag-module
● clean-map

Resolve code references 2/2

● Expands coderef references in codeblock elements

<codeblock coderef="for.scala"/>

↓
<codeblock> for (i <- 0 to 10) {

 println(i)

}</codeblock>

● Adds some extensions to DITA spec

<coderef href="unicode.txt"

 format="txt; charset=UTF-8"/>

<coderef

 href="lib.rs#token=XMPSTR,XMPEND"/>

● gen-list
● debug-filter
● mapref
● branch-filter
● copy-files
● keyref
● copy-to
● conrefpush
● conref
● profile
● topic-fragment
● chunk
● move-meta-entries
● maplink
● topicpull
● flag-module
● clean-map

Chunk topics

● Breaks apart and assembles referenced DITA
content based on the chunk attributes in maps

● gen-list
● debug-filter
● mapref
● branch-filter
● copy-files
● keyref
● copy-to
● conrefpush
● conref
● profile
● topic-fragment
● chunk
● move-meta-entries
● maplink
● topicpull
● flag-module
● clean-map

Move map metadata to topics & pull content into maps

● Cascades metadata in map and nested topicrefs
● Pushes the map metadata into topics
● Allows topic processing in isolation while retaining

all relevant metadata
● Pulls metadata from referenced topics into maps

● gen-list
● debug-filter
● mapref
● branch-filter
● copy-files
● keyref
● copy-to
● conrefpush
● conref
● profile
● topic-fragment
● chunk
● move-meta-entries
● maplink
● topicpull
● flag-module
● clean-map

Map-based linking

● Collects links based on a map and moves those links
into the referenced topics

● gen-list
● debug-filter
● mapref
● branch-filter
● copy-files
● keyref
● copy-to
● conrefpush
● conref
● profile
● topic-fragment
● chunk
● move-meta-entries
● maplink
● topicpull
● flag-module
● clean-map

● gen-list
● debug-filter
● mapref
● branch-filter
● copy-files
● keyref
● copy-to
● conrefpush
● conref
● profile
● topic-fragment
● chunk
● move-meta-entries
● maplink
● topicpull
● flag-module
● clean-map

Pull content into topics

● Pulls title and description content into xref and link
elements

● Partially overlaps with transtype specific link
processing

<xref href="o-sensei.dita"/>

↓
<xref href="o-sensei.dita"

 type="concept"

 >植芝 盛平</xref>

Flagging

● Evaluates the DITAVAL for flag action and adds
DITA-OT specific elements to topics when flags are
active

● Any extended transform type may use these hints to
support flagging without adding logic to interpret the
DITAVAL

● gen-list
● debug-filter
● mapref
● branch-filter
● copy-files
● keyref
● copy-to
● conrefpush
● conref
● profile
● topic-fragment
● chunk
● move-meta-entries
● maplink
● topicpull
● flag-module
● clean-map

Clean-up map

● Any elements and attributes that were added to files
to support preprocessing are removed

● gen-list
● debug-filter
● mapref
● branch-filter
● copy-files
● keyref
● copy-to
● conrefpush
● conref
● profile
● topic-fragment
● chunk
● move-meta-entries
● maplink
● topicpull
● flag-module
● clean-map

Future work

Alternative work cache URIs

● Change how source URIs are mapped to temporary files
● Default implementation matches old behaviour, relative 1:1 mapping
● Alternative implementations:

○ Hash: 0d23e72be0377ab0e899791a9cbf2f0613813c18.dita)
○ Full path: Users/jessicajones/Work/season2/script.dita)

● Job configuration is used to store the mapping

Map-first preprocess

● Split preprocess into three phases:
○ Read maps and process as far as possible
○ Read topics and process as far as possible
○ Process map and topic relations

● End result is the same as in old preprocess
● Easier to reason about the process and clear separation of steps
● Allows combining filter processing

Alternative work caches

● Support memory-based temporary storages
● Support alternative storage formats

Thank you

